bnx2: Report FTQ discard counter.
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.1"
63 #define DRV_MODULE_RELDATE "May 6, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
68
69 #define RUN_AT(x) (jiffies + (x))
70
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
73
74 static char version[] __devinitdata =
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
76
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09);
85
86 static int disable_msi = 0;
87
88 module_param(disable_msi, int, 0);
89 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
90
91 typedef enum {
92 BCM5706 = 0,
93 NC370T,
94 NC370I,
95 BCM5706S,
96 NC370F,
97 BCM5708,
98 BCM5708S,
99 BCM5709,
100 BCM5709S,
101 BCM5716,
102 BCM5716S,
103 } board_t;
104
105 /* indexed by board_t, above */
106 static struct {
107 char *name;
108 } board_info[] __devinitdata = {
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
120 };
121
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
123 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
124 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
132 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
141 { PCI_VENDOR_ID_BROADCOM, 0x163b,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
143 { PCI_VENDOR_ID_BROADCOM, 0x163c,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
145 { 0, }
146 };
147
148 static struct flash_spec flash_table[] =
149 {
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
152 /* Slow EEPROM */
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
155 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
156 "EEPROM - slow"},
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
160 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
161 "Entry 0001"},
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
166 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
172 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 "Entry 0100"},
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
193 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
194 "Non-buffered flash (64kB)"},
195 /* Fast EEPROM */
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
198 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
199 "EEPROM - fast"},
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
203 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
204 "Entry 1001"},
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
209 "Entry 1010"},
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
213 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
218 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
219 "Entry 1100"},
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
223 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
224 "Entry 1101"},
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
228 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
233 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
234 "Buffered flash (256kB)"},
235 };
236
237 static struct flash_spec flash_5709 = {
238 .flags = BNX2_NV_BUFFERED,
239 .page_bits = BCM5709_FLASH_PAGE_BITS,
240 .page_size = BCM5709_FLASH_PAGE_SIZE,
241 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
242 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
243 .name = "5709 Buffered flash (256kB)",
244 };
245
246 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
247
248 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
249 {
250 u32 diff;
251
252 smp_mb();
253
254 /* The ring uses 256 indices for 255 entries, one of them
255 * needs to be skipped.
256 */
257 diff = txr->tx_prod - txr->tx_cons;
258 if (unlikely(diff >= TX_DESC_CNT)) {
259 diff &= 0xffff;
260 if (diff == TX_DESC_CNT)
261 diff = MAX_TX_DESC_CNT;
262 }
263 return (bp->tx_ring_size - diff);
264 }
265
266 static u32
267 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
268 {
269 u32 val;
270
271 spin_lock_bh(&bp->indirect_lock);
272 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
273 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
274 spin_unlock_bh(&bp->indirect_lock);
275 return val;
276 }
277
278 static void
279 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
280 {
281 spin_lock_bh(&bp->indirect_lock);
282 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
283 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
284 spin_unlock_bh(&bp->indirect_lock);
285 }
286
287 static void
288 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
289 {
290 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
291 }
292
293 static u32
294 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
295 {
296 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
297 }
298
299 static void
300 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
301 {
302 offset += cid_addr;
303 spin_lock_bh(&bp->indirect_lock);
304 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
305 int i;
306
307 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
308 REG_WR(bp, BNX2_CTX_CTX_CTRL,
309 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
310 for (i = 0; i < 5; i++) {
311 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
312 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
313 break;
314 udelay(5);
315 }
316 } else {
317 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
318 REG_WR(bp, BNX2_CTX_DATA, val);
319 }
320 spin_unlock_bh(&bp->indirect_lock);
321 }
322
323 #ifdef BCM_CNIC
324 static int
325 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
326 {
327 struct bnx2 *bp = netdev_priv(dev);
328 struct drv_ctl_io *io = &info->data.io;
329
330 switch (info->cmd) {
331 case DRV_CTL_IO_WR_CMD:
332 bnx2_reg_wr_ind(bp, io->offset, io->data);
333 break;
334 case DRV_CTL_IO_RD_CMD:
335 io->data = bnx2_reg_rd_ind(bp, io->offset);
336 break;
337 case DRV_CTL_CTX_WR_CMD:
338 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
339 break;
340 default:
341 return -EINVAL;
342 }
343 return 0;
344 }
345
346 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
347 {
348 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
349 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
350 int sb_id;
351
352 if (bp->flags & BNX2_FLAG_USING_MSIX) {
353 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
354 bnapi->cnic_present = 0;
355 sb_id = bp->irq_nvecs;
356 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
357 } else {
358 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
359 bnapi->cnic_tag = bnapi->last_status_idx;
360 bnapi->cnic_present = 1;
361 sb_id = 0;
362 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
363 }
364
365 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
366 cp->irq_arr[0].status_blk = (void *)
367 ((unsigned long) bnapi->status_blk.msi +
368 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
369 cp->irq_arr[0].status_blk_num = sb_id;
370 cp->num_irq = 1;
371 }
372
373 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
374 void *data)
375 {
376 struct bnx2 *bp = netdev_priv(dev);
377 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
378
379 if (ops == NULL)
380 return -EINVAL;
381
382 if (cp->drv_state & CNIC_DRV_STATE_REGD)
383 return -EBUSY;
384
385 bp->cnic_data = data;
386 rcu_assign_pointer(bp->cnic_ops, ops);
387
388 cp->num_irq = 0;
389 cp->drv_state = CNIC_DRV_STATE_REGD;
390
391 bnx2_setup_cnic_irq_info(bp);
392
393 return 0;
394 }
395
396 static int bnx2_unregister_cnic(struct net_device *dev)
397 {
398 struct bnx2 *bp = netdev_priv(dev);
399 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
400 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
401
402 cp->drv_state = 0;
403 bnapi->cnic_present = 0;
404 rcu_assign_pointer(bp->cnic_ops, NULL);
405 synchronize_rcu();
406 return 0;
407 }
408
409 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
410 {
411 struct bnx2 *bp = netdev_priv(dev);
412 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
413
414 cp->drv_owner = THIS_MODULE;
415 cp->chip_id = bp->chip_id;
416 cp->pdev = bp->pdev;
417 cp->io_base = bp->regview;
418 cp->drv_ctl = bnx2_drv_ctl;
419 cp->drv_register_cnic = bnx2_register_cnic;
420 cp->drv_unregister_cnic = bnx2_unregister_cnic;
421
422 return cp;
423 }
424 EXPORT_SYMBOL(bnx2_cnic_probe);
425
426 static void
427 bnx2_cnic_stop(struct bnx2 *bp)
428 {
429 struct cnic_ops *c_ops;
430 struct cnic_ctl_info info;
431
432 rcu_read_lock();
433 c_ops = rcu_dereference(bp->cnic_ops);
434 if (c_ops) {
435 info.cmd = CNIC_CTL_STOP_CMD;
436 c_ops->cnic_ctl(bp->cnic_data, &info);
437 }
438 rcu_read_unlock();
439 }
440
441 static void
442 bnx2_cnic_start(struct bnx2 *bp)
443 {
444 struct cnic_ops *c_ops;
445 struct cnic_ctl_info info;
446
447 rcu_read_lock();
448 c_ops = rcu_dereference(bp->cnic_ops);
449 if (c_ops) {
450 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
451 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
452
453 bnapi->cnic_tag = bnapi->last_status_idx;
454 }
455 info.cmd = CNIC_CTL_START_CMD;
456 c_ops->cnic_ctl(bp->cnic_data, &info);
457 }
458 rcu_read_unlock();
459 }
460
461 #else
462
463 static void
464 bnx2_cnic_stop(struct bnx2 *bp)
465 {
466 }
467
468 static void
469 bnx2_cnic_start(struct bnx2 *bp)
470 {
471 }
472
473 #endif
474
475 static int
476 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
477 {
478 u32 val1;
479 int i, ret;
480
481 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
482 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
483 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
484
485 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
486 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487
488 udelay(40);
489 }
490
491 val1 = (bp->phy_addr << 21) | (reg << 16) |
492 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
493 BNX2_EMAC_MDIO_COMM_START_BUSY;
494 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
495
496 for (i = 0; i < 50; i++) {
497 udelay(10);
498
499 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
500 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
501 udelay(5);
502
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
505
506 break;
507 }
508 }
509
510 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
511 *val = 0x0;
512 ret = -EBUSY;
513 }
514 else {
515 *val = val1;
516 ret = 0;
517 }
518
519 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
520 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
521 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
522
523 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
524 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525
526 udelay(40);
527 }
528
529 return ret;
530 }
531
532 static int
533 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
534 {
535 u32 val1;
536 int i, ret;
537
538 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
539 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
540 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
541
542 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
543 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544
545 udelay(40);
546 }
547
548 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
549 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
550 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
551 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
552
553 for (i = 0; i < 50; i++) {
554 udelay(10);
555
556 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
557 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
558 udelay(5);
559 break;
560 }
561 }
562
563 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
564 ret = -EBUSY;
565 else
566 ret = 0;
567
568 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
569 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
570 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
571
572 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
573 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574
575 udelay(40);
576 }
577
578 return ret;
579 }
580
581 static void
582 bnx2_disable_int(struct bnx2 *bp)
583 {
584 int i;
585 struct bnx2_napi *bnapi;
586
587 for (i = 0; i < bp->irq_nvecs; i++) {
588 bnapi = &bp->bnx2_napi[i];
589 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
590 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
591 }
592 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
593 }
594
595 static void
596 bnx2_enable_int(struct bnx2 *bp)
597 {
598 int i;
599 struct bnx2_napi *bnapi;
600
601 for (i = 0; i < bp->irq_nvecs; i++) {
602 bnapi = &bp->bnx2_napi[i];
603
604 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
605 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
606 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
607 bnapi->last_status_idx);
608
609 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
611 bnapi->last_status_idx);
612 }
613 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
614 }
615
616 static void
617 bnx2_disable_int_sync(struct bnx2 *bp)
618 {
619 int i;
620
621 atomic_inc(&bp->intr_sem);
622 if (!netif_running(bp->dev))
623 return;
624
625 bnx2_disable_int(bp);
626 for (i = 0; i < bp->irq_nvecs; i++)
627 synchronize_irq(bp->irq_tbl[i].vector);
628 }
629
630 static void
631 bnx2_napi_disable(struct bnx2 *bp)
632 {
633 int i;
634
635 for (i = 0; i < bp->irq_nvecs; i++)
636 napi_disable(&bp->bnx2_napi[i].napi);
637 }
638
639 static void
640 bnx2_napi_enable(struct bnx2 *bp)
641 {
642 int i;
643
644 for (i = 0; i < bp->irq_nvecs; i++)
645 napi_enable(&bp->bnx2_napi[i].napi);
646 }
647
648 static void
649 bnx2_netif_stop(struct bnx2 *bp)
650 {
651 bnx2_cnic_stop(bp);
652 bnx2_disable_int_sync(bp);
653 if (netif_running(bp->dev)) {
654 bnx2_napi_disable(bp);
655 netif_tx_disable(bp->dev);
656 bp->dev->trans_start = jiffies; /* prevent tx timeout */
657 }
658 }
659
660 static void
661 bnx2_netif_start(struct bnx2 *bp)
662 {
663 if (atomic_dec_and_test(&bp->intr_sem)) {
664 if (netif_running(bp->dev)) {
665 netif_tx_wake_all_queues(bp->dev);
666 bnx2_napi_enable(bp);
667 bnx2_enable_int(bp);
668 bnx2_cnic_start(bp);
669 }
670 }
671 }
672
673 static void
674 bnx2_free_tx_mem(struct bnx2 *bp)
675 {
676 int i;
677
678 for (i = 0; i < bp->num_tx_rings; i++) {
679 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
680 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
681
682 if (txr->tx_desc_ring) {
683 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
684 txr->tx_desc_ring,
685 txr->tx_desc_mapping);
686 txr->tx_desc_ring = NULL;
687 }
688 kfree(txr->tx_buf_ring);
689 txr->tx_buf_ring = NULL;
690 }
691 }
692
693 static void
694 bnx2_free_rx_mem(struct bnx2 *bp)
695 {
696 int i;
697
698 for (i = 0; i < bp->num_rx_rings; i++) {
699 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
700 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
701 int j;
702
703 for (j = 0; j < bp->rx_max_ring; j++) {
704 if (rxr->rx_desc_ring[j])
705 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
706 rxr->rx_desc_ring[j],
707 rxr->rx_desc_mapping[j]);
708 rxr->rx_desc_ring[j] = NULL;
709 }
710 vfree(rxr->rx_buf_ring);
711 rxr->rx_buf_ring = NULL;
712
713 for (j = 0; j < bp->rx_max_pg_ring; j++) {
714 if (rxr->rx_pg_desc_ring[j])
715 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
716 rxr->rx_pg_desc_ring[j],
717 rxr->rx_pg_desc_mapping[j]);
718 rxr->rx_pg_desc_ring[j] = NULL;
719 }
720 vfree(rxr->rx_pg_ring);
721 rxr->rx_pg_ring = NULL;
722 }
723 }
724
725 static int
726 bnx2_alloc_tx_mem(struct bnx2 *bp)
727 {
728 int i;
729
730 for (i = 0; i < bp->num_tx_rings; i++) {
731 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
732 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
733
734 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
735 if (txr->tx_buf_ring == NULL)
736 return -ENOMEM;
737
738 txr->tx_desc_ring =
739 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
740 &txr->tx_desc_mapping);
741 if (txr->tx_desc_ring == NULL)
742 return -ENOMEM;
743 }
744 return 0;
745 }
746
747 static int
748 bnx2_alloc_rx_mem(struct bnx2 *bp)
749 {
750 int i;
751
752 for (i = 0; i < bp->num_rx_rings; i++) {
753 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
754 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
755 int j;
756
757 rxr->rx_buf_ring =
758 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
759 if (rxr->rx_buf_ring == NULL)
760 return -ENOMEM;
761
762 memset(rxr->rx_buf_ring, 0,
763 SW_RXBD_RING_SIZE * bp->rx_max_ring);
764
765 for (j = 0; j < bp->rx_max_ring; j++) {
766 rxr->rx_desc_ring[j] =
767 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
768 &rxr->rx_desc_mapping[j]);
769 if (rxr->rx_desc_ring[j] == NULL)
770 return -ENOMEM;
771
772 }
773
774 if (bp->rx_pg_ring_size) {
775 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
776 bp->rx_max_pg_ring);
777 if (rxr->rx_pg_ring == NULL)
778 return -ENOMEM;
779
780 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
781 bp->rx_max_pg_ring);
782 }
783
784 for (j = 0; j < bp->rx_max_pg_ring; j++) {
785 rxr->rx_pg_desc_ring[j] =
786 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
787 &rxr->rx_pg_desc_mapping[j]);
788 if (rxr->rx_pg_desc_ring[j] == NULL)
789 return -ENOMEM;
790
791 }
792 }
793 return 0;
794 }
795
796 static void
797 bnx2_free_mem(struct bnx2 *bp)
798 {
799 int i;
800 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
801
802 bnx2_free_tx_mem(bp);
803 bnx2_free_rx_mem(bp);
804
805 for (i = 0; i < bp->ctx_pages; i++) {
806 if (bp->ctx_blk[i]) {
807 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
808 bp->ctx_blk[i],
809 bp->ctx_blk_mapping[i]);
810 bp->ctx_blk[i] = NULL;
811 }
812 }
813 if (bnapi->status_blk.msi) {
814 pci_free_consistent(bp->pdev, bp->status_stats_size,
815 bnapi->status_blk.msi,
816 bp->status_blk_mapping);
817 bnapi->status_blk.msi = NULL;
818 bp->stats_blk = NULL;
819 }
820 }
821
822 static int
823 bnx2_alloc_mem(struct bnx2 *bp)
824 {
825 int i, status_blk_size, err;
826 struct bnx2_napi *bnapi;
827 void *status_blk;
828
829 /* Combine status and statistics blocks into one allocation. */
830 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
831 if (bp->flags & BNX2_FLAG_MSIX_CAP)
832 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
833 BNX2_SBLK_MSIX_ALIGN_SIZE);
834 bp->status_stats_size = status_blk_size +
835 sizeof(struct statistics_block);
836
837 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
838 &bp->status_blk_mapping);
839 if (status_blk == NULL)
840 goto alloc_mem_err;
841
842 memset(status_blk, 0, bp->status_stats_size);
843
844 bnapi = &bp->bnx2_napi[0];
845 bnapi->status_blk.msi = status_blk;
846 bnapi->hw_tx_cons_ptr =
847 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
848 bnapi->hw_rx_cons_ptr =
849 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
850 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
851 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
852 struct status_block_msix *sblk;
853
854 bnapi = &bp->bnx2_napi[i];
855
856 sblk = (void *) (status_blk +
857 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
858 bnapi->status_blk.msix = sblk;
859 bnapi->hw_tx_cons_ptr =
860 &sblk->status_tx_quick_consumer_index;
861 bnapi->hw_rx_cons_ptr =
862 &sblk->status_rx_quick_consumer_index;
863 bnapi->int_num = i << 24;
864 }
865 }
866
867 bp->stats_blk = status_blk + status_blk_size;
868
869 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
870
871 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
872 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
873 if (bp->ctx_pages == 0)
874 bp->ctx_pages = 1;
875 for (i = 0; i < bp->ctx_pages; i++) {
876 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
877 BCM_PAGE_SIZE,
878 &bp->ctx_blk_mapping[i]);
879 if (bp->ctx_blk[i] == NULL)
880 goto alloc_mem_err;
881 }
882 }
883
884 err = bnx2_alloc_rx_mem(bp);
885 if (err)
886 goto alloc_mem_err;
887
888 err = bnx2_alloc_tx_mem(bp);
889 if (err)
890 goto alloc_mem_err;
891
892 return 0;
893
894 alloc_mem_err:
895 bnx2_free_mem(bp);
896 return -ENOMEM;
897 }
898
899 static void
900 bnx2_report_fw_link(struct bnx2 *bp)
901 {
902 u32 fw_link_status = 0;
903
904 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
905 return;
906
907 if (bp->link_up) {
908 u32 bmsr;
909
910 switch (bp->line_speed) {
911 case SPEED_10:
912 if (bp->duplex == DUPLEX_HALF)
913 fw_link_status = BNX2_LINK_STATUS_10HALF;
914 else
915 fw_link_status = BNX2_LINK_STATUS_10FULL;
916 break;
917 case SPEED_100:
918 if (bp->duplex == DUPLEX_HALF)
919 fw_link_status = BNX2_LINK_STATUS_100HALF;
920 else
921 fw_link_status = BNX2_LINK_STATUS_100FULL;
922 break;
923 case SPEED_1000:
924 if (bp->duplex == DUPLEX_HALF)
925 fw_link_status = BNX2_LINK_STATUS_1000HALF;
926 else
927 fw_link_status = BNX2_LINK_STATUS_1000FULL;
928 break;
929 case SPEED_2500:
930 if (bp->duplex == DUPLEX_HALF)
931 fw_link_status = BNX2_LINK_STATUS_2500HALF;
932 else
933 fw_link_status = BNX2_LINK_STATUS_2500FULL;
934 break;
935 }
936
937 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
938
939 if (bp->autoneg) {
940 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
941
942 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
943 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
944
945 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
946 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
947 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
948 else
949 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
950 }
951 }
952 else
953 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
954
955 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
956 }
957
958 static char *
959 bnx2_xceiver_str(struct bnx2 *bp)
960 {
961 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
962 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
963 "Copper"));
964 }
965
966 static void
967 bnx2_report_link(struct bnx2 *bp)
968 {
969 if (bp->link_up) {
970 netif_carrier_on(bp->dev);
971 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
972 bnx2_xceiver_str(bp));
973
974 printk("%d Mbps ", bp->line_speed);
975
976 if (bp->duplex == DUPLEX_FULL)
977 printk("full duplex");
978 else
979 printk("half duplex");
980
981 if (bp->flow_ctrl) {
982 if (bp->flow_ctrl & FLOW_CTRL_RX) {
983 printk(", receive ");
984 if (bp->flow_ctrl & FLOW_CTRL_TX)
985 printk("& transmit ");
986 }
987 else {
988 printk(", transmit ");
989 }
990 printk("flow control ON");
991 }
992 printk("\n");
993 }
994 else {
995 netif_carrier_off(bp->dev);
996 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
997 bnx2_xceiver_str(bp));
998 }
999
1000 bnx2_report_fw_link(bp);
1001 }
1002
1003 static void
1004 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1005 {
1006 u32 local_adv, remote_adv;
1007
1008 bp->flow_ctrl = 0;
1009 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1010 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1011
1012 if (bp->duplex == DUPLEX_FULL) {
1013 bp->flow_ctrl = bp->req_flow_ctrl;
1014 }
1015 return;
1016 }
1017
1018 if (bp->duplex != DUPLEX_FULL) {
1019 return;
1020 }
1021
1022 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1023 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1024 u32 val;
1025
1026 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1027 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1028 bp->flow_ctrl |= FLOW_CTRL_TX;
1029 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1030 bp->flow_ctrl |= FLOW_CTRL_RX;
1031 return;
1032 }
1033
1034 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1035 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1036
1037 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1038 u32 new_local_adv = 0;
1039 u32 new_remote_adv = 0;
1040
1041 if (local_adv & ADVERTISE_1000XPAUSE)
1042 new_local_adv |= ADVERTISE_PAUSE_CAP;
1043 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1044 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1045 if (remote_adv & ADVERTISE_1000XPAUSE)
1046 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1047 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1048 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1049
1050 local_adv = new_local_adv;
1051 remote_adv = new_remote_adv;
1052 }
1053
1054 /* See Table 28B-3 of 802.3ab-1999 spec. */
1055 if (local_adv & ADVERTISE_PAUSE_CAP) {
1056 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1057 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1058 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1059 }
1060 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1061 bp->flow_ctrl = FLOW_CTRL_RX;
1062 }
1063 }
1064 else {
1065 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1066 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1067 }
1068 }
1069 }
1070 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1071 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1072 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1073
1074 bp->flow_ctrl = FLOW_CTRL_TX;
1075 }
1076 }
1077 }
1078
1079 static int
1080 bnx2_5709s_linkup(struct bnx2 *bp)
1081 {
1082 u32 val, speed;
1083
1084 bp->link_up = 1;
1085
1086 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1087 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1088 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1089
1090 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1091 bp->line_speed = bp->req_line_speed;
1092 bp->duplex = bp->req_duplex;
1093 return 0;
1094 }
1095 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1096 switch (speed) {
1097 case MII_BNX2_GP_TOP_AN_SPEED_10:
1098 bp->line_speed = SPEED_10;
1099 break;
1100 case MII_BNX2_GP_TOP_AN_SPEED_100:
1101 bp->line_speed = SPEED_100;
1102 break;
1103 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1104 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1105 bp->line_speed = SPEED_1000;
1106 break;
1107 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1108 bp->line_speed = SPEED_2500;
1109 break;
1110 }
1111 if (val & MII_BNX2_GP_TOP_AN_FD)
1112 bp->duplex = DUPLEX_FULL;
1113 else
1114 bp->duplex = DUPLEX_HALF;
1115 return 0;
1116 }
1117
1118 static int
1119 bnx2_5708s_linkup(struct bnx2 *bp)
1120 {
1121 u32 val;
1122
1123 bp->link_up = 1;
1124 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1125 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1126 case BCM5708S_1000X_STAT1_SPEED_10:
1127 bp->line_speed = SPEED_10;
1128 break;
1129 case BCM5708S_1000X_STAT1_SPEED_100:
1130 bp->line_speed = SPEED_100;
1131 break;
1132 case BCM5708S_1000X_STAT1_SPEED_1G:
1133 bp->line_speed = SPEED_1000;
1134 break;
1135 case BCM5708S_1000X_STAT1_SPEED_2G5:
1136 bp->line_speed = SPEED_2500;
1137 break;
1138 }
1139 if (val & BCM5708S_1000X_STAT1_FD)
1140 bp->duplex = DUPLEX_FULL;
1141 else
1142 bp->duplex = DUPLEX_HALF;
1143
1144 return 0;
1145 }
1146
1147 static int
1148 bnx2_5706s_linkup(struct bnx2 *bp)
1149 {
1150 u32 bmcr, local_adv, remote_adv, common;
1151
1152 bp->link_up = 1;
1153 bp->line_speed = SPEED_1000;
1154
1155 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1156 if (bmcr & BMCR_FULLDPLX) {
1157 bp->duplex = DUPLEX_FULL;
1158 }
1159 else {
1160 bp->duplex = DUPLEX_HALF;
1161 }
1162
1163 if (!(bmcr & BMCR_ANENABLE)) {
1164 return 0;
1165 }
1166
1167 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1168 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1169
1170 common = local_adv & remote_adv;
1171 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1172
1173 if (common & ADVERTISE_1000XFULL) {
1174 bp->duplex = DUPLEX_FULL;
1175 }
1176 else {
1177 bp->duplex = DUPLEX_HALF;
1178 }
1179 }
1180
1181 return 0;
1182 }
1183
1184 static int
1185 bnx2_copper_linkup(struct bnx2 *bp)
1186 {
1187 u32 bmcr;
1188
1189 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1190 if (bmcr & BMCR_ANENABLE) {
1191 u32 local_adv, remote_adv, common;
