bnx2: Prevent ethtool -s from crashing when device is down.
[deliverable/linux.git] / drivers / net / bnx2.c
1 /* bnx2.c: Broadcom NX2 network driver.
2 *
3 * Copyright (c) 2004-2008 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Written by: Michael Chan (mchan@broadcom.com)
10 */
11
12
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15
16 #include <linux/kernel.h>
17 #include <linux/timer.h>
18 #include <linux/errno.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/interrupt.h>
23 #include <linux/pci.h>
24 #include <linux/init.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/bitops.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <linux/delay.h>
33 #include <asm/byteorder.h>
34 #include <asm/page.h>
35 #include <linux/time.h>
36 #include <linux/ethtool.h>
37 #include <linux/mii.h>
38 #ifdef NETIF_F_HW_VLAN_TX
39 #include <linux/if_vlan.h>
40 #define BCM_VLAN 1
41 #endif
42 #include <net/ip.h>
43 #include <net/tcp.h>
44 #include <net/checksum.h>
45 #include <linux/workqueue.h>
46 #include <linux/crc32.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/zlib.h>
50
51 #include "bnx2.h"
52 #include "bnx2_fw.h"
53 #include "bnx2_fw2.h"
54
55 #define FW_BUF_SIZE 0x10000
56
57 #define DRV_MODULE_NAME "bnx2"
58 #define PFX DRV_MODULE_NAME ": "
59 #define DRV_MODULE_VERSION "1.7.7"
60 #define DRV_MODULE_RELDATE "June 17, 2008"
61
62 #define RUN_AT(x) (jiffies + (x))
63
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT (5*HZ)
66
67 static char version[] __devinitdata =
68 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
69
70 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
71 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709 Driver");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_MODULE_VERSION);
74
75 static int disable_msi = 0;
76
77 module_param(disable_msi, int, 0);
78 MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
79
80 typedef enum {
81 BCM5706 = 0,
82 NC370T,
83 NC370I,
84 BCM5706S,
85 NC370F,
86 BCM5708,
87 BCM5708S,
88 BCM5709,
89 BCM5709S,
90 } board_t;
91
92 /* indexed by board_t, above */
93 static struct {
94 char *name;
95 } board_info[] __devinitdata = {
96 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
97 { "HP NC370T Multifunction Gigabit Server Adapter" },
98 { "HP NC370i Multifunction Gigabit Server Adapter" },
99 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
100 { "HP NC370F Multifunction Gigabit Server Adapter" },
101 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
102 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
103 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
104 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
105 };
106
107 static struct pci_device_id bnx2_pci_tbl[] = {
108 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
109 PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
110 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
111 PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
112 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
114 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
115 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
116 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
117 PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
118 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
119 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
120 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
121 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
122 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
124 { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
126 { 0, }
127 };
128
129 static struct flash_spec flash_table[] =
130 {
131 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
132 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
133 /* Slow EEPROM */
134 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
135 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
136 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
137 "EEPROM - slow"},
138 /* Expansion entry 0001 */
139 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
140 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
141 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
142 "Entry 0001"},
143 /* Saifun SA25F010 (non-buffered flash) */
144 /* strap, cfg1, & write1 need updates */
145 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
146 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
147 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
148 "Non-buffered flash (128kB)"},
149 /* Saifun SA25F020 (non-buffered flash) */
150 /* strap, cfg1, & write1 need updates */
151 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
152 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
153 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
154 "Non-buffered flash (256kB)"},
155 /* Expansion entry 0100 */
156 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
157 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
158 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
159 "Entry 0100"},
160 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
161 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
162 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
163 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
164 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
165 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
166 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
167 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
168 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
169 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
170 /* Saifun SA25F005 (non-buffered flash) */
171 /* strap, cfg1, & write1 need updates */
172 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
173 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
174 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
175 "Non-buffered flash (64kB)"},
176 /* Fast EEPROM */
177 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
178 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
179 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
180 "EEPROM - fast"},
181 /* Expansion entry 1001 */
182 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
183 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
184 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
185 "Entry 1001"},
186 /* Expansion entry 1010 */
187 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
188 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
189 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
190 "Entry 1010"},
191 /* ATMEL AT45DB011B (buffered flash) */
192 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
193 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
194 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
195 "Buffered flash (128kB)"},
196 /* Expansion entry 1100 */
197 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
198 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
199 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
200 "Entry 1100"},
201 /* Expansion entry 1101 */
202 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
205 "Entry 1101"},
206 /* Ateml Expansion entry 1110 */
207 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
208 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
209 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
210 "Entry 1110 (Atmel)"},
211 /* ATMEL AT45DB021B (buffered flash) */
212 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
214 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
215 "Buffered flash (256kB)"},
216 };
217
218 static struct flash_spec flash_5709 = {
219 .flags = BNX2_NV_BUFFERED,
220 .page_bits = BCM5709_FLASH_PAGE_BITS,
221 .page_size = BCM5709_FLASH_PAGE_SIZE,
222 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
223 .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
224 .name = "5709 Buffered flash (256kB)",
225 };
226
227 MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
228
229 static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
230 {
231 u32 diff;
232
233 smp_mb();
234
235 /* The ring uses 256 indices for 255 entries, one of them
236 * needs to be skipped.
237 */
238 diff = txr->tx_prod - txr->tx_cons;
239 if (unlikely(diff >= TX_DESC_CNT)) {
240 diff &= 0xffff;
241 if (diff == TX_DESC_CNT)
242 diff = MAX_TX_DESC_CNT;
243 }
244 return (bp->tx_ring_size - diff);
245 }
246
247 static u32
248 bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
249 {
250 u32 val;
251
252 spin_lock_bh(&bp->indirect_lock);
253 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
254 val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
255 spin_unlock_bh(&bp->indirect_lock);
256 return val;
257 }
258
259 static void
260 bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
261 {
262 spin_lock_bh(&bp->indirect_lock);
263 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
264 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
265 spin_unlock_bh(&bp->indirect_lock);
266 }
267
268 static void
269 bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
270 {
271 bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
272 }
273
274 static u32
275 bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
276 {
277 return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
278 }
279
280 static void
281 bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
282 {
283 offset += cid_addr;
284 spin_lock_bh(&bp->indirect_lock);
285 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
286 int i;
287
288 REG_WR(bp, BNX2_CTX_CTX_DATA, val);
289 REG_WR(bp, BNX2_CTX_CTX_CTRL,
290 offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
291 for (i = 0; i < 5; i++) {
292 u32 val;
293 val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
294 if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
295 break;
296 udelay(5);
297 }
298 } else {
299 REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
300 REG_WR(bp, BNX2_CTX_DATA, val);
301 }
302 spin_unlock_bh(&bp->indirect_lock);
303 }
304
305 static int
306 bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
307 {
308 u32 val1;
309 int i, ret;
310
311 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
312 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
313 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
314
315 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
316 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
317
318 udelay(40);
319 }
320
321 val1 = (bp->phy_addr << 21) | (reg << 16) |
322 BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
323 BNX2_EMAC_MDIO_COMM_START_BUSY;
324 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
325
326 for (i = 0; i < 50; i++) {
327 udelay(10);
328
329 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
330 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
331 udelay(5);
332
333 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
334 val1 &= BNX2_EMAC_MDIO_COMM_DATA;
335
336 break;
337 }
338 }
339
340 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
341 *val = 0x0;
342 ret = -EBUSY;
343 }
344 else {
345 *val = val1;
346 ret = 0;
347 }
348
349 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
350 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
351 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
352
353 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
354 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
355
356 udelay(40);
357 }
358
359 return ret;
360 }
361
362 static int
363 bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
364 {
365 u32 val1;
366 int i, ret;
367
368 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
369 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
370 val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
371
372 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
373 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
374
375 udelay(40);
376 }
377
378 val1 = (bp->phy_addr << 21) | (reg << 16) | val |
379 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
380 BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
381 REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
382
383 for (i = 0; i < 50; i++) {
384 udelay(10);
385
386 val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
387 if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
388 udelay(5);
389 break;
390 }
391 }
392
393 if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
394 ret = -EBUSY;
395 else
396 ret = 0;
397
398 if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
399 val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
400 val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
401
402 REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
403 REG_RD(bp, BNX2_EMAC_MDIO_MODE);
404
405 udelay(40);
406 }
407
408 return ret;
409 }
410
411 static void
412 bnx2_disable_int(struct bnx2 *bp)
413 {
414 int i;
415 struct bnx2_napi *bnapi;
416
417 for (i = 0; i < bp->irq_nvecs; i++) {
418 bnapi = &bp->bnx2_napi[i];
419 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
420 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
421 }
422 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
423 }
424
425 static void
426 bnx2_enable_int(struct bnx2 *bp)
427 {
428 int i;
429 struct bnx2_napi *bnapi;
430
431 for (i = 0; i < bp->irq_nvecs; i++) {
432 bnapi = &bp->bnx2_napi[i];
433
434 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
435 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
436 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
437 bnapi->last_status_idx);
438
439 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
440 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
441 bnapi->last_status_idx);
442 }
443 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
444 }
445
446 static void
447 bnx2_disable_int_sync(struct bnx2 *bp)
448 {
449 int i;
450
451 atomic_inc(&bp->intr_sem);
452 bnx2_disable_int(bp);
453 for (i = 0; i < bp->irq_nvecs; i++)
454 synchronize_irq(bp->irq_tbl[i].vector);
455 }
456
457 static void
458 bnx2_napi_disable(struct bnx2 *bp)
459 {
460 int i;
461
462 for (i = 0; i < bp->irq_nvecs; i++)
463 napi_disable(&bp->bnx2_napi[i].napi);
464 }
465
466 static void
467 bnx2_napi_enable(struct bnx2 *bp)
468 {
469 int i;
470
471 for (i = 0; i < bp->irq_nvecs; i++)
472 napi_enable(&bp->bnx2_napi[i].napi);
473 }
474
475 static void
476 bnx2_netif_stop(struct bnx2 *bp)
477 {
478 bnx2_disable_int_sync(bp);
479 if (netif_running(bp->dev)) {
480 bnx2_napi_disable(bp);
481 netif_tx_disable(bp->dev);
482 bp->dev->trans_start = jiffies; /* prevent tx timeout */
483 }
484 }
485
486 static void
487 bnx2_netif_start(struct bnx2 *bp)
488 {
489 if (atomic_dec_and_test(&bp->intr_sem)) {
490 if (netif_running(bp->dev)) {
491 netif_wake_queue(bp->dev);
492 bnx2_napi_enable(bp);
493 bnx2_enable_int(bp);
494 }
495 }
496 }
497
498 static void
499 bnx2_free_tx_mem(struct bnx2 *bp)
500 {
501 int i;
502
503 for (i = 0; i < bp->num_tx_rings; i++) {
504 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
505 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
506
507 if (txr->tx_desc_ring) {
508 pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
509 txr->tx_desc_ring,
510 txr->tx_desc_mapping);
511 txr->tx_desc_ring = NULL;
512 }
513 kfree(txr->tx_buf_ring);
514 txr->tx_buf_ring = NULL;
515 }
516 }
517
518 static void
519 bnx2_free_rx_mem(struct bnx2 *bp)
520 {
521 int i;
522
523 for (i = 0; i < bp->num_rx_rings; i++) {
524 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
525 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
526 int j;
527
528 for (j = 0; j < bp->rx_max_ring; j++) {
529 if (rxr->rx_desc_ring[j])
530 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
531 rxr->rx_desc_ring[j],
532 rxr->rx_desc_mapping[j]);
533 rxr->rx_desc_ring[j] = NULL;
534 }
535 if (rxr->rx_buf_ring)
536 vfree(rxr->rx_buf_ring);
537 rxr->rx_buf_ring = NULL;
538
539 for (j = 0; j < bp->rx_max_pg_ring; j++) {
540 if (rxr->rx_pg_desc_ring[j])
541 pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
542 rxr->rx_pg_desc_ring[i],
543 rxr->rx_pg_desc_mapping[i]);
544 rxr->rx_pg_desc_ring[i] = NULL;
545 }
546 if (rxr->rx_pg_ring)
547 vfree(rxr->rx_pg_ring);
548 rxr->rx_pg_ring = NULL;
549 }
550 }
551
552 static int
553 bnx2_alloc_tx_mem(struct bnx2 *bp)
554 {
555 int i;
556
557 for (i = 0; i < bp->num_tx_rings; i++) {
558 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
559 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
560
561 txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
562 if (txr->tx_buf_ring == NULL)
563 return -ENOMEM;
564
565 txr->tx_desc_ring =
566 pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
567 &txr->tx_desc_mapping);
568 if (txr->tx_desc_ring == NULL)
569 return -ENOMEM;
570 }
571 return 0;
572 }
573
574 static int
575 bnx2_alloc_rx_mem(struct bnx2 *bp)
576 {
577 int i;
578
579 for (i = 0; i < bp->num_rx_rings; i++) {
580 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
581 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
582 int j;
583
584 rxr->rx_buf_ring =
585 vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
586 if (rxr->rx_buf_ring == NULL)
587 return -ENOMEM;
588
589 memset(rxr->rx_buf_ring, 0,
590 SW_RXBD_RING_SIZE * bp->rx_max_ring);
591
592 for (j = 0; j < bp->rx_max_ring; j++) {
593 rxr->rx_desc_ring[j] =
594 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
595 &rxr->rx_desc_mapping[j]);
596 if (rxr->rx_desc_ring[j] == NULL)
597 return -ENOMEM;
598
599 }
600
601 if (bp->rx_pg_ring_size) {
602 rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
603 bp->rx_max_pg_ring);
604 if (rxr->rx_pg_ring == NULL)
605 return -ENOMEM;
606
607 memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
608 bp->rx_max_pg_ring);
609 }
610
611 for (j = 0; j < bp->rx_max_pg_ring; j++) {
612 rxr->rx_pg_desc_ring[j] =
613 pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
614 &rxr->rx_pg_desc_mapping[j]);
615 if (rxr->rx_pg_desc_ring[j] == NULL)
616 return -ENOMEM;
617
618 }
619 }
620 return 0;
621 }
622
623 static void
624 bnx2_free_mem(struct bnx2 *bp)
625 {
626 int i;
627 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
628
629 bnx2_free_tx_mem(bp);
630 bnx2_free_rx_mem(bp);
631
632 for (i = 0; i < bp->ctx_pages; i++) {
633 if (bp->ctx_blk[i]) {
634 pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
635 bp->ctx_blk[i],
636 bp->ctx_blk_mapping[i]);
637 bp->ctx_blk[i] = NULL;
638 }
639 }
640 if (bnapi->status_blk.msi) {
641 pci_free_consistent(bp->pdev, bp->status_stats_size,
642 bnapi->status_blk.msi,
643 bp->status_blk_mapping);
644 bnapi->status_blk.msi = NULL;
645 bp->stats_blk = NULL;
646 }
647 }
648
649 static int
650 bnx2_alloc_mem(struct bnx2 *bp)
651 {
652 int i, status_blk_size, err;
653 struct bnx2_napi *bnapi;
654 void *status_blk;
655
656 /* Combine status and statistics blocks into one allocation. */
657 status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
658 if (bp->flags & BNX2_FLAG_MSIX_CAP)
659 status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
660 BNX2_SBLK_MSIX_ALIGN_SIZE);
661 bp->status_stats_size = status_blk_size +
662 sizeof(struct statistics_block);
663
664 status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
665 &bp->status_blk_mapping);
666 if (status_blk == NULL)
667 goto alloc_mem_err;
668
669 memset(status_blk, 0, bp->status_stats_size);
670
671 bnapi = &bp->bnx2_napi[0];
672 bnapi->status_blk.msi = status_blk;
673 bnapi->hw_tx_cons_ptr =
674 &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
675 bnapi->hw_rx_cons_ptr =
676 &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
677 if (bp->flags & BNX2_FLAG_MSIX_CAP) {
678 for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
679 struct status_block_msix *sblk;
680
681 bnapi = &bp->bnx2_napi[i];
682
683 sblk = (void *) (status_blk +
684 BNX2_SBLK_MSIX_ALIGN_SIZE * i);
685 bnapi->status_blk.msix = sblk;
686 bnapi->hw_tx_cons_ptr =
687 &sblk->status_tx_quick_consumer_index;
688 bnapi->hw_rx_cons_ptr =
689 &sblk->status_rx_quick_consumer_index;
690 bnapi->int_num = i << 24;
691 }
692 }
693
694 bp->stats_blk = status_blk + status_blk_size;
695
696 bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
697
698 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
699 bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
700 if (bp->ctx_pages == 0)
701 bp->ctx_pages = 1;
702 for (i = 0; i < bp->ctx_pages; i++) {
703 bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
704 BCM_PAGE_SIZE,
705 &bp->ctx_blk_mapping[i]);
706 if (bp->ctx_blk[i] == NULL)
707 goto alloc_mem_err;
708 }
709 }
710
711 err = bnx2_alloc_rx_mem(bp);
712 if (err)
713 goto alloc_mem_err;
714
715 err = bnx2_alloc_tx_mem(bp);
716 if (err)
717 goto alloc_mem_err;
718
719 return 0;
720
721 alloc_mem_err:
722 bnx2_free_mem(bp);
723 return -ENOMEM;
724 }
725
726 static void
727 bnx2_report_fw_link(struct bnx2 *bp)
728 {
729 u32 fw_link_status = 0;
730
731 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
732 return;
733
734 if (bp->link_up) {
735 u32 bmsr;
736
737 switch (bp->line_speed) {
738 case SPEED_10:
739 if (bp->duplex == DUPLEX_HALF)
740 fw_link_status = BNX2_LINK_STATUS_10HALF;
741 else
742 fw_link_status = BNX2_LINK_STATUS_10FULL;
743 break;
744 case SPEED_100:
745 if (bp->duplex == DUPLEX_HALF)
746 fw_link_status = BNX2_LINK_STATUS_100HALF;
747 else
748 fw_link_status = BNX2_LINK_STATUS_100FULL;
749 break;
750 case SPEED_1000:
751 if (bp->duplex == DUPLEX_HALF)
752 fw_link_status = BNX2_LINK_STATUS_1000HALF;
753 else
754 fw_link_status = BNX2_LINK_STATUS_1000FULL;
755 break;
756 case SPEED_2500:
757 if (bp->duplex == DUPLEX_HALF)
758 fw_link_status = BNX2_LINK_STATUS_2500HALF;
759 else
760 fw_link_status = BNX2_LINK_STATUS_2500FULL;
761 break;
762 }
763
764 fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
765
766 if (bp->autoneg) {
767 fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
768
769 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
770 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
771
772 if (!(bmsr & BMSR_ANEGCOMPLETE) ||
773 bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
774 fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
775 else
776 fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
777 }
778 }
779 else
780 fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
781
782 bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
783 }
784
785 static char *
786 bnx2_xceiver_str(struct bnx2 *bp)
787 {
788 return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
789 ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
790 "Copper"));
791 }
792
793 static void
794 bnx2_report_link(struct bnx2 *bp)
795 {
796 if (bp->link_up) {
797 netif_carrier_on(bp->dev);
798 printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
799 bnx2_xceiver_str(bp));
800
801 printk("%d Mbps ", bp->line_speed);
802
803 if (bp->duplex == DUPLEX_FULL)
804 printk("full duplex");
805 else
806 printk("half duplex");
807
808 if (bp->flow_ctrl) {
809 if (bp->flow_ctrl & FLOW_CTRL_RX) {
810 printk(", receive ");
811 if (bp->flow_ctrl & FLOW_CTRL_TX)
812 printk("& transmit ");
813 }
814 else {
815 printk(", transmit ");
816 }
817 printk("flow control ON");
818 }
819 printk("\n");
820 }
821 else {
822 netif_carrier_off(bp->dev);
823 printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
824 bnx2_xceiver_str(bp));
825 }
826
827 bnx2_report_fw_link(bp);
828 }
829
830 static void
831 bnx2_resolve_flow_ctrl(struct bnx2 *bp)
832 {
833 u32 local_adv, remote_adv;
834
835 bp->flow_ctrl = 0;
836 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
837 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
838
839 if (bp->duplex == DUPLEX_FULL) {
840 bp->flow_ctrl = bp->req_flow_ctrl;
841 }
842 return;
843 }
844
845 if (bp->duplex != DUPLEX_FULL) {
846 return;
847 }
848
849 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
850 (CHIP_NUM(bp) == CHIP_NUM_5708)) {
851 u32 val;
852
853 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
854 if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
855 bp->flow_ctrl |= FLOW_CTRL_TX;
856 if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
857 bp->flow_ctrl |= FLOW_CTRL_RX;
858 return;
859 }
860
861 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
862 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
863
864 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
865 u32 new_local_adv = 0;
866 u32 new_remote_adv = 0;
867
868 if (local_adv & ADVERTISE_1000XPAUSE)
869 new_local_adv |= ADVERTISE_PAUSE_CAP;
870 if (local_adv & ADVERTISE_1000XPSE_ASYM)
871 new_local_adv |= ADVERTISE_PAUSE_ASYM;
872 if (remote_adv & ADVERTISE_1000XPAUSE)
873 new_remote_adv |= ADVERTISE_PAUSE_CAP;
874 if (remote_adv & ADVERTISE_1000XPSE_ASYM)
875 new_remote_adv |= ADVERTISE_PAUSE_ASYM;
876
877 local_adv = new_local_adv;
878 remote_adv = new_remote_adv;
879 }
880
881 /* See Table 28B-3 of 802.3ab-1999 spec. */
882 if (local_adv & ADVERTISE_PAUSE_CAP) {
883 if(local_adv & ADVERTISE_PAUSE_ASYM) {
884 if (remote_adv & ADVERTISE_PAUSE_CAP) {
885 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
886 }
887 else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
888 bp->flow_ctrl = FLOW_CTRL_RX;
889 }
890 }
891 else {
892 if (remote_adv & ADVERTISE_PAUSE_CAP) {
893 bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
894 }
895 }
896 }
897 else if (local_adv & ADVERTISE_PAUSE_ASYM) {
898 if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
899 (remote_adv & ADVERTISE_PAUSE_ASYM)) {
900
901 bp->flow_ctrl = FLOW_CTRL_TX;
902 }
903 }
904 }
905
906 static int
907 bnx2_5709s_linkup(struct bnx2 *bp)
908 {
909 u32 val, speed;
910
911 bp->link_up = 1;
912
913 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
914 bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
915 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
916
917 if ((bp->autoneg & AUTONEG_SPEED) == 0) {
918 bp->line_speed = bp->req_line_speed;
919 bp->duplex = bp->req_duplex;
920 return 0;
921 }
922 speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
923 switch (speed) {
924 case MII_BNX2_GP_TOP_AN_SPEED_10:
925 bp->line_speed = SPEED_10;
926 break;
927 case MII_BNX2_GP_TOP_AN_SPEED_100:
928 bp->line_speed = SPEED_100;
929 break;
930 case MII_BNX2_GP_TOP_AN_SPEED_1G:
931 case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
932 bp->line_speed = SPEED_1000;
933 break;
934 case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
935 bp->line_speed = SPEED_2500;
936 break;
937 }
938 if (val & MII_BNX2_GP_TOP_AN_FD)
939 bp->duplex = DUPLEX_FULL;
940 else
941 bp->duplex = DUPLEX_HALF;
942 return 0;
943 }
944
945 static int
946 bnx2_5708s_linkup(struct bnx2 *bp)
947 {
948 u32 val;
949
950 bp->link_up = 1;
951 bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
952 switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
953 case BCM5708S_1000X_STAT1_SPEED_10:
954 bp->line_speed = SPEED_10;
955 break;
956 case BCM5708S_1000X_STAT1_SPEED_100:
957 bp->line_speed = SPEED_100;
958 break;
959 case BCM5708S_1000X_STAT1_SPEED_1G:
960 bp->line_speed = SPEED_1000;
961 break;
962 case BCM5708S_1000X_STAT1_SPEED_2G5:
963 bp->line_speed = SPEED_2500;
964 break;
965 }
966 if (val & BCM5708S_1000X_STAT1_FD)
967 bp->duplex = DUPLEX_FULL;
968 else
969 bp->duplex = DUPLEX_HALF;
970
971 return 0;
972 }
973
974 static int
975 bnx2_5706s_linkup(struct bnx2 *bp)
976 {
977 u32 bmcr, local_adv, remote_adv, common;
978
979 bp->link_up = 1;
980 bp->line_speed = SPEED_1000;
981
982 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
983 if (bmcr & BMCR_FULLDPLX) {
984 bp->duplex = DUPLEX_FULL;
985 }
986 else {
987 bp->duplex = DUPLEX_HALF;
988 }
989
990 if (!(bmcr & BMCR_ANENABLE)) {
991 return 0;
992 }
993
994 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
995 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
996
997 common = local_adv & remote_adv;
