Input: elantech - discard the first 2 positions on some firmwares
[deliverable/linux.git] / drivers / net / au1000_eth.c
1 /*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
32 *
33 * ########################################################################
34 *
35 *
36 */
37 #include <linux/capability.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/module.h>
40 #include <linux/kernel.h>
41 #include <linux/string.h>
42 #include <linux/timer.h>
43 #include <linux/errno.h>
44 #include <linux/in.h>
45 #include <linux/ioport.h>
46 #include <linux/bitops.h>
47 #include <linux/slab.h>
48 #include <linux/interrupt.h>
49 #include <linux/init.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
59
60 #include <asm/cpu.h>
61 #include <asm/mipsregs.h>
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/processor.h>
65
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
69
70 #include "au1000_eth.h"
71
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
77
78 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
79 NETIF_MSG_PROBE | \
80 NETIF_MSG_LINK)
81
82 #define DRV_NAME "au1000_eth"
83 #define DRV_VERSION "1.7"
84 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
85 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
86
87 MODULE_AUTHOR(DRV_AUTHOR);
88 MODULE_DESCRIPTION(DRV_DESC);
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92 /*
93 * Theory of operation
94 *
95 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
96 * There are four receive and four transmit descriptors. These
97 * descriptors are not in memory; rather, they are just a set of
98 * hardware registers.
99 *
100 * Since the Au1000 has a coherent data cache, the receive and
101 * transmit buffers are allocated from the KSEG0 segment. The
102 * hardware registers, however, are still mapped at KSEG1 to
103 * make sure there's no out-of-order writes, and that all writes
104 * complete immediately.
105 */
106
107 /* These addresses are only used if yamon doesn't tell us what
108 * the mac address is, and the mac address is not passed on the
109 * command line.
110 */
111 static unsigned char au1000_mac_addr[6] __devinitdata = {
112 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
113 };
114
115 struct au1000_private *au_macs[NUM_ETH_INTERFACES];
116
117 /*
118 * board-specific configurations
119 *
120 * PHY detection algorithm
121 *
122 * If phy_static_config is undefined, the PHY setup is
123 * autodetected:
124 *
125 * mii_probe() first searches the current MAC's MII bus for a PHY,
126 * selecting the first (or last, if phy_search_highest_addr is
127 * defined) PHY address not already claimed by another netdev.
128 *
129 * If nothing was found that way when searching for the 2nd ethernet
130 * controller's PHY and phy1_search_mac0 is defined, then
131 * the first MII bus is searched as well for an unclaimed PHY; this is
132 * needed in case of a dual-PHY accessible only through the MAC0's MII
133 * bus.
134 *
135 * Finally, if no PHY is found, then the corresponding ethernet
136 * controller is not registered to the network subsystem.
137 */
138
139 /* autodetection defaults: phy1_search_mac0 */
140
141 /* static PHY setup
142 *
143 * most boards PHY setup should be detectable properly with the
144 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
145 * you have a switch attached, or want to use the PHY's interrupt
146 * notification capabilities) you can provide a static PHY
147 * configuration here
148 *
149 * IRQs may only be set, if a PHY address was configured
150 * If a PHY address is given, also a bus id is required to be set
151 *
152 * ps: make sure the used irqs are configured properly in the board
153 * specific irq-map
154 */
155
156 static void au1000_enable_mac(struct net_device *dev, int force_reset)
157 {
158 unsigned long flags;
159 struct au1000_private *aup = netdev_priv(dev);
160
161 spin_lock_irqsave(&aup->lock, flags);
162
163 if(force_reset || (!aup->mac_enabled)) {
164 *aup->enable = MAC_EN_CLOCK_ENABLE;
165 au_sync_delay(2);
166 *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
167 | MAC_EN_CLOCK_ENABLE);
168 au_sync_delay(2);
169
170 aup->mac_enabled = 1;
171 }
172
173 spin_unlock_irqrestore(&aup->lock, flags);
174 }
175
176 /*
177 * MII operations
178 */
179 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
180 {
181 struct au1000_private *aup = netdev_priv(dev);
182 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
