Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[deliverable/linux.git] / drivers / net / bmac.c
1 /*
2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1998 Randy Gobbel.
6 *
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/bitrev.h>
22 #include <asm/prom.h>
23 #include <asm/dbdma.h>
24 #include <asm/io.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/machdep.h>
28 #include <asm/pmac_feature.h>
29 #include <asm/macio.h>
30 #include <asm/irq.h>
31
32 #include "bmac.h"
33
34 #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
35 #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
36
37 /*
38 * CRC polynomial - used in working out multicast filter bits.
39 */
40 #define ENET_CRCPOLY 0x04c11db7
41
42 /* switch to use multicast code lifted from sunhme driver */
43 #define SUNHME_MULTICAST
44
45 #define N_RX_RING 64
46 #define N_TX_RING 32
47 #define MAX_TX_ACTIVE 1
48 #define ETHERCRC 4
49 #define ETHERMINPACKET 64
50 #define ETHERMTU 1500
51 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
52 #define TX_TIMEOUT HZ /* 1 second */
53
54 /* Bits in transmit DMA status */
55 #define TX_DMA_ERR 0x80
56
57 #define XXDEBUG(args)
58
59 struct bmac_data {
60 /* volatile struct bmac *bmac; */
61 struct sk_buff_head *queue;
62 volatile struct dbdma_regs __iomem *tx_dma;
63 int tx_dma_intr;
64 volatile struct dbdma_regs __iomem *rx_dma;
65 int rx_dma_intr;
66 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
67 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
68 struct macio_dev *mdev;
69 int is_bmac_plus;
70 struct sk_buff *rx_bufs[N_RX_RING];
71 int rx_fill;
72 int rx_empty;
73 struct sk_buff *tx_bufs[N_TX_RING];
74 int tx_fill;
75 int tx_empty;
76 unsigned char tx_fullup;
77 struct net_device_stats stats;
78 struct timer_list tx_timeout;
79 int timeout_active;
80 int sleeping;
81 int opened;
82 unsigned short hash_use_count[64];
83 unsigned short hash_table_mask[4];
84 spinlock_t lock;
85 };
86
87 #if 0 /* Move that to ethtool */
88
89 typedef struct bmac_reg_entry {
90 char *name;
91 unsigned short reg_offset;
92 } bmac_reg_entry_t;
93
94 #define N_REG_ENTRIES 31
95
96 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
97 {"MEMADD", MEMADD},
98 {"MEMDATAHI", MEMDATAHI},
99 {"MEMDATALO", MEMDATALO},
100 {"TXPNTR", TXPNTR},
101 {"RXPNTR", RXPNTR},
102 {"IPG1", IPG1},
103 {"IPG2", IPG2},
104 {"ALIMIT", ALIMIT},
105 {"SLOT", SLOT},
106 {"PALEN", PALEN},
107 {"PAPAT", PAPAT},
108 {"TXSFD", TXSFD},
109 {"JAM", JAM},
110 {"TXCFG", TXCFG},
111 {"TXMAX", TXMAX},
112 {"TXMIN", TXMIN},
113 {"PAREG", PAREG},
114 {"DCNT", DCNT},
115 {"NCCNT", NCCNT},
116 {"NTCNT", NTCNT},
117 {"EXCNT", EXCNT},
118 {"LTCNT", LTCNT},
119 {"TXSM", TXSM},
120 {"RXCFG", RXCFG},
121 {"RXMAX", RXMAX},
122 {"RXMIN", RXMIN},
123 {"FRCNT", FRCNT},
124 {"AECNT", AECNT},
125 {"FECNT", FECNT},
126 {"RXSM", RXSM},
127 {"RXCV", RXCV}
128 };
129
130 #endif
131
132 static unsigned char *bmac_emergency_rxbuf;
133
134 /*
135 * Number of bytes of private data per BMAC: allow enough for
136 * the rx and tx dma commands plus a branch dma command each,
137 * and another 16 bytes to allow us to align the dma command
138 * buffers on a 16 byte boundary.
139 */
140 #define PRIV_BYTES (sizeof(struct bmac_data) \
141 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
142 + sizeof(struct sk_buff_head))
143
144 static int bmac_open(struct net_device *dev);
145 static int bmac_close(struct net_device *dev);
146 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
147 static struct net_device_stats *bmac_stats(struct net_device *dev);
148 static void bmac_set_multicast(struct net_device *dev);
149 static void bmac_reset_and_enable(struct net_device *dev);
150 static void bmac_start_chip(struct net_device *dev);
151 static void bmac_init_chip(struct net_device *dev);
152 static void bmac_init_registers(struct net_device *dev);
153 static void bmac_enable_and_reset_chip(struct net_device *dev);
154 static int bmac_set_address(struct net_device *dev, void *addr);
155 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
156 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
157 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
158 static void bmac_set_timeout(struct net_device *dev);
159 static void bmac_tx_timeout(unsigned long data);
160 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
161 static void bmac_start(struct net_device *dev);
162
163 #define DBDMA_SET(x) ( ((x) | (x) << 16) )
164 #define DBDMA_CLEAR(x) ( (x) << 16)
165
166 static inline void
167 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
168 {
169 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
170 return;
171 }
172
173 static inline unsigned long
174 dbdma_ld32(volatile __u32 __iomem *a)
175 {
176 __u32 swap;
177 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
178 return swap;
179 }
180
181 static void
182 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183 {
184 dbdma_st32(&dmap->control,
185 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
186 eieio();
187 }
188
189 static void
190 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191 {
192 dbdma_st32(&dmap->control,
193 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
194 eieio();
195 while (dbdma_ld32(&dmap->status) & RUN)
196 eieio();
197 }
198
199 static void
200 dbdma_setcmd(volatile struct dbdma_cmd *cp,
201 unsigned short cmd, unsigned count, unsigned long addr,
202 unsigned long cmd_dep)
203 {
204 out_le16(&cp->command, cmd);
205 out_le16(&cp->req_count, count);
206 out_le32(&cp->phy_addr, addr);
207 out_le32(&cp->cmd_dep, cmd_dep);
208 out_le16(&cp->xfer_status, 0);
209 out_le16(&cp->res_count, 0);
210 }
211
212 static inline
213 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214 {
