bnx2: Zero out status block before chip reset.
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #include <linux/if_vlan.h>
39 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/firmware.h>
50 #include <linux/log2.h>
51 #include <linux/list.h>
52
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
54 #define BCM_CNIC 1
55 #include "cnic_if.h"
56 #endif
57 #include "bnx2.h"
58 #include "bnx2_fw.h"
59
60 #define DRV_MODULE_NAME "bnx2"
61 #define PFX DRV_MODULE_NAME ": "
62 #define DRV_MODULE_VERSION "2.0.1"
63 #define DRV_MODULE_RELDATE "May 6, 2009"
64 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-4.6.16.fw"
65 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-4.6.16.fw"
66 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-4.6.17.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-4.6.15.fw"
68
69 #define RUN_AT(x) (jiffies + (x))
70
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
73
74 static char version[] __devinitdata =
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
76
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09);
85
86 static int disable_msi = 0;
87
88 module_param(disable_msi, int, 0);
89 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
90
91 typedef enum {
92 BCM5706 = 0,
93 NC370T,
94 NC370I,
95 BCM5706S,
96 NC370F,
97 BCM5708,
98 BCM5708S,
99 BCM5709,
100 BCM5709S,
101 BCM5716,
102 BCM5716S,
103 } board_t;
104
105 /* indexed by board_t, above */
106 static struct {
107 char *name;
108 } board_info[] __devinitdata = {
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
120 };
121
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
123 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
124 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
125 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
126 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
127 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
128 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
129 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
130 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
131 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
132 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
133 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
134 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
135 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
136 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
137 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
138 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
139 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
140 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
141 { PCI_VENDOR_ID_BROADCOM, 0x163b,
142 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
143 { PCI_VENDOR_ID_BROADCOM, 0x163c,
144 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
145 { 0, }
146 };
147
148 static struct flash_spec flash_table[] =
149 {
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
152 /* Slow EEPROM */
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
155 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
156 "EEPROM - slow"},
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
160 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
161 "Entry 0001"},
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
166 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
172 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
177 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
178 "Entry 0100"},
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
193 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
194 "Non-buffered flash (64kB)"},
195 /* Fast EEPROM */
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
198 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
199 "EEPROM - fast"},
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
203 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
204 "Entry 1001"},
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
209 "Entry 1010"},
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
213 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
218 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
219 "Entry 1100"},
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
223 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
224 "Entry 1101"},
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
228 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
233 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
234 "Buffered flash (256kB)"},
235 };
236
237 static struct flash_spec flash_5709 = {
238 .flags = BNX2_NV_BUFFERED,
239 .page_bits = BCM5709_FLASH_PAGE_BITS,
240 .page_size = BCM5709_FLASH_PAGE_SIZE,
241 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
242 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
243 .name = "5709 Buffered flash (256kB)",
244 };
245
246 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
247
248 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
249 {
250 u32 diff;
251
252 smp_mb();
253
254 /* The ring uses 256 indices for 255 entries, one of them
255 * needs to be skipped.
256 */
257 diff = txr->tx_prod - txr->tx_cons;
258 if (unlikely(diff >= TX_DESC_CNT)) {
259 diff &= 0xffff;
260 if (diff == TX_DESC_CNT)
261 diff = MAX_TX_DESC_CNT;
262 }
263 return (bp->tx_ring_size - diff);
264 }
265
266 static u32
267 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
268 {
269 u32 val;
270
271 spin_lock_bh(&bp->indirect_lock);
272 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
273 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
274 spin_unlock_bh(&bp->indirect_lock);
275 return val;
276 }
277
278 static void
279 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
280 {
281 spin_lock_bh(&bp->indirect_lock);
282 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
283 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
284 spin_unlock_bh(&bp->indirect_lock);
285 }
286
287 static void
288 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
289 {
290 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
291 }
292
293 static u32
294 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
295 {
296 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
297 }
298
299 static void
300 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
301 {
302 offset += cid_addr;
303 spin_lock_bh(&bp->indirect_lock);
304 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
305 int i;
306
307 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
308 REG_WR(bp, BNX2_CTX_CTX_CTRL,
309 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
310 for (i = 0; i < 5; i++) {
311 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
312 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
313 break;
314 udelay(5);
315 }
316 } else {
317 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
318 REG_WR(bp, BNX2_CTX_DATA, val);
319 }
320 spin_unlock_bh(&bp->indirect_lock);
321 }
322
323 #ifdef BCM_CNIC
324 static int
325 bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
326 {
327 struct bnx2 *bp = netdev_priv(dev);
328 struct drv_ctl_io *io = &info->data.io;
329
330 switch (info->cmd) {
331 case DRV_CTL_IO_WR_CMD:
332 bnx2_reg_wr_ind(bp, io->offset, io->data);
333 break;
334 case DRV_CTL_IO_RD_CMD:
335 io->data = bnx2_reg_rd_ind(bp, io->offset);
336 break;
337 case DRV_CTL_CTX_WR_CMD:
338 bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
339 break;
340 default:
341 return -EINVAL;
342 }
343 return 0;
344 }
345
346 static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
347 {
348 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
349 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
350 int sb_id;
351
352 if (bp->flags & BNX2_FLAG_USING_MSIX) {
353 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
354 bnapi->cnic_present = 0;
355 sb_id = bp->irq_nvecs;
356 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
357 } else {
358 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
359 bnapi->cnic_tag = bnapi->last_status_idx;
360 bnapi->cnic_present = 1;
361 sb_id = 0;
362 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
363 }
364
365 cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
366 cp->irq_arr[0].status_blk = (void *)
367 ((unsigned long) bnapi->status_blk.msi +
368 (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
369 cp->irq_arr[0].status_blk_num = sb_id;
370 cp->num_irq = 1;
371 }
372
373 static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
374 void *data)
375 {
376 struct bnx2 *bp = netdev_priv(dev);
377 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
378
379 if (ops == NULL)
380 return -EINVAL;
381
382 if (cp->drv_state & CNIC_DRV_STATE_REGD)
383 return -EBUSY;
384
385 bp->cnic_data = data;
386 rcu_assign_pointer(bp->cnic_ops, ops);
387
388 cp->num_irq = 0;
389 cp->drv_state = CNIC_DRV_STATE_REGD;
390
391 bnx2_setup_cnic_irq_info(bp);
392
393 return 0;
394 }
395
396 static int bnx2_unregister_cnic(struct net_device *dev)
397 {
398 struct bnx2 *bp = netdev_priv(dev);
399 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
400 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
401
402 cp->drv_state = 0;
403 bnapi->cnic_present = 0;
404 rcu_assign_pointer(bp->cnic_ops, NULL);
405 synchronize_rcu();
406 return 0;
407 }
408
409 struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
410 {
411 struct bnx2 *bp = netdev_priv(dev);
412 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
413
414 cp->drv_owner = THIS_MODULE;
415 cp->chip_id = bp->chip_id;
416 cp->pdev = bp->pdev;
417 cp->io_base = bp->regview;
418 cp->drv_ctl = bnx2_drv_ctl;
419 cp->drv_register_cnic = bnx2_register_cnic;
420 cp->drv_unregister_cnic = bnx2_unregister_cnic;
421
422 return cp;
423 }
424 EXPORT_SYMBOL(bnx2_cnic_probe);
425
426 static void
427 bnx2_cnic_stop(struct bnx2 *bp)
428 {
429 struct cnic_ops *c_ops;
430 struct cnic_ctl_info info;
431
432 rcu_read_lock();
433 c_ops = rcu_dereference(bp->cnic_ops);
434 if (c_ops) {
435 info.cmd = CNIC_CTL_STOP_CMD;
436 c_ops->cnic_ctl(bp->cnic_data, &info);
437 }
438 rcu_read_unlock();
439 }
440
441 static void
442 bnx2_cnic_start(struct bnx2 *bp)
443 {
444 struct cnic_ops *c_ops;
445 struct cnic_ctl_info info;
446
447 rcu_read_lock();
448 c_ops = rcu_dereference(bp->cnic_ops);
449 if (c_ops) {
450 if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
451 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
452
453 bnapi->cnic_tag = bnapi->last_status_idx;
454 }
455 info.cmd = CNIC_CTL_START_CMD;
456 c_ops->cnic_ctl(bp->cnic_data, &info);
457 }
458 rcu_read_unlock();
459 }
460
461 #else
462
463 static void
464 bnx2_cnic_stop(struct bnx2 *bp)
465 {
466 }
467
468 static void
469 bnx2_cnic_start(struct bnx2 *bp)
470 {
471 }
472
473 #endif
474
475 static int
476 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
477 {
478 u32 val1;
479 int i, ret;
480
481 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
482 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
483 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
484
485 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
486 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
487
488 udelay(40);
489 }
490
491 val1 = (bp->phy_addr << 21) | (reg << 16) |
492 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
493 BNX2_EMAC_MDIO_COMM_START_BUSY;
494 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
495
496 for (i = 0; i < 50; i++) {
497 udelay(10);
498
499 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
500 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
501 udelay(5);
502
503 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
504 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
505
506 break;
507 }
508 }
509
510 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
511 *val = 0x0;
512 ret = -EBUSY;
513 }
514 else {
515 *val = val1;
516 ret = 0;
517 }
518
519 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
520 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
521 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
522
523 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
524 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
525
526 udelay(40);
527 }
528
529 return ret;
530 }
531
532 static int
533 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
534 {
535 u32 val1;
536 int i, ret;
537
538 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
539 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
540 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
541
542 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
543 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
544
545 udelay(40);
546 }
547
548 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
549 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
550 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
551 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
552
553 for (i = 0; i < 50; i++) {
554 udelay(10);
555
556 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
557 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
558 udelay(5);
559 break;
560 }
561 }
562
563 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
564 ret = -EBUSY;
565 else
566 ret = 0;
567
568 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
569 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
570 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
571
572 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
573 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
574
575 udelay(40);
576 }
577
578 return ret;
579 }
580
581 static void
582 bnx2_disable_int(struct bnx2 *bp)
583 {
584 int i;
585 struct bnx2_napi *bnapi;
586
587 for (i = 0; i < bp->irq_nvecs; i++) {
588 bnapi = &bp->bnx2_napi[i];
589 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
590 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
591 }
592 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
593 }
594
595 static void
596 bnx2_enable_int(struct bnx2 *bp)
597 {
598 int i;
599 struct bnx2_napi *bnapi;
600
601 for (i = 0; i < bp->irq_nvecs; i++) {
602 bnapi = &bp->bnx2_napi[i];
603
604 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
605 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
606 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
607 bnapi->last_status_idx);
608
609 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
611 bnapi->last_status_idx);
612 }
613 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
614 }
615
616 static void
617 bnx2_disable_int_sync(struct bnx2 *bp)
618 {
619 int i;
620
621 atomic_inc(&bp->intr_sem);
622 bnx2_disable_int(bp);
623 for (i = 0; i < bp->irq_nvecs; i++)
624 synchronize_irq(bp->irq_tbl[i].vector);
625 }
626
627 static void
628 bnx2_napi_disable(struct bnx2 *bp)
629 {
630 int i;
631
632 for (i = 0; i < bp->irq_nvecs; i++)
633 napi_disable(&bp->bnx2_napi[i].napi);
634 }
635
636 static void
637 bnx2_napi_enable(struct bnx2 *bp)
638 {
639 int i;
640
641 for (i = 0; i < bp->irq_nvecs; i++)
642 napi_enable(&bp->bnx2_napi[i].napi);
643 }
644
645 static void
646 bnx2_netif_stop(struct bnx2 *bp)
647 {
648 bnx2_cnic_stop(bp);
649 bnx2_disable_int_sync(bp);
650 if (netif_running(bp->dev)) {
651 bnx2_napi_disable(bp);
652 netif_tx_disable(bp->dev);
653 bp->dev->trans_start = jiffies; /* prevent tx timeout */
654 }
655 }
656
657 static void
658 bnx2_netif_start(struct bnx2 *bp)
659 {
660 if (atomic_dec_and_test(&bp->intr_sem)) {
661 if (netif_running(bp->dev)) {
662 netif_tx_wake_all_queues(bp->dev);
663 bnx2_napi_enable(bp);
664 bnx2_enable_int(bp);
665 bnx2_cnic_start(bp);
666 }
667 }
668 }
669
670 static void
671 bnx2_free_tx_mem(struct bnx2 *bp)
672 {
673 int i;
674
675 for (i = 0; i < bp->num_tx_rings; i++) {
676 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
677 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
678
679 if (txr->tx_desc_ring) {
680 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
681 txr->tx_desc_ring,
682 txr->tx_desc_mapping);
683 txr->tx_desc_ring = NULL;
684 }
685 kfree(txr->tx_buf_ring);
686 txr->tx_buf_ring = NULL;
687 }
688 }
689
690 static void
691 bnx2_free_rx_mem(struct bnx2 *bp)
692 {
693 int i;
694
695 for (i = 0; i < bp->num_rx_rings; i++) {
696 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
697 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
698 int j;
699
700 for (j = 0; j < bp->rx_max_ring; j++) {
701 if (rxr->rx_desc_ring[j])
702 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
703 rxr->rx_desc_ring[j],
704 rxr->rx_desc_mapping[j]);
705 rxr->rx_desc_ring[j] = NULL;
706 }
707 vfree(rxr->rx_buf_ring);
708 rxr->rx_buf_ring = NULL;
709
710 for (j = 0; j < bp->rx_max_pg_ring; j++) {
711 if (rxr->rx_pg_desc_ring[j])
712 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
713 rxr->rx_pg_desc_ring[j],
714 rxr->rx_pg_desc_mapping[j]);
715 rxr->rx_pg_desc_ring[j] = NULL;
716 }
717 vfree(rxr->rx_pg_ring);
718 rxr->rx_pg_ring = NULL;
719 }
720 }
721
722 static int
723 bnx2_alloc_tx_mem(struct bnx2 *bp)
724 {
725 int i;
726
727 for (i = 0; i < bp->num_tx_rings; i++) {
728 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
729 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
730
731 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
732 if (txr->tx_buf_ring == NULL)
733 return -ENOMEM;
734
735 txr->tx_desc_ring =
736 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
737 &txr->tx_desc_mapping);
738 if (txr->tx_desc_ring == NULL)
739 return -ENOMEM;
740 }
741 return 0;
742 }
743
744 static int
745 bnx2_alloc_rx_mem(struct bnx2 *bp)
746 {
747 int i;
748
749 for (i = 0; i < bp->num_rx_rings; i++) {
750 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
751 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
752 int j;
753
754 rxr->rx_buf_ring =
755 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
756 if (rxr->rx_buf_ring == NULL)
757 return -ENOMEM;
758
759 memset(rxr->rx_buf_ring, 0,
760 SW_RXBD_RING_SIZE * bp->rx_max_ring);
761
762 for (j = 0; j < bp->rx_max_ring; j++) {
763 rxr->rx_desc_ring[j] =
764 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
765 &rxr->rx_desc_mapping[j]);
766 if (rxr->rx_desc_ring[j] == NULL)
767 return -ENOMEM;
768
769 }
770
771 if (bp->rx_pg_ring_size) {
772 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
773 bp->rx_max_pg_ring);
774 if (rxr->rx_pg_ring == NULL)
775 return -ENOMEM;
776
777 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
778 bp->rx_max_pg_ring);
779 }
780
781 for (j = 0; j < bp->rx_max_pg_ring; j++) {
782 rxr->rx_pg_desc_ring[j] =
783 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
784 &rxr->rx_pg_desc_mapping[j]);
785 if (rxr->rx_pg_desc_ring[j] == NULL)
786 return -ENOMEM;
787
788 }
789 }
790 return 0;
791 }
792
793 static void
794 bnx2_free_mem(struct bnx2 *bp)
795 {
796 int i;
797 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
798
799 bnx2_free_tx_mem(bp);
800 bnx2_free_rx_mem(bp);
801
802 for (i = 0; i < bp->ctx_pages; i++) {
803 if (bp->ctx_blk[i]) {
804 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
805 bp->ctx_blk[i],
806 bp->ctx_blk_mapping[i]);
807 bp->ctx_blk[i] = NULL;
808 }
809 }
810 if (bnapi->status_blk.msi) {
811 pci_free_consistent(bp->pdev, bp->status_stats_size,
812 bnapi->status_blk.msi,
813 bp->status_blk_mapping);
814 bnapi->status_blk.msi = NULL;
815 bp->stats_blk = NULL;
816 }
817 }
818
819 static int
820 bnx2_alloc_mem(struct bnx2 *bp)
821 {
822 int i, status_blk_size, err;
823 struct bnx2_napi *bnapi;
824 void *status_blk;
825
826 /* Combine status and statistics blocks into one allocation. */
827 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
828 if (bp->flags & BNX2_FLAG_MSIX_CAP)
829 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
830 BNX2_SBLK_MSIX_ALIGN_SIZE);
831 bp->status_stats_size = status_blk_size +
832 sizeof(struct statistics_block);
833
834 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
835 &bp->status_blk_mapping);
836 if (status_blk == NULL)
837 goto alloc_mem_err;
838
839 memset(status_blk, 0, bp->status_stats_size);
840
841 bnapi = &bp->bnx2_napi[0];
842 bnapi->status_blk.msi = status_blk;
843 bnapi->hw_tx_cons_ptr =
844 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
845 bnapi->hw_rx_cons_ptr =
846 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
847 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
848 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
849 struct status_block_msix *sblk;
850
851 bnapi = &bp->bnx2_napi[i];
852
853 sblk = (void *) (status_blk +
854 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
855 bnapi->status_blk.msix = sblk;
856 bnapi->hw_tx_cons_ptr =
857 &sblk->status_tx_quick_consumer_index;
858 bnapi->hw_rx_cons_ptr =
859 &sblk->status_rx_quick_consumer_index;
860 bnapi->int_num = i << 24;
861 }
862 }
863
864 bp->stats_blk = status_blk + status_blk_size;
865
866 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
867
868 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
869 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
870 if (bp->ctx_pages == 0)
871 bp->ctx_pages = 1;
872 for (i = 0; i < bp->ctx_pages; i++) {
873 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
874 BCM_PAGE_SIZE,
875 &bp->ctx_blk_mapping[i]);
876 if (bp->ctx_blk[i] == NULL)
877 goto alloc_mem_err;
878 }
879 }
880
881 err = bnx2_alloc_rx_mem(bp);
882 if (err)
883 goto alloc_mem_err;
884
885 err = bnx2_alloc_tx_mem(bp);
886 if (err)
887 goto alloc_mem_err;
888
889 return 0;
890
891 alloc_mem_err:
892 bnx2_free_mem(bp);
893 return -ENOMEM;
894 }
895
896 static void
897 bnx2_report_fw_link(struct bnx2 *bp)
898 {
899 u32 fw_link_status = 0;
900
901 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
902 return;
903
904 if (bp->link_up) {
905 u32 bmsr;
906
907 switch (bp->line_speed) {
908 case SPEED_10:
909 if (bp->duplex == DUPLEX_HALF)
910 fw_link_status = BNX2_LINK_STATUS_10HALF;
911 else
912 fw_link_status = BNX2_LINK_STATUS_10FULL;
913 break;
914 case SPEED_100:
915 if (bp->duplex == DUPLEX_HALF)
916 fw_link_status = BNX2_LINK_STATUS_100HALF;
917 else
918 fw_link_status = BNX2_LINK_STATUS_100FULL;
919 break;
920 case SPEED_1000:
921 if (bp->duplex == DUPLEX_HALF)
922 fw_link_status = BNX2_LINK_STATUS_1000HALF;
923 else
924 fw_link_status = BNX2_LINK_STATUS_1000FULL;
925 break;
926 case SPEED_2500:
927 if (bp->duplex == DUPLEX_HALF)
928 fw_link_status = BNX2_LINK_STATUS_2500HALF;
929 else
930 fw_link_status = BNX2_LINK_STATUS_2500FULL;
931 break;
932 }
933
934 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
935
936 if (bp->autoneg) {
937 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
938
939 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
940 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
941
942 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
943 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
944 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
945 else
946 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
947 }
948 }
949 else
950 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
951
952 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
953 }
954
955 static char *
956 bnx2_xceiver_str(struct bnx2 *bp)
957 {
958 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
959 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
960 "Copper"));
961 }
962
963 static void
964 bnx2_report_link(struct bnx2 *bp)
965 {
966 if (bp->link_up) {
967 netif_carrier_on(bp->dev);
968 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
969 bnx2_xceiver_str(bp));
970
971 printk("%d Mbps ", bp->line_speed);
972
973 if (bp->duplex == DUPLEX_FULL)
974 printk("full duplex");
975 else
976 printk("half duplex");
977
978 if (bp->flow_ctrl) {
979 if (bp->flow_ctrl & FLOW_CTRL_RX) {
980 printk(", receive ");
981 if (bp->flow_ctrl & FLOW_CTRL_TX)
982 printk("& transmit ");
983 }
984 else {
985 printk(", transmit ");
986 }
987 printk("flow control ON");
988 }
989 printk("\n");
990 }
991 else {
992 netif_carrier_off(bp->dev);
993 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
994 bnx2_xceiver_str(bp));
995 }
996
997 bnx2_report_fw_link(bp);
998 }
999
1000 static void
1001 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
1002 {
1003 u32 local_adv, remote_adv;
1004
1005 bp->flow_ctrl = 0;
1006 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1007 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1008
1009 if (bp->duplex == DUPLEX_FULL) {
1010 bp->flow_ctrl = bp->req_flow_ctrl;
1011 }
1012 return;
1013 }
1014
1015 if (bp->duplex != DUPLEX_FULL) {
1016 return;
1017 }
1018
1019 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1020 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
1021 u32 val;
1022
1023 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1024 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
1025 bp->flow_ctrl |= FLOW_CTRL_TX;
1026 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
1027 bp->flow_ctrl |= FLOW_CTRL_RX;
1028 return;
1029 }
1030
1031 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1032 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1033
1034 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1035 u32 new_local_adv = 0;
1036 u32 new_remote_adv = 0;
1037
1038 if (local_adv & ADVERTISE_1000XPAUSE)
1039 new_local_adv |= ADVERTISE_PAUSE_CAP;
1040 if (local_adv & ADVERTISE_1000XPSE_ASYM)
1041 new_local_adv |= ADVERTISE_PAUSE_ASYM;
1042 if (remote_adv & ADVERTISE_1000XPAUSE)
1043 new_remote_adv |= ADVERTISE_PAUSE_CAP;
1044 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
1045 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
1046
1047 local_adv = new_local_adv;
1048 remote_adv = new_remote_adv;
1049 }
1050
1051 /* See Table 28B-3 of 802.3ab-1999 spec. */
1052 if (local_adv & ADVERTISE_PAUSE_CAP) {
1053 if(local_adv & ADVERTISE_PAUSE_ASYM) {
1054 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1055 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1056 }
1057 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
1058 bp->flow_ctrl = FLOW_CTRL_RX;
1059 }
1060 }
1061 else {
1062 if (remote_adv & ADVERTISE_PAUSE_CAP) {
1063 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
1064 }
1065 }
1066 }
1067 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
1068 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
1069 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
1070
1071 bp->flow_ctrl = FLOW_CTRL_TX;
1072 }
1073 }
1074 }
1075
1076 static int
1077 bnx2_5709s_linkup(struct bnx2 *bp)
1078 {
1079 u32 val, speed;
1080
1081 bp->link_up = 1;
1082
1083 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
1084 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
1085 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1086
1087 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
1088 bp->line_speed = bp->req_line_speed;
1089 bp->duplex = bp->req_duplex;
1090 return 0;
1091 }
1092 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
1093 switch (speed) {
1094 case MII_BNX2_GP_TOP_AN_SPEED_10:
1095 bp->line_speed = SPEED_10;
1096 break;
1097 case MII_BNX2_GP_TOP_AN_SPEED_100:
1098 bp->line_speed = SPEED_100;
1099 break;
1100 case MII_BNX2_GP_TOP_AN_SPEED_1G:
1101 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
1102 bp->line_speed = SPEED_1000;
1103 break;
1104 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
1105 bp->line_speed = SPEED_2500;
1106 break;
1107 }
1108 if (val & MII_BNX2_GP_TOP_AN_FD)
1109 bp->duplex = DUPLEX_FULL;
1110 else
1111 bp->duplex = DUPLEX_HALF;
1112 return 0;
1113 }
1114
1115 static int
1116 bnx2_5708s_linkup(struct bnx2 *bp)
1117 {
1118 u32 val;
1119
1120 bp->link_up = 1;
1121 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
1122 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
1123 case BCM5708S_1000X_STAT1_SPEED_10:
1124 bp->line_speed = SPEED_10;
1125 break;
1126 case BCM5708S_1000X_STAT1_SPEED_100:
1127 bp->line_speed = SPEED_100;
1128 break;
1129 case BCM5708S_1000X_STAT1_SPEED_1G:
1130 bp->line_speed = SPEED_1000;
1131 break;
1132 case BCM5708S_1000X_STAT1_SPEED_2G5:
1133 bp->line_speed = SPEED_2500;
1134 break;
1135 }
1136 if (val & BCM5708S_1000X_STAT1_FD)
1137 bp->duplex = DUPLEX_FULL;
1138 else
1139 bp->duplex = DUPLEX_HALF;
1140
1141 return 0;
1142 }
1143
1144 static int
1145 bnx2_5706s_linkup(struct bnx2 *bp)
1146 {
1147 u32 bmcr, local_adv, remote_adv, common;
1148
1149 bp->link_up = 1;
1150 bp->line_speed = SPEED_1000;
1151
1152 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1153 if (bmcr & BMCR_FULLDPLX) {