1192
1193 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1194 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1195
1196 common = local_adv & (remote_adv >> 2);
1197 if (common & ADVERTISE_1000FULL) {
1198 bp->line_speed = SPEED_1000;
1199 bp->duplex = DUPLEX_FULL;
1200 }
1201 else if (common & ADVERTISE_1000HALF) {
1202 bp->line_speed = SPEED_1000;
1203 bp->duplex = DUPLEX_HALF;
1204 }
1205 else {
1206 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1207 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1208
1209 common = local_adv & remote_adv;
1210 if (common & ADVERTISE_100FULL) {
1211 bp->line_speed = SPEED_100;
1212 bp->duplex = DUPLEX_FULL;
1213 }
1214 else if (common & ADVERTISE_100HALF) {
1215 bp->line_speed = SPEED_100;
1216 bp->duplex = DUPLEX_HALF;
1217 }
1218 else if (common & ADVERTISE_10FULL) {
1219 bp->line_speed = SPEED_10;
1220 bp->duplex = DUPLEX_FULL;
1221 }
1222 else if (common & ADVERTISE_10HALF) {
1223 bp->line_speed = SPEED_10;
1224 bp->duplex = DUPLEX_HALF;
1225 }
1226 else {
1227 bp->line_speed = 0;
1228 bp->link_up = 0;
1229 }
1230 }
1231 }
1232 else {
1233 if (bmcr & BMCR_SPEED100) {
1234 bp->line_speed = SPEED_100;
1235 }
1236 else {
1237 bp->line_speed = SPEED_10;
1238 }
1239 if (bmcr & BMCR_FULLDPLX) {
1240 bp->duplex = DUPLEX_FULL;
1241 }
1242 else {
1243 bp->duplex = DUPLEX_HALF;
1244 }
1245 }
1246
1247 return 0;
1248 }
1249
1250 static void
1251 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1252 {
1253 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1254
1255 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1256 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1257 val |= 0x02 << 8;
1258
1259 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1260 u32 lo_water, hi_water;
1261
1262 if (bp->flow_ctrl & FLOW_CTRL_TX)
1263 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1264 else
1265 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1266 if (lo_water >= bp->rx_ring_size)
1267 lo_water = 0;
1268
1269 hi_water = bp->rx_ring_size / 4;
1270
1271 if (hi_water <= lo_water)
1272 lo_water = 0;
1273
1274 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1275 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1276
1277 if (hi_water > 0xf)
1278 hi_water = 0xf;
1279 else if (hi_water == 0)
1280 lo_water = 0;
1281 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1282 }
1283 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1284 }
1285
1286 static void
1287 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1288 {
1289 int i;
1290 u32 cid;
1291
1292 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1293 if (i == 1)
1294 cid = RX_RSS_CID;
1295 bnx2_init_rx_context(bp, cid);
1296 }
1297 }
1298
1299 static void
1300 bnx2_set_mac_link(struct bnx2 *bp)
1301 {
1302 u32 val;
1303
1304 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1305 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1306 (bp->duplex == DUPLEX_HALF)) {
1307 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1308 }
1309
1310 /* Configure the EMAC mode register. */
1311 val = REG_RD(bp, BNX2_EMAC_MODE);
1312
1313 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1314 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1315 BNX2_EMAC_MODE_25G_MODE);
1316
1317 if (bp->link_up) {
1318 switch (bp->line_speed) {
1319 case SPEED_10:
1320 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1321 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1322 break;
1323 }
1324 /* fall through */
1325 case SPEED_100:
1326 val |= BNX2_EMAC_MODE_PORT_MII;
1327 break;
1328 case SPEED_2500:
1329 val |= BNX2_EMAC_MODE_25G_MODE;
1330 /* fall through */
1331 case SPEED_1000:
1332 val |= BNX2_EMAC_MODE_PORT_GMII;
1333 break;
1334 }
1335 }
1336 else {
1337 val |= BNX2_EMAC_MODE_PORT_GMII;
1338 }
1339
1340 /* Set the MAC to operate in the appropriate duplex mode. */
1341 if (bp->duplex == DUPLEX_HALF)
1342 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1343 REG_WR(bp, BNX2_EMAC_MODE, val);
1344
1345 /* Enable/disable rx PAUSE. */
1346 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1347
1348 if (bp->flow_ctrl & FLOW_CTRL_RX)
1349 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1350 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1351
1352 /* Enable/disable tx PAUSE. */
1353 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1354 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1355
1356 if (bp->flow_ctrl & FLOW_CTRL_TX)
1357 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1358 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1359
1360 /* Acknowledge the interrupt. */
1361 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1362
1363 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1364 bnx2_init_all_rx_contexts(bp);
1365 }
1366
1367 static void
1368 bnx2_enable_bmsr1(struct bnx2 *bp)
1369 {
1370 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1371 (CHIP_NUM(bp) == CHIP_NUM_5709))
1372 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1373 MII_BNX2_BLK_ADDR_GP_STATUS);
1374 }
1375
1376 static void
1377 bnx2_disable_bmsr1(struct bnx2 *bp)
1378 {
1379 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1380 (CHIP_NUM(bp) == CHIP_NUM_5709))
1381 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1382 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1383 }
1384
1385 static int
1386 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1387 {
1388 u32 up1;
1389 int ret = 1;
1390
1391 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1392 return 0;
1393
1394 if (bp->autoneg & AUTONEG_SPEED)
1395 bp->advertising |= ADVERTISED_2500baseX_Full;
1396
1397 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1398 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1399
1400 bnx2_read_phy(bp, bp->mii_up1, &up1);
1401 if (!(up1 & BCM5708S_UP1_2G5)) {
1402 up1 |= BCM5708S_UP1_2G5;
1403 bnx2_write_phy(bp, bp->mii_up1, up1);
1404 ret = 0;
1405 }
1406
1407 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1408 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1409 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1410
1411 return ret;
1412 }
1413
1414 static int
1415 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1416 {
1417 u32 up1;
1418 int ret = 0;
1419
1420 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1421 return 0;
1422
1423 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1424 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1425
1426 bnx2_read_phy(bp, bp->mii_up1, &up1);
1427 if (up1 & BCM5708S_UP1_2G5) {
1428 up1 &= ~BCM5708S_UP1_2G5;
1429 bnx2_write_phy(bp, bp->mii_up1, up1);
1430 ret = 1;
1431 }
1432
1433 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1434 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1435 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1436
1437 return ret;
1438 }
1439
1440 static void
1441 bnx2_enable_forced_2g5(struct bnx2 *bp)
1442 {
1443 u32 bmcr;
1444
1445 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1446 return;
1447
1448 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1449 u32 val;
1450
1451 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1452 MII_BNX2_BLK_ADDR_SERDES_DIG);
1453 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1454 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1455 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1456 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1457
1458 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1459 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1460 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1461
1462 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1463 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1464 bmcr |= BCM5708S_BMCR_FORCE_2500;
1465 }
1466
1467 if (bp->autoneg & AUTONEG_SPEED) {
1468 bmcr &= ~BMCR_ANENABLE;
1469 if (bp->req_duplex == DUPLEX_FULL)
1470 bmcr |= BMCR_FULLDPLX;
1471 }
1472 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1473 }
1474
1475 static void
1476 bnx2_disable_forced_2g5(struct bnx2 *bp)
1477 {
1478 u32 bmcr;
1479
1480 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1481 return;
1482
1483 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1484 u32 val;
1485
1486 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1487 MII_BNX2_BLK_ADDR_SERDES_DIG);
1488 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1489 val &= ~MII_BNX2_SD_MISC1_FORCE;
1490 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1491
1492 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1493 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1494 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1495
1496 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1497 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1498 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1499 }
1500
1501 if (bp->autoneg & AUTONEG_SPEED)
1502 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1503 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1504 }
1505
1506 static void
1507 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1508 {
1509 u32 val;
1510
1511 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1512 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1513 if (start)
1514 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1515 else
1516 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1517 }
1518
1519 static int
1520 bnx2_set_link(struct bnx2 *bp)
1521 {
1522 u32 bmsr;
1523 u8 link_up;
1524
1525 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1526 bp->link_up = 1;
1527 return 0;
1528 }
1529
1530 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1531 return 0;
1532
1533 link_up = bp->link_up;
1534
1535 bnx2_enable_bmsr1(bp);
1536 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1537 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1538 bnx2_disable_bmsr1(bp);
1539
1540 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1541 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1542 u32 val, an_dbg;
1543
1544 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1545 bnx2_5706s_force_link_dn(bp, 0);
1546 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1547 }
1548 val = REG_RD(bp, BNX2_EMAC_STATUS);
1549
1550 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1551 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1552 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1553
1554 if ((val & BNX2_EMAC_STATUS_LINK) &&
1555 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1556 bmsr |= BMSR_LSTATUS;
1557 else
1558 bmsr &= ~BMSR_LSTATUS;
1559 }
1560
1561 if (bmsr & BMSR_LSTATUS) {
1562 bp->link_up = 1;
1563
1564 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1565 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1566 bnx2_5706s_linkup(bp);
1567 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1568 bnx2_5708s_linkup(bp);
1569 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1570 bnx2_5709s_linkup(bp);
1571 }
1572 else {
1573 bnx2_copper_linkup(bp);
1574 }
1575 bnx2_resolve_flow_ctrl(bp);
1576 }
1577 else {
1578 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1579 (bp->autoneg & AUTONEG_SPEED))
1580 bnx2_disable_forced_2g5(bp);
1581
1582 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1583 u32 bmcr;
1584
1585 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1586 bmcr |= BMCR_ANENABLE;
1587 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1588
1589 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1590 }
1591 bp->link_up = 0;
1592 }
1593
1594 if (bp->link_up != link_up) {
1595 bnx2_report_link(bp);
1596 }
1597
1598 bnx2_set_mac_link(bp);
1599
1600 return 0;
1601 }
1602
1603 static int
1604 bnx2_reset_phy(struct bnx2 *bp)
1605 {
1606 int i;
1607 u32 reg;
1608
1609 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1610
1611 #define PHY_RESET_MAX_WAIT 100
1612 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1613 udelay(10);
1614
1615 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1616 if (!(reg & BMCR_RESET)) {
1617 udelay(20);
1618 break;
1619 }
1620 }
1621 if (i == PHY_RESET_MAX_WAIT) {
1622 return -EBUSY;
1623 }
1624 return 0;
1625 }
1626
1627 static u32
1628 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1629 {
1630 u32 adv = 0;
1631
1632 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1633 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1634
1635 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1636 adv = ADVERTISE_1000XPAUSE;
1637 }
1638 else {
1639 adv = ADVERTISE_PAUSE_CAP;
1640 }
1641 }
1642 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1643 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1644 adv = ADVERTISE_1000XPSE_ASYM;
1645 }
1646 else {
1647 adv = ADVERTISE_PAUSE_ASYM;
1648 }
1649 }
1650 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1651 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1652 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1653 }
1654 else {
1655 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1656 }
1657 }
1658 return adv;
1659 }
1660
1661 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1662
1663 static int
1664 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1665 __releases(&bp->phy_lock)
1666 __acquires(&bp->phy_lock)
1667 {
1668 u32 speed_arg = 0, pause_adv;
1669
1670 pause_adv = bnx2_phy_get_pause_adv(bp);
1671
1672 if (bp->autoneg & AUTONEG_SPEED) {
1673 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1674 if (bp->advertising & ADVERTISED_10baseT_Half)
1675 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1676 if (bp->advertising & ADVERTISED_10baseT_Full)
1677 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1678 if (bp->advertising & ADVERTISED_100baseT_Half)
1679 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1680 if (bp->advertising & ADVERTISED_100baseT_Full)
1681 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1682 if (bp->advertising & ADVERTISED_1000baseT_Full)
1683 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1684 if (bp->advertising & ADVERTISED_2500baseX_Full)
1685 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1686 } else {
1687 if (bp->req_line_speed == SPEED_2500)
1688 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1689 else if (bp->req_line_speed == SPEED_1000)
1690 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1691 else if (bp->req_line_speed == SPEED_100) {
1692 if (bp->req_duplex == DUPLEX_FULL)
1693 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1694 else
1695 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1696 } else if (bp->req_line_speed == SPEED_10) {
1697 if (bp->req_duplex == DUPLEX_FULL)
1698 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1699 else
1700 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1701 }
1702 }
1703
1704 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1705 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1706 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1707 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1708
1709 if (port == PORT_TP)
1710 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1711 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1712
1713 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1714
1715 spin_unlock_bh(&bp->phy_lock);
1716 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1717 spin_lock_bh(&bp->phy_lock);
1718
1719 return 0;
1720 }
1721
1722 static int
1723 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1724 __releases(&bp->phy_lock)
1725 __acquires(&bp->phy_lock)
1726 {
1727 u32 adv, bmcr;
1728 u32 new_adv = 0;
1729
1730 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1731 return (bnx2_setup_remote_phy(bp, port));
1732
1733 if (!(bp->autoneg & AUTONEG_SPEED)) {
1734 u32 new_bmcr;
1735 int force_link_down = 0;
1736
1737 if (bp->req_line_speed == SPEED_2500) {
1738 if (!bnx2_test_and_enable_2g5(bp))
1739 force_link_down = 1;
1740 } else if (bp->req_line_speed == SPEED_1000) {
1741 if (bnx2_test_and_disable_2g5(bp))
1742 force_link_down = 1;
1743 }
1744 bnx2_read_phy(bp, bp->mii_adv, &adv);
1745 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1746
1747 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1748 new_bmcr = bmcr & ~BMCR_ANENABLE;
1749 new_bmcr |= BMCR_SPEED1000;
1750
1751 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1752 if (bp->req_line_speed == SPEED_2500)
1753 bnx2_enable_forced_2g5(bp);
1754 else if (bp->req_line_speed == SPEED_1000) {
1755 bnx2_disable_forced_2g5(bp);
1756 new_bmcr &= ~0x2000;
1757 }
1758
1759 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1760 if (bp->req_line_speed == SPEED_2500)
1761 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1762 else
1763 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1764 }
1765
1766 if (bp->req_duplex == DUPLEX_FULL) {
1767 adv |= ADVERTISE_1000XFULL;
1768 new_bmcr |= BMCR_FULLDPLX;
1769 }
1770 else {
1771 adv |= ADVERTISE_1000XHALF;
1772 new_bmcr &= ~BMCR_FULLDPLX;
1773 }
1774 if ((new_bmcr != bmcr) || (force_link_down)) {
1775 /* Force a link down visible on the other side */
1776 if (bp->link_up) {
1777 bnx2_write_phy(bp, bp->mii_adv, adv &
1778 ~(ADVERTISE_1000XFULL |
1779 ADVERTISE_1000XHALF));
1780 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1781 BMCR_ANRESTART | BMCR_ANENABLE);
1782
1783 bp->link_up = 0;
1784 netif_carrier_off(bp->dev);
1785 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1786 bnx2_report_link(bp);
1787 }
1788 bnx2_write_phy(bp, bp->mii_adv, adv);
1789 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1790 } else {
1791 bnx2_resolve_flow_ctrl(bp);
1792 bnx2_set_mac_link(bp);
1793 }
1794 return 0;
1795 }
1796
1797 bnx2_test_and_enable_2g5(bp);
1798
1799 if (bp->advertising & ADVERTISED_1000baseT_Full)
1800 new_adv |= ADVERTISE_1000XFULL;
1801
1802 new_adv |= bnx2_phy_get_pause_adv(bp);
1803
1804 bnx2_read_phy(bp, bp->mii_adv, &adv);
1805 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1806
1807 bp->serdes_an_pending = 0;
1808 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1809 /* Force a link down visible on the other side */
1810 if (bp->link_up) {
1811 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1812 spin_unlock_bh(&bp->phy_lock);
1813 msleep(20);
1814 spin_lock_bh(&bp->phy_lock);
1815 }
1816
1817 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1818 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1819 BMCR_ANENABLE);
1820 /* Speed up link-up time when the link partner
1821 * does not autonegotiate which is very common
1822 * in blade servers. Some blade servers use
1823 * IPMI for kerboard input and it's important
1824 * to minimize link disruptions. Autoneg. involves
1825 * exchanging base pages plus 3 next pages and
1826 * normally completes in about 120 msec.
1827 */
1828 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1829 bp->serdes_an_pending = 1;
1830 mod_timer(&bp->timer, jiffies + bp->current_interval);
1831 } else {
1832 bnx2_resolve_flow_ctrl(bp);
1833 bnx2_set_mac_link(bp);
1834 }
1835
1836 return 0;
1837 }
1838
1839 #define ETHTOOL_ALL_FIBRE_SPEED \
1840 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1841 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1842 (ADVERTISED_1000baseT_Full)
1843
1844 #define ETHTOOL_ALL_COPPER_SPEED \
1845 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1846 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1847 ADVERTISED_1000baseT_Full)
1848
1849 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1850 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1851
1852 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1853
1854 static void
1855 bnx2_set_default_remote_link(struct bnx2 *bp)
1856 {
1857 u32 link;
1858
1859 if (bp->phy_port == PORT_TP)
1860 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1861 else
1862 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1863
1864 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1865 bp->req_line_speed = 0;
1866 bp->autoneg |= AUTONEG_SPEED;
1867 bp->advertising = ADVERTISED_Autoneg;
1868 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1869 bp->advertising |= ADVERTISED_10baseT_Half;
1870 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1871 bp->advertising |= ADVERTISED_10baseT_Full;
1872 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1873 bp->advertising |= ADVERTISED_100baseT_Half;
1874 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1875 bp->advertising |= ADVERTISED_100baseT_Full;
1876 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1877 bp->advertising |= ADVERTISED_1000baseT_Full;
1878 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1879 bp->advertising |= ADVERTISED_2500baseX_Full;
1880 } else {
1881 bp->autoneg = 0;
1882 bp->advertising = 0;
1883 bp->req_duplex = DUPLEX_FULL;
1884 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1885 bp->req_line_speed = SPEED_10;
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1887 bp->req_duplex = DUPLEX_HALF;
1888 }
1889 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1890 bp->req_line_speed = SPEED_100;
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1892 bp->req_duplex = DUPLEX_HALF;
1893 }
1894 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1895 bp->req_line_speed = SPEED_1000;
1896 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1897 bp->req_line_speed = SPEED_2500;
1898 }
1899 }
1900
1901 static void
1902 bnx2_set_default_link(struct bnx2 *bp)
1903 {
1904 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1905 bnx2_set_default_remote_link(bp);
1906 return;
1907 }
1908
1909 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1910 bp->req_line_speed = 0;
1911 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1912 u32 reg;
1913
1914 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1915
1916 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1917 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1918 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1919 bp->autoneg = 0;
1920 bp->req_line_speed = bp->line_speed = SPEED_1000;
1921 bp->req_duplex = DUPLEX_FULL;
1922 }
1923 } else
1924 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1925 }
1926
1927 static void
1928 bnx2_send_heart_beat(struct bnx2 *bp)
1929 {
1930 u32 msg;
1931 u32 addr;
1932
1933 spin_lock(&bp->indirect_lock);
1934 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1935 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1936 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1937 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1938 spin_unlock(&bp->indirect_lock);
1939 }
1940
1941 static void
1942 bnx2_remote_phy_event(struct bnx2 *bp)
1943 {
1944 u32 msg;
1945 u8 link_up = bp->link_up;
1946 u8 old_port;
1947
1948 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1949
1950 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1951 bnx2_send_heart_beat(bp);
1952
1953 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1954
1955 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1956 bp->link_up = 0;
1957 else {
1958 u32 speed;
1959
1960 bp->link_up = 1;
1961 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1962 bp->duplex = DUPLEX_FULL;
1963 switch (speed) {
1964 case BNX2_LINK_STATUS_10HALF:
1965 bp->duplex = DUPLEX_HALF;
1966 case BNX2_LINK_STATUS_10FULL:
1967 bp->line_speed = SPEED_10;
1968 break;
1969 case BNX2_LINK_STATUS_100HALF:
1970 bp->duplex = DUPLEX_HALF;
1971 case BNX2_LINK_STATUS_100BASE_T4:
1972 case BNX2_LINK_STATUS_100FULL:
1973 bp->line_speed = SPEED_100;
1974 break;
1975 case BNX2_LINK_STATUS_1000HALF:
1976 bp->duplex = DUPLEX_HALF;
1977 case BNX2_LINK_STATUS_1000FULL:
1978 bp->line_speed = SPEED_1000;
1979 break;
1980 case BNX2_LINK_STATUS_2500HALF:
1981 bp->duplex = DUPLEX_HALF;
1982 case BNX2_LINK_STATUS_2500FULL:
1983 bp->line_speed = SPEED_2500;
1984 break;
1985 default:
1986 bp->line_speed = 0;
1987 break;
1988 }
1989
1990 bp->flow_ctrl = 0;
1991 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1992 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1993 if (bp->duplex == DUPLEX_FULL)
1994 bp->flow_ctrl = bp->req_flow_ctrl;
1995 } else {
1996 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1997 bp->flow_ctrl |= FLOW_CTRL_TX;
1998 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1999 bp->flow_ctrl |= FLOW_CTRL_RX;
2000 }
2001
2002 old_port = bp->phy_port;
2003 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2004 bp->phy_port = PORT_FIBRE;
2005 else
2006 bp->phy_port = PORT_TP;
2007
2008 if (old_port != bp->phy_port)
2009 bnx2_set_default_link(bp);
2010
2011 }
2012 if (bp->link_up != link_up)
2013 bnx2_report_link(bp);
2014
2015 bnx2_set_mac_link(bp);
2016 }
2017
2018 static int
2019 bnx2_set_remote_link(struct bnx2 *bp)
2020 {
2021 u32 evt_code;
2022
2023 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2024 switch (evt_code) {
2025 case BNX2_FW_EVT_CODE_LINK_EVENT:
2026 bnx2_remote_phy_event(bp);
2027 break;
2028 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2029 default:
2030 bnx2_send_heart_beat(bp);
2031 break;
2032 }
2033 return 0;
2034 }
2035
2036 static int
2037 bnx2_setup_copper_phy(struct bnx2 *bp)
2038 __releases(&bp->phy_lock)
2039 __acquires(&bp->phy_lock)
2040 {
2041 u32 bmcr;
2042 u32 new_bmcr;
2043
2044 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2045
2046 if (bp->autoneg & AUTONEG_SPEED) {
2047 u32 adv_reg, adv1000_reg;
2048 u32 new_adv_reg = 0;
2049 u32 new_adv1000_reg = 0;
2050
2051 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2052 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2053 ADVERTISE_PAUSE_ASYM);
2054
2055 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2056 adv1000_reg &= PHY_ALL_1000_SPEED;
2057
2058 if (bp->advertising & ADVERTISED_10baseT_Half)
2059 new_adv_reg |= ADVERTISE_10HALF;
2060 if (bp->advertising & ADVERTISED_10baseT_Full)
2061 new_adv_reg |= ADVERTISE_10FULL;
2062 if (bp->advertising & ADVERTISED_100baseT_Half)
2063 new_adv_reg |= ADVERTISE_100HALF;
2064 if (bp->advertising & ADVERTISED_100baseT_Full)
2065 new_adv_reg |= ADVERTISE_100FULL;
2066 if (bp->advertising & ADVERTISED_1000baseT_Full)
2067 new_adv1000_reg |= ADVERTISE_1000FULL;
2068
2069 new_adv_reg |= ADVERTISE_CSMA;
2070
2071 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2072
2073 if ((adv1000_reg != new_adv1000_reg) ||
2074 (adv_reg != new_adv_reg) ||
2075 ((bmcr & BMCR_ANENABLE) == 0)) {
2076
2077 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2078 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2079 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2080 BMCR_ANENABLE);
2081 }
2082 else if (bp->link_up) {
2083 /* Flow ctrl may have changed from auto to forced */
2084 /* or vice-versa. */
2085
2086 bnx2_resolve_flow_ctrl(bp);
2087 bnx2_set_mac_link(bp);
2088 }
2089 return 0;
2090 }
2091
2092 new_bmcr = 0;
2093 if (bp->req_line_speed == SPEED_100) {
2094 new_bmcr |= BMCR_SPEED100;
2095 }
2096 if (bp->req_duplex == DUPLEX_FULL) {
2097 new_bmcr |= BMCR_FULLDPLX;
2098 }
2099 if (new_bmcr != bmcr) {
2100 u32 bmsr;
2101
2102 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2103 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2104
2105 if (bmsr & BMSR_LSTATUS) {
2106 /* Force link down */
2107 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2108 spin_unlock_bh(&bp->phy_lock);
2109 msleep(50);
2110 spin_lock_bh(&bp->phy_lock);
2111
2112 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2113 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2114 }
2115
2116 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2117
2118 /* Normally, the new speed is setup after the link has
2119 * gone down and up again. In some cases, link will not go
2120 * down so we need to set up the new speed here.