215 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216 }
217
218
219 static inline
220 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221 {
222 return in_le16((void __iomem *)dev->base_addr + reg_offset);
223 }
224
225 static void
226 bmac_enable_and_reset_chip(struct net_device *dev)
227 {
228 struct bmac_data *bp = netdev_priv(dev);
229 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231
232 if (rd)
233 dbdma_reset(rd);
234 if (td)
235 dbdma_reset(td);
236
237 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238 }
239
240 #define MIFDELAY udelay(10)
241
242 static unsigned int
243 bmac_mif_readbits(struct net_device *dev, int nb)
244 {
245 unsigned int val = 0;
246
247 while (--nb >= 0) {
248 bmwrite(dev, MIFCSR, 0);
249 MIFDELAY;
250 if (bmread(dev, MIFCSR) & 8)
251 val |= 1 << nb;
252 bmwrite(dev, MIFCSR, 1);
253 MIFDELAY;
254 }
255 bmwrite(dev, MIFCSR, 0);
256 MIFDELAY;
257 bmwrite(dev, MIFCSR, 1);
258 MIFDELAY;
259 return val;
260 }
261
262 static void
263 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264 {
265 int b;
266
267 while (--nb >= 0) {
268 b = (val & (1 << nb))? 6: 4;
269 bmwrite(dev, MIFCSR, b);
270 MIFDELAY;
271 bmwrite(dev, MIFCSR, b|1);
272 MIFDELAY;
273 }
274 }
275
276 static unsigned int
277 bmac_mif_read(struct net_device *dev, unsigned int addr)
278 {
279 unsigned int val;
280
281 bmwrite(dev, MIFCSR, 4);
282 MIFDELAY;
283 bmac_mif_writebits(dev, ~0U, 32);
284 bmac_mif_writebits(dev, 6, 4);
285 bmac_mif_writebits(dev, addr, 10);
286 bmwrite(dev, MIFCSR, 2);
287 MIFDELAY;
288 bmwrite(dev, MIFCSR, 1);
289 MIFDELAY;
290 val = bmac_mif_readbits(dev, 17);
291 bmwrite(dev, MIFCSR, 4);
292 MIFDELAY;
293 return val;
294 }
295
296 static void
297 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298 {
299 bmwrite(dev, MIFCSR, 4);
300 MIFDELAY;
301 bmac_mif_writebits(dev, ~0U, 32);
302 bmac_mif_writebits(dev, 5, 4);
303 bmac_mif_writebits(dev, addr, 10);
304 bmac_mif_writebits(dev, 2, 2);
305 bmac_mif_writebits(dev, val, 16);
306 bmac_mif_writebits(dev, 3, 2);
307 }
308
309 static void
310 bmac_init_registers(struct net_device *dev)
311 {
312 struct bmac_data *bp = netdev_priv(dev);
313 volatile unsigned short regValue;
314 unsigned short *pWord16;
315 int i;
316
317 /* XXDEBUG(("bmac: enter init_registers\n")); */
318
319 bmwrite(dev, RXRST, RxResetValue);
320 bmwrite(dev, TXRST, TxResetBit);
321
322 i = 100;
323 do {
324 --i;
325 udelay(10000);
326 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327 } while ((regValue & TxResetBit) && i > 0);
328
329 if (!bp->is_bmac_plus) {
330 regValue = bmread(dev, XCVRIF);
331 regValue |= ClkBit | SerialMode | COLActiveLow;
332 bmwrite(dev, XCVRIF, regValue);
333 udelay(10000);
334 }
335
336 bmwrite(dev, RSEED, (unsigned short)0x1968);
337
338 regValue = bmread(dev, XIFC);
339 regValue |= TxOutputEnable;
340 bmwrite(dev, XIFC, regValue);
341
342 bmread(dev, PAREG);
343
344 /* set collision counters to 0 */
345 bmwrite(dev, NCCNT, 0);
346 bmwrite(dev, NTCNT, 0);
347 bmwrite(dev, EXCNT, 0);
348 bmwrite(dev, LTCNT, 0);
349
350 /* set rx counters to 0 */
351 bmwrite(dev, FRCNT, 0);
352 bmwrite(dev, LECNT, 0);
353 bmwrite(dev, AECNT, 0);
354 bmwrite(dev, FECNT, 0);
355 bmwrite(dev, RXCV, 0);
356
357 /* set tx fifo information */
358 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
359
360 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
361 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362
363 /* set rx fifo information */
364 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
365 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366
367 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
368 bmread(dev, STATUS); /* read it just to clear it */
369
370 /* zero out the chip Hash Filter registers */
371 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
373 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
374 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
375 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
376
377 pWord16 = (unsigned short *)dev->dev_addr;
378 bmwrite(dev, MADD0, *pWord16++);
379 bmwrite(dev, MADD1, *pWord16++);
380 bmwrite(dev, MADD2, *pWord16);
381
382 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
383
384 bmwrite(dev, INTDISABLE, EnableNormal);
385
386 return;
387 }
388
389 #if 0
390 static void
391 bmac_disable_interrupts(struct net_device *dev)
392 {
393 bmwrite(dev, INTDISABLE, DisableAll);
394 }
395
396 static void
397 bmac_enable_interrupts(struct net_device *dev)
398 {
399 bmwrite(dev, INTDISABLE, EnableNormal);
400 }
401 #endif
402
403
404 static void
405 bmac_start_chip(struct net_device *dev)
406 {
407 struct bmac_data *bp = netdev_priv(dev);
408 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
409 unsigned short oldConfig;
410
411 /* enable rx dma channel */
412 dbdma_continue(rd);
413
414 oldConfig = bmread(dev, TXCFG);
415 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
416
417 /* turn on rx plus any other bits already on (promiscuous possibly) */
418 oldConfig = bmread(dev, RXCFG);
419 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
420 udelay(20000);
421 }
422
423 static void
424 bmac_init_phy(struct net_device *dev)
425 {
426 unsigned int addr;
427 struct bmac_data *bp = netdev_priv(dev);
428
429 printk(KERN_DEBUG "phy registers:");
430 for (addr = 0; addr < 32; ++addr) {
431 if ((addr & 7) == 0)
432 printk("\n" KERN_DEBUG);
433 printk(" %.4x", bmac_mif_read(dev, addr));
434 }
435 printk("\n");
436 if (bp->is_bmac_plus) {
437 unsigned int capable, ctrl;
438
439 ctrl = bmac_mif_read(dev, 0);
440 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
441 if (bmac_mif_read(dev, 4) != capable
442 || (ctrl & 0x1000) == 0) {
443 bmac_mif_write(dev, 4, capable);