998 if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
999
1000 if (common & ADVERTISE_1000XFULL) {
1001 bp->duplex = DUPLEX_FULL;
1002 }
1003 else {
1004 bp->duplex = DUPLEX_HALF;
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
1011 static int
1012 bnx2_copper_linkup(struct bnx2 *bp)
1013 {
1014 u32 bmcr;
1015
1016 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1017 if (bmcr & BMCR_ANENABLE) {
1018 u32 local_adv, remote_adv, common;
1019
1020 bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
1021 bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
1022
1023 common = local_adv & (remote_adv >> 2);
1024 if (common & ADVERTISE_1000FULL) {
1025 bp->line_speed = SPEED_1000;
1026 bp->duplex = DUPLEX_FULL;
1027 }
1028 else if (common & ADVERTISE_1000HALF) {
1029 bp->line_speed = SPEED_1000;
1030 bp->duplex = DUPLEX_HALF;
1031 }
1032 else {
1033 bnx2_read_phy(bp, bp->mii_adv, &local_adv);
1034 bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
1035
1036 common = local_adv & remote_adv;
1037 if (common & ADVERTISE_100FULL) {
1038 bp->line_speed = SPEED_100;
1039 bp->duplex = DUPLEX_FULL;
1040 }
1041 else if (common & ADVERTISE_100HALF) {
1042 bp->line_speed = SPEED_100;
1043 bp->duplex = DUPLEX_HALF;
1044 }
1045 else if (common & ADVERTISE_10FULL) {
1046 bp->line_speed = SPEED_10;
1047 bp->duplex = DUPLEX_FULL;
1048 }
1049 else if (common & ADVERTISE_10HALF) {
1050 bp->line_speed = SPEED_10;
1051 bp->duplex = DUPLEX_HALF;
1052 }
1053 else {
1054 bp->line_speed = 0;
1055 bp->link_up = 0;
1056 }
1057 }
1058 }
1059 else {
1060 if (bmcr & BMCR_SPEED100) {
1061 bp->line_speed = SPEED_100;
1062 }
1063 else {
1064 bp->line_speed = SPEED_10;
1065 }
1066 if (bmcr & BMCR_FULLDPLX) {
1067 bp->duplex = DUPLEX_FULL;
1068 }
1069 else {
1070 bp->duplex = DUPLEX_HALF;
1071 }
1072 }
1073
1074 return 0;
1075 }
1076
1077 static void
1078 bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
1079 {
1080 u32 val, rx_cid_addr = GET_CID_ADDR(cid);
1081
1082 val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
1083 val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
1084 val |= 0x02 << 8;
1085
1086 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1087 u32 lo_water, hi_water;
1088
1089 if (bp->flow_ctrl & FLOW_CTRL_TX)
1090 lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
1091 else
1092 lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
1093 if (lo_water >= bp->rx_ring_size)
1094 lo_water = 0;
1095
1096 hi_water = bp->rx_ring_size / 4;
1097
1098 if (hi_water <= lo_water)
1099 lo_water = 0;
1100
1101 hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
1102 lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
1103
1104 if (hi_water > 0xf)
1105 hi_water = 0xf;
1106 else if (hi_water == 0)
1107 lo_water = 0;
1108 val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
1109 }
1110 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
1111 }
1112
1113 static void
1114 bnx2_init_all_rx_contexts(struct bnx2 *bp)
1115 {
1116 int i;
1117 u32 cid;
1118
1119 for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
1120 if (i == 1)
1121 cid = RX_RSS_CID;
1122 bnx2_init_rx_context(bp, cid);
1123 }
1124 }
1125
1126 static int
1127 bnx2_set_mac_link(struct bnx2 *bp)
1128 {
1129 u32 val;
1130
1131 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
1132 if (bp->link_up && (bp->line_speed == SPEED_1000) &&
1133 (bp->duplex == DUPLEX_HALF)) {
1134 REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
1135 }
1136
1137 /* Configure the EMAC mode register. */
1138 val = REG_RD(bp, BNX2_EMAC_MODE);
1139
1140 val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
1141 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
1142 BNX2_EMAC_MODE_25G_MODE);
1143
1144 if (bp->link_up) {
1145 switch (bp->line_speed) {
1146 case SPEED_10:
1147 if (CHIP_NUM(bp) != CHIP_NUM_5706) {
1148 val |= BNX2_EMAC_MODE_PORT_MII_10M;
1149 break;
1150 }
1151 /* fall through */
1152 case SPEED_100:
1153 val |= BNX2_EMAC_MODE_PORT_MII;
1154 break;
1155 case SPEED_2500:
1156 val |= BNX2_EMAC_MODE_25G_MODE;
1157 /* fall through */
1158 case SPEED_1000:
1159 val |= BNX2_EMAC_MODE_PORT_GMII;
1160 break;
1161 }
1162 }
1163 else {
1164 val |= BNX2_EMAC_MODE_PORT_GMII;
1165 }
1166
1167 /* Set the MAC to operate in the appropriate duplex mode. */
1168 if (bp->duplex == DUPLEX_HALF)
1169 val |= BNX2_EMAC_MODE_HALF_DUPLEX;
1170 REG_WR(bp, BNX2_EMAC_MODE, val);
1171
1172 /* Enable/disable rx PAUSE. */
1173 bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
1174
1175 if (bp->flow_ctrl & FLOW_CTRL_RX)
1176 bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
1177 REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
1178
1179 /* Enable/disable tx PAUSE. */
1180 val = REG_RD(bp, BNX2_EMAC_TX_MODE);
1181 val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
1182
1183 if (bp->flow_ctrl & FLOW_CTRL_TX)
1184 val |= BNX2_EMAC_TX_MODE_FLOW_EN;
1185 REG_WR(bp, BNX2_EMAC_TX_MODE, val);
1186
1187 /* Acknowledge the interrupt. */
1188 REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
1189
1190 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1191 bnx2_init_all_rx_contexts(bp);
1192
1193 return 0;
1194 }
1195
1196 static void
1197 bnx2_enable_bmsr1(struct bnx2 *bp)
1198 {
1199 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1200 (CHIP_NUM(bp) == CHIP_NUM_5709))
1201 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1202 MII_BNX2_BLK_ADDR_GP_STATUS);
1203 }
1204
1205 static void
1206 bnx2_disable_bmsr1(struct bnx2 *bp)
1207 {
1208 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1209 (CHIP_NUM(bp) == CHIP_NUM_5709))
1210 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1211 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1212 }
1213
1214 static int
1215 bnx2_test_and_enable_2g5(struct bnx2 *bp)
1216 {
1217 u32 up1;
1218 int ret = 1;
1219
1220 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1221 return 0;
1222
1223 if (bp->autoneg & AUTONEG_SPEED)
1224 bp->advertising |= ADVERTISED_2500baseX_Full;
1225
1226 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1227 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1228
1229 bnx2_read_phy(bp, bp->mii_up1, &up1);
1230 if (!(up1 & BCM5708S_UP1_2G5)) {
1231 up1 |= BCM5708S_UP1_2G5;
1232 bnx2_write_phy(bp, bp->mii_up1, up1);
1233 ret = 0;
1234 }
1235
1236 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1237 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1238 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1239
1240 return ret;
1241 }
1242
1243 static int
1244 bnx2_test_and_disable_2g5(struct bnx2 *bp)
1245 {
1246 u32 up1;
1247 int ret = 0;
1248
1249 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1250 return 0;
1251
1252 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1253 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1254
1255 bnx2_read_phy(bp, bp->mii_up1, &up1);
1256 if (up1 & BCM5708S_UP1_2G5) {
1257 up1 &= ~BCM5708S_UP1_2G5;
1258 bnx2_write_phy(bp, bp->mii_up1, up1);
1259 ret = 1;
1260 }
1261
1262 if (CHIP_NUM(bp) == CHIP_NUM_5709)
1263 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1264 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1265
1266 return ret;
1267 }
1268
1269 static void
1270 bnx2_enable_forced_2g5(struct bnx2 *bp)
1271 {
1272 u32 bmcr;
1273
1274 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1275 return;
1276
1277 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1278 u32 val;
1279
1280 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1281 MII_BNX2_BLK_ADDR_SERDES_DIG);
1282 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1283 val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
1284 val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
1285 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1286
1287 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1288 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1289 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1290
1291 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1292 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1293 bmcr |= BCM5708S_BMCR_FORCE_2500;
1294 }
1295
1296 if (bp->autoneg & AUTONEG_SPEED) {
1297 bmcr &= ~BMCR_ANENABLE;
1298 if (bp->req_duplex == DUPLEX_FULL)
1299 bmcr |= BMCR_FULLDPLX;
1300 }
1301 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1302 }
1303
1304 static void
1305 bnx2_disable_forced_2g5(struct bnx2 *bp)
1306 {
1307 u32 bmcr;
1308
1309 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
1310 return;
1311
1312 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1313 u32 val;
1314
1315 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1316 MII_BNX2_BLK_ADDR_SERDES_DIG);
1317 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
1318 val &= ~MII_BNX2_SD_MISC1_FORCE;
1319 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
1320
1321 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
1322 MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1323 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1324
1325 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1326 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1327 bmcr &= ~BCM5708S_BMCR_FORCE_2500;
1328 }
1329
1330 if (bp->autoneg & AUTONEG_SPEED)
1331 bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
1332 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1333 }
1334
1335 static void
1336 bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
1337 {
1338 u32 val;
1339
1340 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
1341 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
1342 if (start)
1343 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
1344 else
1345 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
1346 }
1347
1348 static int
1349 bnx2_set_link(struct bnx2 *bp)
1350 {
1351 u32 bmsr;
1352 u8 link_up;
1353
1354 if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
1355 bp->link_up = 1;
1356 return 0;
1357 }
1358
1359 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1360 return 0;
1361
1362 link_up = bp->link_up;
1363
1364 bnx2_enable_bmsr1(bp);
1365 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1366 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
1367 bnx2_disable_bmsr1(bp);
1368
1369 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1370 (CHIP_NUM(bp) == CHIP_NUM_5706)) {
1371 u32 val, an_dbg;
1372
1373 if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
1374 bnx2_5706s_force_link_dn(bp, 0);
1375 bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
1376 }
1377 val = REG_RD(bp, BNX2_EMAC_STATUS);
1378
1379 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
1380 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1381 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
1382
1383 if ((val & BNX2_EMAC_STATUS_LINK) &&
1384 !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
1385 bmsr |= BMSR_LSTATUS;
1386 else
1387 bmsr &= ~BMSR_LSTATUS;
1388 }
1389
1390 if (bmsr & BMSR_LSTATUS) {
1391 bp->link_up = 1;
1392
1393 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1394 if (CHIP_NUM(bp) == CHIP_NUM_5706)
1395 bnx2_5706s_linkup(bp);
1396 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
1397 bnx2_5708s_linkup(bp);
1398 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
1399 bnx2_5709s_linkup(bp);
1400 }
1401 else {
1402 bnx2_copper_linkup(bp);
1403 }
1404 bnx2_resolve_flow_ctrl(bp);
1405 }
1406 else {
1407 if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
1408 (bp->autoneg & AUTONEG_SPEED))
1409 bnx2_disable_forced_2g5(bp);
1410
1411 if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
1412 u32 bmcr;
1413
1414 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1415 bmcr |= BMCR_ANENABLE;
1416 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
1417
1418 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
1419 }
1420 bp->link_up = 0;
1421 }
1422
1423 if (bp->link_up != link_up) {
1424 bnx2_report_link(bp);
1425 }
1426
1427 bnx2_set_mac_link(bp);
1428
1429 return 0;
1430 }
1431
1432 static int
1433 bnx2_reset_phy(struct bnx2 *bp)
1434 {
1435 int i;
1436 u32 reg;
1437
1438 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
1439
1440 #define PHY_RESET_MAX_WAIT 100
1441 for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
1442 udelay(10);
1443
1444 bnx2_read_phy(bp, bp->mii_bmcr, &reg);
1445 if (!(reg & BMCR_RESET)) {
1446 udelay(20);
1447 break;
1448 }
1449 }
1450 if (i == PHY_RESET_MAX_WAIT) {
1451 return -EBUSY;
1452 }
1453 return 0;
1454 }
1455
1456 static u32
1457 bnx2_phy_get_pause_adv(struct bnx2 *bp)
1458 {
1459 u32 adv = 0;
1460
1461 if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
1462 (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
1463
1464 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1465 adv = ADVERTISE_1000XPAUSE;
1466 }
1467 else {
1468 adv = ADVERTISE_PAUSE_CAP;
1469 }
1470 }
1471 else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
1472 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1473 adv = ADVERTISE_1000XPSE_ASYM;
1474 }
1475 else {
1476 adv = ADVERTISE_PAUSE_ASYM;
1477 }
1478 }
1479 else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
1480 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1481 adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
1482 }
1483 else {
1484 adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1485 }
1486 }
1487 return adv;
1488 }
1489
1490 static int bnx2_fw_sync(struct bnx2 *, u32, int);
1491
1492 static int
1493 bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
1494 {
1495 u32 speed_arg = 0, pause_adv;
1496
1497 pause_adv = bnx2_phy_get_pause_adv(bp);
1498
1499 if (bp->autoneg & AUTONEG_SPEED) {
1500 speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
1501 if (bp->advertising & ADVERTISED_10baseT_Half)
1502 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1503 if (bp->advertising & ADVERTISED_10baseT_Full)
1504 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1505 if (bp->advertising & ADVERTISED_100baseT_Half)
1506 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1507 if (bp->advertising & ADVERTISED_100baseT_Full)
1508 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1509 if (bp->advertising & ADVERTISED_1000baseT_Full)
1510 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1511 if (bp->advertising & ADVERTISED_2500baseX_Full)
1512 speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1513 } else {
1514 if (bp->req_line_speed == SPEED_2500)
1515 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
1516 else if (bp->req_line_speed == SPEED_1000)
1517 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
1518 else if (bp->req_line_speed == SPEED_100) {
1519 if (bp->req_duplex == DUPLEX_FULL)
1520 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
1521 else
1522 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
1523 } else if (bp->req_line_speed == SPEED_10) {
1524 if (bp->req_duplex == DUPLEX_FULL)
1525 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
1526 else
1527 speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
1528 }
1529 }
1530
1531 if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
1532 speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
1533 if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
1534 speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
1535
1536 if (port == PORT_TP)
1537 speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
1538 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
1539
1540 bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
1541
1542 spin_unlock_bh(&bp->phy_lock);
1543 bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 0);
1544 spin_lock_bh(&bp->phy_lock);
1545
1546 return 0;
1547 }
1548
1549 static int
1550 bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
1551 {
1552 u32 adv, bmcr;
1553 u32 new_adv = 0;
1554
1555 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
1556 return (bnx2_setup_remote_phy(bp, port));
1557
1558 if (!(bp->autoneg & AUTONEG_SPEED)) {
1559 u32 new_bmcr;
1560 int force_link_down = 0;
1561
1562 if (bp->req_line_speed == SPEED_2500) {
1563 if (!bnx2_test_and_enable_2g5(bp))
1564 force_link_down = 1;
1565 } else if (bp->req_line_speed == SPEED_1000) {
1566 if (bnx2_test_and_disable_2g5(bp))
1567 force_link_down = 1;
1568 }
1569 bnx2_read_phy(bp, bp->mii_adv, &adv);
1570 adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
1571
1572 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1573 new_bmcr = bmcr & ~BMCR_ANENABLE;
1574 new_bmcr |= BMCR_SPEED1000;
1575
1576 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
1577 if (bp->req_line_speed == SPEED_2500)
1578 bnx2_enable_forced_2g5(bp);
1579 else if (bp->req_line_speed == SPEED_1000) {
1580 bnx2_disable_forced_2g5(bp);
1581 new_bmcr &= ~0x2000;
1582 }
1583
1584 } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
1585 if (bp->req_line_speed == SPEED_2500)
1586 new_bmcr |= BCM5708S_BMCR_FORCE_2500;
1587 else
1588 new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
1589 }
1590
1591 if (bp->req_duplex == DUPLEX_FULL) {
1592 adv |= ADVERTISE_1000XFULL;
1593 new_bmcr |= BMCR_FULLDPLX;
1594 }
1595 else {
1596 adv |= ADVERTISE_1000XHALF;
1597 new_bmcr &= ~BMCR_FULLDPLX;
1598 }
1599 if ((new_bmcr != bmcr) || (force_link_down)) {
1600 /* Force a link down visible on the other side */
1601 if (bp->link_up) {
1602 bnx2_write_phy(bp, bp->mii_adv, adv &
1603 ~(ADVERTISE_1000XFULL |
1604 ADVERTISE_1000XHALF));
1605 bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
1606 BMCR_ANRESTART | BMCR_ANENABLE);
1607
1608 bp->link_up = 0;
1609 netif_carrier_off(bp->dev);
1610 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1611 bnx2_report_link(bp);
1612 }
1613 bnx2_write_phy(bp, bp->mii_adv, adv);
1614 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1615 } else {
1616 bnx2_resolve_flow_ctrl(bp);
1617 bnx2_set_mac_link(bp);
1618 }
1619 return 0;
1620 }
1621
1622 bnx2_test_and_enable_2g5(bp);
1623
1624 if (bp->advertising & ADVERTISED_1000baseT_Full)
1625 new_adv |= ADVERTISE_1000XFULL;
1626
1627 new_adv |= bnx2_phy_get_pause_adv(bp);
1628
1629 bnx2_read_phy(bp, bp->mii_adv, &adv);
1630 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1631
1632 bp->serdes_an_pending = 0;
1633 if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
1634 /* Force a link down visible on the other side */
1635 if (bp->link_up) {
1636 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1637 spin_unlock_bh(&bp->phy_lock);
1638 msleep(20);
1639 spin_lock_bh(&bp->phy_lock);
1640 }
1641
1642 bnx2_write_phy(bp, bp->mii_adv, new_adv);
1643 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
1644 BMCR_ANENABLE);
1645 /* Speed up link-up time when the link partner
1646 * does not autonegotiate which is very common
1647 * in blade servers. Some blade servers use
1648 * IPMI for kerboard input and it's important
1649 * to minimize link disruptions. Autoneg. involves
1650 * exchanging base pages plus 3 next pages and
1651 * normally completes in about 120 msec.
1652 */
1653 bp->current_interval = SERDES_AN_TIMEOUT;
1654 bp->serdes_an_pending = 1;
1655 mod_timer(&bp->timer, jiffies + bp->current_interval);
1656 } else {
1657 bnx2_resolve_flow_ctrl(bp);
1658 bnx2_set_mac_link(bp);
1659 }
1660
1661 return 0;
1662 }
1663
1664 #define ETHTOOL_ALL_FIBRE_SPEED \
1665 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1666 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1667 (ADVERTISED_1000baseT_Full)
1668
1669 #define ETHTOOL_ALL_COPPER_SPEED \
1670 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1671 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1672 ADVERTISED_1000baseT_Full)
1673
1674 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1675 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1676
1677 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1678
1679 static void
1680 bnx2_set_default_remote_link(struct bnx2 *bp)
1681 {
1682 u32 link;
1683
1684 if (bp->phy_port == PORT_TP)
1685 link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
1686 else
1687 link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
1688
1689 if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
1690 bp->req_line_speed = 0;
1691 bp->autoneg |= AUTONEG_SPEED;
1692 bp->advertising = ADVERTISED_Autoneg;
1693 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1694 bp->advertising |= ADVERTISED_10baseT_Half;
1695 if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
1696 bp->advertising |= ADVERTISED_10baseT_Full;
1697 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1698 bp->advertising |= ADVERTISED_100baseT_Half;
1699 if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
1700 bp->advertising |= ADVERTISED_100baseT_Full;
1701 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1702 bp->advertising |= ADVERTISED_1000baseT_Full;
1703 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1704 bp->advertising |= ADVERTISED_2500baseX_Full;
1705 } else {
1706 bp->autoneg = 0;
1707 bp->advertising = 0;
1708 bp->req_duplex = DUPLEX_FULL;
1709 if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
1710 bp->req_line_speed = SPEED_10;
1711 if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
1712 bp->req_duplex = DUPLEX_HALF;
1713 }
1714 if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
1715 bp->req_line_speed = SPEED_100;
1716 if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
1717 bp->req_duplex = DUPLEX_HALF;
1718 }
1719 if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
1720 bp->req_line_speed = SPEED_1000;
1721 if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
1722 bp->req_line_speed = SPEED_2500;
1723 }
1724 }
1725
1726 static void
1727 bnx2_set_default_link(struct bnx2 *bp)
1728 {
1729 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
1730 bnx2_set_default_remote_link(bp);
1731 return;
1732 }
1733
1734 bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
1735 bp->req_line_speed = 0;
1736 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1737 u32 reg;
1738
1739 bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
1740
1741 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
1742 reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
1743 if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
1744 bp->autoneg = 0;
1745 bp->req_line_speed = bp->line_speed = SPEED_1000;
1746 bp->req_duplex = DUPLEX_FULL;
1747 }
1748 } else
1749 bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
1750 }
1751
1752 static void
1753 bnx2_send_heart_beat(struct bnx2 *bp)
1754 {
1755 u32 msg;
1756 u32 addr;
1757
1758 spin_lock(&bp->indirect_lock);
1759 msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
1760 addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
1761 REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
1762 REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
1763 spin_unlock(&bp->indirect_lock);
1764 }
1765
1766 static void
1767 bnx2_remote_phy_event(struct bnx2 *bp)
1768 {
1769 u32 msg;
1770 u8 link_up = bp->link_up;
1771 u8 old_port;
1772
1773 msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
1774
1775 if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
1776 bnx2_send_heart_beat(bp);
1777
1778 msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
1779
1780 if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
1781 bp->link_up = 0;
1782 else {
1783 u32 speed;
1784
1785 bp->link_up = 1;
1786 speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
1787 bp->duplex = DUPLEX_FULL;
1788 switch (speed) {
1789 case BNX2_LINK_STATUS_10HALF:
1790 bp->duplex = DUPLEX_HALF;
1791 case BNX2_LINK_STATUS_10FULL:
1792 bp->line_speed = SPEED_10;
1793 break;
1794 case BNX2_LINK_STATUS_100HALF:
1795 bp->duplex = DUPLEX_HALF;
1796 case BNX2_LINK_STATUS_100BASE_T4:
1797 case BNX2_LINK_STATUS_100FULL:
1798 bp->line_speed = SPEED_100;
1799 break;
1800 case BNX2_LINK_STATUS_1000HALF:
1801 bp->duplex = DUPLEX_HALF;
1802 case BNX2_LINK_STATUS_1000FULL:
1803 bp->line_speed = SPEED_1000;
1804 break;
1805 case BNX2_LINK_STATUS_2500HALF:
1806 bp->duplex = DUPLEX_HALF;
1807 case BNX2_LINK_STATUS_2500FULL:
1808 bp->line_speed = SPEED_2500;
1809 break;
1810 default:
1811 bp->line_speed = 0;
1812 break;
1813 }
1814
1815 bp->flow_ctrl = 0;
1816 if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
1817 (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
1818 if (bp->duplex == DUPLEX_FULL)
1819 bp->flow_ctrl = bp->req_flow_ctrl;
1820 } else {
1821 if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
1822 bp->flow_ctrl |= FLOW_CTRL_TX;
1823 if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
1824 bp->flow_ctrl |= FLOW_CTRL_RX;
1825 }
1826
1827 old_port = bp->phy_port;
1828 if (msg & BNX2_LINK_STATUS_SERDES_LINK)
1829 bp->phy_port = PORT_FIBRE;
1830 else
1831 bp->phy_port = PORT_TP;
1832
1833 if (old_port != bp->phy_port)
1834 bnx2_set_default_link(bp);
1835
1836 }
1837 if (bp->link_up != link_up)
1838 bnx2_report_link(bp);
1839
1840 bnx2_set_mac_link(bp);
1841 }
1842
1843 static int
1844 bnx2_set_remote_link(struct bnx2 *bp)
1845 {
1846 u32 evt_code;
1847
1848 evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
1849 switch (evt_code) {
1850 case BNX2_FW_EVT_CODE_LINK_EVENT:
1851 bnx2_remote_phy_event(bp);
1852 break;
1853 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
1854 default:
1855 bnx2_send_heart_beat(bp);
1856 break;
1857 }
1858 return 0;
1859 }
1860
1861 static int
1862 bnx2_setup_copper_phy(struct bnx2 *bp)
1863 {
1864 u32 bmcr;
1865 u32 new_bmcr;
1866
1867 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
1868
1869 if (bp->autoneg & AUTONEG_SPEED) {
1870 u32 adv_reg, adv1000_reg;
1871 u32 new_adv_reg = 0;
1872 u32 new_adv1000_reg = 0;
1873
1874 bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
1875 adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
1876 ADVERTISE_PAUSE_ASYM);
1877
1878 bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
1879 adv1000_reg &= PHY_ALL_1000_SPEED;
1880
1881 if (bp->advertising & ADVERTISED_10baseT_Half)
1882 new_adv_reg |= ADVERTISE_10HALF;
1883 if (bp->advertising & ADVERTISED_10baseT_Full)
1884 new_adv_reg |= ADVERTISE_10FULL;
1885 if (bp->advertising & ADVERTISED_100baseT_Half)
1886 new_adv_reg |= ADVERTISE_100HALF;
1887 if (bp->advertising & ADVERTISED_100baseT_Full)
1888 new_adv_reg |= ADVERTISE_100FULL;
1889 if (bp->advertising & ADVERTISED_1000baseT_Full)
1890 new_adv1000_reg |= ADVERTISE_1000FULL;
1891
1892 new_adv_reg |= ADVERTISE_CSMA;
1893
1894 new_adv_reg |= bnx2_phy_get_pause_adv(bp);
1895
1896 if ((adv1000_reg != new_adv1000_reg) ||
1897 (adv_reg != new_adv_reg) ||
1898 ((bmcr & BMCR_ANENABLE) == 0)) {
1899
1900 bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
1901 bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
1902 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
1903 BMCR_ANENABLE);
1904 }
1905 else if (bp->link_up) {
1906 /* Flow ctrl may have changed from auto to forced */
1907 /* or vice-versa. */
1908
1909 bnx2_resolve_flow_ctrl(bp);
1910 bnx2_set_mac_link(bp);
1911 }
1912 return 0;
1913 }
1914
1915 new_bmcr = 0;
1916 if (bp->req_line_speed == SPEED_100) {
1917 new_bmcr |= BMCR_SPEED100;
1918 }
1919 if (bp->req_duplex == DUPLEX_FULL) {
1920 new_bmcr |= BMCR_FULLDPLX;
1921 }
1922 if (new_bmcr != bmcr) {
1923 u32 bmsr;
1924
1925 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1926 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1927
1928 if (bmsr & BMSR_LSTATUS) {
1929 /* Force link down */
1930 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
1931 spin_unlock_bh(&bp->phy_lock);
1932 msleep(50);
1933 spin_lock_bh(&bp->phy_lock);
1934
1935 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1936 bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
1937 }
1938
1939 bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
1940
1941 /* Normally, the new speed is setup after the link has
1942 * gone down and up again. In some cases, link will not go
1943 * down so we need to set up the new speed here.