1154 bp->duplex = DUPLEX_FULL;
1155 }
1156 else {
1157 bp->duplex = DUPLEX_HALF;
1158 }
1159
1160 if (!(bmcr & BMCR_ANENABLE)) {
1161 return 0;
1162 }
1163
1164 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1165 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1166
1167 common = local_adv & remote_adv;
1168 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
1169
1170 if (common & ADVERTISE_1000XFULL) {
1171 bp->duplex = DUPLEX_FULL;
1172 }
1173 else {
1174 bp->duplex = DUPLEX_HALF;
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
1181 static int
1182 bnx2_copper_linkup(struct bnx2 *bp)
1183 {
1184 u32 bmcr;
1185
1186 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1187 if (bmcr & BMCR_ANENABLE) {
1188 u32 local_adv, remote_adv, common;
1189
1190 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1191 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1192
1193 common = local_adv & (remote_adv >> 2);
1194 if (common & ADVERTISE_1000FULL) {
1195 bp->line_speed = SPEED_1000;
1196 bp->duplex = DUPLEX_FULL;
1197 }
1198 else if (common & ADVERTISE_1000HALF) {
1199 bp->line_speed = SPEED_1000;
1200 bp->duplex = DUPLEX_HALF;
1201 }
1202 else {
1203 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1204 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1205
1206 common = local_adv & remote_adv;
1207 if (common & ADVERTISE_100FULL) {
1208 bp->line_speed = SPEED_100;
1209 bp->duplex = DUPLEX_FULL;
1210 }
1211 else if (common & ADVERTISE_100HALF) {
1212 bp->line_speed = SPEED_100;
1213 bp->duplex = DUPLEX_HALF;
1214 }
1215 else if (common & ADVERTISE_10FULL) {
1216 bp->line_speed = SPEED_10;
1217 bp->duplex = DUPLEX_FULL;
1218 }
1219 else if (common & ADVERTISE_10HALF) {
1220 bp->line_speed = SPEED_10;
1221 bp->duplex = DUPLEX_HALF;
1222 }
1223 else {
1224 bp->line_speed = 0;
1225 bp->link_up = 0;
1226 }
1227 }
1228 }
1229 else {
1230 if (bmcr & BMCR_SPEED100) {
1231 bp->line_speed = SPEED_100;
1232 }
1233 else {
1234 bp->line_speed = SPEED_10;
1235 }
1236 if (bmcr & BMCR_FULLDPLX) {
1237 bp->duplex = DUPLEX_FULL;
1238 }
1239 else {
1240 bp->duplex = DUPLEX_HALF;
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
1247 static void
1248 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1249 {
1250 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1251
1252 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1253 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1254 val |= 0x02 << 8;
1255
1256 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1257 u32 lo_water, hi_water;
1258
1259 if (bp->flow_ctrl & FLOW_CTRL_TX)
1260 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1261 else
1262 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1263 if (lo_water >= bp->rx_ring_size)
1264 lo_water = 0;
1265
1266 hi_water = bp->rx_ring_size / 4;
1267
1268 if (hi_water <= lo_water)
1269 lo_water = 0;
1270
1271 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1272 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1273
1274 if (hi_water > 0xf)
1275 hi_water = 0xf;
1276 else if (hi_water == 0)
1277 lo_water = 0;
1278 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1279 }
1280 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1281 }
1282
1283 static void
1284 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1285 {
1286 int i;
1287 u32 cid;
1288
1289 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1290 if (i == 1)
1291 cid = RX_RSS_CID;
1292 bnx2_init_rx_context(bp, cid);
1293 }
1294 }
1295
1296 static void
1297 bnx2_set_mac_link(struct bnx2 *bp)
1298 {
1299 u32 val;
1300
1301 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1302 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1303 (bp->duplex == DUPLEX_HALF)) {
1304 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1305 }
1306
1307 /* Configure the EMAC mode register. */
1308 val = REG_RD(bp, BNX2_EMAC_MODE);
1309
1310 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1311 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1312 BNX2_EMAC_MODE_25G_MODE);
1313
1314 if (bp->link_up) {
1315 switch (bp->line_speed) {
1316 case SPEED_10:
1317 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1318 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1319 break;
1320 }
1321 /* fall through */
1322 case SPEED_100:
1323 val |= BNX2_EMAC_MODE_PORT_MII;
1324 break;
1325 case SPEED_2500:
1326 val |= BNX2_EMAC_MODE_25G_MODE;
1327 /* fall through */
1328 case SPEED_1000:
1329 val |= BNX2_EMAC_MODE_PORT_GMII;
1330 break;
1331 }
1332 }
1333 else {
1334 val |= BNX2_EMAC_MODE_PORT_GMII;
1335 }
1336
1337 /* Set the MAC to operate in the appropriate duplex mode. */
1338 if (bp->duplex == DUPLEX_HALF)
1339 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1340 REG_WR(bp, BNX2_EMAC_MODE, val);
1341
1342 /* Enable/disable rx PAUSE. */
1343 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1344
1345 if (bp->flow_ctrl & FLOW_CTRL_RX)
1346 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1347 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1348
1349 /* Enable/disable tx PAUSE. */
1350 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1351 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1352
1353 if (bp->flow_ctrl & FLOW_CTRL_TX)
1354 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1355 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1356
1357 /* Acknowledge the interrupt. */
1358 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1359
1360 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1361 bnx2_init_all_rx_contexts(bp);
1362 }
1363
1364 static void
1365 bnx2_enable_bmsr1(struct bnx2 *bp)
1366 {
1367 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1368 (CHIP_NUM(bp) == CHIP_NUM_5709))
1369 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1370 MII_BNX2_BLK_ADDR_GP_STATUS);
1371 }
1372
1373 static void
1374 bnx2_disable_bmsr1(struct bnx2 *bp)
1375 {
1376 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1377 (CHIP_NUM(bp) == CHIP_NUM_5709))
1378 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1379 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1380 }
1381
1382 static int
1383 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1384 {
1385 u32 up1;
1386 int ret = 1;
1387
1388 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1389 return 0;
1390
1391 if (bp->autoneg & AUTONEG_SPEED)
1392 bp->advertising |= ADVERTISED_2500baseX_Full;
1393
1394 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1395 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1396
1397 bnx2_read_phy(bp, bp->mii_up1, &up1);
1398 if (!(up1 & BCM5708S_UP1_2G5)) {
1399 up1 |= BCM5708S_UP1_2G5;
1400 bnx2_write_phy(bp, bp->mii_up1, up1);
1401 ret = 0;
1402 }
1403
1404 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1405 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1406 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1407
1408 return ret;
1409 }
1410
1411 static int
1412 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1413 {
1414 u32 up1;
1415 int ret = 0;
1416
1417 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1418 return 0;
1419
1420 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1421 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1422
1423 bnx2_read_phy(bp, bp->mii_up1, &up1);
1424 if (up1 & BCM5708S_UP1_2G5) {
1425 up1 &= ~BCM5708S_UP1_2G5;
1426 bnx2_write_phy(bp, bp->mii_up1, up1);
1427 ret = 1;
1428 }
1429
1430 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1431 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1432 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1433
1434 return ret;
1435 }
1436
1437 static void
1438 bnx2_enable_forced_2g5(struct bnx2 *bp)
1439 {
1440 u32 bmcr;
1441
1442 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1443 return;
1444
1445 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1446 u32 val;
1447
1448 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1449 MII_BNX2_BLK_ADDR_SERDES_DIG);
1450 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1451 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1452 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1453 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1454
1455 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1456 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1457 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1458
1459 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1460 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1461 bmcr |= BCM5708S_BMCR_FORCE_2500;
1462 }
1463
1464 if (bp->autoneg & AUTONEG_SPEED) {
1465 bmcr &= ~BMCR_ANENABLE;
1466 if (bp->req_duplex == DUPLEX_FULL)
1467 bmcr |= BMCR_FULLDPLX;
1468 }
1469 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1470 }
1471
1472 static void
1473 bnx2_disable_forced_2g5(struct bnx2 *bp)
1474 {
1475 u32 bmcr;
1476
1477 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1478 return;
1479
1480 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1481 u32 val;
1482
1483 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1484 MII_BNX2_BLK_ADDR_SERDES_DIG);
1485 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1486 val &= ~MII_BNX2_SD_MISC1_FORCE;
1487 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1488
1489 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1490 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1491 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1492
1493 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1494 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1495 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1496 }
1497
1498 if (bp->autoneg & AUTONEG_SPEED)
1499 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1500 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1501 }
1502
1503 static void
1504 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1505 {
1506 u32 val;
1507
1508 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1509 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1510 if (start)
1511 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1512 else
1513 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1514 }
1515
1516 static int
1517 bnx2_set_link(struct bnx2 *bp)
1518 {
1519 u32 bmsr;
1520 u8 link_up;
1521
1522 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1523 bp->link_up = 1;
1524 return 0;
1525 }
1526
1527 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1528 return 0;
1529
1530 link_up = bp->link_up;
1531
1532 bnx2_enable_bmsr1(bp);
1533 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1534 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1535 bnx2_disable_bmsr1(bp);
1536
1537 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1538 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1539 u32 val, an_dbg;
1540
1541 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1542 bnx2_5706s_force_link_dn(bp, 0);
1543 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1544 }
1545 val = REG_RD(bp, BNX2_EMAC_STATUS);
1546
1547 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1548 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1549 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1550
1551 if ((val & BNX2_EMAC_STATUS_LINK) &&
1552 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1553 bmsr |= BMSR_LSTATUS;
1554 else
1555 bmsr &= ~BMSR_LSTATUS;
1556 }
1557
1558 if (bmsr & BMSR_LSTATUS) {
1559 bp->link_up = 1;
1560
1561 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1562 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1563 bnx2_5706s_linkup(bp);
1564 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1565 bnx2_5708s_linkup(bp);
1566 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1567 bnx2_5709s_linkup(bp);
1568 }
1569 else {
1570 bnx2_copper_linkup(bp);
1571 }
1572 bnx2_resolve_flow_ctrl(bp);
1573 }
1574 else {
1575 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1576 (bp->autoneg & AUTONEG_SPEED))
1577 bnx2_disable_forced_2g5(bp);
1578
1579 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1580 u32 bmcr;
1581
1582 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1583 bmcr |= BMCR_ANENABLE;
1584 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1585
1586 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1587 }
1588 bp->link_up = 0;
1589 }
1590
1591 if (bp->link_up != link_up) {
1592 bnx2_report_link(bp);
1593 }
1594
1595 bnx2_set_mac_link(bp);
1596
1597 return 0;
1598 }
1599
1600 static int
1601 bnx2_reset_phy(struct bnx2 *bp)
1602 {
1603 int i;
1604 u32 reg;
1605
1606 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1607
1608 #define PHY_RESET_MAX_WAIT 100
1609 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1610 udelay(10);
1611
1612 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1613 if (!(reg & BMCR_RESET)) {
1614 udelay(20);
1615 break;
1616 }
1617 }
1618 if (i == PHY_RESET_MAX_WAIT) {
1619 return -EBUSY;
1620 }
1621 return 0;
1622 }
1623
1624 static u32
1625 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1626 {
1627 u32 adv = 0;
1628
1629 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1630 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1631
1632 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1633 adv = ADVERTISE_1000XPAUSE;
1634 }
1635 else {
1636 adv = ADVERTISE_PAUSE_CAP;
1637 }
1638 }
1639 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1640 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1641 adv = ADVERTISE_1000XPSE_ASYM;
1642 }
1643 else {
1644 adv = ADVERTISE_PAUSE_ASYM;
1645 }
1646 }
1647 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1648 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1649 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1650 }
1651 else {
1652 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1653 }
1654 }
1655 return adv;
1656 }
1657
1658 static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
1659
1660 static int
1661 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1662 __releases(&bp->phy_lock)
1663 __acquires(&bp->phy_lock)
1664 {
1665 u32 speed_arg = 0, pause_adv;
1666
1667 pause_adv = bnx2_phy_get_pause_adv(bp);
1668
1669 if (bp->autoneg & AUTONEG_SPEED) {
1670 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1671 if (bp->advertising & ADVERTISED_10baseT_Half)
1672 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1673 if (bp->advertising & ADVERTISED_10baseT_Full)
1674 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1675 if (bp->advertising & ADVERTISED_100baseT_Half)
1676 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1677 if (bp->advertising & ADVERTISED_100baseT_Full)
1678 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1679 if (bp->advertising & ADVERTISED_1000baseT_Full)
1680 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1681 if (bp->advertising & ADVERTISED_2500baseX_Full)
1682 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1683 } else {
1684 if (bp->req_line_speed == SPEED_2500)
1685 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1686 else if (bp->req_line_speed == SPEED_1000)
1687 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1688 else if (bp->req_line_speed == SPEED_100) {
1689 if (bp->req_duplex == DUPLEX_FULL)
1690 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1691 else
1692 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1693 } else if (bp->req_line_speed == SPEED_10) {
1694 if (bp->req_duplex == DUPLEX_FULL)
1695 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1696 else
1697 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1698 }
1699 }
1700
1701 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1702 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1703 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1704 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1705
1706 if (port == PORT_TP)
1707 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1708 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1709
1710 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1711
1712 spin_unlock_bh(&bp->phy_lock);
1713 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
1714 spin_lock_bh(&bp->phy_lock);
1715
1716 return 0;
1717 }
1718
1719 static int
1720 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1721 __releases(&bp->phy_lock)
1722 __acquires(&bp->phy_lock)
1723 {
1724 u32 adv, bmcr;
1725 u32 new_adv = 0;
1726
1727 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1728 return (bnx2_setup_remote_phy(bp, port));
1729
1730 if (!(bp->autoneg & AUTONEG_SPEED)) {
1731 u32 new_bmcr;
1732 int force_link_down = 0;
1733
1734 if (bp->req_line_speed == SPEED_2500) {
1735 if (!bnx2_test_and_enable_2g5(bp))
1736 force_link_down = 1;
1737 } else if (bp->req_line_speed == SPEED_1000) {
1738 if (bnx2_test_and_disable_2g5(bp))
1739 force_link_down = 1;
1740 }
1741 bnx2_read_phy(bp, bp->mii_adv, &adv);
1742 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1743
1744 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1745 new_bmcr = bmcr & ~BMCR_ANENABLE;
1746 new_bmcr |= BMCR_SPEED1000;
1747
1748 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1749 if (bp->req_line_speed == SPEED_2500)
1750 bnx2_enable_forced_2g5(bp);
1751 else if (bp->req_line_speed == SPEED_1000) {
1752 bnx2_disable_forced_2g5(bp);
1753 new_bmcr &= ~0x2000;
1754 }
1755
1756 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1757 if (bp->req_line_speed == SPEED_2500)
1758 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1759 else
1760 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1761 }
1762
1763 if (bp->req_duplex == DUPLEX_FULL) {
1764 adv |= ADVERTISE_1000XFULL;
1765 new_bmcr |= BMCR_FULLDPLX;
1766 }
1767 else {
1768 adv |= ADVERTISE_1000XHALF;
1769 new_bmcr &= ~BMCR_FULLDPLX;
1770 }
1771 if ((new_bmcr != bmcr) || (force_link_down)) {
1772 /* Force a link down visible on the other side */
1773 if (bp->link_up) {
1774 bnx2_write_phy(bp, bp->mii_adv, adv &
1775 ~(ADVERTISE_1000XFULL |
1776 ADVERTISE_1000XHALF));
1777 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1778 BMCR_ANRESTART | BMCR_ANENABLE);
1779
1780 bp->link_up = 0;
1781 netif_carrier_off(bp->dev);
1782 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1783 bnx2_report_link(bp);
1784 }
1785 bnx2_write_phy(bp, bp->mii_adv, adv);
1786 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1787 } else {
1788 bnx2_resolve_flow_ctrl(bp);
1789 bnx2_set_mac_link(bp);
1790 }
1791 return 0;
1792 }
1793
1794 bnx2_test_and_enable_2g5(bp);
1795
1796 if (bp->advertising & ADVERTISED_1000baseT_Full)
1797 new_adv |= ADVERTISE_1000XFULL;
1798
1799 new_adv |= bnx2_phy_get_pause_adv(bp);
1800
1801 bnx2_read_phy(bp, bp->mii_adv, &adv);
1802 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1803
1804 bp->serdes_an_pending = 0;
1805 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1806 /* Force a link down visible on the other side */
1807 if (bp->link_up) {
1808 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1809 spin_unlock_bh(&bp->phy_lock);
1810 msleep(20);
1811 spin_lock_bh(&bp->phy_lock);
1812 }
1813
1814 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1815 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1816 BMCR_ANENABLE);
1817 /* Speed up link-up time when the link partner
1818 * does not autonegotiate which is very common
1819 * in blade servers. Some blade servers use
1820 * IPMI for kerboard input and it's important
1821 * to minimize link disruptions. Autoneg. involves
1822 * exchanging base pages plus 3 next pages and
1823 * normally completes in about 120 msec.
1824 */
1825 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
1826 bp->serdes_an_pending = 1;
1827 mod_timer(&bp->timer, jiffies + bp->current_interval);
1828 } else {
1829 bnx2_resolve_flow_ctrl(bp);
1830 bnx2_set_mac_link(bp);
1831 }
1832
1833 return 0;
1834 }
1835
1836 #define ETHTOOL_ALL_FIBRE_SPEED \
1837 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1838 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1839 (ADVERTISED_1000baseT_Full)
1840
1841 #define ETHTOOL_ALL_COPPER_SPEED \
1842 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1843 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1844 ADVERTISED_1000baseT_Full)
1845
1846 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1847 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1848
1849 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1850
1851 static void
1852 bnx2_set_default_remote_link(struct bnx2 *bp)
1853 {
1854 u32 link;
1855
1856 if (bp->phy_port == PORT_TP)
1857 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1858 else
1859 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1860
1861 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1862 bp->req_line_speed = 0;
1863 bp->autoneg |= AUTONEG_SPEED;
1864 bp->advertising = ADVERTISED_Autoneg;
1865 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1866 bp->advertising |= ADVERTISED_10baseT_Half;
1867 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1868 bp->advertising |= ADVERTISED_10baseT_Full;
1869 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1870 bp->advertising |= ADVERTISED_100baseT_Half;
1871 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1872 bp->advertising |= ADVERTISED_100baseT_Full;
1873 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1874 bp->advertising |= ADVERTISED_1000baseT_Full;
1875 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1876 bp->advertising |= ADVERTISED_2500baseX_Full;
1877 } else {
1878 bp->autoneg = 0;
1879 bp->advertising = 0;
1880 bp->req_duplex = DUPLEX_FULL;
1881 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1882 bp->req_line_speed = SPEED_10;
1883 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1884 bp->req_duplex = DUPLEX_HALF;
1885 }
1886 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1887 bp->req_line_speed = SPEED_100;
1888 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1889 bp->req_duplex = DUPLEX_HALF;
1890 }
1891 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1892 bp->req_line_speed = SPEED_1000;
1893 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1894 bp->req_line_speed = SPEED_2500;
1895 }
1896 }
1897
1898 static void
1899 bnx2_set_default_link(struct bnx2 *bp)
1900 {
1901 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1902 bnx2_set_default_remote_link(bp);
1903 return;
1904 }
1905
1906 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1907 bp->req_line_speed = 0;
1908 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1909 u32 reg;
1910
1911 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1912
1913 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1914 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1915 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1916 bp->autoneg = 0;
1917 bp->req_line_speed = bp->line_speed = SPEED_1000;
1918 bp->req_duplex = DUPLEX_FULL;
1919 }
1920 } else
1921 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1922 }
1923
1924 static void
1925 bnx2_send_heart_beat(struct bnx2 *bp)
1926 {
1927 u32 msg;
1928 u32 addr;
1929
1930 spin_lock(&bp->indirect_lock);
1931 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1932 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1933 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1934 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1935 spin_unlock(&bp->indirect_lock);
1936 }
1937
1938 static void
1939 bnx2_remote_phy_event(struct bnx2 *bp)
1940 {
1941 u32 msg;
1942 u8 link_up = bp->link_up;
1943 u8 old_port;
1944
1945 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1946
1947 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1948 bnx2_send_heart_beat(bp);
1949
1950 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1951
1952 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1953 bp->link_up = 0;
1954 else {
1955 u32 speed;
1956
1957 bp->link_up = 1;
1958 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1959 bp->duplex = DUPLEX_FULL;
1960 switch (speed) {
1961 case BNX2_LINK_STATUS_10HALF:
1962 bp->duplex = DUPLEX_HALF;
1963 case BNX2_LINK_STATUS_10FULL:
1964 bp->line_speed = SPEED_10;
1965 break;
1966 case BNX2_LINK_STATUS_100HALF:
1967 bp->duplex = DUPLEX_HALF;
1968 case BNX2_LINK_STATUS_100BASE_T4:
1969 case BNX2_LINK_STATUS_100FULL:
1970 bp->line_speed = SPEED_100;
1971 break;
1972 case BNX2_LINK_STATUS_1000HALF:
1973 bp->duplex = DUPLEX_HALF;
1974 case BNX2_LINK_STATUS_1000FULL:
1975 bp->line_speed = SPEED_1000;
1976 break;
1977 case BNX2_LINK_STATUS_2500HALF:
1978 bp->duplex = DUPLEX_HALF;
1979 case BNX2_LINK_STATUS_2500FULL:
1980 bp->line_speed = SPEED_2500;
1981 break;
1982 default:
1983 bp->line_speed = 0;
1984 break;
1985 }
1986
1987 bp->flow_ctrl = 0;
1988 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1989 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1990 if (bp->duplex == DUPLEX_FULL)
1991 bp->flow_ctrl = bp->req_flow_ctrl;
1992 } else {
1993 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1994 bp->flow_ctrl |= FLOW_CTRL_TX;
1995 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1996 bp->flow_ctrl |= FLOW_CTRL_RX;
1997 }
1998
1999 old_port = bp->phy_port;
2000 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
2001 bp->phy_port = PORT_FIBRE;
2002 else
2003 bp->phy_port = PORT_TP;
2004
2005 if (old_port != bp->phy_port)
2006 bnx2_set_default_link(bp);
2007
2008 }
2009 if (bp->link_up != link_up)
2010 bnx2_report_link(bp);
2011
2012 bnx2_set_mac_link(bp);
2013 }
2014
2015 static int
2016 bnx2_set_remote_link(struct bnx2 *bp)
2017 {
2018 u32 evt_code;
2019
2020 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
2021 switch (evt_code) {
2022 case BNX2_FW_EVT_CODE_LINK_EVENT:
2023 bnx2_remote_phy_event(bp);
2024 break;
2025 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
2026 default:
2027 bnx2_send_heart_beat(bp);
2028 break;
2029 }
2030 return 0;
2031 }
2032
2033 static int
2034 bnx2_setup_copper_phy(struct bnx2 *bp)
2035 __releases(&bp->phy_lock)
2036 __acquires(&bp->phy_lock)
2037 {
2038 u32 bmcr;
2039 u32 new_bmcr;
2040
2041 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
2042
2043 if (bp->autoneg & AUTONEG_SPEED) {
2044 u32 adv_reg, adv1000_reg;
2045 u32 new_adv_reg = 0;
2046 u32 new_adv1000_reg = 0;
2047
2048 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
2049 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
2050 ADVERTISE_PAUSE_ASYM);
2051
2052 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
2053 adv1000_reg &= PHY_ALL_1000_SPEED;
2054
2055 if (bp->advertising & ADVERTISED_10baseT_Half)
2056 new_adv_reg |= ADVERTISE_10HALF;
2057 if (bp->advertising & ADVERTISED_10baseT_Full)
2058 new_adv_reg |= ADVERTISE_10FULL;
2059 if (bp->advertising & ADVERTISED_100baseT_Half)
2060 new_adv_reg |= ADVERTISE_100HALF;
2061 if (bp->advertising & ADVERTISED_100baseT_Full)
2062 new_adv_reg |= ADVERTISE_100FULL;
2063 if (bp->advertising & ADVERTISED_1000baseT_Full)
2064 new_adv1000_reg |= ADVERTISE_1000FULL;
2065
2066 new_adv_reg |= ADVERTISE_CSMA;
2067
2068 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
2069
2070 if ((adv1000_reg != new_adv1000_reg) ||
2071 (adv_reg != new_adv_reg) ||
2072 ((bmcr & BMCR_ANENABLE) == 0)) {
2073
2074 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
2075 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
2076 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
2077 BMCR_ANENABLE);
2078 }
2079 else if (bp->link_up) {
2080 /* Flow ctrl may have changed from auto to forced */
2081 /* or vice-versa. */
2082
2083 bnx2_resolve_flow_ctrl(bp);
2084 bnx2_set_mac_link(bp);
2085 }
2086 return 0;
2087 }
2088
2089 new_bmcr = 0;
2090 if (bp->req_line_speed == SPEED_100) {
2091 new_bmcr |= BMCR_SPEED100;
2092 }
2093 if (bp->req_duplex == DUPLEX_FULL) {
2094 new_bmcr |= BMCR_FULLDPLX;
2095 }
2096 if (new_bmcr != bmcr) {
2097 u32 bmsr;
2098
2099 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2100 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2101
2102 if (bmsr & BMSR_LSTATUS) {
2103 /* Force link down */
2104 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
2105 spin_unlock_bh(&bp->phy_lock);
2106 msleep(50);
2107 spin_lock_bh(&bp->phy_lock);
2108
2109 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2110 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
2111 }
2112
2113 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
2114
2115 /* Normally, the new speed is setup after the link has
2116 * gone down and up again. In some cases, link will not go
2117 * down so we need to set up the new speed here.