183 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
184 u32 timedout = 20;
185 u32 mii_control;
186
187 while (*mii_control_reg & MAC_MII_BUSY) {
188 mdelay(1);
189 if (--timedout == 0) {
190 netdev_err(dev, "read_MII busy timeout!!\n");
191 return -1;
192 }
193 }
194
195 mii_control = MAC_SET_MII_SELECT_REG(reg) |
196 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
197
198 *mii_control_reg = mii_control;
199
200 timedout = 20;
201 while (*mii_control_reg & MAC_MII_BUSY) {
202 mdelay(1);
203 if (--timedout == 0) {
204 netdev_err(dev, "mdio_read busy timeout!!\n");
205 return -1;
206 }
207 }
208 return (int)*mii_data_reg;
209 }
210
211 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
212 int reg, u16 value)
213 {
214 struct au1000_private *aup = netdev_priv(dev);
215 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
216 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
217 u32 timedout = 20;
218 u32 mii_control;
219
220 while (*mii_control_reg & MAC_MII_BUSY) {
221 mdelay(1);
222 if (--timedout == 0) {
223 netdev_err(dev, "mdio_write busy timeout!!\n");
224 return;
225 }
226 }
227
228 mii_control = MAC_SET_MII_SELECT_REG(reg) |
229 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
230
231 *mii_data_reg = value;
232 *mii_control_reg = mii_control;
233 }
234
235 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
236 {
237 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
238 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
239 struct net_device *const dev = bus->priv;
240
241 au1000_enable_mac(dev, 0); /* make sure the MAC associated with this
242 * mii_bus is enabled */
243 return au1000_mdio_read(dev, phy_addr, regnum);
244 }
245
246 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
247 u16 value)
248 {
249 struct net_device *const dev = bus->priv;
250
251 au1000_enable_mac(dev, 0); /* make sure the MAC associated with this
252 * mii_bus is enabled */
253 au1000_mdio_write(dev, phy_addr, regnum, value);
254 return 0;
255 }
256
257 static int au1000_mdiobus_reset(struct mii_bus *bus)
258 {
259 struct net_device *const dev = bus->priv;
260
261 au1000_enable_mac(dev, 0); /* make sure the MAC associated with this
262 * mii_bus is enabled */
263 return 0;
264 }
265
266 static void au1000_hard_stop(struct net_device *dev)
267 {
268 struct au1000_private *aup = netdev_priv(dev);
269
270 netif_dbg(aup, drv, dev, "hard stop\n");
271
272 aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
273 au_sync_delay(10);
274 }
275
276 static void au1000_enable_rx_tx(struct net_device *dev)
277 {
278 struct au1000_private *aup = netdev_priv(dev);
279
280 netif_dbg(aup, hw, dev, "enable_rx_tx\n");
281
282 aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
283 au_sync_delay(10);
284 }
285
286 static void
287 au1000_adjust_link(struct net_device *dev)
288 {
289 struct au1000_private *aup = netdev_priv(dev);
290 struct phy_device *phydev = aup->phy_dev;
291 unsigned long flags;
292
293 int status_change = 0;
294
295 BUG_ON(!aup->phy_dev);
296
297 spin_lock_irqsave(&aup->lock, flags);
298
299 if (phydev->link && (aup->old_speed != phydev->speed)) {
300 /* speed changed */
301
302 switch (phydev->speed) {
303 case SPEED_10:
304 case SPEED_100:
305 break;
306 default:
307 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
308 phydev->speed);
309 break;
310 }
311
312 aup->old_speed = phydev->speed;
313
314 status_change = 1;
315 }
316
317 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
318 /* duplex mode changed */
319
320 /* switching duplex mode requires to disable rx and tx! */
321 au1000_hard_stop(dev);
322
323 if (DUPLEX_FULL == phydev->duplex)
324 aup->mac->control = ((aup->mac->control
325 | MAC_FULL_DUPLEX)
326 & ~MAC_DISABLE_RX_OWN);
327 else
328 aup->mac->control = ((aup->mac->control
329 & ~MAC_FULL_DUPLEX)
330 | MAC_DISABLE_RX_OWN);
331 au_sync_delay(1);
332
333 au1000_enable_rx_tx(dev);
334 aup->old_duplex = phydev->duplex;
335
336 status_change = 1;
337 }
338
339 if (phydev->link != aup->old_link) {
340 /* link state changed */
341
342 if (!phydev->link) {
343 /* link went down */
344 aup->old_speed = 0;
345 aup->old_duplex = -1;
346 }
347
348 aup->old_link = phydev->link;
349 status_change = 1;
350 }
351
352 spin_unlock_irqrestore(&aup->lock, flags);
353
354 if (status_change) {
355 if (phydev->link)
356 netdev_info(dev, "link up (%d/%s)\n",
357 phydev->speed,
358 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
