igb: misc whitespace/formatting cleanups
[deliverable/linux.git] / drivers / net / bnx2x_init.h
1 /* bnx2x_init.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2009 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 */
12
13 #ifndef BNX2X_INIT_H
14 #define BNX2X_INIT_H
15
16 #define COMMON 0x1
17 #define PORT0 0x2
18 #define PORT1 0x4
19
20 #define INIT_EMULATION 0x1
21 #define INIT_FPGA 0x2
22 #define INIT_ASIC 0x4
23 #define INIT_HARDWARE 0x7
24
25 #define STORM_INTMEM_SIZE_E1 (0x5800 / 4)
26 #define STORM_INTMEM_SIZE_E1H (0x10000 / 4)
27 #define TSTORM_INTMEM_ADDR 0x1a0000
28 #define CSTORM_INTMEM_ADDR 0x220000
29 #define XSTORM_INTMEM_ADDR 0x2a0000
30 #define USTORM_INTMEM_ADDR 0x320000
31
32
33 /* Init operation types and structures */
34 /* Common for both E1 and E1H */
35 #define OP_RD 0x1 /* read single register */
36 #define OP_WR 0x2 /* write single register */
37 #define OP_IW 0x3 /* write single register using mailbox */
38 #define OP_SW 0x4 /* copy a string to the device */
39 #define OP_SI 0x5 /* copy a string using mailbox */
40 #define OP_ZR 0x6 /* clear memory */
41 #define OP_ZP 0x7 /* unzip then copy with DMAE */
42 #define OP_WR_64 0x8 /* write 64 bit pattern */
43 #define OP_WB 0x9 /* copy a string using DMAE */
44
45 /* Operation specific for E1 */
46 #define OP_RD_E1 0xa /* read single register */
47 #define OP_WR_E1 0xb /* write single register */
48 #define OP_IW_E1 0xc /* write single register using mailbox */
49 #define OP_SW_E1 0xd /* copy a string to the device */
50 #define OP_SI_E1 0xe /* copy a string using mailbox */
51 #define OP_ZR_E1 0xf /* clear memory */
52 #define OP_ZP_E1 0x10 /* unzip then copy with DMAE */
53 #define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */
54 #define OP_WB_E1 0x12 /* copy a string using DMAE */
55
56 /* Operation specific for E1H */
57 #define OP_RD_E1H 0x13 /* read single register */
58 #define OP_WR_E1H 0x14 /* write single register */
59 #define OP_IW_E1H 0x15 /* write single register using mailbox */
60 #define OP_SW_E1H 0x16 /* copy a string to the device */
61 #define OP_SI_E1H 0x17 /* copy a string using mailbox */
62 #define OP_ZR_E1H 0x18 /* clear memory */
63 #define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */
64 #define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */
65 #define OP_WB_E1H 0x1b /* copy a string using DMAE */
66
67 /* FPGA and EMUL specific operations */
68 #define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */
69 #define OP_WR_EMUL 0x1d /* write single register on Emulation */
70 #define OP_WR_FPGA 0x1e /* write single register on FPGA */
71 #define OP_WR_ASIC 0x1f /* write single register on ASIC */
72
73
74 struct raw_op {
75 u32 op:8;
76 u32 offset:24;
77 u32 raw_data;
78 };
79
80 struct op_read {
81 u32 op:8;
82 u32 offset:24;
83 u32 pad;
84 };
85
86 struct op_write {
87 u32 op:8;
88 u32 offset:24;
89 u32 val;
90 };
91
92 struct op_string_write {
93 u32 op:8;
94 u32 offset:24;
95 #ifdef __LITTLE_ENDIAN
96 u16 data_off;
97 u16 data_len;
98 #else /* __BIG_ENDIAN */
99 u16 data_len;
100 u16 data_off;
101 #endif
102 };
103
104 struct op_zero {
105 u32 op:8;
106 u32 offset:24;
107 u32 len;
108 };
109
110 union init_op {
111 struct op_read read;
112 struct op_write write;
113 struct op_string_write str_wr;
114 struct op_zero zero;
115 struct raw_op raw;
116 };
117
118 #include "bnx2x_init_values.h"
119
120 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
121 static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
122
123 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
124 u32 len)
125 {
126 int i;
127
128 for (i = 0; i < len; i++) {
129 REG_WR(bp, addr + i*4, data[i]);
130 if (!(i % 10000)) {
131 touch_softlockup_watchdog();
132 cpu_relax();
133 }
134 }
135 }
136