444 bmac_mif_write(dev, 0, 0x1200);
445 } else
446 bmac_mif_write(dev, 0, 0x1000);
447 }
448 }
449
450 static void bmac_init_chip(struct net_device *dev)
451 {
452 bmac_init_phy(dev);
453 bmac_init_registers(dev);
454 }
455
456 #ifdef CONFIG_PM
457 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
458 {
459 struct net_device* dev = macio_get_drvdata(mdev);
460 struct bmac_data *bp = netdev_priv(dev);
461 unsigned long flags;
462 unsigned short config;
463 int i;
464
465 netif_device_detach(dev);
466 /* prolly should wait for dma to finish & turn off the chip */
467 spin_lock_irqsave(&bp->lock, flags);
468 if (bp->timeout_active) {
469 del_timer(&bp->tx_timeout);
470 bp->timeout_active = 0;
471 }
472 disable_irq(dev->irq);
473 disable_irq(bp->tx_dma_intr);
474 disable_irq(bp->rx_dma_intr);
475 bp->sleeping = 1;
476 spin_unlock_irqrestore(&bp->lock, flags);
477 if (bp->opened) {
478 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
479 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
480
481 config = bmread(dev, RXCFG);
482 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
483 config = bmread(dev, TXCFG);
484 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
485 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
486 /* disable rx and tx dma */
487 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
488 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
489 /* free some skb's */
490 for (i=0; i<N_RX_RING; i++) {
491 if (bp->rx_bufs[i] != NULL) {
492 dev_kfree_skb(bp->rx_bufs[i]);
493 bp->rx_bufs[i] = NULL;
494 }
495 }
496 for (i = 0; i<N_TX_RING; i++) {
497 if (bp->tx_bufs[i] != NULL) {
498 dev_kfree_skb(bp->tx_bufs[i]);
499 bp->tx_bufs[i] = NULL;
500 }
501 }
502 }
503 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
504 return 0;
505 }
506
507 static int bmac_resume(struct macio_dev *mdev)
508 {
509 struct net_device* dev = macio_get_drvdata(mdev);
510 struct bmac_data *bp = netdev_priv(dev);
511
512 /* see if this is enough */
513 if (bp->opened)
514 bmac_reset_and_enable(dev);
515
516 enable_irq(dev->irq);
517 enable_irq(bp->tx_dma_intr);
518 enable_irq(bp->rx_dma_intr);
519 netif_device_attach(dev);
520
521 return 0;
522 }
523 #endif /* CONFIG_PM */
524
525 static int bmac_set_address(struct net_device *dev, void *addr)
526 {
527 struct bmac_data *bp = netdev_priv(dev);
528 unsigned char *p = addr;
529 unsigned short *pWord16;
530 unsigned long flags;
531 int i;
532
533 XXDEBUG(("bmac: enter set_address\n"));
534 spin_lock_irqsave(&bp->lock, flags);
535
536 for (i = 0; i < 6; ++i) {
537 dev->dev_addr[i] = p[i];
538 }
539 /* load up the hardware address */
540 pWord16 = (unsigned short *)dev->dev_addr;
541 bmwrite(dev, MADD0, *pWord16++);
542 bmwrite(dev, MADD1, *pWord16++);
543 bmwrite(dev, MADD2, *pWord16);
544
545 spin_unlock_irqrestore(&bp->lock, flags);
546 XXDEBUG(("bmac: exit set_address\n"));
547 return 0;
548 }
549
550 static inline void bmac_set_timeout(struct net_device *dev)
551 {
552 struct bmac_data *bp = netdev_priv(dev);
553 unsigned long flags;
554
555 spin_lock_irqsave(&bp->lock, flags);
556 if (bp->timeout_active)
557 del_timer(&bp->tx_timeout);
558 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
559 bp->tx_timeout.function = bmac_tx_timeout;
560 bp->tx_timeout.data = (unsigned long) dev;
561 add_timer(&bp->tx_timeout);
562 bp->timeout_active = 1;
563 spin_unlock_irqrestore(&bp->lock, flags);
564 }
565
566 static void
567 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
568 {
569 void *vaddr;
570 unsigned long baddr;
571 unsigned long len;
572
573 len = skb->len;
574 vaddr = skb->data;
575 baddr = virt_to_bus(vaddr);
576
577 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
578 }
579
580 static void
581 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
582 {
583 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
584
585 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
586 virt_to_bus(addr), 0);
587 }
588
589 static void
590 bmac_init_tx_ring(struct bmac_data *bp)
591 {
592 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
593
594 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
595
596 bp->tx_empty = 0;
597 bp->tx_fill = 0;
598 bp->tx_fullup = 0;
599
600 /* put a branch at the end of the tx command list */
601 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
602 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
603
604 /* reset tx dma */
605 dbdma_reset(td);
606 out_le32(&td->wait_sel, 0x00200020);
607 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
608 }
609
610 static int
611 bmac_init_rx_ring(struct bmac_data *bp)
612 {
613 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
614 int i;
615 struct sk_buff *skb;
616
617 /* initialize list of sk_buffs for receiving and set up recv dma */
618 memset((char *)bp->rx_cmds, 0,
619 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
620 for (i = 0; i < N_RX_RING; i++) {
621 if ((skb = bp->rx_bufs[i]) == NULL) {
622 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
623 if (skb != NULL)
624 skb_reserve(skb, 2);
625 }
626 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
627 }
628
629 bp->rx_empty = 0;
630 bp->rx_fill = i;
631
632 /* Put a branch back to the beginning of the receive command list */
633 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
634 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
635
636 /* start rx dma */
637 dbdma_reset(rd);
638 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
639
640 return 1;
641 }
642
643
644 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
645 {
646 struct bmac_data *bp = netdev_priv(dev);
647 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
648 int i;
649
650 /* see if there's a free slot in the tx ring */