2118 */
2119 if (bmsr & BMSR_LSTATUS) {
2120 bp->line_speed = bp->req_line_speed;
2121 bp->duplex = bp->req_duplex;
2122 bnx2_resolve_flow_ctrl(bp);
2123 bnx2_set_mac_link(bp);
2124 }
2125 } else {
2126 bnx2_resolve_flow_ctrl(bp);
2127 bnx2_set_mac_link(bp);
2128 }
2129 return 0;
2130 }
2131
2132 static int
2133 bnx2_setup_phy(struct bnx2 *bp, u8 port)
2134 __releases(&bp->phy_lock)
2135 __acquires(&bp->phy_lock)
2136 {
2137 if (bp->loopback == MAC_LOOPBACK)
2138 return 0;
2139
2140 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2141 return (bnx2_setup_serdes_phy(bp, port));
2142 }
2143 else {
2144 return (bnx2_setup_copper_phy(bp));
2145 }
2146 }
2147
2148 static int
2149 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
2150 {
2151 u32 val;
2152
2153 bp->mii_bmcr = MII_BMCR + 0x10;
2154 bp->mii_bmsr = MII_BMSR + 0x10;
2155 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
2156 bp->mii_adv = MII_ADVERTISE + 0x10;
2157 bp->mii_lpa = MII_LPA + 0x10;
2158 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
2159
2160 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
2161 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
2162
2163 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2164 if (reset_phy)
2165 bnx2_reset_phy(bp);
2166
2167 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
2168
2169 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
2170 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
2171 val |= MII_BNX2_SD_1000XCTL1_FIBER;
2172 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
2173
2174 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
2175 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2176 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2177 val |= BCM5708S_UP1_2G5;
2178 else
2179 val &= ~BCM5708S_UP1_2G5;
2180 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2181
2182 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2183 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2184 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2185 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2186
2187 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2188
2189 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2190 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2191 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2192
2193 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2194
2195 return 0;
2196 }
2197
2198 static int
2199 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2200 {
2201 u32 val;
2202
2203 if (reset_phy)
2204 bnx2_reset_phy(bp);
2205
2206 bp->mii_up1 = BCM5708S_UP1;
2207
2208 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2209 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2210 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2211
2212 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2213 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2214 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2215
2216 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2217 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2218 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2219
2220 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2221 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2222 val |= BCM5708S_UP1_2G5;
2223 bnx2_write_phy(bp, BCM5708S_UP1, val);
2224 }
2225
2226 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2227 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2228 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2229 /* increase tx signal amplitude */
2230 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2231 BCM5708S_BLK_ADDR_TX_MISC);
2232 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2233 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2234 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2235 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2236 }
2237
2238 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2239 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2240
2241 if (val) {
2242 u32 is_backplane;
2243
2244 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2245 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2246 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2247 BCM5708S_BLK_ADDR_TX_MISC);
2248 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2249 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2250 BCM5708S_BLK_ADDR_DIG);
2251 }
2252 }
2253 return 0;
2254 }
2255
2256 static int
2257 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2258 {
2259 if (reset_phy)
2260 bnx2_reset_phy(bp);
2261
2262 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2263
2264 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2265 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2266
2267 if (bp->dev->mtu > 1500) {
2268 u32 val;
2269
2270 /* Set extended packet length bit */
2271 bnx2_write_phy(bp, 0x18, 0x7);
2272 bnx2_read_phy(bp, 0x18, &val);
2273 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2274
2275 bnx2_write_phy(bp, 0x1c, 0x6c00);
2276 bnx2_read_phy(bp, 0x1c, &val);
2277 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2278 }
2279 else {
2280 u32 val;
2281
2282 bnx2_write_phy(bp, 0x18, 0x7);
2283 bnx2_read_phy(bp, 0x18, &val);
2284 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2285
2286 bnx2_write_phy(bp, 0x1c, 0x6c00);
2287 bnx2_read_phy(bp, 0x1c, &val);
2288 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2289 }
2290
2291 return 0;
2292 }
2293
2294 static int
2295 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2296 {
2297 u32 val;
2298
2299 if (reset_phy)
2300 bnx2_reset_phy(bp);
2301
2302 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2303 bnx2_write_phy(bp, 0x18, 0x0c00);
2304 bnx2_write_phy(bp, 0x17, 0x000a);
2305 bnx2_write_phy(bp, 0x15, 0x310b);
2306 bnx2_write_phy(bp, 0x17, 0x201f);
2307 bnx2_write_phy(bp, 0x15, 0x9506);
2308 bnx2_write_phy(bp, 0x17, 0x401f);
2309 bnx2_write_phy(bp, 0x15, 0x14e2);
2310 bnx2_write_phy(bp, 0x18, 0x0400);
2311 }
2312
2313 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2314 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2315 MII_BNX2_DSP_EXPAND_REG | 0x8);
2316 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2317 val &= ~(1 << 8);
2318 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2319 }
2320
2321 if (bp->dev->mtu > 1500) {
2322 /* Set extended packet length bit */
2323 bnx2_write_phy(bp, 0x18, 0x7);
2324 bnx2_read_phy(bp, 0x18, &val);
2325 bnx2_write_phy(bp, 0x18, val | 0x4000);
2326
2327 bnx2_read_phy(bp, 0x10, &val);
2328 bnx2_write_phy(bp, 0x10, val | 0x1);
2329 }
2330 else {
2331 bnx2_write_phy(bp, 0x18, 0x7);
2332 bnx2_read_phy(bp, 0x18, &val);
2333 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2334
2335 bnx2_read_phy(bp, 0x10, &val);
2336 bnx2_write_phy(bp, 0x10, val & ~0x1);
2337 }
2338
2339 /* ethernet@wirespeed */
2340 bnx2_write_phy(bp, 0x18, 0x7007);
2341 bnx2_read_phy(bp, 0x18, &val);
2342 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2343 return 0;
2344 }
2345
2346
2347 static int
2348 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2349 __releases(&bp->phy_lock)
2350 __acquires(&bp->phy_lock)
2351 {
2352 u32 val;
2353 int rc = 0;
2354
2355 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2356 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2357
2358 bp->mii_bmcr = MII_BMCR;
2359 bp->mii_bmsr = MII_BMSR;
2360 bp->mii_bmsr1 = MII_BMSR;
2361 bp->mii_adv = MII_ADVERTISE;
2362 bp->mii_lpa = MII_LPA;
2363
2364 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2365
2366 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2367 goto setup_phy;
2368
2369 bnx2_read_phy(bp, MII_PHYSID1, &val);
2370 bp->phy_id = val << 16;
2371 bnx2_read_phy(bp, MII_PHYSID2, &val);
2372 bp->phy_id |= val & 0xffff;
2373
2374 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2375 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2376 rc = bnx2_init_5706s_phy(bp, reset_phy);
2377 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2378 rc = bnx2_init_5708s_phy(bp, reset_phy);
2379 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2380 rc = bnx2_init_5709s_phy(bp, reset_phy);
2381 }
2382 else {
2383 rc = bnx2_init_copper_phy(bp, reset_phy);
2384 }
2385
2386 setup_phy:
2387 if (!rc)
2388 rc = bnx2_setup_phy(bp, bp->phy_port);
2389
2390 return rc;
2391 }
2392
2393 static int
2394 bnx2_set_mac_loopback(struct bnx2 *bp)
2395 {
2396 u32 mac_mode;
2397
2398 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2399 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2400 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2401 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2402 bp->link_up = 1;
2403 return 0;
2404 }
2405
2406 static int bnx2_test_link(struct bnx2 *);
2407
2408 static int
2409 bnx2_set_phy_loopback(struct bnx2 *bp)
2410 {
2411 u32 mac_mode;
2412 int rc, i;
2413
2414 spin_lock_bh(&bp->phy_lock);
2415 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2416 BMCR_SPEED1000);
2417 spin_unlock_bh(&bp->phy_lock);
2418 if (rc)
2419 return rc;
2420
2421 for (i = 0; i < 10; i++) {
2422 if (bnx2_test_link(bp) == 0)
2423 break;
2424 msleep(100);
2425 }
2426
2427 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2428 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2429 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2430 BNX2_EMAC_MODE_25G_MODE);
2431
2432 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2433 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2434 bp->link_up = 1;
2435 return 0;
2436 }
2437
2438 static int
2439 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
2440 {
2441 int i;
2442 u32 val;
2443
2444 bp->fw_wr_seq++;
2445 msg_data |= bp->fw_wr_seq;
2446
2447 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2448
2449 if (!ack)
2450 return 0;
2451
2452 /* wait for an acknowledgement. */
2453 for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
2454 msleep(10);
2455
2456 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2457
2458 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2459 break;
2460 }
2461 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2462 return 0;
2463
2464 /* If we timed out, inform the firmware that this is the case. */
2465 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2466 if (!silent)
2467 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2468 "%x\n", msg_data);
2469
2470 msg_data &= ~BNX2_DRV_MSG_CODE;
2471 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2472
2473 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2474
2475 return -EBUSY;
2476 }
2477
2478 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2479 return -EIO;
2480
2481 return 0;
2482 }
2483
2484 static int
2485 bnx2_init_5709_context(struct bnx2 *bp)
2486 {
2487 int i, ret = 0;
2488 u32 val;
2489
2490 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2491 val |= (BCM_PAGE_BITS - 8) << 16;
2492 REG_WR(bp, BNX2_CTX_COMMAND, val);
2493 for (i = 0; i < 10; i++) {
2494 val = REG_RD(bp, BNX2_CTX_COMMAND);
2495 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2496 break;
2497 udelay(2);
2498 }
2499 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2500 return -EBUSY;
2501
2502 for (i = 0; i < bp->ctx_pages; i++) {
2503 int j;
2504
2505 if (bp->ctx_blk[i])
2506 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2507 else
2508 return -ENOMEM;
2509
2510 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2511 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2512 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2513 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2514 (u64) bp->ctx_blk_mapping[i] >> 32);
2515 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2516 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2517 for (j = 0; j < 10; j++) {
2518
2519 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2520 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2521 break;
2522 udelay(5);
2523 }
2524 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2525 ret = -EBUSY;
2526 break;
2527 }
2528 }
2529 return ret;
2530 }
2531
2532 static void
2533 bnx2_init_context(struct bnx2 *bp)
2534 {
2535 u32 vcid;
2536
2537 vcid = 96;
2538 while (vcid) {
2539 u32 vcid_addr, pcid_addr, offset;
2540 int i;
2541
2542 vcid--;
2543
2544 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2545 u32 new_vcid;
2546
2547 vcid_addr = GET_PCID_ADDR(vcid);
2548 if (vcid & 0x8) {
2549 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2550 }
2551 else {
2552 new_vcid = vcid;
2553 }
2554 pcid_addr = GET_PCID_ADDR(new_vcid);
2555 }
2556 else {
2557 vcid_addr = GET_CID_ADDR(vcid);
2558 pcid_addr = vcid_addr;
2559 }
2560
2561 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2562 vcid_addr += (i << PHY_CTX_SHIFT);
2563 pcid_addr += (i << PHY_CTX_SHIFT);
2564
2565 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2566 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2567
2568 /* Zero out the context. */
2569 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2570 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2571 }
2572 }
2573 }
2574
2575 static int
2576 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2577 {
2578 u16 *good_mbuf;
2579 u32 good_mbuf_cnt;
2580 u32 val;
2581
2582 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2583 if (good_mbuf == NULL) {
2584 printk(KERN_ERR PFX "Failed to allocate memory in "
2585 "bnx2_alloc_bad_rbuf\n");
2586 return -ENOMEM;
2587 }
2588
2589 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2590 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2591
2592 good_mbuf_cnt = 0;
2593
2594 /* Allocate a bunch of mbufs and save the good ones in an array. */
2595 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2596 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2597 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2598 BNX2_RBUF_COMMAND_ALLOC_REQ);
2599
2600 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2601
2602 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2603
2604 /* The addresses with Bit 9 set are bad memory blocks. */
2605 if (!(val & (1 << 9))) {
2606 good_mbuf[good_mbuf_cnt] = (u16) val;
2607 good_mbuf_cnt++;
2608 }
2609
2610 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2611 }
2612
2613 /* Free the good ones back to the mbuf pool thus discarding
2614 * all the bad ones. */
2615 while (good_mbuf_cnt) {
2616 good_mbuf_cnt--;
2617
2618 val = good_mbuf[good_mbuf_cnt];
2619 val = (val << 9) | val | 1;
2620
2621 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2622 }
2623 kfree(good_mbuf);
2624 return 0;
2625 }
2626
2627 static void
2628 bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
2629 {
2630 u32 val;
2631
2632 val = (mac_addr[0] << 8) | mac_addr[1];
2633
2634 REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
2635
2636 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2637 (mac_addr[4] << 8) | mac_addr[5];
2638
2639 REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
2640 }
2641
2642 static inline int
2643 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2644 {
2645 dma_addr_t mapping;
2646 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2647 struct rx_bd *rxbd =
2648 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2649 struct page *page = alloc_page(GFP_ATOMIC);
2650
2651 if (!page)
2652 return -ENOMEM;
2653 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2654 PCI_DMA_FROMDEVICE);
2655 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2656 __free_page(page);
2657 return -EIO;
2658 }
2659
2660 rx_pg->page = page;
2661 pci_unmap_addr_set(rx_pg, mapping, mapping);
2662 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2663 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2664 return 0;
2665 }
2666
2667 static void
2668 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2669 {
2670 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2671 struct page *page = rx_pg->page;
2672
2673 if (!page)
2674 return;
2675
2676 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2677 PCI_DMA_FROMDEVICE);
2678
2679 __free_page(page);
2680 rx_pg->page = NULL;
2681 }
2682
2683 static inline int
2684 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2685 {
2686 struct sk_buff *skb;
2687 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2688 dma_addr_t mapping;
2689 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2690 unsigned long align;
2691
2692 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2693 if (skb == NULL) {
2694 return -ENOMEM;
2695 }
2696
2697 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2698 skb_reserve(skb, BNX2_RX_ALIGN - align);
2699
2700 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2701 PCI_DMA_FROMDEVICE);
2702 if (pci_dma_mapping_error(bp->pdev, mapping)) {
2703 dev_kfree_skb(skb);
2704 return -EIO;
2705 }
2706
2707 rx_buf->skb = skb;
2708 pci_unmap_addr_set(rx_buf, mapping, mapping);
2709
2710 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2711 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2712
2713 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2714
2715 return 0;
2716 }
2717
2718 static int
2719 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2720 {
2721 struct status_block *sblk = bnapi->status_blk.msi;
2722 u32 new_link_state, old_link_state;
2723 int is_set = 1;
2724
2725 new_link_state = sblk->status_attn_bits & event;
2726 old_link_state = sblk->status_attn_bits_ack & event;
2727 if (new_link_state != old_link_state) {
2728 if (new_link_state)
2729 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2730 else
2731 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2732 } else
2733 is_set = 0;
2734
2735 return is_set;
2736 }
2737
2738 static void
2739 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2740 {
2741 spin_lock(&bp->phy_lock);
2742
2743 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2744 bnx2_set_link(bp);
2745 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2746 bnx2_set_remote_link(bp);
2747
2748 spin_unlock(&bp->phy_lock);
2749
2750 }
2751
2752 static inline u16
2753 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2754 {
2755 u16 cons;
2756
2757 /* Tell compiler that status block fields can change. */
2758 barrier();
2759 cons = *bnapi->hw_tx_cons_ptr;
2760 barrier();
2761 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2762 cons++;
2763 return cons;
2764 }
2765
2766 static int
2767 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2768 {
2769 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2770 u16 hw_cons, sw_cons, sw_ring_cons;
2771 int tx_pkt = 0, index;
2772 struct netdev_queue *txq;
2773
2774 index = (bnapi - bp->bnx2_napi);
2775 txq = netdev_get_tx_queue(bp->dev, index);
2776
2777 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2778 sw_cons = txr->tx_cons;
2779
2780 while (sw_cons != hw_cons) {
2781 struct sw_tx_bd *tx_buf;
2782 struct sk_buff *skb;
2783 int i, last;
2784
2785 sw_ring_cons = TX_RING_IDX(sw_cons);
2786
2787 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2788 skb = tx_buf->skb;
2789
2790 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2791 prefetch(&skb->end);
2792
2793 /* partial BD completions possible with TSO packets */
2794 if (tx_buf->is_gso) {
2795 u16 last_idx, last_ring_idx;
2796
2797 last_idx = sw_cons + tx_buf->nr_frags + 1;
2798 last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
2799 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2800 last_idx++;
2801 }
2802 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2803 break;
2804 }
2805 }
2806
2807 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
2808
2809 tx_buf->skb = NULL;
2810 last = tx_buf->nr_frags;
2811
2812 for (i = 0; i < last; i++) {
2813 sw_cons = NEXT_TX_BD(sw_cons);
2814 }
2815
2816 sw_cons = NEXT_TX_BD(sw_cons);
2817
2818 dev_kfree_skb(skb);
2819 tx_pkt++;
2820 if (tx_pkt == budget)
2821 break;
2822
2823 if (hw_cons == sw_cons)
2824 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2825 }
2826
2827 txr->hw_tx_cons = hw_cons;
2828 txr->tx_cons = sw_cons;
2829
2830 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2831 * before checking for netif_tx_queue_stopped(). Without the
2832 * memory barrier, there is a small possibility that bnx2_start_xmit()
2833 * will miss it and cause the queue to be stopped forever.
2834 */
2835 smp_mb();
2836
2837 if (unlikely(netif_tx_queue_stopped(txq)) &&
2838 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2839 __netif_tx_lock(txq, smp_processor_id());
2840 if ((netif_tx_queue_stopped(txq)) &&
2841 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2842 netif_tx_wake_queue(txq);
2843 __netif_tx_unlock(txq);
2844 }
2845
2846 return tx_pkt;
2847 }
2848
2849 static void
2850 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2851 struct sk_buff *skb, int count)
2852 {
2853 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2854 struct rx_bd *cons_bd, *prod_bd;
2855 int i;
2856 u16 hw_prod, prod;
2857 u16 cons = rxr->rx_pg_cons;
2858
2859 cons_rx_pg = &rxr->rx_pg_ring[cons];
2860
2861 /* The caller was unable to allocate a new page to replace the
2862 * last one in the frags array, so we need to recycle that page
2863 * and then free the skb.
2864 */
2865 if (skb) {
2866 struct page *page;
2867 struct skb_shared_info *shinfo;
2868
2869 shinfo = skb_shinfo(skb);
2870 shinfo->nr_frags--;
2871 page = shinfo->frags[shinfo->nr_frags].page;
2872 shinfo->frags[shinfo->nr_frags].page = NULL;
2873
2874 cons_rx_pg->page = page;
2875 dev_kfree_skb(skb);
2876 }
2877
2878 hw_prod = rxr->rx_pg_prod;
2879
2880 for (i = 0; i < count; i++) {
2881 prod = RX_PG_RING_IDX(hw_prod);
2882
2883 prod_rx_pg = &rxr->rx_pg_ring[prod];
2884 cons_rx_pg = &rxr->rx_pg_ring[cons];
2885 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2886 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2887
2888 if (prod != cons) {
2889 prod_rx_pg->page = cons_rx_pg->page;
2890 cons_rx_pg->page = NULL;
2891 pci_unmap_addr_set(prod_rx_pg, mapping,
2892 pci_unmap_addr(cons_rx_pg, mapping));
2893
2894 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2895 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2896
2897 }
2898 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2899 hw_prod = NEXT_RX_BD(hw_prod);
2900 }
2901 rxr->rx_pg_prod = hw_prod;
2902 rxr->rx_pg_cons = cons;
2903 }
2904
2905 static inline void
2906 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2907 struct sk_buff *skb, u16 cons, u16 prod)
2908 {
2909 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2910 struct rx_bd *cons_bd, *prod_bd;
2911
2912 cons_rx_buf = &rxr->rx_buf_ring[cons];
2913 prod_rx_buf = &rxr->rx_buf_ring[prod];
2914
2915 pci_dma_sync_single_for_device(bp->pdev,
2916 pci_unmap_addr(cons_rx_buf, mapping),
2917 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2918
2919 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2920
2921 prod_rx_buf->skb = skb;
2922
2923 if (cons == prod)
2924 return;
2925
2926 pci_unmap_addr_set(prod_rx_buf, mapping,
2927 pci_unmap_addr(cons_rx_buf, mapping));
2928
2929 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2930 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2931 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2932 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2933 }
2934
2935 static int
2936 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2937 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2938 u32 ring_idx)
2939 {
2940 int err;
2941 u16 prod = ring_idx & 0xffff;
2942
2943 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2944 if (unlikely(err)) {
2945 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2946 if (hdr_len) {
2947 unsigned int raw_len = len + 4;
2948 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2949
2950 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2951 }
2952 return err;
2953 }
2954
2955 skb_reserve(skb, BNX2_RX_OFFSET);
2956 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2957 PCI_DMA_FROMDEVICE);
2958
2959 if (hdr_len == 0) {
2960 skb_put(skb, len);
2961 return 0;
2962 } else {
2963 unsigned int i, frag_len, frag_size, pages;
2964 struct sw_pg *rx_pg;
2965 u16 pg_cons = rxr->rx_pg_cons;
2966 u16 pg_prod = rxr->rx_pg_prod;
2967
2968 frag_size = len + 4 - hdr_len;
2969 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2970 skb_put(skb, hdr_len);
2971
2972 for (i = 0; i < pages; i++) {
2973 dma_addr_t mapping_old;
2974
2975 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2976 if (unlikely(frag_len <= 4)) {
2977 unsigned int tail = 4 - frag_len;
2978
2979 rxr->rx_pg_cons = pg_cons;
2980 rxr->rx_pg_prod = pg_prod;
2981 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2982 pages - i);
2983 skb->len -= tail;
2984 if (i == 0) {
2985 skb->tail -= tail;
2986 } else {
2987 skb_frag_t *frag =
2988 &skb_shinfo(skb)->frags[i - 1];
2989 frag->size -= tail;
2990 skb->data_len -= tail;
2991 skb->truesize -= tail;
2992 }
2993 return 0;
2994 }
2995 rx_pg = &rxr->rx_pg_ring[pg_cons];
2996
2997 /* Don't unmap yet. If we're unable to allocate a new
2998 * page, we need to recycle the page and the DMA addr.
2999 */
3000 mapping_old = pci_unmap_addr(rx_pg, mapping);
3001 if (i == pages - 1)
3002 frag_len -= 4;
3003
3004 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
3005 rx_pg->page = NULL;
3006
3007 err = bnx2_alloc_rx_page(bp, rxr,
3008 RX_PG_RING_IDX(pg_prod));
3009 if (unlikely(err)) {
3010 rxr->rx_pg_cons = pg_cons;
3011 rxr->rx_pg_prod = pg_prod;
3012 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
3013 pages - i);
3014 return err;
3015 }
3016
3017 pci_unmap_page(bp->pdev, mapping_old,
3018 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3019
3020 frag_size -= frag_len;
3021 skb->data_len += frag_len;
3022 skb->truesize += frag_len;
3023 skb->len += frag_len;
3024
3025 pg_prod = NEXT_RX_BD(pg_prod);
3026 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
3027 }
3028 rxr->rx_pg_prod = pg_prod;
3029 rxr->rx_pg_cons = pg_cons;
3030 }
3031 return 0;
3032 }
3033
3034 static inline u16
3035 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
3036 {
3037 u16 cons;
3038
3039 /* Tell compiler that status block fields can change. */
3040 barrier();
3041 cons = *bnapi->hw_rx_cons_ptr;
3042 barrier();
3043 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
3044 cons++;
3045 return cons;
3046 }
3047
3048 static int
3049 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
3050 {
3051 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3052 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
3053 struct l2_fhdr *rx_hdr;
3054 int rx_pkt = 0, pg_ring_used = 0;
3055
3056 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3057 sw_cons = rxr->rx_cons;
3058 sw_prod = rxr->rx_prod;
3059
3060 /* Memory barrier necessary as speculative reads of the rx
3061 * buffer can be ahead of the index in the status block
3062 */
3063 rmb();
3064 while (sw_cons != hw_cons) {
3065 unsigned int len, hdr_len;
3066 u32 status;
3067 struct sw_bd *rx_buf;
3068 struct sk_buff *skb;
3069 dma_addr_t dma_addr;
3070 u16 vtag = 0;
3071 int hw_vlan __maybe_unused = 0;
3072
3073 sw_ring_cons = RX_RING_IDX(sw_cons);
3074 sw_ring_prod = RX_RING_IDX(sw_prod);
3075
3076 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
3077 skb = rx_buf->skb;
3078
3079 rx_buf->skb = NULL;
3080
3081 dma_addr = pci_unmap_addr(rx_buf, mapping);
3082
3083 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
3084 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
3085 PCI_DMA_FROMDEVICE);
3086
3087 rx_hdr = (struct l2_fhdr *) skb->data;
3088 len = rx_hdr->l2_fhdr_pkt_len;
3089 status = rx_hdr->l2_fhdr_status;
3090
3091 hdr_len = 0;
3092 if (status & L2_FHDR_STATUS_SPLIT) {
3093 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
3094 pg_ring_used = 1;
3095 } else if (len > bp->rx_jumbo_thresh) {
3096 hdr_len = bp->rx_jumbo_thresh;
3097 pg_ring_used = 1;
3098 }
3099
3100 if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
3101 L2_FHDR_ERRORS_PHY_DECODE |
3102 L2_FHDR_ERRORS_ALIGNMENT |
3103 L2_FHDR_ERRORS_TOO_SHORT |
3104 L2_FHDR_ERRORS_GIANT_FRAME))) {
3105
3106 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3107 sw_ring_prod);
3108 if (pg_ring_used) {
3109 int pages;
3110
3111 pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
3112
3113 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
3114 }
3115 goto next_rx;
3116 }
3117
3118 len -= 4;
3119
3120 if (len <= bp->rx_copy_thresh) {
3121 struct sk_buff *new_skb;
3122
3123 new_skb = netdev_alloc_skb(bp->dev, len + 6);
3124 if (new_skb == NULL) {
3125 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
3126 sw_ring_prod);
3127 goto next_rx;
3128 }
3129
3130 /* aligned copy */
3131 skb_copy_from_linear_data_offset(skb,
3132 BNX2_RX_OFFSET - 6,
3133 new_skb->data, len + 6);
3134 skb_reserve(new_skb, 6);
3135 skb_put(new_skb, len);
3136
3137 bnx2_reuse_rx_skb(bp, rxr, skb,
3138 sw_ring_cons, sw_ring_prod);
3139
3140 skb = new_skb;
3141 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
3142 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
3143 goto next_rx;
3144
3145 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
3146 !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
3147 vtag = rx_hdr->l2_fhdr_vlan_tag;
3148 #ifdef BCM_VLAN
3149 if (bp->vlgrp)
3150 hw_vlan = 1;
3151 else
3152 #endif
3153 {
3154 struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
3155 __skb_push(skb, 4);
3156
3157 memmove(ve, skb->data + 4, ETH_ALEN * 2);
3158 ve->h_vlan_proto = htons(ETH_P_8021Q);
3159 ve->h_vlan_TCI = htons(vtag);
3160 len += 4;
3161 }
3162 }
3163
3164 skb->protocol = eth_type_trans(skb, bp->dev);
3165
3166 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
3167 (ntohs(skb->protocol) != 0x8100)) {
3168
3169 dev_kfree_skb(skb);
3170 goto next_rx;
3171
3172 }
3173
3174 skb->ip_summed = CHECKSUM_NONE;
3175 if (bp->rx_csum &&
3176 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3177 L2_FHDR_STATUS_UDP_DATAGRAM))) {
3178
3179 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
3180 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
3181 skb->ip_summed = CHECKSUM_UNNECESSARY;
3182 }
3183
3184 skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
3185
3186 #ifdef BCM_VLAN
3187 if (hw_vlan)
3188 vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
3189 else
3190 #endif
3191 netif_receive_skb(skb);
3192
3193 rx_pkt++;
3194
3195 next_rx:
3196 sw_cons = NEXT_RX_BD(sw_cons);
3197 sw_prod = NEXT_RX_BD(sw_prod);
3198
3199 if ((rx_pkt == budget))
3200 break;
3201
3202 /* Refresh hw_cons to see if there is new work */
3203 if (sw_cons == hw_cons) {
3204 hw_cons = bnx2_get_hw_rx_cons(bnapi);
3205 rmb();
3206 }
3207 }
3208 rxr->rx_cons = sw_cons;
3209 rxr->rx_prod = sw_prod;
3210
3211 if (pg_ring_used)
3212 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
3213
3214 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
3215
3216 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
3217
3218 mmiowb();
3219
3220 return rx_pkt;
3221
3222 }
3223
3224 /* MSI ISR - The only difference between this and the INTx ISR
3225 * is that the MSI interrupt is always serviced.
3226 */
3227 static irqreturn_t
3228 bnx2_msi(int irq, void *dev_instance)
3229 {
3230 struct bnx2_napi *bnapi = dev_instance;
3231 struct bnx2 *bp = bnapi->bp;
3232
3233 prefetch(bnapi->status_blk.msi);
3234 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3235 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3236 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3237
3238 /* Return here if interrupt is disabled. */
3239 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3240 return IRQ_HANDLED;
3241
3242 napi_schedule(&bnapi->napi);
3243
3244 return IRQ_HANDLED;
3245 }
3246
3247 static irqreturn_t
3248 bnx2_msi_1shot(int irq, void *dev_instance)
3249 {
3250 struct bnx2_napi *bnapi = dev_instance;
3251 struct bnx2 *bp = bnapi->bp;
3252
3253 prefetch(bnapi->status_blk.msi);
3254
3255 /* Return here if interrupt is disabled. */
3256 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3257 return IRQ_HANDLED;
3258
3259 napi_schedule(&bnapi->napi);
3260
3261 return IRQ_HANDLED;
3262 }
3263
3264 static irqreturn_t
3265 bnx2_interrupt(int irq, void *dev_instance)
3266 {
3267 struct bnx2_napi *bnapi = dev_instance;
3268 struct bnx2 *bp = bnapi->bp;
3269 struct status_block *sblk = bnapi->status_blk.msi;
3270
3271 /* When using INTx, it is possible for the interrupt to arrive
3272 * at the CPU before the status block posted prior to the
3273 * interrupt. Reading a register will flush the status block.
3274 * When using MSI, the MSI message will always complete after
3275 * the status block write.