2121 */
2122 if (bmsr & BMSR_LSTATUS) {
2123 bp->line_speed = bp->req_line_speed;
2124 bp->duplex = bp->req_duplex;
2125 bnx2_resolve_flow_ctrl(bp);
2126 bnx2_set_mac_link(bp);
2127 }
2128 } else {
2129 bnx2_resolve_flow_ctrl(bp);
2130 bnx2_set_mac_link(bp);
2131 }
2132 return 0;
2133 }
2134
2135 static int
2136 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2137 __releases(&bp->phy_lock)
2138 __acquires(&bp->phy_lock)
2139 {
2140 if (bp->loopback == MAC_LOOPBACK)
2141 return 0;
2142
2143 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2144 return (bnx2_setup_serdes_phy(bp, port));
2145 }
2146 else {
2147 return (bnx2_setup_copper_phy(bp));
2148 }
2149 }
2150
2151 static int
2152 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2153 {
2154 u32 val;
2155
2156 bp->mii_bmcr = MII_BMCR + 0x10;
2157 bp->mii_bmsr = MII_BMSR + 0x10;
2158 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2159 bp->mii_adv = MII_ADVERTISE + 0x10;
2160 bp->mii_lpa = MII_LPA + 0x10;
2161 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2162
2163 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2164 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2165
2166 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2167 if (reset_phy)
2168 bnx2_reset_phy(bp);
2169
2170 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2171
2172 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2173 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2174 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2175 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2176
2177 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2178 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2179 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2180 val |= BCM5708S_UP1_2G5;
2181 else
2182 val &= ~BCM5708S_UP1_2G5;
2183 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2184
2185 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2186 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2187 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2188 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2189
2190 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2191
2192 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2193 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2194 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2195
2196 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2197
2198 return 0;
2199 }
2200
2201 static int
2202 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2203 {
2204 u32 val;
2205
2206 if (reset_phy)
2207 bnx2_reset_phy(bp);
2208
2209 bp->mii_up1 = BCM5708S_UP1;
2210
2211 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2212 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2213 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2214
2215 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2216 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2217 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2218
2219 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2220 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2221 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2222
2223 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2224 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2225 val |= BCM5708S_UP1_2G5;
2226 bnx2_write_phy(bp, BCM5708S_UP1, val);
2227 }
2228
2229 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2230 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2231 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2232 /* increase tx signal amplitude */
2233 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2234 BCM5708S_BLK_ADDR_TX_MISC);
2235 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2236 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2237 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2238 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2239 }
2240
2241 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2242 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2243
2244 if (val) {
2245 u32 is_backplane;
2246
2247 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2248 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2249 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2250 BCM5708S_BLK_ADDR_TX_MISC);
2251 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2252 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2253 BCM5708S_BLK_ADDR_DIG);
2254 }
2255 }
2256 return 0;
2257 }
2258
2259 static int
2260 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2261 {
2262 if (reset_phy)
2263 bnx2_reset_phy(bp);
2264
2265 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2266
2267 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2268 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2269
2270 if (bp->dev->mtu > 1500) {
2271 u32 val;
2272
2273 /* Set extended packet length bit */
2274 bnx2_write_phy(bp, 0x18, 0x7);
2275 bnx2_read_phy(bp, 0x18, &val);
2276 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2277
2278 bnx2_write_phy(bp, 0x1c, 0x6c00);
2279 bnx2_read_phy(bp, 0x1c, &val);
2280 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2281 }
2282 else {
2283 u32 val;
2284
2285 bnx2_write_phy(bp, 0x18, 0x7);
2286 bnx2_read_phy(bp, 0x18, &val);
2287 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2288
2289 bnx2_write_phy(bp, 0x1c, 0x6c00);
2290 bnx2_read_phy(bp, 0x1c, &val);
2291 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2292 }
2293
2294 return 0;
2295 }
2296
2297 static int
2298 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2299 {
2300 u32 val;
2301
2302 if (reset_phy)
2303 bnx2_reset_phy(bp);
2304
2305 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2306 bnx2_write_phy(bp, 0x18, 0x0c00);
2307 bnx2_write_phy(bp, 0x17, 0x000a);
2308 bnx2_write_phy(bp, 0x15, 0x310b);
2309 bnx2_write_phy(bp, 0x17, 0x201f);
2310 bnx2_write_phy(bp, 0x15, 0x9506);
2311 bnx2_write_phy(bp, 0x17, 0x401f);
2312 bnx2_write_phy(bp, 0x15, 0x14e2);
2313 bnx2_write_phy(bp, 0x18, 0x0400);
2314 }
2315
2316 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2317 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2318 MII_BNX2_DSP_EXPAND_REG | 0x8);
2319 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2320 val &= ~(1 << 8);
2321 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2322 }
2323
2324 if (bp->dev->mtu > 1500) {
2325 /* Set extended packet length bit */
2326 bnx2_write_phy(bp, 0x18, 0x7);
2327 bnx2_read_phy(bp, 0x18, &val);
2328 bnx2_write_phy(bp, 0x18, val | 0x4000);
2329
2330 bnx2_read_phy(bp, 0x10, &val);
2331 bnx2_write_phy(bp, 0x10, val | 0x1);
2332 }
2333 else {
2334 bnx2_write_phy(bp, 0x18, 0x7);
2335 bnx2_read_phy(bp, 0x18, &val);
2336 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2337
2338 bnx2_read_phy(bp, 0x10, &val);
2339 bnx2_write_phy(bp, 0x10, val & ~0x1);
2340 }
2341
2342 /* ethernet@wirespeed */
2343 bnx2_write_phy(bp, 0x18, 0x7007);
2344 bnx2_read_phy(bp, 0x18, &val);
2345 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2346 return 0;
2347 }
2348
2349
2350 static int
2351 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2352 __releases(&bp->phy_lock)
2353 __acquires(&bp->phy_lock)
2354 {
2355 u32 val;
2356 int rc = 0;
2357
2358 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2359 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2360
2361 bp->mii_bmcr = MII_BMCR;
2362 bp->mii_bmsr = MII_BMSR;
2363 bp->mii_bmsr1 = MII_BMSR;
2364 bp->mii_adv = MII_ADVERTISE;
2365 bp->mii_lpa = MII_LPA;
2366
2367 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2368
2369 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2370 goto setup_phy;
2371
2372 bnx2_read_phy(bp, MII_PHYSID1, &val);
2373 bp->phy_id = val << 16;
2374 bnx2_read_phy(bp, MII_PHYSID2, &val);
2375 bp->phy_id |= val & 0xffff;
2376
2377 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2378 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2379 rc = bnx2_init_5706s_phy(bp, reset_phy);
2380 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2381 rc = bnx2_init_5708s_phy(bp, reset_phy);
2382 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2383 rc = bnx2_init_5709s_phy(bp, reset_phy);
2384 }
2385 else {
2386 rc = bnx2_init_copper_phy(bp, reset_phy);
2387 }
2388
2389 setup_phy:
2390 if (!rc)
2391 rc = bnx2_setup_phy(bp, bp->phy_port);
2392
2393 return rc;
2394 }
2395
2396 static int
2397 bnx2_set_mac_loopback(struct bnx2 *bp)
2398 {
2399 u32 mac_mode;
2400
2401 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2402 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2403 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2404 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2405 bp->link_up = 1;
2406 return 0;
2407 }
2408
2409 static int bnx2_test_link(struct bnx2 *);
2410
2411 static int
2412 bnx2_set_phy_loopback(struct bnx2 *bp)
2413 {
2414 u32 mac_mode;
2415 int rc, i;
2416
2417 spin_lock_bh(&bp->phy_lock);
2418 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2419 BMCR_SPEED1000);
2420 spin_unlock_bh(&bp->phy_lock);
2421 if (rc)
2422 return rc;
2423
2424 for (i = 0; i < 10; i++) {
2425 if (bnx2_test_link(bp) == 0)
2426 break;
2427 msleep(100);
2428 }
2429
2430 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2431 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2432 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2433 BNX2_EMAC_MODE_25G_MODE);
2434
2435 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2436 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2437 bp->link_up = 1;
2438 return 0;
2439 }
2440
2441 static int
2442 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2443 {
2444 int i;
2445 u32 val;
2446
2447 bp->fw_wr_seq++;
2448 msg_data |= bp->fw_wr_seq;
2449
2450 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2451
2452 if (!ack)
2453 return 0;
2454
2455 /* wait for an acknowledgement. */
2456 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2457 msleep(10);
2458
2459 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2460
2461 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2462 break;
2463 }
2464 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2465 return 0;
2466
2467 /* If we timed out, inform the firmware that this is the case. */
2468 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2469 if (!silent)
2470 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2471 "%x\n", msg_data);
2472
2473 msg_data &= ~BNX2_DRV_MSG_CODE;
2474 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2475
2476 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2477
2478 return -EBUSY;
2479 }
2480
2481 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2482 return -EIO;
2483
2484 return 0;
2485 }
2486
2487 static int
2488 bnx2_init_5709_context(struct bnx2 *bp)
2489 {
2490 int i, ret = 0;
2491 u32 val;
2492
2493 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2494 val |= (BCM_PAGE_BITS - 8) << 16;
2495 REG_WR(bp, BNX2_CTX_COMMAND, val);
2496 for (i = 0; i < 10; i++) {
2497 val = REG_RD(bp, BNX2_CTX_COMMAND);
2498 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2499 break;
2500 udelay(2);
2501 }
2502 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2503 return -EBUSY;
2504
2505 for (i = 0; i < bp->ctx_pages; i++) {
2506 int j;
2507
2508 if (bp->ctx_blk[i])
2509 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2510 else
2511 return -ENOMEM;
2512
2513 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2514 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2515 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2516 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2517 (u64) bp->ctx_blk_mapping[i] >> 32);
2518 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2519 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2520 for (j = 0; j < 10; j++) {
2521
2522 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2523 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2524 break;
2525 udelay(5);
2526 }
2527 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2528 ret = -EBUSY;
2529 break;
2530 }
2531 }
2532 return ret;
2533 }
2534
2535 static void
2536 bnx2_init_context(struct bnx2 *bp)
2537 {
2538 u32 vcid;
2539
2540 vcid = 96;
2541 while (vcid) {
2542 u32 vcid_addr, pcid_addr, offset;
2543 int i;
2544
2545 vcid--;
2546
2547 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2548 u32 new_vcid;
2549
2550 vcid_addr = GET_PCID_ADDR(vcid);
2551 if (vcid & 0x8) {
2552 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2553 }
2554 else {
2555 new_vcid = vcid;
2556 }
2557 pcid_addr = GET_PCID_ADDR(new_vcid);
2558 }
2559 else {
2560 vcid_addr = GET_CID_ADDR(vcid);
2561 pcid_addr = vcid_addr;
2562 }
2563
2564 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2565 vcid_addr += (i << PHY_CTX_SHIFT);
2566 pcid_addr += (i << PHY_CTX_SHIFT);
2567
2568 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2569 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2570
2571 /* Zero out the context. */
2572 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2573 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2574 }
2575 }
2576 }
2577
2578 static int
2579 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2580 {
2581 u16 *good_mbuf;
2582 u32 good_mbuf_cnt;
2583 u32 val;
2584
2585 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2586 if (good_mbuf == NULL) {
2587 printk(KERN_ERR PFX "Failed to allocate memory in "
2588 "bnx2_alloc_bad_rbuf\n");
2589 return -ENOMEM;
2590 }
2591
2592 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2593 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2594
2595 good_mbuf_cnt = 0;
2596
2597 /* Allocate a bunch of mbufs and save the good ones in an array. */
2598 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2599 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2600 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2601 BNX2_RBUF_COMMAND_ALLOC_REQ);
2602
2603 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2604
2605 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2606
2607 /* The addresses with Bit 9 set are bad memory blocks. */
2608 if (!(val & (1 << 9))) {
2609 good_mbuf[good_mbuf_cnt] = (u16) val;
2610 good_mbuf_cnt++;
2611 }
2612
2613 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2614 }
2615
2616 /* Free the good ones back to the mbuf pool thus discarding
2617 * all the bad ones. */
2618 while (good_mbuf_cnt) {
2619 good_mbuf_cnt--;
2620
2621 val = good_mbuf[good_mbuf_cnt];
2622 val = (val << 9) | val | 1;
2623
2624 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2625 }
2626 kfree(good_mbuf);
2627 return 0;
2628 }
2629
2630 static void
2631 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2632 {
2633 u32 val;
2634
2635 val = (mac_addr[0] << 8) | mac_addr[1];
2636
2637 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2638
2639 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2640 (mac_addr[4] << 8) | mac_addr[5];
2641
2642 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2643 }
2644
2645 static inline int
2646 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2647 {
2648 dma_addr_t mapping;
2649 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2650 struct rx_bd *rxbd =
2651 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2652 struct page *page = alloc_page(GFP_ATOMIC);
2653
2654 if (!page)
2655 return -ENOMEM;
2656 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2657 PCI_DMA_FROMDEVICE);
2658 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2659 __free_page(page);
2660 return -EIO;
2661 }
2662
2663 rx_pg->page = page;
2664 pci_unmap_addr_set(rx_pg, mapping, mapping);
2665 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2666 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2667 return 0;
2668 }
2669
2670 static void
2671 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2672 {
2673 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2674 struct page *page = rx_pg->page;
2675
2676 if (!page)
2677 return;
2678
2679 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2680 PCI_DMA_FROMDEVICE);
2681
2682 __free_page(page);
2683 rx_pg->page = NULL;
2684 }
2685
2686 static inline int
2687 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2688 {
2689 struct sk_buff *skb;
2690 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2691 dma_addr_t mapping;
2692 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2693 unsigned long align;
2694
2695 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2696 if (skb == NULL) {
2697 return -ENOMEM;
2698 }
2699
2700 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2701 skb_reserve(skb, BNX2_RX_ALIGN - align);
2702
2703 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2704 PCI_DMA_FROMDEVICE);
2705 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2706 dev_kfree_skb(skb);
2707 return -EIO;
2708 }
2709
2710 rx_buf->skb = skb;
2711 pci_unmap_addr_set(rx_buf, mapping, mapping);
2712
2713 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2714 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2715
2716 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2717
2718 return 0;
2719 }
2720
2721 static int
2722 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2723 {
2724 struct status_block *sblk = bnapi->status_blk.msi;
2725 u32 new_link_state, old_link_state;
2726 int is_set = 1;
2727
2728 new_link_state = sblk->status_attn_bits & event;
2729 old_link_state = sblk->status_attn_bits_ack & event;
2730 if (new_link_state != old_link_state) {
2731 if (new_link_state)
2732 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2733 else
2734 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2735 } else
2736 is_set = 0;
2737
2738 return is_set;
2739 }
2740
2741 static void
2742 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2743 {
2744 spin_lock(&bp->phy_lock);
2745
2746 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2747 bnx2_set_link(bp);
2748 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2749 bnx2_set_remote_link(bp);
2750
2751 spin_unlock(&bp->phy_lock);
2752
2753 }
2754
2755 static inline u16
2756 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2757 {
2758 u16 cons;
2759
2760 /* Tell compiler that status block fields can change. */
2761 barrier();
2762 cons = *bnapi->hw_tx_cons_ptr;
2763 barrier();
2764 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2765 cons++;
2766 return cons;
2767 }
2768
2769 static int
2770 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2771 {
2772 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2773 u16 hw_cons, sw_cons, sw_ring_cons;
2774 int tx_pkt = 0, index;
2775 struct netdev_queue *txq;
2776
2777 index = (bnapi - bp->bnx2_napi);
2778 txq = netdev_get_tx_queue(bp->dev, index);
2779
2780 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2781 sw_cons = txr->tx_cons;
2782
2783 while (sw_cons != hw_cons) {
2784 struct sw_tx_bd *tx_buf;
2785 struct sk_buff *skb;
2786 int i, last;
2787
2788 sw_ring_cons = TX_RING_IDX(sw_cons);
2789
2790 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2791 skb = tx_buf->skb;
2792
2793 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2794 prefetch(&skb->end);
2795
2796 /* partial BD completions possible with TSO packets */
2797 if (tx_buf->is_gso) {
2798 u16 last_idx, last_ring_idx;
2799
2800 last_idx = sw_cons + tx_buf->nr_frags + 1;
2801 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2802 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2803 last_idx++;
2804 }
2805 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2806 break;
2807 }
2808 }
2809
2810 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2811
2812 tx_buf->skb = NULL;
2813 last = tx_buf->nr_frags;
2814
2815 for (i = 0; i < last; i++) {
2816 sw_cons = NEXT_TX_BD(sw_cons);
2817 }
2818
2819 sw_cons = NEXT_TX_BD(sw_cons);
2820
2821 dev_kfree_skb(skb);
2822 tx_pkt++;
2823 if (tx_pkt == budget)
2824 break;
2825
2826 if (hw_cons == sw_cons)
2827 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2828 }
2829
2830 txr->hw_tx_cons = hw_cons;
2831 txr->tx_cons = sw_cons;
2832
2833 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2834 * before checking for netif_tx_queue_stopped(). Without the
2835 * memory barrier, there is a small possibility that bnx2_start_xmit()
2836 * will miss it and cause the queue to be stopped forever.
2837 */
2838 smp_mb();
2839
2840 if (unlikely(netif_tx_queue_stopped(txq)) &&
2841 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2842 __netif_tx_lock(txq, smp_processor_id());
2843 if ((netif_tx_queue_stopped(txq)) &&
2844 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2845 netif_tx_wake_queue(txq);
2846 __netif_tx_unlock(txq);
2847 }
2848
2849 return tx_pkt;
2850 }
2851
2852 static void
2853 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2854 struct sk_buff *skb, int count)
2855 {
2856 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2857 struct rx_bd *cons_bd, *prod_bd;
2858 int i;
2859 u16 hw_prod, prod;
2860 u16 cons = rxr->rx_pg_cons;
2861
2862 cons_rx_pg = &rxr->rx_pg_ring[cons];
2863
2864 /* The caller was unable to allocate a new page to replace the
2865 * last one in the frags array, so we need to recycle that page
2866 * and then free the skb.
2867 */
2868 if (skb) {
2869 struct page *page;
2870 struct skb_shared_info *shinfo;
2871
2872 shinfo = skb_shinfo(skb);
2873 shinfo->nr_frags--;
2874 page = shinfo->frags[shinfo->nr_frags].page;
2875 shinfo->frags[shinfo->nr_frags].page = NULL;
2876
2877 cons_rx_pg->page = page;
2878 dev_kfree_skb(skb);
2879 }
2880
2881 hw_prod = rxr->rx_pg_prod;
2882
2883 for (i = 0; i < count; i++) {
2884 prod = RX_PG_RING_IDX(hw_prod);
2885
2886 prod_rx_pg = &rxr->rx_pg_ring[prod];
2887 cons_rx_pg = &rxr->rx_pg_ring[cons];
2888 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2889 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2890
2891 if (prod != cons) {
2892 prod_rx_pg->page = cons_rx_pg->page;
2893 cons_rx_pg->page = NULL;
2894 pci_unmap_addr_set(prod_rx_pg, mapping,
2895 pci_unmap_addr(cons_rx_pg, mapping));
2896
2897 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2898 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2899
2900 }
2901 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2902 hw_prod = NEXT_RX_BD(hw_prod);
2903 }
2904 rxr->rx_pg_prod = hw_prod;
2905 rxr->rx_pg_cons = cons;
2906 }
2907
2908 static inline void
2909 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2910 struct sk_buff *skb, u16 cons, u16 prod)
2911 {
2912 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2913 struct rx_bd *cons_bd, *prod_bd;
2914
2915 cons_rx_buf = &rxr->rx_buf_ring[cons];
2916 prod_rx_buf = &rxr->rx_buf_ring[prod];
2917
2918 pci_dma_sync_single_for_device(bp->pdev,
2919 pci_unmap_addr(cons_rx_buf, mapping),
2920 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2921
2922 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2923
2924 prod_rx_buf->skb = skb;
2925
2926 if (cons == prod)
2927 return;
2928
2929 pci_unmap_addr_set(prod_rx_buf, mapping,
2930 pci_unmap_addr(cons_rx_buf, mapping));
2931
2932 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2933 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2934 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2935 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2936 }
2937
2938 static int
2939 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2940 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2941 u32 ring_idx)
2942 {
2943 int err;
2944 u16 prod = ring_idx & 0xffff;
2945
2946 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2947 if (unlikely(err)) {
2948 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2949 if (hdr_len) {
2950 unsigned int raw_len = len + 4;
2951 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2952
2953 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2954 }
2955 return err;
2956 }
2957
2958 skb_reserve(skb, BNX2_RX_OFFSET);
2959 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2960 PCI_DMA_FROMDEVICE);
2961
2962 if (hdr_len == 0) {
2963 skb_put(skb, len);
2964 return 0;
2965 } else {
2966 unsigned int i, frag_len, frag_size, pages;
2967 struct sw_pg *rx_pg;
2968 u16 pg_cons = rxr->rx_pg_cons;
2969 u16 pg_prod = rxr->rx_pg_prod;
2970
2971 frag_size = len + 4 - hdr_len;
2972 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2973 skb_put(skb, hdr_len);
2974
2975 for (i = 0; i < pages; i++) {
2976 dma_addr_t mapping_old;
2977
2978 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2979 if (unlikely(frag_len <= 4)) {
2980 unsigned int tail = 4 - frag_len;
2981
2982 rxr->rx_pg_cons = pg_cons;
2983 rxr->rx_pg_prod = pg_prod;
2984 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2985 pages - i);
2986 skb->len -= tail;
2987 if (i == 0) {
2988 skb->tail -= tail;
2989 } else {
2990 skb_frag_t *frag =
2991 &skb_shinfo(skb)->frags[i - 1];
2992 frag->size -= tail;
2993 skb->data_len -= tail;
2994 skb->truesize -= tail;
2995 }
2996 return 0;
2997 }
2998 rx_pg = &rxr->rx_pg_ring[pg_cons];
2999
3000 /* Don't unmap yet. If we're unable to allocate a new
3001 * page, we need to recycle the page and the DMA addr.
3002 */
3003 mapping_old = pci_unmap_addr(rx_pg, mapping);
3004 if (i == pages - 1)
3005 frag_len -= 4;
3006
3007 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3008 rx_pg->page = NULL;
3009
3010 err = bnx2_alloc_rx_page(bp, rxr,
3011 RX_PG_RING_IDX(pg_prod));
3012 if (unlikely(err)) {
3013 rxr->rx_pg_cons = pg_cons;
3014 rxr->rx_pg_prod = pg_prod;
3015 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3016 pages - i);
3017 return err;
3018 }
3019
3020 pci_unmap_page(bp->pdev, mapping_old,
3021 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3022
3023 frag_size -= frag_len;
3024 skb->data_len += frag_len;
3025 skb->truesize += frag_len;
3026 skb->len += frag_len;
3027
3028 pg_prod = NEXT_RX_BD(pg_prod);
3029 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3030 }
3031 rxr->rx_pg_prod = pg_prod;
3032 rxr->rx_pg_cons = pg_cons;
3033 }
3034 return 0;
3035 }
3036
3037 static inline u16
3038 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3039 {
3040 u16 cons;
3041
3042 /* Tell compiler that status block fields can change. */
3043 barrier();
3044 cons = *bnapi->hw_rx_cons_ptr;
3045 barrier();
3046 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3047 cons++;
3048 return cons;
3049 }
3050
3051 static int
3052 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3053 {
3054 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3055 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3056 struct l2_fhdr *rx_hdr;
3057 int rx_pkt = 0, pg_ring_used = 0;
3058
3059 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3060 sw_cons = rxr->rx_cons;
3061 sw_prod = rxr->rx_prod;
3062
3063 /* Memory barrier necessary as speculative reads of the rx
3064 * buffer can be ahead of the index in the status block
3065 */
3066 rmb();
3067 while (sw_cons != hw_cons) {
3068 unsigned int len, hdr_len;
3069 u32 status;
3070 struct sw_bd *rx_buf;
3071 struct sk_buff *skb;
3072 dma_addr_t dma_addr;
3073 u16 vtag = 0;
3074 int hw_vlan __maybe_unused = 0;
3075
3076 sw_ring_cons = RX_RING_IDX(sw_cons);
3077 sw_ring_prod = RX_RING_IDX(sw_prod);
3078
3079 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3080 skb = rx_buf->skb;
3081
3082 rx_buf->skb = NULL;
3083
3084 dma_addr = pci_unmap_addr(rx_buf, mapping);
3085
3086 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3087 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3088 PCI_DMA_FROMDEVICE);
3089
3090 rx_hdr = (struct l2_fhdr *) skb->data;
3091 len = rx_hdr->l2_fhdr_pkt_len;
3092 status = rx_hdr->l2_fhdr_status;
3093
3094 hdr_len = 0;
3095 if (status & L2_FHDR_STATUS_SPLIT) {
3096 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3097 pg_ring_used = 1;
3098 } else if (len > bp->rx_jumbo_thresh) {
3099 hdr_len = bp->rx_jumbo_thresh;
3100 pg_ring_used = 1;
3101 }
3102
3103 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3104 L2_FHDR_ERRORS_PHY_DECODE |
3105 L2_FHDR_ERRORS_ALIGNMENT |
3106 L2_FHDR_ERRORS_TOO_SHORT |
3107 L2_FHDR_ERRORS_GIANT_FRAME))) {
3108
3109 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3110 sw_ring_prod);
3111 if (pg_ring_used) {
3112 int pages;
3113
3114 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3115
3116 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3117 }
3118 goto next_rx;
3119 }
3120
3121 len -= 4;
3122
3123 if (len <= bp->rx_copy_thresh) {
3124 struct sk_buff *new_skb;
3125
3126 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3127 if (new_skb == NULL) {
3128 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3129 sw_ring_prod);
3130 goto next_rx;
3131 }
3132
3133 /* aligned copy */
3134 skb_copy_from_linear_data_offset(skb,
3135 BNX2_RX_OFFSET - 6,
3136 new_skb->data, len + 6);
3137 skb_reserve(new_skb, 6);
3138 skb_put(new_skb, len);
3139
3140 bnx2_reuse_rx_skb(bp, rxr, skb,
3141 sw_ring_cons, sw_ring_prod);
3142
3143 skb = new_skb;
3144 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3145 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3146 goto next_rx;
3147
3148 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3149 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3150 vtag = rx_hdr->l2_fhdr_vlan_tag;
3151 #ifdef BCM_VLAN
3152 if (bp->vlgrp)
3153 hw_vlan = 1;
3154 else
3155 #endif
3156 {
3157 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3158 __skb_push(skb, 4);
3159
3160 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3161 ve->h_vlan_proto = htons(ETH_P_8021Q);
3162 ve->h_vlan_TCI = htons(vtag);
3163 len += 4;
3164 }
3165 }
3166
3167 skb->protocol = eth_type_trans(skb, bp->dev);
3168
3169 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3170 (ntohs(skb->protocol) != 0x8100)) {
3171
3172 dev_kfree_skb(skb);
3173 goto next_rx;
3174
3175 }
3176
3177 skb->ip_summed = CHECKSUM_NONE;
3178 if (bp->rx_csum &&
3179 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3180 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3181
3182 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3183 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3184 skb->ip_summed = CHECKSUM_UNNECESSARY;
3185 }
3186
3187 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3188
3189 #ifdef BCM_VLAN
3190 if (hw_vlan)
3191 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3192 else
3193 #endif
3194 netif_receive_skb(skb);
3195
3196 rx_pkt++;
3197
3198 next_rx:
3199 sw_cons = NEXT_RX_BD(sw_cons);
3200 sw_prod = NEXT_RX_BD(sw_prod);
3201
3202 if ((rx_pkt == budget))
3203 break;
3204
3205 /* Refresh hw_cons to see if there is new work */
3206 if (sw_cons == hw_cons) {
3207 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3208 rmb();
3209 }
3210 }
3211 rxr->rx_cons = sw_cons;
3212 rxr->rx_prod = sw_prod;
3213
3214 if (pg_ring_used)
3215 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3216
3217 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3218
3219 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3220
3221 mmiowb();
3222
3223 return rx_pkt;
3224
3225 }
3226
3227 /* MSI ISR - The only difference between this and the INTx ISR
3228 * is that the MSI interrupt is always serviced.
3229 */
3230 static irqreturn_t
3231 bnx2_msi(int irq, void *dev_instance)
3232 {
3233 struct bnx2_napi *bnapi = dev_instance;
3234 struct bnx2 *bp = bnapi->bp;
3235
3236 prefetch(bnapi->status_blk.msi);
3237 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3238 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3239 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3240
3241 /* Return here if interrupt is disabled. */
3242 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3243 return IRQ_HANDLED;
3244
3245 napi_schedule(&bnapi->napi);
3246
3247 return IRQ_HANDLED;
3248 }
3249
3250 static irqreturn_t
3251 bnx2_msi_1shot(int irq, void *dev_instance)
3252 {
3253 struct bnx2_napi *bnapi = dev_instance;
3254 struct bnx2 *bp = bnapi->bp;
3255
3256 prefetch(bnapi->status_blk.msi);
3257
3258 /* Return here if interrupt is disabled. */
3259 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3260 return IRQ_HANDLED;
3261
3262 napi_schedule(&bnapi->napi);
3263
3264 return IRQ_HANDLED;
3265 }
3266
3267 static irqreturn_t
3268 bnx2_interrupt(int irq, void *dev_instance)
3269 {
3270 struct bnx2_napi *bnapi = dev_instance;
3271 struct bnx2 *bp = bnapi->bp;
3272 struct status_block *sblk = bnapi->status_blk.msi;
3273
3274 /* When using INTx, it is possible for the interrupt to arrive
3275 * at the CPU before the status block posted prior to the
3276 * interrupt. Reading a register will flush the status block.