651 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
652 /* bp->tx_empty, bp->tx_fill)); */
653 i = bp->tx_fill + 1;
654 if (i >= N_TX_RING)
655 i = 0;
656 if (i == bp->tx_empty) {
657 netif_stop_queue(dev);
658 bp->tx_fullup = 1;
659 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
660 return -1; /* can't take it at the moment */
661 }
662
663 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
664
665 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
666
667 bp->tx_bufs[bp->tx_fill] = skb;
668 bp->tx_fill = i;
669
670 bp->stats.tx_bytes += skb->len;
671
672 dbdma_continue(td);
673
674 return 0;
675 }
676
677 static int rxintcount;
678
679 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
680 {
681 struct net_device *dev = (struct net_device *) dev_id;
682 struct bmac_data *bp = netdev_priv(dev);
683 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
684 volatile struct dbdma_cmd *cp;
685 int i, nb, stat;
686 struct sk_buff *skb;
687 unsigned int residual;
688 int last;
689 unsigned long flags;
690
691 spin_lock_irqsave(&bp->lock, flags);
692
693 if (++rxintcount < 10) {
694 XXDEBUG(("bmac_rxdma_intr\n"));
695 }
696
697 last = -1;
698 i = bp->rx_empty;
699
700 while (1) {
701 cp = &bp->rx_cmds[i];
702 stat = ld_le16(&cp->xfer_status);
703 residual = ld_le16(&cp->res_count);
704 if ((stat & ACTIVE) == 0)
705 break;
706 nb = RX_BUFLEN - residual - 2;
707 if (nb < (ETHERMINPACKET - ETHERCRC)) {
708 skb = NULL;
709 bp->stats.rx_length_errors++;
710 bp->stats.rx_errors++;
711 } else {
712 skb = bp->rx_bufs[i];
713 bp->rx_bufs[i] = NULL;
714 }
715 if (skb != NULL) {
716 nb -= ETHERCRC;
717 skb_put(skb, nb);
718 skb->protocol = eth_type_trans(skb, dev);
719 netif_rx(skb);
720 dev->last_rx = jiffies;
721 ++bp->stats.rx_packets;
722 bp->stats.rx_bytes += nb;
723 } else {
724 ++bp->stats.rx_dropped;
725 }
726 dev->last_rx = jiffies;
727 if ((skb = bp->rx_bufs[i]) == NULL) {
728 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
729 if (skb != NULL)
730 skb_reserve(bp->rx_bufs[i], 2);
731 }
732 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
733 st_le16(&cp->res_count, 0);
734 st_le16(&cp->xfer_status, 0);
735 last = i;
736 if (++i >= N_RX_RING) i = 0;
737 }
738
739 if (last != -1) {
740 bp->rx_fill = last;
741 bp->rx_empty = i;
742 }
743
744 dbdma_continue(rd);
745 spin_unlock_irqrestore(&bp->lock, flags);
746
747 if (rxintcount < 10) {
748 XXDEBUG(("bmac_rxdma_intr done\n"));
749 }
750 return IRQ_HANDLED;
751 }
752
753 static int txintcount;
754
755 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
756 {
757 struct net_device *dev = (struct net_device *) dev_id;
758 struct bmac_data *bp = netdev_priv(dev);
759 volatile struct dbdma_cmd *cp;
760 int stat;
761 unsigned long flags;
762
763 spin_lock_irqsave(&bp->lock, flags);
764
765 if (txintcount++ < 10) {
766 XXDEBUG(("bmac_txdma_intr\n"));
767 }
768
769 /* del_timer(&bp->tx_timeout); */
770 /* bp->timeout_active = 0; */
771
772 while (1) {
773 cp = &bp->tx_cmds[bp->tx_empty];
774 stat = ld_le16(&cp->xfer_status);
775 if (txintcount < 10) {
776 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
777 }
778 if (!(stat & ACTIVE)) {
779 /*
780 * status field might not have been filled by DBDMA
781 */
782 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
783 break;
784 }
785
786 if (bp->tx_bufs[bp->tx_empty]) {
787 ++bp->stats.tx_packets;
788 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
789 }
790 bp->tx_bufs[bp->tx_empty] = NULL;
791 bp->tx_fullup = 0;
792 netif_wake_queue(dev);
793 if (++bp->tx_empty >= N_TX_RING)
794 bp->tx_empty = 0;
795 if (bp->tx_empty == bp->tx_fill)
796 break;
797 }
798
799 spin_unlock_irqrestore(&bp->lock, flags);
800
801 if (txintcount < 10) {
802 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
803 }
804
805 bmac_start(dev);
806 return IRQ_HANDLED;
807 }
808
809 static struct net_device_stats *bmac_stats(struct net_device *dev)
810 {
811 struct bmac_data *p = netdev_priv(dev);
812
813 return &p->stats;
814 }
815
816 #ifndef SUNHME_MULTICAST
817 /* Real fast bit-reversal algorithm, 6-bit values */
818 static int reverse6[64] = {
819 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
820 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
821 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
822 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
823 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
824 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
825 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
826 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
827 };
828
829 static unsigned int
830 crc416(unsigned int curval, unsigned short nxtval)
831 {
832 register unsigned int counter, cur = curval, next = nxtval;
833 register int high_crc_set, low_data_set;
834
835 /* Swap bytes */
836 next = ((next & 0x00FF) << 8) | (next >> 8);
837
838 /* Compute bit-by-bit */
839 for (counter = 0; counter < 16; ++counter) {
840 /* is high CRC bit set? */
841 if ((cur & 0x80000000) == 0) high_crc_set = 0;
842 else high_crc_set = 1;
843
844 cur = cur << 1;
845
846 if ((next & 0x0001) == 0) low_data_set = 0;
847 else low_data_set = 1;
848
849 next = next >> 1;
850
851 /* do the XOR */
852 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
853 }
854 return cur;
855 }
856
857 static unsigned int
858 bmac_crc(unsigned short *address)
859 {
860 unsigned int newcrc;
861
862 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
863 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
864 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
865 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
866
867 return(newcrc);
868 }
869
870 /*
871 * Add requested mcast addr to BMac's hash table filter.