137 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
138 u16 len)
139 {
140 int i;
141
142 for (i = 0; i < len; i++) {
143 REG_WR_IND(bp, addr + i*4, data[i]);
144 if (!(i % 10000)) {
145 touch_softlockup_watchdog();
146 cpu_relax();
147 }
148 }
149 }
150
151 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
152 {
153 #ifdef USE_DMAE
154 int offset = 0;
155
156 if (bp->dmae_ready) {
157 while (len > DMAE_LEN32_WR_MAX) {
158 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
159 addr + offset, DMAE_LEN32_WR_MAX);
160 offset += DMAE_LEN32_WR_MAX * 4;
161 len -= DMAE_LEN32_WR_MAX;
162 }
163 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
164 addr + offset, len);
165 } else
166 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
167 #else
168 bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len);
169 #endif
170 }
171
172 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
173 {
174 if ((len * 4) > FW_BUF_SIZE) {
175 BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x len 0x%x\n",
176 addr, len*4);
177 return;
178 }
179 memset(bp->gunzip_buf, fill, len * 4);
180
181 bnx2x_write_big_buf(bp, addr, len);
182 }
183
184 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
185 u32 len64)
186 {
187 u32 buf_len32 = FW_BUF_SIZE/4;
188 u32 len = len64*2;
189 u64 data64 = 0;
190 int i;
191
192 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
193 data64 = HILO_U64((*(data + 1)), (*data));
194 len64 = min((u32)(FW_BUF_SIZE/8), len64);
195 for (i = 0; i < len64; i++) {
196 u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i;
197
198 *pdata = data64;
199 }
200
201 for (i = 0; i < len; i += buf_len32) {
202 u32 cur_len = min(buf_len32, len - i);
203
204 bnx2x_write_big_buf(bp, addr + i * 4, cur_len);
205 }
206 }
207
208 /*********************************************************
209 There are different blobs for each PRAM section.
210 In addition, each blob write operation is divided into a few operations
211 in order to decrease the amount of phys. contiguous buffer needed.
212 Thus, when we select a blob the address may be with some offset
213 from the beginning of PRAM section.
214 The same holds for the INT_TABLE sections.
215 **********************************************************/
216 #define IF_IS_INT_TABLE_ADDR(base, addr) \
217 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
218
219 #define IF_IS_PRAM_ADDR(base, addr) \
220 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
221
222 static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1)
223 {
224 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
225 data = is_e1 ? tsem_int_table_data_e1 :
226 tsem_int_table_data_e1h;
227 else
228 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
229 data = is_e1 ? csem_int_table_data_e1 :
230 csem_int_table_data_e1h;
231 else
232 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
233 data = is_e1 ? usem_int_table_data_e1 :
234 usem_int_table_data_e1h;
235 else
236 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
237 data = is_e1 ? xsem_int_table_data_e1 :
238 xsem_int_table_data_e1h;
239 else
240 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
241 data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h;
242 else
243 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
244 data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h;
245 else
246 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
247 data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h;
248 else
249 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
250 data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h;
251
252 return data;
253 }
254
255 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
256 u32 len, int gunzip, int is_e1, u32 blob_off)
257 {
258 int offset = 0;
259
260 data = bnx2x_sel_blob(addr, data, is_e1) + blob_off;