3276 */
3277 if ((sblk->status_idx == bnapi->last_status_idx) &&
3278 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3279 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3280 return IRQ_NONE;
3281
3282 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3283 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3284 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3285
3286 /* Read back to deassert IRQ immediately to avoid too many
3287 * spurious interrupts.
3288 */
3289 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3290
3291 /* Return here if interrupt is shared and is disabled. */
3292 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3293 return IRQ_HANDLED;
3294
3295 if (napi_schedule_prep(&bnapi->napi)) {
3296 bnapi->last_status_idx = sblk->status_idx;
3297 __napi_schedule(&bnapi->napi);
3298 }
3299
3300 return IRQ_HANDLED;
3301 }
3302
3303 static inline int
3304 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3305 {
3306 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3307 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3308
3309 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3310 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3311 return 1;
3312 return 0;
3313 }
3314
3315 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3316 STATUS_ATTN_BITS_TIMER_ABORT)
3317
3318 static inline int
3319 bnx2_has_work(struct bnx2_napi *bnapi)
3320 {
3321 struct status_block *sblk = bnapi->status_blk.msi;
3322
3323 if (bnx2_has_fast_work(bnapi))
3324 return 1;
3325
3326 #ifdef BCM_CNIC
3327 if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
3328 return 1;
3329 #endif
3330
3331 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3332 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3333 return 1;
3334
3335 return 0;
3336 }
3337
3338 static void
3339 bnx2_chk_missed_msi(struct bnx2 *bp)
3340 {
3341 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
3342 u32 msi_ctrl;
3343
3344 if (bnx2_has_work(bnapi)) {
3345 msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
3346 if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
3347 return;
3348
3349 if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
3350 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
3351 ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
3352 REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
3353 bnx2_msi(bp->irq_tbl[0].vector, bnapi);
3354 }
3355 }
3356
3357 bp->idle_chk_status_idx = bnapi->last_status_idx;
3358 }
3359
3360 #ifdef BCM_CNIC
3361 static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
3362 {
3363 struct cnic_ops *c_ops;
3364
3365 if (!bnapi->cnic_present)
3366 return;
3367
3368 rcu_read_lock();
3369 c_ops = rcu_dereference(bp->cnic_ops);
3370 if (c_ops)
3371 bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
3372 bnapi->status_blk.msi);
3373 rcu_read_unlock();
3374 }
3375 #endif
3376
3377 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3378 {
3379 struct status_block *sblk = bnapi->status_blk.msi;
3380 u32 status_attn_bits = sblk->status_attn_bits;
3381 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3382
3383 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3384 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3385
3386 bnx2_phy_int(bp, bnapi);
3387
3388 /* This is needed to take care of transient status
3389 * during link changes.
3390 */
3391 REG_WR(bp, BNX2_HC_COMMAND,
3392 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3393 REG_RD(bp, BNX2_HC_COMMAND);
3394 }
3395 }
3396
3397 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3398 int work_done, int budget)
3399 {
3400 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3401 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3402
3403 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3404 bnx2_tx_int(bp, bnapi, 0);
3405
3406 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3407 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3408
3409 return work_done;
3410 }
3411
3412 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3413 {
3414 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3415 struct bnx2 *bp = bnapi->bp;
3416 int work_done = 0;
3417 struct status_block_msix *sblk = bnapi->status_blk.msix;
3418
3419 while (1) {
3420 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3421 if (unlikely(work_done >= budget))
3422 break;
3423
3424 bnapi->last_status_idx = sblk->status_idx;
3425 /* status idx must be read before checking for more work. */
3426 rmb();
3427 if (likely(!bnx2_has_fast_work(bnapi))) {
3428
3429 napi_complete(napi);
3430 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3431 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3432 bnapi->last_status_idx);
3433 break;
3434 }
3435 }
3436 return work_done;
3437 }
3438
3439 static int bnx2_poll(struct napi_struct *napi, int budget)
3440 {
3441 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3442 struct bnx2 *bp = bnapi->bp;
3443 int work_done = 0;
3444 struct status_block *sblk = bnapi->status_blk.msi;
3445
3446 while (1) {
3447 bnx2_poll_link(bp, bnapi);
3448
3449 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3450
3451 #ifdef BCM_CNIC
3452 bnx2_poll_cnic(bp, bnapi);
3453 #endif
3454
3455 /* bnapi->last_status_idx is used below to tell the hw how
3456 * much work has been processed, so we must read it before
3457 * checking for more work.
3458 */
3459 bnapi->last_status_idx = sblk->status_idx;
3460
3461 if (unlikely(work_done >= budget))
3462 break;
3463
3464 rmb();
3465 if (likely(!bnx2_has_work(bnapi))) {
3466 napi_complete(napi);
3467 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3468 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3469 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3470 bnapi->last_status_idx);
3471 break;
3472 }
3473 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3474 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3475 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3476 bnapi->last_status_idx);
3477
3478 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3479 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3480 bnapi->last_status_idx);
3481 break;
3482 }
3483 }
3484
3485 return work_done;
3486 }
3487
3488 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3489 * from set_multicast.
3490 */
3491 static void
3492 bnx2_set_rx_mode(struct net_device *dev)
3493 {
3494 struct bnx2 *bp = netdev_priv(dev);
3495 u32 rx_mode, sort_mode;
3496 struct netdev_hw_addr *ha;
3497 int i;
3498
3499 if (!netif_running(dev))
3500 return;
3501
3502 spin_lock_bh(&bp->phy_lock);
3503
3504 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3505 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3506 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3507 #ifdef BCM_VLAN
3508 if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
3509 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3510 #else
3511 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
3512 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3513 #endif
3514 if (dev->flags & IFF_PROMISC) {
3515 /* Promiscuous mode. */
3516 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3517 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3518 BNX2_RPM_SORT_USER0_PROM_VLAN;
3519 }
3520 else if (dev->flags & IFF_ALLMULTI) {
3521 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3522 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3523 0xffffffff);
3524 }
3525 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3526 }
3527 else {
3528 /* Accept one or more multicast(s). */
3529 struct dev_mc_list *mclist;
3530 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3531 u32 regidx;
3532 u32 bit;
3533 u32 crc;
3534
3535 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3536
3537 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3538 i++, mclist = mclist->next) {
3539
3540 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3541 bit = crc & 0xff;
3542 regidx = (bit & 0xe0) >> 5;
3543 bit &= 0x1f;
3544 mc_filter[regidx] |= (1 << bit);
3545 }
3546
3547 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3548 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3549 mc_filter[i]);
3550 }
3551
3552 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3553 }
3554
3555 if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
3556 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3557 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3558 BNX2_RPM_SORT_USER0_PROM_VLAN;
3559 } else if (!(dev->flags & IFF_PROMISC)) {
3560 /* Add all entries into to the match filter list */
3561 i = 0;
3562 list_for_each_entry(ha, &dev->uc.list, list) {
3563 bnx2_set_mac_addr(bp, ha->addr,
3564 i + BNX2_START_UNICAST_ADDRESS_INDEX);
3565 sort_mode |= (1 <<
3566 (i + BNX2_START_UNICAST_ADDRESS_INDEX));
3567 i++;
3568 }
3569
3570 }
3571
3572 if (rx_mode != bp->rx_mode) {
3573 bp->rx_mode = rx_mode;
3574 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3575 }
3576
3577 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3578 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3579 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3580
3581 spin_unlock_bh(&bp->phy_lock);
3582 }
3583
3584 static int __devinit
3585 check_fw_section(const struct firmware *fw,
3586 const struct bnx2_fw_file_section *section,
3587 u32 alignment, bool non_empty)
3588 {
3589 u32 offset = be32_to_cpu(section->offset);
3590 u32 len = be32_to_cpu(section->len);
3591
3592 if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
3593 return -EINVAL;
3594 if ((non_empty && len == 0) || len > fw->size - offset ||
3595 len & (alignment - 1))
3596 return -EINVAL;
3597 return 0;
3598 }
3599
3600 static int __devinit
3601 check_mips_fw_entry(const struct firmware *fw,
3602 const struct bnx2_mips_fw_file_entry *entry)
3603 {
3604 if (check_fw_section(fw, &entry->text, 4, true) ||
3605 check_fw_section(fw, &entry->data, 4, false) ||
3606 check_fw_section(fw, &entry->rodata, 4, false))
3607 return -EINVAL;
3608 return 0;
3609 }
3610
3611 static int __devinit
3612 bnx2_request_firmware(struct bnx2 *bp)
3613 {
3614 const char *mips_fw_file, *rv2p_fw_file;
3615 const struct bnx2_mips_fw_file *mips_fw;
3616 const struct bnx2_rv2p_fw_file *rv2p_fw;
3617 int rc;
3618
3619 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3620 mips_fw_file = FW_MIPS_FILE_09;
3621 rv2p_fw_file = FW_RV2P_FILE_09;
3622 } else {
3623 mips_fw_file = FW_MIPS_FILE_06;
3624 rv2p_fw_file = FW_RV2P_FILE_06;
3625 }
3626
3627 rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
3628 if (rc) {
3629 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3630 mips_fw_file);
3631 return rc;
3632 }
3633
3634 rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
3635 if (rc) {
3636 printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
3637 rv2p_fw_file);
3638 return rc;
3639 }
3640 mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3641 rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3642 if (bp->mips_firmware->size < sizeof(*mips_fw) ||
3643 check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
3644 check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
3645 check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
3646 check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
3647 check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
3648 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3649 mips_fw_file);
3650 return -EINVAL;
3651 }
3652 if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
3653 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
3654 check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
3655 printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
3656 rv2p_fw_file);
3657 return -EINVAL;
3658 }
3659
3660 return 0;
3661 }
3662
3663 static u32
3664 rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
3665 {
3666 switch (idx) {
3667 case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
3668 rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
3669 rv2p_code |= RV2P_BD_PAGE_SIZE;
3670 break;
3671 }
3672 return rv2p_code;
3673 }
3674
3675 static int
3676 load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
3677 const struct bnx2_rv2p_fw_file_entry *fw_entry)
3678 {
3679 u32 rv2p_code_len, file_offset;
3680 __be32 *rv2p_code;
3681 int i;
3682 u32 val, cmd, addr;
3683
3684 rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
3685 file_offset = be32_to_cpu(fw_entry->rv2p.offset);
3686
3687 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3688
3689 if (rv2p_proc == RV2P_PROC1) {
3690 cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3691 addr = BNX2_RV2P_PROC1_ADDR_CMD;
3692 } else {
3693 cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3694 addr = BNX2_RV2P_PROC2_ADDR_CMD;
3695 }
3696
3697 for (i = 0; i < rv2p_code_len; i += 8) {
3698 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
3699 rv2p_code++;
3700 REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
3701 rv2p_code++;
3702
3703 val = (i / 8) | cmd;
3704 REG_WR(bp, addr, val);
3705 }
3706
3707 rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
3708 for (i = 0; i < 8; i++) {
3709 u32 loc, code;
3710
3711 loc = be32_to_cpu(fw_entry->fixup[i]);
3712 if (loc && ((loc * 4) < rv2p_code_len)) {
3713 code = be32_to_cpu(*(rv2p_code + loc - 1));
3714 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
3715 code = be32_to_cpu(*(rv2p_code + loc));
3716 code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
3717 REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
3718
3719 val = (loc / 2) | cmd;
3720 REG_WR(bp, addr, val);
3721 }
3722 }
3723
3724 /* Reset the processor, un-stall is done later. */
3725 if (rv2p_proc == RV2P_PROC1) {
3726 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3727 }
3728 else {
3729 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3730 }
3731
3732 return 0;
3733 }
3734
3735 static int
3736 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
3737 const struct bnx2_mips_fw_file_entry *fw_entry)
3738 {
3739 u32 addr, len, file_offset;
3740 __be32 *data;
3741 u32 offset;
3742 u32 val;
3743
3744 /* Halt the CPU. */
3745 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3746 val |= cpu_reg->mode_value_halt;
3747 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3748 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3749
3750 /* Load the Text area. */
3751 addr = be32_to_cpu(fw_entry->text.addr);
3752 len = be32_to_cpu(fw_entry->text.len);
3753 file_offset = be32_to_cpu(fw_entry->text.offset);
3754 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3755
3756 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3757 if (len) {
3758 int j;
3759
3760 for (j = 0; j < (len / 4); j++, offset += 4)
3761 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3762 }
3763
3764 /* Load the Data area. */
3765 addr = be32_to_cpu(fw_entry->data.addr);
3766 len = be32_to_cpu(fw_entry->data.len);
3767 file_offset = be32_to_cpu(fw_entry->data.offset);
3768 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3769
3770 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3771 if (len) {
3772 int j;
3773
3774 for (j = 0; j < (len / 4); j++, offset += 4)
3775 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3776 }
3777
3778 /* Load the Read-Only area. */
3779 addr = be32_to_cpu(fw_entry->rodata.addr);
3780 len = be32_to_cpu(fw_entry->rodata.len);
3781 file_offset = be32_to_cpu(fw_entry->rodata.offset);
3782 data = (__be32 *)(bp->mips_firmware->data + file_offset);
3783
3784 offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
3785 if (len) {
3786 int j;
3787
3788 for (j = 0; j < (len / 4); j++, offset += 4)
3789 bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
3790 }
3791
3792 /* Clear the pre-fetch instruction. */
3793 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3794
3795 val = be32_to_cpu(fw_entry->start_addr);
3796 bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
3797
3798 /* Start the CPU. */
3799 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3800 val &= ~cpu_reg->mode_value_halt;
3801 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3802 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3803
3804 return 0;
3805 }
3806
3807 static int
3808 bnx2_init_cpus(struct bnx2 *bp)
3809 {
3810 const struct bnx2_mips_fw_file *mips_fw =
3811 (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
3812 const struct bnx2_rv2p_fw_file *rv2p_fw =
3813 (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
3814 int rc;
3815
3816 /* Initialize the RV2P processor. */
3817 load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
3818 load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
3819
3820 /* Initialize the RX Processor. */
3821 rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
3822 if (rc)
3823 goto init_cpu_err;
3824
3825 /* Initialize the TX Processor. */
3826 rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
3827 if (rc)
3828 goto init_cpu_err;
3829
3830 /* Initialize the TX Patch-up Processor. */
3831 rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
3832 if (rc)
3833 goto init_cpu_err;
3834
3835 /* Initialize the Completion Processor. */
3836 rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
3837 if (rc)
3838 goto init_cpu_err;
3839
3840 /* Initialize the Command Processor. */
3841 rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
3842
3843 init_cpu_err:
3844 return rc;
3845 }
3846
3847 static int
3848 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3849 {
3850 u16 pmcsr;
3851
3852 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3853
3854 switch (state) {
3855 case PCI_D0: {
3856 u32 val;
3857
3858 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3859 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3860 PCI_PM_CTRL_PME_STATUS);
3861
3862 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3863 /* delay required during transition out of D3hot */
3864 msleep(20);
3865
3866 val = REG_RD(bp, BNX2_EMAC_MODE);
3867 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3868 val &= ~BNX2_EMAC_MODE_MPKT;
3869 REG_WR(bp, BNX2_EMAC_MODE, val);
3870
3871 val = REG_RD(bp, BNX2_RPM_CONFIG);
3872 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3873 REG_WR(bp, BNX2_RPM_CONFIG, val);
3874 break;
3875 }
3876 case PCI_D3hot: {
3877 int i;
3878 u32 val, wol_msg;
3879
3880 if (bp->wol) {
3881 u32 advertising;
3882 u8 autoneg;
3883
3884 autoneg = bp->autoneg;
3885 advertising = bp->advertising;
3886
3887 if (bp->phy_port == PORT_TP) {
3888 bp->autoneg = AUTONEG_SPEED;
3889 bp->advertising = ADVERTISED_10baseT_Half |
3890 ADVERTISED_10baseT_Full |
3891 ADVERTISED_100baseT_Half |
3892 ADVERTISED_100baseT_Full |
3893 ADVERTISED_Autoneg;
3894 }
3895
3896 spin_lock_bh(&bp->phy_lock);
3897 bnx2_setup_phy(bp, bp->phy_port);
3898 spin_unlock_bh(&bp->phy_lock);
3899
3900 bp->autoneg = autoneg;
3901 bp->advertising = advertising;
3902
3903 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
3904
3905 val = REG_RD(bp, BNX2_EMAC_MODE);
3906
3907 /* Enable port mode. */
3908 val &= ~BNX2_EMAC_MODE_PORT;
3909 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3910 BNX2_EMAC_MODE_ACPI_RCVD |
3911 BNX2_EMAC_MODE_MPKT;
3912 if (bp->phy_port == PORT_TP)
3913 val |= BNX2_EMAC_MODE_PORT_MII;
3914 else {
3915 val |= BNX2_EMAC_MODE_PORT_GMII;
3916 if (bp->line_speed == SPEED_2500)
3917 val |= BNX2_EMAC_MODE_25G_MODE;
3918 }
3919
3920 REG_WR(bp, BNX2_EMAC_MODE, val);
3921
3922 /* receive all multicast */
3923 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3924 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3925 0xffffffff);
3926 }
3927 REG_WR(bp, BNX2_EMAC_RX_MODE,
3928 BNX2_EMAC_RX_MODE_SORT_MODE);
3929
3930 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3931 BNX2_RPM_SORT_USER0_MC_EN;
3932 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3933 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3934 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3935 BNX2_RPM_SORT_USER0_ENA);
3936
3937 /* Need to enable EMAC and RPM for WOL. */
3938 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3939 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3940 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3941 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3942
3943 val = REG_RD(bp, BNX2_RPM_CONFIG);
3944 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3945 REG_WR(bp, BNX2_RPM_CONFIG, val);
3946
3947 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3948 }
3949 else {
3950 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3951 }
3952
3953 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3954 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
3955 1, 0);
3956
3957 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3958 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3959 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3960
3961 if (bp->wol)
3962 pmcsr |= 3;
3963 }
3964 else {
3965 pmcsr |= 3;
3966 }
3967 if (bp->wol) {
3968 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3969 }
3970 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3971 pmcsr);
3972
3973 /* No more memory access after this point until
3974 * device is brought back to D0.
3975 */
3976 udelay(50);
3977 break;
3978 }
3979 default:
3980 return -EINVAL;
3981 }
3982 return 0;
3983 }
3984
3985 static int
3986 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3987 {
3988 u32 val;
3989 int j;
3990
3991 /* Request access to the flash interface. */
3992 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3993 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3994 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3995 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3996 break;
3997
3998 udelay(5);
3999 }
4000
4001 if (j >= NVRAM_TIMEOUT_COUNT)
4002 return -EBUSY;
4003
4004 return 0;
4005 }
4006
4007 static int
4008 bnx2_release_nvram_lock(struct bnx2 *bp)
4009 {
4010 int j;
4011 u32 val;
4012
4013 /* Relinquish nvram interface. */
4014 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
4015
4016 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4017 val = REG_RD(bp, BNX2_NVM_SW_ARB);
4018 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
4019 break;
4020
4021 udelay(5);
4022 }
4023
4024 if (j >= NVRAM_TIMEOUT_COUNT)
4025 return -EBUSY;
4026
4027 return 0;
4028 }
4029
4030
4031 static int
4032 bnx2_enable_nvram_write(struct bnx2 *bp)
4033 {
4034 u32 val;
4035
4036 val = REG_RD(bp, BNX2_MISC_CFG);
4037 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
4038
4039 if (bp->flash_info->flags & BNX2_NV_WREN) {
4040 int j;
4041
4042 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4043 REG_WR(bp, BNX2_NVM_COMMAND,
4044 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
4045
4046 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4047 udelay(5);
4048
4049 val = REG_RD(bp, BNX2_NVM_COMMAND);
4050 if (val & BNX2_NVM_COMMAND_DONE)
4051 break;
4052 }
4053
4054 if (j >= NVRAM_TIMEOUT_COUNT)
4055 return -EBUSY;
4056 }
4057 return 0;
4058 }
4059
4060 static void
4061 bnx2_disable_nvram_write(struct bnx2 *bp)
4062 {
4063 u32 val;
4064
4065 val = REG_RD(bp, BNX2_MISC_CFG);
4066 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
4067 }
4068
4069
4070 static void
4071 bnx2_enable_nvram_access(struct bnx2 *bp)
4072 {
4073 u32 val;
4074
4075 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4076 /* Enable both bits, even on read. */
4077 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4078 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
4079 }
4080
4081 static void
4082 bnx2_disable_nvram_access(struct bnx2 *bp)
4083 {
4084 u32 val;
4085
4086 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
4087 /* Disable both bits, even after read. */
4088 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
4089 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
4090 BNX2_NVM_ACCESS_ENABLE_WR_EN));
4091 }
4092
4093 static int
4094 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
4095 {
4096 u32 cmd;
4097 int j;
4098
4099 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
4100 /* Buffered flash, no erase needed */
4101 return 0;
4102
4103 /* Build an erase command */
4104 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
4105 BNX2_NVM_COMMAND_DOIT;
4106
4107 /* Need to clear DONE bit separately. */
4108 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4109
4110 /* Address of the NVRAM to read from. */
4111 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4112
4113 /* Issue an erase command. */
4114 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4115
4116 /* Wait for completion. */
4117 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4118 u32 val;
4119
4120 udelay(5);
4121
4122 val = REG_RD(bp, BNX2_NVM_COMMAND);
4123 if (val & BNX2_NVM_COMMAND_DONE)
4124 break;
4125 }
4126
4127 if (j >= NVRAM_TIMEOUT_COUNT)
4128 return -EBUSY;
4129
4130 return 0;
4131 }
4132
4133 static int
4134 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
4135 {
4136 u32 cmd;
4137 int j;
4138
4139 /* Build the command word. */
4140 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
4141
4142 /* Calculate an offset of a buffered flash, not needed for 5709. */
4143 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4144 offset = ((offset / bp->flash_info->page_size) <<
4145 bp->flash_info->page_bits) +
4146 (offset % bp->flash_info->page_size);
4147 }
4148
4149 /* Need to clear DONE bit separately. */
4150 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4151
4152 /* Address of the NVRAM to read from. */
4153 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4154
4155 /* Issue a read command. */
4156 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4157
4158 /* Wait for completion. */
4159 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4160 u32 val;
4161
4162 udelay(5);
4163
4164 val = REG_RD(bp, BNX2_NVM_COMMAND);
4165 if (val & BNX2_NVM_COMMAND_DONE) {
4166 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
4167 memcpy(ret_val, &v, 4);
4168 break;
4169 }
4170 }
4171 if (j >= NVRAM_TIMEOUT_COUNT)
4172 return -EBUSY;
4173
4174 return 0;
4175 }
4176
4177
4178 static int
4179 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
4180 {
4181 u32 cmd;
4182 __be32 val32;
4183 int j;
4184
4185 /* Build the command word. */
4186 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
4187
4188 /* Calculate an offset of a buffered flash, not needed for 5709. */
4189 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
4190 offset = ((offset / bp->flash_info->page_size) <<
4191 bp->flash_info->page_bits) +
4192 (offset % bp->flash_info->page_size);
4193 }
4194
4195 /* Need to clear DONE bit separately. */
4196 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
4197
4198 memcpy(&val32, val, 4);
4199
4200 /* Write the data. */
4201 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
4202
4203 /* Address of the NVRAM to write to. */
4204 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
4205
4206 /* Issue the write command. */
4207 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
4208
4209 /* Wait for completion. */
4210 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
4211 udelay(5);
4212
4213 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
4214 break;
4215 }
4216 if (j >= NVRAM_TIMEOUT_COUNT)
4217 return -EBUSY;
4218
4219 return 0;
4220 }
4221
4222 static int
4223 bnx2_init_nvram(struct bnx2 *bp)
4224 {
4225 u32 val;
4226 int j, entry_count, rc = 0;
4227 struct flash_spec *flash;
4228
4229 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4230 bp->flash_info = &flash_5709;
4231 goto get_flash_size;
4232 }
4233
4234 /* Determine the selected interface. */
4235 val = REG_RD(bp, BNX2_NVM_CFG1);
4236
4237 entry_count = ARRAY_SIZE(flash_table);
4238
4239 if (val & 0x40000000) {
4240
4241 /* Flash interface has been reconfigured */
4242 for (j = 0, flash = &flash_table[0]; j < entry_count;
4243 j++, flash++) {
4244 if ((val & FLASH_BACKUP_STRAP_MASK) ==
4245 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
4246 bp->flash_info = flash;
4247 break;
4248 }
4249 }
4250 }
4251 else {
4252 u32 mask;
4253 /* Not yet been reconfigured */
4254
4255 if (val & (1 << 23))
4256 mask = FLASH_BACKUP_STRAP_MASK;
4257 else
4258 mask = FLASH_STRAP_MASK;
4259
4260 for (j = 0, flash = &flash_table[0]; j < entry_count;
4261 j++, flash++) {
4262
4263 if ((val & mask) == (flash->strapping & mask)) {
4264 bp->flash_info = flash;
4265
4266 /* Request access to the flash interface. */
4267 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4268 return rc;
4269
4270 /* Enable access to flash interface */
4271 bnx2_enable_nvram_access(bp);
4272
4273 /* Reconfigure the flash interface */
4274 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
4275 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
4276 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
4277 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
4278
4279 /* Disable access to flash interface */
4280 bnx2_disable_nvram_access(bp);
4281 bnx2_release_nvram_lock(bp);
4282
4283 break;
4284 }
4285 }
4286 } /* if (val & 0x40000000) */
4287
4288 if (j == entry_count) {
4289 bp->flash_info = NULL;
4290 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
4291 return -ENODEV;
4292 }
4293
4294 get_flash_size:
4295 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
4296 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
4297 if (val)
4298 bp->flash_size = val;
4299 else
4300 bp->flash_size = bp->flash_info->total_size;
4301
4302 return rc;
4303 }
4304
4305 static int
4306 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
4307 int buf_size)
4308 {
4309 int rc = 0;
4310 u32 cmd_flags, offset32, len32, extra;
4311
4312 if (buf_size == 0)
4313 return 0;
4314
4315 /* Request access to the flash interface. */
4316 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4317 return rc;
4318
4319 /* Enable access to flash interface */
4320 bnx2_enable_nvram_access(bp);
4321
4322 len32 = buf_size;
4323 offset32 = offset;
4324 extra = 0;
4325
4326 cmd_flags = 0;
4327
4328 if (offset32 & 3) {
4329 u8 buf[4];
4330 u32 pre_len;
4331
4332 offset32 &= ~3;
4333 pre_len = 4 - (offset & 3);
4334
4335 if (pre_len >= len32) {
4336 pre_len = len32;
4337 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4338 BNX2_NVM_COMMAND_LAST;
4339 }
4340 else {
4341 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4342 }
4343
4344 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4345
4346 if (rc)
4347 return rc;
4348
4349 memcpy(ret_buf, buf + (offset & 3), pre_len);
4350
4351 offset32 += 4;
4352 ret_buf += pre_len;
4353 len32 -= pre_len;
4354 }
4355 if (len32 & 3) {
4356 extra = 4 - (len32 & 3);
4357 len32 = (len32 + 4) & ~3;
4358 }
4359
4360 if (len32 == 4) {
4361 u8 buf[4];
4362
4363 if (cmd_flags)
4364 cmd_flags = BNX2_NVM_COMMAND_LAST;
4365 else
4366 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4367 BNX2_NVM_COMMAND_LAST;
4368
4369 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4370
4371 memcpy(ret_buf, buf, 4 - extra);
4372 }
4373 else if (len32 > 0) {
4374 u8 buf[4];
4375
4376 /* Read the first word. */
4377 if (cmd_flags)
4378 cmd_flags = 0;
4379 else
4380 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4381
4382 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4383
4384 /* Advance to the next dword. */
4385 offset32 += 4;
4386 ret_buf += 4;
4387 len32 -= 4;
4388
4389 while (len32 > 4 && rc == 0) {
4390 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4391
4392 /* Advance to the next dword. */
4393 offset32 += 4;
4394 ret_buf += 4;
4395 len32 -= 4;
4396 }
4397
4398 if (rc)
4399 return rc;
4400
4401 cmd_flags = BNX2_NVM_COMMAND_LAST;
4402 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4403
4404 memcpy(ret_buf, buf, 4 - extra);
4405 }
4406
4407 /* Disable access to flash interface */
4408 bnx2_disable_nvram_access(bp);
4409
4410 bnx2_release_nvram_lock(bp);
4411
4412 return rc;
4413 }
4414
4415 static int
4416 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4417 int buf_size)
4418 {
4419 u32 written, offset32, len32;
4420 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4421 int rc = 0;
4422 int align_start, align_end;
4423
4424 buf = data_buf;
4425 offset32 = offset;
4426 len32 = buf_size;
4427 align_start = align_end = 0;
4428
4429 if ((align_start = (offset32 & 3))) {
4430 offset32 &= ~3;
4431 len32 += align_start;
4432 if (len32 < 4)
4433 len32 = 4;
4434 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4435 return rc;
4436 }
4437
4438 if (len32 & 3) {
4439 align_end = 4 - (len32 & 3);
4440 len32 += align_end;
4441 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4442 return rc;
4443 }
4444
4445 if (align_start || align_end) {
4446 align_buf = kmalloc(len32, GFP_KERNEL);
4447 if (align_buf == NULL)
4448 return -ENOMEM;
4449 if (align_start) {
4450 memcpy(align_buf, start, 4);
4451 }
4452 if (align_end) {
4453 memcpy(align_buf + len32 - 4, end, 4);
4454 }
4455 memcpy(align_buf + align_start, data_buf, buf_size);
4456 buf = align_buf;
4457 }
4458
4459 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4460 flash_buffer = kmalloc(264, GFP_KERNEL);
4461 if (flash_buffer == NULL) {
4462 rc = -ENOMEM;
4463 goto nvram_write_end;
4464 }
4465 }
4466
4467 written = 0;
4468 while ((written < len32) && (rc == 0)) {
4469 u32 page_start, page_end, data_start, data_end;
4470 u32 addr, cmd_flags;
4471 int i;
4472
4473 /* Find the page_start addr */
4474 page_start = offset32 + written;
4475 page_start -= (page_start % bp->flash_info->page_size);
4476 /* Find the page_end addr */
4477 page_end = page_start + bp->flash_info->page_size;
4478 /* Find the data_start addr */
4479 data_start = (written == 0) ? offset32 : page_start;
4480 /* Find the data_end addr */
4481 data_end = (page_end > offset32 + len32) ?