872 *
873 */
874
875 static void
876 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
877 {
878 unsigned int crc;
879 unsigned short mask;
880
881 if (!(*addr)) return;
882 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
883 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
884 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
885 mask = crc % 16;
886 mask = (unsigned char)1 << mask;
887 bp->hash_use_count[crc/16] |= mask;
888 }
889
890 static void
891 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
892 {
893 unsigned int crc;
894 unsigned char mask;
895
896 /* Now, delete the address from the filter copy, as indicated */
897 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
898 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
899 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
900 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
901 mask = crc % 16;
902 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
903 bp->hash_table_mask[crc/16] &= mask;
904 }
905
906 /*
907 * Sync the adapter with the software copy of the multicast mask
908 * (logical address filter).
909 */
910
911 static void
912 bmac_rx_off(struct net_device *dev)
913 {
914 unsigned short rx_cfg;
915
916 rx_cfg = bmread(dev, RXCFG);
917 rx_cfg &= ~RxMACEnable;
918 bmwrite(dev, RXCFG, rx_cfg);
919 do {
920 rx_cfg = bmread(dev, RXCFG);
921 } while (rx_cfg & RxMACEnable);
922 }
923
924 unsigned short
925 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
926 {
927 unsigned short rx_cfg;
928
929 rx_cfg = bmread(dev, RXCFG);
930 rx_cfg |= RxMACEnable;
931 if (hash_enable) rx_cfg |= RxHashFilterEnable;
932 else rx_cfg &= ~RxHashFilterEnable;
933 if (promisc_enable) rx_cfg |= RxPromiscEnable;
934 else rx_cfg &= ~RxPromiscEnable;
935 bmwrite(dev, RXRST, RxResetValue);
936 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
937 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
938 bmwrite(dev, RXCFG, rx_cfg );
939 return rx_cfg;
940 }
941
942 static void
943 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
944 {
945 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
946 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
947 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
948 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
949 }
950
951 #if 0
952 static void
953 bmac_add_multi(struct net_device *dev,
954 struct bmac_data *bp, unsigned char *addr)
955 {
956 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
957 bmac_addhash(bp, addr);
958 bmac_rx_off(dev);
959 bmac_update_hash_table_mask(dev, bp);
960 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
961 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
962 }
963
964 static void
965 bmac_remove_multi(struct net_device *dev,
966 struct bmac_data *bp, unsigned char *addr)
967 {
968 bmac_removehash(bp, addr);
969 bmac_rx_off(dev);
970 bmac_update_hash_table_mask(dev, bp);
971 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
972 }
973 #endif
974
975 /* Set or clear the multicast filter for this adaptor.
976 num_addrs == -1 Promiscuous mode, receive all packets
977 num_addrs == 0 Normal mode, clear multicast list
978 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
979 best-effort filtering.
980 */
981 static void bmac_set_multicast(struct net_device *dev)
982 {
983 struct dev_mc_list *dmi;
984 struct bmac_data *bp = netdev_priv(dev);
985 int num_addrs = dev->mc_count;
986 unsigned short rx_cfg;
987 int i;
988
989 if (bp->sleeping)
990 return;
991
992 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
993
994 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
995 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
996 bmac_update_hash_table_mask(dev, bp);
997 rx_cfg = bmac_rx_on(dev, 1, 0);
998 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
999 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
1000 rx_cfg = bmread(dev, RXCFG);
1001 rx_cfg |= RxPromiscEnable;
1002 bmwrite(dev, RXCFG, rx_cfg);
1003 rx_cfg = bmac_rx_on(dev, 0, 1);
1004 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
1005 } else {
1006 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
1007 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
1008 if (num_addrs == 0) {
1009 rx_cfg = bmac_rx_on(dev, 0, 0);
1010 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1011 } else {
1012 for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next)
1013 bmac_addhash(bp, dmi->dmi_addr);
1014 bmac_update_hash_table_mask(dev, bp);
1015 rx_cfg = bmac_rx_on(dev, 1, 0);
1016 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1017 }
1018 }
1019 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1020 }
1021 #else /* ifdef SUNHME_MULTICAST */
1022
1023 /* The version of set_multicast below was lifted from sunhme.c */
1024
1025 static void bmac_set_multicast(struct net_device *dev)
1026 {
1027 struct dev_mc_list *dmi = dev->mc_list;
1028 char *addrs;
1029 int i;
1030 unsigned short rx_cfg;
1031 u32 crc;
1032
1033 if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
1034 bmwrite(dev, BHASH0, 0xffff);
1035 bmwrite(dev, BHASH1, 0xffff);
1036 bmwrite(dev, BHASH2, 0xffff);
1037 bmwrite(dev, BHASH3, 0xffff);
1038 } else if(dev->flags & IFF_PROMISC) {
1039 rx_cfg = bmread(dev, RXCFG);
1040 rx_cfg |= RxPromiscEnable;
1041 bmwrite(dev, RXCFG, rx_cfg);
1042 } else {