1944 */
1945 if (bmsr & BMSR_LSTATUS) {
1946 bp->line_speed = bp->req_line_speed;
1947 bp->duplex = bp->req_duplex;
1948 bnx2_resolve_flow_ctrl(bp);
1949 bnx2_set_mac_link(bp);
1950 }
1951 } else {
1952 bnx2_resolve_flow_ctrl(bp);
1953 bnx2_set_mac_link(bp);
1954 }
1955 return 0;
1956 }
1957
1958 static int
1959 bnx2_setup_phy(struct bnx2 *bp, u8 port)
1960 {
1961 if (bp->loopback == MAC_LOOPBACK)
1962 return 0;
1963
1964 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
1965 return (bnx2_setup_serdes_phy(bp, port));
1966 }
1967 else {
1968 return (bnx2_setup_copper_phy(bp));
1969 }
1970 }
1971
1972 static int
1973 bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
1974 {
1975 u32 val;
1976
1977 bp->mii_bmcr = MII_BMCR + 0x10;
1978 bp->mii_bmsr = MII_BMSR + 0x10;
1979 bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
1980 bp->mii_adv = MII_ADVERTISE + 0x10;
1981 bp->mii_lpa = MII_LPA + 0x10;
1982 bp->mii_up1 = MII_BNX2_OVER1G_UP1;
1983
1984 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
1985 bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
1986
1987 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
1988 if (reset_phy)
1989 bnx2_reset_phy(bp);
1990
1991 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
1992
1993 bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
1994 val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
1995 val |= MII_BNX2_SD_1000XCTL1_FIBER;
1996 bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
1997
1998 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
1999 bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
2000 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
2001 val |= BCM5708S_UP1_2G5;
2002 else
2003 val &= ~BCM5708S_UP1_2G5;
2004 bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
2005
2006 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
2007 bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
2008 val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
2009 bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
2010
2011 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
2012
2013 val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
2014 MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
2015 bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
2016
2017 bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
2018
2019 return 0;
2020 }
2021
2022 static int
2023 bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
2024 {
2025 u32 val;
2026
2027 if (reset_phy)
2028 bnx2_reset_phy(bp);
2029
2030 bp->mii_up1 = BCM5708S_UP1;
2031
2032 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
2033 bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
2034 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2035
2036 bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
2037 val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
2038 bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
2039
2040 bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
2041 val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
2042 bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
2043
2044 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
2045 bnx2_read_phy(bp, BCM5708S_UP1, &val);
2046 val |= BCM5708S_UP1_2G5;
2047 bnx2_write_phy(bp, BCM5708S_UP1, val);
2048 }
2049
2050 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
2051 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
2052 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
2053 /* increase tx signal amplitude */
2054 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2055 BCM5708S_BLK_ADDR_TX_MISC);
2056 bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
2057 val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
2058 bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
2059 bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
2060 }
2061
2062 val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
2063 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
2064
2065 if (val) {
2066 u32 is_backplane;
2067
2068 is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
2069 if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
2070 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2071 BCM5708S_BLK_ADDR_TX_MISC);
2072 bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
2073 bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
2074 BCM5708S_BLK_ADDR_DIG);
2075 }
2076 }
2077 return 0;
2078 }
2079
2080 static int
2081 bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
2082 {
2083 if (reset_phy)
2084 bnx2_reset_phy(bp);
2085
2086 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
2087
2088 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2089 REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
2090
2091 if (bp->dev->mtu > 1500) {
2092 u32 val;
2093
2094 /* Set extended packet length bit */
2095 bnx2_write_phy(bp, 0x18, 0x7);
2096 bnx2_read_phy(bp, 0x18, &val);
2097 bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
2098
2099 bnx2_write_phy(bp, 0x1c, 0x6c00);
2100 bnx2_read_phy(bp, 0x1c, &val);
2101 bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
2102 }
2103 else {
2104 u32 val;
2105
2106 bnx2_write_phy(bp, 0x18, 0x7);
2107 bnx2_read_phy(bp, 0x18, &val);
2108 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2109
2110 bnx2_write_phy(bp, 0x1c, 0x6c00);
2111 bnx2_read_phy(bp, 0x1c, &val);
2112 bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
2113 }
2114
2115 return 0;
2116 }
2117
2118 static int
2119 bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
2120 {
2121 u32 val;
2122
2123 if (reset_phy)
2124 bnx2_reset_phy(bp);
2125
2126 if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
2127 bnx2_write_phy(bp, 0x18, 0x0c00);
2128 bnx2_write_phy(bp, 0x17, 0x000a);
2129 bnx2_write_phy(bp, 0x15, 0x310b);
2130 bnx2_write_phy(bp, 0x17, 0x201f);
2131 bnx2_write_phy(bp, 0x15, 0x9506);
2132 bnx2_write_phy(bp, 0x17, 0x401f);
2133 bnx2_write_phy(bp, 0x15, 0x14e2);
2134 bnx2_write_phy(bp, 0x18, 0x0400);
2135 }
2136
2137 if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
2138 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
2139 MII_BNX2_DSP_EXPAND_REG | 0x8);
2140 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
2141 val &= ~(1 << 8);
2142 bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
2143 }
2144
2145 if (bp->dev->mtu > 1500) {
2146 /* Set extended packet length bit */
2147 bnx2_write_phy(bp, 0x18, 0x7);
2148 bnx2_read_phy(bp, 0x18, &val);
2149 bnx2_write_phy(bp, 0x18, val | 0x4000);
2150
2151 bnx2_read_phy(bp, 0x10, &val);
2152 bnx2_write_phy(bp, 0x10, val | 0x1);
2153 }
2154 else {
2155 bnx2_write_phy(bp, 0x18, 0x7);
2156 bnx2_read_phy(bp, 0x18, &val);
2157 bnx2_write_phy(bp, 0x18, val & ~0x4007);
2158
2159 bnx2_read_phy(bp, 0x10, &val);
2160 bnx2_write_phy(bp, 0x10, val & ~0x1);
2161 }
2162
2163 /* ethernet@wirespeed */
2164 bnx2_write_phy(bp, 0x18, 0x7007);
2165 bnx2_read_phy(bp, 0x18, &val);
2166 bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
2167 return 0;
2168 }
2169
2170
2171 static int
2172 bnx2_init_phy(struct bnx2 *bp, int reset_phy)
2173 {
2174 u32 val;
2175 int rc = 0;
2176
2177 bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
2178 bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
2179
2180 bp->mii_bmcr = MII_BMCR;
2181 bp->mii_bmsr = MII_BMSR;
2182 bp->mii_bmsr1 = MII_BMSR;
2183 bp->mii_adv = MII_ADVERTISE;
2184 bp->mii_lpa = MII_LPA;
2185
2186 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
2187
2188 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
2189 goto setup_phy;
2190
2191 bnx2_read_phy(bp, MII_PHYSID1, &val);
2192 bp->phy_id = val << 16;
2193 bnx2_read_phy(bp, MII_PHYSID2, &val);
2194 bp->phy_id |= val & 0xffff;
2195
2196 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
2197 if (CHIP_NUM(bp) == CHIP_NUM_5706)
2198 rc = bnx2_init_5706s_phy(bp, reset_phy);
2199 else if (CHIP_NUM(bp) == CHIP_NUM_5708)
2200 rc = bnx2_init_5708s_phy(bp, reset_phy);
2201 else if (CHIP_NUM(bp) == CHIP_NUM_5709)
2202 rc = bnx2_init_5709s_phy(bp, reset_phy);
2203 }
2204 else {
2205 rc = bnx2_init_copper_phy(bp, reset_phy);
2206 }
2207
2208 setup_phy:
2209 if (!rc)
2210 rc = bnx2_setup_phy(bp, bp->phy_port);
2211
2212 return rc;
2213 }
2214
2215 static int
2216 bnx2_set_mac_loopback(struct bnx2 *bp)
2217 {
2218 u32 mac_mode;
2219
2220 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2221 mac_mode &= ~BNX2_EMAC_MODE_PORT;
2222 mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
2223 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2224 bp->link_up = 1;
2225 return 0;
2226 }
2227
2228 static int bnx2_test_link(struct bnx2 *);
2229
2230 static int
2231 bnx2_set_phy_loopback(struct bnx2 *bp)
2232 {
2233 u32 mac_mode;
2234 int rc, i;
2235
2236 spin_lock_bh(&bp->phy_lock);
2237 rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
2238 BMCR_SPEED1000);
2239 spin_unlock_bh(&bp->phy_lock);
2240 if (rc)
2241 return rc;
2242
2243 for (i = 0; i < 10; i++) {
2244 if (bnx2_test_link(bp) == 0)
2245 break;
2246 msleep(100);
2247 }
2248
2249 mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
2250 mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
2251 BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
2252 BNX2_EMAC_MODE_25G_MODE);
2253
2254 mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
2255 REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
2256 bp->link_up = 1;
2257 return 0;
2258 }
2259
2260 static int
2261 bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
2262 {
2263 int i;
2264 u32 val;
2265
2266 bp->fw_wr_seq++;
2267 msg_data |= bp->fw_wr_seq;
2268
2269 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2270
2271 /* wait for an acknowledgement. */
2272 for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
2273 msleep(10);
2274
2275 val = bnx2_shmem_rd(bp, BNX2_FW_MB);
2276
2277 if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
2278 break;
2279 }
2280 if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
2281 return 0;
2282
2283 /* If we timed out, inform the firmware that this is the case. */
2284 if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
2285 if (!silent)
2286 printk(KERN_ERR PFX "fw sync timeout, reset code = "
2287 "%x\n", msg_data);
2288
2289 msg_data &= ~BNX2_DRV_MSG_CODE;
2290 msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
2291
2292 bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
2293
2294 return -EBUSY;
2295 }
2296
2297 if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
2298 return -EIO;
2299
2300 return 0;
2301 }
2302
2303 static int
2304 bnx2_init_5709_context(struct bnx2 *bp)
2305 {
2306 int i, ret = 0;
2307 u32 val;
2308
2309 val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
2310 val |= (BCM_PAGE_BITS - 8) << 16;
2311 REG_WR(bp, BNX2_CTX_COMMAND, val);
2312 for (i = 0; i < 10; i++) {
2313 val = REG_RD(bp, BNX2_CTX_COMMAND);
2314 if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
2315 break;
2316 udelay(2);
2317 }
2318 if (val & BNX2_CTX_COMMAND_MEM_INIT)
2319 return -EBUSY;
2320
2321 for (i = 0; i < bp->ctx_pages; i++) {
2322 int j;
2323
2324 if (bp->ctx_blk[i])
2325 memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
2326 else
2327 return -ENOMEM;
2328
2329 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
2330 (bp->ctx_blk_mapping[i] & 0xffffffff) |
2331 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
2332 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
2333 (u64) bp->ctx_blk_mapping[i] >> 32);
2334 REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
2335 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
2336 for (j = 0; j < 10; j++) {
2337
2338 val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
2339 if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
2340 break;
2341 udelay(5);
2342 }
2343 if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
2344 ret = -EBUSY;
2345 break;
2346 }
2347 }
2348 return ret;
2349 }
2350
2351 static void
2352 bnx2_init_context(struct bnx2 *bp)
2353 {
2354 u32 vcid;
2355
2356 vcid = 96;
2357 while (vcid) {
2358 u32 vcid_addr, pcid_addr, offset;
2359 int i;
2360
2361 vcid--;
2362
2363 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
2364 u32 new_vcid;
2365
2366 vcid_addr = GET_PCID_ADDR(vcid);
2367 if (vcid & 0x8) {
2368 new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
2369 }
2370 else {
2371 new_vcid = vcid;
2372 }
2373 pcid_addr = GET_PCID_ADDR(new_vcid);
2374 }
2375 else {
2376 vcid_addr = GET_CID_ADDR(vcid);
2377 pcid_addr = vcid_addr;
2378 }
2379
2380 for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
2381 vcid_addr += (i << PHY_CTX_SHIFT);
2382 pcid_addr += (i << PHY_CTX_SHIFT);
2383
2384 REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
2385 REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
2386
2387 /* Zero out the context. */
2388 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2389 bnx2_ctx_wr(bp, vcid_addr, offset, 0);
2390 }
2391 }
2392 }
2393
2394 static int
2395 bnx2_alloc_bad_rbuf(struct bnx2 *bp)
2396 {
2397 u16 *good_mbuf;
2398 u32 good_mbuf_cnt;
2399 u32 val;
2400
2401 good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
2402 if (good_mbuf == NULL) {
2403 printk(KERN_ERR PFX "Failed to allocate memory in "
2404 "bnx2_alloc_bad_rbuf\n");
2405 return -ENOMEM;
2406 }
2407
2408 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
2409 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
2410
2411 good_mbuf_cnt = 0;
2412
2413 /* Allocate a bunch of mbufs and save the good ones in an array. */
2414 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2415 while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
2416 bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
2417 BNX2_RBUF_COMMAND_ALLOC_REQ);
2418
2419 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
2420
2421 val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
2422
2423 /* The addresses with Bit 9 set are bad memory blocks. */
2424 if (!(val & (1 << 9))) {
2425 good_mbuf[good_mbuf_cnt] = (u16) val;
2426 good_mbuf_cnt++;
2427 }
2428
2429 val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
2430 }
2431
2432 /* Free the good ones back to the mbuf pool thus discarding
2433 * all the bad ones. */
2434 while (good_mbuf_cnt) {
2435 good_mbuf_cnt--;
2436
2437 val = good_mbuf[good_mbuf_cnt];
2438 val = (val << 9) | val | 1;
2439
2440 bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
2441 }
2442 kfree(good_mbuf);
2443 return 0;
2444 }
2445
2446 static void
2447 bnx2_set_mac_addr(struct bnx2 *bp)
2448 {
2449 u32 val;
2450 u8 *mac_addr = bp->dev->dev_addr;
2451
2452 val = (mac_addr[0] << 8) | mac_addr[1];
2453
2454 REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
2455
2456 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2457 (mac_addr[4] << 8) | mac_addr[5];
2458
2459 REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
2460 }
2461
2462 static inline int
2463 bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2464 {
2465 dma_addr_t mapping;
2466 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2467 struct rx_bd *rxbd =
2468 &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
2469 struct page *page = alloc_page(GFP_ATOMIC);
2470
2471 if (!page)
2472 return -ENOMEM;
2473 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2474 PCI_DMA_FROMDEVICE);
2475 rx_pg->page = page;
2476 pci_unmap_addr_set(rx_pg, mapping, mapping);
2477 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2478 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2479 return 0;
2480 }
2481
2482 static void
2483 bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2484 {
2485 struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
2486 struct page *page = rx_pg->page;
2487
2488 if (!page)
2489 return;
2490
2491 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
2492 PCI_DMA_FROMDEVICE);
2493
2494 __free_page(page);
2495 rx_pg->page = NULL;
2496 }
2497
2498 static inline int
2499 bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
2500 {
2501 struct sk_buff *skb;
2502 struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
2503 dma_addr_t mapping;
2504 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
2505 unsigned long align;
2506
2507 skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
2508 if (skb == NULL) {
2509 return -ENOMEM;
2510 }
2511
2512 if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
2513 skb_reserve(skb, BNX2_RX_ALIGN - align);
2514
2515 mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
2516 PCI_DMA_FROMDEVICE);
2517
2518 rx_buf->skb = skb;
2519 pci_unmap_addr_set(rx_buf, mapping, mapping);
2520
2521 rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
2522 rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
2523
2524 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2525
2526 return 0;
2527 }
2528
2529 static int
2530 bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
2531 {
2532 struct status_block *sblk = bnapi->status_blk.msi;
2533 u32 new_link_state, old_link_state;
2534 int is_set = 1;
2535
2536 new_link_state = sblk->status_attn_bits & event;
2537 old_link_state = sblk->status_attn_bits_ack & event;
2538 if (new_link_state != old_link_state) {
2539 if (new_link_state)
2540 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
2541 else
2542 REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
2543 } else
2544 is_set = 0;
2545
2546 return is_set;
2547 }
2548
2549 static void
2550 bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
2551 {
2552 spin_lock(&bp->phy_lock);
2553
2554 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
2555 bnx2_set_link(bp);
2556 if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
2557 bnx2_set_remote_link(bp);
2558
2559 spin_unlock(&bp->phy_lock);
2560
2561 }
2562
2563 static inline u16
2564 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
2565 {
2566 u16 cons;
2567
2568 /* Tell compiler that status block fields can change. */
2569 barrier();
2570 cons = *bnapi->hw_tx_cons_ptr;
2571 if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
2572 cons++;
2573 return cons;
2574 }
2575
2576 static int
2577 bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2578 {
2579 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
2580 u16 hw_cons, sw_cons, sw_ring_cons;
2581 int tx_pkt = 0;
2582
2583 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2584 sw_cons = txr->tx_cons;
2585
2586 while (sw_cons != hw_cons) {
2587 struct sw_bd *tx_buf;
2588 struct sk_buff *skb;
2589 int i, last;
2590
2591 sw_ring_cons = TX_RING_IDX(sw_cons);
2592
2593 tx_buf = &txr->tx_buf_ring[sw_ring_cons];
2594 skb = tx_buf->skb;
2595
2596 /* partial BD completions possible with TSO packets */
2597 if (skb_is_gso(skb)) {
2598 u16 last_idx, last_ring_idx;
2599
2600 last_idx = sw_cons +
2601 skb_shinfo(skb)->nr_frags + 1;
2602 last_ring_idx = sw_ring_cons +
2603 skb_shinfo(skb)->nr_frags + 1;
2604 if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
2605 last_idx++;
2606 }
2607 if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
2608 break;
2609 }
2610 }
2611
2612 pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
2613 skb_headlen(skb), PCI_DMA_TODEVICE);
2614
2615 tx_buf->skb = NULL;
2616 last = skb_shinfo(skb)->nr_frags;
2617
2618 for (i = 0; i < last; i++) {
2619 sw_cons = NEXT_TX_BD(sw_cons);
2620
2621 pci_unmap_page(bp->pdev,
2622 pci_unmap_addr(
2623 &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
2624 mapping),
2625 skb_shinfo(skb)->frags[i].size,
2626 PCI_DMA_TODEVICE);
2627 }
2628
2629 sw_cons = NEXT_TX_BD(sw_cons);
2630
2631 dev_kfree_skb(skb);
2632 tx_pkt++;
2633 if (tx_pkt == budget)
2634 break;
2635
2636 hw_cons = bnx2_get_hw_tx_cons(bnapi);
2637 }
2638
2639 txr->hw_tx_cons = hw_cons;
2640 txr->tx_cons = sw_cons;
2641 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2642 * before checking for netif_queue_stopped(). Without the
2643 * memory barrier, there is a small possibility that bnx2_start_xmit()
2644 * will miss it and cause the queue to be stopped forever.
2645 */
2646 smp_mb();
2647
2648 if (unlikely(netif_queue_stopped(bp->dev)) &&
2649 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
2650 netif_tx_lock(bp->dev);
2651 if ((netif_queue_stopped(bp->dev)) &&
2652 (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
2653 netif_wake_queue(bp->dev);
2654 netif_tx_unlock(bp->dev);
2655 }
2656 return tx_pkt;
2657 }
2658
2659 static void
2660 bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2661 struct sk_buff *skb, int count)
2662 {
2663 struct sw_pg *cons_rx_pg, *prod_rx_pg;
2664 struct rx_bd *cons_bd, *prod_bd;
2665 dma_addr_t mapping;
2666 int i;
2667 u16 hw_prod = rxr->rx_pg_prod, prod;
2668 u16 cons = rxr->rx_pg_cons;
2669
2670 for (i = 0; i < count; i++) {
2671 prod = RX_PG_RING_IDX(hw_prod);
2672
2673 prod_rx_pg = &rxr->rx_pg_ring[prod];
2674 cons_rx_pg = &rxr->rx_pg_ring[cons];
2675 cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2676 prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2677
2678 if (i == 0 && skb) {
2679 struct page *page;
2680 struct skb_shared_info *shinfo;
2681
2682 shinfo = skb_shinfo(skb);
2683 shinfo->nr_frags--;
2684 page = shinfo->frags[shinfo->nr_frags].page;
2685 shinfo->frags[shinfo->nr_frags].page = NULL;
2686 mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
2687 PCI_DMA_FROMDEVICE);
2688 cons_rx_pg->page = page;
2689 pci_unmap_addr_set(cons_rx_pg, mapping, mapping);
2690 dev_kfree_skb(skb);
2691 }
2692 if (prod != cons) {
2693 prod_rx_pg->page = cons_rx_pg->page;
2694 cons_rx_pg->page = NULL;
2695 pci_unmap_addr_set(prod_rx_pg, mapping,
2696 pci_unmap_addr(cons_rx_pg, mapping));
2697
2698 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2699 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2700
2701 }
2702 cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
2703 hw_prod = NEXT_RX_BD(hw_prod);
2704 }
2705 rxr->rx_pg_prod = hw_prod;
2706 rxr->rx_pg_cons = cons;
2707 }
2708
2709 static inline void
2710 bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
2711 struct sk_buff *skb, u16 cons, u16 prod)
2712 {
2713 struct sw_bd *cons_rx_buf, *prod_rx_buf;
2714 struct rx_bd *cons_bd, *prod_bd;
2715
2716 cons_rx_buf = &rxr->rx_buf_ring[cons];
2717 prod_rx_buf = &rxr->rx_buf_ring[prod];
2718
2719 pci_dma_sync_single_for_device(bp->pdev,
2720 pci_unmap_addr(cons_rx_buf, mapping),
2721 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
2722
2723 rxr->rx_prod_bseq += bp->rx_buf_use_size;
2724
2725 prod_rx_buf->skb = skb;
2726
2727 if (cons == prod)
2728 return;
2729
2730 pci_unmap_addr_set(prod_rx_buf, mapping,
2731 pci_unmap_addr(cons_rx_buf, mapping));
2732
2733 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
2734 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
2735 prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
2736 prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
2737 }
2738
2739 static int
2740 bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
2741 unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
2742 u32 ring_idx)
2743 {
2744 int err;
2745 u16 prod = ring_idx & 0xffff;
2746
2747 err = bnx2_alloc_rx_skb(bp, rxr, prod);
2748 if (unlikely(err)) {
2749 bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
2750 if (hdr_len) {
2751 unsigned int raw_len = len + 4;
2752 int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
2753
2754 bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
2755 }
2756 return err;
2757 }
2758
2759 skb_reserve(skb, BNX2_RX_OFFSET);
2760 pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
2761 PCI_DMA_FROMDEVICE);
2762
2763 if (hdr_len == 0) {
2764 skb_put(skb, len);
2765 return 0;
2766 } else {
2767 unsigned int i, frag_len, frag_size, pages;
2768 struct sw_pg *rx_pg;
2769 u16 pg_cons = rxr->rx_pg_cons;
2770 u16 pg_prod = rxr->rx_pg_prod;
2771
2772 frag_size = len + 4 - hdr_len;
2773 pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
2774 skb_put(skb, hdr_len);
2775
2776 for (i = 0; i < pages; i++) {
2777 frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
2778 if (unlikely(frag_len <= 4)) {
2779 unsigned int tail = 4 - frag_len;
2780
2781 rxr->rx_pg_cons = pg_cons;
2782 rxr->rx_pg_prod = pg_prod;
2783 bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
2784 pages - i);
2785 skb->len -= tail;
2786 if (i == 0) {
2787 skb->tail -= tail;
2788 } else {
2789 skb_frag_t *frag =
2790 &skb_shinfo(skb)->frags[i - 1];
2791 frag->size -= tail;
2792 skb->data_len -= tail;
2793 skb->truesize -= tail;
2794 }
2795 return 0;
2796 }
2797 rx_pg = &rxr->rx_pg_ring[pg_cons];
2798
2799 pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping),
2800 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2801
2802 if (i == pages - 1)
2803 frag_len -= 4;
2804
2805 skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
2806 rx_pg->page = NULL;
2807
2808 err = bnx2_alloc_rx_page(bp, rxr,
2809 RX_PG_RING_IDX(pg_prod));
2810 if (unlikely(err)) {
2811 rxr->rx_pg_cons = pg_cons;
2812 rxr->rx_pg_prod = pg_prod;
2813 bnx2_reuse_rx_skb_pages(bp, rxr, skb,
2814 pages - i);
2815 return err;
2816 }
2817
2818 frag_size -= frag_len;
2819 skb->data_len += frag_len;
2820 skb->truesize += frag_len;
2821 skb->len += frag_len;
2822
2823 pg_prod = NEXT_RX_BD(pg_prod);
2824 pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
2825 }
2826 rxr->rx_pg_prod = pg_prod;
2827 rxr->rx_pg_cons = pg_cons;
2828 }
2829 return 0;
2830 }
2831
2832 static inline u16
2833 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
2834 {
2835 u16 cons;
2836
2837 /* Tell compiler that status block fields can change. */
2838 barrier();
2839 cons = *bnapi->hw_rx_cons_ptr;
2840 if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
2841 cons++;
2842 return cons;
2843 }
2844
2845 static int
2846 bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
2847 {
2848 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
2849 u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
2850 struct l2_fhdr *rx_hdr;
2851 int rx_pkt = 0, pg_ring_used = 0;
2852
2853 hw_cons = bnx2_get_hw_rx_cons(bnapi);
2854 sw_cons = rxr->rx_cons;
2855 sw_prod = rxr->rx_prod;
2856
2857 /* Memory barrier necessary as speculative reads of the rx
2858 * buffer can be ahead of the index in the status block
2859 */
2860 rmb();
2861 while (sw_cons != hw_cons) {
2862 unsigned int len, hdr_len;
2863 u32 status;
2864 struct sw_bd *rx_buf;
2865 struct sk_buff *skb;
2866 dma_addr_t dma_addr;
2867
2868 sw_ring_cons = RX_RING_IDX(sw_cons);
2869 sw_ring_prod = RX_RING_IDX(sw_prod);
2870
2871 rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
2872 skb = rx_buf->skb;
2873
2874 rx_buf->skb = NULL;
2875
2876 dma_addr = pci_unmap_addr(rx_buf, mapping);
2877
2878 pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
2879 BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
2880 PCI_DMA_FROMDEVICE);
2881
2882 rx_hdr = (struct l2_fhdr *) skb->data;
2883 len = rx_hdr->l2_fhdr_pkt_len;
2884
2885 if ((status = rx_hdr->l2_fhdr_status) &
2886 (L2_FHDR_ERRORS_BAD_CRC |
2887 L2_FHDR_ERRORS_PHY_DECODE |
2888 L2_FHDR_ERRORS_ALIGNMENT |
2889 L2_FHDR_ERRORS_TOO_SHORT |
2890 L2_FHDR_ERRORS_GIANT_FRAME)) {
2891
2892 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2893 sw_ring_prod);
2894 goto next_rx;
2895 }
2896 hdr_len = 0;
2897 if (status & L2_FHDR_STATUS_SPLIT) {
2898 hdr_len = rx_hdr->l2_fhdr_ip_xsum;
2899 pg_ring_used = 1;
2900 } else if (len > bp->rx_jumbo_thresh) {
2901 hdr_len = bp->rx_jumbo_thresh;
2902 pg_ring_used = 1;
2903 }
2904
2905 len -= 4;
2906
2907 if (len <= bp->rx_copy_thresh) {
2908 struct sk_buff *new_skb;
2909
2910 new_skb = netdev_alloc_skb(bp->dev, len + 2);
2911 if (new_skb == NULL) {
2912 bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
2913 sw_ring_prod);
2914 goto next_rx;
2915 }
2916
2917 /* aligned copy */
2918 skb_copy_from_linear_data_offset(skb,
2919 BNX2_RX_OFFSET - 2,
2920 new_skb->data, len + 2);
2921 skb_reserve(new_skb, 2);
2922 skb_put(new_skb, len);
2923
2924 bnx2_reuse_rx_skb(bp, rxr, skb,
2925 sw_ring_cons, sw_ring_prod);
2926
2927 skb = new_skb;
2928 } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
2929 dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
2930 goto next_rx;
2931
2932 skb->protocol = eth_type_trans(skb, bp->dev);
2933
2934 if ((len > (bp->dev->mtu + ETH_HLEN)) &&
2935 (ntohs(skb->protocol) != 0x8100)) {
2936
2937 dev_kfree_skb(skb);
2938 goto next_rx;
2939
2940 }
2941
2942 skb->ip_summed = CHECKSUM_NONE;
2943 if (bp->rx_csum &&
2944 (status & (L2_FHDR_STATUS_TCP_SEGMENT |
2945 L2_FHDR_STATUS_UDP_DATAGRAM))) {
2946
2947 if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
2948 L2_FHDR_ERRORS_UDP_XSUM)) == 0))
2949 skb->ip_summed = CHECKSUM_UNNECESSARY;
2950 }
2951
2952 #ifdef BCM_VLAN
2953 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && bp->vlgrp) {
2954 vlan_hwaccel_receive_skb(skb, bp->vlgrp,
2955 rx_hdr->l2_fhdr_vlan_tag);
2956 }
2957 else
2958 #endif
2959 netif_receive_skb(skb);
2960
2961 bp->dev->last_rx = jiffies;
2962 rx_pkt++;
2963
2964 next_rx:
2965 sw_cons = NEXT_RX_BD(sw_cons);
2966 sw_prod = NEXT_RX_BD(sw_prod);
2967
2968 if ((rx_pkt == budget))
2969 break;
2970
2971 /* Refresh hw_cons to see if there is new work */
2972 if (sw_cons == hw_cons) {
2973 hw_cons = bnx2_get_hw_rx_cons(bnapi);
2974 rmb();
2975 }
2976 }
2977 rxr->rx_cons = sw_cons;
2978 rxr->rx_prod = sw_prod;
2979
2980 if (pg_ring_used)
2981 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
2982
2983 REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
2984
2985 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
2986
2987 mmiowb();
2988
2989 return rx_pkt;
2990
2991 }
2992
2993 /* MSI ISR - The only difference between this and the INTx ISR
2994 * is that the MSI interrupt is always serviced.
2995 */
2996 static irqreturn_t
2997 bnx2_msi(int irq, void *dev_instance)
2998 {
2999 struct bnx2_napi *bnapi = dev_instance;
3000 struct bnx2 *bp = bnapi->bp;
3001 struct net_device *dev = bp->dev;
3002
3003 prefetch(bnapi->status_blk.msi);
3004 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3005 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3006 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3007
3008 /* Return here if interrupt is disabled. */
3009 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3010 return IRQ_HANDLED;
3011
3012 netif_rx_schedule(dev, &bnapi->napi);
3013
3014 return IRQ_HANDLED;
3015 }
3016
3017 static irqreturn_t
3018 bnx2_msi_1shot(int irq, void *dev_instance)
3019 {
3020 struct bnx2_napi *bnapi = dev_instance;
3021 struct bnx2 *bp = bnapi->bp;
3022 struct net_device *dev = bp->dev;
3023
3024 prefetch(bnapi->status_blk.msi);
3025
3026 /* Return here if interrupt is disabled. */
3027 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3028 return IRQ_HANDLED;
3029
3030 netif_rx_schedule(dev, &bnapi->napi);
3031
3032 return IRQ_HANDLED;
3033 }
3034
3035 static irqreturn_t
3036 bnx2_interrupt(int irq, void *dev_instance)
3037 {
3038 struct bnx2_napi *bnapi = dev_instance;
3039 struct bnx2 *bp = bnapi->bp;
3040 struct net_device *dev = bp->dev;
3041 struct status_block *sblk = bnapi->status_blk.msi;
3042
3043 /* When using INTx, it is possible for the interrupt to arrive
3044 * at the CPU before the status block posted prior to the
3045 * interrupt. Reading a register will flush the status block.
3046 * When using MSI, the MSI message will always complete after
3047 * the status block write.
3048 */
3049 if ((sblk->status_idx == bnapi->last_status_idx) &&
3050 (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
3051 BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
3052 return IRQ_NONE;
3053
3054 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3055 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
3056 BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
3057
3058 /* Read back to deassert IRQ immediately to avoid too many
3059 * spurious interrupts.