4482 (offset32 + len32) : page_end;
4483
4484 /* Request access to the flash interface. */
4485 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4486 goto nvram_write_end;
4487
4488 /* Enable access to flash interface */
4489 bnx2_enable_nvram_access(bp);
4490
4491 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4492 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4493 int j;
4494
4495 /* Read the whole page into the buffer
4496 * (non-buffer flash only) */
4497 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4498 if (j == (bp->flash_info->page_size - 4)) {
4499 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4500 }
4501 rc = bnx2_nvram_read_dword(bp,
4502 page_start + j,
4503 &flash_buffer[j],
4504 cmd_flags);
4505
4506 if (rc)
4507 goto nvram_write_end;
4508
4509 cmd_flags = 0;
4510 }
4511 }
4512
4513 /* Enable writes to flash interface (unlock write-protect) */
4514 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4515 goto nvram_write_end;
4516
4517 /* Loop to write back the buffer data from page_start to
4518 * data_start */
4519 i = 0;
4520 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4521 /* Erase the page */
4522 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4523 goto nvram_write_end;
4524
4525 /* Re-enable the write again for the actual write */
4526 bnx2_enable_nvram_write(bp);
4527
4528 for (addr = page_start; addr < data_start;
4529 addr += 4, i += 4) {
4530
4531 rc = bnx2_nvram_write_dword(bp, addr,
4532 &flash_buffer[i], cmd_flags);
4533
4534 if (rc != 0)
4535 goto nvram_write_end;
4536
4537 cmd_flags = 0;
4538 }
4539 }
4540
4541 /* Loop to write the new data from data_start to data_end */
4542 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4543 if ((addr == page_end - 4) ||
4544 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4545 (addr == data_end - 4))) {
4546
4547 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4548 }
4549 rc = bnx2_nvram_write_dword(bp, addr, buf,
4550 cmd_flags);
4551
4552 if (rc != 0)
4553 goto nvram_write_end;
4554
4555 cmd_flags = 0;
4556 buf += 4;
4557 }
4558
4559 /* Loop to write back the buffer data from data_end
4560 * to page_end */
4561 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4562 for (addr = data_end; addr < page_end;
4563 addr += 4, i += 4) {
4564
4565 if (addr == page_end-4) {
4566 cmd_flags = BNX2_NVM_COMMAND_LAST;
4567 }
4568 rc = bnx2_nvram_write_dword(bp, addr,
4569 &flash_buffer[i], cmd_flags);
4570
4571 if (rc != 0)
4572 goto nvram_write_end;
4573
4574 cmd_flags = 0;
4575 }
4576 }
4577
4578 /* Disable writes to flash interface (lock write-protect) */
4579 bnx2_disable_nvram_write(bp);
4580
4581 /* Disable access to flash interface */
4582 bnx2_disable_nvram_access(bp);
4583 bnx2_release_nvram_lock(bp);
4584
4585 /* Increment written */
4586 written += data_end - data_start;
4587 }
4588
4589 nvram_write_end:
4590 kfree(flash_buffer);
4591 kfree(align_buf);
4592 return rc;
4593 }
4594
4595 static void
4596 bnx2_init_fw_cap(struct bnx2 *bp)
4597 {
4598 u32 val, sig = 0;
4599
4600 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4601 bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
4602
4603 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
4604 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4605
4606 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4607 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4608 return;
4609
4610 if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
4611 bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
4612 sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
4613 }
4614
4615 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
4616 (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
4617 u32 link;
4618
4619 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4620
4621 link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4622 if (link & BNX2_LINK_STATUS_SERDES_LINK)
4623 bp->phy_port = PORT_FIBRE;
4624 else
4625 bp->phy_port = PORT_TP;
4626
4627 sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
4628 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4629 }
4630
4631 if (netif_running(bp->dev) && sig)
4632 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4633 }
4634
4635 static void
4636 bnx2_setup_msix_tbl(struct bnx2 *bp)
4637 {
4638 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4639
4640 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4641 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4642 }
4643
4644 static int
4645 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4646 {
4647 u32 val;
4648 int i, rc = 0;
4649 u8 old_port;
4650
4651 /* Wait for the current PCI transaction to complete before
4652 * issuing a reset. */
4653 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4654 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4655 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4656 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4657 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4658 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4659 udelay(5);
4660
4661 /* Wait for the firmware to tell us it is ok to issue a reset. */
4662 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
4663
4664 /* Deposit a driver reset signature so the firmware knows that
4665 * this is a soft reset. */
4666 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4667 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4668
4669 /* Do a dummy read to force the chip to complete all current transaction
4670 * before we issue a reset. */
4671 val = REG_RD(bp, BNX2_MISC_ID);
4672
4673 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4674 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4675 REG_RD(bp, BNX2_MISC_COMMAND);
4676 udelay(5);
4677
4678 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4679 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4680
4681 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4682
4683 } else {
4684 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4685 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4686 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4687
4688 /* Chip reset. */
4689 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4690
4691 /* Reading back any register after chip reset will hang the
4692 * bus on 5706 A0 and A1. The msleep below provides plenty
4693 * of margin for write posting.
4694 */
4695 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4696 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4697 msleep(20);
4698
4699 /* Reset takes approximate 30 usec */
4700 for (i = 0; i < 10; i++) {
4701 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4702 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4703 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4704 break;
4705 udelay(10);
4706 }
4707
4708 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4709 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4710 printk(KERN_ERR PFX "Chip reset did not complete\n");
4711 return -EBUSY;
4712 }
4713 }
4714
4715 /* Make sure byte swapping is properly configured. */
4716 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4717 if (val != 0x01020304) {
4718 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4719 return -ENODEV;
4720 }
4721
4722 /* Wait for the firmware to finish its initialization. */
4723 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
4724 if (rc)
4725 return rc;
4726
4727 spin_lock_bh(&bp->phy_lock);
4728 old_port = bp->phy_port;
4729 bnx2_init_fw_cap(bp);
4730 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4731 old_port != bp->phy_port)
4732 bnx2_set_default_remote_link(bp);
4733 spin_unlock_bh(&bp->phy_lock);
4734
4735 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4736 /* Adjust the voltage regular to two steps lower. The default
4737 * of this register is 0x0000000e. */
4738 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4739
4740 /* Remove bad rbuf memory from the free pool. */
4741 rc = bnx2_alloc_bad_rbuf(bp);
4742 }
4743
4744 if (bp->flags & BNX2_FLAG_USING_MSIX)
4745 bnx2_setup_msix_tbl(bp);
4746
4747 return rc;
4748 }
4749
4750 static int
4751 bnx2_init_chip(struct bnx2 *bp)
4752 {
4753 u32 val, mtu;
4754 int rc, i;
4755
4756 /* Make sure the interrupt is not active. */
4757 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4758
4759 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4760 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4761 #ifdef __BIG_ENDIAN
4762 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4763 #endif
4764 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4765 DMA_READ_CHANS << 12 |
4766 DMA_WRITE_CHANS << 16;
4767
4768 val |= (0x2 << 20) | (1 << 11);
4769
4770 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4771 val |= (1 << 23);
4772
4773 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4774 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4775 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4776
4777 REG_WR(bp, BNX2_DMA_CONFIG, val);
4778
4779 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4780 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4781 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4782 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4783 }
4784
4785 if (bp->flags & BNX2_FLAG_PCIX) {
4786 u16 val16;
4787
4788 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4789 &val16);
4790 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4791 val16 & ~PCI_X_CMD_ERO);
4792 }
4793
4794 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4795 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4796 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4797 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4798
4799 /* Initialize context mapping and zero out the quick contexts. The
4800 * context block must have already been enabled. */
4801 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4802 rc = bnx2_init_5709_context(bp);
4803 if (rc)
4804 return rc;
4805 } else
4806 bnx2_init_context(bp);
4807
4808 if ((rc = bnx2_init_cpus(bp)) != 0)
4809 return rc;
4810
4811 bnx2_init_nvram(bp);
4812
4813 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
4814
4815 val = REG_RD(bp, BNX2_MQ_CONFIG);
4816 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4817 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4818 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4819 val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
4820 if (CHIP_REV(bp) == CHIP_REV_Ax)
4821 val |= BNX2_MQ_CONFIG_HALT_DIS;
4822 }
4823
4824 REG_WR(bp, BNX2_MQ_CONFIG, val);
4825
4826 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4827 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4828 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4829
4830 val = (BCM_PAGE_BITS - 8) << 24;
4831 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4832
4833 /* Configure page size. */
4834 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4835 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4836 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4837 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4838
4839 val = bp->mac_addr[0] +
4840 (bp->mac_addr[1] << 8) +
4841 (bp->mac_addr[2] << 16) +
4842 bp->mac_addr[3] +
4843 (bp->mac_addr[4] << 8) +
4844 (bp->mac_addr[5] << 16);
4845 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4846
4847 /* Program the MTU. Also include 4 bytes for CRC32. */
4848 mtu = bp->dev->mtu;
4849 val = mtu + ETH_HLEN + ETH_FCS_LEN;
4850 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4851 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4852 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4853
4854 if (mtu < 1500)
4855 mtu = 1500;
4856
4857 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
4858 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
4859 bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
4860
4861 memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
4862 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4863 bp->bnx2_napi[i].last_status_idx = 0;
4864
4865 bp->idle_chk_status_idx = 0xffff;
4866
4867 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4868
4869 /* Set up how to generate a link change interrupt. */
4870 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4871
4872 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4873 (u64) bp->status_blk_mapping & 0xffffffff);
4874 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4875
4876 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4877 (u64) bp->stats_blk_mapping & 0xffffffff);
4878 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4879 (u64) bp->stats_blk_mapping >> 32);
4880
4881 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4882 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4883
4884 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4885 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4886
4887 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4888 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4889
4890 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4891
4892 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4893
4894 REG_WR(bp, BNX2_HC_COM_TICKS,
4895 (bp->com_ticks_int << 16) | bp->com_ticks);
4896
4897 REG_WR(bp, BNX2_HC_CMD_TICKS,
4898 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4899
4900 if (CHIP_NUM(bp) == CHIP_NUM_5708)
4901 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4902 else
4903 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4904 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4905
4906 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4907 val = BNX2_HC_CONFIG_COLLECT_STATS;
4908 else {
4909 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4910 BNX2_HC_CONFIG_COLLECT_STATS;
4911 }
4912
4913 if (bp->irq_nvecs > 1) {
4914 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4915 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4916
4917 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4918 }
4919
4920 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4921 val |= BNX2_HC_CONFIG_ONE_SHOT;
4922
4923 REG_WR(bp, BNX2_HC_CONFIG, val);
4924
4925 for (i = 1; i < bp->irq_nvecs; i++) {
4926 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4927 BNX2_HC_SB_CONFIG_1;
4928
4929 REG_WR(bp, base,
4930 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4931 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4932 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4933
4934 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4935 (bp->tx_quick_cons_trip_int << 16) |
4936 bp->tx_quick_cons_trip);
4937
4938 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4939 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4940
4941 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4942 (bp->rx_quick_cons_trip_int << 16) |
4943 bp->rx_quick_cons_trip);
4944
4945 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4946 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4947 }
4948
4949 /* Clear internal stats counters. */
4950 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4951
4952 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4953
4954 /* Initialize the receive filter. */
4955 bnx2_set_rx_mode(bp->dev);
4956
4957 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4958 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4959 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4960 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4961 }
4962 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4963 1, 0);
4964
4965 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4966 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4967
4968 udelay(20);
4969
4970 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4971
4972 return rc;
4973 }
4974
4975 static void
4976 bnx2_clear_ring_states(struct bnx2 *bp)
4977 {
4978 struct bnx2_napi *bnapi;
4979 struct bnx2_tx_ring_info *txr;
4980 struct bnx2_rx_ring_info *rxr;
4981 int i;
4982
4983 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4984 bnapi = &bp->bnx2_napi[i];
4985 txr = &bnapi->tx_ring;
4986 rxr = &bnapi->rx_ring;
4987
4988 txr->tx_cons = 0;
4989 txr->hw_tx_cons = 0;
4990 rxr->rx_prod_bseq = 0;
4991 rxr->rx_prod = 0;
4992 rxr->rx_cons = 0;
4993 rxr->rx_pg_prod = 0;
4994 rxr->rx_pg_cons = 0;
4995 }
4996 }
4997
4998 static void
4999 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
5000 {
5001 u32 val, offset0, offset1, offset2, offset3;
5002 u32 cid_addr = GET_CID_ADDR(cid);
5003
5004 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5005 offset0 = BNX2_L2CTX_TYPE_XI;
5006 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
5007 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
5008 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
5009 } else {
5010 offset0 = BNX2_L2CTX_TYPE;
5011 offset1 = BNX2_L2CTX_CMD_TYPE;
5012 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
5013 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
5014 }
5015 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
5016 bnx2_ctx_wr(bp, cid_addr, offset0, val);
5017
5018 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
5019 bnx2_ctx_wr(bp, cid_addr, offset1, val);
5020
5021 val = (u64) txr->tx_desc_mapping >> 32;
5022 bnx2_ctx_wr(bp, cid_addr, offset2, val);
5023
5024 val = (u64) txr->tx_desc_mapping & 0xffffffff;
5025 bnx2_ctx_wr(bp, cid_addr, offset3, val);
5026 }
5027
5028 static void
5029 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
5030 {
5031 struct tx_bd *txbd;
5032 u32 cid = TX_CID;
5033 struct bnx2_napi *bnapi;
5034 struct bnx2_tx_ring_info *txr;
5035
5036 bnapi = &bp->bnx2_napi[ring_num];
5037 txr = &bnapi->tx_ring;
5038
5039 if (ring_num == 0)
5040 cid = TX_CID;
5041 else
5042 cid = TX_TSS_CID + ring_num - 1;
5043
5044 bp->tx_wake_thresh = bp->tx_ring_size / 2;
5045
5046 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
5047
5048 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
5049 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
5050
5051 txr->tx_prod = 0;
5052 txr->tx_prod_bseq = 0;
5053
5054 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
5055 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
5056
5057 bnx2_init_tx_context(bp, cid, txr);
5058 }
5059
5060 static void
5061 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
5062 int num_rings)
5063 {
5064 int i;
5065 struct rx_bd *rxbd;
5066
5067 for (i = 0; i < num_rings; i++) {
5068 int j;
5069
5070 rxbd = &rx_ring[i][0];
5071 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
5072 rxbd->rx_bd_len = buf_size;
5073 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
5074 }
5075 if (i == (num_rings - 1))
5076 j = 0;
5077 else
5078 j = i + 1;
5079 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
5080 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
5081 }
5082 }
5083
5084 static void
5085 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
5086 {
5087 int i;
5088 u16 prod, ring_prod;
5089 u32 cid, rx_cid_addr, val;
5090 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
5091 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5092
5093 if (ring_num == 0)
5094 cid = RX_CID;
5095 else
5096 cid = RX_RSS_CID + ring_num - 1;
5097
5098 rx_cid_addr = GET_CID_ADDR(cid);
5099
5100 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
5101 bp->rx_buf_use_size, bp->rx_max_ring);
5102
5103 bnx2_init_rx_context(bp, cid);
5104
5105 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5106 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
5107 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
5108 }
5109
5110 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
5111 if (bp->rx_pg_ring_size) {
5112 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
5113 rxr->rx_pg_desc_mapping,
5114 PAGE_SIZE, bp->rx_max_pg_ring);
5115 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
5116 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
5117 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
5118 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
5119
5120 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
5121 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
5122
5123 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
5124 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
5125
5126 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5127 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
5128 }
5129
5130 val = (u64) rxr->rx_desc_mapping[0] >> 32;
5131 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
5132
5133 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
5134 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
5135
5136 ring_prod = prod = rxr->rx_pg_prod;
5137 for (i = 0; i < bp->rx_pg_ring_size; i++) {
5138 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
5139 break;
5140 prod = NEXT_RX_BD(prod);
5141 ring_prod = RX_PG_RING_IDX(prod);
5142 }
5143 rxr->rx_pg_prod = prod;
5144
5145 ring_prod = prod = rxr->rx_prod;
5146 for (i = 0; i < bp->rx_ring_size; i++) {
5147 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
5148 break;
5149 prod = NEXT_RX_BD(prod);
5150 ring_prod = RX_RING_IDX(prod);
5151 }
5152 rxr->rx_prod = prod;
5153
5154 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
5155 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
5156 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
5157
5158 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
5159 REG_WR16(bp, rxr->rx_bidx_addr, prod);
5160
5161 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
5162 }
5163
5164 static void
5165 bnx2_init_all_rings(struct bnx2 *bp)
5166 {
5167 int i;
5168 u32 val;
5169
5170 bnx2_clear_ring_states(bp);
5171
5172 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
5173 for (i = 0; i < bp->num_tx_rings; i++)
5174 bnx2_init_tx_ring(bp, i);
5175
5176 if (bp->num_tx_rings > 1)
5177 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
5178 (TX_TSS_CID << 7));
5179
5180 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
5181 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
5182
5183 for (i = 0; i < bp->num_rx_rings; i++)
5184 bnx2_init_rx_ring(bp, i);
5185
5186 if (bp->num_rx_rings > 1) {
5187 u32 tbl_32;
5188 u8 *tbl = (u8 *) &tbl_32;
5189
5190 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
5191 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
5192
5193 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
5194 tbl[i % 4] = i % (bp->num_rx_rings - 1);
5195 if ((i % 4) == 3)
5196 bnx2_reg_wr_ind(bp,
5197 BNX2_RXP_SCRATCH_RSS_TBL + i,
5198 cpu_to_be32(tbl_32));
5199 }
5200
5201 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
5202 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
5203
5204 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
5205
5206 }
5207 }
5208
5209 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
5210 {
5211 u32 max, num_rings = 1;
5212
5213 while (ring_size > MAX_RX_DESC_CNT) {
5214 ring_size -= MAX_RX_DESC_CNT;
5215 num_rings++;
5216 }
5217 /* round to next power of 2 */
5218 max = max_size;
5219 while ((max & num_rings) == 0)
5220 max >>= 1;
5221
5222 if (num_rings != max)
5223 max <<= 1;
5224
5225 return max;
5226 }
5227
5228 static void
5229 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
5230 {
5231 u32 rx_size, rx_space, jumbo_size;
5232
5233 /* 8 for CRC and VLAN */
5234 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
5235
5236 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
5237 sizeof(struct skb_shared_info);
5238
5239 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
5240 bp->rx_pg_ring_size = 0;
5241 bp->rx_max_pg_ring = 0;
5242 bp->rx_max_pg_ring_idx = 0;
5243 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
5244 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
5245
5246 jumbo_size = size * pages;
5247 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
5248 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
5249
5250 bp->rx_pg_ring_size = jumbo_size;
5251 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
5252 MAX_RX_PG_RINGS);
5253 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
5254 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
5255 bp->rx_copy_thresh = 0;
5256 }
5257
5258 bp->rx_buf_use_size = rx_size;
5259 /* hw alignment */
5260 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
5261 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
5262 bp->rx_ring_size = size;
5263 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
5264 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
5265 }
5266
5267 static void
5268 bnx2_free_tx_skbs(struct bnx2 *bp)
5269 {
5270 int i;
5271
5272 for (i = 0; i < bp->num_tx_rings; i++) {
5273 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5274 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5275 int j;
5276
5277 if (txr->tx_buf_ring == NULL)
5278 continue;
5279
5280 for (j = 0; j < TX_DESC_CNT; ) {
5281 struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
5282 struct sk_buff *skb = tx_buf->skb;
5283
5284 if (skb == NULL) {
5285 j++;
5286 continue;
5287 }
5288
5289 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5290
5291 tx_buf->skb = NULL;
5292
5293 j += skb_shinfo(skb)->nr_frags + 1;
5294 dev_kfree_skb(skb);
5295 }
5296 }
5297 }
5298
5299 static void
5300 bnx2_free_rx_skbs(struct bnx2 *bp)
5301 {
5302 int i;
5303
5304 for (i = 0; i < bp->num_rx_rings; i++) {
5305 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
5306 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5307 int j;
5308
5309 if (rxr->rx_buf_ring == NULL)
5310 return;
5311
5312 for (j = 0; j < bp->rx_max_ring_idx; j++) {
5313 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
5314 struct sk_buff *skb = rx_buf->skb;
5315
5316 if (skb == NULL)
5317 continue;
5318
5319 pci_unmap_single(bp->pdev,
5320 pci_unmap_addr(rx_buf, mapping),
5321 bp->rx_buf_use_size,
5322 PCI_DMA_FROMDEVICE);
5323
5324 rx_buf->skb = NULL;
5325
5326 dev_kfree_skb(skb);
5327 }
5328 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
5329 bnx2_free_rx_page(bp, rxr, j);
5330 }
5331 }
5332
5333 static void
5334 bnx2_free_skbs(struct bnx2 *bp)
5335 {
5336 bnx2_free_tx_skbs(bp);
5337 bnx2_free_rx_skbs(bp);
5338 }
5339