1043 u16 hash_table[4];
1044
1045 rx_cfg = bmread(dev, RXCFG);
1046 rx_cfg &= ~RxPromiscEnable;
1047 bmwrite(dev, RXCFG, rx_cfg);
1048
1049 for(i = 0; i < 4; i++) hash_table[i] = 0;
1050
1051 for(i = 0; i < dev->mc_count; i++) {
1052 addrs = dmi->dmi_addr;
1053 dmi = dmi->next;
1054
1055 if(!(*addrs & 1))
1056 continue;
1057
1058 crc = ether_crc_le(6, addrs);
1059 crc >>= 26;
1060 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1061 }
1062 bmwrite(dev, BHASH0, hash_table[0]);
1063 bmwrite(dev, BHASH1, hash_table[1]);
1064 bmwrite(dev, BHASH2, hash_table[2]);
1065 bmwrite(dev, BHASH3, hash_table[3]);
1066 }
1067 }
1068 #endif /* SUNHME_MULTICAST */
1069
1070 static int miscintcount;
1071
1072 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1073 {
1074 struct net_device *dev = (struct net_device *) dev_id;
1075 struct bmac_data *bp = netdev_priv(dev);
1076 unsigned int status = bmread(dev, STATUS);
1077 if (miscintcount++ < 10) {
1078 XXDEBUG(("bmac_misc_intr\n"));
1079 }
1080 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1081 /* bmac_txdma_intr_inner(irq, dev_id); */
1082 /* if (status & FrameReceived) bp->stats.rx_dropped++; */
1083 if (status & RxErrorMask) bp->stats.rx_errors++;
1084 if (status & RxCRCCntExp) bp->stats.rx_crc_errors++;
1085 if (status & RxLenCntExp) bp->stats.rx_length_errors++;
1086 if (status & RxOverFlow) bp->stats.rx_over_errors++;
1087 if (status & RxAlignCntExp) bp->stats.rx_frame_errors++;
1088
1089 /* if (status & FrameSent) bp->stats.tx_dropped++; */
1090 if (status & TxErrorMask) bp->stats.tx_errors++;
1091 if (status & TxUnderrun) bp->stats.tx_fifo_errors++;
1092 if (status & TxNormalCollExp) bp->stats.collisions++;
1093 return IRQ_HANDLED;
1094 }
1095
1096 /*
1097 * Procedure for reading EEPROM
1098 */
1099 #define SROMAddressLength 5
1100 #define DataInOn 0x0008
1101 #define DataInOff 0x0000
1102 #define Clk 0x0002
1103 #define ChipSelect 0x0001
1104 #define SDIShiftCount 3
1105 #define SD0ShiftCount 2
1106 #define DelayValue 1000 /* number of microseconds */
1107 #define SROMStartOffset 10 /* this is in words */
1108 #define SROMReadCount 3 /* number of words to read from SROM */
1109 #define SROMAddressBits 6
1110 #define EnetAddressOffset 20
1111
1112 static unsigned char
1113 bmac_clock_out_bit(struct net_device *dev)
1114 {
1115 unsigned short data;
1116 unsigned short val;
1117
1118 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1119 udelay(DelayValue);
1120
1121 data = bmread(dev, SROMCSR);
1122 udelay(DelayValue);
1123 val = (data >> SD0ShiftCount) & 1;
1124
1125 bmwrite(dev, SROMCSR, ChipSelect);
1126 udelay(DelayValue);
1127
1128 return val;
1129 }
1130
1131 static void
1132 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1133 {
1134 unsigned short data;
1135
1136 if (val != 0 && val != 1) return;
1137
1138 data = (val << SDIShiftCount);
1139 bmwrite(dev, SROMCSR, data | ChipSelect );
1140 udelay(DelayValue);
1141
1142 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1143 udelay(DelayValue);
1144
1145 bmwrite(dev, SROMCSR, data | ChipSelect);
1146 udelay(DelayValue);
1147 }
1148
1149 static void
1150 reset_and_select_srom(struct net_device *dev)
1151 {
1152 /* first reset */
1153 bmwrite(dev, SROMCSR, 0);
1154 udelay(DelayValue);
1155
1156 /* send it the read command (110) */
1157 bmac_clock_in_bit(dev, 1);
1158 bmac_clock_in_bit(dev, 1);
1159 bmac_clock_in_bit(dev, 0);
1160 }
1161
1162 static unsigned short
1163 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1164 {
1165 unsigned short data, val;
1166 int i;
1167
1168 /* send out the address we want to read from */
1169 for (i = 0; i < addr_len; i++) {
1170 val = addr >> (addr_len-i-1);
1171 bmac_clock_in_bit(dev, val & 1);
1172 }
1173
1174 /* Now read in the 16-bit data */
1175 data = 0;
1176 for (i = 0; i < 16; i++) {
1177 val = bmac_clock_out_bit(dev);
1178 data <<= 1;
1179 data |= val;
1180 }
1181 bmwrite(dev, SROMCSR, 0);
1182
1183 return data;
1184 }
1185
1186 /*
1187 * It looks like Cogent and SMC use different methods for calculating
1188 * checksums. What a pain..
1189 */
1190
1191 static int
1192 bmac_verify_checksum(struct net_device *dev)
1193 {
1194 unsigned short data, storedCS;
1195
1196 reset_and_select_srom(dev);
1197 data = read_srom(dev, 3, SROMAddressBits);
1198 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1199
1200 return 0;
1201 }
1202
1203
1204 static void
1205 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1206 {
1207 int i;
1208 unsigned short data;
1209
1210 for (i = 0; i < 6; i++)
1211 {
1212 reset_and_select_srom(dev);
1213 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1214 ea[2*i] = bitrev8(data & 0x0ff);
1215 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1216 }
1217 }
1218
1219 static void bmac_reset_and_enable(struct net_device *dev)
1220 {
1221 struct bmac_data *bp = netdev_priv(dev);
1222 unsigned long flags;
1223 struct sk_buff *skb;
1224 unsigned char *data;
1225
1226 spin_lock_irqsave(&bp->lock, flags);
1227 bmac_enable_and_reset_chip(dev);
1228 bmac_init_tx_ring(bp);
1229 bmac_init_rx_ring(bp);
1230 bmac_init_chip(dev);
1231 bmac_start_chip(dev);
1232 bmwrite(dev, INTDISABLE, EnableNormal);
1233 bp->sleeping = 0;
1234
1235 /*
1236 * It seems that the bmac can't receive until it's transmitted
1237 * a packet. So we give it a dummy packet to transmit.