3060 */
3061 REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
3062
3063 /* Return here if interrupt is shared and is disabled. */
3064 if (unlikely(atomic_read(&bp->intr_sem) != 0))
3065 return IRQ_HANDLED;
3066
3067 if (netif_rx_schedule_prep(dev, &bnapi->napi)) {
3068 bnapi->last_status_idx = sblk->status_idx;
3069 __netif_rx_schedule(dev, &bnapi->napi);
3070 }
3071
3072 return IRQ_HANDLED;
3073 }
3074
3075 static inline int
3076 bnx2_has_fast_work(struct bnx2_napi *bnapi)
3077 {
3078 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3079 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3080
3081 if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
3082 (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
3083 return 1;
3084 return 0;
3085 }
3086
3087 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3088 STATUS_ATTN_BITS_TIMER_ABORT)
3089
3090 static inline int
3091 bnx2_has_work(struct bnx2_napi *bnapi)
3092 {
3093 struct status_block *sblk = bnapi->status_blk.msi;
3094
3095 if (bnx2_has_fast_work(bnapi))
3096 return 1;
3097
3098 if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
3099 (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
3100 return 1;
3101
3102 return 0;
3103 }
3104
3105 static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
3106 {
3107 struct status_block *sblk = bnapi->status_blk.msi;
3108 u32 status_attn_bits = sblk->status_attn_bits;
3109 u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
3110
3111 if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
3112 (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
3113
3114 bnx2_phy_int(bp, bnapi);
3115
3116 /* This is needed to take care of transient status
3117 * during link changes.
3118 */
3119 REG_WR(bp, BNX2_HC_COMMAND,
3120 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
3121 REG_RD(bp, BNX2_HC_COMMAND);
3122 }
3123 }
3124
3125 static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
3126 int work_done, int budget)
3127 {
3128 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
3129 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
3130
3131 if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
3132 bnx2_tx_int(bp, bnapi, 0);
3133
3134 if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
3135 work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
3136
3137 return work_done;
3138 }
3139
3140 static int bnx2_poll_msix(struct napi_struct *napi, int budget)
3141 {
3142 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3143 struct bnx2 *bp = bnapi->bp;
3144 int work_done = 0;
3145 struct status_block_msix *sblk = bnapi->status_blk.msix;
3146
3147 while (1) {
3148 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3149 if (unlikely(work_done >= budget))
3150 break;
3151
3152 bnapi->last_status_idx = sblk->status_idx;
3153 /* status idx must be read before checking for more work. */
3154 rmb();
3155 if (likely(!bnx2_has_fast_work(bnapi))) {
3156
3157 netif_rx_complete(bp->dev, napi);
3158 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
3159 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3160 bnapi->last_status_idx);
3161 break;
3162 }
3163 }
3164 return work_done;
3165 }
3166
3167 static int bnx2_poll(struct napi_struct *napi, int budget)
3168 {
3169 struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
3170 struct bnx2 *bp = bnapi->bp;
3171 int work_done = 0;
3172 struct status_block *sblk = bnapi->status_blk.msi;
3173
3174 while (1) {
3175 bnx2_poll_link(bp, bnapi);
3176
3177 work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
3178
3179 if (unlikely(work_done >= budget))
3180 break;
3181
3182 /* bnapi->last_status_idx is used below to tell the hw how
3183 * much work has been processed, so we must read it before
3184 * checking for more work.
3185 */
3186 bnapi->last_status_idx = sblk->status_idx;
3187 rmb();
3188 if (likely(!bnx2_has_work(bnapi))) {
3189 netif_rx_complete(bp->dev, napi);
3190 if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
3191 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3192 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3193 bnapi->last_status_idx);
3194 break;
3195 }
3196 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3197 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3198 BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
3199 bnapi->last_status_idx);
3200
3201 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
3202 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
3203 bnapi->last_status_idx);
3204 break;
3205 }
3206 }
3207
3208 return work_done;
3209 }
3210
3211 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3212 * from set_multicast.
3213 */
3214 static void
3215 bnx2_set_rx_mode(struct net_device *dev)
3216 {
3217 struct bnx2 *bp = netdev_priv(dev);
3218 u32 rx_mode, sort_mode;
3219 int i;
3220
3221 spin_lock_bh(&bp->phy_lock);
3222
3223 rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
3224 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
3225 sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
3226 #ifdef BCM_VLAN
3227 if (!bp->vlgrp && !(bp->flags & BNX2_FLAG_ASF_ENABLE))
3228 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3229 #else
3230 if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
3231 rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
3232 #endif
3233 if (dev->flags & IFF_PROMISC) {
3234 /* Promiscuous mode. */
3235 rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
3236 sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
3237 BNX2_RPM_SORT_USER0_PROM_VLAN;
3238 }
3239 else if (dev->flags & IFF_ALLMULTI) {
3240 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3241 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3242 0xffffffff);
3243 }
3244 sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
3245 }
3246 else {
3247 /* Accept one or more multicast(s). */
3248 struct dev_mc_list *mclist;
3249 u32 mc_filter[NUM_MC_HASH_REGISTERS];
3250 u32 regidx;
3251 u32 bit;
3252 u32 crc;
3253
3254 memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
3255
3256 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
3257 i++, mclist = mclist->next) {
3258
3259 crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
3260 bit = crc & 0xff;
3261 regidx = (bit & 0xe0) >> 5;
3262 bit &= 0x1f;
3263 mc_filter[regidx] |= (1 << bit);
3264 }
3265
3266 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3267 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3268 mc_filter[i]);
3269 }
3270
3271 sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
3272 }
3273
3274 if (rx_mode != bp->rx_mode) {
3275 bp->rx_mode = rx_mode;
3276 REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
3277 }
3278
3279 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3280 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
3281 REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
3282
3283 spin_unlock_bh(&bp->phy_lock);
3284 }
3285
3286 static void
3287 load_rv2p_fw(struct bnx2 *bp, __le32 *rv2p_code, u32 rv2p_code_len,
3288 u32 rv2p_proc)
3289 {
3290 int i;
3291 u32 val;
3292
3293 if (rv2p_proc == RV2P_PROC2 && CHIP_NUM(bp) == CHIP_NUM_5709) {
3294 val = le32_to_cpu(rv2p_code[XI_RV2P_PROC2_MAX_BD_PAGE_LOC]);
3295 val &= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK;
3296 val |= XI_RV2P_PROC2_BD_PAGE_SIZE;
3297 rv2p_code[XI_RV2P_PROC2_MAX_BD_PAGE_LOC] = cpu_to_le32(val);
3298 }
3299
3300 for (i = 0; i < rv2p_code_len; i += 8) {
3301 REG_WR(bp, BNX2_RV2P_INSTR_HIGH, le32_to_cpu(*rv2p_code));
3302 rv2p_code++;
3303 REG_WR(bp, BNX2_RV2P_INSTR_LOW, le32_to_cpu(*rv2p_code));
3304 rv2p_code++;
3305
3306 if (rv2p_proc == RV2P_PROC1) {
3307 val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
3308 REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
3309 }
3310 else {
3311 val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
3312 REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
3313 }
3314 }
3315
3316 /* Reset the processor, un-stall is done later. */
3317 if (rv2p_proc == RV2P_PROC1) {
3318 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
3319 }
3320 else {
3321 REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
3322 }
3323 }
3324
3325 static int
3326 load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg, struct fw_info *fw)
3327 {
3328 u32 offset;
3329 u32 val;
3330 int rc;
3331
3332 /* Halt the CPU. */
3333 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3334 val |= cpu_reg->mode_value_halt;
3335 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3336 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3337
3338 /* Load the Text area. */
3339 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3340 if (fw->gz_text) {
3341 int j;
3342
3343 rc = zlib_inflate_blob(fw->text, FW_BUF_SIZE, fw->gz_text,
3344 fw->gz_text_len);
3345 if (rc < 0)
3346 return rc;
3347
3348 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3349 bnx2_reg_wr_ind(bp, offset, le32_to_cpu(fw->text[j]));
3350 }
3351 }
3352
3353 /* Load the Data area. */
3354 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3355 if (fw->data) {
3356 int j;
3357
3358 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3359 bnx2_reg_wr_ind(bp, offset, fw->data[j]);
3360 }
3361 }
3362
3363 /* Load the SBSS area. */
3364 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
3365 if (fw->sbss_len) {
3366 int j;
3367
3368 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
3369 bnx2_reg_wr_ind(bp, offset, 0);
3370 }
3371 }
3372
3373 /* Load the BSS area. */
3374 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
3375 if (fw->bss_len) {
3376 int j;
3377
3378 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
3379 bnx2_reg_wr_ind(bp, offset, 0);
3380 }
3381 }
3382
3383 /* Load the Read-Only area. */
3384 offset = cpu_reg->spad_base +
3385 (fw->rodata_addr - cpu_reg->mips_view_base);
3386 if (fw->rodata) {
3387 int j;
3388
3389 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
3390 bnx2_reg_wr_ind(bp, offset, fw->rodata[j]);
3391 }
3392 }
3393
3394 /* Clear the pre-fetch instruction. */
3395 bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
3396 bnx2_reg_wr_ind(bp, cpu_reg->pc, fw->start_addr);
3397
3398 /* Start the CPU. */
3399 val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
3400 val &= ~cpu_reg->mode_value_halt;
3401 bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
3402 bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
3403
3404 return 0;
3405 }
3406
3407 static int
3408 bnx2_init_cpus(struct bnx2 *bp)
3409 {
3410 struct fw_info *fw;
3411 int rc, rv2p_len;
3412 void *text, *rv2p;
3413
3414 /* Initialize the RV2P processor. */
3415 text = vmalloc(FW_BUF_SIZE);
3416 if (!text)
3417 return -ENOMEM;
3418 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3419 rv2p = bnx2_xi_rv2p_proc1;
3420 rv2p_len = sizeof(bnx2_xi_rv2p_proc1);
3421 } else {
3422 rv2p = bnx2_rv2p_proc1;
3423 rv2p_len = sizeof(bnx2_rv2p_proc1);
3424 }
3425 rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
3426 if (rc < 0)
3427 goto init_cpu_err;
3428
3429 load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC1);
3430
3431 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3432 rv2p = bnx2_xi_rv2p_proc2;
3433 rv2p_len = sizeof(bnx2_xi_rv2p_proc2);
3434 } else {
3435 rv2p = bnx2_rv2p_proc2;
3436 rv2p_len = sizeof(bnx2_rv2p_proc2);
3437 }
3438 rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
3439 if (rc < 0)
3440 goto init_cpu_err;
3441
3442 load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC2);
3443
3444 /* Initialize the RX Processor. */
3445 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3446 fw = &bnx2_rxp_fw_09;
3447 else
3448 fw = &bnx2_rxp_fw_06;
3449
3450 fw->text = text;
3451 rc = load_cpu_fw(bp, &cpu_reg_rxp, fw);
3452 if (rc)
3453 goto init_cpu_err;
3454
3455 /* Initialize the TX Processor. */
3456 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3457 fw = &bnx2_txp_fw_09;
3458 else
3459 fw = &bnx2_txp_fw_06;
3460
3461 fw->text = text;
3462 rc = load_cpu_fw(bp, &cpu_reg_txp, fw);
3463 if (rc)
3464 goto init_cpu_err;
3465
3466 /* Initialize the TX Patch-up Processor. */
3467 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3468 fw = &bnx2_tpat_fw_09;
3469 else
3470 fw = &bnx2_tpat_fw_06;
3471
3472 fw->text = text;
3473 rc = load_cpu_fw(bp, &cpu_reg_tpat, fw);
3474 if (rc)
3475 goto init_cpu_err;
3476
3477 /* Initialize the Completion Processor. */
3478 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3479 fw = &bnx2_com_fw_09;
3480 else
3481 fw = &bnx2_com_fw_06;
3482
3483 fw->text = text;
3484 rc = load_cpu_fw(bp, &cpu_reg_com, fw);
3485 if (rc)
3486 goto init_cpu_err;
3487
3488 /* Initialize the Command Processor. */
3489 if (CHIP_NUM(bp) == CHIP_NUM_5709)
3490 fw = &bnx2_cp_fw_09;
3491 else
3492 fw = &bnx2_cp_fw_06;
3493
3494 fw->text = text;
3495 rc = load_cpu_fw(bp, &cpu_reg_cp, fw);
3496
3497 init_cpu_err:
3498 vfree(text);
3499 return rc;
3500 }
3501
3502 static int
3503 bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
3504 {
3505 u16 pmcsr;
3506
3507 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
3508
3509 switch (state) {
3510 case PCI_D0: {
3511 u32 val;
3512
3513 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3514 (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3515 PCI_PM_CTRL_PME_STATUS);
3516
3517 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3518 /* delay required during transition out of D3hot */
3519 msleep(20);
3520
3521 val = REG_RD(bp, BNX2_EMAC_MODE);
3522 val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
3523 val &= ~BNX2_EMAC_MODE_MPKT;
3524 REG_WR(bp, BNX2_EMAC_MODE, val);
3525
3526 val = REG_RD(bp, BNX2_RPM_CONFIG);
3527 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3528 REG_WR(bp, BNX2_RPM_CONFIG, val);
3529 break;
3530 }
3531 case PCI_D3hot: {
3532 int i;
3533 u32 val, wol_msg;
3534
3535 if (bp->wol) {
3536 u32 advertising;
3537 u8 autoneg;
3538
3539 autoneg = bp->autoneg;
3540 advertising = bp->advertising;
3541
3542 if (bp->phy_port == PORT_TP) {
3543 bp->autoneg = AUTONEG_SPEED;
3544 bp->advertising = ADVERTISED_10baseT_Half |
3545 ADVERTISED_10baseT_Full |
3546 ADVERTISED_100baseT_Half |
3547 ADVERTISED_100baseT_Full |
3548 ADVERTISED_Autoneg;
3549 }
3550
3551 spin_lock_bh(&bp->phy_lock);
3552 bnx2_setup_phy(bp, bp->phy_port);
3553 spin_unlock_bh(&bp->phy_lock);
3554
3555 bp->autoneg = autoneg;
3556 bp->advertising = advertising;
3557
3558 bnx2_set_mac_addr(bp);
3559
3560 val = REG_RD(bp, BNX2_EMAC_MODE);
3561
3562 /* Enable port mode. */
3563 val &= ~BNX2_EMAC_MODE_PORT;
3564 val |= BNX2_EMAC_MODE_MPKT_RCVD |
3565 BNX2_EMAC_MODE_ACPI_RCVD |
3566 BNX2_EMAC_MODE_MPKT;
3567 if (bp->phy_port == PORT_TP)
3568 val |= BNX2_EMAC_MODE_PORT_MII;
3569 else {
3570 val |= BNX2_EMAC_MODE_PORT_GMII;
3571 if (bp->line_speed == SPEED_2500)
3572 val |= BNX2_EMAC_MODE_25G_MODE;
3573 }
3574
3575 REG_WR(bp, BNX2_EMAC_MODE, val);
3576
3577 /* receive all multicast */
3578 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
3579 REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
3580 0xffffffff);
3581 }
3582 REG_WR(bp, BNX2_EMAC_RX_MODE,
3583 BNX2_EMAC_RX_MODE_SORT_MODE);
3584
3585 val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
3586 BNX2_RPM_SORT_USER0_MC_EN;
3587 REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
3588 REG_WR(bp, BNX2_RPM_SORT_USER0, val);
3589 REG_WR(bp, BNX2_RPM_SORT_USER0, val |
3590 BNX2_RPM_SORT_USER0_ENA);
3591
3592 /* Need to enable EMAC and RPM for WOL. */
3593 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
3594 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
3595 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
3596 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
3597
3598 val = REG_RD(bp, BNX2_RPM_CONFIG);
3599 val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
3600 REG_WR(bp, BNX2_RPM_CONFIG, val);
3601
3602 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
3603 }
3604 else {
3605 wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
3606 }
3607
3608 if (!(bp->flags & BNX2_FLAG_NO_WOL))
3609 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
3610
3611 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3612 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
3613 (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
3614
3615 if (bp->wol)
3616 pmcsr |= 3;
3617 }
3618 else {
3619 pmcsr |= 3;
3620 }
3621 if (bp->wol) {
3622 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3623 }
3624 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
3625 pmcsr);
3626
3627 /* No more memory access after this point until
3628 * device is brought back to D0.
3629 */
3630 udelay(50);
3631 break;
3632 }
3633 default:
3634 return -EINVAL;
3635 }
3636 return 0;
3637 }
3638
3639 static int
3640 bnx2_acquire_nvram_lock(struct bnx2 *bp)
3641 {
3642 u32 val;
3643 int j;
3644
3645 /* Request access to the flash interface. */
3646 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
3647 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3648 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3649 if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
3650 break;
3651
3652 udelay(5);
3653 }
3654
3655 if (j >= NVRAM_TIMEOUT_COUNT)
3656 return -EBUSY;
3657
3658 return 0;
3659 }
3660
3661 static int
3662 bnx2_release_nvram_lock(struct bnx2 *bp)
3663 {
3664 int j;
3665 u32 val;
3666
3667 /* Relinquish nvram interface. */
3668 REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
3669
3670 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3671 val = REG_RD(bp, BNX2_NVM_SW_ARB);
3672 if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
3673 break;
3674
3675 udelay(5);
3676 }
3677
3678 if (j >= NVRAM_TIMEOUT_COUNT)
3679 return -EBUSY;
3680
3681 return 0;
3682 }
3683
3684
3685 static int
3686 bnx2_enable_nvram_write(struct bnx2 *bp)
3687 {
3688 u32 val;
3689
3690 val = REG_RD(bp, BNX2_MISC_CFG);
3691 REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
3692
3693 if (bp->flash_info->flags & BNX2_NV_WREN) {
3694 int j;
3695
3696 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3697 REG_WR(bp, BNX2_NVM_COMMAND,
3698 BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
3699
3700 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3701 udelay(5);
3702
3703 val = REG_RD(bp, BNX2_NVM_COMMAND);
3704 if (val & BNX2_NVM_COMMAND_DONE)
3705 break;
3706 }
3707
3708 if (j >= NVRAM_TIMEOUT_COUNT)
3709 return -EBUSY;
3710 }
3711 return 0;
3712 }
3713
3714 static void
3715 bnx2_disable_nvram_write(struct bnx2 *bp)
3716 {
3717 u32 val;
3718
3719 val = REG_RD(bp, BNX2_MISC_CFG);
3720 REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
3721 }
3722
3723
3724 static void
3725 bnx2_enable_nvram_access(struct bnx2 *bp)
3726 {
3727 u32 val;
3728
3729 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3730 /* Enable both bits, even on read. */
3731 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3732 val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
3733 }
3734
3735 static void
3736 bnx2_disable_nvram_access(struct bnx2 *bp)
3737 {
3738 u32 val;
3739
3740 val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
3741 /* Disable both bits, even after read. */
3742 REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
3743 val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
3744 BNX2_NVM_ACCESS_ENABLE_WR_EN));
3745 }
3746
3747 static int
3748 bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
3749 {
3750 u32 cmd;
3751 int j;
3752
3753 if (bp->flash_info->flags & BNX2_NV_BUFFERED)
3754 /* Buffered flash, no erase needed */
3755 return 0;
3756
3757 /* Build an erase command */
3758 cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
3759 BNX2_NVM_COMMAND_DOIT;
3760
3761 /* Need to clear DONE bit separately. */
3762 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3763
3764 /* Address of the NVRAM to read from. */
3765 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3766
3767 /* Issue an erase command. */
3768 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3769
3770 /* Wait for completion. */
3771 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3772 u32 val;
3773
3774 udelay(5);
3775
3776 val = REG_RD(bp, BNX2_NVM_COMMAND);
3777 if (val & BNX2_NVM_COMMAND_DONE)
3778 break;
3779 }
3780
3781 if (j >= NVRAM_TIMEOUT_COUNT)
3782 return -EBUSY;
3783
3784 return 0;
3785 }
3786
3787 static int
3788 bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
3789 {
3790 u32 cmd;
3791 int j;
3792
3793 /* Build the command word. */
3794 cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
3795
3796 /* Calculate an offset of a buffered flash, not needed for 5709. */
3797 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3798 offset = ((offset / bp->flash_info->page_size) <<
3799 bp->flash_info->page_bits) +
3800 (offset % bp->flash_info->page_size);
3801 }
3802
3803 /* Need to clear DONE bit separately. */
3804 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3805
3806 /* Address of the NVRAM to read from. */
3807 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3808
3809 /* Issue a read command. */
3810 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3811
3812 /* Wait for completion. */
3813 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3814 u32 val;
3815
3816 udelay(5);
3817
3818 val = REG_RD(bp, BNX2_NVM_COMMAND);
3819 if (val & BNX2_NVM_COMMAND_DONE) {
3820 __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
3821 memcpy(ret_val, &v, 4);
3822 break;
3823 }
3824 }
3825 if (j >= NVRAM_TIMEOUT_COUNT)
3826 return -EBUSY;
3827
3828 return 0;
3829 }
3830
3831
3832 static int
3833 bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
3834 {
3835 u32 cmd;
3836 __be32 val32;
3837 int j;
3838
3839 /* Build the command word. */
3840 cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
3841
3842 /* Calculate an offset of a buffered flash, not needed for 5709. */
3843 if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
3844 offset = ((offset / bp->flash_info->page_size) <<
3845 bp->flash_info->page_bits) +
3846 (offset % bp->flash_info->page_size);
3847 }
3848
3849 /* Need to clear DONE bit separately. */
3850 REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
3851
3852 memcpy(&val32, val, 4);
3853
3854 /* Write the data. */
3855 REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
3856
3857 /* Address of the NVRAM to write to. */
3858 REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
3859
3860 /* Issue the write command. */
3861 REG_WR(bp, BNX2_NVM_COMMAND, cmd);
3862
3863 /* Wait for completion. */
3864 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
3865 udelay(5);
3866
3867 if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
3868 break;
3869 }
3870 if (j >= NVRAM_TIMEOUT_COUNT)
3871 return -EBUSY;
3872
3873 return 0;
3874 }
3875
3876 static int
3877 bnx2_init_nvram(struct bnx2 *bp)
3878 {
3879 u32 val;
3880 int j, entry_count, rc = 0;
3881 struct flash_spec *flash;
3882
3883 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
3884 bp->flash_info = &flash_5709;
3885 goto get_flash_size;
3886 }
3887
3888 /* Determine the selected interface. */
3889 val = REG_RD(bp, BNX2_NVM_CFG1);
3890
3891 entry_count = ARRAY_SIZE(flash_table);
3892
3893 if (val & 0x40000000) {
3894
3895 /* Flash interface has been reconfigured */
3896 for (j = 0, flash = &flash_table[0]; j < entry_count;
3897 j++, flash++) {
3898 if ((val & FLASH_BACKUP_STRAP_MASK) ==
3899 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
3900 bp->flash_info = flash;
3901 break;
3902 }
3903 }
3904 }
3905 else {
3906 u32 mask;
3907 /* Not yet been reconfigured */
3908
3909 if (val & (1 << 23))
3910 mask = FLASH_BACKUP_STRAP_MASK;
3911 else
3912 mask = FLASH_STRAP_MASK;
3913
3914 for (j = 0, flash = &flash_table[0]; j < entry_count;
3915 j++, flash++) {
3916
3917 if ((val & mask) == (flash->strapping & mask)) {
3918 bp->flash_info = flash;
3919
3920 /* Request access to the flash interface. */
3921 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3922 return rc;
3923
3924 /* Enable access to flash interface */
3925 bnx2_enable_nvram_access(bp);
3926
3927 /* Reconfigure the flash interface */
3928 REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
3929 REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
3930 REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
3931 REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
3932
3933 /* Disable access to flash interface */
3934 bnx2_disable_nvram_access(bp);
3935 bnx2_release_nvram_lock(bp);
3936
3937 break;
3938 }
3939 }
3940 } /* if (val & 0x40000000) */
3941
3942 if (j == entry_count) {
3943 bp->flash_info = NULL;
3944 printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
3945 return -ENODEV;
3946 }
3947
3948 get_flash_size:
3949 val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
3950 val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
3951 if (val)
3952 bp->flash_size = val;
3953 else
3954 bp->flash_size = bp->flash_info->total_size;
3955
3956 return rc;
3957 }
3958
3959 static int
3960 bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
3961 int buf_size)
3962 {
3963 int rc = 0;
3964 u32 cmd_flags, offset32, len32, extra;
3965
3966 if (buf_size == 0)
3967 return 0;
3968
3969 /* Request access to the flash interface. */
3970 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
3971 return rc;
3972
3973 /* Enable access to flash interface */
3974 bnx2_enable_nvram_access(bp);
3975
3976 len32 = buf_size;
3977 offset32 = offset;
3978 extra = 0;
3979
3980 cmd_flags = 0;
3981
3982 if (offset32 & 3) {
3983 u8 buf[4];
3984 u32 pre_len;
3985
3986 offset32 &= ~3;
3987 pre_len = 4 - (offset & 3);
3988
3989 if (pre_len >= len32) {
3990 pre_len = len32;
3991 cmd_flags = BNX2_NVM_COMMAND_FIRST |
3992 BNX2_NVM_COMMAND_LAST;
3993 }
3994 else {
3995 cmd_flags = BNX2_NVM_COMMAND_FIRST;
3996 }
3997
3998 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
3999
4000 if (rc)
4001 return rc;
4002
4003 memcpy(ret_buf, buf + (offset & 3), pre_len);
4004
4005 offset32 += 4;
4006 ret_buf += pre_len;
4007 len32 -= pre_len;
4008 }
4009 if (len32 & 3) {
4010 extra = 4 - (len32 & 3);
4011 len32 = (len32 + 4) & ~3;
4012 }
4013
4014 if (len32 == 4) {
4015 u8 buf[4];
4016
4017 if (cmd_flags)
4018 cmd_flags = BNX2_NVM_COMMAND_LAST;
4019 else
4020 cmd_flags = BNX2_NVM_COMMAND_FIRST |
4021 BNX2_NVM_COMMAND_LAST;
4022
4023 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4024
4025 memcpy(ret_buf, buf, 4 - extra);
4026 }
4027 else if (len32 > 0) {
4028 u8 buf[4];
4029
4030 /* Read the first word. */
4031 if (cmd_flags)
4032 cmd_flags = 0;
4033 else
4034 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4035
4036 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
4037
4038 /* Advance to the next dword. */
4039 offset32 += 4;
4040 ret_buf += 4;
4041 len32 -= 4;
4042
4043 while (len32 > 4 && rc == 0) {
4044 rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
4045
4046 /* Advance to the next dword. */
4047 offset32 += 4;
4048 ret_buf += 4;
4049 len32 -= 4;
4050 }
4051
4052 if (rc)
4053 return rc;
4054
4055 cmd_flags = BNX2_NVM_COMMAND_LAST;
4056 rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
4057
4058 memcpy(ret_buf, buf, 4 - extra);
4059 }
4060
4061 /* Disable access to flash interface */
4062 bnx2_disable_nvram_access(bp);
4063
4064 bnx2_release_nvram_lock(bp);
4065
4066 return rc;
4067 }
4068
4069 static int
4070 bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
4071 int buf_size)
4072 {
4073 u32 written, offset32, len32;
4074 u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
4075 int rc = 0;
4076 int align_start, align_end;
4077
4078 buf = data_buf;
4079 offset32 = offset;
4080 len32 = buf_size;
4081 align_start = align_end = 0;
4082
4083 if ((align_start = (offset32 & 3))) {
4084 offset32 &= ~3;
4085 len32 += align_start;
4086 if (len32 < 4)
4087 len32 = 4;
4088 if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
4089 return rc;
4090 }
4091
4092 if (len32 & 3) {
4093 align_end = 4 - (len32 & 3);
4094 len32 += align_end;
4095 if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
4096 return rc;
4097 }
4098
4099 if (align_start || align_end) {
4100 align_buf = kmalloc(len32, GFP_KERNEL);
4101 if (align_buf == NULL)
4102 return -ENOMEM;
4103 if (align_start) {
4104 memcpy(align_buf, start, 4);
4105 }
4106 if (align_end) {
4107 memcpy(align_buf + len32 - 4, end, 4);
4108 }
4109 memcpy(align_buf + align_start, data_buf, buf_size);
4110 buf = align_buf;
4111 }
4112
4113 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4114 flash_buffer = kmalloc(264, GFP_KERNEL);
4115 if (flash_buffer == NULL) {
4116 rc = -ENOMEM;
4117 goto nvram_write_end;
4118 }
4119 }
4120
4121 written = 0;
4122 while ((written < len32) && (rc == 0)) {
4123 u32 page_start, page_end, data_start, data_end;
4124 u32 addr, cmd_flags;
4125 int i;
4126
4127 /* Find the page_start addr */
4128 page_start = offset32 + written;
4129 page_start -= (page_start % bp->flash_info->page_size);
4130 /* Find the page_end addr */
4131 page_end = page_start + bp->flash_info->page_size;
4132 /* Find the data_start addr */
4133 data_start = (written == 0) ? offset32 : page_start;
4134 /* Find the data_end addr */
4135 data_end = (page_end > offset32 + len32) ?