5340 static int
5341 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
5342 {
5343 int rc;
5344
5345 rc = bnx2_reset_chip(bp, reset_code);
5346 bnx2_free_skbs(bp);
5347 if (rc)
5348 return rc;
5349
5350 if ((rc = bnx2_init_chip(bp)) != 0)
5351 return rc;
5352
5353 bnx2_init_all_rings(bp);
5354 return 0;
5355 }
5356
5357 static int
5358 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5359 {
5360 int rc;
5361
5362 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5363 return rc;
5364
5365 spin_lock_bh(&bp->phy_lock);
5366 bnx2_init_phy(bp, reset_phy);
5367 bnx2_set_link(bp);
5368 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5369 bnx2_remote_phy_event(bp);
5370 spin_unlock_bh(&bp->phy_lock);
5371 return 0;
5372 }
5373
5374 static int
5375 bnx2_shutdown_chip(struct bnx2 *bp)
5376 {
5377 u32 reset_code;
5378
5379 if (bp->flags & BNX2_FLAG_NO_WOL)
5380 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
5381 else if (bp->wol)
5382 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
5383 else
5384 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
5385
5386 return bnx2_reset_chip(bp, reset_code);
5387 }
5388
5389 static int
5390 bnx2_test_registers(struct bnx2 *bp)
5391 {
5392 int ret;
5393 int i, is_5709;
5394 static const struct {
5395 u16 offset;
5396 u16 flags;
5397 #define BNX2_FL_NOT_5709 1
5398 u32 rw_mask;
5399 u32 ro_mask;
5400 } reg_tbl[] = {
5401 { 0x006c, 0, 0x00000000, 0x0000003f },
5402 { 0x0090, 0, 0xffffffff, 0x00000000 },
5403 { 0x0094, 0, 0x00000000, 0x00000000 },
5404
5405 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5406 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5407 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5408 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5409 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5410 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5411 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5412 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5413 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5414
5415 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5416 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5417 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5418 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5419 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5420 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5421
5422 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5423 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5424 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5425
5426 { 0x1000, 0, 0x00000000, 0x00000001 },
5427 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5428
5429 { 0x1408, 0, 0x01c00800, 0x00000000 },
5430 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5431 { 0x14a8, 0, 0x00000000, 0x000001ff },
5432 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5433 { 0x14b0, 0, 0x00000002, 0x00000001 },
5434 { 0x14b8, 0, 0x00000000, 0x00000000 },
5435 { 0x14c0, 0, 0x00000000, 0x00000009 },
5436 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5437 { 0x14cc, 0, 0x00000000, 0x00000001 },
5438 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5439
5440 { 0x1800, 0, 0x00000000, 0x00000001 },
5441 { 0x1804, 0, 0x00000000, 0x00000003 },
5442
5443 { 0x2800, 0, 0x00000000, 0x00000001 },
5444 { 0x2804, 0, 0x00000000, 0x00003f01 },
5445 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5446 { 0x2810, 0, 0xffff0000, 0x00000000 },
5447 { 0x2814, 0, 0xffff0000, 0x00000000 },
5448 { 0x2818, 0, 0xffff0000, 0x00000000 },
5449 { 0x281c, 0, 0xffff0000, 0x00000000 },
5450 { 0x2834, 0, 0xffffffff, 0x00000000 },
5451 { 0x2840, 0, 0x00000000, 0xffffffff },
5452 { 0x2844, 0, 0x00000000, 0xffffffff },
5453 { 0x2848, 0, 0xffffffff, 0x00000000 },
5454 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5455
5456 { 0x2c00, 0, 0x00000000, 0x00000011 },
5457 { 0x2c04, 0, 0x00000000, 0x00030007 },
5458
5459 { 0x3c00, 0, 0x00000000, 0x00000001 },
5460 { 0x3c04, 0, 0x00000000, 0x00070000 },
5461 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5462 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5463 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5464 { 0x3c14, 0, 0x00000000, 0xffffffff },
5465 { 0x3c18, 0, 0x00000000, 0xffffffff },
5466 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5467 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5468
5469 { 0x5004, 0, 0x00000000, 0x0000007f },
5470 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5471
5472 { 0x5c00, 0, 0x00000000, 0x00000001 },
5473 { 0x5c04, 0, 0x00000000, 0x0003000f },
5474 { 0x5c08, 0, 0x00000003, 0x00000000 },
5475 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5476 { 0x5c10, 0, 0x00000000, 0xffffffff },
5477 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5478 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5479 { 0x5c88, 0, 0x00000000, 0x00077373 },
5480 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5481
5482 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5483 { 0x680c, 0, 0xffffffff, 0x00000000 },
5484 { 0x6810, 0, 0xffffffff, 0x00000000 },
5485 { 0x6814, 0, 0xffffffff, 0x00000000 },
5486 { 0x6818, 0, 0xffffffff, 0x00000000 },
5487 { 0x681c, 0, 0xffffffff, 0x00000000 },
5488 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5489 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5490 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5491 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5492 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5493 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5494 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5495 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5496 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5497 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5498 { 0x684c, 0, 0xffffffff, 0x00000000 },
5499 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5500 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5501 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5502 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5503 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5504 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5505
5506 { 0xffff, 0, 0x00000000, 0x00000000 },
5507 };
5508
5509 ret = 0;
5510 is_5709 = 0;
5511 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5512 is_5709 = 1;
5513
5514 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5515 u32 offset, rw_mask, ro_mask, save_val, val;
5516 u16 flags = reg_tbl[i].flags;
5517
5518 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5519 continue;
5520
5521 offset = (u32) reg_tbl[i].offset;
5522 rw_mask = reg_tbl[i].rw_mask;
5523 ro_mask = reg_tbl[i].ro_mask;
5524
5525 save_val = readl(bp->regview + offset);
5526
5527 writel(0, bp->regview + offset);
5528
5529 val = readl(bp->regview + offset);
5530 if ((val & rw_mask) != 0) {
5531 goto reg_test_err;
5532 }
5533
5534 if ((val & ro_mask) != (save_val & ro_mask)) {
5535 goto reg_test_err;
5536 }
5537
5538 writel(0xffffffff, bp->regview + offset);
5539
5540 val = readl(bp->regview + offset);
5541 if ((val & rw_mask) != rw_mask) {
5542 goto reg_test_err;
5543 }
5544
5545 if ((val & ro_mask) != (save_val & ro_mask)) {
5546 goto reg_test_err;
5547 }
5548
5549 writel(save_val, bp->regview + offset);
5550 continue;
5551
5552 reg_test_err:
5553 writel(save_val, bp->regview + offset);
5554 ret = -ENODEV;
5555 break;
5556 }
5557 return ret;
5558 }
5559
5560 static int
5561 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5562 {
5563 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5564 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5565 int i;
5566
5567 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5568 u32 offset;
5569
5570 for (offset = 0; offset < size; offset += 4) {
5571
5572 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5573
5574 if (bnx2_reg_rd_ind(bp, start + offset) !=
5575 test_pattern[i]) {
5576 return -ENODEV;
5577 }
5578 }
5579 }
5580 return 0;
5581 }
5582
5583 static int
5584 bnx2_test_memory(struct bnx2 *bp)
5585 {
5586 int ret = 0;
5587 int i;
5588 static struct mem_entry {
5589 u32 offset;
5590 u32 len;
5591 } mem_tbl_5706[] = {
5592 { 0x60000, 0x4000 },
5593 { 0xa0000, 0x3000 },
5594 { 0xe0000, 0x4000 },
5595 { 0x120000, 0x4000 },
5596 { 0x1a0000, 0x4000 },
5597 { 0x160000, 0x4000 },
5598 { 0xffffffff, 0 },
5599 },
5600 mem_tbl_5709[] = {
5601 { 0x60000, 0x4000 },
5602 { 0xa0000, 0x3000 },
5603 { 0xe0000, 0x4000 },
5604 { 0x120000, 0x4000 },
5605 { 0x1a0000, 0x4000 },
5606 { 0xffffffff, 0 },
5607 };
5608 struct mem_entry *mem_tbl;
5609
5610 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5611 mem_tbl = mem_tbl_5709;
5612 else
5613 mem_tbl = mem_tbl_5706;
5614
5615 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5616 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5617 mem_tbl[i].len)) != 0) {
5618 return ret;
5619 }
5620 }
5621
5622 return ret;
5623 }
5624
5625 #define BNX2_MAC_LOOPBACK 0
5626 #define BNX2_PHY_LOOPBACK 1
5627
5628 static int
5629 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5630 {
5631 unsigned int pkt_size, num_pkts, i;
5632 struct sk_buff *skb, *rx_skb;
5633 unsigned char *packet;
5634 u16 rx_start_idx, rx_idx;
5635 dma_addr_t map;
5636 struct tx_bd *txbd;
5637 struct sw_bd *rx_buf;
5638 struct l2_fhdr *rx_hdr;
5639 int ret = -ENODEV;
5640 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5641 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5642 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5643
5644 tx_napi = bnapi;
5645
5646 txr = &tx_napi->tx_ring;
5647 rxr = &bnapi->rx_ring;
5648 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5649 bp->loopback = MAC_LOOPBACK;
5650 bnx2_set_mac_loopback(bp);
5651 }
5652 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5653 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5654 return 0;
5655
5656 bp->loopback = PHY_LOOPBACK;
5657 bnx2_set_phy_loopback(bp);
5658 }
5659 else
5660 return -EINVAL;
5661
5662 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5663 skb = netdev_alloc_skb(bp->dev, pkt_size);
5664 if (!skb)
5665 return -ENOMEM;
5666 packet = skb_put(skb, pkt_size);
5667 memcpy(packet, bp->dev->dev_addr, 6);
5668 memset(packet + 6, 0x0, 8);
5669 for (i = 14; i < pkt_size; i++)
5670 packet[i] = (unsigned char) (i & 0xff);
5671
5672 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
5673 dev_kfree_skb(skb);
5674 return -EIO;
5675 }
5676 map = skb_shinfo(skb)->dma_head;
5677
5678 REG_WR(bp, BNX2_HC_COMMAND,
5679 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5680
5681 REG_RD(bp, BNX2_HC_COMMAND);
5682
5683 udelay(5);
5684 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5685
5686 num_pkts = 0;
5687
5688 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5689
5690 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5691 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5692 txbd->tx_bd_mss_nbytes = pkt_size;
5693 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5694
5695 num_pkts++;
5696 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5697 txr->tx_prod_bseq += pkt_size;
5698
5699 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5700 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5701
5702 udelay(100);
5703
5704 REG_WR(bp, BNX2_HC_COMMAND,
5705 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5706
5707 REG_RD(bp, BNX2_HC_COMMAND);
5708
5709 udelay(5);
5710
5711 skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
5712 dev_kfree_skb(skb);
5713
5714 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5715 goto loopback_test_done;
5716
5717 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5718 if (rx_idx != rx_start_idx + num_pkts) {
5719 goto loopback_test_done;
5720 }
5721
5722 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5723 rx_skb = rx_buf->skb;
5724
5725 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5726 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5727
5728 pci_dma_sync_single_for_cpu(bp->pdev,
5729 pci_unmap_addr(rx_buf, mapping),
5730 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5731
5732 if (rx_hdr->l2_fhdr_status &
5733 (L2_FHDR_ERRORS_BAD_CRC |
5734 L2_FHDR_ERRORS_PHY_DECODE |
5735 L2_FHDR_ERRORS_ALIGNMENT |
5736 L2_FHDR_ERRORS_TOO_SHORT |
5737 L2_FHDR_ERRORS_GIANT_FRAME)) {
5738
5739 goto loopback_test_done;
5740 }
5741
5742 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5743 goto loopback_test_done;
5744 }
5745
5746 for (i = 14; i < pkt_size; i++) {
5747 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5748 goto loopback_test_done;
5749 }
5750 }
5751
5752 ret = 0;
5753
5754 loopback_test_done:
5755 bp->loopback = 0;
5756 return ret;
5757 }
5758
5759 #define BNX2_MAC_LOOPBACK_FAILED 1
5760 #define BNX2_PHY_LOOPBACK_FAILED 2
5761 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5762 BNX2_PHY_LOOPBACK_FAILED)
5763
5764 static int
5765 bnx2_test_loopback(struct bnx2 *bp)
5766 {
5767 int rc = 0;
5768
5769 if (!netif_running(bp->dev))
5770 return BNX2_LOOPBACK_FAILED;
5771
5772 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5773 spin_lock_bh(&bp->phy_lock);
5774 bnx2_init_phy(bp, 1);
5775 spin_unlock_bh(&bp->phy_lock);
5776 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5777 rc |= BNX2_MAC_LOOPBACK_FAILED;
5778 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5779 rc |= BNX2_PHY_LOOPBACK_FAILED;
5780 return rc;
5781 }
5782
5783 #define NVRAM_SIZE 0x200
5784 #define CRC32_RESIDUAL 0xdebb20e3
5785
5786 static int
5787 bnx2_test_nvram(struct bnx2 *bp)
5788 {
5789 __be32 buf[NVRAM_SIZE / 4];
5790 u8 *data = (u8 *) buf;
5791 int rc = 0;
5792 u32 magic, csum;
5793
5794 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5795 goto test_nvram_done;
5796
5797 magic = be32_to_cpu(buf[0]);
5798 if (magic != 0x669955aa) {
5799 rc = -ENODEV;
5800 goto test_nvram_done;
5801 }
5802
5803 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5804 goto test_nvram_done;
5805
5806 csum = ether_crc_le(0x100, data);
5807 if (csum != CRC32_RESIDUAL) {
5808 rc = -ENODEV;
5809 goto test_nvram_done;
5810 }
5811
5812 csum = ether_crc_le(0x100, data + 0x100);
5813 if (csum != CRC32_RESIDUAL) {
5814 rc = -ENODEV;
5815 }
5816
5817 test_nvram_done:
5818 return rc;
5819 }
5820
5821 static int
5822 bnx2_test_link(struct bnx2 *bp)
5823 {
5824 u32 bmsr;
5825
5826 if (!netif_running(bp->dev))
5827 return -ENODEV;
5828
5829 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5830 if (bp->link_up)
5831 return 0;
5832 return -ENODEV;
5833 }
5834 spin_lock_bh(&bp->phy_lock);
5835 bnx2_enable_bmsr1(bp);
5836 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5837 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5838 bnx2_disable_bmsr1(bp);
5839 spin_unlock_bh(&bp->phy_lock);
5840
5841 if (bmsr & BMSR_LSTATUS) {
5842 return 0;
5843 }
5844 return -ENODEV;
5845 }
5846
5847 static int
5848 bnx2_test_intr(struct bnx2 *bp)
5849 {
5850 int i;
5851 u16 status_idx;
5852
5853 if (!netif_running(bp->dev))
5854 return -ENODEV;
5855
5856 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5857
5858 /* This register is not touched during run-time. */
5859 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5860 REG_RD(bp, BNX2_HC_COMMAND);
5861
5862 for (i = 0; i < 10; i++) {
5863 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5864 status_idx) {
5865
5866 break;
5867 }
5868
5869 msleep_interruptible(10);
5870 }
5871 if (i < 10)
5872 return 0;
5873
5874 return -ENODEV;
5875 }
5876
5877 /* Determining link for parallel detection. */
5878 static int
5879 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5880 {
5881 u32 mode_ctl, an_dbg, exp;
5882
5883 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5884 return 0;
5885
5886 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5887 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5888
5889 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5890 return 0;
5891
5892 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5893 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5894 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5895
5896 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5897 return 0;
5898
5899 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5900 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5901 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5902
5903 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5904 return 0;
5905
5906 return 1;
5907 }
5908
5909 static void
5910 bnx2_5706_serdes_timer(struct bnx2 *bp)
5911 {
5912 int check_link = 1;
5913
5914 spin_lock(&bp->phy_lock);
5915 if (bp->serdes_an_pending) {
5916 bp->serdes_an_pending--;
5917 check_link = 0;
5918 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5919 u32 bmcr;
5920
5921 bp->current_interval = BNX2_TIMER_INTERVAL;
5922
5923 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5924
5925 if (bmcr & BMCR_ANENABLE) {
5926 if (bnx2_5706_serdes_has_link(bp)) {
5927 bmcr &= ~BMCR_ANENABLE;
5928 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5929 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5930 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5931 }
5932 }
5933 }
5934 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5935 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5936 u32 phy2;
5937
5938 bnx2_write_phy(bp, 0x17, 0x0f01);
5939 bnx2_read_phy(bp, 0x15, &phy2);
5940 if (phy2 & 0x20) {
5941 u32 bmcr;
5942
5943 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5944 bmcr |= BMCR_ANENABLE;
5945 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5946
5947 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5948 }
5949 } else
5950 bp->current_interval = BNX2_TIMER_INTERVAL;
5951
5952 if (check_link) {
5953 u32 val;
5954
5955 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5956 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5957 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5958
5959 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5960 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5961 bnx2_5706s_force_link_dn(bp, 1);
5962 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5963 } else
5964 bnx2_set_link(bp);
5965 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5966 bnx2_set_link(bp);
5967 }
5968 spin_unlock(&bp->phy_lock);
5969 }
5970
5971 static void
5972 bnx2_5708_serdes_timer(struct bnx2 *bp)
5973 {
5974 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5975 return;
5976
5977 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5978 bp->serdes_an_pending = 0;
5979 return;
5980 }
5981
5982 spin_lock(&bp->phy_lock);
5983 if (bp->serdes_an_pending)
5984 bp->serdes_an_pending--;
5985 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5986 u32 bmcr;
5987
5988 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5989 if (bmcr & BMCR_ANENABLE) {
5990 bnx2_enable_forced_2g5(bp);
5991 bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
5992 } else {
5993 bnx2_disable_forced_2g5(bp);
5994 bp->serdes_an_pending = 2;
5995 bp->current_interval = BNX2_TIMER_INTERVAL;
5996 }
5997
5998 } else
5999 bp->current_interval = BNX2_TIMER_INTERVAL;
6000
6001 spin_unlock(&bp->phy_lock);
6002 }
6003
6004 static void
6005 bnx2_timer(unsigned long data)
6006 {
6007 struct bnx2 *bp = (struct bnx2 *) data;
6008
6009 if (!netif_running(bp->dev))
6010 return;
6011
6012 if (atomic_read(&bp->intr_sem) != 0)
6013 goto bnx2_restart_timer;
6014
6015 if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
6016 BNX2_FLAG_USING_MSI)
6017 bnx2_chk_missed_msi(bp);
6018
6019 bnx2_send_heart_beat(bp);
6020
6021 bp->stats_blk->stat_FwRxDrop =
6022 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
6023
6024 /* workaround occasional corrupted counters */
6025 if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
6026 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
6027 BNX2_HC_COMMAND_STATS_NOW);
6028
6029 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6030 if (CHIP_NUM(bp) == CHIP_NUM_5706)
6031 bnx2_5706_serdes_timer(bp);
6032 else
6033 bnx2_5708_serdes_timer(bp);
6034 }
6035
6036 bnx2_restart_timer:
6037 mod_timer(&bp->timer, jiffies + bp->current_interval);
6038 }
6039
6040 static int
6041 bnx2_request_irq(struct bnx2 *bp)
6042 {
6043 unsigned long flags;
6044 struct bnx2_irq *irq;
6045 int rc = 0, i;
6046
6047 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
6048 flags = 0;
6049 else
6050 flags = IRQF_SHARED;
6051
6052 for (i = 0; i < bp->irq_nvecs; i++) {
6053 irq = &bp->irq_tbl[i];
6054 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
6055 &bp->bnx2_napi[i]);
6056 if (rc)
6057 break;
6058 irq->requested = 1;
6059 }
6060 return rc;
6061 }
6062
6063 static void
6064 bnx2_free_irq(struct bnx2 *bp)
6065 {
6066 struct bnx2_irq *irq;
6067 int i;
6068
6069 for (i = 0; i < bp->irq_nvecs; i++) {
6070 irq = &bp->irq_tbl[i];
6071 if (irq->requested)
6072 free_irq(irq->vector, &bp->bnx2_napi[i]);
6073 irq->requested = 0;
6074 }
6075 if (bp->flags & BNX2_FLAG_USING_MSI)
6076 pci_disable_msi(bp->pdev);
6077 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6078 pci_disable_msix(bp->pdev);
6079
6080 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
6081 }
6082
6083 static void
6084 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
6085 {
6086 int i, rc;
6087 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
6088 struct net_device *dev = bp->dev;
6089 const int len = sizeof(bp->irq_tbl[0].name);
6090
6091 bnx2_setup_msix_tbl(bp);
6092 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
6093 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
6094 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
6095
6096 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6097 msix_ent[i].entry = i;
6098 msix_ent[i].vector = 0;
6099 }
6100
6101 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
6102 if (rc != 0)
6103 return;
6104
6105 bp->irq_nvecs = msix_vecs;
6106 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
6107 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
6108 bp->irq_tbl[i].vector = msix_ent[i].vector;
6109 snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
6110 bp->irq_tbl[i].handler = bnx2_msi_1shot;
6111 }
6112 }
6113
6114 static void
6115 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
6116 {
6117 int cpus = num_online_cpus();
6118 int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
6119
6120 bp->irq_tbl[0].handler = bnx2_interrupt;
6121 strcpy(bp->irq_tbl[0].name, bp->dev->name);
6122 bp->irq_nvecs = 1;
6123 bp->irq_tbl[0].vector = bp->pdev->irq;
6124
6125 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
6126 bnx2_enable_msix(bp, msix_vecs);
6127
6128 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
6129 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
6130 if (pci_enable_msi(bp->pdev) == 0) {
6131 bp->flags |= BNX2_FLAG_USING_MSI;
6132 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
6133 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
6134 bp->irq_tbl[0].handler = bnx2_msi_1shot;
6135 } else
6136 bp->irq_tbl[0].handler = bnx2_msi;
6137
6138 bp->irq_tbl[0].vector = bp->pdev->irq;
6139 }
6140 }
6141
6142 bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
6143 bp->dev->real_num_tx_queues = bp->num_tx_rings;
6144
6145 bp->num_rx_rings = bp->irq_nvecs;
6146 }
6147
6148 /* Called with rtnl_lock */
6149 static int
6150 bnx2_open(struct net_device *dev)
6151 {
6152 struct bnx2 *bp = netdev_priv(dev);
6153 int rc;
6154
6155 netif_carrier_off(dev);
6156
6157 bnx2_set_power_state(bp, PCI_D0);
6158 bnx2_disable_int(bp);
6159
6160 bnx2_setup_int_mode(bp, disable_msi);
6161 bnx2_napi_enable(bp);
6162 rc = bnx2_alloc_mem(bp);
6163 if (rc)
6164 goto open_err;
6165
6166 rc = bnx2_request_irq(bp);
6167 if (rc)
6168 goto open_err;
6169
6170 rc = bnx2_init_nic(bp, 1);
6171 if (rc)
6172 goto open_err;
6173
6174 mod_timer(&bp->timer, jiffies + bp->current_interval);
6175
6176 atomic_set(&bp->intr_sem, 0);
6177
6178 bnx2_enable_int(bp);
6179
6180 if (bp->flags & BNX2_FLAG_USING_MSI) {
6181 /* Test MSI to make sure it is working
6182 * If MSI test fails, go back to INTx mode
6183 */
6184 if (bnx2_test_intr(bp) != 0) {
6185 printk(KERN_WARNING PFX "%s: No interrupt was generated"
6186 " using MSI, switching to INTx mode. Please"
6187 " report this failure to the PCI maintainer"
6188 " and include system chipset information.\n",
6189 bp->dev->name);
6190
6191 bnx2_disable_int(bp);
6192 bnx2_free_irq(bp);
6193
6194 bnx2_setup_int_mode(bp, 1);
6195
6196 rc = bnx2_init_nic(bp, 0);
6197
6198 if (!rc)
6199 rc = bnx2_request_irq(bp);
6200
6201 if (rc) {
6202 del_timer_sync(&bp->timer);
6203 goto open_err;
6204 }
6205 bnx2_enable_int(bp);
6206 }
6207 }
6208 if (bp->flags & BNX2_FLAG_USING_MSI)
6209 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
6210 else if (bp->flags & BNX2_FLAG_USING_MSIX)
6211 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
6212
6213 netif_tx_start_all_queues(dev);
6214
6215 return 0;
6216
6217 open_err:
6218 bnx2_napi_disable(bp);
6219 bnx2_free_skbs(bp);
6220 bnx2_free_irq(bp);
6221 bnx2_free_mem(bp);
6222 return rc;
6223 }
6224
6225 static void
6226 bnx2_reset_task(struct work_struct *work)
6227 {
6228 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
6229
6230 if (!netif_running(bp->dev))
6231 return;
6232
6233 bnx2_netif_stop(bp);
6234
6235 bnx2_init_nic(bp, 1);
6236
6237 atomic_set(&bp->intr_sem, 1);
6238 bnx2_netif_start(bp);
6239 }
6240
6241 static void
6242 bnx2_tx_timeout(struct net_device *dev)
6243 {
6244 struct bnx2 *bp = netdev_priv(dev);
6245
6246 /* This allows the netif to be shutdown gracefully before resetting */
6247 schedule_work(&bp->reset_task);
6248 }
6249
6250 #ifdef BCM_VLAN
6251 /* Called with rtnl_lock */
6252 static void
6253 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
6254 {
6255 struct bnx2 *bp = netdev_priv(dev);
6256
6257 bnx2_netif_stop(bp);
6258
6259 bp->vlgrp = vlgrp;
6260 bnx2_set_rx_mode(dev);
6261 if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
6262 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
6263
6264 bnx2_netif_start(bp);
6265 }
6266 #endif
6267
6268 /* Called with netif_tx_lock.
6269 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6270 * netif_wake_queue().