261
262 if (gunzip) {
263 int rc;
264 #ifdef __BIG_ENDIAN
265 int i, size;
266 u32 *temp;
267
268 temp = kmalloc(len, GFP_KERNEL);
269 size = (len / 4) + ((len % 4) ? 1 : 0);
270 for (i = 0; i < size; i++)
271 temp[i] = swab32(data[i]);
272 data = temp;
273 #endif
274 rc = bnx2x_gunzip(bp, (u8 *)data, len);
275 if (rc) {
276 BNX2X_ERR("gunzip failed ! rc %d\n", rc);
277 #ifdef __BIG_ENDIAN
278 kfree(temp);
279 #endif
280 return;
281 }
282 len = bp->gunzip_outlen;
283 #ifdef __BIG_ENDIAN
284 kfree(temp);
285 for (i = 0; i < len; i++)
286 ((u32 *)bp->gunzip_buf)[i] =
287 swab32(((u32 *)bp->gunzip_buf)[i]);
288 #endif
289 } else {
290 if ((len * 4) > FW_BUF_SIZE) {
291 BNX2X_ERR("LARGE DMAE OPERATION ! "
292 "addr 0x%x len 0x%x\n", addr, len*4);
293 return;
294 }
295 memcpy(bp->gunzip_buf, data, len * 4);
296 }
297
298 if (bp->dmae_ready) {
299 while (len > DMAE_LEN32_WR_MAX) {
300 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
301 addr + offset, DMAE_LEN32_WR_MAX);
302 offset += DMAE_LEN32_WR_MAX * 4;
303 len -= DMAE_LEN32_WR_MAX;
304 }
305 bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
306 addr + offset, len);
307 } else
308 bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len);
309 }
310
311 static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
312 {
313 int is_e1 = CHIP_IS_E1(bp);
314 int is_e1h = CHIP_IS_E1H(bp);
315 int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h);
316 int hw_wr, i;
317 union init_op *op;
318 u32 op_type, addr, len;
319 const u32 *data, *data_base;
320
321 if (CHIP_REV_IS_FPGA(bp))
322 hw_wr = OP_WR_FPGA;
323 else if (CHIP_REV_IS_EMUL(bp))
324 hw_wr = OP_WR_EMUL;
325 else
326 hw_wr = OP_WR_ASIC;
327
328 if (is_e1)
329 data_base = init_data_e1;
330 else /* CHIP_IS_E1H(bp) */
331 data_base = init_data_e1h;
332
333 for (i = op_start; i < op_end; i++) {
334
335 op = (union init_op *)&(init_ops[i]);
336
337 op_type = op->str_wr.op;
338 addr = op->str_wr.offset;
339 len = op->str_wr.data_len;
340 data = data_base + op->str_wr.data_off;
341
342 /* careful! it must be in order */
343 if (unlikely(op_type > OP_WB)) {
344
345 /* If E1 only */
346 if (op_type <= OP_WB_E1) {
347 if (is_e1)
348 op_type -= (OP_RD_E1 - OP_RD);
349
350 /* If E1H only */
351 } else if (op_type <= OP_WB_E1H) {
352 if (is_e1h)
353 op_type -= (OP_RD_E1H - OP_RD);
354 }
355
356 /* HW/EMUL specific */
357 if (op_type == hw_wr)
358 op_type = OP_WR;
359
360 /* EMUL on E1H is special */
361 if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h)
362 op_type = OP_WR;
363 }
364
365 switch (op_type) {
366 case OP_RD:
367 REG_RD(bp, addr);
368 break;
369 case OP_WR:
370 REG_WR(bp, addr, op->write.val);
371 break;
372 case OP_SW:
373 bnx2x_init_str_wr(bp, addr, data, len);
374 break;
375 case OP_WB:
376 bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0);
377 break;
378 case OP_SI:
379 bnx2x_init_ind_wr(bp, addr, data, len);
380 break;
381 case OP_ZR:
382 bnx2x_init_fill(bp, addr, 0, op->zero.len);
383 break;
384 case OP_ZP:
385 bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1,
386 op->str_wr.data_off);
387 break;
388 case OP_WR_64:
389 bnx2x_init_wr_64(bp, addr, data, len);
390 break;
391 default:
392 /* happens whenever an op is of a diff HW */
393 #if 0
394 DP(NETIF_MSG_HW, "skipping init operation "
395 "index %d[%d:%d]: type %d addr 0x%x "
396 "len %d(0x%x)\n",
397 i, op_start, op_end, op_type, addr, len, len);
398 #endif
399 break;
400 }
401 }
402 }
403
404
405 /****************************************************************************
406 * PXP
407 ****************************************************************************/
408 /*
409 * This code configures the PCI read/write arbiter
410 * which implements a weighted round robin
411 * between the virtual queues in the chip.