3277 * When using MSI, the MSI message will always complete after
3278 * the status block write.
3279 */
3280 if ((sblk->status_idx == bnapi->last_status_idx) &&
3281 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3282 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3283 return IRQ_NONE;
3284
3285 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3286 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3287 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3288
3289 /* Read back to deassert IRQ immediately to avoid too many
3290 * spurious interrupts.
3291 */
3292 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3293
3294 /* Return here if interrupt is shared and is disabled. */
3295 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3296 return IRQ_HANDLED;
3297
3298 if (napi_schedule_prep(&bnapi->napi)) {
3299 bnapi->last_status_idx = sblk->status_idx;
3300 __napi_schedule(&bnapi->napi);
3301 }
3302
3303 return IRQ_HANDLED;
3304 }
3305
3306 static inline int
3307 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3308 {
3309 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3310 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3311
3312 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3313 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3314 return 1;
3315 return 0;
3316 }
3317
3318 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3319 STATUS_ATTN_BITS_TIMER_ABORT)
3320
3321 static inline int
3322 bnx2_has_work(struct bnx2_napi *bnapi)
3323 {
3324 struct status_block *sblk = bnapi->status_blk.msi;
3325
3326 if (bnx2_has_fast_work(bnapi))
3327 return 1;
3328
3329 #ifdef BCM_CNIC
3330 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3331 return 1;
3332 #endif
3333
3334 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3335 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3336 return 1;
3337
3338 return 0;
3339 }
3340
3341 static void
3342 bnx2_chk_missed_msi(struct bnx2 *bp)
3343 {
3344 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3345 u32 msi_ctrl;
3346
3347 if (bnx2_has_work(bnapi)) {
3348 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3349 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3350 return;
3351
3352 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3353 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3354 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3355 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3356 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3357 }
3358 }
3359
3360 bp->idle_chk_status_idx = bnapi->last_status_idx;
3361 }
3362
3363 #ifdef BCM_CNIC
3364 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3365 {
3366 struct cnic_ops *c_ops;
3367
3368 if (!bnapi->cnic_present)
3369 return;
3370
3371 rcu_read_lock();
3372 c_ops = rcu_dereference(bp->cnic_ops);
3373 if (c_ops)
3374 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3375 bnapi->status_blk.msi);
3376 rcu_read_unlock();
3377 }
3378 #endif
3379
3380 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3381 {
3382 struct status_block *sblk = bnapi->status_blk.msi;
3383 u32 status_attn_bits = sblk->status_attn_bits;
3384 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3385
3386 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3387 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3388
3389 bnx2_phy_int(bp, bnapi);
3390
3391 /* This is needed to take care of transient status
3392 * during link changes.
3393 */
3394 REG_WR(bp, BNX2_HC_COMMAND,
3395 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3396 REG_RD(bp, BNX2_HC_COMMAND);
3397 }
3398 }
3399
3400 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3401 int work_done, int budget)
3402 {
3403 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3404 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3405
3406 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3407 bnx2_tx_int(bp, bnapi, 0);
3408
3409 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3410 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3411
3412 return work_done;
3413 }
3414
3415 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3416 {
3417 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3418 struct bnx2 *bp = bnapi->bp;
3419 int work_done = 0;
3420 struct status_block_msix *sblk = bnapi->status_blk.msix;
3421
3422 while (1) {
3423 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3424 if (unlikely(work_done >= budget))
3425 break;
3426
3427 bnapi->last_status_idx = sblk->status_idx;
3428 /* status idx must be read before checking for more work. */
3429 rmb();
3430 if (likely(!bnx2_has_fast_work(bnapi))) {
3431
3432 napi_complete(napi);
3433 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3434 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3435 bnapi->last_status_idx);
3436 break;
3437 }
3438 }
3439 return work_done;
3440 }
3441
3442 static int bnx2_poll(struct napi_struct *napi, int budget)
3443 {
3444 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3445 struct bnx2 *bp = bnapi->bp;
3446 int work_done = 0;
3447 struct status_block *sblk = bnapi->status_blk.msi;
3448
3449 while (1) {
3450 bnx2_poll_link(bp, bnapi);
3451
3452 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3453
3454 #ifdef BCM_CNIC
3455 bnx2_poll_cnic(bp, bnapi);
3456 #endif
3457
3458 /* bnapi->last_status_idx is used below to tell the hw how
3459 * much work has been processed, so we must read it before
3460 * checking for more work.
3461 */
3462 bnapi->last_status_idx = sblk->status_idx;
3463
3464 if (unlikely(work_done >= budget))
3465 break;
3466
3467 rmb();
3468 if (likely(!bnx2_has_work(bnapi))) {
3469 napi_complete(napi);
3470 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3471 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3472 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3473 bnapi->last_status_idx);
3474 break;
3475 }
3476 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3477 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3478 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3479 bnapi->last_status_idx);
3480
3481 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3482 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3483 bnapi->last_status_idx);
3484 break;
3485 }
3486 }
3487
3488 return work_done;
3489 }
3490
3491 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3492 * from set_multicast.
3493 */
3494 static void
3495 bnx2_set_rx_mode(struct net_device *dev)
3496 {
3497 struct bnx2 *bp = netdev_priv(dev);
3498 u32 rx_mode, sort_mode;
3499 struct netdev_hw_addr *ha;
3500 int i;
3501
3502 if (!netif_running(dev))
3503 return;
3504
3505 spin_lock_bh(&bp->phy_lock);
3506
3507 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3508 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3509 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3510 #ifdef BCM_VLAN
3511 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3512 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3513 #else
3514 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3515 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3516 #endif
3517 if (dev->flags & IFF_PROMISC) {
3518 /* Promiscuous mode. */
3519 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3520 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3521 BNX2_RPM_SORT_USER0_PROM_VLAN;
3522 }
3523 else if (dev->flags & IFF_ALLMULTI) {
3524 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3525 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3526 0xffffffff);
3527 }
3528 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3529 }
3530 else {
3531 /* Accept one or more multicast(s). */
3532 struct dev_mc_list *mclist;
3533 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3534 u32 regidx;
3535 u32 bit;
3536 u32 crc;
3537
3538 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3539
3540 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3541 i++, mclist = mclist->next) {
3542
3543 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3544 bit = crc & 0xff;
3545 regidx = (bit & 0xe0) >> 5;
3546 bit &= 0x1f;
3547 mc_filter[regidx] |= (1 << bit);
3548 }
3549
3550 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3551 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3552 mc_filter[i]);
3553 }
3554
3555 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3556 }
3557
3558 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3559 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3560 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3561 BNX2_RPM_SORT_USER0_PROM_VLAN;
3562 } else if (!(dev->flags & IFF_PROMISC)) {
3563 /* Add all entries into to the match filter list */
3564 i = 0;
3565 list_for_each_entry(ha, &dev->uc.list, list) {
3566 bnx2_set_mac_addr(bp, ha->addr,
3567 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3568 sort_mode |= (1 <<
3569 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3570 i++;
3571 }
3572
3573 }
3574
3575 if (rx_mode != bp->rx_mode) {
3576 bp->rx_mode = rx_mode;
3577 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3578 }
3579
3580 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3581 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3582 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3583
3584 spin_unlock_bh(&bp->phy_lock);
3585 }
3586
3587 static int __devinit
3588 check_fw_section(const struct firmware *fw,
3589 const struct bnx2_fw_file_section *section,
3590 u32 alignment, bool non_empty)
3591 {
3592 u32 offset = be32_to_cpu(section->offset);
3593 u32 len = be32_to_cpu(section->len);
3594
3595 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3596 return -EINVAL;
3597 if ((non_empty && len == 0) || len > fw->size - offset ||
3598 len & (alignment - 1))
3599 return -EINVAL;
3600 return 0;
3601 }
3602
3603 static int __devinit
3604 check_mips_fw_entry(const struct firmware *fw,
3605 const struct bnx2_mips_fw_file_entry *entry)
3606 {
3607 if (check_fw_section(fw, &entry->text, 4, true) ||
3608 check_fw_section(fw, &entry->data, 4, false) ||
3609 check_fw_section(fw, &entry->rodata, 4, false))
3610 return -EINVAL;
3611 return 0;
3612 }
3613
3614 static int __devinit
3615 bnx2_request_firmware(struct bnx2 *bp)
3616 {
3617 const char *mips_fw_file, *rv2p_fw_file;
3618 const struct bnx2_mips_fw_file *mips_fw;
3619 const struct bnx2_rv2p_fw_file *rv2p_fw;
3620 int rc;
3621
3622 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3623 mips_fw_file = FW_MIPS_FILE_09;
3624 rv2p_fw_file = FW_RV2P_FILE_09;
3625 } else {
3626 mips_fw_file = FW_MIPS_FILE_06;
3627 rv2p_fw_file = FW_RV2P_FILE_06;
3628 }
3629
3630 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3631 if (rc) {
3632 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3633 mips_fw_file);
3634 return rc;
3635 }
3636
3637 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3638 if (rc) {
3639 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3640 rv2p_fw_file);
3641 return rc;
3642 }
3643 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3644 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3645 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3646 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3647 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3648 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3649 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3650 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3651 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3652 mips_fw_file);
3653 return -EINVAL;
3654 }
3655 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3656 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3657 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3658 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3659 rv2p_fw_file);
3660 return -EINVAL;
3661 }
3662
3663 return 0;
3664 }
3665
3666 static u32
3667 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3668 {
3669 switch (idx) {
3670 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3671 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3672 rv2p_code |= RV2P_BD_PAGE_SIZE;
3673 break;
3674 }
3675 return rv2p_code;
3676 }
3677
3678 static int
3679 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3680 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3681 {
3682 u32 rv2p_code_len, file_offset;
3683 __be32 *rv2p_code;
3684 int i;
3685 u32 val, cmd, addr;
3686
3687 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3688 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3689
3690 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3691
3692 if (rv2p_proc == RV2P_PROC1) {
3693 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3694 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3695 } else {
3696 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3697 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3698 }
3699
3700 for (i = 0; i < rv2p_code_len; i += 8) {
3701 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3702 rv2p_code++;
3703 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3704 rv2p_code++;
3705
3706 val = (i / 8) | cmd;
3707 REG_WR(bp, addr, val);
3708 }
3709
3710 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3711 for (i = 0; i < 8; i++) {
3712 u32 loc, code;
3713
3714 loc = be32_to_cpu(fw_entry->fixup[i]);
3715 if (loc && ((loc * 4) < rv2p_code_len)) {
3716 code = be32_to_cpu(*(rv2p_code + loc - 1));
3717 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3718 code = be32_to_cpu(*(rv2p_code + loc));
3719 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3720 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3721
3722 val = (loc / 2) | cmd;
3723 REG_WR(bp, addr, val);
3724 }
3725 }
3726
3727 /* Reset the processor, un-stall is done later. */
3728 if (rv2p_proc == RV2P_PROC1) {
3729 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3730 }
3731 else {
3732 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3733 }
3734
3735 return 0;
3736 }
3737
3738 static int
3739 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3740 const struct bnx2_mips_fw_file_entry *fw_entry)
3741 {
3742 u32 addr, len, file_offset;
3743 __be32 *data;
3744 u32 offset;
3745 u32 val;
3746
3747 /* Halt the CPU. */
3748 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3749 val |= cpu_reg->mode_value_halt;
3750 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3751 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3752
3753 /* Load the Text area. */
3754 addr = be32_to_cpu(fw_entry->text.addr);
3755 len = be32_to_cpu(fw_entry->text.len);
3756 file_offset = be32_to_cpu(fw_entry->text.offset);
3757 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3758
3759 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3760 if (len) {
3761 int j;
3762
3763 for (j = 0; j < (len / 4); j++, offset += 4)
3764 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3765 }
3766
3767 /* Load the Data area. */
3768 addr = be32_to_cpu(fw_entry->data.addr);
3769 len = be32_to_cpu(fw_entry->data.len);
3770 file_offset = be32_to_cpu(fw_entry->data.offset);
3771 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3772
3773 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3774 if (len) {
3775 int j;
3776
3777 for (j = 0; j < (len / 4); j++, offset += 4)
3778 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3779 }
3780
3781 /* Load the Read-Only area. */
3782 addr = be32_to_cpu(fw_entry->rodata.addr);
3783 len = be32_to_cpu(fw_entry->rodata.len);
3784 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3785 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3786
3787 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3788 if (len) {
3789 int j;
3790
3791 for (j = 0; j < (len / 4); j++, offset += 4)
3792 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3793 }
3794
3795 /* Clear the pre-fetch instruction. */
3796 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3797
3798 val = be32_to_cpu(fw_entry->start_addr);
3799 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3800
3801 /* Start the CPU. */
3802 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3803 val &= ~cpu_reg->mode_value_halt;
3804 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3805 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3806
3807 return 0;
3808 }
3809
3810 static int
3811 bnx2_init_cpus(struct bnx2 *bp)
3812 {
3813 const struct bnx2_mips_fw_file *mips_fw =
3814 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3815 const struct bnx2_rv2p_fw_file *rv2p_fw =
3816 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3817 int rc;
3818
3819 /* Initialize the RV2P processor. */
3820 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3821 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3822
3823 /* Initialize the RX Processor. */
3824 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3825 if (rc)
3826 goto init_cpu_err;
3827
3828 /* Initialize the TX Processor. */
3829 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3830 if (rc)
3831 goto init_cpu_err;
3832
3833 /* Initialize the TX Patch-up Processor. */
3834 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3835 if (rc)
3836 goto init_cpu_err;
3837
3838 /* Initialize the Completion Processor. */
3839 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3840 if (rc)
3841 goto init_cpu_err;
3842
3843 /* Initialize the Command Processor. */
3844 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3845
3846 init_cpu_err:
3847 return rc;
3848 }
3849
3850 static int
3851 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3852 {
3853 u16 pmcsr;
3854
3855 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3856
3857 switch (state) {
3858 case PCI_D0: {
3859 u32 val;
3860
3861 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3862 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3863 PCI_PM_CTRL_PME_STATUS);
3864
3865 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3866 /* delay required during transition out of D3hot */
3867 msleep(20);
3868
3869 val = REG_RD(bp, BNX2_EMAC_MODE);
3870 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3871 val &= ~BNX2_EMAC_MODE_MPKT;
3872 REG_WR(bp, BNX2_EMAC_MODE, val);
3873
3874 val = REG_RD(bp, BNX2_RPM_CONFIG);
3875 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3876 REG_WR(bp, BNX2_RPM_CONFIG, val);
3877 break;
3878 }
3879 case PCI_D3hot: {
3880 int i;
3881 u32 val, wol_msg;
3882
3883 if (bp->wol) {
3884 u32 advertising;
3885 u8 autoneg;
3886
3887 autoneg = bp->autoneg;
3888 advertising = bp->advertising;
3889
3890 if (bp->phy_port == PORT_TP) {
3891 bp->autoneg = AUTONEG_SPEED;
3892 bp->advertising = ADVERTISED_10baseT_Half |
3893 ADVERTISED_10baseT_Full |
3894 ADVERTISED_100baseT_Half |
3895 ADVERTISED_100baseT_Full |
3896 ADVERTISED_Autoneg;
3897 }
3898
3899 spin_lock_bh(&bp->phy_lock);
3900 bnx2_setup_phy(bp, bp->phy_port);
3901 spin_unlock_bh(&bp->phy_lock);
3902
3903 bp->autoneg = autoneg;
3904 bp->advertising = advertising;
3905
3906 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3907
3908 val = REG_RD(bp, BNX2_EMAC_MODE);
3909
3910 /* Enable port mode. */
3911 val &= ~BNX2_EMAC_MODE_PORT;
3912 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3913 BNX2_EMAC_MODE_ACPI_RCVD |
3914 BNX2_EMAC_MODE_MPKT;
3915 if (bp->phy_port == PORT_TP)
3916 val |= BNX2_EMAC_MODE_PORT_MII;
3917 else {
3918 val |= BNX2_EMAC_MODE_PORT_GMII;
3919 if (bp->line_speed == SPEED_2500)
3920 val |= BNX2_EMAC_MODE_25G_MODE;
3921 }
3922
3923 REG_WR(bp, BNX2_EMAC_MODE, val);
3924
3925 /* receive all multicast */
3926 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3927 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3928 0xffffffff);
3929 }
3930 REG_WR(bp, BNX2_EMAC_RX_MODE,
3931 BNX2_EMAC_RX_MODE_SORT_MODE);
3932
3933 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3934 BNX2_RPM_SORT_USER0_MC_EN;
3935 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3936 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3937 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3938 BNX2_RPM_SORT_USER0_ENA);
3939
3940 /* Need to enable EMAC and RPM for WOL. */
3941 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3942 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3943 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3944 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3945
3946 val = REG_RD(bp, BNX2_RPM_CONFIG);
3947 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3948 REG_WR(bp, BNX2_RPM_CONFIG, val);
3949
3950 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3951 }
3952 else {
3953 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3954 }
3955
3956 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3957 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3958 1, 0);
3959
3960 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3961 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3962 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3963
3964 if (bp->wol)
3965 pmcsr |= 3;
3966 }
3967 else {
3968 pmcsr |= 3;
3969 }
3970 if (bp->wol) {
3971 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3972 }
3973 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3974 pmcsr);
3975
3976 /* No more memory access after this point until
3977 * device is brought back to D0.
3978 */
3979 udelay(50);
3980 break;
3981 }
3982 default:
3983 return -EINVAL;
3984 }
3985 return 0;
3986 }
3987
3988 static int
3989 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3990 {
3991 u32 val;
3992 int j;
3993
3994 /* Request access to the flash interface. */
3995 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3996 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3997 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3998 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3999 break;
4000
4001 udelay(5);
4002 }
4003
4004 if (j >= NVRAM_TIMEOUT_COUNT)
4005 return -EBUSY;
4006
4007 return 0;
4008 }
4009
4010 static int
4011 bnx2_release_nvram_lock(struct bnx2 *bp)
4012 {
4013 int j;
4014 u32 val;
4015
4016 /* Relinquish nvram interface. */
4017 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4018
4019 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4020 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4021 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4022 break;
4023
4024 udelay(5);
4025 }
4026
4027 if (j >= NVRAM_TIMEOUT_COUNT)
4028 return -EBUSY;
4029
4030 return 0;
4031 }
4032
4033
4034 static int
4035 bnx2_enable_nvram_write(struct bnx2 *bp)
4036 {
4037 u32 val;
4038
4039 val = REG_RD(bp, BNX2_MISC_CFG);
4040 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4041
4042 if (bp->flash_info->flags & BNX2_NV_WREN) {
4043 int j;
4044
4045 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4046 REG_WR(bp, BNX2_NVM_COMMAND,
4047 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4048
4049 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4050 udelay(5);
4051
4052 val = REG_RD(bp, BNX2_NVM_COMMAND);
4053 if (val & BNX2_NVM_COMMAND_DONE)
4054 break;
4055 }
4056
4057 if (j >= NVRAM_TIMEOUT_COUNT)
4058 return -EBUSY;
4059 }
4060 return 0;
4061 }
4062
4063 static void
4064 bnx2_disable_nvram_write(struct bnx2 *bp)
4065 {
4066 u32 val;
4067
4068 val = REG_RD(bp, BNX2_MISC_CFG);
4069 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4070 }
4071
4072
4073 static void
4074 bnx2_enable_nvram_access(struct bnx2 *bp)
4075 {
4076 u32 val;
4077
4078 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4079 /* Enable both bits, even on read. */
4080 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4081 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4082 }
4083
4084 static void
4085 bnx2_disable_nvram_access(struct bnx2 *bp)
4086 {
4087 u32 val;
4088
4089 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4090 /* Disable both bits, even after read. */
4091 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4092 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4093 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4094 }
4095
4096 static int
4097 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4098 {
4099 u32 cmd;
4100 int j;
4101
4102 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4103 /* Buffered flash, no erase needed */
4104 return 0;
4105
4106 /* Build an erase command */
4107 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4108 BNX2_NVM_COMMAND_DOIT;
4109
4110 /* Need to clear DONE bit separately. */
4111 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4112
4113 /* Address of the NVRAM to read from. */
4114 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4115
4116 /* Issue an erase command. */
4117 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4118
4119 /* Wait for completion. */
4120 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4121 u32 val;
4122
4123 udelay(5);
4124
4125 val = REG_RD(bp, BNX2_NVM_COMMAND);
4126 if (val & BNX2_NVM_COMMAND_DONE)
4127 break;
4128 }
4129
4130 if (j >= NVRAM_TIMEOUT_COUNT)
4131 return -EBUSY;
4132
4133 return 0;
4134 }
4135
4136 static int
4137 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4138 {
4139 u32 cmd;
4140 int j;
4141
4142 /* Build the command word. */
4143 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4144
4145 /* Calculate an offset of a buffered flash, not needed for 5709. */
4146 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4147 offset = ((offset / bp->flash_info->page_size) <<
4148 bp->flash_info->page_bits) +
4149 (offset % bp->flash_info->page_size);
4150 }
4151
4152 /* Need to clear DONE bit separately. */
4153 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4154
4155 /* Address of the NVRAM to read from. */
4156 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4157
4158 /* Issue a read command. */
4159 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4160
4161 /* Wait for completion. */
4162 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4163 u32 val;
4164
4165 udelay(5);
4166
4167 val = REG_RD(bp, BNX2_NVM_COMMAND);
4168 if (val & BNX2_NVM_COMMAND_DONE) {
4169 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4170 memcpy(ret_val, &v, 4);
4171 break;
4172 }
4173 }
4174 if (j >= NVRAM_TIMEOUT_COUNT)
4175 return -EBUSY;
4176
4177 return 0;
4178 }
4179
4180
4181 static int
4182 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4183 {
4184 u32 cmd;
4185 __be32 val32;
4186 int j;
4187
4188 /* Build the command word. */
4189 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4190
4191 /* Calculate an offset of a buffered flash, not needed for 5709. */
4192 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4193 offset = ((offset / bp->flash_info->page_size) <<
4194 bp->flash_info->page_bits) +
4195 (offset % bp->flash_info->page_size);
4196 }
4197
4198 /* Need to clear DONE bit separately. */
4199 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4200
4201 memcpy(&val32, val, 4);
4202
4203 /* Write the data. */
4204 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4205
4206 /* Address of the NVRAM to write to. */
4207 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4208
4209 /* Issue the write command. */
4210 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4211
4212 /* Wait for completion. */
4213 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4214 udelay(5);
4215
4216 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4217 break;
4218 }
4219 if (j >= NVRAM_TIMEOUT_COUNT)
4220 return -EBUSY;
4221
4222 return 0;
4223 }
4224
4225 static int
4226 bnx2_init_nvram(struct bnx2 *bp)
4227 {
4228 u32 val;
4229 int j, entry_count, rc = 0;
4230 struct flash_spec *flash;
4231
4232 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4233 bp->flash_info = &flash_5709;
4234 goto get_flash_size;
4235 }
4236
4237 /* Determine the selected interface. */
4238 val = REG_RD(bp, BNX2_NVM_CFG1);
4239
4240 entry_count = ARRAY_SIZE(flash_table);
4241
4242 if (val & 0x40000000) {
4243
4244 /* Flash interface has been reconfigured */
4245 for (j = 0, flash = &flash_table[0]; j < entry_count;
4246 j++, flash++) {
4247 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4248 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4249 bp->flash_info = flash;
4250 break;
4251 }
4252 }
4253 }
4254 else {
4255 u32 mask;
4256 /* Not yet been reconfigured */
4257
4258 if (val & (1 << 23))
4259 mask = FLASH_BACKUP_STRAP_MASK;
4260 else
4261 mask = FLASH_STRAP_MASK;
4262
4263 for (j = 0, flash = &flash_table[0]; j < entry_count;
4264 j++, flash++) {
4265
4266 if ((val & mask) == (flash->strapping & mask)) {
4267 bp->flash_info = flash;
4268
4269 /* Request access to the flash interface. */
4270 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4271 return rc;
4272
4273 /* Enable access to flash interface */
4274 bnx2_enable_nvram_access(bp);
4275
4276 /* Reconfigure the flash interface */
4277 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4278 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4279 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4280 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4281
4282 /* Disable access to flash interface */
4283 bnx2_disable_nvram_access(bp);
4284 bnx2_release_nvram_lock(bp);
4285
4286 break;
4287 }
4288 }
4289 } /* if (val & 0x40000000) */
4290
4291 if (j == entry_count) {
4292 bp->flash_info = NULL;
4293 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4294 return -ENODEV;
4295 }
4296
4297 get_flash_size:
4298 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4299 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4300 if (val)
4301 bp->flash_size = val;
4302 else
4303 bp->flash_size = bp->flash_info->total_size;
4304
4305 return rc;
4306 }
4307
4308 static int
4309 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4310 int buf_size)
4311 {
4312 int rc = 0;
4313 u32 cmd_flags, offset32, len32, extra;
4314
4315 if (buf_size == 0)
4316 return 0;
4317
4318 /* Request access to the flash interface. */
4319 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4320 return rc;
4321
4322 /* Enable access to flash interface */
4323 bnx2_enable_nvram_access(bp);
4324
4325 len32 = buf_size;
4326 offset32 = offset;
4327 extra = 0;
4328
4329 cmd_flags = 0;
4330
4331 if (offset32 & 3) {
4332 u8 buf[4];
4333 u32 pre_len;
4334
4335 offset32 &= ~3;
4336 pre_len = 4 - (offset & 3);
4337
4338 if (pre_len >= len32) {
4339 pre_len = len32;
4340 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4341 BNX2_NVM_COMMAND_LAST;
4342 }
4343 else {
4344 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4345 }
4346
4347 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4348
4349 if (rc)
4350 return rc;
4351
4352 memcpy(ret_buf, buf + (offset & 3), pre_len);
4353
4354 offset32 += 4;
4355 ret_buf += pre_len;
4356 len32 -= pre_len;
4357 }
4358 if (len32 & 3) {
4359 extra = 4 - (len32 & 3);
4360 len32 = (len32 + 4) & ~3;
4361 }
4362
4363 if (len32 == 4) {
4364 u8 buf[4];
4365
4366 if (cmd_flags)
4367 cmd_flags = BNX2_NVM_COMMAND_LAST;
4368 else
4369 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4370 BNX2_NVM_COMMAND_LAST;
4371
4372 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4373
4374 memcpy(ret_buf, buf, 4 - extra);
4375 }
4376 else if (len32 > 0) {
4377 u8 buf[4];
4378
4379 /* Read the first word. */
4380 if (cmd_flags)
4381 cmd_flags = 0;
4382 else
4383 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4384
4385 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4386
4387 /* Advance to the next dword. */
4388 offset32 += 4;
4389 ret_buf += 4;
4390 len32 -= 4;
4391
4392 while (len32 > 4 && rc == 0) {
4393 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4394
4395 /* Advance to the next dword. */
4396 offset32 += 4;
4397 ret_buf += 4;
4398 len32 -= 4;
4399 }
4400
4401 if (rc)
4402 return rc;
4403
4404 cmd_flags = BNX2_NVM_COMMAND_LAST;
4405 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4406
4407 memcpy(ret_buf, buf, 4 - extra);
4408 }
4409
4410 /* Disable access to flash interface */
4411 bnx2_disable_nvram_access(bp);
4412
4413 bnx2_release_nvram_lock(bp);
4414
4415 return rc;
4416 }
4417
4418 static int
4419 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4420 int buf_size)
4421 {
4422 u32 written, offset32, len32;
4423 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4424 int rc = 0;
4425 int align_start, align_end;
4426
4427 buf = data_buf;
4428 offset32 = offset;
4429 len32 = buf_size;
4430 align_start = align_end = 0;
4431
4432 if ((align_start = (offset32 & 3))) {
4433 offset32 &= ~3;
4434 len32 += align_start;
4435 if (len32 < 4)
4436 len32 = 4;
4437 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4438 return rc;
4439 }
4440
4441 if (len32 & 3) {
4442 align_end = 4 - (len32 & 3);
4443 len32 += align_end;
4444 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4445 return rc;
4446 }
4447
4448 if (align_start || align_end) {
4449 align_buf = kmalloc(len32, GFP_KERNEL);
4450 if (align_buf == NULL)
4451 return -ENOMEM;
4452 if (align_start) {
4453 memcpy(align_buf, start, 4);
4454 }
4455 if (align_end) {
4456 memcpy(align_buf + len32 - 4, end, 4);
4457 }
4458 memcpy(align_buf + align_start, data_buf, buf_size);
4459 buf = align_buf;
4460 }
4461
4462 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4463 flash_buffer = kmalloc(264, GFP_KERNEL);
4464 if (flash_buffer == NULL) {
4465 rc = -ENOMEM;
4466 goto nvram_write_end;
4467 }
4468 }
4469
4470 written = 0;
4471 while ((written < len32) && (rc == 0)) {
4472 u32 page_start, page_end, data_start, data_end;
4473 u32 addr, cmd_flags;
4474 int i;
4475
4476 /* Find the page_start addr */
4477 page_start = offset32 + written;
4478 page_start -= (page_start % bp->flash_info->page_size);
4479 /* Find the page_end addr */
4480 page_end = page_start + bp->flash_info->page_size;
4481 /* Find the data_start addr */
4482 data_start = (written == 0) ? offset32 : page_start;
4483 /* Find the data_end addr */
4484 data_end = (page_end > offset32 + len32) ?