6271 */
6272 static int
6273 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
6274 {
6275 struct bnx2 *bp = netdev_priv(dev);
6276 dma_addr_t mapping;
6277 struct tx_bd *txbd;
6278 struct sw_tx_bd *tx_buf;
6279 u32 len, vlan_tag_flags, last_frag, mss;
6280 u16 prod, ring_prod;
6281 int i;
6282 struct bnx2_napi *bnapi;
6283 struct bnx2_tx_ring_info *txr;
6284 struct netdev_queue *txq;
6285 struct skb_shared_info *sp;
6286
6287 /* Determine which tx ring we will be placed on */
6288 i = skb_get_queue_mapping(skb);
6289 bnapi = &bp->bnx2_napi[i];
6290 txr = &bnapi->tx_ring;
6291 txq = netdev_get_tx_queue(dev, i);
6292
6293 if (unlikely(bnx2_tx_avail(bp, txr) <
6294 (skb_shinfo(skb)->nr_frags + 1))) {
6295 netif_tx_stop_queue(txq);
6296 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
6297 dev->name);
6298
6299 return NETDEV_TX_BUSY;
6300 }
6301 len = skb_headlen(skb);
6302 prod = txr->tx_prod;
6303 ring_prod = TX_RING_IDX(prod);
6304
6305 vlan_tag_flags = 0;
6306 if (skb->ip_summed == CHECKSUM_PARTIAL) {
6307 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
6308 }
6309
6310 #ifdef BCM_VLAN
6311 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
6312 vlan_tag_flags |=
6313 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
6314 }
6315 #endif
6316 if ((mss = skb_shinfo(skb)->gso_size)) {
6317 u32 tcp_opt_len;
6318 struct iphdr *iph;
6319
6320 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
6321
6322 tcp_opt_len = tcp_optlen(skb);
6323
6324 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
6325 u32 tcp_off = skb_transport_offset(skb) -
6326 sizeof(struct ipv6hdr) - ETH_HLEN;
6327
6328 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
6329 TX_BD_FLAGS_SW_FLAGS;
6330 if (likely(tcp_off == 0))
6331 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
6332 else {
6333 tcp_off >>= 3;
6334 vlan_tag_flags |= ((tcp_off & 0x3) <<
6335 TX_BD_FLAGS_TCP6_OFF0_SHL) |
6336 ((tcp_off & 0x10) <<
6337 TX_BD_FLAGS_TCP6_OFF4_SHL);
6338 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
6339 }
6340 } else {
6341 iph = ip_hdr(skb);
6342 if (tcp_opt_len || (iph->ihl > 5)) {
6343 vlan_tag_flags |= ((iph->ihl - 5) +
6344 (tcp_opt_len >> 2)) << 8;
6345 }
6346 }
6347 } else
6348 mss = 0;
6349
6350 if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
6351 dev_kfree_skb(skb);
6352 return NETDEV_TX_OK;
6353 }
6354
6355 sp = skb_shinfo(skb);
6356 mapping = sp->dma_head;
6357
6358 tx_buf = &txr->tx_buf_ring[ring_prod];
6359 tx_buf->skb = skb;
6360
6361 txbd = &txr->tx_desc_ring[ring_prod];
6362
6363 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6364 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6365 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6366 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
6367
6368 last_frag = skb_shinfo(skb)->nr_frags;
6369 tx_buf->nr_frags = last_frag;
6370 tx_buf->is_gso = skb_is_gso(skb);
6371
6372 for (i = 0; i < last_frag; i++) {
6373 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
6374
6375 prod = NEXT_TX_BD(prod);
6376 ring_prod = TX_RING_IDX(prod);
6377 txbd = &txr->tx_desc_ring[ring_prod];
6378
6379 len = frag->size;
6380 mapping = sp->dma_maps[i];
6381
6382 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
6383 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
6384 txbd->tx_bd_mss_nbytes = len | (mss << 16);
6385 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
6386
6387 }
6388 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6389
6390 prod = NEXT_TX_BD(prod);
6391 txr->tx_prod_bseq += skb->len;
6392
6393 REG_WR16(bp, txr->tx_bidx_addr, prod);
6394 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6395
6396 mmiowb();
6397
6398 txr->tx_prod = prod;
6399
6400 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6401 netif_tx_stop_queue(txq);
6402 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6403 netif_tx_wake_queue(txq);
6404 }
6405
6406 return NETDEV_TX_OK;
6407 }
6408
6409 /* Called with rtnl_lock */
6410 static int
6411 bnx2_close(struct net_device *dev)
6412 {
6413 struct bnx2 *bp = netdev_priv(dev);
6414
6415 cancel_work_sync(&bp->reset_task);
6416
6417 bnx2_disable_int_sync(bp);
6418 bnx2_napi_disable(bp);
6419 del_timer_sync(&bp->timer);
6420 bnx2_shutdown_chip(bp);
6421 bnx2_free_irq(bp);
6422 bnx2_free_skbs(bp);
6423 bnx2_free_mem(bp);
6424 bp->link_up = 0;
6425 netif_carrier_off(bp->dev);
6426 bnx2_set_power_state(bp, PCI_D3hot);
6427 return 0;
6428 }
6429
6430 #define GET_NET_STATS64(ctr) \
6431 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6432 (unsigned long) (ctr##_lo)
6433
6434 #define GET_NET_STATS32(ctr) \
6435 (ctr##_lo)
6436
6437 #if (BITS_PER_LONG == 64)
6438 #define GET_NET_STATS GET_NET_STATS64
6439 #else
6440 #define GET_NET_STATS GET_NET_STATS32
6441 #endif
6442
6443 static struct net_device_stats *
6444 bnx2_get_stats(struct net_device *dev)
6445 {
6446 struct bnx2 *bp = netdev_priv(dev);
6447 struct statistics_block *stats_blk = bp->stats_blk;
6448 struct net_device_stats *net_stats = &dev->stats;
6449
6450 if (bp->stats_blk == NULL) {
6451 return net_stats;
6452 }
6453 net_stats->rx_packets =
6454 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6455 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6456 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6457
6458 net_stats->tx_packets =
6459 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6460 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6461 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6462
6463 net_stats->rx_bytes =
6464 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6465
6466 net_stats->tx_bytes =
6467 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6468
6469 net_stats->multicast =
6470 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6471
6472 net_stats->collisions =
6473 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6474
6475 net_stats->rx_length_errors =
6476 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6477 stats_blk->stat_EtherStatsOverrsizePkts);
6478
6479 net_stats->rx_over_errors =
6480 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
6481
6482 net_stats->rx_frame_errors =
6483 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6484
6485 net_stats->rx_crc_errors =
6486 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6487
6488 net_stats->rx_errors = net_stats->rx_length_errors +
6489 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6490 net_stats->rx_crc_errors;
6491
6492 net_stats->tx_aborted_errors =
6493 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6494 stats_blk->stat_Dot3StatsLateCollisions);
6495
6496 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6497 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6498 net_stats->tx_carrier_errors = 0;
6499 else {
6500 net_stats->tx_carrier_errors =
6501 (unsigned long)
6502 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6503 }
6504
6505 net_stats->tx_errors =
6506 (unsigned long)
6507 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6508 +
6509 net_stats->tx_aborted_errors +
6510 net_stats->tx_carrier_errors;
6511
6512 net_stats->rx_missed_errors =
6513 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
6514 stats_blk->stat_FwRxDrop);
6515
6516 return net_stats;
6517 }
6518
6519 /* All ethtool functions called with rtnl_lock */
6520
6521 static int
6522 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6523 {
6524 struct bnx2 *bp = netdev_priv(dev);
6525 int support_serdes = 0, support_copper = 0;
6526
6527 cmd->supported = SUPPORTED_Autoneg;
6528 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6529 support_serdes = 1;
6530 support_copper = 1;
6531 } else if (bp->phy_port == PORT_FIBRE)
6532 support_serdes = 1;
6533 else
6534 support_copper = 1;
6535
6536 if (support_serdes) {
6537 cmd->supported |= SUPPORTED_1000baseT_Full |
6538 SUPPORTED_FIBRE;
6539 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6540 cmd->supported |= SUPPORTED_2500baseX_Full;
6541
6542 }
6543 if (support_copper) {
6544 cmd->supported |= SUPPORTED_10baseT_Half |
6545 SUPPORTED_10baseT_Full |
6546 SUPPORTED_100baseT_Half |
6547 SUPPORTED_100baseT_Full |
6548 SUPPORTED_1000baseT_Full |
6549 SUPPORTED_TP;
6550
6551 }
6552
6553 spin_lock_bh(&bp->phy_lock);
6554 cmd->port = bp->phy_port;
6555 cmd->advertising = bp->advertising;
6556
6557 if (bp->autoneg & AUTONEG_SPEED) {
6558 cmd->autoneg = AUTONEG_ENABLE;
6559 }
6560 else {
6561 cmd->autoneg = AUTONEG_DISABLE;
6562 }
6563
6564 if (netif_carrier_ok(dev)) {
6565 cmd->speed = bp->line_speed;
6566 cmd->duplex = bp->duplex;
6567 }
6568 else {
6569 cmd->speed = -1;
6570 cmd->duplex = -1;
6571 }
6572 spin_unlock_bh(&bp->phy_lock);
6573
6574 cmd->transceiver = XCVR_INTERNAL;
6575 cmd->phy_address = bp->phy_addr;
6576
6577 return 0;
6578 }
6579
6580 static int
6581 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6582 {
6583 struct bnx2 *bp = netdev_priv(dev);
6584 u8 autoneg = bp->autoneg;
6585 u8 req_duplex = bp->req_duplex;
6586 u16 req_line_speed = bp->req_line_speed;
6587 u32 advertising = bp->advertising;
6588 int err = -EINVAL;
6589
6590 spin_lock_bh(&bp->phy_lock);
6591
6592 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6593 goto err_out_unlock;
6594
6595 if (cmd->port != bp->phy_port &&
6596 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6597 goto err_out_unlock;
6598
6599 /* If device is down, we can store the settings only if the user
6600 * is setting the currently active port.
6601 */
6602 if (!netif_running(dev) && cmd->port != bp->phy_port)
6603 goto err_out_unlock;
6604
6605 if (cmd->autoneg == AUTONEG_ENABLE) {
6606 autoneg |= AUTONEG_SPEED;
6607
6608 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6609
6610 /* allow advertising 1 speed */
6611 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6612 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6613 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6614 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6615
6616 if (cmd->port == PORT_FIBRE)
6617 goto err_out_unlock;
6618
6619 advertising = cmd->advertising;
6620
6621 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6622 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6623 (cmd->port == PORT_TP))
6624 goto err_out_unlock;
6625 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6626 advertising = cmd->advertising;
6627 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6628 goto err_out_unlock;
6629 else {
6630 if (cmd->port == PORT_FIBRE)
6631 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6632 else
6633 advertising = ETHTOOL_ALL_COPPER_SPEED;
6634 }
6635 advertising |= ADVERTISED_Autoneg;
6636 }
6637 else {
6638 if (cmd->port == PORT_FIBRE) {
6639 if ((cmd->speed != SPEED_1000 &&
6640 cmd->speed != SPEED_2500) ||
6641 (cmd->duplex != DUPLEX_FULL))
6642 goto err_out_unlock;
6643
6644 if (cmd->speed == SPEED_2500 &&
6645 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6646 goto err_out_unlock;
6647 }
6648 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6649 goto err_out_unlock;
6650
6651 autoneg &= ~AUTONEG_SPEED;
6652 req_line_speed = cmd->speed;
6653 req_duplex = cmd->duplex;
6654 advertising = 0;
6655 }
6656
6657 bp->autoneg = autoneg;
6658 bp->advertising = advertising;
6659 bp->req_line_speed = req_line_speed;
6660 bp->req_duplex = req_duplex;
6661
6662 err = 0;
6663 /* If device is down, the new settings will be picked up when it is
6664 * brought up.
6665 */
6666 if (netif_running(dev))
6667 err = bnx2_setup_phy(bp, cmd->port);
6668
6669 err_out_unlock:
6670 spin_unlock_bh(&bp->phy_lock);
6671
6672 return err;
6673 }
6674
6675 static void
6676 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6677 {
6678 struct bnx2 *bp = netdev_priv(dev);
6679
6680 strcpy(info->driver, DRV_MODULE_NAME);
6681 strcpy(info->version, DRV_MODULE_VERSION);
6682 strcpy(info->bus_info, pci_name(bp->pdev));
6683 strcpy(info->fw_version, bp->fw_version);
6684 }
6685
6686 #define BNX2_REGDUMP_LEN (32 * 1024)
6687
6688 static int
6689 bnx2_get_regs_len(struct net_device *dev)
6690 {
6691 return BNX2_REGDUMP_LEN;
6692 }
6693
6694 static void
6695 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6696 {
6697 u32 *p = _p, i, offset;
6698 u8 *orig_p = _p;
6699 struct bnx2 *bp = netdev_priv(dev);
6700 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6701 0x0800, 0x0880, 0x0c00, 0x0c10,
6702 0x0c30, 0x0d08, 0x1000, 0x101c,
6703 0x1040, 0x1048, 0x1080, 0x10a4,
6704 0x1400, 0x1490, 0x1498, 0x14f0,
6705 0x1500, 0x155c, 0x1580, 0x15dc,
6706 0x1600, 0x1658, 0x1680, 0x16d8,
6707 0x1800, 0x1820, 0x1840, 0x1854,
6708 0x1880, 0x1894, 0x1900, 0x1984,
6709 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6710 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6711 0x2000, 0x2030, 0x23c0, 0x2400,
6712 0x2800, 0x2820, 0x2830, 0x2850,
6713 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6714 0x3c00, 0x3c94, 0x4000, 0x4010,
6715 0x4080, 0x4090, 0x43c0, 0x4458,
6716 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6717 0x4fc0, 0x5010, 0x53c0, 0x5444,
6718 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6719 0x5fc0, 0x6000, 0x6400, 0x6428,
6720 0x6800, 0x6848, 0x684c, 0x6860,
6721 0x6888, 0x6910, 0x8000 };
6722
6723 regs->version = 0;
6724
6725 memset(p, 0, BNX2_REGDUMP_LEN);
6726
6727 if (!netif_running(bp->dev))
6728 return;
6729
6730 i = 0;
6731 offset = reg_boundaries[0];
6732 p += offset;
6733 while (offset < BNX2_REGDUMP_LEN) {
6734 *p++ = REG_RD(bp, offset);
6735 offset += 4;
6736 if (offset == reg_boundaries[i + 1]) {
6737 offset = reg_boundaries[i + 2];
6738 p = (u32 *) (orig_p + offset);
6739 i += 2;
6740 }
6741 }
6742 }
6743
6744 static void
6745 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6746 {
6747 struct bnx2 *bp = netdev_priv(dev);
6748
6749 if (bp->flags & BNX2_FLAG_NO_WOL) {
6750 wol->supported = 0;
6751 wol->wolopts = 0;
6752 }
6753 else {
6754 wol->supported = WAKE_MAGIC;
6755 if (bp->wol)
6756 wol->wolopts = WAKE_MAGIC;
6757 else
6758 wol->wolopts = 0;
6759 }
6760 memset(&wol->sopass, 0, sizeof(wol->sopass));
6761 }
6762
6763 static int
6764 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6765 {
6766 struct bnx2 *bp = netdev_priv(dev);
6767
6768 if (wol->wolopts & ~WAKE_MAGIC)
6769 return -EINVAL;
6770
6771 if (wol->wolopts & WAKE_MAGIC) {
6772 if (bp->flags & BNX2_FLAG_NO_WOL)
6773 return -EINVAL;
6774
6775 bp->wol = 1;
6776 }
6777 else {
6778 bp->wol = 0;
6779 }
6780 return 0;
6781 }
6782
6783 static int
6784 bnx2_nway_reset(struct net_device *dev)
6785 {
6786 struct bnx2 *bp = netdev_priv(dev);
6787 u32 bmcr;
6788
6789 if (!netif_running(dev))
6790 return -EAGAIN;
6791
6792 if (!(bp->autoneg & AUTONEG_SPEED)) {
6793 return -EINVAL;
6794 }
6795
6796 spin_lock_bh(&bp->phy_lock);
6797
6798 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6799 int rc;
6800
6801 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6802 spin_unlock_bh(&bp->phy_lock);
6803 return rc;
6804 }
6805
6806 /* Force a link down visible on the other side */
6807 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6808 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6809 spin_unlock_bh(&bp->phy_lock);
6810
6811 msleep(20);
6812
6813 spin_lock_bh(&bp->phy_lock);
6814
6815 bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
6816 bp->serdes_an_pending = 1;
6817 mod_timer(&bp->timer, jiffies + bp->current_interval);
6818 }
6819
6820 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6821 bmcr &= ~BMCR_LOOPBACK;
6822 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6823
6824 spin_unlock_bh(&bp->phy_lock);
6825
6826 return 0;
6827 }
6828
6829 static u32
6830 bnx2_get_link(struct net_device *dev)
6831 {
6832 struct bnx2 *bp = netdev_priv(dev);
6833
6834 return bp->link_up;
6835 }
6836
6837 static int
6838 bnx2_get_eeprom_len(struct net_device *dev)
6839 {
6840 struct bnx2 *bp = netdev_priv(dev);
6841
6842 if (bp->flash_info == NULL)
6843 return 0;
6844
6845 return (int) bp->flash_size;
6846 }
6847
6848 static int
6849 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6850 u8 *eebuf)
6851 {
6852 struct bnx2 *bp = netdev_priv(dev);
6853 int rc;
6854
6855 if (!netif_running(dev))
6856 return -EAGAIN;
6857
6858 /* parameters already validated in ethtool_get_eeprom */
6859
6860 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6861
6862 return rc;
6863 }
6864
6865 static int
6866 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6867 u8 *eebuf)
6868 {
6869 struct bnx2 *bp = netdev_priv(dev);
6870 int rc;
6871
6872 if (!netif_running(dev))
6873 return -EAGAIN;
6874
6875 /* parameters already validated in ethtool_set_eeprom */
6876
6877 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6878
6879 return rc;
6880 }
6881
6882 static int
6883 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6884 {
6885 struct bnx2 *bp = netdev_priv(dev);
6886
6887 memset(coal, 0, sizeof(struct ethtool_coalesce));
6888
6889 coal->rx_coalesce_usecs = bp->rx_ticks;
6890 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6891 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6892 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6893
6894 coal->tx_coalesce_usecs = bp->tx_ticks;
6895 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6896 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6897 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6898
6899 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6900
6901 return 0;
6902 }
6903
6904 static int
6905 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6906 {
6907 struct bnx2 *bp = netdev_priv(dev);
6908
6909 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6910 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6911
6912 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6913 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6914
6915 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6916 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6917
6918 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6919 if (bp->rx_quick_cons_trip_int > 0xff)
6920 bp->rx_quick_cons_trip_int = 0xff;
6921
6922 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6923 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6924
6925 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6926 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6927
6928 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6929 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6930
6931 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6932 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6933 0xff;
6934
6935 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6936 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
6937 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6938 bp->stats_ticks = USEC_PER_SEC;
6939 }
6940 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6941 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6942 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6943
6944 if (netif_running(bp->dev)) {
6945 bnx2_netif_stop(bp);
6946 bnx2_init_nic(bp, 0);
6947 bnx2_netif_start(bp);
6948 }
6949
6950 return 0;
6951 }
6952
6953 static void
6954 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6955 {
6956 struct bnx2 *bp = netdev_priv(dev);
6957
6958 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6959 ering->rx_mini_max_pending = 0;
6960 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6961
6962 ering->rx_pending = bp->rx_ring_size;
6963 ering->rx_mini_pending = 0;
6964 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6965
6966 ering->tx_max_pending = MAX_TX_DESC_CNT;
6967 ering->tx_pending = bp->tx_ring_size;
6968 }
6969
6970 static int
6971 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6972 {
6973 if (netif_running(bp->dev)) {
6974 bnx2_netif_stop(bp);
6975 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6976 bnx2_free_skbs(bp);
6977 bnx2_free_mem(bp);
6978 }
6979
6980 bnx2_set_rx_ring_size(bp, rx);
6981 bp->tx_ring_size = tx;
6982
6983 if (netif_running(bp->dev)) {
6984 int rc;
6985
6986 rc = bnx2_alloc_mem(bp);
6987 if (rc)
6988 return rc;
6989 bnx2_init_nic(bp, 0);
6990 bnx2_netif_start(bp);
6991 }
6992 return 0;
6993 }
6994
6995 static int
6996 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6997 {
6998 struct bnx2 *bp = netdev_priv(dev);
6999 int rc;
7000
7001 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
7002 (ering->tx_pending > MAX_TX_DESC_CNT) ||
7003 (ering->tx_pending <= MAX_SKB_FRAGS)) {
7004
7005 return -EINVAL;
7006 }
7007 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
7008 return rc;
7009 }
7010
7011 static void
7012 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7013 {
7014 struct bnx2 *bp = netdev_priv(dev);
7015
7016 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
7017 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
7018 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
7019 }
7020
7021 static int
7022 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
7023 {
7024 struct bnx2 *bp = netdev_priv(dev);
7025
7026 bp->req_flow_ctrl = 0;
7027 if (epause->rx_pause)
7028 bp->req_flow_ctrl |= FLOW_CTRL_RX;
7029 if (epause->tx_pause)
7030 bp->req_flow_ctrl |= FLOW_CTRL_TX;
7031
7032 if (epause->autoneg) {
7033 bp->autoneg |= AUTONEG_FLOW_CTRL;
7034 }
7035 else {
7036 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
7037 }
7038
7039 if (netif_running(dev)) {
7040 spin_lock_bh(&bp->phy_lock);
7041 bnx2_setup_phy(bp, bp->phy_port);
7042 spin_unlock_bh(&bp->phy_lock);
7043 }
7044
7045 return 0;
7046 }
7047
7048 static u32
7049 bnx2_get_rx_csum(struct net_device *dev)
7050 {
7051 struct bnx2 *bp = netdev_priv(dev);
7052
7053 return bp->rx_csum;
7054 }
7055
7056 static int
7057 bnx2_set_rx_csum(struct net_device *dev, u32 data)
7058 {
7059 struct bnx2 *bp = netdev_priv(dev);
7060
7061 bp->rx_csum = data;
7062 return 0;
7063 }
7064
7065 static int
7066 bnx2_set_tso(struct net_device *dev, u32 data)
7067 {
7068 struct bnx2 *bp = netdev_priv(dev);
7069
7070 if (data) {
7071 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7072 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7073 dev->features |= NETIF_F_TSO6;
7074 } else
7075 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
7076 NETIF_F_TSO_ECN);
7077 return 0;
7078 }
7079
7080 #define BNX2_NUM_STATS 46
7081
7082 static struct {
7083 char string[ETH_GSTRING_LEN];
7084 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
7085 { "rx_bytes" },
7086 { "rx_error_bytes" },
7087 { "tx_bytes" },
7088 { "tx_error_bytes" },
7089 { "rx_ucast_packets" },
7090 { "rx_mcast_packets" },
7091 { "rx_bcast_packets" },
7092 { "tx_ucast_packets" },
7093 { "tx_mcast_packets" },
7094 { "tx_bcast_packets" },
7095 { "tx_mac_errors" },
7096 { "tx_carrier_errors" },
7097 { "rx_crc_errors" },
7098 { "rx_align_errors" },
7099 { "tx_single_collisions" },
7100 { "tx_multi_collisions" },
7101 { "tx_deferred" },
7102 { "tx_excess_collisions" },
7103 { "tx_late_collisions" },
7104 { "tx_total_collisions" },
7105 { "rx_fragments" },
7106 { "rx_jabbers" },
7107 { "rx_undersize_packets" },
7108 { "rx_oversize_packets" },
7109 { "rx_64_byte_packets" },
7110 { "rx_65_to_127_byte_packets" },
7111 { "rx_128_to_255_byte_packets" },
7112 { "rx_256_to_511_byte_packets" },
7113 { "rx_512_to_1023_byte_packets" },
7114 { "rx_1024_to_1522_byte_packets" },
7115 { "rx_1523_to_9022_byte_packets" },
7116 { "tx_64_byte_packets" },
7117 { "tx_65_to_127_byte_packets" },
7118 { "tx_128_to_255_byte_packets" },
7119 { "tx_256_to_511_byte_packets" },
7120 { "tx_512_to_1023_byte_packets" },
7121 { "tx_1024_to_1522_byte_packets" },
7122 { "tx_1523_to_9022_byte_packets" },
7123 { "rx_xon_frames" },
7124 { "rx_xoff_frames" },
7125 { "tx_xon_frames" },
7126 { "tx_xoff_frames" },
7127 { "rx_mac_ctrl_frames" },
7128 { "rx_filtered_packets" },
7129 { "rx_discards" },
7130 { "rx_fw_discards" },
7131 };
7132
7133 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7134
7135 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
7136 STATS_OFFSET32(stat_IfHCInOctets_hi),
7137 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
7138 STATS_OFFSET32(stat_IfHCOutOctets_hi),
7139 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
7140 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
7141 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
7142 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
7143 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
7144 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
7145 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
7146 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
7147 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
7148 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
7149 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
7150 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
7151 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
7152 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
7153 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
7154 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
7155 STATS_OFFSET32(stat_EtherStatsCollisions),
7156 STATS_OFFSET32(stat_EtherStatsFragments),
7157 STATS_OFFSET32(stat_EtherStatsJabbers),
7158 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
7159 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
7160 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
7161 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
7162 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
7163 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
7164 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
7165 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
7166 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
7167 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
7168 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
7169 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
7170 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
7171 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
7172 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
7173 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
7174 STATS_OFFSET32(stat_XonPauseFramesReceived),
7175 STATS_OFFSET32(stat_XoffPauseFramesReceived),
7176 STATS_OFFSET32(stat_OutXonSent),
7177 STATS_OFFSET32(stat_OutXoffSent),
7178 STATS_OFFSET32(stat_MacControlFramesReceived),
7179 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
7180 STATS_OFFSET32(stat_IfInMBUFDiscards),
7181 STATS_OFFSET32(stat_FwRxDrop),
7182 };
7183
7184 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7185 * skipped because of errata.