359 else
360 netdev_info(dev, "link down\n");
361 }
362 }
363
364 static int au1000_mii_probe (struct net_device *dev)
365 {
366 struct au1000_private *const aup = netdev_priv(dev);
367 struct phy_device *phydev = NULL;
368
369 if (aup->phy_static_config) {
370 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
371
372 if (aup->phy_addr)
373 phydev = aup->mii_bus->phy_map[aup->phy_addr];
374 else
375 netdev_info(dev, "using PHY-less setup\n");
376 return 0;
377 } else {
378 int phy_addr;
379
380 /* find the first (lowest address) PHY on the current MAC's MII bus */
381 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
382 if (aup->mii_bus->phy_map[phy_addr]) {
383 phydev = aup->mii_bus->phy_map[phy_addr];
384 if (!aup->phy_search_highest_addr)
385 break; /* break out with first one found */
386 }
387
388 if (aup->phy1_search_mac0) {
389 /* try harder to find a PHY */
390 if (!phydev && (aup->mac_id == 1)) {
391 /* no PHY found, maybe we have a dual PHY? */
392 dev_info(&dev->dev, ": no PHY found on MAC1, "
393 "let's see if it's attached to MAC0...\n");
394
395 /* find the first (lowest address) non-attached PHY on
396 * the MAC0 MII bus */
397 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
398 struct phy_device *const tmp_phydev =
399 aup->mii_bus->phy_map[phy_addr];
400
401 if (aup->mac_id == 1)
402 break;
403
404 if (!tmp_phydev)
405 continue; /* no PHY here... */
406
407 if (tmp_phydev->attached_dev)
408 continue; /* already claimed by MAC0 */
409
410 phydev = tmp_phydev;
411 break; /* found it */
412 }
413 }
414 }
415 }
416
417 if (!phydev) {
418 netdev_err(dev, "no PHY found\n");
419 return -1;
420 }
421
422 /* now we are supposed to have a proper phydev, to attach to... */
423 BUG_ON(phydev->attached_dev);
424
425 phydev = phy_connect(dev, dev_name(&phydev->dev), &au1000_adjust_link,
426 0, PHY_INTERFACE_MODE_MII);
427
428 if (IS_ERR(phydev)) {
429 netdev_err(dev, "Could not attach to PHY\n");
430 return PTR_ERR(phydev);
431 }
432
433 /* mask with MAC supported features */
434 phydev->supported &= (SUPPORTED_10baseT_Half
435 | SUPPORTED_10baseT_Full
436 | SUPPORTED_100baseT_Half
437 | SUPPORTED_100baseT_Full
438 | SUPPORTED_Autoneg
439 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
440 | SUPPORTED_MII
441 | SUPPORTED_TP);
442
443 phydev->advertising = phydev->supported;
444
445 aup->old_link = 0;
446 aup->old_speed = 0;
447 aup->old_duplex = -1;
448 aup->phy_dev = phydev;
449
450 netdev_info(dev, "attached PHY driver [%s] "
451 "(mii_bus:phy_addr=%s, irq=%d)\n",
452 phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
453
454 return 0;
455 }
456
457
458 /*
459 * Buffer allocation/deallocation routines. The buffer descriptor returned
460 * has the virtual and dma address of a buffer suitable for
461 * both, receive and transmit operations.
462 */
463 static db_dest_t *au1000_GetFreeDB(struct au1000_private *aup)
464 {
465 db_dest_t *pDB;
466 pDB = aup->pDBfree;
467
468 if (pDB) {
469 aup->pDBfree = pDB->pnext;
470 }
471 return pDB;
472 }
473
474 void au1000_ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
475 {
476 db_dest_t *pDBfree = aup->pDBfree;
477 if (pDBfree)
478 pDBfree->pnext = pDB;
479 aup->pDBfree = pDB;
480 }
481
482 static void au1000_reset_mac_unlocked(struct net_device *dev)
483 {
484 struct au1000_private *const aup = netdev_priv(dev);
485 int i;
486
487 au1000_hard_stop(dev);
488
489 *aup->enable = MAC_EN_CLOCK_ENABLE;
490 au_sync_delay(2);
491 *aup->enable = 0;
492 au_sync_delay(2);
493
494 aup->tx_full = 0;
495 for (i = 0; i < NUM_RX_DMA; i++) {
496 /* reset control bits */
497 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
498 }
499 for (i = 0; i < NUM_TX_DMA; i++) {
500 /* reset control bits */
501 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
502 }
503
504 aup->mac_enabled = 0;
505
506 }
507
508 static void au1000_reset_mac(struct net_device *dev)
509 {
510 struct au1000_private *const aup = netdev_priv(dev);
511 unsigned long flags;
512
513 netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
514 (unsigned)aup);
515
516 spin_lock_irqsave(&aup->lock, flags);
517
518 au1000_reset_mac_unlocked (dev);
519
520 spin_unlock_irqrestore(&aup->lock, flags);
521 }
522
523 /*
524 * Setup the receive and transmit "rings". These pointers are the addresses
525 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
526 * these are not descriptors sitting in memory.