1238 */
1239 skb = dev_alloc_skb(ETHERMINPACKET);
1240 if (skb != NULL) {
1241 data = skb_put(skb, ETHERMINPACKET);
1242 memset(data, 0, ETHERMINPACKET);
1243 memcpy(data, dev->dev_addr, 6);
1244 memcpy(data+6, dev->dev_addr, 6);
1245 bmac_transmit_packet(skb, dev);
1246 }
1247 spin_unlock_irqrestore(&bp->lock, flags);
1248 }
1249
1250 static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1251 {
1252 int j, rev, ret;
1253 struct bmac_data *bp;
1254 const unsigned char *prop_addr;
1255 unsigned char addr[6];
1256 struct net_device *dev;
1257 int is_bmac_plus = ((int)match->data) != 0;
1258
1259 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1260 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1261 return -ENODEV;
1262 }
1263 prop_addr = get_property(macio_get_of_node(mdev), "mac-address", NULL);
1264 if (prop_addr == NULL) {
1265 prop_addr = get_property(macio_get_of_node(mdev),
1266 "local-mac-address", NULL);
1267 if (prop_addr == NULL) {
1268 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1269 return -ENODEV;
1270 }
1271 }
1272 memcpy(addr, prop_addr, sizeof(addr));
1273
1274 dev = alloc_etherdev(PRIV_BYTES);
1275 if (!dev) {
1276 printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n");
1277 return -ENOMEM;
1278 }
1279
1280 bp = netdev_priv(dev);
1281 SET_MODULE_OWNER(dev);
1282 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1283 macio_set_drvdata(mdev, dev);
1284
1285 bp->mdev = mdev;
1286 spin_lock_init(&bp->lock);
1287
1288 if (macio_request_resources(mdev, "bmac")) {
1289 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1290 goto out_free;
1291 }
1292
1293 dev->base_addr = (unsigned long)
1294 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1295 if (dev->base_addr == 0)
1296 goto out_release;
1297
1298 dev->irq = macio_irq(mdev, 0);
1299
1300 bmac_enable_and_reset_chip(dev);
1301 bmwrite(dev, INTDISABLE, DisableAll);
1302
1303 rev = addr[0] == 0 && addr[1] == 0xA0;
1304 for (j = 0; j < 6; ++j)
1305 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1306
1307 /* Enable chip without interrupts for now */
1308 bmac_enable_and_reset_chip(dev);
1309 bmwrite(dev, INTDISABLE, DisableAll);
1310
1311 dev->open = bmac_open;
1312 dev->stop = bmac_close;
1313 dev->hard_start_xmit = bmac_output;
1314 dev->get_stats = bmac_stats;
1315 dev->set_multicast_list = bmac_set_multicast;
1316 dev->set_mac_address = bmac_set_address;
1317
1318 bmac_get_station_address(dev, addr);
1319 if (bmac_verify_checksum(dev) != 0)
1320 goto err_out_iounmap;
1321
1322 bp->is_bmac_plus = is_bmac_plus;
1323 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1324 if (!bp->tx_dma)
1325 goto err_out_iounmap;
1326 bp->tx_dma_intr = macio_irq(mdev, 1);
1327 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1328 if (!bp->rx_dma)
1329 goto err_out_iounmap_tx;
1330 bp->rx_dma_intr = macio_irq(mdev, 2);
1331
1332 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1333 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1334
1335 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1336 skb_queue_head_init(bp->queue);
1337
1338 init_timer(&bp->tx_timeout);
1339
1340 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1341 if (ret) {
1342 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1343 goto err_out_iounmap_rx;
1344 }
1345 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1346 if (ret) {
1347 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1348 goto err_out_irq0;
1349 }
1350 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1351 if (ret) {
1352 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1353 goto err_out_irq1;
1354 }
1355
1356 /* Mask chip interrupts and disable chip, will be
1357 * re-enabled on open()
1358 */
1359 disable_irq(dev->irq);
1360 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1361
1362 if (register_netdev(dev) != 0) {
1363 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1364 goto err_out_irq2;
1365 }
1366
1367 printk(KERN_INFO "%s: BMAC%s at", dev->name, (is_bmac_plus? "+": ""));
1368 for (j = 0; j < 6; ++j)
1369 printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
1370 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1371 printk("\n");
1372
1373 return 0;
1374
1375 err_out_irq2:
1376 free_irq(bp->rx_dma_intr, dev);
1377 err_out_irq1:
1378 free_irq(bp->tx_dma_intr, dev);
1379 err_out_irq0:
1380 free_irq(dev->irq, dev);
1381 err_out_iounmap_rx:
1382 iounmap(bp->rx_dma);
1383 err_out_iounmap_tx:
1384 iounmap(bp->tx_dma);
1385 err_out_iounmap:
1386 iounmap((void __iomem *)dev->base_addr);
1387 out_release:
1388 macio_release_resources(mdev);
1389 out_free:
1390 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1391 free_netdev(dev);
1392
1393 return -ENODEV;
1394 }
1395
1396 static int bmac_open(struct net_device *dev)
1397 {
1398 struct bmac_data *bp = netdev_priv(dev);
1399 /* XXDEBUG(("bmac: enter open\n")); */
1400 /* reset the chip */
1401 bp->opened = 1;
1402 bmac_reset_and_enable(dev);
1403 enable_irq(dev->irq);
1404 return 0;
1405 }
1406
1407 static int bmac_close(struct net_device *dev)
1408 {
1409 struct bmac_data *bp = netdev_priv(dev);
1410 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1411 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1412 unsigned short config;
1413 int i;
1414
1415 bp->sleeping = 1;
1416
1417 /* disable rx and tx */
1418 config = bmread(dev, RXCFG);
1419 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1420
1421 config = bmread(dev, TXCFG);
1422 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1423
1424 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1425
1426 /* disable rx and tx dma */
1427 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1428 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1429
1430 /* free some skb's */
1431 XXDEBUG(("bmac: free rx bufs\n"));
1432 for (i=0; i<N_RX_RING; i++) {
1433 if (bp->rx_bufs[i] != NULL) {
1434 dev_kfree_skb(bp->rx_bufs[i]);
1435 bp->rx_bufs[i] = NULL;
1436 }
1437 }
1438 XXDEBUG(("bmac: free tx bufs\n"));
1439 for (i = 0; i<N_TX_RING; i++) {
1440 if (bp->tx_bufs[i] != NULL) {
1441 dev_kfree_skb(bp->tx_bufs[i]);
1442 bp->tx_bufs[i] = NULL;
1443 }
1444 }
1445 XXDEBUG(("bmac: all bufs freed\n"));
1446
1447 bp->opened = 0;
1448 disable_irq(dev->irq);