4136 (offset32 + len32) : page_end;
4137
4138 /* Request access to the flash interface. */
4139 if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
4140 goto nvram_write_end;
4141
4142 /* Enable access to flash interface */
4143 bnx2_enable_nvram_access(bp);
4144
4145 cmd_flags = BNX2_NVM_COMMAND_FIRST;
4146 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4147 int j;
4148
4149 /* Read the whole page into the buffer
4150 * (non-buffer flash only) */
4151 for (j = 0; j < bp->flash_info->page_size; j += 4) {
4152 if (j == (bp->flash_info->page_size - 4)) {
4153 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4154 }
4155 rc = bnx2_nvram_read_dword(bp,
4156 page_start + j,
4157 &flash_buffer[j],
4158 cmd_flags);
4159
4160 if (rc)
4161 goto nvram_write_end;
4162
4163 cmd_flags = 0;
4164 }
4165 }
4166
4167 /* Enable writes to flash interface (unlock write-protect) */
4168 if ((rc = bnx2_enable_nvram_write(bp)) != 0)
4169 goto nvram_write_end;
4170
4171 /* Loop to write back the buffer data from page_start to
4172 * data_start */
4173 i = 0;
4174 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4175 /* Erase the page */
4176 if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
4177 goto nvram_write_end;
4178
4179 /* Re-enable the write again for the actual write */
4180 bnx2_enable_nvram_write(bp);
4181
4182 for (addr = page_start; addr < data_start;
4183 addr += 4, i += 4) {
4184
4185 rc = bnx2_nvram_write_dword(bp, addr,
4186 &flash_buffer[i], cmd_flags);
4187
4188 if (rc != 0)
4189 goto nvram_write_end;
4190
4191 cmd_flags = 0;
4192 }
4193 }
4194
4195 /* Loop to write the new data from data_start to data_end */
4196 for (addr = data_start; addr < data_end; addr += 4, i += 4) {
4197 if ((addr == page_end - 4) ||
4198 ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
4199 (addr == data_end - 4))) {
4200
4201 cmd_flags |= BNX2_NVM_COMMAND_LAST;
4202 }
4203 rc = bnx2_nvram_write_dword(bp, addr, buf,
4204 cmd_flags);
4205
4206 if (rc != 0)
4207 goto nvram_write_end;
4208
4209 cmd_flags = 0;
4210 buf += 4;
4211 }
4212
4213 /* Loop to write back the buffer data from data_end
4214 * to page_end */
4215 if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
4216 for (addr = data_end; addr < page_end;
4217 addr += 4, i += 4) {
4218
4219 if (addr == page_end-4) {
4220 cmd_flags = BNX2_NVM_COMMAND_LAST;
4221 }
4222 rc = bnx2_nvram_write_dword(bp, addr,
4223 &flash_buffer[i], cmd_flags);
4224
4225 if (rc != 0)
4226 goto nvram_write_end;
4227
4228 cmd_flags = 0;
4229 }
4230 }
4231
4232 /* Disable writes to flash interface (lock write-protect) */
4233 bnx2_disable_nvram_write(bp);
4234
4235 /* Disable access to flash interface */
4236 bnx2_disable_nvram_access(bp);
4237 bnx2_release_nvram_lock(bp);
4238
4239 /* Increment written */
4240 written += data_end - data_start;
4241 }
4242
4243 nvram_write_end:
4244 kfree(flash_buffer);
4245 kfree(align_buf);
4246 return rc;
4247 }
4248
4249 static void
4250 bnx2_init_remote_phy(struct bnx2 *bp)
4251 {
4252 u32 val;
4253
4254 bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4255 if (!(bp->phy_flags & BNX2_PHY_FLAG_SERDES))
4256 return;
4257
4258 val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
4259 if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
4260 return;
4261
4262 if (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE) {
4263 bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
4264
4265 val = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
4266 if (val & BNX2_LINK_STATUS_SERDES_LINK)
4267 bp->phy_port = PORT_FIBRE;
4268 else
4269 bp->phy_port = PORT_TP;
4270
4271 if (netif_running(bp->dev)) {
4272 u32 sig;
4273
4274 sig = BNX2_DRV_ACK_CAP_SIGNATURE |
4275 BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
4276 bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
4277 }
4278 }
4279 }
4280
4281 static void
4282 bnx2_setup_msix_tbl(struct bnx2 *bp)
4283 {
4284 REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
4285
4286 REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
4287 REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
4288 }
4289
4290 static int
4291 bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
4292 {
4293 u32 val;
4294 int i, rc = 0;
4295 u8 old_port;
4296
4297 /* Wait for the current PCI transaction to complete before
4298 * issuing a reset. */
4299 REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
4300 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4301 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4302 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4303 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4304 val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
4305 udelay(5);
4306
4307 /* Wait for the firmware to tell us it is ok to issue a reset. */
4308 bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
4309
4310 /* Deposit a driver reset signature so the firmware knows that
4311 * this is a soft reset. */
4312 bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
4313 BNX2_DRV_RESET_SIGNATURE_MAGIC);
4314
4315 /* Do a dummy read to force the chip to complete all current transaction
4316 * before we issue a reset. */
4317 val = REG_RD(bp, BNX2_MISC_ID);
4318
4319 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4320 REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
4321 REG_RD(bp, BNX2_MISC_COMMAND);
4322 udelay(5);
4323
4324 val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4325 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4326
4327 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
4328
4329 } else {
4330 val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4331 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4332 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4333
4334 /* Chip reset. */
4335 REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
4336
4337 /* Reading back any register after chip reset will hang the
4338 * bus on 5706 A0 and A1. The msleep below provides plenty
4339 * of margin for write posting.
4340 */
4341 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
4342 (CHIP_ID(bp) == CHIP_ID_5706_A1))
4343 msleep(20);
4344
4345 /* Reset takes approximate 30 usec */
4346 for (i = 0; i < 10; i++) {
4347 val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
4348 if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4349 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
4350 break;
4351 udelay(10);
4352 }
4353
4354 if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4355 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4356 printk(KERN_ERR PFX "Chip reset did not complete\n");
4357 return -EBUSY;
4358 }
4359 }
4360
4361 /* Make sure byte swapping is properly configured. */
4362 val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
4363 if (val != 0x01020304) {
4364 printk(KERN_ERR PFX "Chip not in correct endian mode\n");
4365 return -ENODEV;
4366 }
4367
4368 /* Wait for the firmware to finish its initialization. */
4369 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
4370 if (rc)
4371 return rc;
4372
4373 spin_lock_bh(&bp->phy_lock);
4374 old_port = bp->phy_port;
4375 bnx2_init_remote_phy(bp);
4376 if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
4377 old_port != bp->phy_port)
4378 bnx2_set_default_remote_link(bp);
4379 spin_unlock_bh(&bp->phy_lock);
4380
4381 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4382 /* Adjust the voltage regular to two steps lower. The default
4383 * of this register is 0x0000000e. */
4384 REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
4385
4386 /* Remove bad rbuf memory from the free pool. */
4387 rc = bnx2_alloc_bad_rbuf(bp);
4388 }
4389
4390 if (bp->flags & BNX2_FLAG_USING_MSIX)
4391 bnx2_setup_msix_tbl(bp);
4392
4393 return rc;
4394 }
4395
4396 static int
4397 bnx2_init_chip(struct bnx2 *bp)
4398 {
4399 u32 val;
4400 int rc, i;
4401
4402 /* Make sure the interrupt is not active. */
4403 REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
4404
4405 val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
4406 BNX2_DMA_CONFIG_DATA_WORD_SWAP |
4407 #ifdef __BIG_ENDIAN
4408 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
4409 #endif
4410 BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
4411 DMA_READ_CHANS << 12 |
4412 DMA_WRITE_CHANS << 16;
4413
4414 val |= (0x2 << 20) | (1 << 11);
4415
4416 if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
4417 val |= (1 << 23);
4418
4419 if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
4420 (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
4421 val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
4422
4423 REG_WR(bp, BNX2_DMA_CONFIG, val);
4424
4425 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
4426 val = REG_RD(bp, BNX2_TDMA_CONFIG);
4427 val |= BNX2_TDMA_CONFIG_ONE_DMA;
4428 REG_WR(bp, BNX2_TDMA_CONFIG, val);
4429 }
4430
4431 if (bp->flags & BNX2_FLAG_PCIX) {
4432 u16 val16;
4433
4434 pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4435 &val16);
4436 pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
4437 val16 & ~PCI_X_CMD_ERO);
4438 }
4439
4440 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
4441 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
4442 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
4443 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
4444
4445 /* Initialize context mapping and zero out the quick contexts. The
4446 * context block must have already been enabled. */
4447 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4448 rc = bnx2_init_5709_context(bp);
4449 if (rc)
4450 return rc;
4451 } else
4452 bnx2_init_context(bp);
4453
4454 if ((rc = bnx2_init_cpus(bp)) != 0)
4455 return rc;
4456
4457 bnx2_init_nvram(bp);
4458
4459 bnx2_set_mac_addr(bp);
4460
4461 val = REG_RD(bp, BNX2_MQ_CONFIG);
4462 val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
4463 val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
4464 if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
4465 val |= BNX2_MQ_CONFIG_HALT_DIS;
4466
4467 REG_WR(bp, BNX2_MQ_CONFIG, val);
4468
4469 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
4470 REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
4471 REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
4472
4473 val = (BCM_PAGE_BITS - 8) << 24;
4474 REG_WR(bp, BNX2_RV2P_CONFIG, val);
4475
4476 /* Configure page size. */
4477 val = REG_RD(bp, BNX2_TBDR_CONFIG);
4478 val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
4479 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
4480 REG_WR(bp, BNX2_TBDR_CONFIG, val);
4481
4482 val = bp->mac_addr[0] +
4483 (bp->mac_addr[1] << 8) +
4484 (bp->mac_addr[2] << 16) +
4485 bp->mac_addr[3] +
4486 (bp->mac_addr[4] << 8) +
4487 (bp->mac_addr[5] << 16);
4488 REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
4489
4490 /* Program the MTU. Also include 4 bytes for CRC32. */
4491 val = bp->dev->mtu + ETH_HLEN + 4;
4492 if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
4493 val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
4494 REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
4495
4496 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
4497 bp->bnx2_napi[i].last_status_idx = 0;
4498
4499 bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
4500
4501 /* Set up how to generate a link change interrupt. */
4502 REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
4503
4504 REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
4505 (u64) bp->status_blk_mapping & 0xffffffff);
4506 REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
4507
4508 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
4509 (u64) bp->stats_blk_mapping & 0xffffffff);
4510 REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
4511 (u64) bp->stats_blk_mapping >> 32);
4512
4513 REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
4514 (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
4515
4516 REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
4517 (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
4518
4519 REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
4520 (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
4521
4522 REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
4523
4524 REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
4525
4526 REG_WR(bp, BNX2_HC_COM_TICKS,
4527 (bp->com_ticks_int << 16) | bp->com_ticks);
4528
4529 REG_WR(bp, BNX2_HC_CMD_TICKS,
4530 (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
4531
4532 if (CHIP_NUM(bp) == CHIP_NUM_5708)
4533 REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
4534 else
4535 REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
4536 REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
4537
4538 if (CHIP_ID(bp) == CHIP_ID_5706_A1)
4539 val = BNX2_HC_CONFIG_COLLECT_STATS;
4540 else {
4541 val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
4542 BNX2_HC_CONFIG_COLLECT_STATS;
4543 }
4544
4545 if (bp->irq_nvecs > 1) {
4546 REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
4547 BNX2_HC_MSIX_BIT_VECTOR_VAL);
4548
4549 val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
4550 }
4551
4552 if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
4553 val |= BNX2_HC_CONFIG_ONE_SHOT;
4554
4555 REG_WR(bp, BNX2_HC_CONFIG, val);
4556
4557 for (i = 1; i < bp->irq_nvecs; i++) {
4558 u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
4559 BNX2_HC_SB_CONFIG_1;
4560
4561 REG_WR(bp, base,
4562 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
4563 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
4564 BNX2_HC_SB_CONFIG_1_ONE_SHOT);
4565
4566 REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
4567 (bp->tx_quick_cons_trip_int << 16) |
4568 bp->tx_quick_cons_trip);
4569
4570 REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
4571 (bp->tx_ticks_int << 16) | bp->tx_ticks);
4572
4573 REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
4574 (bp->rx_quick_cons_trip_int << 16) |
4575 bp->rx_quick_cons_trip);
4576
4577 REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
4578 (bp->rx_ticks_int << 16) | bp->rx_ticks);
4579 }
4580
4581 /* Clear internal stats counters. */
4582 REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
4583
4584 REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
4585
4586 /* Initialize the receive filter. */
4587 bnx2_set_rx_mode(bp->dev);
4588
4589 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4590 val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
4591 val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
4592 REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
4593 }
4594 rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
4595 0);
4596
4597 REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
4598 REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
4599
4600 udelay(20);
4601
4602 bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
4603
4604 return rc;
4605 }
4606
4607 static void
4608 bnx2_clear_ring_states(struct bnx2 *bp)
4609 {
4610 struct bnx2_napi *bnapi;
4611 struct bnx2_tx_ring_info *txr;
4612 struct bnx2_rx_ring_info *rxr;
4613 int i;
4614
4615 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
4616 bnapi = &bp->bnx2_napi[i];
4617 txr = &bnapi->tx_ring;
4618 rxr = &bnapi->rx_ring;
4619
4620 txr->tx_cons = 0;
4621 txr->hw_tx_cons = 0;
4622 rxr->rx_prod_bseq = 0;
4623 rxr->rx_prod = 0;
4624 rxr->rx_cons = 0;
4625 rxr->rx_pg_prod = 0;
4626 rxr->rx_pg_cons = 0;
4627 }
4628 }
4629
4630 static void
4631 bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
4632 {
4633 u32 val, offset0, offset1, offset2, offset3;
4634 u32 cid_addr = GET_CID_ADDR(cid);
4635
4636 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4637 offset0 = BNX2_L2CTX_TYPE_XI;
4638 offset1 = BNX2_L2CTX_CMD_TYPE_XI;
4639 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
4640 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
4641 } else {
4642 offset0 = BNX2_L2CTX_TYPE;
4643 offset1 = BNX2_L2CTX_CMD_TYPE;
4644 offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
4645 offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
4646 }
4647 val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
4648 bnx2_ctx_wr(bp, cid_addr, offset0, val);
4649
4650 val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4651 bnx2_ctx_wr(bp, cid_addr, offset1, val);
4652
4653 val = (u64) txr->tx_desc_mapping >> 32;
4654 bnx2_ctx_wr(bp, cid_addr, offset2, val);
4655
4656 val = (u64) txr->tx_desc_mapping & 0xffffffff;
4657 bnx2_ctx_wr(bp, cid_addr, offset3, val);
4658 }
4659
4660 static void
4661 bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
4662 {
4663 struct tx_bd *txbd;
4664 u32 cid = TX_CID;
4665 struct bnx2_napi *bnapi;
4666 struct bnx2_tx_ring_info *txr;
4667
4668 bnapi = &bp->bnx2_napi[ring_num];
4669 txr = &bnapi->tx_ring;
4670
4671 if (ring_num == 0)
4672 cid = TX_CID;
4673 else
4674 cid = TX_TSS_CID + ring_num - 1;
4675
4676 bp->tx_wake_thresh = bp->tx_ring_size / 2;
4677
4678 txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
4679
4680 txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
4681 txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
4682
4683 txr->tx_prod = 0;
4684 txr->tx_prod_bseq = 0;
4685
4686 txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
4687 txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
4688
4689 bnx2_init_tx_context(bp, cid, txr);
4690 }
4691
4692 static void
4693 bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
4694 int num_rings)
4695 {
4696 int i;
4697 struct rx_bd *rxbd;
4698
4699 for (i = 0; i < num_rings; i++) {
4700 int j;
4701
4702 rxbd = &rx_ring[i][0];
4703 for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
4704 rxbd->rx_bd_len = buf_size;
4705 rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
4706 }
4707 if (i == (num_rings - 1))
4708 j = 0;
4709 else
4710 j = i + 1;
4711 rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
4712 rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
4713 }
4714 }
4715
4716 static void
4717 bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
4718 {
4719 int i;
4720 u16 prod, ring_prod;
4721 u32 cid, rx_cid_addr, val;
4722 struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
4723 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
4724
4725 if (ring_num == 0)
4726 cid = RX_CID;
4727 else
4728 cid = RX_RSS_CID + ring_num - 1;
4729
4730 rx_cid_addr = GET_CID_ADDR(cid);
4731
4732 bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
4733 bp->rx_buf_use_size, bp->rx_max_ring);
4734
4735 bnx2_init_rx_context(bp, cid);
4736
4737 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
4738 val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
4739 REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
4740 }
4741
4742 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
4743 if (bp->rx_pg_ring_size) {
4744 bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
4745 rxr->rx_pg_desc_mapping,
4746 PAGE_SIZE, bp->rx_max_pg_ring);
4747 val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
4748 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
4749 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
4750 BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
4751
4752 val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
4753 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
4754
4755 val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
4756 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
4757
4758 if (CHIP_NUM(bp) == CHIP_NUM_5709)
4759 REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
4760 }
4761
4762 val = (u64) rxr->rx_desc_mapping[0] >> 32;
4763 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
4764
4765 val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
4766 bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
4767
4768 ring_prod = prod = rxr->rx_pg_prod;
4769 for (i = 0; i < bp->rx_pg_ring_size; i++) {
4770 if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
4771 break;
4772 prod = NEXT_RX_BD(prod);
4773 ring_prod = RX_PG_RING_IDX(prod);
4774 }
4775 rxr->rx_pg_prod = prod;
4776
4777 ring_prod = prod = rxr->rx_prod;
4778 for (i = 0; i < bp->rx_ring_size; i++) {
4779 if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
4780 break;
4781 prod = NEXT_RX_BD(prod);
4782 ring_prod = RX_RING_IDX(prod);
4783 }
4784 rxr->rx_prod = prod;
4785
4786 rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
4787 rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
4788 rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
4789
4790 REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
4791 REG_WR16(bp, rxr->rx_bidx_addr, prod);
4792
4793 REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
4794 }
4795
4796 static void
4797 bnx2_init_all_rings(struct bnx2 *bp)
4798 {
4799 int i;
4800 u32 val;
4801
4802 bnx2_clear_ring_states(bp);
4803
4804 REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
4805 for (i = 0; i < bp->num_tx_rings; i++)
4806 bnx2_init_tx_ring(bp, i);
4807
4808 if (bp->num_tx_rings > 1)
4809 REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
4810 (TX_TSS_CID << 7));
4811
4812 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
4813 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
4814
4815 for (i = 0; i < bp->num_rx_rings; i++)
4816 bnx2_init_rx_ring(bp, i);
4817
4818 if (bp->num_rx_rings > 1) {
4819 u32 tbl_32;
4820 u8 *tbl = (u8 *) &tbl_32;
4821
4822 bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
4823 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
4824
4825 for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
4826 tbl[i % 4] = i % (bp->num_rx_rings - 1);
4827 if ((i % 4) == 3)
4828 bnx2_reg_wr_ind(bp,
4829 BNX2_RXP_SCRATCH_RSS_TBL + i,
4830 cpu_to_be32(tbl_32));
4831 }
4832
4833 val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
4834 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
4835
4836 REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
4837
4838 }
4839 }
4840
4841 static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
4842 {
4843 u32 max, num_rings = 1;
4844
4845 while (ring_size > MAX_RX_DESC_CNT) {
4846 ring_size -= MAX_RX_DESC_CNT;
4847 num_rings++;
4848 }
4849 /* round to next power of 2 */
4850 max = max_size;
4851 while ((max & num_rings) == 0)
4852 max >>= 1;
4853
4854 if (num_rings != max)
4855 max <<= 1;
4856
4857 return max;
4858 }
4859
4860 static void
4861 bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
4862 {
4863 u32 rx_size, rx_space, jumbo_size;
4864
4865 /* 8 for CRC and VLAN */
4866 rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
4867
4868 rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
4869 sizeof(struct skb_shared_info);
4870
4871 bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
4872 bp->rx_pg_ring_size = 0;
4873 bp->rx_max_pg_ring = 0;
4874 bp->rx_max_pg_ring_idx = 0;
4875 if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
4876 int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
4877
4878 jumbo_size = size * pages;
4879 if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
4880 jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
4881
4882 bp->rx_pg_ring_size = jumbo_size;
4883 bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
4884 MAX_RX_PG_RINGS);
4885 bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
4886 rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
4887 bp->rx_copy_thresh = 0;
4888 }
4889
4890 bp->rx_buf_use_size = rx_size;
4891 /* hw alignment */
4892 bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
4893 bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
4894 bp->rx_ring_size = size;
4895 bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
4896 bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
4897 }
4898
4899 static void
4900 bnx2_free_tx_skbs(struct bnx2 *bp)
4901 {
4902 int i;
4903
4904 for (i = 0; i < bp->num_tx_rings; i++) {
4905 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
4906 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
4907 int j;
4908
4909 if (txr->tx_buf_ring == NULL)
4910 continue;
4911
4912 for (j = 0; j < TX_DESC_CNT; ) {
4913 struct sw_bd *tx_buf = &txr->tx_buf_ring[j];
4914 struct sk_buff *skb = tx_buf->skb;
4915 int k, last;
4916
4917 if (skb == NULL) {
4918 j++;
4919 continue;
4920 }
4921
4922 pci_unmap_single(bp->pdev,
4923 pci_unmap_addr(tx_buf, mapping),
4924 skb_headlen(skb), PCI_DMA_TODEVICE);
4925
4926 tx_buf->skb = NULL;
4927
4928 last = skb_shinfo(skb)->nr_frags;
4929 for (k = 0; k < last; k++) {
4930 tx_buf = &txr->tx_buf_ring[j + k + 1];
4931 pci_unmap_page(bp->pdev,
4932 pci_unmap_addr(tx_buf, mapping),
4933 skb_shinfo(skb)->frags[j].size,
4934 PCI_DMA_TODEVICE);
4935 }
4936 dev_kfree_skb(skb);
4937 j += k + 1;
4938 }
4939 }
4940 }
4941
4942 static void
4943 bnx2_free_rx_skbs(struct bnx2 *bp)
4944 {
4945 int i;
4946
4947 for (i = 0; i < bp->num_rx_rings; i++) {
4948 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
4949 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
4950 int j;
4951
4952 if (rxr->rx_buf_ring == NULL)
4953 return;
4954
4955 for (j = 0; j < bp->rx_max_ring_idx; j++) {
4956 struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
4957 struct sk_buff *skb = rx_buf->skb;
4958
4959 if (skb == NULL)
4960 continue;
4961
4962 pci_unmap_single(bp->pdev,
4963 pci_unmap_addr(rx_buf, mapping),
4964 bp->rx_buf_use_size,
4965 PCI_DMA_FROMDEVICE);
4966
4967 rx_buf->skb = NULL;
4968
4969 dev_kfree_skb(skb);
4970 }
4971 for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