527 */
528 static void
529 au1000_setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
530 {
531 int i;
532
533 for (i = 0; i < NUM_RX_DMA; i++) {
534 aup->rx_dma_ring[i] =
535 (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
536 }
537 for (i = 0; i < NUM_TX_DMA; i++) {
538 aup->tx_dma_ring[i] =
539 (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
540 }
541 }
542
543 /*
544 * ethtool operations
545 */
546
547 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
548 {
549 struct au1000_private *aup = netdev_priv(dev);
550
551 if (aup->phy_dev)
552 return phy_ethtool_gset(aup->phy_dev, cmd);
553
554 return -EINVAL;
555 }
556
557 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
558 {
559 struct au1000_private *aup = netdev_priv(dev);
560
561 if (!capable(CAP_NET_ADMIN))
562 return -EPERM;
563
564 if (aup->phy_dev)
565 return phy_ethtool_sset(aup->phy_dev, cmd);
566
567 return -EINVAL;
568 }
569
570 static void
571 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
572 {
573 struct au1000_private *aup = netdev_priv(dev);
574
575 strcpy(info->driver, DRV_NAME);
576 strcpy(info->version, DRV_VERSION);
577 info->fw_version[0] = '\0';
578 sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
579 info->regdump_len = 0;
580 }
581
582 static void au1000_set_msglevel(struct net_device *dev, u32 value)
583 {
584 struct au1000_private *aup = netdev_priv(dev);
585 aup->msg_enable = value;
586 }
587
588 static u32 au1000_get_msglevel(struct net_device *dev)
589 {
590 struct au1000_private *aup = netdev_priv(dev);
591 return aup->msg_enable;
592 }
593
594 static const struct ethtool_ops au1000_ethtool_ops = {
595 .get_settings = au1000_get_settings,
596 .set_settings = au1000_set_settings,
597 .get_drvinfo = au1000_get_drvinfo,
598 .get_link = ethtool_op_get_link,
599 .get_msglevel = au1000_get_msglevel,
600 .set_msglevel = au1000_set_msglevel,
601 };
602
603
604 /*
605 * Initialize the interface.
606 *
607 * When the device powers up, the clocks are disabled and the
608 * mac is in reset state. When the interface is closed, we
609 * do the same -- reset the device and disable the clocks to
610 * conserve power. Thus, whenever au1000_init() is called,
611 * the device should already be in reset state.
612 */
613 static int au1000_init(struct net_device *dev)
614 {
615 struct au1000_private *aup = netdev_priv(dev);
616 unsigned long flags;
617 int i;
618 u32 control;
619
620 netif_dbg(aup, hw, dev, "au1000_init\n");
621
622 /* bring the device out of reset */
623 au1000_enable_mac(dev, 1);
624
625 spin_lock_irqsave(&aup->lock, flags);
626
627 aup->mac->control = 0;
628 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
629 aup->tx_tail = aup->tx_head;
630 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
631
632 aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
633 aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
634 dev->dev_addr[1]<<8 | dev->dev_addr[0];
635
636 for (i = 0; i < NUM_RX_DMA; i++) {
637 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
638 }
639 au_sync();
640
641 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
642 #ifndef CONFIG_CPU_LITTLE_ENDIAN
643 control |= MAC_BIG_ENDIAN;
644 #endif
645 if (aup->phy_dev) {
646 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
647 control |= MAC_FULL_DUPLEX;
648 else
649 control |= MAC_DISABLE_RX_OWN;
650 } else { /* PHY-less op, assume full-duplex */
651 control |= MAC_FULL_DUPLEX;
652 }
653
654 aup->mac->control = control;
655 aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
656 au_sync();
657
658 spin_unlock_irqrestore(&aup->lock, flags);
659 return 0;
660 }
661
662 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
663 {
664 struct net_device_stats *ps = &dev->stats;
665
666 ps->rx_packets++;
667 if (status & RX_MCAST_FRAME)
668 ps->multicast++;
669
670 if (status & RX_ERROR) {
671 ps->rx_errors++;
672 if (status & RX_MISSED_FRAME)
673 ps->rx_missed_errors++;
674 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
675 ps->rx_length_errors++;
676 if (status & RX_CRC_ERROR)
677 ps->rx_crc_errors++;
678 if (status & RX_COLL)
679 ps->collisions++;
680 } else
681 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
682
683 }
684
685 /*
686 * Au1000 receive routine.