7186 */
7187 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
7188 8,0,8,8,8,8,8,8,8,8,
7189 4,0,4,4,4,4,4,4,4,4,
7190 4,4,4,4,4,4,4,4,4,4,
7191 4,4,4,4,4,4,4,4,4,4,
7192 4,4,4,4,4,4,
7193 };
7194
7195 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
7196 8,0,8,8,8,8,8,8,8,8,
7197 4,4,4,4,4,4,4,4,4,4,
7198 4,4,4,4,4,4,4,4,4,4,
7199 4,4,4,4,4,4,4,4,4,4,
7200 4,4,4,4,4,4,
7201 };
7202
7203 #define BNX2_NUM_TESTS 6
7204
7205 static struct {
7206 char string[ETH_GSTRING_LEN];
7207 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
7208 { "register_test (offline)" },
7209 { "memory_test (offline)" },
7210 { "loopback_test (offline)" },
7211 { "nvram_test (online)" },
7212 { "interrupt_test (online)" },
7213 { "link_test (online)" },
7214 };
7215
7216 static int
7217 bnx2_get_sset_count(struct net_device *dev, int sset)
7218 {
7219 switch (sset) {
7220 case ETH_SS_TEST:
7221 return BNX2_NUM_TESTS;
7222 case ETH_SS_STATS:
7223 return BNX2_NUM_STATS;
7224 default:
7225 return -EOPNOTSUPP;
7226 }
7227 }
7228
7229 static void
7230 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
7231 {
7232 struct bnx2 *bp = netdev_priv(dev);
7233
7234 bnx2_set_power_state(bp, PCI_D0);
7235
7236 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
7237 if (etest->flags & ETH_TEST_FL_OFFLINE) {
7238 int i;
7239
7240 bnx2_netif_stop(bp);
7241 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
7242 bnx2_free_skbs(bp);
7243
7244 if (bnx2_test_registers(bp) != 0) {
7245 buf[0] = 1;
7246 etest->flags |= ETH_TEST_FL_FAILED;
7247 }
7248 if (bnx2_test_memory(bp) != 0) {
7249 buf[1] = 1;
7250 etest->flags |= ETH_TEST_FL_FAILED;
7251 }
7252 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
7253 etest->flags |= ETH_TEST_FL_FAILED;
7254
7255 if (!netif_running(bp->dev))
7256 bnx2_shutdown_chip(bp);
7257 else {
7258 bnx2_init_nic(bp, 1);
7259 bnx2_netif_start(bp);
7260 }
7261
7262 /* wait for link up */
7263 for (i = 0; i < 7; i++) {
7264 if (bp->link_up)
7265 break;
7266 msleep_interruptible(1000);
7267 }
7268 }
7269
7270 if (bnx2_test_nvram(bp) != 0) {
7271 buf[3] = 1;
7272 etest->flags |= ETH_TEST_FL_FAILED;
7273 }
7274 if (bnx2_test_intr(bp) != 0) {
7275 buf[4] = 1;
7276 etest->flags |= ETH_TEST_FL_FAILED;
7277 }
7278
7279 if (bnx2_test_link(bp) != 0) {
7280 buf[5] = 1;
7281 etest->flags |= ETH_TEST_FL_FAILED;
7282
7283 }
7284 if (!netif_running(bp->dev))
7285 bnx2_set_power_state(bp, PCI_D3hot);
7286 }
7287
7288 static void
7289 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
7290 {
7291 switch (stringset) {
7292 case ETH_SS_STATS:
7293 memcpy(buf, bnx2_stats_str_arr,
7294 sizeof(bnx2_stats_str_arr));
7295 break;
7296 case ETH_SS_TEST:
7297 memcpy(buf, bnx2_tests_str_arr,
7298 sizeof(bnx2_tests_str_arr));
7299 break;
7300 }
7301 }
7302
7303 static void
7304 bnx2_get_ethtool_stats(struct net_device *dev,
7305 struct ethtool_stats *stats, u64 *buf)
7306 {
7307 struct bnx2 *bp = netdev_priv(dev);
7308 int i;
7309 u32 *hw_stats = (u32 *) bp->stats_blk;
7310 u8 *stats_len_arr = NULL;
7311
7312 if (hw_stats == NULL) {
7313 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
7314 return;
7315 }
7316
7317 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
7318 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
7319 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
7320 (CHIP_ID(bp) == CHIP_ID_5708_A0))
7321 stats_len_arr = bnx2_5706_stats_len_arr;
7322 else
7323 stats_len_arr = bnx2_5708_stats_len_arr;
7324
7325 for (i = 0; i < BNX2_NUM_STATS; i++) {
7326 if (stats_len_arr[i] == 0) {
7327 /* skip this counter */
7328 buf[i] = 0;
7329 continue;
7330 }
7331 if (stats_len_arr[i] == 4) {
7332 /* 4-byte counter */
7333 buf[i] = (u64)
7334 *(hw_stats + bnx2_stats_offset_arr[i]);
7335 continue;
7336 }
7337 /* 8-byte counter */
7338 buf[i] = (((u64) *(hw_stats +
7339 bnx2_stats_offset_arr[i])) << 32) +
7340 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
7341 }
7342 }
7343
7344 static int
7345 bnx2_phys_id(struct net_device *dev, u32 data)
7346 {
7347 struct bnx2 *bp = netdev_priv(dev);
7348 int i;
7349 u32 save;
7350
7351 bnx2_set_power_state(bp, PCI_D0);
7352
7353 if (data == 0)
7354 data = 2;
7355
7356 save = REG_RD(bp, BNX2_MISC_CFG);
7357 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
7358
7359 for (i = 0; i < (data * 2); i++) {
7360 if ((i % 2) == 0) {
7361 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
7362 }
7363 else {
7364 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
7365 BNX2_EMAC_LED_1000MB_OVERRIDE |
7366 BNX2_EMAC_LED_100MB_OVERRIDE |
7367 BNX2_EMAC_LED_10MB_OVERRIDE |
7368 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
7369 BNX2_EMAC_LED_TRAFFIC);
7370 }
7371 msleep_interruptible(500);
7372 if (signal_pending(current))
7373 break;
7374 }
7375 REG_WR(bp, BNX2_EMAC_LED, 0);
7376 REG_WR(bp, BNX2_MISC_CFG, save);
7377
7378 if (!netif_running(dev))
7379 bnx2_set_power_state(bp, PCI_D3hot);
7380
7381 return 0;
7382 }
7383
7384 static int
7385 bnx2_set_tx_csum(struct net_device *dev, u32 data)
7386 {
7387 struct bnx2 *bp = netdev_priv(dev);
7388
7389 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7390 return (ethtool_op_set_tx_ipv6_csum(dev, data));
7391 else
7392 return (ethtool_op_set_tx_csum(dev, data));
7393 }
7394
7395 static const struct ethtool_ops bnx2_ethtool_ops = {
7396 .get_settings = bnx2_get_settings,
7397 .set_settings = bnx2_set_settings,
7398 .get_drvinfo = bnx2_get_drvinfo,
7399 .get_regs_len = bnx2_get_regs_len,
7400 .get_regs = bnx2_get_regs,
7401 .get_wol = bnx2_get_wol,
7402 .set_wol = bnx2_set_wol,
7403 .nway_reset = bnx2_nway_reset,
7404 .get_link = bnx2_get_link,
7405 .get_eeprom_len = bnx2_get_eeprom_len,
7406 .get_eeprom = bnx2_get_eeprom,
7407 .set_eeprom = bnx2_set_eeprom,
7408 .get_coalesce = bnx2_get_coalesce,
7409 .set_coalesce = bnx2_set_coalesce,
7410 .get_ringparam = bnx2_get_ringparam,
7411 .set_ringparam = bnx2_set_ringparam,
7412 .get_pauseparam = bnx2_get_pauseparam,
7413 .set_pauseparam = bnx2_set_pauseparam,
7414 .get_rx_csum = bnx2_get_rx_csum,
7415 .set_rx_csum = bnx2_set_rx_csum,
7416 .set_tx_csum = bnx2_set_tx_csum,
7417 .set_sg = ethtool_op_set_sg,
7418 .set_tso = bnx2_set_tso,
7419 .self_test = bnx2_self_test,
7420 .get_strings = bnx2_get_strings,
7421 .phys_id = bnx2_phys_id,
7422 .get_ethtool_stats = bnx2_get_ethtool_stats,
7423 .get_sset_count = bnx2_get_sset_count,
7424 };
7425
7426 /* Called with rtnl_lock */
7427 static int
7428 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7429 {
7430 struct mii_ioctl_data *data = if_mii(ifr);
7431 struct bnx2 *bp = netdev_priv(dev);
7432 int err;
7433
7434 switch(cmd) {
7435 case SIOCGMIIPHY:
7436 data->phy_id = bp->phy_addr;
7437
7438 /* fallthru */
7439 case SIOCGMIIREG: {
7440 u32 mii_regval;
7441
7442 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7443 return -EOPNOTSUPP;
7444
7445 if (!netif_running(dev))
7446 return -EAGAIN;
7447
7448 spin_lock_bh(&bp->phy_lock);
7449 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7450 spin_unlock_bh(&bp->phy_lock);
7451
7452 data->val_out = mii_regval;
7453
7454 return err;
7455 }
7456
7457 case SIOCSMIIREG:
7458 if (!capable(CAP_NET_ADMIN))
7459 return -EPERM;
7460
7461 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7462 return -EOPNOTSUPP;
7463
7464 if (!netif_running(dev))
7465 return -EAGAIN;
7466
7467 spin_lock_bh(&bp->phy_lock);
7468 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7469 spin_unlock_bh(&bp->phy_lock);
7470
7471 return err;
7472
7473 default:
7474 /* do nothing */
7475 break;
7476 }
7477 return -EOPNOTSUPP;
7478 }
7479
7480 /* Called with rtnl_lock */
7481 static int
7482 bnx2_change_mac_addr(struct net_device *dev, void *p)
7483 {
7484 struct sockaddr *addr = p;
7485 struct bnx2 *bp = netdev_priv(dev);
7486
7487 if (!is_valid_ether_addr(addr->sa_data))
7488 return -EINVAL;
7489
7490 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7491 if (netif_running(dev))
7492 bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
7493
7494 return 0;
7495 }
7496
7497 /* Called with rtnl_lock */
7498 static int
7499 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7500 {
7501 struct bnx2 *bp = netdev_priv(dev);
7502
7503 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7504 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7505 return -EINVAL;
7506
7507 dev->mtu = new_mtu;
7508 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7509 }
7510
7511 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7512 static void
7513 poll_bnx2(struct net_device *dev)
7514 {
7515 struct bnx2 *bp = netdev_priv(dev);
7516 int i;
7517
7518 for (i = 0; i < bp->irq_nvecs; i++) {
7519 disable_irq(bp->irq_tbl[i].vector);
7520 bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
7521 enable_irq(bp->irq_tbl[i].vector);
7522 }
7523 }
7524 #endif
7525
7526 static void __devinit
7527 bnx2_get_5709_media(struct bnx2 *bp)
7528 {
7529 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7530 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7531 u32 strap;
7532
7533 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7534 return;
7535 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7536 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7537 return;
7538 }
7539
7540 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7541 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7542 else
7543 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7544
7545 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7546 switch (strap) {
7547 case 0x4:
7548 case 0x5:
7549 case 0x6:
7550 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7551 return;
7552 }
7553 } else {
7554 switch (strap) {
7555 case 0x1:
7556 case 0x2:
7557 case 0x4:
7558 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7559 return;
7560 }
7561 }
7562 }
7563
7564 static void __devinit
7565 bnx2_get_pci_speed(struct bnx2 *bp)
7566 {
7567 u32 reg;
7568
7569 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7570 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7571 u32 clkreg;
7572
7573 bp->flags |= BNX2_FLAG_PCIX;
7574
7575 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7576
7577 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7578 switch (clkreg) {
7579 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7580 bp->bus_speed_mhz = 133;
7581 break;
7582
7583 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7584 bp->bus_speed_mhz = 100;
7585 break;
7586
7587 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7588 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7589 bp->bus_speed_mhz = 66;
7590 break;
7591
7592 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7593 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7594 bp->bus_speed_mhz = 50;
7595 break;
7596
7597 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7598 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7599 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7600 bp->bus_speed_mhz = 33;
7601 break;
7602 }
7603 }
7604 else {
7605 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7606 bp->bus_speed_mhz = 66;
7607 else
7608 bp->bus_speed_mhz = 33;
7609 }
7610
7611 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7612 bp->flags |= BNX2_FLAG_PCI_32BIT;
7613
7614 }
7615
7616 static int __devinit
7617 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7618 {
7619 struct bnx2 *bp;
7620 unsigned long mem_len;
7621 int rc, i, j;
7622 u32 reg;
7623 u64 dma_mask, persist_dma_mask;
7624
7625 SET_NETDEV_DEV(dev, &pdev->dev);
7626 bp = netdev_priv(dev);
7627
7628 bp->flags = 0;
7629 bp->phy_flags = 0;
7630
7631 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7632 rc = pci_enable_device(pdev);
7633 if (rc) {
7634 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7635 goto err_out;
7636 }
7637
7638 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7639 dev_err(&pdev->dev,
7640 "Cannot find PCI device base address, aborting.\n");
7641 rc = -ENODEV;
7642 goto err_out_disable;
7643 }
7644
7645 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7646 if (rc) {
7647 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7648 goto err_out_disable;
7649 }
7650
7651 pci_set_master(pdev);
7652 pci_save_state(pdev);
7653
7654 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7655 if (bp->pm_cap == 0) {
7656 dev_err(&pdev->dev,
7657 "Cannot find power management capability, aborting.\n");
7658 rc = -EIO;
7659 goto err_out_release;
7660 }
7661
7662 bp->dev = dev;
7663 bp->pdev = pdev;
7664
7665 spin_lock_init(&bp->phy_lock);
7666 spin_lock_init(&bp->indirect_lock);
7667 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7668
7669 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7670 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
7671 dev->mem_end = dev->mem_start + mem_len;
7672 dev->irq = pdev->irq;
7673
7674 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7675
7676 if (!bp->regview) {
7677 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7678 rc = -ENOMEM;
7679 goto err_out_release;
7680 }
7681
7682 /* Configure byte swap and enable write to the reg_window registers.
7683 * Rely on CPU to do target byte swapping on big endian systems
7684 * The chip's target access swapping will not swap all accesses
7685 */
7686 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7687 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7688 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7689
7690 bnx2_set_power_state(bp, PCI_D0);
7691
7692 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7693
7694 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7695 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7696 dev_err(&pdev->dev,
7697 "Cannot find PCIE capability, aborting.\n");
7698 rc = -EIO;
7699 goto err_out_unmap;
7700 }
7701 bp->flags |= BNX2_FLAG_PCIE;
7702 if (CHIP_REV(bp) == CHIP_REV_Ax)
7703 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7704 } else {
7705 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7706 if (bp->pcix_cap == 0) {
7707 dev_err(&pdev->dev,
7708 "Cannot find PCIX capability, aborting.\n");
7709 rc = -EIO;
7710 goto err_out_unmap;
7711 }
7712 }
7713
7714 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7715 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7716 bp->flags |= BNX2_FLAG_MSIX_CAP;
7717 }
7718
7719 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7720 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7721 bp->flags |= BNX2_FLAG_MSI_CAP;
7722 }
7723
7724 /* 5708 cannot support DMA addresses > 40-bit. */
7725 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7726 persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
7727 else
7728 persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
7729
7730 /* Configure DMA attributes. */
7731 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7732 dev->features |= NETIF_F_HIGHDMA;
7733 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7734 if (rc) {
7735 dev_err(&pdev->dev,
7736 "pci_set_consistent_dma_mask failed, aborting.\n");
7737 goto err_out_unmap;
7738 }
7739 } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
7740 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7741 goto err_out_unmap;
7742 }
7743
7744 if (!(bp->flags & BNX2_FLAG_PCIE))
7745 bnx2_get_pci_speed(bp);
7746
7747 /* 5706A0 may falsely detect SERR and PERR. */
7748 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7749 reg = REG_RD(bp, PCI_COMMAND);
7750 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7751 REG_WR(bp, PCI_COMMAND, reg);
7752 }
7753 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7754 !(bp->flags & BNX2_FLAG_PCIX)) {
7755
7756 dev_err(&pdev->dev,
7757 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7758 goto err_out_unmap;
7759 }
7760
7761 bnx2_init_nvram(bp);
7762
7763 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7764
7765 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7766 BNX2_SHM_HDR_SIGNATURE_SIG) {
7767 u32 off = PCI_FUNC(pdev->devfn) << 2;
7768
7769 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7770 } else
7771 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7772
7773 /* Get the permanent MAC address. First we need to make sure the
7774 * firmware is actually running.
7775 */
7776 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7777
7778 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7779 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7780 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7781 rc = -ENODEV;
7782 goto err_out_unmap;
7783 }
7784
7785 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7786 for (i = 0, j = 0; i < 3; i++) {
7787 u8 num, k, skip0;
7788
7789 num = (u8) (reg >> (24 - (i * 8)));
7790 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7791 if (num >= k || !skip0 || k == 1) {
7792 bp->fw_version[j++] = (num / k) + '0';
7793 skip0 = 0;
7794 }
7795 }
7796 if (i != 2)
7797 bp->fw_version[j++] = '.';
7798 }
7799 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7800 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7801 bp->wol = 1;
7802
7803 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7804 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7805
7806 for (i = 0; i < 30; i++) {
7807 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7808 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7809 break;
7810 msleep(10);
7811 }
7812 }
7813 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7814 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7815 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7816 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7817 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7818
7819 bp->fw_version[j++] = ' ';
7820 for (i = 0; i < 3; i++) {
7821 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7822 reg = swab32(reg);
7823 memcpy(&bp->fw_version[j], &reg, 4);
7824 j += 4;
7825 }
7826 }
7827
7828 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7829 bp->mac_addr[0] = (u8) (reg >> 8);
7830 bp->mac_addr[1] = (u8) reg;
7831
7832 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7833 bp->mac_addr[2] = (u8) (reg >> 24);
7834 bp->mac_addr[3] = (u8) (reg >> 16);
7835 bp->mac_addr[4] = (u8) (reg >> 8);
7836 bp->mac_addr[5] = (u8) reg;
7837
7838 bp->tx_ring_size = MAX_TX_DESC_CNT;
7839 bnx2_set_rx_ring_size(bp, 255);
7840
7841 bp->rx_csum = 1;
7842
7843 bp->tx_quick_cons_trip_int = 20;
7844 bp->tx_quick_cons_trip = 20;
7845 bp->tx_ticks_int = 80;
7846 bp->tx_ticks = 80;
7847
7848 bp->rx_quick_cons_trip_int = 6;
7849 bp->rx_quick_cons_trip = 6;
7850 bp->rx_ticks_int = 18;
7851 bp->rx_ticks = 18;
7852
7853 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7854
7855 bp->current_interval = BNX2_TIMER_INTERVAL;
7856
7857 bp->phy_addr = 1;
7858
7859 /* Disable WOL support if we are running on a SERDES chip. */
7860 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7861 bnx2_get_5709_media(bp);
7862 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7863 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7864
7865 bp->phy_port = PORT_TP;
7866 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7867 bp->phy_port = PORT_FIBRE;
7868 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7869 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7870 bp->flags |= BNX2_FLAG_NO_WOL;
7871 bp->wol = 0;
7872 }
7873 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7874 /* Don't do parallel detect on this board because of
7875 * some board problems. The link will not go down
7876 * if we do parallel detect.
7877 */
7878 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7879 pdev->subsystem_device == 0x310c)
7880 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7881 } else {
7882 bp->phy_addr = 2;
7883 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7884 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7885 }
7886 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7887 CHIP_NUM(bp) == CHIP_NUM_5708)
7888 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7889 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7890 (CHIP_REV(bp) == CHIP_REV_Ax ||
7891 CHIP_REV(bp) == CHIP_REV_Bx))
7892 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7893
7894 bnx2_init_fw_cap(bp);
7895
7896 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7897 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7898 (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
7899 !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
7900 bp->flags |= BNX2_FLAG_NO_WOL;
7901 bp->wol = 0;
7902 }
7903
7904 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7905 bp->tx_quick_cons_trip_int =
7906 bp->tx_quick_cons_trip;
7907 bp->tx_ticks_int = bp->tx_ticks;
7908 bp->rx_quick_cons_trip_int =
7909 bp->rx_quick_cons_trip;
7910 bp->rx_ticks_int = bp->rx_ticks;
7911 bp->comp_prod_trip_int = bp->comp_prod_trip;
7912 bp->com_ticks_int = bp->com_ticks;
7913 bp->cmd_ticks_int = bp->cmd_ticks;
7914 }
7915
7916 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7917 *
7918 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7919 * with byte enables disabled on the unused 32-bit word. This is legal
7920 * but causes problems on the AMD 8132 which will eventually stop
7921 * responding after a while.
7922 *
7923 * AMD believes this incompatibility is unique to the 5706, and
7924 * prefers to locally disable MSI rather than globally disabling it.
7925 */
7926 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7927 struct pci_dev *amd_8132 = NULL;
7928
7929 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7930 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7931 amd_8132))) {
7932
7933 if (amd_8132->revision >= 0x10 &&
7934 amd_8132->revision <= 0x13) {
7935 disable_msi = 1;
7936 pci_dev_put(amd_8132);
7937 break;
7938 }
7939 }
7940 }
7941
7942 bnx2_set_default_link(bp);
7943 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7944
7945 init_timer(&bp->timer);
7946 bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
7947 bp->timer.data = (unsigned long) bp;
7948 bp->timer.function = bnx2_timer;
7949
7950 return 0;
7951
7952 err_out_unmap:
7953 if (bp->regview) {
7954 iounmap(bp->regview);
7955 bp->regview = NULL;
7956 }
7957
7958 err_out_release:
7959 pci_release_regions(pdev);
7960
7961 err_out_disable:
7962 pci_disable_device(pdev);
7963 pci_set_drvdata(pdev, NULL);
7964
7965 err_out:
7966 return rc;
7967 }
7968
7969 static char * __devinit
7970 bnx2_bus_string(struct bnx2 *bp, char *str)
7971 {
7972 char *s = str;
7973
7974 if (bp->flags & BNX2_FLAG_PCIE) {
7975 s += sprintf(s, "PCI Express");
7976 } else {
7977 s += sprintf(s, "PCI");
7978 if (bp->flags & BNX2_FLAG_PCIX)
7979 s += sprintf(s, "-X");
7980 if (bp->flags & BNX2_FLAG_PCI_32BIT)
7981 s += sprintf(s, " 32-bit");
7982 else
7983 s += sprintf(s, " 64-bit");
7984 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
7985 }
7986 return str;
7987 }
7988
7989 static void __devinit
7990 bnx2_init_napi(struct bnx2 *bp)
7991 {
7992 int i;
7993
7994 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
7995 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
7996 int (*poll)(struct napi_struct *, int);
7997
7998 if (i == 0)
7999 poll = bnx2_poll;
8000 else
8001 poll = bnx2_poll_msix;
8002
8003 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
8004 bnapi->bp = bp;
8005 }
8006 }
8007
8008 static const struct net_device_ops bnx2_netdev_ops = {
8009 .ndo_open = bnx2_open,
8010 .ndo_start_xmit = bnx2_start_xmit,
8011 .ndo_stop = bnx2_close,
8012 .ndo_get_stats = bnx2_get_stats,
8013 .ndo_set_rx_mode = bnx2_set_rx_mode,
8014 .ndo_do_ioctl = bnx2_ioctl,
8015 .ndo_validate_addr = eth_validate_addr,
8016 .ndo_set_mac_address = bnx2_change_mac_addr,
8017 .ndo_change_mtu = bnx2_change_mtu,
8018 .ndo_tx_timeout = bnx2_tx_timeout,
8019 #ifdef BCM_VLAN
8020 .ndo_vlan_rx_register = bnx2_vlan_rx_register,
8021 #endif
8022 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
8023 .ndo_poll_controller = poll_bnx2,
8024 #endif
8025 };
8026
8027 static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
8028 {
8029 #ifdef BCM_VLAN
8030 dev->vlan_features |= flags;
8031 #endif
8032 }
8033
8034 static int __devinit
8035 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8036 {
8037 static int version_printed = 0;
8038 struct net_device *dev = NULL;
8039 struct bnx2 *bp;
8040 int rc;
8041 char str[40];
8042
8043 if (version_printed++ == 0)
8044 printk(KERN_INFO "%s", version);
8045
8046 /* dev zeroed in init_etherdev */
8047 dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
8048
8049 if (!dev)
8050 return -ENOMEM;
8051
8052 rc = bnx2_init_board(pdev, dev);
8053 if (rc < 0) {
8054 free_netdev(dev);
8055 return rc;
8056 }
8057
8058 dev->netdev_ops = &bnx2_netdev_ops;
8059 dev->watchdog_timeo = TX_TIMEOUT;
8060 dev->ethtool_ops = &bnx2_ethtool_ops;
8061
8062 bp = netdev_priv(dev);
8063 bnx2_init_napi(bp);
8064
8065 pci_set_drvdata(pdev, dev);
8066
8067 rc = bnx2_request_firmware(bp);
8068 if (rc)
8069 goto error;
8070
8071 memcpy(dev->dev_addr, bp->mac_addr, 6);
8072 memcpy(dev->perm_addr, bp->mac_addr, 6);
8073
8074 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
8075 vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
8076 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8077 dev->features |= NETIF_F_IPV6_CSUM;
8078 vlan_features_add(dev, NETIF_F_IPV6_CSUM);
8079 }
8080 #ifdef BCM_VLAN
8081 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8082 #endif
8083 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
8084 vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
8085 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
8086 dev->features |= NETIF_F_TSO6;
8087 vlan_features_add(dev, NETIF_F_TSO6);
8088 }
8089 if ((rc = register_netdev(dev))) {
8090 dev_err(&pdev->dev, "Cannot register net device\n");
8091 goto error;
8092 }
8093
8094 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
8095 "IRQ %d, node addr %pM\n",
8096 dev->name,
8097 board_info[ent->driver_data].name,
8098 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
8099 ((CHIP_ID(bp) & 0x0ff0) >> 4),
8100 bnx2_bus_string(bp, str),
8101 dev->base_addr,
8102 bp->pdev->irq, dev->dev_addr);
8103
8104 return 0;
8105
8106 error:
8107 if (bp->mips_firmware)
8108 release_firmware(bp->mips_firmware);
8109 if (bp->rv2p_firmware)
8110 release_firmware(bp->rv2p_firmware);
8111
8112 if (bp->regview)
8113 iounmap(bp->regview);
8114 pci_release_regions(pdev);
8115 pci_disable_device(pdev);
8116 pci_set_drvdata(pdev, NULL);
8117 free_netdev(dev);
8118 return rc;
8119 }
8120
8121 static void __devexit
8122 bnx2_remove_one(struct pci_dev *pdev)
8123 {
8124 struct net_device *dev = pci_get_drvdata(pdev);
8125 struct bnx2 *bp = netdev_priv(dev);
8126
8127 flush_scheduled_work();
8128
8129 unregister_netdev(dev);
8130
8131 if (bp->mips_firmware)
8132 release_firmware(bp->mips_firmware);
8133 if (bp->rv2p_firmware)
8134 release_firmware(bp->rv2p_firmware);
8135
8136 if (bp->regview)
8137 iounmap(bp->regview);
8138
8139 free_netdev(dev);
8140 pci_release_regions(pdev);
8141 pci_disable_device(pdev);
8142 pci_set_drvdata(pdev, NULL);
8143 }
8144
8145 static int
8146 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
8147 {
8148 struct net_device *dev = pci_get_drvdata(pdev);
8149 struct bnx2 *bp = netdev_priv(dev);
8150
8151 /* PCI register 4 needs to be saved whether netif_running() or not.
8152 * MSI address and data need to be saved if using MSI and
8153 * netif_running().
8154 */
8155 pci_save_state(pdev);
8156 if (!netif_running(dev))
8157 return 0;
8158
8159 flush_scheduled_work();
8160 bnx2_netif_stop(bp);
8161 netif_device_detach(dev);
8162 del_timer_sync(&bp->timer);
8163 bnx2_shutdown_chip(bp);
8164 bnx2_free_skbs(bp);
8165 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
8166 return 0;
8167 }
8168
8169 static int
8170 bnx2_resume(struct pci_dev *pdev)
8171 {
8172 struct net_device *dev = pci_get_drvdata(pdev);
8173 struct bnx2 *bp = netdev_priv(dev);
8174
8175 pci_restore_state(pdev);
8176 if (!netif_running(dev))
8177 return 0;
8178
8179 bnx2_set_power_state(bp, PCI_D0);
8180 netif_device_attach(dev);
8181 bnx2_init_nic(bp, 1);
8182 bnx2_netif_start(bp);
8183 return 0;
8184 }
8185
8186 /**
8187 * bnx2_io_error_detected - called when PCI error is detected
8188 * @pdev: Pointer to PCI device
8189 * @state: The current pci connection state
8190 *
8191 * This function is called after a PCI bus error affecting
8192 * this device has been detected.
8193 */
8194 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
8195 pci_channel_state_t state)
8196 {
8197 struct net_device *dev = pci_get_drvdata(pdev);
8198 struct bnx2 *bp = netdev_priv(dev);
8199
8200 rtnl_lock();
8201 netif_device_detach(dev);
8202
8203 if (state == pci_channel_io_perm_failure) {
8204 rtnl_unlock();
8205 return PCI_ERS_RESULT_DISCONNECT;
8206 }
8207
8208 if (netif_running(dev)) {
8209 bnx2_netif_stop(bp);
8210 del_timer_sync(&bp->timer);
8211 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
8212 }
8213
8214 pci_disable_device(pdev);
8215 rtnl_unlock();
8216
8217 /* Request a slot slot reset. */
8218 return PCI_ERS_RESULT_NEED_RESET;
8219 }
8220
8221 /**
8222 * bnx2_io_slot_reset - called after the pci bus has been reset.
8223 * @pdev: Pointer to PCI device
8224 *
8225 * Restart the card from scratch, as if from a cold-boot.
8226 */
8227 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
8228 {
8229 struct net_device *dev = pci_get_drvdata(pdev);
8230 struct bnx2 *bp = netdev_priv(dev);
8231
8232 rtnl_lock();
8233 if (pci_enable_device(pdev)) {
8234 dev_err(&pdev->dev,
8235 "Cannot re-enable PCI device after reset.\n");
8236 rtnl_unlock();
8237 return PCI_ERS_RESULT_DISCONNECT;
8238 }
8239 pci_set_master(pdev);
8240 pci_restore_state(pdev);
8241
8242 if (netif_running(dev)) {
8243 bnx2_set_power_state(bp, PCI_D0);
8244 bnx2_init_nic(bp, 1);
8245 }
8246
8247 rtnl_unlock();
8248 return PCI_ERS_RESULT_RECOVERED;
8249 }
8250
8251 /**
8252 * bnx2_io_resume - called when traffic can start flowing again.
8253 * @pdev: Pointer to PCI device
8254 *
8255 * This callback is called when the error recovery driver tells us that
8256 * its OK to resume normal operation.
8257 */
8258 static void bnx2_io_resume(struct pci_dev *pdev)
8259 {
8260 struct net_device *dev = pci_get_drvdata(pdev);
8261 struct bnx2 *bp = netdev_priv(dev);
8262
8263 rtnl_lock();
8264 if (netif_running(dev))
8265 bnx2_netif_start(bp);
8266
8267 netif_device_attach(dev);
8268 rtnl_unlock();
8269 }
8270
8271 static struct pci_error_handlers bnx2_err_handler = {
8272 .error_detected = bnx2_io_error_detected,
8273 .slot_reset = bnx2_io_slot_reset,
8274 .resume = bnx2_io_resume,
8275 };
8276
8277 static struct pci_driver bnx2_pci_driver = {
8278 .name = DRV_MODULE_NAME,
8279 .id_table = bnx2_pci_tbl,
8280 .probe = bnx2_init_one,
8281 .remove = __devexit_p(bnx2_remove_one),
8282 .suspend = bnx2_suspend,
8283 .resume = bnx2_resume,
8284 .err_handler = &bnx2_err_handler,
8285 };
8286
8287 static int __init bnx2_init(void)
8288 {
8289 return pci_register_driver(&bnx2_pci_driver);
8290 }
8291
8292 static void __exit bnx2_cleanup(void)
8293 {
8294 pci_unregister_driver(&bnx2_pci_driver);
8295 }
8296
8297 module_init(bnx2_init);
8298 module_exit(bnx2_cleanup);
8299
8300
8301
This page took 0.220904 seconds and 5 git commands to generate.