4972 bnx2_free_rx_page(bp, rxr, j);
4973 }
4974 }
4975
4976 static void
4977 bnx2_free_skbs(struct bnx2 *bp)
4978 {
4979 bnx2_free_tx_skbs(bp);
4980 bnx2_free_rx_skbs(bp);
4981 }
4982
4983 static int
4984 bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
4985 {
4986 int rc;
4987
4988 rc = bnx2_reset_chip(bp, reset_code);
4989 bnx2_free_skbs(bp);
4990 if (rc)
4991 return rc;
4992
4993 if ((rc = bnx2_init_chip(bp)) != 0)
4994 return rc;
4995
4996 bnx2_init_all_rings(bp);
4997 return 0;
4998 }
4999
5000 static int
5001 bnx2_init_nic(struct bnx2 *bp, int reset_phy)
5002 {
5003 int rc;
5004
5005 if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
5006 return rc;
5007
5008 spin_lock_bh(&bp->phy_lock);
5009 bnx2_init_phy(bp, reset_phy);
5010 bnx2_set_link(bp);
5011 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5012 bnx2_remote_phy_event(bp);
5013 spin_unlock_bh(&bp->phy_lock);
5014 return 0;
5015 }
5016
5017 static int
5018 bnx2_test_registers(struct bnx2 *bp)
5019 {
5020 int ret;
5021 int i, is_5709;
5022 static const struct {
5023 u16 offset;
5024 u16 flags;
5025 #define BNX2_FL_NOT_5709 1
5026 u32 rw_mask;
5027 u32 ro_mask;
5028 } reg_tbl[] = {
5029 { 0x006c, 0, 0x00000000, 0x0000003f },
5030 { 0x0090, 0, 0xffffffff, 0x00000000 },
5031 { 0x0094, 0, 0x00000000, 0x00000000 },
5032
5033 { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
5034 { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5035 { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5036 { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
5037 { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
5038 { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5039 { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
5040 { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5041 { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5042
5043 { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5044 { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
5045 { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5046 { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5047 { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5048 { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
5049
5050 { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
5051 { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
5052 { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
5053
5054 { 0x1000, 0, 0x00000000, 0x00000001 },
5055 { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
5056
5057 { 0x1408, 0, 0x01c00800, 0x00000000 },
5058 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5059 { 0x14a8, 0, 0x00000000, 0x000001ff },
5060 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5061 { 0x14b0, 0, 0x00000002, 0x00000001 },
5062 { 0x14b8, 0, 0x00000000, 0x00000000 },
5063 { 0x14c0, 0, 0x00000000, 0x00000009 },
5064 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5065 { 0x14cc, 0, 0x00000000, 0x00000001 },
5066 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5067
5068 { 0x1800, 0, 0x00000000, 0x00000001 },
5069 { 0x1804, 0, 0x00000000, 0x00000003 },
5070
5071 { 0x2800, 0, 0x00000000, 0x00000001 },
5072 { 0x2804, 0, 0x00000000, 0x00003f01 },
5073 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5074 { 0x2810, 0, 0xffff0000, 0x00000000 },
5075 { 0x2814, 0, 0xffff0000, 0x00000000 },
5076 { 0x2818, 0, 0xffff0000, 0x00000000 },
5077 { 0x281c, 0, 0xffff0000, 0x00000000 },
5078 { 0x2834, 0, 0xffffffff, 0x00000000 },
5079 { 0x2840, 0, 0x00000000, 0xffffffff },
5080 { 0x2844, 0, 0x00000000, 0xffffffff },
5081 { 0x2848, 0, 0xffffffff, 0x00000000 },
5082 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5083
5084 { 0x2c00, 0, 0x00000000, 0x00000011 },
5085 { 0x2c04, 0, 0x00000000, 0x00030007 },
5086
5087 { 0x3c00, 0, 0x00000000, 0x00000001 },
5088 { 0x3c04, 0, 0x00000000, 0x00070000 },
5089 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5090 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5091 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5092 { 0x3c14, 0, 0x00000000, 0xffffffff },
5093 { 0x3c18, 0, 0x00000000, 0xffffffff },
5094 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5095 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5096
5097 { 0x5004, 0, 0x00000000, 0x0000007f },
5098 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5099
5100 { 0x5c00, 0, 0x00000000, 0x00000001 },
5101 { 0x5c04, 0, 0x00000000, 0x0003000f },
5102 { 0x5c08, 0, 0x00000003, 0x00000000 },
5103 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5104 { 0x5c10, 0, 0x00000000, 0xffffffff },
5105 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5106 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5107 { 0x5c88, 0, 0x00000000, 0x00077373 },
5108 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5109
5110 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5111 { 0x680c, 0, 0xffffffff, 0x00000000 },
5112 { 0x6810, 0, 0xffffffff, 0x00000000 },
5113 { 0x6814, 0, 0xffffffff, 0x00000000 },
5114 { 0x6818, 0, 0xffffffff, 0x00000000 },
5115 { 0x681c, 0, 0xffffffff, 0x00000000 },
5116 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5117 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5118 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5119 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5120 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5121 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5122 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5123 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5124 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5125 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5126 { 0x684c, 0, 0xffffffff, 0x00000000 },
5127 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5128 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5129 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5130 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5131 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5132 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5133
5134 { 0xffff, 0, 0x00000000, 0x00000000 },
5135 };
5136
5137 ret = 0;
5138 is_5709 = 0;
5139 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5140 is_5709 = 1;
5141
5142 for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
5143 u32 offset, rw_mask, ro_mask, save_val, val;
5144 u16 flags = reg_tbl[i].flags;
5145
5146 if (is_5709 && (flags & BNX2_FL_NOT_5709))
5147 continue;
5148
5149 offset = (u32) reg_tbl[i].offset;
5150 rw_mask = reg_tbl[i].rw_mask;
5151 ro_mask = reg_tbl[i].ro_mask;
5152
5153 save_val = readl(bp->regview + offset);
5154
5155 writel(0, bp->regview + offset);
5156
5157 val = readl(bp->regview + offset);
5158 if ((val & rw_mask) != 0) {
5159 goto reg_test_err;
5160 }
5161
5162 if ((val & ro_mask) != (save_val & ro_mask)) {
5163 goto reg_test_err;
5164 }
5165
5166 writel(0xffffffff, bp->regview + offset);
5167
5168 val = readl(bp->regview + offset);
5169 if ((val & rw_mask) != rw_mask) {
5170 goto reg_test_err;
5171 }
5172
5173 if ((val & ro_mask) != (save_val & ro_mask)) {
5174 goto reg_test_err;
5175 }
5176
5177 writel(save_val, bp->regview + offset);
5178 continue;
5179
5180 reg_test_err:
5181 writel(save_val, bp->regview + offset);
5182 ret = -ENODEV;
5183 break;
5184 }
5185 return ret;
5186 }
5187
5188 static int
5189 bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
5190 {
5191 static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
5192 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5193 int i;
5194
5195 for (i = 0; i < sizeof(test_pattern) / 4; i++) {
5196 u32 offset;
5197
5198 for (offset = 0; offset < size; offset += 4) {
5199
5200 bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
5201
5202 if (bnx2_reg_rd_ind(bp, start + offset) !=
5203 test_pattern[i]) {
5204 return -ENODEV;
5205 }
5206 }
5207 }
5208 return 0;
5209 }
5210
5211 static int
5212 bnx2_test_memory(struct bnx2 *bp)
5213 {
5214 int ret = 0;
5215 int i;
5216 static struct mem_entry {
5217 u32 offset;
5218 u32 len;
5219 } mem_tbl_5706[] = {
5220 { 0x60000, 0x4000 },
5221 { 0xa0000, 0x3000 },
5222 { 0xe0000, 0x4000 },
5223 { 0x120000, 0x4000 },
5224 { 0x1a0000, 0x4000 },
5225 { 0x160000, 0x4000 },
5226 { 0xffffffff, 0 },
5227 },
5228 mem_tbl_5709[] = {
5229 { 0x60000, 0x4000 },
5230 { 0xa0000, 0x3000 },
5231 { 0xe0000, 0x4000 },
5232 { 0x120000, 0x4000 },
5233 { 0x1a0000, 0x4000 },
5234 { 0xffffffff, 0 },
5235 };
5236 struct mem_entry *mem_tbl;
5237
5238 if (CHIP_NUM(bp) == CHIP_NUM_5709)
5239 mem_tbl = mem_tbl_5709;
5240 else
5241 mem_tbl = mem_tbl_5706;
5242
5243 for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
5244 if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
5245 mem_tbl[i].len)) != 0) {
5246 return ret;
5247 }
5248 }
5249
5250 return ret;
5251 }
5252
5253 #define BNX2_MAC_LOOPBACK 0
5254 #define BNX2_PHY_LOOPBACK 1
5255
5256 static int
5257 bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
5258 {
5259 unsigned int pkt_size, num_pkts, i;
5260 struct sk_buff *skb, *rx_skb;
5261 unsigned char *packet;
5262 u16 rx_start_idx, rx_idx;
5263 dma_addr_t map;
5264 struct tx_bd *txbd;
5265 struct sw_bd *rx_buf;
5266 struct l2_fhdr *rx_hdr;
5267 int ret = -ENODEV;
5268 struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
5269 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5270 struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
5271
5272 tx_napi = bnapi;
5273
5274 txr = &tx_napi->tx_ring;
5275 rxr = &bnapi->rx_ring;
5276 if (loopback_mode == BNX2_MAC_LOOPBACK) {
5277 bp->loopback = MAC_LOOPBACK;
5278 bnx2_set_mac_loopback(bp);
5279 }
5280 else if (loopback_mode == BNX2_PHY_LOOPBACK) {
5281 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5282 return 0;
5283
5284 bp->loopback = PHY_LOOPBACK;
5285 bnx2_set_phy_loopback(bp);
5286 }
5287 else
5288 return -EINVAL;
5289
5290 pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
5291 skb = netdev_alloc_skb(bp->dev, pkt_size);
5292 if (!skb)
5293 return -ENOMEM;
5294 packet = skb_put(skb, pkt_size);
5295 memcpy(packet, bp->dev->dev_addr, 6);
5296 memset(packet + 6, 0x0, 8);
5297 for (i = 14; i < pkt_size; i++)
5298 packet[i] = (unsigned char) (i & 0xff);
5299
5300 map = pci_map_single(bp->pdev, skb->data, pkt_size,
5301 PCI_DMA_TODEVICE);
5302
5303 REG_WR(bp, BNX2_HC_COMMAND,
5304 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5305
5306 REG_RD(bp, BNX2_HC_COMMAND);
5307
5308 udelay(5);
5309 rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
5310
5311 num_pkts = 0;
5312
5313 txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
5314
5315 txbd->tx_bd_haddr_hi = (u64) map >> 32;
5316 txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
5317 txbd->tx_bd_mss_nbytes = pkt_size;
5318 txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
5319
5320 num_pkts++;
5321 txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
5322 txr->tx_prod_bseq += pkt_size;
5323
5324 REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
5325 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
5326
5327 udelay(100);
5328
5329 REG_WR(bp, BNX2_HC_COMMAND,
5330 bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
5331
5332 REG_RD(bp, BNX2_HC_COMMAND);
5333
5334 udelay(5);
5335
5336 pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
5337 dev_kfree_skb(skb);
5338
5339 if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
5340 goto loopback_test_done;
5341
5342 rx_idx = bnx2_get_hw_rx_cons(bnapi);
5343 if (rx_idx != rx_start_idx + num_pkts) {
5344 goto loopback_test_done;
5345 }
5346
5347 rx_buf = &rxr->rx_buf_ring[rx_start_idx];
5348 rx_skb = rx_buf->skb;
5349
5350 rx_hdr = (struct l2_fhdr *) rx_skb->data;
5351 skb_reserve(rx_skb, BNX2_RX_OFFSET);
5352
5353 pci_dma_sync_single_for_cpu(bp->pdev,
5354 pci_unmap_addr(rx_buf, mapping),
5355 bp->rx_buf_size, PCI_DMA_FROMDEVICE);
5356
5357 if (rx_hdr->l2_fhdr_status &
5358 (L2_FHDR_ERRORS_BAD_CRC |
5359 L2_FHDR_ERRORS_PHY_DECODE |
5360 L2_FHDR_ERRORS_ALIGNMENT |
5361 L2_FHDR_ERRORS_TOO_SHORT |
5362 L2_FHDR_ERRORS_GIANT_FRAME)) {
5363
5364 goto loopback_test_done;
5365 }
5366
5367 if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
5368 goto loopback_test_done;
5369 }
5370
5371 for (i = 14; i < pkt_size; i++) {
5372 if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
5373 goto loopback_test_done;
5374 }
5375 }
5376
5377 ret = 0;
5378
5379 loopback_test_done:
5380 bp->loopback = 0;
5381 return ret;
5382 }
5383
5384 #define BNX2_MAC_LOOPBACK_FAILED 1
5385 #define BNX2_PHY_LOOPBACK_FAILED 2
5386 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5387 BNX2_PHY_LOOPBACK_FAILED)
5388
5389 static int
5390 bnx2_test_loopback(struct bnx2 *bp)
5391 {
5392 int rc = 0;
5393
5394 if (!netif_running(bp->dev))
5395 return BNX2_LOOPBACK_FAILED;
5396
5397 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
5398 spin_lock_bh(&bp->phy_lock);
5399 bnx2_init_phy(bp, 1);
5400 spin_unlock_bh(&bp->phy_lock);
5401 if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
5402 rc |= BNX2_MAC_LOOPBACK_FAILED;
5403 if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
5404 rc |= BNX2_PHY_LOOPBACK_FAILED;
5405 return rc;
5406 }
5407
5408 #define NVRAM_SIZE 0x200
5409 #define CRC32_RESIDUAL 0xdebb20e3
5410
5411 static int
5412 bnx2_test_nvram(struct bnx2 *bp)
5413 {
5414 __be32 buf[NVRAM_SIZE / 4];
5415 u8 *data = (u8 *) buf;
5416 int rc = 0;
5417 u32 magic, csum;
5418
5419 if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
5420 goto test_nvram_done;
5421
5422 magic = be32_to_cpu(buf[0]);
5423 if (magic != 0x669955aa) {
5424 rc = -ENODEV;
5425 goto test_nvram_done;
5426 }
5427
5428 if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
5429 goto test_nvram_done;
5430
5431 csum = ether_crc_le(0x100, data);
5432 if (csum != CRC32_RESIDUAL) {
5433 rc = -ENODEV;
5434 goto test_nvram_done;
5435 }
5436
5437 csum = ether_crc_le(0x100, data + 0x100);
5438 if (csum != CRC32_RESIDUAL) {
5439 rc = -ENODEV;
5440 }
5441
5442 test_nvram_done:
5443 return rc;
5444 }
5445
5446 static int
5447 bnx2_test_link(struct bnx2 *bp)
5448 {
5449 u32 bmsr;
5450
5451 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
5452 if (bp->link_up)
5453 return 0;
5454 return -ENODEV;
5455 }
5456 spin_lock_bh(&bp->phy_lock);
5457 bnx2_enable_bmsr1(bp);
5458 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5459 bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
5460 bnx2_disable_bmsr1(bp);
5461 spin_unlock_bh(&bp->phy_lock);
5462
5463 if (bmsr & BMSR_LSTATUS) {
5464 return 0;
5465 }
5466 return -ENODEV;
5467 }
5468
5469 static int
5470 bnx2_test_intr(struct bnx2 *bp)
5471 {
5472 int i;
5473 u16 status_idx;
5474
5475 if (!netif_running(bp->dev))
5476 return -ENODEV;
5477
5478 status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
5479
5480 /* This register is not touched during run-time. */
5481 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
5482 REG_RD(bp, BNX2_HC_COMMAND);
5483
5484 for (i = 0; i < 10; i++) {
5485 if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
5486 status_idx) {
5487
5488 break;
5489 }
5490
5491 msleep_interruptible(10);
5492 }
5493 if (i < 10)
5494 return 0;
5495
5496 return -ENODEV;
5497 }
5498
5499 /* Determining link for parallel detection. */
5500 static int
5501 bnx2_5706_serdes_has_link(struct bnx2 *bp)
5502 {
5503 u32 mode_ctl, an_dbg, exp;
5504
5505 if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
5506 return 0;
5507
5508 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
5509 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
5510
5511 if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
5512 return 0;
5513
5514 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5515 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5516 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
5517
5518 if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
5519 return 0;
5520
5521 bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
5522 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5523 bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
5524
5525 if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
5526 return 0;
5527
5528 return 1;
5529 }
5530
5531 static void
5532 bnx2_5706_serdes_timer(struct bnx2 *bp)
5533 {
5534 int check_link = 1;
5535
5536 spin_lock(&bp->phy_lock);
5537 if (bp->serdes_an_pending) {
5538 bp->serdes_an_pending--;
5539 check_link = 0;
5540 } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5541 u32 bmcr;
5542
5543 bp->current_interval = bp->timer_interval;
5544
5545 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5546
5547 if (bmcr & BMCR_ANENABLE) {
5548 if (bnx2_5706_serdes_has_link(bp)) {
5549 bmcr &= ~BMCR_ANENABLE;
5550 bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
5551 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5552 bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
5553 }
5554 }
5555 }
5556 else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
5557 (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
5558 u32 phy2;
5559
5560 bnx2_write_phy(bp, 0x17, 0x0f01);
5561 bnx2_read_phy(bp, 0x15, &phy2);
5562 if (phy2 & 0x20) {
5563 u32 bmcr;
5564
5565 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5566 bmcr |= BMCR_ANENABLE;
5567 bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
5568
5569 bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
5570 }
5571 } else
5572 bp->current_interval = bp->timer_interval;
5573
5574 if (check_link) {
5575 u32 val;
5576
5577 bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
5578 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5579 bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
5580
5581 if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
5582 if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
5583 bnx2_5706s_force_link_dn(bp, 1);
5584 bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
5585 } else
5586 bnx2_set_link(bp);
5587 } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
5588 bnx2_set_link(bp);
5589 }
5590 spin_unlock(&bp->phy_lock);
5591 }
5592
5593 static void
5594 bnx2_5708_serdes_timer(struct bnx2 *bp)
5595 {
5596 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
5597 return;
5598
5599 if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
5600 bp->serdes_an_pending = 0;
5601 return;
5602 }
5603
5604 spin_lock(&bp->phy_lock);
5605 if (bp->serdes_an_pending)
5606 bp->serdes_an_pending--;
5607 else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
5608 u32 bmcr;
5609
5610 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
5611 if (bmcr & BMCR_ANENABLE) {
5612 bnx2_enable_forced_2g5(bp);
5613 bp->current_interval = SERDES_FORCED_TIMEOUT;
5614 } else {
5615 bnx2_disable_forced_2g5(bp);
5616 bp->serdes_an_pending = 2;
5617 bp->current_interval = bp->timer_interval;
5618 }
5619
5620 } else
5621 bp->current_interval = bp->timer_interval;
5622
5623 spin_unlock(&bp->phy_lock);
5624 }
5625
5626 static void
5627 bnx2_timer(unsigned long data)
5628 {
5629 struct bnx2 *bp = (struct bnx2 *) data;
5630
5631 if (!netif_running(bp->dev))
5632 return;
5633
5634 if (atomic_read(&bp->intr_sem) != 0)
5635 goto bnx2_restart_timer;
5636
5637 bnx2_send_heart_beat(bp);
5638
5639 bp->stats_blk->stat_FwRxDrop =
5640 bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
5641
5642 /* workaround occasional corrupted counters */
5643 if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
5644 REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
5645 BNX2_HC_COMMAND_STATS_NOW);
5646
5647 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
5648 if (CHIP_NUM(bp) == CHIP_NUM_5706)
5649 bnx2_5706_serdes_timer(bp);
5650 else
5651 bnx2_5708_serdes_timer(bp);
5652 }
5653
5654 bnx2_restart_timer:
5655 mod_timer(&bp->timer, jiffies + bp->current_interval);
5656 }
5657
5658 static int
5659 bnx2_request_irq(struct bnx2 *bp)
5660 {
5661 unsigned long flags;
5662 struct bnx2_irq *irq;
5663 int rc = 0, i;
5664
5665 if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
5666 flags = 0;
5667 else
5668 flags = IRQF_SHARED;
5669
5670 for (i = 0; i < bp->irq_nvecs; i++) {
5671 irq = &bp->irq_tbl[i];
5672 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5673 &bp->bnx2_napi[i]);
5674 if (rc)
5675 break;
5676 irq->requested = 1;
5677 }
5678 return rc;
5679 }
5680
5681 static void
5682 bnx2_free_irq(struct bnx2 *bp)
5683 {
5684 struct bnx2_irq *irq;
5685 int i;
5686
5687 for (i = 0; i < bp->irq_nvecs; i++) {
5688 irq = &bp->irq_tbl[i];
5689 if (irq->requested)
5690 free_irq(irq->vector, &bp->bnx2_napi[i]);
5691 irq->requested = 0;
5692 }
5693 if (bp->flags & BNX2_FLAG_USING_MSI)
5694 pci_disable_msi(bp->pdev);
5695 else if (bp->flags & BNX2_FLAG_USING_MSIX)
5696 pci_disable_msix(bp->pdev);
5697
5698 bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
5699 }
5700
5701 static void
5702 bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
5703 {
5704 int i, rc;
5705 struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
5706
5707 bnx2_setup_msix_tbl(bp);
5708 REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
5709 REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
5710 REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
5711
5712 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
5713 msix_ent[i].entry = i;
5714 msix_ent[i].vector = 0;
5715
5716 strcpy(bp->irq_tbl[i].name, bp->dev->name);
5717 bp->irq_tbl[i].handler = bnx2_msi_1shot;
5718 }
5719
5720 rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
5721 if (rc != 0)
5722 return;
5723
5724 bp->irq_nvecs = msix_vecs;
5725 bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
5726 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
5727 bp->irq_tbl[i].vector = msix_ent[i].vector;
5728 }
5729
5730 static void
5731 bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
5732 {
5733 int cpus = num_online_cpus();
5734 int msix_vecs = min(cpus + 1, RX_MAX_RSS_RINGS);
5735
5736 bp->irq_tbl[0].handler = bnx2_interrupt;
5737 strcpy(bp->irq_tbl[0].name, bp->dev->name);
5738 bp->irq_nvecs = 1;
5739 bp->irq_tbl[0].vector = bp->pdev->irq;
5740
5741 if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
5742 bnx2_enable_msix(bp, msix_vecs);
5743
5744 if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
5745 !(bp->flags & BNX2_FLAG_USING_MSIX)) {
5746 if (pci_enable_msi(bp->pdev) == 0) {
5747 bp->flags |= BNX2_FLAG_USING_MSI;
5748 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
5749 bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
5750 bp->irq_tbl[0].handler = bnx2_msi_1shot;
5751 } else
5752 bp->irq_tbl[0].handler = bnx2_msi;
5753
5754 bp->irq_tbl[0].vector = bp->pdev->irq;
5755 }
5756 }
5757 bp->num_tx_rings = 1;
5758 bp->num_rx_rings = bp->irq_nvecs;
5759 }
5760
5761 /* Called with rtnl_lock */
5762 static int
5763 bnx2_open(struct net_device *dev)
5764 {
5765 struct bnx2 *bp = netdev_priv(dev);
5766 int rc;
5767
5768 netif_carrier_off(dev);
5769
5770 bnx2_set_power_state(bp, PCI_D0);
5771 bnx2_disable_int(bp);
5772
5773 bnx2_setup_int_mode(bp, disable_msi);
5774 bnx2_napi_enable(bp);
5775 rc = bnx2_alloc_mem(bp);
5776 if (rc)
5777 goto open_err;
5778
5779 rc = bnx2_request_irq(bp);
5780 if (rc)
5781 goto open_err;
5782
5783 rc = bnx2_init_nic(bp, 1);
5784 if (rc)
5785 goto open_err;
5786
5787 mod_timer(&bp->timer, jiffies + bp->current_interval);
5788
5789 atomic_set(&bp->intr_sem, 0);
5790
5791 bnx2_enable_int(bp);
5792
5793 if (bp->flags & BNX2_FLAG_USING_MSI) {
5794 /* Test MSI to make sure it is working
5795 * If MSI test fails, go back to INTx mode
5796 */
5797 if (bnx2_test_intr(bp) != 0) {
5798 printk(KERN_WARNING PFX "%s: No interrupt was generated"
5799 " using MSI, switching to INTx mode. Please"
5800 " report this failure to the PCI maintainer"
5801 " and include system chipset information.\n",
5802 bp->dev->name);
5803
5804 bnx2_disable_int(bp);
5805 bnx2_free_irq(bp);
5806
5807 bnx2_setup_int_mode(bp, 1);
5808
5809 rc = bnx2_init_nic(bp, 0);
5810
5811 if (!rc)
5812 rc = bnx2_request_irq(bp);
5813
5814 if (rc) {
5815 del_timer_sync(&bp->timer);
5816 goto open_err;
5817 }
5818 bnx2_enable_int(bp);
5819 }
5820 }
5821 if (bp->flags & BNX2_FLAG_USING_MSI)
5822 printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
5823 else if (bp->flags & BNX2_FLAG_USING_MSIX)
5824 printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
5825
5826 netif_start_queue(dev);
5827
5828 return 0;
5829
5830 open_err:
5831 bnx2_napi_disable(bp);
5832 bnx2_free_skbs(bp);
5833 bnx2_free_irq(bp);
5834 bnx2_free_mem(bp);
5835 return rc;
5836 }
5837
5838 static void
5839 bnx2_reset_task(struct work_struct *work)
5840 {
5841 struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
5842
5843 if (!netif_running(bp->dev))
5844 return;
5845
5846 bnx2_netif_stop(bp);
5847
5848 bnx2_init_nic(bp, 1);
5849
5850 atomic_set(&bp->intr_sem, 1);
5851 bnx2_netif_start(bp);
5852 }
5853
5854 static void
5855 bnx2_tx_timeout(struct net_device *dev)
5856 {
5857 struct bnx2 *bp = netdev_priv(dev);
5858
5859 /* This allows the netif to be shutdown gracefully before resetting */
5860 schedule_work(&bp->reset_task);
5861 }
5862
5863 #ifdef BCM_VLAN
5864 /* Called with rtnl_lock */
5865 static void
5866 bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
5867 {
5868 struct bnx2 *bp = netdev_priv(dev);
5869
5870 bnx2_netif_stop(bp);
5871
5872 bp->vlgrp = vlgrp;
5873 bnx2_set_rx_mode(dev);
5874
5875 bnx2_netif_start(bp);
5876 }
5877 #endif
5878
5879 /* Called with netif_tx_lock.
5880 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
5881 * netif_wake_queue().