4485 (offset32 + len32) : page_end;
4486
4487 /* Request access to the flash interface. */
4488 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4489 goto nvram_write_end;
4490
4491 /* Enable access to flash interface */
4492 bnx2_enable_nvram_access(bp);
4493
4494 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4495 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4496 int j;
4497
4498 /* Read the whole page into the buffer
4499 * (non-buffer flash only) */
4500 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4501 if (j == (bp->flash_info->page_size - 4)) {
4502 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4503 }
4504 rc = bnx2_nvram_read_dword(bp,
4505 page_start + j,
4506 &flash_buffer[j],
4507 cmd_flags);
4508
4509 if (rc)
4510 goto nvram_write_end;
4511
4512 cmd_flags = 0;
4513 }
4514 }
4515
4516 /* Enable writes to flash interface (unlock write-protect) */
4517 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4518 goto nvram_write_end;
4519
4520 /* Loop to write back the buffer data from page_start to
4521 * data_start */
4522 i = 0;
4523 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4524 /* Erase the page */
4525 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4526 goto nvram_write_end;
4527
4528 /* Re-enable the write again for the actual write */
4529 bnx2_enable_nvram_write(bp);
4530
4531 for (addr = page_start; addr < data_start;
4532 addr += 4, i += 4) {
4533
4534 rc = bnx2_nvram_write_dword(bp, addr,
4535 &flash_buffer[i], cmd_flags);
4536
4537 if (rc != 0)
4538 goto nvram_write_end;
4539
4540 cmd_flags = 0;
4541 }
4542 }
4543
4544 /* Loop to write the new data from data_start to data_end */
4545 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4546 if ((addr == page_end - 4) ||
4547 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4548 (addr == data_end - 4))) {
4549
4550 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4551 }
4552 rc = bnx2_nvram_write_dword(bp, addr, buf,
4553 cmd_flags);
4554
4555 if (rc != 0)
4556 goto nvram_write_end;
4557
4558 cmd_flags = 0;
4559 buf += 4;
4560 }
4561
4562 /* Loop to write back the buffer data from data_end
4563 * to page_end */
4564 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4565 for (addr = data_end; addr < page_end;
4566 addr += 4, i += 4) {
4567
4568 if (addr == page_end-4) {
4569 cmd_flags = BNX2_NVM_COMMAND_LAST;
4570 }
4571 rc = bnx2_nvram_write_dword(bp, addr,
4572 &flash_buffer[i], cmd_flags);
4573
4574 if (rc != 0)
4575 goto nvram_write_end;
4576
4577 cmd_flags = 0;
4578 }
4579 }
4580
4581 /* Disable writes to flash interface (lock write-protect) */
4582 bnx2_disable_nvram_write(bp);
4583
4584 /* Disable access to flash interface */
4585 bnx2_disable_nvram_access(bp);
4586 bnx2_release_nvram_lock(bp);
4587
4588 /* Increment written */
4589 written += data_end - data_start;
4590 }
4591
4592 nvram_write_end:
4593 kfree(flash_buffer);
4594 kfree(align_buf);
4595 return rc;
4596 }
4597
4598 static void
4599 bnx2_init_fw_cap(struct bnx2 *bp)
4600 {
4601 u32 val, sig = 0;
4602
4603 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4604 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4605
4606 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4607 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4608
4609 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4610 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4611 return;
4612
4613 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4614 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4615 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4616 }
4617
4618 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4619 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4620 u32 link;
4621
4622 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4623
4624 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4625 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4626 bp->phy_port = PORT_FIBRE;
4627 else
4628 bp->phy_port = PORT_TP;
4629
4630 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4631 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4632 }
4633
4634 if (netif_running(bp->dev) && sig)
4635 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4636 }
4637
4638 static void
4639 bnx2_setup_msix_tbl(struct bnx2 *bp)
4640 {
4641 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4642
4643 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4644 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4645 }
4646
4647 static int
4648 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4649 {
4650 u32 val;
4651 int i, rc = 0;
4652 u8 old_port;
4653
4654 /* Wait for the current PCI transaction to complete before
4655 * issuing a reset. */
4656 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4657 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4658 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4659 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4660 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4661 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4662 udelay(5);
4663
4664 /* Wait for the firmware to tell us it is ok to issue a reset. */
4665 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4666
4667 /* Deposit a driver reset signature so the firmware knows that
4668 * this is a soft reset. */
4669 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4670 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4671
4672 /* Do a dummy read to force the chip to complete all current transaction
4673 * before we issue a reset. */
4674 val = REG_RD(bp, BNX2_MISC_ID);
4675
4676 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4677 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4678 REG_RD(bp, BNX2_MISC_COMMAND);
4679 udelay(5);
4680
4681 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4682 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4683
4684 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4685
4686 } else {
4687 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4688 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4689 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4690
4691 /* Chip reset. */
4692 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4693
4694 /* Reading back any register after chip reset will hang the
4695 * bus on 5706 A0 and A1. The msleep below provides plenty
4696 * of margin for write posting.
4697 */
4698 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4699 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4700 msleep(20);
4701
4702 /* Reset takes approximate 30 usec */
4703 for (i = 0; i < 10; i++) {
4704 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4705 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4706 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4707 break;
4708 udelay(10);
4709 }
4710
4711 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4712 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4713 printk(KERN_ERR PFX "Chip reset did not complete\n");
4714 return -EBUSY;
4715 }
4716 }
4717
4718 /* Make sure byte swapping is properly configured. */
4719 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4720 if (val != 0x01020304) {
4721 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4722 return -ENODEV;
4723 }
4724
4725 /* Wait for the firmware to finish its initialization. */
4726 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4727 if (rc)
4728 return rc;
4729
4730 spin_lock_bh(&bp->phy_lock);
4731 old_port = bp->phy_port;
4732 bnx2_init_fw_cap(bp);
4733 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4734 old_port != bp->phy_port)
4735 bnx2_set_default_remote_link(bp);
4736 spin_unlock_bh(&bp->phy_lock);
4737
4738 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4739 /* Adjust the voltage regular to two steps lower. The default
4740 * of this register is 0x0000000e. */
4741 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4742
4743 /* Remove bad rbuf memory from the free pool. */
4744 rc = bnx2_alloc_bad_rbuf(bp);
4745 }
4746
4747 if (bp->flags & BNX2_FLAG_USING_MSIX)
4748 bnx2_setup_msix_tbl(bp);
4749
4750 return rc;
4751 }
4752
4753 static int
4754 bnx2_init_chip(struct bnx2 *bp)
4755 {
4756 u32 val, mtu;
4757 int rc, i;
4758
4759 /* Make sure the interrupt is not active. */
4760 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4761
4762 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4763 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4764 #ifdef __BIG_ENDIAN
4765 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4766 #endif
4767 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4768 DMA_READ_CHANS << 12 |
4769 DMA_WRITE_CHANS << 16;
4770
4771 val |= (0x2 << 20) | (1 << 11);
4772
4773 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4774 val |= (1 << 23);
4775
4776 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4777 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4778 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4779
4780 REG_WR(bp, BNX2_DMA_CONFIG, val);
4781
4782 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4783 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4784 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4785 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4786 }
4787
4788 if (bp->flags & BNX2_FLAG_PCIX) {
4789 u16 val16;
4790
4791 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4792 &val16);
4793 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4794 val16 & ~PCI_X_CMD_ERO);
4795 }
4796
4797 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4798 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4799 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4800 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4801
4802 /* Initialize context mapping and zero out the quick contexts. The
4803 * context block must have already been enabled. */
4804 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4805 rc = bnx2_init_5709_context(bp);
4806 if (rc)
4807 return rc;
4808 } else
4809 bnx2_init_context(bp);
4810
4811 if ((rc = bnx2_init_cpus(bp)) != 0)
4812 return rc;
4813
4814 bnx2_init_nvram(bp);
4815
4816 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4817
4818 val = REG_RD(bp, BNX2_MQ_CONFIG);
4819 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4820 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4821 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4822 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4823 if (CHIP_REV(bp) == CHIP_REV_Ax)
4824 val |= BNX2_MQ_CONFIG_HALT_DIS;
4825 }
4826
4827 REG_WR(bp, BNX2_MQ_CONFIG, val);
4828
4829 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4830 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4831 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4832
4833 val = (BCM_PAGE_BITS - 8) << 24;
4834 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4835
4836 /* Configure page size. */
4837 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4838 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4839 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4840 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4841
4842 val = bp->mac_addr[0] +
4843 (bp->mac_addr[1] << 8) +
4844 (bp->mac_addr[2] << 16) +
4845 bp->mac_addr[3] +
4846 (bp->mac_addr[4] << 8) +
4847 (bp->mac_addr[5] << 16);
4848 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4849
4850 /* Program the MTU. Also include 4 bytes for CRC32. */
4851 mtu = bp->dev->mtu;
4852 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4853 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4854 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4855 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4856
4857 if (mtu < 1500)
4858 mtu = 1500;
4859
4860 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4861 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4862 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4863
4864 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4865 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4866 bp->bnx2_napi[i].last_status_idx = 0;
4867
4868 bp->idle_chk_status_idx = 0xffff;
4869
4870 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4871
4872 /* Set up how to generate a link change interrupt. */
4873 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4874
4875 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4876 (u64) bp->status_blk_mapping & 0xffffffff);
4877 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4878
4879 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4880 (u64) bp->stats_blk_mapping & 0xffffffff);
4881 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4882 (u64) bp->stats_blk_mapping >> 32);
4883
4884 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4885 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4886
4887 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4888 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4889
4890 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4891 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4892
4893 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4894
4895 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4896
4897 REG_WR(bp, BNX2_HC_COM_TICKS,
4898 (bp->com_ticks_int << 16) | bp->com_ticks);
4899
4900 REG_WR(bp, BNX2_HC_CMD_TICKS,
4901 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4902
4903 if (bp->flags & BNX2_FLAG_BROKEN_STATS)
4904 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4905 else
4906 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4907 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4908
4909 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4910 val = BNX2_HC_CONFIG_COLLECT_STATS;
4911 else {
4912 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4913 BNX2_HC_CONFIG_COLLECT_STATS;
4914 }
4915
4916 if (bp->irq_nvecs > 1) {
4917 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4918 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4919
4920 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4921 }
4922
4923 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4924 val |= BNX2_HC_CONFIG_ONE_SHOT;
4925
4926 REG_WR(bp, BNX2_HC_CONFIG, val);
4927
4928 for (i = 1; i < bp->irq_nvecs; i++) {
4929 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4930 BNX2_HC_SB_CONFIG_1;
4931
4932 REG_WR(bp, base,
4933 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4934 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4935 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4936
4937 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4938 (bp->tx_quick_cons_trip_int << 16) |
4939 bp->tx_quick_cons_trip);
4940
4941 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4942 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4943
4944 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4945 (bp->rx_quick_cons_trip_int << 16) |
4946 bp->rx_quick_cons_trip);
4947
4948 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4949 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4950 }
4951
4952 /* Clear internal stats counters. */
4953 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4954
4955 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4956
4957 /* Initialize the receive filter. */
4958 bnx2_set_rx_mode(bp->dev);
4959
4960 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4961 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4962 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4963 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4964 }
4965 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4966 1, 0);
4967
4968 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4969 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4970
4971 udelay(20);
4972
4973 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4974
4975 return rc;
4976 }
4977
4978 static void
4979 bnx2_clear_ring_states(struct bnx2 *bp)
4980 {
4981 struct bnx2_napi *bnapi;
4982 struct bnx2_tx_ring_info *txr;
4983 struct bnx2_rx_ring_info *rxr;
4984 int i;
4985
4986 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4987 bnapi = &bp->bnx2_napi[i];
4988 txr = &bnapi->tx_ring;
4989 rxr = &bnapi->rx_ring;
4990
4991 txr->tx_cons = 0;
4992 txr->hw_tx_cons = 0;
4993 rxr->rx_prod_bseq = 0;
4994 rxr->rx_prod = 0;
4995 rxr->rx_cons = 0;
4996 rxr->rx_pg_prod = 0;
4997 rxr->rx_pg_cons = 0;
4998 }
4999 }
5000
5001 static void
5002 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5003 {
5004 u32 val, offset0, offset1, offset2, offset3;
5005 u32 cid_addr = GET_CID_ADDR(cid);
5006
5007 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5008 offset0 = BNX2_L2CTX_TYPE_XI;
5009 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5010 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5011 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5012 } else {
5013 offset0 = BNX2_L2CTX_TYPE;
5014 offset1 = BNX2_L2CTX_CMD_TYPE;
5015 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5016 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5017 }
5018 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5019 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5020
5021 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5022 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5023
5024 val = (u64) txr->tx_desc_mapping >> 32;
5025 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5026
5027 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5028 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5029 }
5030
5031 static void
5032 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5033 {
5034 struct tx_bd *txbd;
5035 u32 cid = TX_CID;
5036 struct bnx2_napi *bnapi;
5037 struct bnx2_tx_ring_info *txr;
5038
5039 bnapi = &bp->bnx2_napi[ring_num];
5040 txr = &bnapi->tx_ring;
5041
5042 if (ring_num == 0)
5043 cid = TX_CID;
5044 else
5045 cid = TX_TSS_CID + ring_num - 1;
5046
5047 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5048
5049 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5050
5051 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5052 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5053
5054 txr->tx_prod = 0;
5055 txr->tx_prod_bseq = 0;
5056
5057 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5058 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5059
5060 bnx2_init_tx_context(bp, cid, txr);
5061 }
5062
5063 static void
5064 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5065 int num_rings)
5066 {
5067 int i;
5068 struct rx_bd *rxbd;
5069
5070 for (i = 0; i < num_rings; i++) {
5071 int j;
5072
5073 rxbd = &rx_ring[i][0];
5074 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5075 rxbd->rx_bd_len = buf_size;
5076 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5077 }
5078 if (i == (num_rings - 1))
5079 j = 0;
5080 else
5081 j = i + 1;
5082 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5083 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5084 }
5085 }
5086
5087 static void
5088 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5089 {
5090 int i;
5091 u16 prod, ring_prod;
5092 u32 cid, rx_cid_addr, val;
5093 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5094 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5095
5096 if (ring_num == 0)
5097 cid = RX_CID;
5098 else
5099 cid = RX_RSS_CID + ring_num - 1;
5100
5101 rx_cid_addr = GET_CID_ADDR(cid);
5102
5103 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5104 bp->rx_buf_use_size, bp->rx_max_ring);
5105
5106 bnx2_init_rx_context(bp, cid);
5107
5108 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5109 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5110 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5111 }
5112
5113 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5114 if (bp->rx_pg_ring_size) {
5115 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5116 rxr->rx_pg_desc_mapping,
5117 PAGE_SIZE, bp->rx_max_pg_ring);
5118 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5119 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5120 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5121 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5122
5123 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5124 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5125
5126 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5127 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5128
5129 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5130 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5131 }
5132
5133 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5134 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5135
5136 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5137 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5138
5139 ring_prod = prod = rxr->rx_pg_prod;
5140 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5141 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5142 break;
5143 prod = NEXT_RX_BD(prod);
5144 ring_prod = RX_PG_RING_IDX(prod);
5145 }
5146 rxr->rx_pg_prod = prod;
5147
5148 ring_prod = prod = rxr->rx_prod;
5149 for (i = 0; i < bp->rx_ring_size; i++) {
5150 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5151 break;
5152 prod = NEXT_RX_BD(prod);
5153 ring_prod = RX_RING_IDX(prod);
5154 }
5155 rxr->rx_prod = prod;
5156
5157 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5158 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5159 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5160
5161 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5162 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5163
5164 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5165 }
5166
5167 static void
5168 bnx2_init_all_rings(struct bnx2 *bp)
5169 {
5170 int i;
5171 u32 val;
5172
5173 bnx2_clear_ring_states(bp);
5174
5175 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5176 for (i = 0; i < bp->num_tx_rings; i++)
5177 bnx2_init_tx_ring(bp, i);
5178
5179 if (bp->num_tx_rings > 1)
5180 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5181 (TX_TSS_CID << 7));
5182
5183 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5184 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5185
5186 for (i = 0; i < bp->num_rx_rings; i++)
5187 bnx2_init_rx_ring(bp, i);
5188
5189 if (bp->num_rx_rings > 1) {
5190 u32 tbl_32;
5191 u8 *tbl = (u8 *) &tbl_32;
5192
5193 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5194 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5195
5196 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5197 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5198 if ((i % 4) == 3)
5199 bnx2_reg_wr_ind(bp,
5200 BNX2_RXP_SCRATCH_RSS_TBL + i,
5201 cpu_to_be32(tbl_32));
5202 }
5203
5204 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5205 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5206
5207 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5208
5209 }
5210 }
5211
5212 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5213 {
5214 u32 max, num_rings = 1;
5215
5216 while (ring_size > MAX_RX_DESC_CNT) {
5217 ring_size -= MAX_RX_DESC_CNT;
5218 num_rings++;
5219 }
5220 /* round to next power of 2 */
5221 max = max_size;
5222 while ((max & num_rings) == 0)
5223 max >>= 1;
5224
5225 if (num_rings != max)
5226 max <<= 1;
5227
5228 return max;
5229 }
5230
5231 static void
5232 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5233 {
5234 u32 rx_size, rx_space, jumbo_size;
5235
5236 /* 8 for CRC and VLAN */
5237 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5238
5239 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5240 sizeof(struct skb_shared_info);
5241
5242 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5243 bp->rx_pg_ring_size = 0;
5244 bp->rx_max_pg_ring = 0;
5245 bp->rx_max_pg_ring_idx = 0;
5246 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5247 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5248
5249 jumbo_size = size * pages;
5250 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5251 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5252
5253 bp->rx_pg_ring_size = jumbo_size;
5254 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5255 MAX_RX_PG_RINGS);
5256 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5257 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5258 bp->rx_copy_thresh = 0;
5259 }
5260
5261 bp->rx_buf_use_size = rx_size;
5262 /* hw alignment */
5263 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5264 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5265 bp->rx_ring_size = size;
5266 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5267 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5268 }
5269
5270 static void
5271 bnx2_free_tx_skbs(struct bnx2 *bp)
5272 {
5273 int i;
5274
5275 for (i = 0; i < bp->num_tx_rings; i++) {
5276 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5277 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5278 int j;
5279
5280 if (txr->tx_buf_ring == NULL)
5281 continue;
5282
5283 for (j = 0; j < TX_DESC_CNT; ) {
5284 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5285 struct sk_buff *skb = tx_buf->skb;
5286
5287 if (skb == NULL) {
5288 j++;
5289 continue;
5290 }
5291
5292 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5293
5294 tx_buf->skb = NULL;
5295
5296 j += skb_shinfo(skb)->nr_frags + 1;
5297 dev_kfree_skb(skb);
5298 }
5299 }
5300 }
5301
5302 static void
5303 bnx2_free_rx_skbs(struct bnx2 *bp)
5304 {
5305 int i;
5306
5307 for (i = 0; i < bp->num_rx_rings; i++) {
5308 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5309 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5310 int j;
5311
5312 if (rxr->rx_buf_ring == NULL)
5313 return;
5314
5315 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5316 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5317 struct sk_buff *skb = rx_buf->skb;
5318
5319 if (skb == NULL)
5320 continue;
5321
5322 pci_unmap_single(bp->pdev,
5323 pci_unmap_addr(rx_buf, mapping),
5324 bp->rx_buf_use_size,
5325 PCI_DMA_FROMDEVICE);
5326
5327 rx_buf->skb = NULL;
5328
5329 dev_kfree_skb(skb);
5330 }
5331 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5332 bnx2_free_rx_page(bp, rxr, j);
5333 }
5334 }
5335
5336 static void
5337 bnx2_free_skbs(struct bnx2 *bp)
5338 {
5339 bnx2_free_tx_skbs(bp);
5340 bnx2_free_rx_skbs(bp);
5341 }
5342
5343 static int
5344 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5345 {
5346 int rc;
5347
5348 rc = bnx2_reset_chip(bp, reset_code);
5349 bnx2_free_skbs(bp);
5350 if (rc)
5351 return rc;
5352
5353 if ((rc = bnx2_init_chip(bp)) != 0)
5354 return rc;
5355
5356 bnx2_init_all_rings(bp);
5357 return 0;
5358 }
5359
5360 static int
5361 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5362 {
5363 int rc;
5364
5365 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5366 return rc;
5367
5368 spin_lock_bh(&bp->phy_lock);
5369 bnx2_init_phy(bp, reset_phy);
5370 bnx2_set_link(bp);
5371 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5372 bnx2_remote_phy_event(bp);
5373 spin_unlock_bh(&bp->phy_lock);
5374 return 0;
5375 }
5376
5377 static int
5378 bnx2_shutdown_chip(struct bnx2 *bp)
5379 {
5380 u32 reset_code;
5381
5382 if (bp->flags & BNX2_FLAG_NO_WOL)
5383 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5384 else if (bp->wol)
5385 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5386 else
5387 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5388
5389 return bnx2_reset_chip(bp, reset_code);
5390 }
5391
5392 static int
5393 bnx2_test_registers(struct bnx2 *bp)
5394 {
5395 int ret;
5396 int i, is_5709;
5397 static const struct {
5398 u16 offset;
5399 u16 flags;
5400 #define BNX2_FL_NOT_5709 1
5401 u32 rw_mask;
5402 u32 ro_mask;
5403 } reg_tbl[] = {
5404 { 0x006c, 0, 0x00000000, 0x0000003f },
5405 { 0x0090, 0, 0xffffffff, 0x00000000 },
5406 { 0x0094, 0, 0x00000000, 0x00000000 },
5407
5408 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5409 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5410 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5411 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5412 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5413 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5414 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5415 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5416 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5417
5418 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5419 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5420 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5421 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5422 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5423 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5424
5425 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5426 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5427 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5428
5429 { 0x1000, 0, 0x00000000, 0x00000001 },
5430 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5431
5432 { 0x1408, 0, 0x01c00800, 0x00000000 },
5433 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5434 { 0x14a8, 0, 0x00000000, 0x000001ff },
5435 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5436 { 0x14b0, 0, 0x00000002, 0x00000001 },
5437 { 0x14b8, 0, 0x00000000, 0x00000000 },
5438 { 0x14c0, 0, 0x00000000, 0x00000009 },
5439 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5440 { 0x14cc, 0, 0x00000000, 0x00000001 },
5441 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5442
5443 { 0x1800, 0, 0x00000000, 0x00000001 },
5444 { 0x1804, 0, 0x00000000, 0x00000003 },
5445
5446 { 0x2800, 0, 0x00000000, 0x00000001 },
5447 { 0x2804, 0, 0x00000000, 0x00003f01 },
5448 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5449 { 0x2810, 0, 0xffff0000, 0x00000000 },
5450 { 0x2814, 0, 0xffff0000, 0x00000000 },
5451 { 0x2818, 0, 0xffff0000, 0x00000000 },
5452 { 0x281c, 0, 0xffff0000, 0x00000000 },
5453 { 0x2834, 0, 0xffffffff, 0x00000000 },
5454 { 0x2840, 0, 0x00000000, 0xffffffff },
5455 { 0x2844, 0, 0x00000000, 0xffffffff },
5456 { 0x2848, 0, 0xffffffff, 0x00000000 },
5457 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5458
5459 { 0x2c00, 0, 0x00000000, 0x00000011 },
5460 { 0x2c04, 0, 0x00000000, 0x00030007 },
5461
5462 { 0x3c00, 0, 0x00000000, 0x00000001 },
5463 { 0x3c04, 0, 0x00000000, 0x00070000 },
5464 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5465 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5466 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5467 { 0x3c14, 0, 0x00000000, 0xffffffff },
5468 { 0x3c18, 0, 0x00000000, 0xffffffff },
5469 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5470 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5471
5472 { 0x5004, 0, 0x00000000, 0x0000007f },
5473 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5474
5475 { 0x5c00, 0, 0x00000000, 0x00000001 },
5476 { 0x5c04, 0, 0x00000000, 0x0003000f },
5477 { 0x5c08, 0, 0x00000003, 0x00000000 },
5478 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5479 { 0x5c10, 0, 0x00000000, 0xffffffff },