687 */
688 static int au1000_rx(struct net_device *dev)
689 {
690 struct au1000_private *aup = netdev_priv(dev);
691 struct sk_buff *skb;
692 volatile rx_dma_t *prxd;
693 u32 buff_stat, status;
694 db_dest_t *pDB;
695 u32 frmlen;
696
697 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
698
699 prxd = aup->rx_dma_ring[aup->rx_head];
700 buff_stat = prxd->buff_stat;
701 while (buff_stat & RX_T_DONE) {
702 status = prxd->status;
703 pDB = aup->rx_db_inuse[aup->rx_head];
704 au1000_update_rx_stats(dev, status);
705 if (!(status & RX_ERROR)) {
706
707 /* good frame */
708 frmlen = (status & RX_FRAME_LEN_MASK);
709 frmlen -= 4; /* Remove FCS */
710 skb = dev_alloc_skb(frmlen + 2);
711 if (skb == NULL) {
712 netdev_err(dev, "Memory squeeze, dropping packet.\n");
713 dev->stats.rx_dropped++;
714 continue;
715 }
716 skb_reserve(skb, 2); /* 16 byte IP header align */
717 skb_copy_to_linear_data(skb,
718 (unsigned char *)pDB->vaddr, frmlen);
719 skb_put(skb, frmlen);
720 skb->protocol = eth_type_trans(skb, dev);
721 netif_rx(skb); /* pass the packet to upper layers */
722 } else {
723 if (au1000_debug > 4) {
724 if (status & RX_MISSED_FRAME)
725 printk("rx miss\n");
726 if (status & RX_WDOG_TIMER)
727 printk("rx wdog\n");
728 if (status & RX_RUNT)
729 printk("rx runt\n");
730 if (status & RX_OVERLEN)
731 printk("rx overlen\n");
732 if (status & RX_COLL)
733 printk("rx coll\n");
734 if (status & RX_MII_ERROR)
735 printk("rx mii error\n");
736 if (status & RX_CRC_ERROR)
737 printk("rx crc error\n");
738 if (status & RX_LEN_ERROR)
739 printk("rx len error\n");
740 if (status & RX_U_CNTRL_FRAME)
741 printk("rx u control frame\n");
742 }
743 }
744 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
745 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
746 au_sync();
747
748 /* next descriptor */
749 prxd = aup->rx_dma_ring[aup->rx_head];
750 buff_stat = prxd->buff_stat;
751 }
752 return 0;
753 }
754
755 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
756 {
757 struct au1000_private *aup = netdev_priv(dev);
758 struct net_device_stats *ps = &dev->stats;
759
760 if (status & TX_FRAME_ABORTED) {
761 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
762 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
763 /* any other tx errors are only valid
764 * in half duplex mode */
765 ps->tx_errors++;
766 ps->tx_aborted_errors++;
767 }
768 } else {
769 ps->tx_errors++;
770 ps->tx_aborted_errors++;
771 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
772 ps->tx_carrier_errors++;
773 }
774 }
775 }
776
777 /*
778 * Called from the interrupt service routine to acknowledge
779 * the TX DONE bits. This is a must if the irq is setup as
780 * edge triggered.
781 */
782 static void au1000_tx_ack(struct net_device *dev)
783 {
784 struct au1000_private *aup = netdev_priv(dev);
785 volatile tx_dma_t *ptxd;
786
787 ptxd = aup->tx_dma_ring[aup->tx_tail];
788
789 while (ptxd->buff_stat & TX_T_DONE) {
790 au1000_update_tx_stats(dev, ptxd->status);
791 ptxd->buff_stat &= ~TX_T_DONE;
792 ptxd->len = 0;
793 au_sync();
794
795 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
796 ptxd = aup->tx_dma_ring[aup->tx_tail];
797
798 if (aup->tx_full) {
799 aup->tx_full = 0;
800 netif_wake_queue(dev);
801 }
802 }
803 }
804
805 /*
806 * Au1000 interrupt service routine.
807 */
808 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
809 {
810 struct net_device *dev = dev_id;
811
812 /* Handle RX interrupts first to minimize chance of overrun */
813
814 au1000_rx(dev);
815 au1000_tx_ack(dev);
816 return IRQ_RETVAL(1);
817 }
818
819 static int au1000_open(struct net_device *dev)
820 {
821 int retval;
822 struct au1000_private *aup = netdev_priv(dev);
823
824 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
825
826 retval = request_irq(dev->irq, au1000_interrupt, 0,
827 dev->name, dev);
828 if (retval) {
829 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
830 return retval;
831 }
832
833 retval = au1000_init(dev);
834 if (retval) {
835 netdev_err(dev, "error in au1000_init\n");
836 free_irq(dev->irq, dev);
837 return retval;
838 }
839
840 if (aup->phy_dev) {
841 /* cause the PHY state machine to schedule a link state check */
842 aup->phy_dev->state = PHY_CHANGELINK;
843 phy_start(aup->phy_dev);
844 }
845
846 netif_start_queue(dev);
847
848 netif_dbg(aup, drv, dev, "open: Initialization done.\n");
849
850 return 0;
851 }
852
853 static int au1000_close(struct net_device *dev)
854 {
855 unsigned long flags;
856 struct au1000_private *const aup = netdev_priv(dev);
857
858 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
859
860 if (aup->phy_dev)
861 phy_stop(aup->phy_dev);
862
863 spin_lock_irqsave(&aup->lock, flags);
864
865 au1000_reset_mac_unlocked (dev);
866
867 /* stop the device */
868 netif_stop_queue(dev);
869
870 /* disable the interrupt */
871 free_irq(dev->irq, dev);
872 spin_unlock_irqrestore(&aup->lock, flags);
873
874 return 0;
875 }
876
877 /*
878 * Au1000 transmit routine.