5882 */
5883 static int
5884 bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
5885 {
5886 struct bnx2 *bp = netdev_priv(dev);
5887 dma_addr_t mapping;
5888 struct tx_bd *txbd;
5889 struct sw_bd *tx_buf;
5890 u32 len, vlan_tag_flags, last_frag, mss;
5891 u16 prod, ring_prod;
5892 int i;
5893 struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
5894 struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
5895
5896 if (unlikely(bnx2_tx_avail(bp, txr) <
5897 (skb_shinfo(skb)->nr_frags + 1))) {
5898 netif_stop_queue(dev);
5899 printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
5900 dev->name);
5901
5902 return NETDEV_TX_BUSY;
5903 }
5904 len = skb_headlen(skb);
5905 prod = txr->tx_prod;
5906 ring_prod = TX_RING_IDX(prod);
5907
5908 vlan_tag_flags = 0;
5909 if (skb->ip_summed == CHECKSUM_PARTIAL) {
5910 vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5911 }
5912
5913 if (bp->vlgrp && vlan_tx_tag_present(skb)) {
5914 vlan_tag_flags |=
5915 (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
5916 }
5917 if ((mss = skb_shinfo(skb)->gso_size)) {
5918 u32 tcp_opt_len, ip_tcp_len;
5919 struct iphdr *iph;
5920
5921 vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
5922
5923 tcp_opt_len = tcp_optlen(skb);
5924
5925 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
5926 u32 tcp_off = skb_transport_offset(skb) -
5927 sizeof(struct ipv6hdr) - ETH_HLEN;
5928
5929 vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
5930 TX_BD_FLAGS_SW_FLAGS;
5931 if (likely(tcp_off == 0))
5932 vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
5933 else {
5934 tcp_off >>= 3;
5935 vlan_tag_flags |= ((tcp_off & 0x3) <<
5936 TX_BD_FLAGS_TCP6_OFF0_SHL) |
5937 ((tcp_off & 0x10) <<
5938 TX_BD_FLAGS_TCP6_OFF4_SHL);
5939 mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
5940 }
5941 } else {
5942 if (skb_header_cloned(skb) &&
5943 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
5944 dev_kfree_skb(skb);
5945 return NETDEV_TX_OK;
5946 }
5947
5948 ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
5949
5950 iph = ip_hdr(skb);
5951 iph->check = 0;
5952 iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
5953 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
5954 iph->daddr, 0,
5955 IPPROTO_TCP,
5956 0);
5957 if (tcp_opt_len || (iph->ihl > 5)) {
5958 vlan_tag_flags |= ((iph->ihl - 5) +
5959 (tcp_opt_len >> 2)) << 8;
5960 }
5961 }
5962 } else
5963 mss = 0;
5964
5965 mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
5966
5967 tx_buf = &txr->tx_buf_ring[ring_prod];
5968 tx_buf->skb = skb;
5969 pci_unmap_addr_set(tx_buf, mapping, mapping);
5970
5971 txbd = &txr->tx_desc_ring[ring_prod];
5972
5973 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
5974 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
5975 txbd->tx_bd_mss_nbytes = len | (mss << 16);
5976 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
5977
5978 last_frag = skb_shinfo(skb)->nr_frags;
5979
5980 for (i = 0; i < last_frag; i++) {
5981 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5982
5983 prod = NEXT_TX_BD(prod);
5984 ring_prod = TX_RING_IDX(prod);
5985 txbd = &txr->tx_desc_ring[ring_prod];
5986
5987 len = frag->size;
5988 mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
5989 len, PCI_DMA_TODEVICE);
5990 pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod],
5991 mapping, mapping);
5992
5993 txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
5994 txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
5995 txbd->tx_bd_mss_nbytes = len | (mss << 16);
5996 txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
5997
5998 }
5999 txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
6000
6001 prod = NEXT_TX_BD(prod);
6002 txr->tx_prod_bseq += skb->len;
6003
6004 REG_WR16(bp, txr->tx_bidx_addr, prod);
6005 REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
6006
6007 mmiowb();
6008
6009 txr->tx_prod = prod;
6010 dev->trans_start = jiffies;
6011
6012 if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
6013 netif_stop_queue(dev);
6014 if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
6015 netif_wake_queue(dev);
6016 }
6017
6018 return NETDEV_TX_OK;
6019 }
6020
6021 /* Called with rtnl_lock */
6022 static int
6023 bnx2_close(struct net_device *dev)
6024 {
6025 struct bnx2 *bp = netdev_priv(dev);
6026 u32 reset_code;
6027
6028 cancel_work_sync(&bp->reset_task);
6029
6030 bnx2_disable_int_sync(bp);
6031 bnx2_napi_disable(bp);
6032 del_timer_sync(&bp->timer);
6033 if (bp->flags & BNX2_FLAG_NO_WOL)
6034 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
6035 else if (bp->wol)
6036 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
6037 else
6038 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
6039 bnx2_reset_chip(bp, reset_code);
6040 bnx2_free_irq(bp);
6041 bnx2_free_skbs(bp);
6042 bnx2_free_mem(bp);
6043 bp->link_up = 0;
6044 netif_carrier_off(bp->dev);
6045 bnx2_set_power_state(bp, PCI_D3hot);
6046 return 0;
6047 }
6048
6049 #define GET_NET_STATS64(ctr) \
6050 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6051 (unsigned long) (ctr##_lo)
6052
6053 #define GET_NET_STATS32(ctr) \
6054 (ctr##_lo)
6055
6056 #if (BITS_PER_LONG == 64)
6057 #define GET_NET_STATS GET_NET_STATS64
6058 #else
6059 #define GET_NET_STATS GET_NET_STATS32
6060 #endif
6061
6062 static struct net_device_stats *
6063 bnx2_get_stats(struct net_device *dev)
6064 {
6065 struct bnx2 *bp = netdev_priv(dev);
6066 struct statistics_block *stats_blk = bp->stats_blk;
6067 struct net_device_stats *net_stats = &bp->net_stats;
6068
6069 if (bp->stats_blk == NULL) {
6070 return net_stats;
6071 }
6072 net_stats->rx_packets =
6073 GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
6074 GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
6075 GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
6076
6077 net_stats->tx_packets =
6078 GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
6079 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
6080 GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
6081
6082 net_stats->rx_bytes =
6083 GET_NET_STATS(stats_blk->stat_IfHCInOctets);
6084
6085 net_stats->tx_bytes =
6086 GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
6087
6088 net_stats->multicast =
6089 GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
6090
6091 net_stats->collisions =
6092 (unsigned long) stats_blk->stat_EtherStatsCollisions;
6093
6094 net_stats->rx_length_errors =
6095 (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
6096 stats_blk->stat_EtherStatsOverrsizePkts);
6097
6098 net_stats->rx_over_errors =
6099 (unsigned long) stats_blk->stat_IfInMBUFDiscards;
6100
6101 net_stats->rx_frame_errors =
6102 (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
6103
6104 net_stats->rx_crc_errors =
6105 (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
6106
6107 net_stats->rx_errors = net_stats->rx_length_errors +
6108 net_stats->rx_over_errors + net_stats->rx_frame_errors +
6109 net_stats->rx_crc_errors;
6110
6111 net_stats->tx_aborted_errors =
6112 (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
6113 stats_blk->stat_Dot3StatsLateCollisions);
6114
6115 if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
6116 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6117 net_stats->tx_carrier_errors = 0;
6118 else {
6119 net_stats->tx_carrier_errors =
6120 (unsigned long)
6121 stats_blk->stat_Dot3StatsCarrierSenseErrors;
6122 }
6123
6124 net_stats->tx_errors =
6125 (unsigned long)
6126 stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
6127 +
6128 net_stats->tx_aborted_errors +
6129 net_stats->tx_carrier_errors;
6130
6131 net_stats->rx_missed_errors =
6132 (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
6133 stats_blk->stat_FwRxDrop);
6134
6135 return net_stats;
6136 }
6137
6138 /* All ethtool functions called with rtnl_lock */
6139
6140 static int
6141 bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6142 {
6143 struct bnx2 *bp = netdev_priv(dev);
6144 int support_serdes = 0, support_copper = 0;
6145
6146 cmd->supported = SUPPORTED_Autoneg;
6147 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6148 support_serdes = 1;
6149 support_copper = 1;
6150 } else if (bp->phy_port == PORT_FIBRE)
6151 support_serdes = 1;
6152 else
6153 support_copper = 1;
6154
6155 if (support_serdes) {
6156 cmd->supported |= SUPPORTED_1000baseT_Full |
6157 SUPPORTED_FIBRE;
6158 if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
6159 cmd->supported |= SUPPORTED_2500baseX_Full;
6160
6161 }
6162 if (support_copper) {
6163 cmd->supported |= SUPPORTED_10baseT_Half |
6164 SUPPORTED_10baseT_Full |
6165 SUPPORTED_100baseT_Half |
6166 SUPPORTED_100baseT_Full |
6167 SUPPORTED_1000baseT_Full |
6168 SUPPORTED_TP;
6169
6170 }
6171
6172 spin_lock_bh(&bp->phy_lock);
6173 cmd->port = bp->phy_port;
6174 cmd->advertising = bp->advertising;
6175
6176 if (bp->autoneg & AUTONEG_SPEED) {
6177 cmd->autoneg = AUTONEG_ENABLE;
6178 }
6179 else {
6180 cmd->autoneg = AUTONEG_DISABLE;
6181 }
6182
6183 if (netif_carrier_ok(dev)) {
6184 cmd->speed = bp->line_speed;
6185 cmd->duplex = bp->duplex;
6186 }
6187 else {
6188 cmd->speed = -1;
6189 cmd->duplex = -1;
6190 }
6191 spin_unlock_bh(&bp->phy_lock);
6192
6193 cmd->transceiver = XCVR_INTERNAL;
6194 cmd->phy_address = bp->phy_addr;
6195
6196 return 0;
6197 }
6198
6199 static int
6200 bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6201 {
6202 struct bnx2 *bp = netdev_priv(dev);
6203 u8 autoneg = bp->autoneg;
6204 u8 req_duplex = bp->req_duplex;
6205 u16 req_line_speed = bp->req_line_speed;
6206 u32 advertising = bp->advertising;
6207 int err = -EINVAL;
6208
6209 spin_lock_bh(&bp->phy_lock);
6210
6211 if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
6212 goto err_out_unlock;
6213
6214 if (cmd->port != bp->phy_port &&
6215 !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
6216 goto err_out_unlock;
6217
6218 /* If device is down, we can store the settings only if the user
6219 * is setting the currently active port.
6220 */
6221 if (!netif_running(dev) && cmd->port != bp->phy_port)
6222 goto err_out_unlock;
6223
6224 if (cmd->autoneg == AUTONEG_ENABLE) {
6225 autoneg |= AUTONEG_SPEED;
6226
6227 cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
6228
6229 /* allow advertising 1 speed */
6230 if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
6231 (cmd->advertising == ADVERTISED_10baseT_Full) ||
6232 (cmd->advertising == ADVERTISED_100baseT_Half) ||
6233 (cmd->advertising == ADVERTISED_100baseT_Full)) {
6234
6235 if (cmd->port == PORT_FIBRE)
6236 goto err_out_unlock;
6237
6238 advertising = cmd->advertising;
6239
6240 } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
6241 if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
6242 (cmd->port == PORT_TP))
6243 goto err_out_unlock;
6244 } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
6245 advertising = cmd->advertising;
6246 else if (cmd->advertising == ADVERTISED_1000baseT_Half)
6247 goto err_out_unlock;
6248 else {
6249 if (cmd->port == PORT_FIBRE)
6250 advertising = ETHTOOL_ALL_FIBRE_SPEED;
6251 else
6252 advertising = ETHTOOL_ALL_COPPER_SPEED;
6253 }
6254 advertising |= ADVERTISED_Autoneg;
6255 }
6256 else {
6257 if (cmd->port == PORT_FIBRE) {
6258 if ((cmd->speed != SPEED_1000 &&
6259 cmd->speed != SPEED_2500) ||
6260 (cmd->duplex != DUPLEX_FULL))
6261 goto err_out_unlock;
6262
6263 if (cmd->speed == SPEED_2500 &&
6264 !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
6265 goto err_out_unlock;
6266 }
6267 else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
6268 goto err_out_unlock;
6269
6270 autoneg &= ~AUTONEG_SPEED;
6271 req_line_speed = cmd->speed;
6272 req_duplex = cmd->duplex;
6273 advertising = 0;
6274 }
6275
6276 bp->autoneg = autoneg;
6277 bp->advertising = advertising;
6278 bp->req_line_speed = req_line_speed;
6279 bp->req_duplex = req_duplex;
6280
6281 err = 0;
6282 /* If device is down, the new settings will be picked up when it is
6283 * brought up.
6284 */
6285 if (netif_running(dev))
6286 err = bnx2_setup_phy(bp, cmd->port);
6287
6288 err_out_unlock:
6289 spin_unlock_bh(&bp->phy_lock);
6290
6291 return err;
6292 }
6293
6294 static void
6295 bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
6296 {
6297 struct bnx2 *bp = netdev_priv(dev);
6298
6299 strcpy(info->driver, DRV_MODULE_NAME);
6300 strcpy(info->version, DRV_MODULE_VERSION);
6301 strcpy(info->bus_info, pci_name(bp->pdev));
6302 strcpy(info->fw_version, bp->fw_version);
6303 }
6304
6305 #define BNX2_REGDUMP_LEN (32 * 1024)
6306
6307 static int
6308 bnx2_get_regs_len(struct net_device *dev)
6309 {
6310 return BNX2_REGDUMP_LEN;
6311 }
6312
6313 static void
6314 bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
6315 {
6316 u32 *p = _p, i, offset;
6317 u8 *orig_p = _p;
6318 struct bnx2 *bp = netdev_priv(dev);
6319 u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6320 0x0800, 0x0880, 0x0c00, 0x0c10,
6321 0x0c30, 0x0d08, 0x1000, 0x101c,
6322 0x1040, 0x1048, 0x1080, 0x10a4,
6323 0x1400, 0x1490, 0x1498, 0x14f0,
6324 0x1500, 0x155c, 0x1580, 0x15dc,
6325 0x1600, 0x1658, 0x1680, 0x16d8,
6326 0x1800, 0x1820, 0x1840, 0x1854,
6327 0x1880, 0x1894, 0x1900, 0x1984,
6328 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6329 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6330 0x2000, 0x2030, 0x23c0, 0x2400,
6331 0x2800, 0x2820, 0x2830, 0x2850,
6332 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6333 0x3c00, 0x3c94, 0x4000, 0x4010,
6334 0x4080, 0x4090, 0x43c0, 0x4458,
6335 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6336 0x4fc0, 0x5010, 0x53c0, 0x5444,
6337 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6338 0x5fc0, 0x6000, 0x6400, 0x6428,
6339 0x6800, 0x6848, 0x684c, 0x6860,
6340 0x6888, 0x6910, 0x8000 };
6341
6342 regs->version = 0;
6343
6344 memset(p, 0, BNX2_REGDUMP_LEN);
6345
6346 if (!netif_running(bp->dev))
6347 return;
6348
6349 i = 0;
6350 offset = reg_boundaries[0];
6351 p += offset;
6352 while (offset < BNX2_REGDUMP_LEN) {
6353 *p++ = REG_RD(bp, offset);
6354 offset += 4;
6355 if (offset == reg_boundaries[i + 1]) {
6356 offset = reg_boundaries[i + 2];
6357 p = (u32 *) (orig_p + offset);
6358 i += 2;
6359 }
6360 }
6361 }
6362
6363 static void
6364 bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6365 {
6366 struct bnx2 *bp = netdev_priv(dev);
6367
6368 if (bp->flags & BNX2_FLAG_NO_WOL) {
6369 wol->supported = 0;
6370 wol->wolopts = 0;
6371 }
6372 else {
6373 wol->supported = WAKE_MAGIC;
6374 if (bp->wol)
6375 wol->wolopts = WAKE_MAGIC;
6376 else
6377 wol->wolopts = 0;
6378 }
6379 memset(&wol->sopass, 0, sizeof(wol->sopass));
6380 }
6381
6382 static int
6383 bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
6384 {
6385 struct bnx2 *bp = netdev_priv(dev);
6386
6387 if (wol->wolopts & ~WAKE_MAGIC)
6388 return -EINVAL;
6389
6390 if (wol->wolopts & WAKE_MAGIC) {
6391 if (bp->flags & BNX2_FLAG_NO_WOL)
6392 return -EINVAL;
6393
6394 bp->wol = 1;
6395 }
6396 else {
6397 bp->wol = 0;
6398 }
6399 return 0;
6400 }
6401
6402 static int
6403 bnx2_nway_reset(struct net_device *dev)
6404 {
6405 struct bnx2 *bp = netdev_priv(dev);
6406 u32 bmcr;
6407
6408 if (!(bp->autoneg & AUTONEG_SPEED)) {
6409 return -EINVAL;
6410 }
6411
6412 spin_lock_bh(&bp->phy_lock);
6413
6414 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
6415 int rc;
6416
6417 rc = bnx2_setup_remote_phy(bp, bp->phy_port);
6418 spin_unlock_bh(&bp->phy_lock);
6419 return rc;
6420 }
6421
6422 /* Force a link down visible on the other side */
6423 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
6424 bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
6425 spin_unlock_bh(&bp->phy_lock);
6426
6427 msleep(20);
6428
6429 spin_lock_bh(&bp->phy_lock);
6430
6431 bp->current_interval = SERDES_AN_TIMEOUT;
6432 bp->serdes_an_pending = 1;
6433 mod_timer(&bp->timer, jiffies + bp->current_interval);
6434 }
6435
6436 bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
6437 bmcr &= ~BMCR_LOOPBACK;
6438 bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
6439
6440 spin_unlock_bh(&bp->phy_lock);
6441
6442 return 0;
6443 }
6444
6445 static int
6446 bnx2_get_eeprom_len(struct net_device *dev)
6447 {
6448 struct bnx2 *bp = netdev_priv(dev);
6449
6450 if (bp->flash_info == NULL)
6451 return 0;
6452
6453 return (int) bp->flash_size;
6454 }
6455
6456 static int
6457 bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6458 u8 *eebuf)
6459 {
6460 struct bnx2 *bp = netdev_priv(dev);
6461 int rc;
6462
6463 /* parameters already validated in ethtool_get_eeprom */
6464
6465 rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
6466
6467 return rc;
6468 }
6469
6470 static int
6471 bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
6472 u8 *eebuf)
6473 {
6474 struct bnx2 *bp = netdev_priv(dev);
6475 int rc;
6476
6477 /* parameters already validated in ethtool_set_eeprom */
6478
6479 rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
6480
6481 return rc;
6482 }
6483
6484 static int
6485 bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6486 {
6487 struct bnx2 *bp = netdev_priv(dev);
6488
6489 memset(coal, 0, sizeof(struct ethtool_coalesce));
6490
6491 coal->rx_coalesce_usecs = bp->rx_ticks;
6492 coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
6493 coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
6494 coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
6495
6496 coal->tx_coalesce_usecs = bp->tx_ticks;
6497 coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
6498 coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
6499 coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
6500
6501 coal->stats_block_coalesce_usecs = bp->stats_ticks;
6502
6503 return 0;
6504 }
6505
6506 static int
6507 bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
6508 {
6509 struct bnx2 *bp = netdev_priv(dev);
6510
6511 bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
6512 if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
6513
6514 bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
6515 if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
6516
6517 bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
6518 if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
6519
6520 bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
6521 if (bp->rx_quick_cons_trip_int > 0xff)
6522 bp->rx_quick_cons_trip_int = 0xff;
6523
6524 bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
6525 if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
6526
6527 bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
6528 if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
6529
6530 bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
6531 if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
6532
6533 bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
6534 if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
6535 0xff;
6536
6537 bp->stats_ticks = coal->stats_block_coalesce_usecs;
6538 if (CHIP_NUM(bp) == CHIP_NUM_5708) {
6539 if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
6540 bp->stats_ticks = USEC_PER_SEC;
6541 }
6542 if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
6543 bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6544 bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
6545
6546 if (netif_running(bp->dev)) {
6547 bnx2_netif_stop(bp);
6548 bnx2_init_nic(bp, 0);
6549 bnx2_netif_start(bp);
6550 }
6551
6552 return 0;
6553 }
6554
6555 static void
6556 bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6557 {
6558 struct bnx2 *bp = netdev_priv(dev);
6559
6560 ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
6561 ering->rx_mini_max_pending = 0;
6562 ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
6563
6564 ering->rx_pending = bp->rx_ring_size;
6565 ering->rx_mini_pending = 0;
6566 ering->rx_jumbo_pending = bp->rx_pg_ring_size;
6567
6568 ering->tx_max_pending = MAX_TX_DESC_CNT;
6569 ering->tx_pending = bp->tx_ring_size;
6570 }
6571
6572 static int
6573 bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
6574 {
6575 if (netif_running(bp->dev)) {
6576 bnx2_netif_stop(bp);
6577 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6578 bnx2_free_skbs(bp);
6579 bnx2_free_mem(bp);
6580 }
6581
6582 bnx2_set_rx_ring_size(bp, rx);
6583 bp->tx_ring_size = tx;
6584
6585 if (netif_running(bp->dev)) {
6586 int rc;
6587
6588 rc = bnx2_alloc_mem(bp);
6589 if (rc)
6590 return rc;
6591 bnx2_init_nic(bp, 0);
6592 bnx2_netif_start(bp);
6593 }
6594 return 0;
6595 }
6596
6597 static int
6598 bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
6599 {
6600 struct bnx2 *bp = netdev_priv(dev);
6601 int rc;
6602
6603 if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
6604 (ering->tx_pending > MAX_TX_DESC_CNT) ||
6605 (ering->tx_pending <= MAX_SKB_FRAGS)) {
6606
6607 return -EINVAL;
6608 }
6609 rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
6610 return rc;
6611 }
6612
6613 static void
6614 bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6615 {
6616 struct bnx2 *bp = netdev_priv(dev);
6617
6618 epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
6619 epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
6620 epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
6621 }
6622
6623 static int
6624 bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
6625 {
6626 struct bnx2 *bp = netdev_priv(dev);
6627
6628 bp->req_flow_ctrl = 0;
6629 if (epause->rx_pause)
6630 bp->req_flow_ctrl |= FLOW_CTRL_RX;
6631 if (epause->tx_pause)
6632 bp->req_flow_ctrl |= FLOW_CTRL_TX;
6633
6634 if (epause->autoneg) {
6635 bp->autoneg |= AUTONEG_FLOW_CTRL;
6636 }
6637 else {
6638 bp->autoneg &= ~AUTONEG_FLOW_CTRL;
6639 }
6640
6641 spin_lock_bh(&bp->phy_lock);
6642
6643 bnx2_setup_phy(bp, bp->phy_port);
6644
6645 spin_unlock_bh(&bp->phy_lock);
6646
6647 return 0;
6648 }
6649
6650 static u32
6651 bnx2_get_rx_csum(struct net_device *dev)
6652 {
6653 struct bnx2 *bp = netdev_priv(dev);
6654
6655 return bp->rx_csum;
6656 }
6657
6658 static int
6659 bnx2_set_rx_csum(struct net_device *dev, u32 data)
6660 {
6661 struct bnx2 *bp = netdev_priv(dev);
6662
6663 bp->rx_csum = data;
6664 return 0;
6665 }
6666
6667 static int
6668 bnx2_set_tso(struct net_device *dev, u32 data)
6669 {
6670 struct bnx2 *bp = netdev_priv(dev);
6671
6672 if (data) {
6673 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
6674 if (CHIP_NUM(bp) == CHIP_NUM_5709)
6675 dev->features |= NETIF_F_TSO6;
6676 } else
6677 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
6678 NETIF_F_TSO_ECN);
6679 return 0;
6680 }
6681
6682 #define BNX2_NUM_STATS 46
6683
6684 static struct {
6685 char string[ETH_GSTRING_LEN];
6686 } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
6687 { "rx_bytes" },
6688 { "rx_error_bytes" },
6689 { "tx_bytes" },
6690 { "tx_error_bytes" },
6691 { "rx_ucast_packets" },
6692 { "rx_mcast_packets" },
6693 { "rx_bcast_packets" },
6694 { "tx_ucast_packets" },
6695 { "tx_mcast_packets" },
6696 { "tx_bcast_packets" },
6697 { "tx_mac_errors" },
6698 { "tx_carrier_errors" },
6699 { "rx_crc_errors" },
6700 { "rx_align_errors" },
6701 { "tx_single_collisions" },
6702 { "tx_multi_collisions" },
6703 { "tx_deferred" },
6704 { "tx_excess_collisions" },
6705 { "tx_late_collisions" },
6706 { "tx_total_collisions" },
6707 { "rx_fragments" },
6708 { "rx_jabbers" },
6709 { "rx_undersize_packets" },
6710 { "rx_oversize_packets" },
6711 { "rx_64_byte_packets" },
6712 { "rx_65_to_127_byte_packets" },
6713 { "rx_128_to_255_byte_packets" },
6714 { "rx_256_to_511_byte_packets" },
6715 { "rx_512_to_1023_byte_packets" },
6716 { "rx_1024_to_1522_byte_packets" },
6717 { "rx_1523_to_9022_byte_packets" },
6718 { "tx_64_byte_packets" },
6719 { "tx_65_to_127_byte_packets" },
6720 { "tx_128_to_255_byte_packets" },
6721 { "tx_256_to_511_byte_packets" },
6722 { "tx_512_to_1023_byte_packets" },
6723 { "tx_1024_to_1522_byte_packets" },
6724 { "tx_1523_to_9022_byte_packets" },
6725 { "rx_xon_frames" },
6726 { "rx_xoff_frames" },
6727 { "tx_xon_frames" },
6728 { "tx_xoff_frames" },
6729 { "rx_mac_ctrl_frames" },
6730 { "rx_filtered_packets" },
6731 { "rx_discards" },
6732 { "rx_fw_discards" },
6733 };
6734
6735 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
6736
6737 static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
6738 STATS_OFFSET32(stat_IfHCInOctets_hi),
6739 STATS_OFFSET32(stat_IfHCInBadOctets_hi),
6740 STATS_OFFSET32(stat_IfHCOutOctets_hi),
6741 STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
6742 STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
6743 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
6744 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
6745 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
6746 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
6747 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
6748 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
6749 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
6750 STATS_OFFSET32(stat_Dot3StatsFCSErrors),
6751 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
6752 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
6753 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
6754 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
6755 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
6756 STATS_OFFSET32(stat_Dot3StatsLateCollisions),
6757 STATS_OFFSET32(stat_EtherStatsCollisions),
6758 STATS_OFFSET32(stat_EtherStatsFragments),
6759 STATS_OFFSET32(stat_EtherStatsJabbers),
6760 STATS_OFFSET32(stat_EtherStatsUndersizePkts),
6761 STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
6762 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
6763 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
6764 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
6765 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
6766 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
6767 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
6768 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
6769 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
6770 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
6771 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
6772 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
6773 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
6774 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
6775 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
6776 STATS_OFFSET32(stat_XonPauseFramesReceived),
6777 STATS_OFFSET32(stat_XoffPauseFramesReceived),
6778 STATS_OFFSET32(stat_OutXonSent),
6779 STATS_OFFSET32(stat_OutXoffSent),
6780 STATS_OFFSET32(stat_MacControlFramesReceived),
6781 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
6782 STATS_OFFSET32(stat_IfInMBUFDiscards),
6783 STATS_OFFSET32(stat_FwRxDrop),
6784 };
6785
6786 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
6787 * skipped because of errata.