412 *
413 * The values were derived for each PCI max payload and max request size.
414 * since max payload and max request size are only known at run time,
415 * this is done as a separate init stage.
416 */
417
418 #define NUM_WR_Q 13
419 #define NUM_RD_Q 29
420 #define MAX_RD_ORD 3
421 #define MAX_WR_ORD 2
422
423 /* configuration for one arbiter queue */
424 struct arb_line {
425 int l;
426 int add;
427 int ubound;
428 };
429
430 /* derived configuration for each read queue for each max request size */
431 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
432 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
433 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
434 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
435 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
436 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
437 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
438 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
439 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
440 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
441 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
442 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
443 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
444 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
445 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
446 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
447 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
448 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
449 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
450 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
451 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
452 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
453 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
454 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
455 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
456 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
457 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
458 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
459 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
460 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
461 };
462
463 /* derived configuration for each write queue for each max request size */
464 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
465 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
466 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
467 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
468 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
469 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
470 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
471 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
472 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
473 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
474 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
475 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
476 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
477 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
478 };
479
480 /* register addresses for read queues */
481 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
482 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
483 PXP2_REG_RQ_BW_RD_UBOUND0},
484 {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
485 PXP2_REG_PSWRQ_BW_UB1},
486 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
487 PXP2_REG_PSWRQ_BW_UB2},
488 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
489 PXP2_REG_PSWRQ_BW_UB3},
490 {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
491 PXP2_REG_RQ_BW_RD_UBOUND4},
492 {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
493 PXP2_REG_RQ_BW_RD_UBOUND5},
494 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
495 PXP2_REG_PSWRQ_BW_UB6},
496 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
497 PXP2_REG_PSWRQ_BW_UB7},
498 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
499 PXP2_REG_PSWRQ_BW_UB8},
500 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
501 PXP2_REG_PSWRQ_BW_UB9},
502 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
503 PXP2_REG_PSWRQ_BW_UB10},
504 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
505 PXP2_REG_PSWRQ_BW_UB11},
506 {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
507 PXP2_REG_RQ_BW_RD_UBOUND12},
508 {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
509 PXP2_REG_RQ_BW_RD_UBOUND13},
510 {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
511 PXP2_REG_RQ_BW_RD_UBOUND14},
512 {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
513 PXP2_REG_RQ_BW_RD_UBOUND15},
514 {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
515 PXP2_REG_RQ_BW_RD_UBOUND16},
516 {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
517 PXP2_REG_RQ_BW_RD_UBOUND17},
518 {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
519 PXP2_REG_RQ_BW_RD_UBOUND18},
520 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
521 PXP2_REG_RQ_BW_RD_UBOUND19},
522 {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
523 PXP2_REG_RQ_BW_RD_UBOUND20},
524 {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
525 PXP2_REG_RQ_BW_RD_UBOUND22},
526 {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
527 PXP2_REG_RQ_BW_RD_UBOUND23},
528 {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
529 PXP2_REG_RQ_BW_RD_UBOUND24},
530 {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
531 PXP2_REG_RQ_BW_RD_UBOUND25},
532 {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
533 PXP2_REG_RQ_BW_RD_UBOUND26},
534 {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
535 PXP2_REG_RQ_BW_RD_UBOUND27},
536 {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
537 PXP2_REG_PSWRQ_BW_UB28}
538 };
539
540 /* register addresses for write queues */
541 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