879 */
880 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
881 {
882 struct au1000_private *aup = netdev_priv(dev);
883 struct net_device_stats *ps = &dev->stats;
884 volatile tx_dma_t *ptxd;
885 u32 buff_stat;
886 db_dest_t *pDB;
887 int i;
888
889 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
890 (unsigned)aup, skb->len,
891 skb->data, aup->tx_head);
892
893 ptxd = aup->tx_dma_ring[aup->tx_head];
894 buff_stat = ptxd->buff_stat;
895 if (buff_stat & TX_DMA_ENABLE) {
896 /* We've wrapped around and the transmitter is still busy */
897 netif_stop_queue(dev);
898 aup->tx_full = 1;
899 return NETDEV_TX_BUSY;
900 } else if (buff_stat & TX_T_DONE) {
901 au1000_update_tx_stats(dev, ptxd->status);
902 ptxd->len = 0;
903 }
904
905 if (aup->tx_full) {
906 aup->tx_full = 0;
907 netif_wake_queue(dev);
908 }
909
910 pDB = aup->tx_db_inuse[aup->tx_head];
911 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
912 if (skb->len < ETH_ZLEN) {
913 for (i = skb->len; i < ETH_ZLEN; i++) {
914 ((char *)pDB->vaddr)[i] = 0;
915 }
916 ptxd->len = ETH_ZLEN;
917 } else
918 ptxd->len = skb->len;
919
920 ps->tx_packets++;
921 ps->tx_bytes += ptxd->len;
922
923 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
924 au_sync();
925 dev_kfree_skb(skb);
926 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
927 return NETDEV_TX_OK;
928 }
929
930 /*
931 * The Tx ring has been full longer than the watchdog timeout
932 * value. The transmitter must be hung?
933 */
934 static void au1000_tx_timeout(struct net_device *dev)
935 {
936 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
937 au1000_reset_mac(dev);
938 au1000_init(dev);
939 dev->trans_start = jiffies; /* prevent tx timeout */
940 netif_wake_queue(dev);
941 }
942
943 static void au1000_multicast_list(struct net_device *dev)
944 {
945 struct au1000_private *aup = netdev_priv(dev);
946
947 netif_dbg(aup, drv, dev, "au1000_multicast_list: flags=%x\n", dev->flags);
948
949 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
950 aup->mac->control |= MAC_PROMISCUOUS;
951 } else if ((dev->flags & IFF_ALLMULTI) ||
952 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
953 aup->mac->control |= MAC_PASS_ALL_MULTI;
954 aup->mac->control &= ~MAC_PROMISCUOUS;
955 netdev_info(dev, "Pass all multicast\n");
956 } else {
957 struct netdev_hw_addr *ha;
958 u32 mc_filter[2]; /* Multicast hash filter */
959
960 mc_filter[1] = mc_filter[0] = 0;
961 netdev_for_each_mc_addr(ha, dev)
962 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
963 (long *)mc_filter);
964 aup->mac->multi_hash_high = mc_filter[1];
965 aup->mac->multi_hash_low = mc_filter[0];
966 aup->mac->control &= ~MAC_PROMISCUOUS;
967 aup->mac->control |= MAC_HASH_MODE;
968 }
969 }
970
971 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
972 {
973 struct au1000_private *aup = netdev_priv(dev);
974
975 if (!netif_running(dev))
976 return -EINVAL;
977
978 if (!aup->phy_dev)
979 return -EINVAL; /* PHY not controllable */
980
981 return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
982 }
983
984 static const struct net_device_ops au1000_netdev_ops = {
985 .ndo_open = au1000_open,
986 .ndo_stop = au1000_close,
987 .ndo_start_xmit = au1000_tx,
988 .ndo_set_multicast_list = au1000_multicast_list,
989 .ndo_do_ioctl = au1000_ioctl,
990 .ndo_tx_timeout = au1000_tx_timeout,
991 .ndo_set_mac_address = eth_mac_addr,
992 .ndo_validate_addr = eth_validate_addr,
993 .ndo_change_mtu = eth_change_mtu,
994 };
995
996 static int __devinit au1000_probe(struct platform_device *pdev)
997 {
998 static unsigned version_printed;
999 struct au1000_private *aup = NULL;
1000 struct au1000_eth_platform_data *pd;
1001 struct net_device *dev = NULL;
1002 db_dest_t *pDB, *pDBfree;
1003 int irq, i, err = 0;
1004 struct resource *base, *macen;
1005 char ethaddr[6];
1006
1007 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1008 if (!base) {
1009 dev_err(&pdev->dev, "failed to retrieve base register\n");
1010 err = -ENODEV;
1011 goto out;
1012 }
1013
1014 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1015 if (!macen) {
1016 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1017 err = -ENODEV;
1018 goto out;
1019 }
1020
1021 irq = platform_get_irq(pdev, 0);
1022 if (irq < 0) {
1023 dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1024 err = -ENODEV;
1025 goto out;
1026 }
1027
1028 if (!request_mem_region(base->start, resource_size(base), pdev->name)) {
1029 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1030 err = -ENXIO;
1031 goto out;
1032 }
1033
1034 if (!request_mem_region(macen->start, resource_size(macen), pdev->name)) {
1035 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1036 err = -ENXIO;
1037 goto err_request;
1038 }
1039
1040 dev = alloc_etherdev(sizeof(struct au1000_private));
1041 if (!dev) {
1042 dev_err(&pdev->dev, "alloc_etherdev failed\n");
1043 err = -ENOMEM;
1044 goto err_alloc;
1045 }
1046