6788 */
6789 static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
6790 8,0,8,8,8,8,8,8,8,8,
6791 4,0,4,4,4,4,4,4,4,4,
6792 4,4,4,4,4,4,4,4,4,4,
6793 4,4,4,4,4,4,4,4,4,4,
6794 4,4,4,4,4,4,
6795 };
6796
6797 static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
6798 8,0,8,8,8,8,8,8,8,8,
6799 4,4,4,4,4,4,4,4,4,4,
6800 4,4,4,4,4,4,4,4,4,4,
6801 4,4,4,4,4,4,4,4,4,4,
6802 4,4,4,4,4,4,
6803 };
6804
6805 #define BNX2_NUM_TESTS 6
6806
6807 static struct {
6808 char string[ETH_GSTRING_LEN];
6809 } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
6810 { "register_test (offline)" },
6811 { "memory_test (offline)" },
6812 { "loopback_test (offline)" },
6813 { "nvram_test (online)" },
6814 { "interrupt_test (online)" },
6815 { "link_test (online)" },
6816 };
6817
6818 static int
6819 bnx2_get_sset_count(struct net_device *dev, int sset)
6820 {
6821 switch (sset) {
6822 case ETH_SS_TEST:
6823 return BNX2_NUM_TESTS;
6824 case ETH_SS_STATS:
6825 return BNX2_NUM_STATS;
6826 default:
6827 return -EOPNOTSUPP;
6828 }
6829 }
6830
6831 static void
6832 bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
6833 {
6834 struct bnx2 *bp = netdev_priv(dev);
6835
6836 memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
6837 if (etest->flags & ETH_TEST_FL_OFFLINE) {
6838 int i;
6839
6840 bnx2_netif_stop(bp);
6841 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
6842 bnx2_free_skbs(bp);
6843
6844 if (bnx2_test_registers(bp) != 0) {
6845 buf[0] = 1;
6846 etest->flags |= ETH_TEST_FL_FAILED;
6847 }
6848 if (bnx2_test_memory(bp) != 0) {
6849 buf[1] = 1;
6850 etest->flags |= ETH_TEST_FL_FAILED;
6851 }
6852 if ((buf[2] = bnx2_test_loopback(bp)) != 0)
6853 etest->flags |= ETH_TEST_FL_FAILED;
6854
6855 if (!netif_running(bp->dev)) {
6856 bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
6857 }
6858 else {
6859 bnx2_init_nic(bp, 1);
6860 bnx2_netif_start(bp);
6861 }
6862
6863 /* wait for link up */
6864 for (i = 0; i < 7; i++) {
6865 if (bp->link_up)
6866 break;
6867 msleep_interruptible(1000);
6868 }
6869 }
6870
6871 if (bnx2_test_nvram(bp) != 0) {
6872 buf[3] = 1;
6873 etest->flags |= ETH_TEST_FL_FAILED;
6874 }
6875 if (bnx2_test_intr(bp) != 0) {
6876 buf[4] = 1;
6877 etest->flags |= ETH_TEST_FL_FAILED;
6878 }
6879
6880 if (bnx2_test_link(bp) != 0) {
6881 buf[5] = 1;
6882 etest->flags |= ETH_TEST_FL_FAILED;
6883
6884 }
6885 }
6886
6887 static void
6888 bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6889 {
6890 switch (stringset) {
6891 case ETH_SS_STATS:
6892 memcpy(buf, bnx2_stats_str_arr,
6893 sizeof(bnx2_stats_str_arr));
6894 break;
6895 case ETH_SS_TEST:
6896 memcpy(buf, bnx2_tests_str_arr,
6897 sizeof(bnx2_tests_str_arr));
6898 break;
6899 }
6900 }
6901
6902 static void
6903 bnx2_get_ethtool_stats(struct net_device *dev,
6904 struct ethtool_stats *stats, u64 *buf)
6905 {
6906 struct bnx2 *bp = netdev_priv(dev);
6907 int i;
6908 u32 *hw_stats = (u32 *) bp->stats_blk;
6909 u8 *stats_len_arr = NULL;
6910
6911 if (hw_stats == NULL) {
6912 memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
6913 return;
6914 }
6915
6916 if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
6917 (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
6918 (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
6919 (CHIP_ID(bp) == CHIP_ID_5708_A0))
6920 stats_len_arr = bnx2_5706_stats_len_arr;
6921 else
6922 stats_len_arr = bnx2_5708_stats_len_arr;
6923
6924 for (i = 0; i < BNX2_NUM_STATS; i++) {
6925 if (stats_len_arr[i] == 0) {
6926 /* skip this counter */
6927 buf[i] = 0;
6928 continue;
6929 }
6930 if (stats_len_arr[i] == 4) {
6931 /* 4-byte counter */
6932 buf[i] = (u64)
6933 *(hw_stats + bnx2_stats_offset_arr[i]);
6934 continue;
6935 }
6936 /* 8-byte counter */
6937 buf[i] = (((u64) *(hw_stats +
6938 bnx2_stats_offset_arr[i])) << 32) +
6939 *(hw_stats + bnx2_stats_offset_arr[i] + 1);
6940 }
6941 }
6942
6943 static int
6944 bnx2_phys_id(struct net_device *dev, u32 data)
6945 {
6946 struct bnx2 *bp = netdev_priv(dev);
6947 int i;
6948 u32 save;
6949
6950 if (data == 0)
6951 data = 2;
6952
6953 save = REG_RD(bp, BNX2_MISC_CFG);
6954 REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
6955
6956 for (i = 0; i < (data * 2); i++) {
6957 if ((i % 2) == 0) {
6958 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
6959 }
6960 else {
6961 REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
6962 BNX2_EMAC_LED_1000MB_OVERRIDE |
6963 BNX2_EMAC_LED_100MB_OVERRIDE |
6964 BNX2_EMAC_LED_10MB_OVERRIDE |
6965 BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
6966 BNX2_EMAC_LED_TRAFFIC);
6967 }
6968 msleep_interruptible(500);
6969 if (signal_pending(current))
6970 break;
6971 }
6972 REG_WR(bp, BNX2_EMAC_LED, 0);
6973 REG_WR(bp, BNX2_MISC_CFG, save);
6974 return 0;
6975 }
6976
6977 static int
6978 bnx2_set_tx_csum(struct net_device *dev, u32 data)
6979 {
6980 struct bnx2 *bp = netdev_priv(dev);
6981
6982 if (CHIP_NUM(bp) == CHIP_NUM_5709)
6983 return (ethtool_op_set_tx_ipv6_csum(dev, data));
6984 else
6985 return (ethtool_op_set_tx_csum(dev, data));
6986 }
6987
6988 static const struct ethtool_ops bnx2_ethtool_ops = {
6989 .get_settings = bnx2_get_settings,
6990 .set_settings = bnx2_set_settings,
6991 .get_drvinfo = bnx2_get_drvinfo,
6992 .get_regs_len = bnx2_get_regs_len,
6993 .get_regs = bnx2_get_regs,
6994 .get_wol = bnx2_get_wol,
6995 .set_wol = bnx2_set_wol,
6996 .nway_reset = bnx2_nway_reset,
6997 .get_link = ethtool_op_get_link,
6998 .get_eeprom_len = bnx2_get_eeprom_len,
6999 .get_eeprom = bnx2_get_eeprom,
7000 .set_eeprom = bnx2_set_eeprom,
7001 .get_coalesce = bnx2_get_coalesce,
7002 .set_coalesce = bnx2_set_coalesce,
7003 .get_ringparam = bnx2_get_ringparam,
7004 .set_ringparam = bnx2_set_ringparam,
7005 .get_pauseparam = bnx2_get_pauseparam,
7006 .set_pauseparam = bnx2_set_pauseparam,
7007 .get_rx_csum = bnx2_get_rx_csum,
7008 .set_rx_csum = bnx2_set_rx_csum,
7009 .set_tx_csum = bnx2_set_tx_csum,
7010 .set_sg = ethtool_op_set_sg,
7011 .set_tso = bnx2_set_tso,
7012 .self_test = bnx2_self_test,
7013 .get_strings = bnx2_get_strings,
7014 .phys_id = bnx2_phys_id,
7015 .get_ethtool_stats = bnx2_get_ethtool_stats,
7016 .get_sset_count = bnx2_get_sset_count,
7017 };
7018
7019 /* Called with rtnl_lock */
7020 static int
7021 bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
7022 {
7023 struct mii_ioctl_data *data = if_mii(ifr);
7024 struct bnx2 *bp = netdev_priv(dev);
7025 int err;
7026
7027 switch(cmd) {
7028 case SIOCGMIIPHY:
7029 data->phy_id = bp->phy_addr;
7030
7031 /* fallthru */
7032 case SIOCGMIIREG: {
7033 u32 mii_regval;
7034
7035 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7036 return -EOPNOTSUPP;
7037
7038 if (!netif_running(dev))
7039 return -EAGAIN;
7040
7041 spin_lock_bh(&bp->phy_lock);
7042 err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
7043 spin_unlock_bh(&bp->phy_lock);
7044
7045 data->val_out = mii_regval;
7046
7047 return err;
7048 }
7049
7050 case SIOCSMIIREG:
7051 if (!capable(CAP_NET_ADMIN))
7052 return -EPERM;
7053
7054 if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
7055 return -EOPNOTSUPP;
7056
7057 if (!netif_running(dev))
7058 return -EAGAIN;
7059
7060 spin_lock_bh(&bp->phy_lock);
7061 err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
7062 spin_unlock_bh(&bp->phy_lock);
7063
7064 return err;
7065
7066 default:
7067 /* do nothing */
7068 break;
7069 }
7070 return -EOPNOTSUPP;
7071 }
7072
7073 /* Called with rtnl_lock */
7074 static int
7075 bnx2_change_mac_addr(struct net_device *dev, void *p)
7076 {
7077 struct sockaddr *addr = p;
7078 struct bnx2 *bp = netdev_priv(dev);
7079
7080 if (!is_valid_ether_addr(addr->sa_data))
7081 return -EINVAL;
7082
7083 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
7084 if (netif_running(dev))
7085 bnx2_set_mac_addr(bp);
7086
7087 return 0;
7088 }
7089
7090 /* Called with rtnl_lock */
7091 static int
7092 bnx2_change_mtu(struct net_device *dev, int new_mtu)
7093 {
7094 struct bnx2 *bp = netdev_priv(dev);
7095
7096 if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
7097 ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
7098 return -EINVAL;
7099
7100 dev->mtu = new_mtu;
7101 return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
7102 }
7103
7104 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7105 static void
7106 poll_bnx2(struct net_device *dev)
7107 {
7108 struct bnx2 *bp = netdev_priv(dev);
7109
7110 disable_irq(bp->pdev->irq);
7111 bnx2_interrupt(bp->pdev->irq, dev);
7112 enable_irq(bp->pdev->irq);
7113 }
7114 #endif
7115
7116 static void __devinit
7117 bnx2_get_5709_media(struct bnx2 *bp)
7118 {
7119 u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
7120 u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
7121 u32 strap;
7122
7123 if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
7124 return;
7125 else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
7126 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7127 return;
7128 }
7129
7130 if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
7131 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
7132 else
7133 strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
7134
7135 if (PCI_FUNC(bp->pdev->devfn) == 0) {
7136 switch (strap) {
7137 case 0x4:
7138 case 0x5:
7139 case 0x6:
7140 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7141 return;
7142 }
7143 } else {
7144 switch (strap) {
7145 case 0x1:
7146 case 0x2:
7147 case 0x4:
7148 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7149 return;
7150 }
7151 }
7152 }
7153
7154 static void __devinit
7155 bnx2_get_pci_speed(struct bnx2 *bp)
7156 {
7157 u32 reg;
7158
7159 reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
7160 if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
7161 u32 clkreg;
7162
7163 bp->flags |= BNX2_FLAG_PCIX;
7164
7165 clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
7166
7167 clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
7168 switch (clkreg) {
7169 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
7170 bp->bus_speed_mhz = 133;
7171 break;
7172
7173 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
7174 bp->bus_speed_mhz = 100;
7175 break;
7176
7177 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
7178 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
7179 bp->bus_speed_mhz = 66;
7180 break;
7181
7182 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
7183 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
7184 bp->bus_speed_mhz = 50;
7185 break;
7186
7187 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
7188 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
7189 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
7190 bp->bus_speed_mhz = 33;
7191 break;
7192 }
7193 }
7194 else {
7195 if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
7196 bp->bus_speed_mhz = 66;
7197 else
7198 bp->bus_speed_mhz = 33;
7199 }
7200
7201 if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
7202 bp->flags |= BNX2_FLAG_PCI_32BIT;
7203
7204 }
7205
7206 static int __devinit
7207 bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
7208 {
7209 struct bnx2 *bp;
7210 unsigned long mem_len;
7211 int rc, i, j;
7212 u32 reg;
7213 u64 dma_mask, persist_dma_mask;
7214
7215 SET_NETDEV_DEV(dev, &pdev->dev);
7216 bp = netdev_priv(dev);
7217
7218 bp->flags = 0;
7219 bp->phy_flags = 0;
7220
7221 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7222 rc = pci_enable_device(pdev);
7223 if (rc) {
7224 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
7225 goto err_out;
7226 }
7227
7228 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
7229 dev_err(&pdev->dev,
7230 "Cannot find PCI device base address, aborting.\n");
7231 rc = -ENODEV;
7232 goto err_out_disable;
7233 }
7234
7235 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
7236 if (rc) {
7237 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
7238 goto err_out_disable;
7239 }
7240
7241 pci_set_master(pdev);
7242 pci_save_state(pdev);
7243
7244 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
7245 if (bp->pm_cap == 0) {
7246 dev_err(&pdev->dev,
7247 "Cannot find power management capability, aborting.\n");
7248 rc = -EIO;
7249 goto err_out_release;
7250 }
7251
7252 bp->dev = dev;
7253 bp->pdev = pdev;
7254
7255 spin_lock_init(&bp->phy_lock);
7256 spin_lock_init(&bp->indirect_lock);
7257 INIT_WORK(&bp->reset_task, bnx2_reset_task);
7258
7259 dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
7260 mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
7261 dev->mem_end = dev->mem_start + mem_len;
7262 dev->irq = pdev->irq;
7263
7264 bp->regview = ioremap_nocache(dev->base_addr, mem_len);
7265
7266 if (!bp->regview) {
7267 dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
7268 rc = -ENOMEM;
7269 goto err_out_release;
7270 }
7271
7272 /* Configure byte swap and enable write to the reg_window registers.
7273 * Rely on CPU to do target byte swapping on big endian systems
7274 * The chip's target access swapping will not swap all accesses
7275 */
7276 pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
7277 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
7278 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
7279
7280 bnx2_set_power_state(bp, PCI_D0);
7281
7282 bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
7283
7284 if (CHIP_NUM(bp) == CHIP_NUM_5709) {
7285 if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
7286 dev_err(&pdev->dev,
7287 "Cannot find PCIE capability, aborting.\n");
7288 rc = -EIO;
7289 goto err_out_unmap;
7290 }
7291 bp->flags |= BNX2_FLAG_PCIE;
7292 if (CHIP_REV(bp) == CHIP_REV_Ax)
7293 bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
7294 } else {
7295 bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
7296 if (bp->pcix_cap == 0) {
7297 dev_err(&pdev->dev,
7298 "Cannot find PCIX capability, aborting.\n");
7299 rc = -EIO;
7300 goto err_out_unmap;
7301 }
7302 }
7303
7304 if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
7305 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
7306 bp->flags |= BNX2_FLAG_MSIX_CAP;
7307 }
7308
7309 if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
7310 if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
7311 bp->flags |= BNX2_FLAG_MSI_CAP;
7312 }
7313
7314 /* 5708 cannot support DMA addresses > 40-bit. */
7315 if (CHIP_NUM(bp) == CHIP_NUM_5708)
7316 persist_dma_mask = dma_mask = DMA_40BIT_MASK;
7317 else
7318 persist_dma_mask = dma_mask = DMA_64BIT_MASK;
7319
7320 /* Configure DMA attributes. */
7321 if (pci_set_dma_mask(pdev, dma_mask) == 0) {
7322 dev->features |= NETIF_F_HIGHDMA;
7323 rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
7324 if (rc) {
7325 dev_err(&pdev->dev,
7326 "pci_set_consistent_dma_mask failed, aborting.\n");
7327 goto err_out_unmap;
7328 }
7329 } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
7330 dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
7331 goto err_out_unmap;
7332 }
7333
7334 if (!(bp->flags & BNX2_FLAG_PCIE))
7335 bnx2_get_pci_speed(bp);
7336
7337 /* 5706A0 may falsely detect SERR and PERR. */
7338 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7339 reg = REG_RD(bp, PCI_COMMAND);
7340 reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
7341 REG_WR(bp, PCI_COMMAND, reg);
7342 }
7343 else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
7344 !(bp->flags & BNX2_FLAG_PCIX)) {
7345
7346 dev_err(&pdev->dev,
7347 "5706 A1 can only be used in a PCIX bus, aborting.\n");
7348 goto err_out_unmap;
7349 }
7350
7351 bnx2_init_nvram(bp);
7352
7353 reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
7354
7355 if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
7356 BNX2_SHM_HDR_SIGNATURE_SIG) {
7357 u32 off = PCI_FUNC(pdev->devfn) << 2;
7358
7359 bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
7360 } else
7361 bp->shmem_base = HOST_VIEW_SHMEM_BASE;
7362
7363 /* Get the permanent MAC address. First we need to make sure the
7364 * firmware is actually running.
7365 */
7366 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
7367
7368 if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
7369 BNX2_DEV_INFO_SIGNATURE_MAGIC) {
7370 dev_err(&pdev->dev, "Firmware not running, aborting.\n");
7371 rc = -ENODEV;
7372 goto err_out_unmap;
7373 }
7374
7375 reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
7376 for (i = 0, j = 0; i < 3; i++) {
7377 u8 num, k, skip0;
7378
7379 num = (u8) (reg >> (24 - (i * 8)));
7380 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
7381 if (num >= k || !skip0 || k == 1) {
7382 bp->fw_version[j++] = (num / k) + '0';
7383 skip0 = 0;
7384 }
7385 }
7386 if (i != 2)
7387 bp->fw_version[j++] = '.';
7388 }
7389 reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
7390 if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
7391 bp->wol = 1;
7392
7393 if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
7394 bp->flags |= BNX2_FLAG_ASF_ENABLE;
7395
7396 for (i = 0; i < 30; i++) {
7397 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7398 if (reg & BNX2_CONDITION_MFW_RUN_MASK)
7399 break;
7400 msleep(10);
7401 }
7402 }
7403 reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
7404 reg &= BNX2_CONDITION_MFW_RUN_MASK;
7405 if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
7406 reg != BNX2_CONDITION_MFW_RUN_NONE) {
7407 int i;
7408 u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
7409
7410 bp->fw_version[j++] = ' ';
7411 for (i = 0; i < 3; i++) {
7412 reg = bnx2_reg_rd_ind(bp, addr + i * 4);
7413 reg = swab32(reg);
7414 memcpy(&bp->fw_version[j], &reg, 4);
7415 j += 4;
7416 }
7417 }
7418
7419 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
7420 bp->mac_addr[0] = (u8) (reg >> 8);
7421 bp->mac_addr[1] = (u8) reg;
7422
7423 reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
7424 bp->mac_addr[2] = (u8) (reg >> 24);
7425 bp->mac_addr[3] = (u8) (reg >> 16);
7426 bp->mac_addr[4] = (u8) (reg >> 8);
7427 bp->mac_addr[5] = (u8) reg;
7428
7429 bp->tx_ring_size = MAX_TX_DESC_CNT;
7430 bnx2_set_rx_ring_size(bp, 255);
7431
7432 bp->rx_csum = 1;
7433
7434 bp->tx_quick_cons_trip_int = 20;
7435 bp->tx_quick_cons_trip = 20;
7436 bp->tx_ticks_int = 80;
7437 bp->tx_ticks = 80;
7438
7439 bp->rx_quick_cons_trip_int = 6;
7440 bp->rx_quick_cons_trip = 6;
7441 bp->rx_ticks_int = 18;
7442 bp->rx_ticks = 18;
7443
7444 bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
7445
7446 bp->timer_interval = HZ;
7447 bp->current_interval = HZ;
7448
7449 bp->phy_addr = 1;
7450
7451 /* Disable WOL support if we are running on a SERDES chip. */
7452 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7453 bnx2_get_5709_media(bp);
7454 else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
7455 bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
7456
7457 bp->phy_port = PORT_TP;
7458 if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
7459 bp->phy_port = PORT_FIBRE;
7460 reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
7461 if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
7462 bp->flags |= BNX2_FLAG_NO_WOL;
7463 bp->wol = 0;
7464 }
7465 if (CHIP_NUM(bp) == CHIP_NUM_5706) {
7466 /* Don't do parallel detect on this board because of
7467 * some board problems. The link will not go down
7468 * if we do parallel detect.
7469 */
7470 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
7471 pdev->subsystem_device == 0x310c)
7472 bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
7473 } else {
7474 bp->phy_addr = 2;
7475 if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
7476 bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
7477 }
7478 bnx2_init_remote_phy(bp);
7479
7480 } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
7481 CHIP_NUM(bp) == CHIP_NUM_5708)
7482 bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
7483 else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
7484 (CHIP_REV(bp) == CHIP_REV_Ax ||
7485 CHIP_REV(bp) == CHIP_REV_Bx))
7486 bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
7487
7488 if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
7489 (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
7490 (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
7491 bp->flags |= BNX2_FLAG_NO_WOL;
7492 bp->wol = 0;
7493 }
7494
7495 if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
7496 bp->tx_quick_cons_trip_int =
7497 bp->tx_quick_cons_trip;
7498 bp->tx_ticks_int = bp->tx_ticks;
7499 bp->rx_quick_cons_trip_int =
7500 bp->rx_quick_cons_trip;
7501 bp->rx_ticks_int = bp->rx_ticks;
7502 bp->comp_prod_trip_int = bp->comp_prod_trip;
7503 bp->com_ticks_int = bp->com_ticks;
7504 bp->cmd_ticks_int = bp->cmd_ticks;
7505 }
7506
7507 /* Disable MSI on 5706 if AMD 8132 bridge is found.
7508 *
7509 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
7510 * with byte enables disabled on the unused 32-bit word. This is legal
7511 * but causes problems on the AMD 8132 which will eventually stop
7512 * responding after a while.
7513 *
7514 * AMD believes this incompatibility is unique to the 5706, and
7515 * prefers to locally disable MSI rather than globally disabling it.
7516 */
7517 if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
7518 struct pci_dev *amd_8132 = NULL;
7519
7520 while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
7521 PCI_DEVICE_ID_AMD_8132_BRIDGE,
7522 amd_8132))) {
7523
7524 if (amd_8132->revision >= 0x10 &&
7525 amd_8132->revision <= 0x13) {
7526 disable_msi = 1;
7527 pci_dev_put(amd_8132);
7528 break;
7529 }
7530 }
7531 }
7532
7533 bnx2_set_default_link(bp);
7534 bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
7535
7536 init_timer(&bp->timer);
7537 bp->timer.expires = RUN_AT(bp->timer_interval);
7538 bp->timer.data = (unsigned long) bp;
7539 bp->timer.function = bnx2_timer;
7540
7541 return 0;
7542
7543 err_out_unmap:
7544 if (bp->regview) {
7545 iounmap(bp->regview);
7546 bp->regview = NULL;
7547 }
7548
7549 err_out_release:
7550 pci_release_regions(pdev);
7551
7552 err_out_disable:
7553 pci_disable_device(pdev);
7554 pci_set_drvdata(pdev, NULL);
7555
7556 err_out:
7557 return rc;
7558 }
7559
7560 static char * __devinit
7561 bnx2_bus_string(struct bnx2 *bp, char *str)
7562 {
7563 char *s = str;
7564
7565 if (bp->flags & BNX2_FLAG_PCIE) {
7566 s += sprintf(s, "PCI Express");
7567 } else {
7568 s += sprintf(s, "PCI");
7569 if (bp->flags & BNX2_FLAG_PCIX)
7570 s += sprintf(s, "-X");
7571 if (bp->flags & BNX2_FLAG_PCI_32BIT)
7572 s += sprintf(s, " 32-bit");
7573 else
7574 s += sprintf(s, " 64-bit");
7575 s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
7576 }
7577 return str;
7578 }
7579
7580 static void __devinit
7581 bnx2_init_napi(struct bnx2 *bp)
7582 {
7583 int i;
7584
7585 for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
7586 struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
7587 int (*poll)(struct napi_struct *, int);
7588
7589 if (i == 0)
7590 poll = bnx2_poll;
7591 else
7592 poll = bnx2_poll_msix;
7593
7594 netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
7595 bnapi->bp = bp;
7596 }
7597 }
7598
7599 static int __devinit
7600 bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7601 {
7602 static int version_printed = 0;
7603 struct net_device *dev = NULL;
7604 struct bnx2 *bp;
7605 int rc;
7606 char str[40];
7607 DECLARE_MAC_BUF(mac);
7608
7609 if (version_printed++ == 0)
7610 printk(KERN_INFO "%s", version);
7611
7612 /* dev zeroed in init_etherdev */
7613 dev = alloc_etherdev(sizeof(*bp));
7614
7615 if (!dev)
7616 return -ENOMEM;
7617
7618 rc = bnx2_init_board(pdev, dev);
7619 if (rc < 0) {
7620 free_netdev(dev);
7621 return rc;
7622 }
7623
7624 dev->open = bnx2_open;
7625 dev->hard_start_xmit = bnx2_start_xmit;
7626 dev->stop = bnx2_close;
7627 dev->get_stats = bnx2_get_stats;
7628 dev->set_multicast_list = bnx2_set_rx_mode;
7629 dev->do_ioctl = bnx2_ioctl;
7630 dev->set_mac_address = bnx2_change_mac_addr;
7631 dev->change_mtu = bnx2_change_mtu;
7632 dev->tx_timeout = bnx2_tx_timeout;
7633 dev->watchdog_timeo = TX_TIMEOUT;
7634 #ifdef BCM_VLAN
7635 dev->vlan_rx_register = bnx2_vlan_rx_register;
7636 #endif
7637 dev->ethtool_ops = &bnx2_ethtool_ops;
7638
7639 bp = netdev_priv(dev);
7640 bnx2_init_napi(bp);
7641
7642 #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
7643 dev->poll_controller = poll_bnx2;
7644 #endif
7645
7646 pci_set_drvdata(pdev, dev);
7647
7648 memcpy(dev->dev_addr, bp->mac_addr, 6);
7649 memcpy(dev->perm_addr, bp->mac_addr, 6);
7650 bp->name = board_info[ent->driver_data].name;
7651
7652 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
7653 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7654 dev->features |= NETIF_F_IPV6_CSUM;
7655
7656 #ifdef BCM_VLAN
7657 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7658 #endif
7659 dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
7660 if (CHIP_NUM(bp) == CHIP_NUM_5709)
7661 dev->features |= NETIF_F_TSO6;
7662
7663 if ((rc = register_netdev(dev))) {
7664 dev_err(&pdev->dev, "Cannot register net device\n");
7665 if (bp->regview)
7666 iounmap(bp->regview);
7667 pci_release_regions(pdev);
7668 pci_disable_device(pdev);
7669 pci_set_drvdata(pdev, NULL);
7670 free_netdev(dev);
7671 return rc;
7672 }
7673
7674 printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
7675 "IRQ %d, node addr %s\n",
7676 dev->name,
7677 bp->name,
7678 ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
7679 ((CHIP_ID(bp) & 0x0ff0) >> 4),
7680 bnx2_bus_string(bp, str),
7681 dev->base_addr,
7682 bp->pdev->irq, print_mac(mac, dev->dev_addr));
7683
7684 return 0;
7685 }
7686
7687 static void __devexit
7688 bnx2_remove_one(struct pci_dev *pdev)
7689 {
7690 struct net_device *dev = pci_get_drvdata(pdev);
7691 struct bnx2 *bp = netdev_priv(dev);
7692
7693 flush_scheduled_work();
7694
7695 unregister_netdev(dev);
7696
7697 if (bp->regview)
7698 iounmap(bp->regview);
7699
7700 free_netdev(dev);
7701 pci_release_regions(pdev);
7702 pci_disable_device(pdev);
7703 pci_set_drvdata(pdev, NULL);
7704 }
7705
7706 static int
7707 bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
7708 {
7709 struct net_device *dev = pci_get_drvdata(pdev);
7710 struct bnx2 *bp = netdev_priv(dev);
7711 u32 reset_code;
7712
7713 /* PCI register 4 needs to be saved whether netif_running() or not.
7714 * MSI address and data need to be saved if using MSI and
7715 * netif_running().
7716 */
7717 pci_save_state(pdev);
7718 if (!netif_running(dev))
7719 return 0;
7720
7721 flush_scheduled_work();
7722 bnx2_netif_stop(bp);
7723 netif_device_detach(dev);
7724 del_timer_sync(&bp->timer);
7725 if (bp->flags & BNX2_FLAG_NO_WOL)
7726 reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
7727 else if (bp->wol)
7728 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
7729 else
7730 reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
7731 bnx2_reset_chip(bp, reset_code);
7732 bnx2_free_skbs(bp);
7733 bnx2_set_power_state(bp, pci_choose_state(pdev, state));
7734 return 0;
7735 }
7736
7737 static int
7738 bnx2_resume(struct pci_dev *pdev)
7739 {
7740 struct net_device *dev = pci_get_drvdata(pdev);
7741 struct bnx2 *bp = netdev_priv(dev);
7742
7743 pci_restore_state(pdev);
7744 if (!netif_running(dev))
7745 return 0;
7746
7747 bnx2_set_power_state(bp, PCI_D0);
7748 netif_device_attach(dev);
7749 bnx2_init_nic(bp, 1);
7750 bnx2_netif_start(bp);
7751 return 0;
7752 }
7753
7754 /**
7755 * bnx2_io_error_detected - called when PCI error is detected
7756 * @pdev: Pointer to PCI device
7757 * @state: The current pci connection state
7758 *
7759 * This function is called after a PCI bus error affecting
7760 * this device has been detected.
7761 */
7762 static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
7763 pci_channel_state_t state)
7764 {
7765 struct net_device *dev = pci_get_drvdata(pdev);
7766 struct bnx2 *bp = netdev_priv(dev);
7767
7768 rtnl_lock();
7769 netif_device_detach(dev);
7770
7771 if (netif_running(dev)) {
7772 bnx2_netif_stop(bp);
7773 del_timer_sync(&bp->timer);
7774 bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
7775 }
7776
7777 pci_disable_device(pdev);
7778 rtnl_unlock();
7779
7780 /* Request a slot slot reset. */
7781 return PCI_ERS_RESULT_NEED_RESET;
7782 }
7783
7784 /**
7785 * bnx2_io_slot_reset - called after the pci bus has been reset.
7786 * @pdev: Pointer to PCI device
7787 *
7788 * Restart the card from scratch, as if from a cold-boot.
7789 */
7790 static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
7791 {
7792 struct net_device *dev = pci_get_drvdata(pdev);
7793 struct bnx2 *bp = netdev_priv(dev);
7794
7795 rtnl_lock();
7796 if (pci_enable_device(pdev)) {
7797 dev_err(&pdev->dev,
7798 "Cannot re-enable PCI device after reset.\n");
7799 rtnl_unlock();
7800 return PCI_ERS_RESULT_DISCONNECT;
7801 }
7802 pci_set_master(pdev);
7803 pci_restore_state(pdev);
7804
7805 if (netif_running(dev)) {
7806 bnx2_set_power_state(bp, PCI_D0);
7807 bnx2_init_nic(bp, 1);
7808 }
7809
7810 rtnl_unlock();
7811 return PCI_ERS_RESULT_RECOVERED;
7812 }
7813
7814 /**
7815 * bnx2_io_resume - called when traffic can start flowing again.
7816 * @pdev: Pointer to PCI device
7817 *
7818 * This callback is called when the error recovery driver tells us that
7819 * its OK to resume normal operation.
7820 */
7821 static void bnx2_io_resume(struct pci_dev *pdev)
7822 {
7823 struct net_device *dev = pci_get_drvdata(pdev);
7824 struct bnx2 *bp = netdev_priv(dev);
7825
7826 rtnl_lock();
7827 if (netif_running(dev))
7828 bnx2_netif_start(bp);
7829
7830 netif_device_attach(dev);
7831 rtnl_unlock();
7832 }
7833
7834 static struct pci_error_handlers bnx2_err_handler = {
7835 .error_detected = bnx2_io_error_detected,
7836 .slot_reset = bnx2_io_slot_reset,
7837 .resume = bnx2_io_resume,
7838 };
7839
7840 static struct pci_driver bnx2_pci_driver = {
7841 .name = DRV_MODULE_NAME,
7842 .id_table = bnx2_pci_tbl,
7843 .probe = bnx2_init_one,
7844 .remove = __devexit_p(bnx2_remove_one),
7845 .suspend = bnx2_suspend,
7846 .resume = bnx2_resume,
7847 .err_handler = &bnx2_err_handler,
7848 };
7849
7850 static int __init bnx2_init(void)
7851 {
7852 return pci_register_driver(&bnx2_pci_driver);
7853 }
7854
7855 static void __exit bnx2_cleanup(void)
7856 {
7857 pci_unregister_driver(&bnx2_pci_driver);
7858 }
7859
7860 module_init(bnx2_init);
7861 module_exit(bnx2_cleanup);
7862
7863
7864
This page took 0.329492 seconds and 5 git commands to generate.