1449 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1450
1451 return 0;
1452 }
1453
1454 static void
1455 bmac_start(struct net_device *dev)
1456 {
1457 struct bmac_data *bp = netdev_priv(dev);
1458 int i;
1459 struct sk_buff *skb;
1460 unsigned long flags;
1461
1462 if (bp->sleeping)
1463 return;
1464
1465 spin_lock_irqsave(&bp->lock, flags);
1466 while (1) {
1467 i = bp->tx_fill + 1;
1468 if (i >= N_TX_RING)
1469 i = 0;
1470 if (i == bp->tx_empty)
1471 break;
1472 skb = skb_dequeue(bp->queue);
1473 if (skb == NULL)
1474 break;
1475 bmac_transmit_packet(skb, dev);
1476 }
1477 spin_unlock_irqrestore(&bp->lock, flags);
1478 }
1479
1480 static int
1481 bmac_output(struct sk_buff *skb, struct net_device *dev)
1482 {
1483 struct bmac_data *bp = netdev_priv(dev);
1484 skb_queue_tail(bp->queue, skb);
1485 bmac_start(dev);
1486 return 0;
1487 }
1488
1489 static void bmac_tx_timeout(unsigned long data)
1490 {
1491 struct net_device *dev = (struct net_device *) data;
1492 struct bmac_data *bp = netdev_priv(dev);
1493 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1494 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1495 volatile struct dbdma_cmd *cp;
1496 unsigned long flags;
1497 unsigned short config, oldConfig;
1498 int i;
1499
1500 XXDEBUG(("bmac: tx_timeout called\n"));
1501 spin_lock_irqsave(&bp->lock, flags);
1502 bp->timeout_active = 0;
1503
1504 /* update various counters */
1505 /* bmac_handle_misc_intrs(bp, 0); */
1506
1507 cp = &bp->tx_cmds[bp->tx_empty];
1508 /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1509 /* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1510 /* mb->pr, mb->xmtfs, mb->fifofc)); */
1511
1512 /* turn off both tx and rx and reset the chip */
1513 config = bmread(dev, RXCFG);
1514 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1515 config = bmread(dev, TXCFG);
1516 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1517 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1518 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1519 bmac_enable_and_reset_chip(dev);
1520
1521 /* restart rx dma */
1522 cp = bus_to_virt(ld_le32(&rd->cmdptr));
1523 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1524 out_le16(&cp->xfer_status, 0);
1525 out_le32(&rd->cmdptr, virt_to_bus(cp));
1526 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1527
1528 /* fix up the transmit side */
1529 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1530 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1531 i = bp->tx_empty;
1532 ++bp->stats.tx_errors;
1533 if (i != bp->tx_fill) {
1534 dev_kfree_skb(bp->tx_bufs[i]);
1535 bp->tx_bufs[i] = NULL;
1536 if (++i >= N_TX_RING) i = 0;
1537 bp->tx_empty = i;
1538 }
1539 bp->tx_fullup = 0;
1540 netif_wake_queue(dev);
1541 if (i != bp->tx_fill) {
1542 cp = &bp->tx_cmds[i];
1543 out_le16(&cp->xfer_status, 0);
1544 out_le16(&cp->command, OUTPUT_LAST);
1545 out_le32(&td->cmdptr, virt_to_bus(cp));
1546 out_le32(&td->control, DBDMA_SET(RUN));
1547 /* bmac_set_timeout(dev); */
1548 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1549 }
1550
1551 /* turn it back on */
1552 oldConfig = bmread(dev, RXCFG);
1553 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1554 oldConfig = bmread(dev, TXCFG);
1555 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1556
1557 spin_unlock_irqrestore(&bp->lock, flags);
1558 }
1559
1560 #if 0
1561 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1562 {
1563 int i,*ip;
1564
1565 for (i=0;i< count;i++) {
1566 ip = (int*)(cp+i);
1567
1568 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1569 ld_le32(ip+0),
1570 ld_le32(ip+1),
1571 ld_le32(ip+2),
1572 ld_le32(ip+3));
1573 }
1574
1575 }
1576 #endif
1577
1578 #if 0
1579 static int
1580 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1581 {
1582 int len = 0;
1583 off_t pos = 0;
1584 off_t begin = 0;
1585 int i;
1586
1587 if (bmac_devs == NULL)
1588 return (-ENOSYS);
1589
1590 len += sprintf(buffer, "BMAC counters & registers\n");
1591
1592 for (i = 0; i<N_REG_ENTRIES; i++) {
1593 len += sprintf(buffer + len, "%s: %#08x\n",
1594 reg_entries[i].name,
1595 bmread(bmac_devs, reg_entries[i].reg_offset));
1596 pos = begin + len;
1597
1598 if (pos < offset) {
1599 len = 0;
1600 begin = pos;
1601 }
1602
1603 if (pos > offset+length) break;
1604 }
1605
1606 *start = buffer + (offset - begin);
1607 len -= (offset - begin);
1608
1609 if (len > length) len = length;
1610
1611 return len;
1612 }
1613 #endif
1614
1615 static int __devexit bmac_remove(struct macio_dev *mdev)
1616 {
1617 struct net_device *dev = macio_get_drvdata(mdev);
1618 struct bmac_data *bp = netdev_priv(dev);
1619
1620 unregister_netdev(dev);
1621
1622 free_irq(dev->irq, dev);
1623 free_irq(bp->tx_dma_intr, dev);
1624 free_irq(bp->rx_dma_intr, dev);
1625
1626 iounmap((void __iomem *)dev->base_addr);
1627 iounmap(bp->tx_dma);
1628 iounmap(bp->rx_dma);
1629
1630 macio_release_resources(mdev);
1631
1632 free_netdev(dev);
1633
1634 return 0;
1635 }
1636
1637 static struct of_device_id bmac_match[] =
1638 {
1639 {
1640 .name = "bmac",
1641 .data = (void *)0,
1642 },
1643 {
1644 .type = "network",
1645 .compatible = "bmac+",
1646 .data = (void *)1,
1647 },
1648 {},
1649 };
1650 MODULE_DEVICE_TABLE (of, bmac_match);
1651
1652 static struct macio_driver bmac_driver =
1653 {
1654 .name = "bmac",
1655 .match_table = bmac_match,
1656 .probe = bmac_probe,
1657 .remove = bmac_remove,
1658 #ifdef CONFIG_PM
1659 .suspend = bmac_suspend,
1660 .resume = bmac_resume,
1661 #endif
1662 };
1663
1664
1665 static int __init bmac_init(void)
1666 {
1667 if (bmac_emergency_rxbuf == NULL) {
1668 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1669 if (bmac_emergency_rxbuf == NULL) {
1670 printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n");
1671 return -ENOMEM;
1672 }
1673 }
1674
1675 return macio_register_driver(&bmac_driver);
1676 }
1677
1678 static void __exit bmac_exit(void)
1679 {
1680 macio_unregister_driver(&bmac_driver);
1681
1682 kfree(bmac_emergency_rxbuf);
1683 bmac_emergency_rxbuf = NULL;
1684 }
1685
1686 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1687 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1688 MODULE_LICENSE("GPL");
1689
1690 module_init(bmac_init);
1691 module_exit(bmac_exit);
This page took 0.106975 seconds and 6 git commands to generate.