5480 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5481 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5482 { 0x5c88, 0, 0x00000000, 0x00077373 },
5483 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5484
5485 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5486 { 0x680c, 0, 0xffffffff, 0x00000000 },
5487 { 0x6810, 0, 0xffffffff, 0x00000000 },
5488 { 0x6814, 0, 0xffffffff, 0x00000000 },
5489 { 0x6818, 0, 0xffffffff, 0x00000000 },
5490 { 0x681c, 0, 0xffffffff, 0x00000000 },
5491 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5492 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5493 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5494 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5495 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5496 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5497 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5498 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5499 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5500 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5501 { 0x684c, 0, 0xffffffff, 0x00000000 },
5502 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5503 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5504 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5505 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5506 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5507 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5508
5509 { 0xffff, 0, 0x00000000, 0x00000000 },
5510 };
5511
5512 ret = 0;
5513 is_5709 = 0;
5514 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5515 is_5709 = 1;
5516
5517 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5518 u32 offset, rw_mask, ro_mask, save_val, val;
5519 u16 flags = reg_tbl[i].flags;
5520
5521 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5522 continue;
5523
5524 offset = (u32) reg_tbl[i].offset;
5525 rw_mask = reg_tbl[i].rw_mask;
5526 ro_mask = reg_tbl[i].ro_mask;
5527
5528 save_val = readl(bp->regview + offset);
5529
5530 writel(0, bp->regview + offset);
5531
5532 val = readl(bp->regview + offset);
5533 if ((val & rw_mask) != 0) {
5534 goto reg_test_err;
5535 }
5536
5537 if ((val & ro_mask) != (save_val & ro_mask)) {
5538 goto reg_test_err;
5539 }
5540
5541 writel(0xffffffff, bp->regview + offset);
5542
5543 val = readl(bp->regview + offset);
5544 if ((val & rw_mask) != rw_mask) {
5545 goto reg_test_err;
5546 }
5547
5548 if ((val & ro_mask) != (save_val & ro_mask)) {
5549 goto reg_test_err;
5550 }
5551
5552 writel(save_val, bp->regview + offset);
5553 continue;
5554
5555 reg_test_err:
5556 writel(save_val, bp->regview + offset);
5557 ret = -ENODEV;
5558 break;
5559 }
5560 return ret;
5561 }
5562
5563 static int
5564 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5565 {
5566 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5567 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5568 int i;
5569
5570 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5571 u32 offset;
5572
5573 for (offset = 0; offset < size; offset += 4) {
5574
5575 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5576
5577 if (bnx2_reg_rd_ind(bp, start + offset) !=
5578 test_pattern[i]) {
5579 return -ENODEV;
5580 }
5581 }
5582 }
5583 return 0;
5584 }
5585
5586 static int
5587 bnx2_test_memory(struct bnx2 *bp)
5588 {
5589 int ret = 0;
5590 int i;
5591 static struct mem_entry {
5592 u32 offset;
5593 u32 len;
5594 } mem_tbl_5706[] = {
5595 { 0x60000, 0x4000 },
5596 { 0xa0000, 0x3000 },
5597 { 0xe0000, 0x4000 },
5598 { 0x120000, 0x4000 },
5599 { 0x1a0000, 0x4000 },
5600 { 0x160000, 0x4000 },
5601 { 0xffffffff, 0 },
5602 },
5603 mem_tbl_5709[] = {
5604 { 0x60000, 0x4000 },
5605 { 0xa0000, 0x3000 },
5606 { 0xe0000, 0x4000 },
5607 { 0x120000, 0x4000 },
5608 { 0x1a0000, 0x4000 },
5609 { 0xffffffff, 0 },
5610 };
5611 struct mem_entry *mem_tbl;
5612
5613 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5614 mem_tbl = mem_tbl_5709;
5615 else
5616 mem_tbl = mem_tbl_5706;
5617
5618 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5619 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5620 mem_tbl[i].len)) != 0) {
5621 return ret;
5622 }
5623 }
5624
5625 return ret;
5626 }
5627
5628 #define BNX2_MAC_LOOPBACK 0
5629 #define BNX2_PHY_LOOPBACK 1
5630
5631 static int
5632 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5633 {
5634 unsigned int pkt_size, num_pkts, i;
5635 struct sk_buff *skb, *rx_skb;
5636 unsigned char *packet;
5637 u16 rx_start_idx, rx_idx;
5638 dma_addr_t map;
5639 struct tx_bd *txbd;
5640 struct sw_bd *rx_buf;
5641 struct l2_fhdr *rx_hdr;
5642 int ret = -ENODEV;
5643 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5644 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5645 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5646
5647 tx_napi = bnapi;
5648
5649 txr = &tx_napi->tx_ring;
5650 rxr = &bnapi->rx_ring;
5651 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5652 bp->loopback = MAC_LOOPBACK;
5653 bnx2_set_mac_loopback(bp);
5654 }
5655 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5656 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5657 return 0;
5658
5659 bp->loopback = PHY_LOOPBACK;
5660 bnx2_set_phy_loopback(bp);
5661 }
5662 else
5663 return -EINVAL;
5664
5665 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5666 skb = netdev_alloc_skb(bp->dev, pkt_size);
5667 if (!skb)
5668 return -ENOMEM;
5669 packet = skb_put(skb, pkt_size);
5670 memcpy(packet, bp->dev->dev_addr, 6);
5671 memset(packet + 6, 0x0, 8);
5672 for (i = 14; i < pkt_size; i++)
5673 packet[i] = (unsigned char) (i & 0xff);
5674
5675 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5676 dev_kfree_skb(skb);
5677 return -EIO;
5678 }
5679 map = skb_shinfo(skb)->dma_head;
5680
5681 REG_WR(bp, BNX2_HC_COMMAND,
5682 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5683
5684 REG_RD(bp, BNX2_HC_COMMAND);
5685
5686 udelay(5);
5687 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5688
5689 num_pkts = 0;
5690
5691 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5692
5693 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5694 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5695 txbd->tx_bd_mss_nbytes = pkt_size;
5696 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5697
5698 num_pkts++;
5699 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5700 txr->tx_prod_bseq += pkt_size;
5701
5702 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5703 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5704
5705 udelay(100);
5706
5707 REG_WR(bp, BNX2_HC_COMMAND,
5708 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5709
5710 REG_RD(bp, BNX2_HC_COMMAND);
5711
5712 udelay(5);
5713
5714 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5715 dev_kfree_skb(skb);
5716
5717 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5718 goto loopback_test_done;
5719
5720 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5721 if (rx_idx != rx_start_idx + num_pkts) {
5722 goto loopback_test_done;
5723 }
5724
5725 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5726 rx_skb = rx_buf->skb;
5727
5728 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5729 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5730
5731 pci_dma_sync_single_for_cpu(bp->pdev,
5732 pci_unmap_addr(rx_buf, mapping),
5733 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5734
5735 if (rx_hdr->l2_fhdr_status &
5736 (L2_FHDR_ERRORS_BAD_CRC |
5737 L2_FHDR_ERRORS_PHY_DECODE |
5738 L2_FHDR_ERRORS_ALIGNMENT |
5739 L2_FHDR_ERRORS_TOO_SHORT |
5740 L2_FHDR_ERRORS_GIANT_FRAME)) {
5741
5742 goto loopback_test_done;
5743 }
5744
5745 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5746 goto loopback_test_done;
5747 }
5748
5749 for (i = 14; i < pkt_size; i++) {
5750 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5751 goto loopback_test_done;
5752 }
5753 }
5754
5755 ret = 0;
5756
5757 loopback_test_done:
5758 bp->loopback = 0;
5759 return ret;
5760 }
5761
5762 #define BNX2_MAC_LOOPBACK_FAILED 1
5763 #define BNX2_PHY_LOOPBACK_FAILED 2
5764 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5765 BNX2_PHY_LOOPBACK_FAILED)
5766
5767 static int
5768 bnx2_test_loopback(struct bnx2 *bp)
5769 {
5770 int rc = 0;
5771
5772 if (!netif_running(bp->dev))
5773 return BNX2_LOOPBACK_FAILED;
5774
5775 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5776 spin_lock_bh(&bp->phy_lock);
5777 bnx2_init_phy(bp, 1);
5778 spin_unlock_bh(&bp->phy_lock);
5779 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5780 rc |= BNX2_MAC_LOOPBACK_FAILED;
5781 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5782 rc |= BNX2_PHY_LOOPBACK_FAILED;
5783 return rc;
5784 }
5785
5786 #define NVRAM_SIZE 0x200
5787 #define CRC32_RESIDUAL 0xdebb20e3
5788
5789 static int
5790 bnx2_test_nvram(struct bnx2 *bp)
5791 {
5792 __be32 buf[NVRAM_SIZE / 4];
5793 u8 *data = (u8 *) buf;
5794 int rc = 0;
5795 u32 magic, csum;
5796
5797 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5798 goto test_nvram_done;
5799
5800 magic = be32_to_cpu(buf[0]);
5801 if (magic != 0x669955aa) {
5802 rc = -ENODEV;
5803 goto test_nvram_done;
5804 }
5805
5806 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5807 goto test_nvram_done;
5808
5809 csum = ether_crc_le(0x100, data);
5810 if (csum != CRC32_RESIDUAL) {
5811 rc = -ENODEV;
5812 goto test_nvram_done;
5813 }
5814
5815 csum = ether_crc_le(0x100, data + 0x100);
5816 if (csum != CRC32_RESIDUAL) {
5817 rc = -ENODEV;
5818 }
5819
5820 test_nvram_done:
5821 return rc;
5822 }
5823
5824 static int
5825 bnx2_test_link(struct bnx2 *bp)
5826 {
5827 u32 bmsr;
5828
5829 if (!netif_running(bp->dev))
5830 return -ENODEV;
5831
5832 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5833 if (bp->link_up)
5834 return 0;
5835 return -ENODEV;
5836 }
5837 spin_lock_bh(&bp->phy_lock);
5838 bnx2_enable_bmsr1(bp);
5839 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5840 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5841 bnx2_disable_bmsr1(bp);
5842 spin_unlock_bh(&bp->phy_lock);
5843
5844 if (bmsr & BMSR_LSTATUS) {
5845 return 0;
5846 }
5847 return -ENODEV;
5848 }
5849
5850 static int
5851 bnx2_test_intr(struct bnx2 *bp)
5852 {
5853 int i;
5854 u16 status_idx;
5855
5856 if (!netif_running(bp->dev))
5857 return -ENODEV;
5858
5859 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5860
5861 /* This register is not touched during run-time. */
5862 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5863 REG_RD(bp, BNX2_HC_COMMAND);
5864
5865 for (i = 0; i < 10; i++) {
5866 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5867 status_idx) {
5868
5869 break;
5870 }
5871
5872 msleep_interruptible(10);
5873 }
5874 if (i < 10)
5875 return 0;
5876
5877 return -ENODEV;
5878 }
5879
5880 /* Determining link for parallel detection. */
5881 static int
5882 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5883 {
5884 u32 mode_ctl, an_dbg, exp;
5885
5886 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5887 return 0;
5888
5889 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5890 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5891
5892 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5893 return 0;
5894
5895 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5896 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5897 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5898
5899 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5900 return 0;
5901
5902 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5903 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5904 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5905
5906 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5907 return 0;
5908
5909 return 1;
5910 }
5911
5912 static void
5913 bnx2_5706_serdes_timer(struct bnx2 *bp)
5914 {
5915 int check_link = 1;
5916
5917 spin_lock(&bp->phy_lock);
5918 if (bp->serdes_an_pending) {
5919 bp->serdes_an_pending--;
5920 check_link = 0;
5921 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5922 u32 bmcr;
5923
5924 bp->current_interval = BNX2_TIMER_INTERVAL;
5925
5926 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5927
5928 if (bmcr & BMCR_ANENABLE) {
5929 if (bnx2_5706_serdes_has_link(bp)) {
5930 bmcr &= ~BMCR_ANENABLE;
5931 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5932 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5933 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5934 }
5935 }
5936 }
5937 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5938 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5939 u32 phy2;
5940
5941 bnx2_write_phy(bp, 0x17, 0x0f01);
5942 bnx2_read_phy(bp, 0x15, &phy2);
5943 if (phy2 & 0x20) {
5944 u32 bmcr;
5945
5946 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5947 bmcr |= BMCR_ANENABLE;
5948 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5949
5950 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5951 }
5952 } else
5953 bp->current_interval = BNX2_TIMER_INTERVAL;
5954
5955 if (check_link) {
5956 u32 val;
5957
5958 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5959 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5960 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5961
5962 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5963 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5964 bnx2_5706s_force_link_dn(bp, 1);
5965 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5966 } else
5967 bnx2_set_link(bp);
5968 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5969 bnx2_set_link(bp);
5970 }
5971 spin_unlock(&bp->phy_lock);
5972 }
5973
5974 static void
5975 bnx2_5708_serdes_timer(struct bnx2 *bp)
5976 {
5977 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5978 return;
5979
5980 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5981 bp->serdes_an_pending = 0;
5982 return;
5983 }
5984
5985 spin_lock(&bp->phy_lock);
5986 if (bp->serdes_an_pending)
5987 bp->serdes_an_pending--;
5988 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5989 u32 bmcr;
5990
5991 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5992 if (bmcr & BMCR_ANENABLE) {
5993 bnx2_enable_forced_2g5(bp);
5994 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
5995 } else {
5996 bnx2_disable_forced_2g5(bp);
5997 bp->serdes_an_pending = 2;
5998 bp->current_interval = BNX2_TIMER_INTERVAL;
5999 }
6000
6001 } else
6002 bp->current_interval = BNX2_TIMER_INTERVAL;
6003
6004 spin_unlock(&bp->phy_lock);
6005 }
6006
6007 static void
6008 bnx2_timer(unsigned long data)
6009 {
6010 struct bnx2 *bp = (struct bnx2 *) data;
6011
6012 if (!netif_running(bp->dev))
6013 return;
6014
6015 if (atomic_read(&bp->intr_sem) != 0)
6016 goto bnx2_restart_timer;
6017
6018 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6019 BNX2_FLAG_USING_MSI)
6020 bnx2_chk_missed_msi(bp);
6021
6022 bnx2_send_heart_beat(bp);
6023
6024 bp->stats_blk->stat_FwRxDrop =
6025 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6026
6027 /* workaround occasional corrupted counters */
6028 if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
6029 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6030 BNX2_HC_COMMAND_STATS_NOW);
6031
6032 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6033 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6034 bnx2_5706_serdes_timer(bp);
6035 else
6036 bnx2_5708_serdes_timer(bp);
6037 }
6038
6039 bnx2_restart_timer:
6040 mod_timer(&bp->timer, jiffies + bp->current_interval);
6041 }
6042
6043 static int
6044 bnx2_request_irq(struct bnx2 *bp)
6045 {
6046 unsigned long flags;
6047 struct bnx2_irq *irq;
6048 int rc = 0, i;
6049
6050 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6051 flags = 0;
6052 else
6053 flags = IRQF_SHARED;
6054
6055 for (i = 0; i < bp->irq_nvecs; i++) {
6056 irq = &bp->irq_tbl[i];
6057 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6058 &bp->bnx2_napi[i]);
6059 if (rc)
6060 break;
6061 irq->requested = 1;
6062 }
6063 return rc;
6064 }
6065
6066 static void
6067 bnx2_free_irq(struct bnx2 *bp)
6068 {
6069 struct bnx2_irq *irq;
6070 int i;
6071
6072 for (i = 0; i < bp->irq_nvecs; i++) {
6073 irq = &bp->irq_tbl[i];
6074 if (irq->requested)
6075 free_irq(irq->vector, &bp->bnx2_napi[i]);
6076 irq->requested = 0;
6077 }
6078 if (bp->flags & BNX2_FLAG_USING_MSI)
6079 pci_disable_msi(bp->pdev);
6080 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6081 pci_disable_msix(bp->pdev);
6082
6083 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6084 }
6085
6086 static void
6087 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6088 {
6089 int i, rc;
6090 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6091 struct net_device *dev = bp->dev;
6092 const int len = sizeof(bp->irq_tbl[0].name);
6093
6094 bnx2_setup_msix_tbl(bp);
6095 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6096 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6097 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6098
6099 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6100 msix_ent[i].entry = i;
6101 msix_ent[i].vector = 0;
6102 }
6103
6104 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6105 if (rc != 0)
6106 return;
6107
6108 bp->irq_nvecs = msix_vecs;
6109 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6110 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6111 bp->irq_tbl[i].vector = msix_ent[i].vector;
6112 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6113 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6114 }
6115 }
6116
6117 static void
6118 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6119 {
6120 int cpus = num_online_cpus();
6121 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6122
6123 bp->irq_tbl[0].handler = bnx2_interrupt;
6124 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6125 bp->irq_nvecs = 1;
6126 bp->irq_tbl[0].vector = bp->pdev->irq;
6127
6128 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6129 bnx2_enable_msix(bp, msix_vecs);
6130
6131 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6132 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6133 if (pci_enable_msi(bp->pdev) == 0) {
6134 bp->flags |= BNX2_FLAG_USING_MSI;
6135 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6136 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6137 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6138 } else
6139 bp->irq_tbl[0].handler = bnx2_msi;
6140
6141 bp->irq_tbl[0].vector = bp->pdev->irq;
6142 }
6143 }
6144
6145 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6146 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6147
6148 bp->num_rx_rings = bp->irq_nvecs;
6149 }
6150
6151 /* Called with rtnl_lock */
6152 static int
6153 bnx2_open(struct net_device *dev)
6154 {
6155 struct bnx2 *bp = netdev_priv(dev);
6156 int rc;
6157
6158 netif_carrier_off(dev);
6159
6160 bnx2_set_power_state(bp, PCI_D0);
6161 bnx2_disable_int(bp);
6162
6163 bnx2_setup_int_mode(bp, disable_msi);
6164 bnx2_napi_enable(bp);
6165 rc = bnx2_alloc_mem(bp);
6166 if (rc)
6167 goto open_err;
6168
6169 rc = bnx2_request_irq(bp);
6170 if (rc)
6171 goto open_err;
6172
6173 rc = bnx2_init_nic(bp, 1);
6174 if (rc)
6175 goto open_err;
6176
6177 mod_timer(&bp->timer, jiffies + bp->current_interval);
6178
6179 atomic_set(&bp->intr_sem, 0);
6180
6181 bnx2_enable_int(bp);
6182
6183 if (bp->flags & BNX2_FLAG_USING_MSI) {
6184 /* Test MSI to make sure it is working
6185 * If MSI test fails, go back to INTx mode
6186 */
6187 if (bnx2_test_intr(bp) != 0) {
6188 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6189 " using MSI, switching to INTx mode. Please"
6190 " report this failure to the PCI maintainer"
6191 " and include system chipset information.\n",
6192 bp->dev->name);
6193
6194 bnx2_disable_int(bp);
6195 bnx2_free_irq(bp);
6196
6197 bnx2_setup_int_mode(bp, 1);
6198
6199 rc = bnx2_init_nic(bp, 0);
6200
6201 if (!rc)
6202 rc = bnx2_request_irq(bp);
6203
6204 if (rc) {
6205 del_timer_sync(&bp->timer);
6206 goto open_err;
6207 }
6208 bnx2_enable_int(bp);
6209 }
6210 }
6211 if (bp->flags & BNX2_FLAG_USING_MSI)
6212 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6213 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6214 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6215
6216 netif_tx_start_all_queues(dev);
6217
6218 return 0;
6219
6220 open_err:
6221 bnx2_napi_disable(bp);
6222 bnx2_free_skbs(bp);
6223 bnx2_free_irq(bp);
6224 bnx2_free_mem(bp);
6225 return rc;
6226 }
6227
6228 static void
6229 bnx2_reset_task(struct work_struct *work)
6230 {
6231 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6232
6233 if (!netif_running(bp->dev))
6234 return;
6235
6236 bnx2_netif_stop(bp);
6237
6238 bnx2_init_nic(bp, 1);
6239
6240 atomic_set(&bp->intr_sem, 1);
6241 bnx2_netif_start(bp);
6242 }
6243
6244 static void
6245 bnx2_tx_timeout(struct net_device *dev)
6246 {
6247 struct bnx2 *bp = netdev_priv(dev);
6248
6249 /* This allows the netif to be shutdown gracefully before resetting */
6250 schedule_work(&bp->reset_task);
6251 }
6252
6253 #ifdef BCM_VLAN
6254 /* Called with rtnl_lock */
6255 static void
6256 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6257 {
6258 struct bnx2 *bp = netdev_priv(dev);
6259
6260 if (netif_running(dev))
6261 bnx2_netif_stop(bp);
6262
6263 bp->vlgrp = vlgrp;
6264
6265 if (!netif_running(dev))
6266 return;
6267
6268 bnx2_set_rx_mode(dev);
6269 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6270 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6271
6272 bnx2_netif_start(bp);
6273 }
6274 #endif
6275
6276 /* Called with netif_tx_lock.
6277 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6278 * netif_wake_queue().
6279 */
6280 static int
6281 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6282 {
6283 struct bnx2 *bp = netdev_priv(dev);
6284 dma_addr_t mapping;
6285 struct tx_bd *txbd;
6286 struct sw_tx_bd *tx_buf;
6287 u32 len, vlan_tag_flags, last_frag, mss;
6288 u16 prod, ring_prod;
6289 int i;
6290 struct bnx2_napi *bnapi;
6291 struct bnx2_tx_ring_info *txr;
6292 struct netdev_queue *txq;
6293 struct skb_shared_info *sp;
6294
6295 /* Determine which tx ring we will be placed on */
6296 i = skb_get_queue_mapping(skb);
6297 bnapi = &bp->bnx2_napi[i];
6298 txr = &bnapi->tx_ring;
6299 txq = netdev_get_tx_queue(dev, i);
6300
6301 if (unlikely(bnx2_tx_avail(bp, txr) <
6302 (skb_shinfo(skb)->nr_frags + 1))) {
6303 netif_tx_stop_queue(txq);
6304 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6305 dev->name);
6306
6307 return NETDEV_TX_BUSY;
6308 }
6309 len = skb_headlen(skb);
6310 prod = txr->tx_prod;
6311 ring_prod = TX_RING_IDX(prod);
6312
6313 vlan_tag_flags = 0;
6314 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6315 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6316 }
6317
6318 #ifdef BCM_VLAN
6319 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6320 vlan_tag_flags |=
6321 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6322 }
6323 #endif
6324 if ((mss = skb_shinfo(skb)->gso_size)) {
6325 u32 tcp_opt_len;
6326 struct iphdr *iph;
6327
6328 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6329
6330 tcp_opt_len = tcp_optlen(skb);
6331
6332 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6333 u32 tcp_off = skb_transport_offset(skb) -
6334 sizeof(struct ipv6hdr) - ETH_HLEN;
6335
6336 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6337 TX_BD_FLAGS_SW_FLAGS;
6338 if (likely(tcp_off == 0))
6339 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6340 else {
6341 tcp_off >>= 3;
6342 vlan_tag_flags |= ((tcp_off & 0x3) <<
6343 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6344 ((tcp_off & 0x10) <<
6345 TX_BD_FLAGS_TCP6_OFF4_SHL);
6346 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6347 }
6348 } else {
6349 iph = ip_hdr(skb);
6350 if (tcp_opt_len || (iph->ihl > 5)) {
6351 vlan_tag_flags |= ((iph->ihl - 5) +
6352 (tcp_opt_len >> 2)) << 8;
6353 }
6354 }
6355 } else
6356 mss = 0;
6357
6358 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6359 dev_kfree_skb(skb);
6360 return NETDEV_TX_OK;
6361 }
6362
6363 sp = skb_shinfo(skb);
6364 mapping = sp->dma_head;
6365
6366 tx_buf = &txr->tx_buf_ring[ring_prod];
6367 tx_buf->skb = skb;
6368
6369 txbd = &txr->tx_desc_ring[ring_prod];
6370
6371 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6372 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6373 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6374 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6375
6376 last_frag = skb_shinfo(skb)->nr_frags;
6377 tx_buf->nr_frags = last_frag;
6378 tx_buf->is_gso = skb_is_gso(skb);
6379
6380 for (i = 0; i < last_frag; i++) {
6381 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6382
6383 prod = NEXT_TX_BD(prod);
6384 ring_prod = TX_RING_IDX(prod);
6385 txbd = &txr->tx_desc_ring[ring_prod];
6386
6387 len = frag->size;
6388 mapping = sp->dma_maps[i];
6389
6390 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6391 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6392 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6393 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6394
6395 }
6396 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6397
6398 prod = NEXT_TX_BD(prod);
6399 txr->tx_prod_bseq += skb->len;
6400
6401 REG_WR16(bp, txr->tx_bidx_addr, prod);
6402 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6403
6404 mmiowb();
6405
6406 txr->tx_prod = prod;
6407
6408 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6409 netif_tx_stop_queue(txq);
6410 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6411 netif_tx_wake_queue(txq);
6412 }
6413
6414 return NETDEV_TX_OK;
6415 }
6416
6417 /* Called with rtnl_lock */
6418 static int
6419 bnx2_close(struct net_device *dev)
6420 {
6421 struct bnx2 *bp = netdev_priv(dev);
6422
6423 cancel_work_sync(&bp->reset_task);
6424
6425 bnx2_disable_int_sync(bp);
6426 bnx2_napi_disable(bp);
6427 del_timer_sync(&bp->timer);
6428 bnx2_shutdown_chip(bp);
6429 bnx2_free_irq(bp);
6430 bnx2_free_skbs(bp);
6431 bnx2_free_mem(bp);
6432 bp->link_up = 0;
6433 netif_carrier_off(bp->dev);
6434 bnx2_set_power_state(bp, PCI_D3hot);
6435 return 0;
6436 }
6437
6438 #define GET_NET_STATS64(ctr) \
6439 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6440 (unsigned long) (ctr##_lo)
6441
6442 #define GET_NET_STATS32(ctr) \
6443 (ctr##_lo)
6444
6445 #if (BITS_PER_LONG == 64)
6446 #define GET_NET_STATS GET_NET_STATS64
6447 #else
6448 #define GET_NET_STATS GET_NET_STATS32
6449 #endif
6450
6451 static struct net_device_stats *
6452 bnx2_get_stats(struct net_device *dev)
6453 {
6454 struct bnx2 *bp = netdev_priv(dev);
6455 struct statistics_block *stats_blk = bp->stats_blk;
6456 struct net_device_stats *net_stats = &dev->stats;
6457
6458 if (bp->stats_blk == NULL) {
6459 return net_stats;
6460 }
6461 net_stats->rx_packets =
6462 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6463 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6464 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6465
6466 net_stats->tx_packets =
6467 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6468 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6469 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6470
6471 net_stats->rx_bytes =
6472 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6473
6474 net_stats->tx_bytes =
6475 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6476
6477 net_stats->multicast =
6478 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6479
6480 net_stats->collisions =
6481 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6482
6483 net_stats->rx_length_errors =
6484 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6485 stats_blk->stat_EtherStatsOverrsizePkts);
6486
6487 net_stats->rx_over_errors =
6488 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6489 stats_blk->stat_IfInMBUFDiscards);
6490
6491 net_stats->rx_frame_errors =
6492 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6493
6494 net_stats->rx_crc_errors =
6495 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6496
6497 net_stats->rx_errors = net_stats->rx_length_errors +
6498 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6499 net_stats->rx_crc_errors;
6500
6501 net_stats->tx_aborted_errors =
6502 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6503 stats_blk->stat_Dot3StatsLateCollisions);
6504
6505 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6506 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6507 net_stats->tx_carrier_errors = 0;
6508 else {
6509 net_stats->tx_carrier_errors =
6510 (unsigned long)
6511 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6512 }
6513
6514 net_stats->tx_errors =
6515 (unsigned long)
6516 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6517 +
6518 net_stats->tx_aborted_errors +
6519 net_stats->tx_carrier_errors;
6520
6521 net_stats->rx_missed_errors =
6522 (unsigned long) (stats_blk->stat_IfInFTQDiscards +
6523 stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
6524
6525 return net_stats;
6526 }
6527
6528 /* All ethtool functions called with rtnl_lock */
6529
6530 static int
6531 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6532 {
6533 struct bnx2 *bp = netdev_priv(dev);
6534 int support_serdes = 0, support_copper = 0;
6535
6536 cmd->supported = SUPPORTED_Autoneg;
6537 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6538 support_serdes = 1;
6539 support_copper = 1;
6540 } else if (bp->phy_port == PORT_FIBRE)
6541 support_serdes = 1;
6542 else
6543 support_copper = 1;
6544
6545 if (support_serdes) {
6546 cmd->supported |= SUPPORTED_1000baseT_Full |
6547 SUPPORTED_FIBRE;
6548 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6549 cmd->supported |= SUPPORTED_2500baseX_Full;
6550
6551 }
6552 if (support_copper) {
6553 cmd->supported |= SUPPORTED_10baseT_Half |
6554 SUPPORTED_10baseT_Full |
6555 SUPPORTED_100baseT_Half |
6556 SUPPORTED_100baseT_Full |
6557 SUPPORTED_1000baseT_Full |
6558 SUPPORTED_TP;
6559
6560 }
6561
6562 spin_lock_bh(&bp->phy_lock);
6563 cmd->port = bp->phy_port;
6564 cmd->advertising = bp->advertising;
6565
6566 if (bp->autoneg & AUTONEG_SPEED) {
6567 cmd->autoneg = AUTONEG_ENABLE;
6568 }
6569 else {
6570 cmd->autoneg = AUTONEG_DISABLE;
6571 }
6572
6573 if (netif_carrier_ok(dev)) {
6574 cmd->speed = bp->line_speed;
6575 cmd->duplex = bp->duplex;
6576 }
6577 else {
6578 cmd->speed = -1;
6579 cmd->duplex = -1;
6580 }
6581 spin_unlock_bh(&bp->phy_lock);
6582
6583 cmd->transceiver = XCVR_INTERNAL;
6584 cmd->phy_address = bp->phy_addr;
6585
6586 return 0;
6587 }
6588
6589 static int
6590 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6591 {
6592 struct bnx2 *bp = netdev_priv(dev);
6593 u8 autoneg = bp->autoneg;
6594 u8 req_duplex = bp->req_duplex;
6595 u16 req_line_speed = bp->req_line_speed;
6596 u32 advertising = bp->advertising;
6597 int err = -EINVAL;
6598
6599 spin_lock_bh(&bp->phy_lock);
6600
6601 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6602 goto err_out_unlock;
6603
6604 if (cmd->port != bp->phy_port &&
6605 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6606 goto err_out_unlock;
6607
6608 /* If device is down, we can store the settings only if the user
6609 * is setting the currently active port.