1047 SET_NETDEV_DEV(dev, &pdev->dev);
1048 platform_set_drvdata(pdev, dev);
1049 aup = netdev_priv(dev);
1050
1051 spin_lock_init(&aup->lock);
1052 aup->msg_enable = (au1000_debug < 4 ? AU1000_DEF_MSG_ENABLE : au1000_debug);
1053
1054 /* Allocate the data buffers */
1055 /* Snooping works fine with eth on all au1xxx */
1056 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1057 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1058 &aup->dma_addr, 0);
1059 if (!aup->vaddr) {
1060 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1061 err = -ENOMEM;
1062 goto err_vaddr;
1063 }
1064
1065 /* aup->mac is the base address of the MAC's registers */
1066 aup->mac = (volatile mac_reg_t *)ioremap_nocache(base->start, resource_size(base));
1067 if (!aup->mac) {
1068 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1069 err = -ENXIO;
1070 goto err_remap1;
1071 }
1072
1073 /* Setup some variables for quick register address access */
1074 aup->enable = (volatile u32 *)ioremap_nocache(macen->start, resource_size(macen));
1075 if (!aup->enable) {
1076 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1077 err = -ENXIO;
1078 goto err_remap2;
1079 }
1080 aup->mac_id = pdev->id;
1081
1082 if (pdev->id == 0) {
1083 if (prom_get_ethernet_addr(ethaddr) == 0)
1084 memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
1085 else {
1086 netdev_info(dev, "No MAC address found\n");
1087 /* Use the hard coded MAC addresses */
1088 }
1089
1090 au1000_setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
1091 } else if (pdev->id == 1)
1092 au1000_setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
1093
1094 /*
1095 * Assign to the Ethernet ports two consecutive MAC addresses
1096 * to match those that are printed on their stickers
1097 */
1098 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
1099 dev->dev_addr[5] += pdev->id;
1100
1101 *aup->enable = 0;
1102 aup->mac_enabled = 0;
1103
1104 pd = pdev->dev.platform_data;
1105 if (!pd) {
1106 dev_info(&pdev->dev, "no platform_data passed, PHY search on MAC0\n");
1107 aup->phy1_search_mac0 = 1;
1108 } else {
1109 aup->phy_static_config = pd->phy_static_config;
1110 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1111 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1112 aup->phy_addr = pd->phy_addr;
1113 aup->phy_busid = pd->phy_busid;
1114 aup->phy_irq = pd->phy_irq;
1115 }
1116
1117 if (aup->phy_busid && aup->phy_busid > 0) {
1118 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII"
1119 "bus not supported yet\n");
1120 err = -ENODEV;
1121 goto err_mdiobus_alloc;
1122 }
1123
1124 aup->mii_bus = mdiobus_alloc();
1125 if (aup->mii_bus == NULL) {
1126 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1127 err = -ENOMEM;
1128 goto err_mdiobus_alloc;
1129 }
1130
1131 aup->mii_bus->priv = dev;
1132 aup->mii_bus->read = au1000_mdiobus_read;
1133 aup->mii_bus->write = au1000_mdiobus_write;
1134 aup->mii_bus->reset = au1000_mdiobus_reset;
1135 aup->mii_bus->name = "au1000_eth_mii";
1136 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%x", aup->mac_id);
1137 aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1138 if (aup->mii_bus->irq == NULL)
1139 goto err_out;
1140
1141 for (i = 0; i < PHY_MAX_ADDR; ++i)
1142 aup->mii_bus->irq[i] = PHY_POLL;
1143 /* if known, set corresponding PHY IRQs */
1144 if (aup->phy_static_config)
1145 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1146 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1147
1148 err = mdiobus_register(aup->mii_bus);
1149 if (err) {
1150 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1151 goto err_mdiobus_reg;
1152 }
1153
1154 if (au1000_mii_probe(dev) != 0)
1155 goto err_out;
1156
1157 pDBfree = NULL;
1158 /* setup the data buffer descriptors and attach a buffer to each one */
1159 pDB = aup->db;
1160 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1161 pDB->pnext = pDBfree;
1162 pDBfree = pDB;
1163 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1164 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1165 pDB++;
1166 }
1167 aup->pDBfree = pDBfree;
1168
1169 for (i = 0; i < NUM_RX_DMA; i++) {
1170 pDB = au1000_GetFreeDB(aup);
1171 if (!pDB) {
1172 goto err_out;
1173 }
1174 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1175 aup->rx_db_inuse[i] = pDB;
1176 }
1177 for (i = 0; i < NUM_TX_DMA; i++) {
1178 pDB = au1000_GetFreeDB(aup);
1179 if (!pDB) {
1180 goto err_out;
1181 }
1182 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1183 aup->tx_dma_ring[i]->len = 0;
1184 aup->tx_db_inuse[i] = pDB;
1185 }
1186
1187 dev->base_addr = base->start;
1188 dev->irq = irq;
1189 dev->netdev_ops = &au1000_netdev_ops;
1190 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1191 dev->watchdog_timeo = ETH_TX_TIMEOUT;
1192
1193 /*
1194 * The boot code uses the ethernet controller, so reset it to start
1195 * fresh. au1000_init() expects that the device is in reset state.