542 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
543 PXP2_REG_PSWRQ_BW_UB1},
544 {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
545 PXP2_REG_PSWRQ_BW_UB2},
546 {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
547 PXP2_REG_PSWRQ_BW_UB3},
548 {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
549 PXP2_REG_PSWRQ_BW_UB6},
550 {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
551 PXP2_REG_PSWRQ_BW_UB7},
552 {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
553 PXP2_REG_PSWRQ_BW_UB8},
554 {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
555 PXP2_REG_PSWRQ_BW_UB9},
556 {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
557 PXP2_REG_PSWRQ_BW_UB10},
558 {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
559 PXP2_REG_PSWRQ_BW_UB11},
560 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
561 PXP2_REG_PSWRQ_BW_UB28},
562 {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
563 PXP2_REG_RQ_BW_WR_UBOUND29},
564 {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
565 PXP2_REG_RQ_BW_WR_UBOUND30}
566 };
567
568 static void bnx2x_init_pxp(struct bnx2x *bp)
569 {
570 u16 devctl;
571 int r_order, w_order;
572 u32 val, i;
573
574 pci_read_config_word(bp->pdev,
575 bp->pcie_cap + PCI_EXP_DEVCTL, &devctl);
576 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
577 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
578 if (bp->mrrs == -1)
579 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
580 else {
581 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
582 r_order = bp->mrrs;
583 }
584
585 if (r_order > MAX_RD_ORD) {
586 DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
587 r_order, MAX_RD_ORD);
588 r_order = MAX_RD_ORD;
589 }
590 if (w_order > MAX_WR_ORD) {
591 DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
592 w_order, MAX_WR_ORD);
593 w_order = MAX_WR_ORD;
594 }
595 if (CHIP_REV_IS_FPGA(bp)) {
596 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
597 w_order = 0;
598 }
599 DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
600
601 for (i = 0; i < NUM_RD_Q-1; i++) {
602 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
603 REG_WR(bp, read_arb_addr[i].add,
604 read_arb_data[i][r_order].add);
605 REG_WR(bp, read_arb_addr[i].ubound,
606 read_arb_data[i][r_order].ubound);
607 }
608
609 for (i = 0; i < NUM_WR_Q-1; i++) {
610 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
611 (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
612
613 REG_WR(bp, write_arb_addr[i].l,
614 write_arb_data[i][w_order].l);
615
616 REG_WR(bp, write_arb_addr[i].add,
617 write_arb_data[i][w_order].add);
618
619 REG_WR(bp, write_arb_addr[i].ubound,
620 write_arb_data[i][w_order].ubound);
621 } else {
622
623 val = REG_RD(bp, write_arb_addr[i].l);
624 REG_WR(bp, write_arb_addr[i].l,
625 val | (write_arb_data[i][w_order].l << 10));
626
627 val = REG_RD(bp, write_arb_addr[i].add);
628 REG_WR(bp, write_arb_addr[i].add,
629 val | (write_arb_data[i][w_order].add << 10));
630
631 val = REG_RD(bp, write_arb_addr[i].ubound);
632 REG_WR(bp, write_arb_addr[i].ubound,
633 val | (write_arb_data[i][w_order].ubound << 7));
634 }
635 }
636
637 val = write_arb_data[NUM_WR_Q-1][w_order].add;
638 val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
639 val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
640 REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
641
642 val = read_arb_data[NUM_RD_Q-1][r_order].add;
643 val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
644 val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
645 REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
646
647 REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
648 REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
649 REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
650 REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
651
652 if (r_order == MAX_RD_ORD)
653 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
654
655 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
656
657 if (CHIP_IS_E1H(bp)) {
658 val = ((w_order == 0) ? 2 : 3);
659 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
660 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
661 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
662 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
663 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
664 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
665 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
666 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
667 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
668 REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
669 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
670 }
671 }
672
673
674 /****************************************************************************
675 * CDU
676 ****************************************************************************/
677
678 #define CDU_REGION_NUMBER_XCM_AG 2
679 #define CDU_REGION_NUMBER_UCM_AG 4
680
681 /**
682 * String-to-compress [31:8] = CID (all 24 bits)
683 * String-to-compress [7:4] = Region
684 * String-to-compress [3:0] = Type
685 */
686 #define CDU_VALID_DATA(_cid, _region, _type) \
687 (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
688 #define CDU_CRC8(_cid, _region, _type) \
689 calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
690 #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
691 (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
692 #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
693 (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
694 #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
695
696 /*****************************************************************************
697 * Description:
698 * Calculates crc 8 on a word value: polynomial 0-1-2-8
699 * Code was translated from Verilog.