6610 */
6611 if (!netif_running(dev) && cmd->port != bp->phy_port)
6612 goto err_out_unlock;
6613
6614 if (cmd->autoneg == AUTONEG_ENABLE) {
6615 autoneg |= AUTONEG_SPEED;
6616
6617 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6618
6619 /* allow advertising 1 speed */
6620 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6621 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6622 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6623 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6624
6625 if (cmd->port == PORT_FIBRE)
6626 goto err_out_unlock;
6627
6628 advertising = cmd->advertising;
6629
6630 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6631 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6632 (cmd->port == PORT_TP))
6633 goto err_out_unlock;
6634 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6635 advertising = cmd->advertising;
6636 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6637 goto err_out_unlock;
6638 else {
6639 if (cmd->port == PORT_FIBRE)
6640 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6641 else
6642 advertising = ETHTOOL_ALL_COPPER_SPEED;
6643 }
6644 advertising |= ADVERTISED_Autoneg;
6645 }
6646 else {
6647 if (cmd->port == PORT_FIBRE) {
6648 if ((cmd->speed != SPEED_1000 &&
6649 cmd->speed != SPEED_2500) ||
6650 (cmd->duplex != DUPLEX_FULL))
6651 goto err_out_unlock;
6652
6653 if (cmd->speed == SPEED_2500 &&
6654 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6655 goto err_out_unlock;
6656 }
6657 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6658 goto err_out_unlock;
6659
6660 autoneg &= ~AUTONEG_SPEED;
6661 req_line_speed = cmd->speed;
6662 req_duplex = cmd->duplex;
6663 advertising = 0;
6664 }
6665
6666 bp->autoneg = autoneg;
6667 bp->advertising = advertising;
6668 bp->req_line_speed = req_line_speed;
6669 bp->req_duplex = req_duplex;
6670
6671 err = 0;
6672 /* If device is down, the new settings will be picked up when it is
6673 * brought up.
6674 */
6675 if (netif_running(dev))
6676 err = bnx2_setup_phy(bp, cmd->port);
6677
6678 err_out_unlock:
6679 spin_unlock_bh(&bp->phy_lock);
6680
6681 return err;
6682 }
6683
6684 static void
6685 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6686 {
6687 struct bnx2 *bp = netdev_priv(dev);
6688
6689 strcpy(info->driver, DRV_MODULE_NAME);
6690 strcpy(info->version, DRV_MODULE_VERSION);
6691 strcpy(info->bus_info, pci_name(bp->pdev));
6692 strcpy(info->fw_version, bp->fw_version);
6693 }
6694
6695 #define BNX2_REGDUMP_LEN (32 * 1024)
6696
6697 static int
6698 bnx2_get_regs_len(struct net_device *dev)
6699 {
6700 return BNX2_REGDUMP_LEN;
6701 }
6702
6703 static void
6704 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6705 {
6706 u32 *p = _p, i, offset;
6707 u8 *orig_p = _p;
6708 struct bnx2 *bp = netdev_priv(dev);
6709 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6710 0x0800, 0x0880, 0x0c00, 0x0c10,
6711 0x0c30, 0x0d08, 0x1000, 0x101c,
6712 0x1040, 0x1048, 0x1080, 0x10a4,
6713 0x1400, 0x1490, 0x1498, 0x14f0,
6714 0x1500, 0x155c, 0x1580, 0x15dc,
6715 0x1600, 0x1658, 0x1680, 0x16d8,
6716 0x1800, 0x1820, 0x1840, 0x1854,
6717 0x1880, 0x1894, 0x1900, 0x1984,
6718 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6719 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6720 0x2000, 0x2030, 0x23c0, 0x2400,
6721 0x2800, 0x2820, 0x2830, 0x2850,
6722 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6723 0x3c00, 0x3c94, 0x4000, 0x4010,
6724 0x4080, 0x4090, 0x43c0, 0x4458,
6725 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6726 0x4fc0, 0x5010, 0x53c0, 0x5444,
6727 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6728 0x5fc0, 0x6000, 0x6400, 0x6428,
6729 0x6800, 0x6848, 0x684c, 0x6860,
6730 0x6888, 0x6910, 0x8000 };
6731
6732 regs->version = 0;
6733
6734 memset(p, 0, BNX2_REGDUMP_LEN);
6735
6736 if (!netif_running(bp->dev))
6737 return;
6738
6739 i = 0;
6740 offset = reg_boundaries[0];
6741 p += offset;
6742 while (offset < BNX2_REGDUMP_LEN) {
6743 *p++ = REG_RD(bp, offset);
6744 offset += 4;
6745 if (offset == reg_boundaries[i + 1]) {
6746 offset = reg_boundaries[i + 2];
6747 p = (u32 *) (orig_p + offset);
6748 i += 2;
6749 }
6750 }
6751 }
6752
6753 static void
6754 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6755 {
6756 struct bnx2 *bp = netdev_priv(dev);
6757
6758 if (bp->flags & BNX2_FLAG_NO_WOL) {
6759 wol->supported = 0;
6760 wol->wolopts = 0;
6761 }
6762 else {
6763 wol->supported = WAKE_MAGIC;
6764 if (bp->wol)
6765 wol->wolopts = WAKE_MAGIC;
6766 else
6767 wol->wolopts = 0;
6768 }
6769 memset(&wol->sopass, 0, sizeof(wol->sopass));
6770 }
6771
6772 static int
6773 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6774 {
6775 struct bnx2 *bp = netdev_priv(dev);
6776
6777 if (wol->wolopts & ~WAKE_MAGIC)
6778 return -EINVAL;
6779
6780 if (wol->wolopts & WAKE_MAGIC) {
6781 if (bp->flags & BNX2_FLAG_NO_WOL)
6782 return -EINVAL;
6783
6784 bp->wol = 1;
6785 }
6786 else {
6787 bp->wol = 0;
6788 }
6789 return 0;
6790 }
6791
6792 static int
6793 bnx2_nway_reset(struct net_device *dev)
6794 {
6795 struct bnx2 *bp = netdev_priv(dev);
6796 u32 bmcr;
6797
6798 if (!netif_running(dev))
6799 return -EAGAIN;
6800
6801 if (!(bp->autoneg & AUTONEG_SPEED)) {
6802 return -EINVAL;
6803 }
6804
6805 spin_lock_bh(&bp->phy_lock);
6806
6807 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6808 int rc;
6809
6810 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6811 spin_unlock_bh(&bp->phy_lock);
6812 return rc;
6813 }
6814
6815 /* Force a link down visible on the other side */
6816 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6817 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6818 spin_unlock_bh(&bp->phy_lock);
6819
6820 msleep(20);
6821
6822 spin_lock_bh(&bp->phy_lock);
6823
6824 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6825 bp->serdes_an_pending = 1;
6826 mod_timer(&bp->timer, jiffies + bp->current_interval);
6827 }
6828
6829 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6830 bmcr &= ~BMCR_LOOPBACK;
6831 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6832
6833 spin_unlock_bh(&bp->phy_lock);
6834
6835 return 0;
6836 }
6837
6838 static u32
6839 bnx2_get_link(struct net_device *dev)
6840 {
6841 struct bnx2 *bp = netdev_priv(dev);
6842
6843 return bp->link_up;
6844 }
6845
6846 static int
6847 bnx2_get_eeprom_len(struct net_device *dev)
6848 {
6849 struct bnx2 *bp = netdev_priv(dev);
6850
6851 if (bp->flash_info == NULL)
6852 return 0;
6853
6854 return (int) bp->flash_size;
6855 }
6856
6857 static int
6858 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6859 u8 *eebuf)
6860 {
6861 struct bnx2 *bp = netdev_priv(dev);
6862 int rc;
6863
6864 if (!netif_running(dev))
6865 return -EAGAIN;
6866
6867 /* parameters already validated in ethtool_get_eeprom */
6868
6869 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6870
6871 return rc;
6872 }
6873
6874 static int
6875 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6876 u8 *eebuf)
6877 {
6878 struct bnx2 *bp = netdev_priv(dev);
6879 int rc;
6880
6881 if (!netif_running(dev))
6882 return -EAGAIN;
6883
6884 /* parameters already validated in ethtool_set_eeprom */
6885
6886 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6887
6888 return rc;
6889 }
6890
6891 static int
6892 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6893 {
6894 struct bnx2 *bp = netdev_priv(dev);
6895
6896 memset(coal, 0, sizeof(struct ethtool_coalesce));
6897
6898 coal->rx_coalesce_usecs = bp->rx_ticks;
6899 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6900 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6901 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6902
6903 coal->tx_coalesce_usecs = bp->tx_ticks;
6904 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6905 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6906 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6907
6908 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6909
6910 return 0;
6911 }
6912
6913 static int
6914 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6915 {
6916 struct bnx2 *bp = netdev_priv(dev);
6917
6918 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6919 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6920
6921 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6922 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6923
6924 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6925 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6926
6927 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6928 if (bp->rx_quick_cons_trip_int > 0xff)
6929 bp->rx_quick_cons_trip_int = 0xff;
6930
6931 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6932 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6933
6934 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6935 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6936
6937 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6938 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6939
6940 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6941 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6942 0xff;
6943
6944 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6945 if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
6946 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6947 bp->stats_ticks = USEC_PER_SEC;
6948 }
6949 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6950 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6951 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6952
6953 if (netif_running(bp->dev)) {
6954 bnx2_netif_stop(bp);
6955 bnx2_init_nic(bp, 0);
6956 bnx2_netif_start(bp);
6957 }
6958
6959 return 0;
6960 }
6961
6962 static void
6963 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6964 {
6965 struct bnx2 *bp = netdev_priv(dev);
6966
6967 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6968 ering->rx_mini_max_pending = 0;
6969 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6970
6971 ering->rx_pending = bp->rx_ring_size;
6972 ering->rx_mini_pending = 0;
6973 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6974
6975 ering->tx_max_pending = MAX_TX_DESC_CNT;
6976 ering->tx_pending = bp->tx_ring_size;
6977 }
6978
6979 static int
6980 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6981 {
6982 if (netif_running(bp->dev)) {
6983 bnx2_netif_stop(bp);
6984 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6985 bnx2_free_skbs(bp);
6986 bnx2_free_mem(bp);
6987 }
6988
6989 bnx2_set_rx_ring_size(bp, rx);
6990 bp->tx_ring_size = tx;
6991
6992 if (netif_running(bp->dev)) {
6993 int rc;
6994
6995 rc = bnx2_alloc_mem(bp);
6996 if (!rc)
6997 rc = bnx2_init_nic(bp, 0);
6998
6999 if (rc) {
7000 bnx2_napi_enable(bp);
7001 dev_close(bp->dev);
7002 return rc;
7003 }
7004 bnx2_netif_start(bp);
7005 }
7006 return 0;
7007 }
7008
7009 static int
7010 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
7011 {
7012 struct bnx2 *bp = netdev_priv(dev);
7013 int rc;
7014
7015 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7016 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7017 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7018
7019 return -EINVAL;
7020 }
7021 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7022 return rc;
7023 }
7024
7025 static void
7026 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7027 {
7028 struct bnx2 *bp = netdev_priv(dev);
7029
7030 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7031 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7032 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7033 }
7034
7035 static int
7036 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7037 {
7038 struct bnx2 *bp = netdev_priv(dev);
7039
7040 bp->req_flow_ctrl = 0;
7041 if (epause->rx_pause)
7042 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7043 if (epause->tx_pause)
7044 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7045
7046 if (epause->autoneg) {
7047 bp->autoneg |= AUTONEG_FLOW_CTRL;
7048 }
7049 else {
7050 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7051 }
7052
7053 if (netif_running(dev)) {
7054 spin_lock_bh(&bp->phy_lock);
7055 bnx2_setup_phy(bp, bp->phy_port);
7056 spin_unlock_bh(&bp->phy_lock);
7057 }
7058
7059 return 0;
7060 }
7061
7062 static u32
7063 bnx2_get_rx_csum(struct net_device *dev)
7064 {
7065 struct bnx2 *bp = netdev_priv(dev);
7066
7067 return bp->rx_csum;
7068 }
7069
7070 static int
7071 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7072 {
7073 struct bnx2 *bp = netdev_priv(dev);
7074
7075 bp->rx_csum = data;
7076 return 0;
7077 }
7078
7079 static int
7080 bnx2_set_tso(struct net_device *dev, u32 data)
7081 {
7082 struct bnx2 *bp = netdev_priv(dev);
7083
7084 if (data) {
7085 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7086 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7087 dev->features |= NETIF_F_TSO6;
7088 } else
7089 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7090 NETIF_F_TSO_ECN);
7091 return 0;
7092 }
7093
7094 static struct {
7095 char string[ETH_GSTRING_LEN];
7096 } bnx2_stats_str_arr[] = {
7097 { "rx_bytes" },
7098 { "rx_error_bytes" },
7099 { "tx_bytes" },
7100 { "tx_error_bytes" },
7101 { "rx_ucast_packets" },
7102 { "rx_mcast_packets" },
7103 { "rx_bcast_packets" },
7104 { "tx_ucast_packets" },
7105 { "tx_mcast_packets" },
7106 { "tx_bcast_packets" },
7107 { "tx_mac_errors" },
7108 { "tx_carrier_errors" },
7109 { "rx_crc_errors" },
7110 { "rx_align_errors" },
7111 { "tx_single_collisions" },
7112 { "tx_multi_collisions" },
7113 { "tx_deferred" },
7114 { "tx_excess_collisions" },
7115 { "tx_late_collisions" },
7116 { "tx_total_collisions" },
7117 { "rx_fragments" },
7118 { "rx_jabbers" },
7119 { "rx_undersize_packets" },
7120 { "rx_oversize_packets" },
7121 { "rx_64_byte_packets" },
7122 { "rx_65_to_127_byte_packets" },
7123 { "rx_128_to_255_byte_packets" },
7124 { "rx_256_to_511_byte_packets" },
7125 { "rx_512_to_1023_byte_packets" },
7126 { "rx_1024_to_1522_byte_packets" },
7127 { "rx_1523_to_9022_byte_packets" },
7128 { "tx_64_byte_packets" },
7129 { "tx_65_to_127_byte_packets" },
7130 { "tx_128_to_255_byte_packets" },
7131 { "tx_256_to_511_byte_packets" },
7132 { "tx_512_to_1023_byte_packets" },
7133 { "tx_1024_to_1522_byte_packets" },
7134 { "tx_1523_to_9022_byte_packets" },
7135 { "rx_xon_frames" },
7136 { "rx_xoff_frames" },
7137 { "tx_xon_frames" },
7138 { "tx_xoff_frames" },
7139 { "rx_mac_ctrl_frames" },
7140 { "rx_filtered_packets" },
7141 { "rx_ftq_discards" },
7142 { "rx_discards" },
7143 { "rx_fw_discards" },
7144 };
7145
7146 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7147 sizeof(bnx2_stats_str_arr[0]))
7148
7149 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7150
7151 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7152 STATS_OFFSET32(stat_IfHCInOctets_hi),
7153 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7154 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7155 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7156 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7157 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7158 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7159 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7160 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7161 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7162 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7163 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7164 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7165 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7166 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7167 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7168 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7169 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7170 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7171 STATS_OFFSET32(stat_EtherStatsCollisions),
7172 STATS_OFFSET32(stat_EtherStatsFragments),
7173 STATS_OFFSET32(stat_EtherStatsJabbers),
7174 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7175 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7176 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7177 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7178 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7179 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7180 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7181 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7182 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7183 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7184 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7185 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7186 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7187 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7188 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7189 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7190 STATS_OFFSET32(stat_XonPauseFramesReceived),
7191 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7192 STATS_OFFSET32(stat_OutXonSent),
7193 STATS_OFFSET32(stat_OutXoffSent),
7194 STATS_OFFSET32(stat_MacControlFramesReceived),
7195 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7196 STATS_OFFSET32(stat_IfInFTQDiscards),
7197 STATS_OFFSET32(stat_IfInMBUFDiscards),
7198 STATS_OFFSET32(stat_FwRxDrop),
7199 };
7200
7201 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7202 * skipped because of errata.