1196 */
1197 au1000_reset_mac(dev);
1198
1199 err = register_netdev(dev);
1200 if (err) {
1201 netdev_err(dev, "Cannot register net device, aborting.\n");
1202 goto err_out;
1203 }
1204
1205 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1206 (unsigned long)base->start, irq);
1207 if (version_printed++ == 0)
1208 printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1209
1210 return 0;
1211
1212 err_out:
1213 if (aup->mii_bus != NULL)
1214 mdiobus_unregister(aup->mii_bus);
1215
1216 /* here we should have a valid dev plus aup-> register addresses
1217 * so we can reset the mac properly.*/
1218 au1000_reset_mac(dev);
1219
1220 for (i = 0; i < NUM_RX_DMA; i++) {
1221 if (aup->rx_db_inuse[i])
1222 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1223 }
1224 for (i = 0; i < NUM_TX_DMA; i++) {
1225 if (aup->tx_db_inuse[i])
1226 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1227 }
1228 err_mdiobus_reg:
1229 mdiobus_free(aup->mii_bus);
1230 err_mdiobus_alloc:
1231 iounmap(aup->enable);
1232 err_remap2:
1233 iounmap(aup->mac);
1234 err_remap1:
1235 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1236 (void *)aup->vaddr, aup->dma_addr);
1237 err_vaddr:
1238 free_netdev(dev);
1239 err_alloc:
1240 release_mem_region(macen->start, resource_size(macen));
1241 err_request:
1242 release_mem_region(base->start, resource_size(base));
1243 out:
1244 return err;
1245 }
1246
1247 static int __devexit au1000_remove(struct platform_device *pdev)
1248 {
1249 struct net_device *dev = platform_get_drvdata(pdev);
1250 struct au1000_private *aup = netdev_priv(dev);
1251 int i;
1252 struct resource *base, *macen;
1253
1254 platform_set_drvdata(pdev, NULL);
1255
1256 unregister_netdev(dev);
1257 mdiobus_unregister(aup->mii_bus);
1258 mdiobus_free(aup->mii_bus);
1259
1260 for (i = 0; i < NUM_RX_DMA; i++)
1261 if (aup->rx_db_inuse[i])
1262 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1263
1264 for (i = 0; i < NUM_TX_DMA; i++)
1265 if (aup->tx_db_inuse[i])
1266 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1267
1268 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1269 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1270 (void *)aup->vaddr, aup->dma_addr);
1271
1272 iounmap(aup->mac);
1273 iounmap(aup->enable);
1274
1275 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1276 release_mem_region(base->start, resource_size(base));
1277
1278 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1279 release_mem_region(macen->start, resource_size(macen));
1280
1281 free_netdev(dev);
1282
1283 return 0;
1284 }
1285
1286 static struct platform_driver au1000_eth_driver = {
1287 .probe = au1000_probe,
1288 .remove = __devexit_p(au1000_remove),
1289 .driver = {
1290 .name = "au1000-eth",
1291 .owner = THIS_MODULE,
1292 },
1293 };
1294 MODULE_ALIAS("platform:au1000-eth");
1295
1296
1297 static int __init au1000_init_module(void)
1298 {
1299 return platform_driver_register(&au1000_eth_driver);
1300 }
1301
1302 static void __exit au1000_exit_module(void)
1303 {
1304 platform_driver_unregister(&au1000_eth_driver);
1305 }
1306
1307 module_init(au1000_init_module);
1308 module_exit(au1000_exit_module);
This page took 0.060467 seconds and 5 git commands to generate.