700 ****************************************************************************/
701 static u8 calc_crc8(u32 data, u8 crc)
702 {
703 u8 D[32];
704 u8 NewCRC[8];
705 u8 C[8];
706 u8 crc_res;
707 u8 i;
708
709 /* split the data into 31 bits */
710 for (i = 0; i < 32; i++) {
711 D[i] = data & 1;
712 data = data >> 1;
713 }
714
715 /* split the crc into 8 bits */
716 for (i = 0; i < 8; i++) {
717 C[i] = crc & 1;
718 crc = crc >> 1;
719 }
720
721 NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
722 D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
723 C[6] ^ C[7];
724 NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
725 D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
726 D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
727 NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
728 D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
729 C[0] ^ C[1] ^ C[4] ^ C[5];
730 NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
731 D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
732 C[1] ^ C[2] ^ C[5] ^ C[6];
733 NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
734 D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
735 C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
736 NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
737 D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
738 C[3] ^ C[4] ^ C[7];
739 NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
740 D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
741 C[5];
742 NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
743 D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
744 C[6];
745
746 crc_res = 0;
747 for (i = 0; i < 8; i++)
748 crc_res |= (NewCRC[i] << i);
749
750 return crc_res;
751 }
752
753 /* registers addresses are not in order
754 so these arrays help simplify the code */
755 static const int cm_start[E1H_FUNC_MAX][9] = {
756 {MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START,
757 XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START,
758 XSEM_FUNC0_START},
759 {MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START,
760 XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START,
761 XSEM_FUNC1_START},
762 {MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START,
763 XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START,
764 XSEM_FUNC2_START},
765 {MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START,
766 XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START,
767 XSEM_FUNC3_START},
768 {MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START,
769 XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START,
770 XSEM_FUNC4_START},
771 {MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START,
772 XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START,
773 XSEM_FUNC5_START},
774 {MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START,
775 XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START,
776 XSEM_FUNC6_START},
777 {MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START,
778 XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START,
779 XSEM_FUNC7_START}
780 };
781
782 static const int cm_end[E1H_FUNC_MAX][9] = {
783 {MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END,
784 XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END,
785 XSEM_FUNC0_END},
786 {MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END,
787 XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END,
788 XSEM_FUNC1_END},
789 {MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END,
790 XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END,
791 XSEM_FUNC2_END},
792 {MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END,
793 XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END,
794 XSEM_FUNC3_END},
795 {MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END,
796 XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END,
797 XSEM_FUNC4_END},
798 {MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END,
799 XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END,
800 XSEM_FUNC5_END},
801 {MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END,
802 XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END,
803 XSEM_FUNC6_END},
804 {MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END,
805 XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END,
806 XSEM_FUNC7_END},
807 };
808
809 static const int hc_limits[E1H_FUNC_MAX][2] = {
810 {HC_FUNC0_START, HC_FUNC0_END},
811 {HC_FUNC1_START, HC_FUNC1_END},
812 {HC_FUNC2_START, HC_FUNC2_END},
813 {HC_FUNC3_START, HC_FUNC3_END},
814 {HC_FUNC4_START, HC_FUNC4_END},
815 {HC_FUNC5_START, HC_FUNC5_END},
816 {HC_FUNC6_START, HC_FUNC6_END},
817 {HC_FUNC7_START, HC_FUNC7_END}
818 };
819
820 #endif /* BNX2X_INIT_H */
821
This page took 0.082566 seconds and 5 git commands to generate.