7203 */
7204 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7205 8,0,8,8,8,8,8,8,8,8,
7206 4,0,4,4,4,4,4,4,4,4,
7207 4,4,4,4,4,4,4,4,4,4,
7208 4,4,4,4,4,4,4,4,4,4,
7209 4,4,4,4,4,4,4,
7210 };
7211
7212 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7213 8,0,8,8,8,8,8,8,8,8,
7214 4,4,4,4,4,4,4,4,4,4,
7215 4,4,4,4,4,4,4,4,4,4,
7216 4,4,4,4,4,4,4,4,4,4,
7217 4,4,4,4,4,4,4,
7218 };
7219
7220 #define BNX2_NUM_TESTS 6
7221
7222 static struct {
7223 char string[ETH_GSTRING_LEN];
7224 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7225 { "register_test (offline)" },
7226 { "memory_test (offline)" },
7227 { "loopback_test (offline)" },
7228 { "nvram_test (online)" },
7229 { "interrupt_test (online)" },
7230 { "link_test (online)" },
7231 };
7232
7233 static int
7234 bnx2_get_sset_count(struct net_device *dev, int sset)
7235 {
7236 switch (sset) {
7237 case ETH_SS_TEST:
7238 return BNX2_NUM_TESTS;
7239 case ETH_SS_STATS:
7240 return BNX2_NUM_STATS;
7241 default:
7242 return -EOPNOTSUPP;
7243 }
7244 }
7245
7246 static void
7247 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7248 {
7249 struct bnx2 *bp = netdev_priv(dev);
7250
7251 bnx2_set_power_state(bp, PCI_D0);
7252
7253 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7254 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7255 int i;
7256
7257 bnx2_netif_stop(bp);
7258 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7259 bnx2_free_skbs(bp);
7260
7261 if (bnx2_test_registers(bp) != 0) {
7262 buf[0] = 1;
7263 etest->flags |= ETH_TEST_FL_FAILED;
7264 }
7265 if (bnx2_test_memory(bp) != 0) {
7266 buf[1] = 1;
7267 etest->flags |= ETH_TEST_FL_FAILED;
7268 }
7269 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7270 etest->flags |= ETH_TEST_FL_FAILED;
7271
7272 if (!netif_running(bp->dev))
7273 bnx2_shutdown_chip(bp);
7274 else {
7275 bnx2_init_nic(bp, 1);
7276 bnx2_netif_start(bp);
7277 }
7278
7279 /* wait for link up */
7280 for (i = 0; i < 7; i++) {
7281 if (bp->link_up)
7282 break;
7283 msleep_interruptible(1000);
7284 }
7285 }
7286
7287 if (bnx2_test_nvram(bp) != 0) {
7288 buf[3] = 1;
7289 etest->flags |= ETH_TEST_FL_FAILED;
7290 }
7291 if (bnx2_test_intr(bp) != 0) {
7292 buf[4] = 1;
7293 etest->flags |= ETH_TEST_FL_FAILED;
7294 }
7295
7296 if (bnx2_test_link(bp) != 0) {
7297 buf[5] = 1;
7298 etest->flags |= ETH_TEST_FL_FAILED;
7299
7300 }
7301 if (!netif_running(bp->dev))
7302 bnx2_set_power_state(bp, PCI_D3hot);
7303 }
7304
7305 static void
7306 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7307 {
7308 switch (stringset) {
7309 case ETH_SS_STATS:
7310 memcpy(buf, bnx2_stats_str_arr,
7311 sizeof(bnx2_stats_str_arr));
7312 break;
7313 case ETH_SS_TEST:
7314 memcpy(buf, bnx2_tests_str_arr,
7315 sizeof(bnx2_tests_str_arr));
7316 break;
7317 }
7318 }
7319
7320 static void
7321 bnx2_get_ethtool_stats(struct net_device *dev,
7322 struct ethtool_stats *stats, u64 *buf)
7323 {
7324 struct bnx2 *bp = netdev_priv(dev);
7325 int i;
7326 u32 *hw_stats = (u32 *) bp->stats_blk;
7327 u8 *stats_len_arr = NULL;
7328
7329 if (hw_stats == NULL) {
7330 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7331 return;
7332 }
7333
7334 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7335 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7336 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7337 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7338 stats_len_arr = bnx2_5706_stats_len_arr;
7339 else
7340 stats_len_arr = bnx2_5708_stats_len_arr;
7341
7342 for (i = 0; i < BNX2_NUM_STATS; i++) {
7343 if (stats_len_arr[i] == 0) {
7344 /* skip this counter */
7345 buf[i] = 0;
7346 continue;
7347 }
7348 if (stats_len_arr[i] == 4) {
7349 /* 4-byte counter */
7350 buf[i] = (u64)
7351 *(hw_stats + bnx2_stats_offset_arr[i]);
7352 continue;
7353 }
7354 /* 8-byte counter */
7355 buf[i] = (((u64) *(hw_stats +
7356 bnx2_stats_offset_arr[i])) << 32) +
7357 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7358 }
7359 }
7360
7361 static int
7362 bnx2_phys_id(struct net_device *dev, u32 data)
7363 {
7364 struct bnx2 *bp = netdev_priv(dev);
7365 int i;
7366 u32 save;
7367
7368 bnx2_set_power_state(bp, PCI_D0);
7369
7370 if (data == 0)
7371 data = 2;
7372
7373 save = REG_RD(bp, BNX2_MISC_CFG);
7374 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7375
7376 for (i = 0; i < (data * 2); i++) {
7377 if ((i % 2) == 0) {
7378 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7379 }
7380 else {
7381 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7382 BNX2_EMAC_LED_1000MB_OVERRIDE |
7383 BNX2_EMAC_LED_100MB_OVERRIDE |
7384 BNX2_EMAC_LED_10MB_OVERRIDE |
7385 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7386 BNX2_EMAC_LED_TRAFFIC);
7387 }
7388 msleep_interruptible(500);
7389 if (signal_pending(current))
7390 break;
7391 }
7392 REG_WR(bp, BNX2_EMAC_LED, 0);
7393 REG_WR(bp, BNX2_MISC_CFG, save);
7394
7395 if (!netif_running(dev))
7396 bnx2_set_power_state(bp, PCI_D3hot);
7397
7398 return 0;
7399 }
7400
7401 static int
7402 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7403 {
7404 struct bnx2 *bp = netdev_priv(dev);
7405
7406 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7407 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7408 else
7409 return (ethtool_op_set_tx_csum(dev, data));
7410 }
7411
7412 static const struct ethtool_ops bnx2_ethtool_ops = {
7413 .get_settings = bnx2_get_settings,
7414 .set_settings = bnx2_set_settings,
7415 .get_drvinfo = bnx2_get_drvinfo,
7416 .get_regs_len = bnx2_get_regs_len,
7417 .get_regs = bnx2_get_regs,
7418 .get_wol = bnx2_get_wol,
7419 .set_wol = bnx2_set_wol,
7420 .nway_reset = bnx2_nway_reset,
7421 .get_link = bnx2_get_link,
7422 .get_eeprom_len = bnx2_get_eeprom_len,
7423 .get_eeprom = bnx2_get_eeprom,
7424 .set_eeprom = bnx2_set_eeprom,
7425 .get_coalesce = bnx2_get_coalesce,
7426 .set_coalesce = bnx2_set_coalesce,
7427 .get_ringparam = bnx2_get_ringparam,
7428 .set_ringparam = bnx2_set_ringparam,
7429 .get_pauseparam = bnx2_get_pauseparam,
7430 .set_pauseparam = bnx2_set_pauseparam,
7431 .get_rx_csum = bnx2_get_rx_csum,
7432 .set_rx_csum = bnx2_set_rx_csum,
7433 .set_tx_csum = bnx2_set_tx_csum,
7434 .set_sg = ethtool_op_set_sg,
7435 .set_tso = bnx2_set_tso,
7436 .self_test = bnx2_self_test,
7437 .get_strings = bnx2_get_strings,
7438 .phys_id = bnx2_phys_id,
7439 .get_ethtool_stats = bnx2_get_ethtool_stats,
7440 .get_sset_count = bnx2_get_sset_count,
7441 };
7442
7443 /* Called with rtnl_lock */
7444 static int
7445 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7446 {
7447 struct mii_ioctl_data *data = if_mii(ifr);
7448 struct bnx2 *bp = netdev_priv(dev);
7449 int err;
7450
7451 switch(cmd) {
7452 case SIOCGMIIPHY:
7453 data->phy_id = bp->phy_addr;
7454
7455 /* fallthru */
7456 case SIOCGMIIREG: {
7457 u32 mii_regval;
7458
7459 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7460 return -EOPNOTSUPP;
7461
7462 if (!netif_running(dev))
7463 return -EAGAIN;
7464
7465 spin_lock_bh(&bp->phy_lock);
7466 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7467 spin_unlock_bh(&bp->phy_lock);
7468
7469 data->val_out = mii_regval;
7470
7471 return err;
7472 }
7473
7474 case SIOCSMIIREG:
7475 if (!capable(CAP_NET_ADMIN))
7476 return -EPERM;
7477
7478 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7479 return -EOPNOTSUPP;
7480
7481 if (!netif_running(dev))
7482 return -EAGAIN;
7483
7484 spin_lock_bh(&bp->phy_lock);
7485 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7486 spin_unlock_bh(&bp->phy_lock);
7487
7488 return err;
7489
7490 default:
7491 /* do nothing */
7492 break;
7493 }
7494 return -EOPNOTSUPP;
7495 }
7496
7497 /* Called with rtnl_lock */
7498 static int
7499 bnx2_change_mac_addr(struct net_device *dev, void *p)
7500 {
7501 struct sockaddr *addr = p;
7502 struct bnx2 *bp = netdev_priv(dev);
7503
7504 if (!is_valid_ether_addr(addr->sa_data))
7505 return -EINVAL;
7506
7507 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7508 if (netif_running(dev))
7509 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7510
7511 return 0;
7512 }
7513
7514 /* Called with rtnl_lock */
7515 static int
7516 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7517 {
7518 struct bnx2 *bp = netdev_priv(dev);
7519
7520 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7521 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7522 return -EINVAL;
7523
7524 dev->mtu = new_mtu;
7525 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7526 }
7527
7528 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7529 static void
7530 poll_bnx2(struct net_device *dev)
7531 {
7532 struct bnx2 *bp = netdev_priv(dev);
7533 int i;
7534
7535 for (i = 0; i < bp->irq_nvecs; i++) {
7536 disable_irq(bp->irq_tbl[i].vector);
7537 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7538 enable_irq(bp->irq_tbl[i].vector);
7539 }
7540 }
7541 #endif
7542
7543 static void __devinit
7544 bnx2_get_5709_media(struct bnx2 *bp)
7545 {
7546 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7547 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7548 u32 strap;
7549
7550 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7551 return;
7552 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7553 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7554 return;
7555 }
7556
7557 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7558 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7559 else
7560 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7561
7562 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7563 switch (strap) {
7564 case 0x4:
7565 case 0x5:
7566 case 0x6:
7567 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7568 return;
7569 }
7570 } else {
7571 switch (strap) {
7572 case 0x1:
7573 case 0x2:
7574 case 0x4:
7575 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7576 return;
7577 }
7578 }
7579 }
7580
7581 static void __devinit
7582 bnx2_get_pci_speed(struct bnx2 *bp)
7583 {
7584 u32 reg;
7585
7586 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7587 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7588 u32 clkreg;
7589
7590 bp->flags |= BNX2_FLAG_PCIX;
7591
7592 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7593
7594 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7595 switch (clkreg) {
7596 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7597 bp->bus_speed_mhz = 133;
7598 break;
7599
7600 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7601 bp->bus_speed_mhz = 100;
7602 break;
7603
7604 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7605 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7606 bp->bus_speed_mhz = 66;
7607 break;
7608
7609 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7610 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7611 bp->bus_speed_mhz = 50;
7612 break;
7613
7614 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7615 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7616 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7617 bp->bus_speed_mhz = 33;
7618 break;
7619 }
7620 }
7621 else {
7622 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7623 bp->bus_speed_mhz = 66;
7624 else
7625 bp->bus_speed_mhz = 33;
7626 }
7627
7628 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7629 bp->flags |= BNX2_FLAG_PCI_32BIT;
7630
7631 }
7632
7633 static int __devinit
7634 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7635 {
7636 struct bnx2 *bp;
7637 unsigned long mem_len;
7638 int rc, i, j;
7639 u32 reg;
7640 u64 dma_mask, persist_dma_mask;
7641
7642 SET_NETDEV_DEV(dev, &pdev->dev);
7643 bp = netdev_priv(dev);
7644
7645 bp->flags = 0;
7646 bp->phy_flags = 0;
7647
7648 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7649 rc = pci_enable_device(pdev);
7650 if (rc) {
7651 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7652 goto err_out;
7653 }
7654
7655 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7656 dev_err(&pdev->dev,
7657 "Cannot find PCI device base address, aborting.\n");
7658 rc = -ENODEV;
7659 goto err_out_disable;
7660 }
7661
7662 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7663 if (rc) {
7664 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7665 goto err_out_disable;
7666 }
7667
7668 pci_set_master(pdev);
7669 pci_save_state(pdev);
7670
7671 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7672 if (bp->pm_cap == 0) {
7673 dev_err(&pdev->dev,
7674 "Cannot find power management capability, aborting.\n");
7675 rc = -EIO;
7676 goto err_out_release;
7677 }
7678
7679 bp->dev = dev;
7680 bp->pdev = pdev;
7681
7682 spin_lock_init(&bp->phy_lock);
7683 spin_lock_init(&bp->indirect_lock);
7684 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7685
7686 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7687 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7688 dev->mem_end = dev->mem_start + mem_len;
7689 dev->irq = pdev->irq;
7690
7691 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7692
7693 if (!bp->regview) {
7694 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7695 rc = -ENOMEM;
7696 goto err_out_release;
7697 }
7698
7699 /* Configure byte swap and enable write to the reg_window registers.
7700 * Rely on CPU to do target byte swapping on big endian systems
7701 * The chip's target access swapping will not swap all accesses
7702 */
7703 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7704 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7705 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7706
7707 bnx2_set_power_state(bp, PCI_D0);
7708
7709 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7710
7711 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7712 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7713 dev_err(&pdev->dev,
7714 "Cannot find PCIE capability, aborting.\n");
7715 rc = -EIO;
7716 goto err_out_unmap;
7717 }
7718 bp->flags |= BNX2_FLAG_PCIE;
7719 if (CHIP_REV(bp) == CHIP_REV_Ax)
7720 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7721 } else {
7722 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7723 if (bp->pcix_cap == 0) {
7724 dev_err(&pdev->dev,
7725 "Cannot find PCIX capability, aborting.\n");
7726 rc = -EIO;
7727 goto err_out_unmap;
7728 }
7729 bp->flags |= BNX2_FLAG_BROKEN_STATS;
7730 }
7731
7732 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7733 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7734 bp->flags |= BNX2_FLAG_MSIX_CAP;
7735 }
7736
7737 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7738 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7739 bp->flags |= BNX2_FLAG_MSI_CAP;
7740 }
7741
7742 /* 5708 cannot support DMA addresses > 40-bit. */
7743 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7744 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7745 else
7746 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7747
7748 /* Configure DMA attributes. */
7749 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7750 dev->features |= NETIF_F_HIGHDMA;
7751 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7752 if (rc) {
7753 dev_err(&pdev->dev,
7754 "pci_set_consistent_dma_mask failed, aborting.\n");
7755 goto err_out_unmap;
7756 }
7757 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7758 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7759 goto err_out_unmap;
7760 }
7761
7762 if (!(bp->flags & BNX2_FLAG_PCIE))
7763 bnx2_get_pci_speed(bp);
7764
7765 /* 5706A0 may falsely detect SERR and PERR. */
7766 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7767 reg = REG_RD(bp, PCI_COMMAND);
7768 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7769 REG_WR(bp, PCI_COMMAND, reg);
7770 }
7771 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7772 !(bp->flags & BNX2_FLAG_PCIX)) {
7773
7774 dev_err(&pdev->dev,
7775 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7776 goto err_out_unmap;
7777 }
7778
7779 bnx2_init_nvram(bp);
7780
7781 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7782
7783 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7784 BNX2_SHM_HDR_SIGNATURE_SIG) {
7785 u32 off = PCI_FUNC(pdev->devfn) << 2;
7786
7787 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7788 } else
7789 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7790
7791 /* Get the permanent MAC address. First we need to make sure the
7792 * firmware is actually running.
7793 */
7794 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7795
7796 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7797 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7798 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7799 rc = -ENODEV;
7800 goto err_out_unmap;
7801 }
7802
7803 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7804 for (i = 0, j = 0; i < 3; i++) {
7805 u8 num, k, skip0;
7806
7807 num = (u8) (reg >> (24 - (i * 8)));
7808 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7809 if (num >= k || !skip0 || k == 1) {
7810 bp->fw_version[j++] = (num / k) + '0';
7811 skip0 = 0;
7812 }
7813 }
7814 if (i != 2)
7815 bp->fw_version[j++] = '.';
7816 }
7817 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7818 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7819 bp->wol = 1;
7820
7821 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7822 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7823
7824 for (i = 0; i < 30; i++) {
7825 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7826 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7827 break;
7828 msleep(10);
7829 }
7830 }
7831 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7832 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7833 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7834 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7835 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7836
7837 bp->fw_version[j++] = ' ';
7838 for (i = 0; i < 3; i++) {
7839 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7840 reg = swab32(reg);
7841 memcpy(&bp->fw_version[j], &reg, 4);
7842 j += 4;
7843 }
7844 }
7845
7846 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7847 bp->mac_addr[0] = (u8) (reg >> 8);
7848 bp->mac_addr[1] = (u8) reg;
7849
7850 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7851 bp->mac_addr[2] = (u8) (reg >> 24);
7852 bp->mac_addr[3] = (u8) (reg >> 16);
7853 bp->mac_addr[4] = (u8) (reg >> 8);
7854 bp->mac_addr[5] = (u8) reg;
7855
7856 bp->tx_ring_size = MAX_TX_DESC_CNT;
7857 bnx2_set_rx_ring_size(bp, 255);
7858
7859 bp->rx_csum = 1;
7860
7861 bp->tx_quick_cons_trip_int = 20;
7862 bp->tx_quick_cons_trip = 20;
7863 bp->tx_ticks_int = 80;
7864 bp->tx_ticks = 80;
7865
7866 bp->rx_quick_cons_trip_int = 6;
7867 bp->rx_quick_cons_trip = 6;
7868 bp->rx_ticks_int = 18;
7869 bp->rx_ticks = 18;
7870
7871 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7872
7873 bp->current_interval = BNX2_TIMER_INTERVAL;
7874
7875 bp->phy_addr = 1;
7876
7877 /* Disable WOL support if we are running on a SERDES chip. */
7878 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7879 bnx2_get_5709_media(bp);
7880 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7881 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7882
7883 bp->phy_port = PORT_TP;
7884 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7885 bp->phy_port = PORT_FIBRE;
7886 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7887 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7888 bp->flags |= BNX2_FLAG_NO_WOL;
7889 bp->wol = 0;
7890 }
7891 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7892 /* Don't do parallel detect on this board because of
7893 * some board problems. The link will not go down
7894 * if we do parallel detect.
7895 */
7896 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7897 pdev->subsystem_device == 0x310c)
7898 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7899 } else {
7900 bp->phy_addr = 2;
7901 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7902 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7903 }
7904 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7905 CHIP_NUM(bp) == CHIP_NUM_5708)
7906 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7907 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7908 (CHIP_REV(bp) == CHIP_REV_Ax ||
7909 CHIP_REV(bp) == CHIP_REV_Bx))
7910 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7911
7912 bnx2_init_fw_cap(bp);
7913
7914 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7915 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7916 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7917 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7918 bp->flags |= BNX2_FLAG_NO_WOL;
7919 bp->wol = 0;
7920 }
7921
7922 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7923 bp->tx_quick_cons_trip_int =
7924 bp->tx_quick_cons_trip;
7925 bp->tx_ticks_int = bp->tx_ticks;
7926 bp->rx_quick_cons_trip_int =
7927 bp->rx_quick_cons_trip;
7928 bp->rx_ticks_int = bp->rx_ticks;
7929 bp->comp_prod_trip_int = bp->comp_prod_trip;
7930 bp->com_ticks_int = bp->com_ticks;
7931 bp->cmd_ticks_int = bp->cmd_ticks;
7932 }
7933
7934 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7935 *
7936 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7937 * with byte enables disabled on the unused 32-bit word. This is legal
7938 * but causes problems on the AMD 8132 which will eventually stop
7939 * responding after a while.
7940 *
7941 * AMD believes this incompatibility is unique to the 5706, and
7942 * prefers to locally disable MSI rather than globally disabling it.
7943 */
7944 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7945 struct pci_dev *amd_8132 = NULL;
7946
7947 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7948 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7949 amd_8132))) {
7950
7951 if (amd_8132->revision >= 0x10 &&
7952 amd_8132->revision <= 0x13) {
7953 disable_msi = 1;
7954 pci_dev_put(amd_8132);
7955 break;
7956 }
7957 }
7958 }
7959
7960 bnx2_set_default_link(bp);
7961 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7962
7963 init_timer(&bp->timer);
7964 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7965 bp->timer.data = (unsigned long) bp;
7966 bp->timer.function = bnx2_timer;
7967
7968 return 0;
7969
7970 err_out_unmap:
7971 if (bp->regview) {
7972 iounmap(bp->regview);
7973 bp->regview = NULL;
7974 }
7975
7976 err_out_release:
7977 pci_release_regions(pdev);
7978
7979 err_out_disable:
7980 pci_disable_device(pdev);
7981 pci_set_drvdata(pdev, NULL);
7982
7983 err_out:
7984 return rc;
7985 }
7986
7987 static char * __devinit
7988 bnx2_bus_string(struct bnx2 *bp, char *str)
7989 {
7990 char *s = str;
7991
7992 if (bp->flags & BNX2_FLAG_PCIE) {
7993 s += sprintf(s, "PCI Express");
7994 } else {
7995 s += sprintf(s, "PCI");
7996 if (bp->flags & BNX2_FLAG_PCIX)
7997 s += sprintf(s, "-X");
7998 if (bp->flags & BNX2_FLAG_PCI_32BIT)
7999 s += sprintf(s, " 32-bit");
8000 else
8001 s += sprintf(s, " 64-bit");
8002 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
8003 }
8004 return str;
8005 }
8006
8007 static void __devinit
8008 bnx2_init_napi(struct bnx2 *bp)
8009 {
8010 int i;
8011
8012 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
8013 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
8014 int (*poll)(struct napi_struct *, int);
8015
8016 if (i == 0)
8017 poll = bnx2_poll;
8018 else
8019 poll = bnx2_poll_msix;
8020
8021 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8022 bnapi->bp = bp;
8023 }
8024 }
8025
8026 static const struct net_device_ops bnx2_netdev_ops = {
8027 .ndo_open = bnx2_open,
8028 .ndo_start_xmit = bnx2_start_xmit,
8029 .ndo_stop = bnx2_close,
8030 .ndo_get_stats = bnx2_get_stats,
8031 .ndo_set_rx_mode = bnx2_set_rx_mode,
8032 .ndo_do_ioctl = bnx2_ioctl,
8033 .ndo_validate_addr = eth_validate_addr,
8034 .ndo_set_mac_address = bnx2_change_mac_addr,
8035 .ndo_change_mtu = bnx2_change_mtu,
8036 .ndo_tx_timeout = bnx2_tx_timeout,
8037 #ifdef BCM_VLAN
8038 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8039 #endif
8040 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8041 .ndo_poll_controller = poll_bnx2,
8042 #endif
8043 };
8044
8045 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8046 {
8047 #ifdef BCM_VLAN
8048 dev->vlan_features |= flags;
8049 #endif
8050 }
8051
8052 static int __devinit
8053 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8054 {
8055 static int version_printed = 0;
8056 struct net_device *dev = NULL;
8057 struct bnx2 *bp;
8058 int rc;
8059 char str[40];
8060
8061 if (version_printed++ == 0)
8062 printk(KERN_INFO "%s", version);
8063
8064 /* dev zeroed in init_etherdev */
8065 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8066
8067 if (!dev)
8068 return -ENOMEM;
8069
8070 rc = bnx2_init_board(pdev, dev);
8071 if (rc < 0) {
8072 free_netdev(dev);
8073 return rc;
8074 }
8075
8076 dev->netdev_ops = &bnx2_netdev_ops;
8077 dev->watchdog_timeo = TX_TIMEOUT;
8078 dev->ethtool_ops = &bnx2_ethtool_ops;
8079
8080 bp = netdev_priv(dev);
8081 bnx2_init_napi(bp);
8082
8083 pci_set_drvdata(pdev, dev);
8084
8085 rc = bnx2_request_firmware(bp);
8086 if (rc)
8087 goto error;
8088
8089 memcpy(dev->dev_addr, bp->mac_addr, 6);
8090 memcpy(dev->perm_addr, bp->mac_addr, 6);
8091
8092 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8093 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8094 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8095 dev->features |= NETIF_F_IPV6_CSUM;
8096 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8097 }
8098 #ifdef BCM_VLAN
8099 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8100 #endif
8101 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8102 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8103 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8104 dev->features |= NETIF_F_TSO6;
8105 vlan_features_add(dev, NETIF_F_TSO6);
8106 }
8107 if ((rc = register_netdev(dev))) {
8108 dev_err(&pdev->dev, "Cannot register net device\n");
8109 goto error;
8110 }
8111
8112 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8113 "IRQ %d, node addr %pM\n",
8114 dev->name,
8115 board_info[ent->driver_data].name,
8116 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8117 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8118 bnx2_bus_string(bp, str),
8119 dev->base_addr,
8120 bp->pdev->irq, dev->dev_addr);
8121
8122 return 0;
8123
8124 error:
8125 if (bp->mips_firmware)
8126 release_firmware(bp->mips_firmware);
8127 if (bp->rv2p_firmware)
8128 release_firmware(bp->rv2p_firmware);
8129
8130 if (bp->regview)
8131 iounmap(bp->regview);
8132 pci_release_regions(pdev);
8133 pci_disable_device(pdev);
8134 pci_set_drvdata(pdev, NULL);
8135 free_netdev(dev);
8136 return rc;
8137 }
8138
8139 static void __devexit
8140 bnx2_remove_one(struct pci_dev *pdev)
8141 {
8142 struct net_device *dev = pci_get_drvdata(pdev);
8143 struct bnx2 *bp = netdev_priv(dev);
8144
8145 flush_scheduled_work();
8146
8147 unregister_netdev(dev);
8148
8149 if (bp->mips_firmware)
8150 release_firmware(bp->mips_firmware);
8151 if (bp->rv2p_firmware)
8152 release_firmware(bp->rv2p_firmware);
8153
8154 if (bp->regview)
8155 iounmap(bp->regview);
8156
8157 free_netdev(dev);
8158 pci_release_regions(pdev);
8159 pci_disable_device(pdev);
8160 pci_set_drvdata(pdev, NULL);
8161 }
8162
8163 static int
8164 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8165 {
8166 struct net_device *dev = pci_get_drvdata(pdev);
8167 struct bnx2 *bp = netdev_priv(dev);
8168
8169 /* PCI register 4 needs to be saved whether netif_running() or not.
8170 * MSI address and data need to be saved if using MSI and
8171 * netif_running().
8172 */
8173 pci_save_state(pdev);
8174 if (!netif_running(dev))
8175 return 0;
8176
8177 flush_scheduled_work();
8178 bnx2_netif_stop(bp);
8179 netif_device_detach(dev);
8180 del_timer_sync(&bp->timer);
8181 bnx2_shutdown_chip(bp);
8182 bnx2_free_skbs(bp);
8183 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8184 return 0;
8185 }
8186
8187 static int
8188 bnx2_resume(struct pci_dev *pdev)
8189 {
8190 struct net_device *dev = pci_get_drvdata(pdev);
8191 struct bnx2 *bp = netdev_priv(dev);
8192
8193 pci_restore_state(pdev);
8194 if (!netif_running(dev))
8195 return 0;
8196
8197 bnx2_set_power_state(bp, PCI_D0);
8198 netif_device_attach(dev);
8199 bnx2_init_nic(bp, 1);
8200 bnx2_netif_start(bp);
8201 return 0;
8202 }
8203
8204 /**
8205 * bnx2_io_error_detected - called when PCI error is detected
8206 * @pdev: Pointer to PCI device
8207 * @state: The current pci connection state
8208 *
8209 * This function is called after a PCI bus error affecting
8210 * this device has been detected.
8211 */
8212 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8213 pci_channel_state_t state)
8214 {
8215 struct net_device *dev = pci_get_drvdata(pdev);
8216 struct bnx2 *bp = netdev_priv(dev);
8217
8218 rtnl_lock();
8219 netif_device_detach(dev);
8220
8221 if (state == pci_channel_io_perm_failure) {
8222 rtnl_unlock();
8223 return PCI_ERS_RESULT_DISCONNECT;
8224 }
8225
8226 if (netif_running(dev)) {
8227 bnx2_netif_stop(bp);
8228 del_timer_sync(&bp->timer);
8229 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8230 }
8231
8232 pci_disable_device(pdev);
8233 rtnl_unlock();
8234
8235 /* Request a slot slot reset. */
8236 return PCI_ERS_RESULT_NEED_RESET;
8237 }
8238
8239 /**
8240 * bnx2_io_slot_reset - called after the pci bus has been reset.
8241 * @pdev: Pointer to PCI device
8242 *
8243 * Restart the card from scratch, as if from a cold-boot.
8244 */
8245 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8246 {
8247 struct net_device *dev = pci_get_drvdata(pdev);
8248 struct bnx2 *bp = netdev_priv(dev);
8249
8250 rtnl_lock();
8251 if (pci_enable_device(pdev)) {
8252 dev_err(&pdev->dev,
8253 "Cannot re-enable PCI device after reset.\n");
8254 rtnl_unlock();
8255 return PCI_ERS_RESULT_DISCONNECT;
8256 }
8257 pci_set_master(pdev);
8258 pci_restore_state(pdev);
8259
8260 if (netif_running(dev)) {
8261 bnx2_set_power_state(bp, PCI_D0);
8262 bnx2_init_nic(bp, 1);
8263 }
8264
8265 rtnl_unlock();
8266 return PCI_ERS_RESULT_RECOVERED;
8267 }
8268
8269 /**
8270 * bnx2_io_resume - called when traffic can start flowing again.
8271 * @pdev: Pointer to PCI device
8272 *
8273 * This callback is called when the error recovery driver tells us that
8274 * its OK to resume normal operation.
8275 */
8276 static void bnx2_io_resume(struct pci_dev *pdev)
8277 {
8278 struct net_device *dev = pci_get_drvdata(pdev);
8279 struct bnx2 *bp = netdev_priv(dev);
8280
8281 rtnl_lock();
8282 if (netif_running(dev))
8283 bnx2_netif_start(bp);
8284
8285 netif_device_attach(dev);
8286 rtnl_unlock();
8287 }
8288
8289 static struct pci_error_handlers bnx2_err_handler = {
8290 .error_detected = bnx2_io_error_detected,
8291 .slot_reset = bnx2_io_slot_reset,
8292 .resume = bnx2_io_resume,
8293 };
8294
8295 static struct pci_driver bnx2_pci_driver = {
8296 .name = DRV_MODULE_NAME,
8297 .id_table = bnx2_pci_tbl,
8298 .probe = bnx2_init_one,
8299 .remove = __devexit_p(bnx2_remove_one),
8300 .suspend = bnx2_suspend,
8301 .resume = bnx2_resume,
8302 .err_handler = &bnx2_err_handler,
8303 };
8304
8305 static int __init bnx2_init(void)
8306 {
8307 return pci_register_driver(&bnx2_pci_driver);
8308 }
8309
8310 static void __exit bnx2_cleanup(void)
8311 {
8312 pci_unregister_driver(&bnx2_pci_driver);
8313 }
8314
8315 module_init(bnx2_init);
8316 module_exit(bnx2_cleanup);
8317
8318
8319
This page took 0.216324 seconds and 5 git commands to generate.