bonding: Check return of dev_set_promiscuity/allmulti
[deliverable/linux.git] / drivers / net / bonding / bond_alb.c
1 /*
2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 */
22
23 //#define BONDING_DEBUG 1
24
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/pkt_sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/ip.h>
33 #include <linux/ipv6.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/if_bonding.h>
37 #include <linux/if_vlan.h>
38 #include <linux/in.h>
39 #include <net/ipx.h>
40 #include <net/arp.h>
41 #include <asm/byteorder.h>
42 #include "bonding.h"
43 #include "bond_alb.h"
44
45
46 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */
47 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing.
48 * Used for division - never set
49 * to zero !!!
50 */
51 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of
52 * learning packets to the switch
53 */
54
55 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
56 * ALB_TIMER_TICKS_PER_SEC)
57
58 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
59 * ALB_TIMER_TICKS_PER_SEC)
60
61 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table.
62 * Note that this value MUST NOT be smaller
63 * because the key hash table is BYTE wide !
64 */
65
66
67 #define TLB_NULL_INDEX 0xffffffff
68 #define MAX_LP_BURST 3
69
70 /* rlb defs */
71 #define RLB_HASH_TABLE_SIZE 256
72 #define RLB_NULL_INDEX 0xffffffff
73 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
74 #define RLB_ARP_BURST_SIZE 2
75 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb
76 * rebalance interval (5 min).
77 */
78 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
79 * promiscuous after failover
80 */
81 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC
82
83 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
84 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
85
86 #pragma pack(1)
87 struct learning_pkt {
88 u8 mac_dst[ETH_ALEN];
89 u8 mac_src[ETH_ALEN];
90 __be16 type;
91 u8 padding[ETH_ZLEN - ETH_HLEN];
92 };
93
94 struct arp_pkt {
95 __be16 hw_addr_space;
96 __be16 prot_addr_space;
97 u8 hw_addr_len;
98 u8 prot_addr_len;
99 __be16 op_code;
100 u8 mac_src[ETH_ALEN]; /* sender hardware address */
101 __be32 ip_src; /* sender IP address */
102 u8 mac_dst[ETH_ALEN]; /* target hardware address */
103 __be32 ip_dst; /* target IP address */
104 };
105 #pragma pack()
106
107 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
108 {
109 return (struct arp_pkt *)skb_network_header(skb);
110 }
111
112 /* Forward declaration */
113 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
114
115 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
116 {
117 int i;
118 u8 hash = 0;
119
120 for (i = 0; i < hash_size; i++) {
121 hash ^= hash_start[i];
122 }
123
124 return hash;
125 }
126
127 /*********************** tlb specific functions ***************************/
128
129 static inline void _lock_tx_hashtbl(struct bonding *bond)
130 {
131 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
132 }
133
134 static inline void _unlock_tx_hashtbl(struct bonding *bond)
135 {
136 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
137 }
138
139 /* Caller must hold tx_hashtbl lock */
140 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
141 {
142 if (save_load) {
143 entry->load_history = 1 + entry->tx_bytes /
144 BOND_TLB_REBALANCE_INTERVAL;
145 entry->tx_bytes = 0;
146 }
147
148 entry->tx_slave = NULL;
149 entry->next = TLB_NULL_INDEX;
150 entry->prev = TLB_NULL_INDEX;
151 }
152
153 static inline void tlb_init_slave(struct slave *slave)
154 {
155 SLAVE_TLB_INFO(slave).load = 0;
156 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
157 }
158
159 /* Caller must hold bond lock for read */
160 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
161 {
162 struct tlb_client_info *tx_hash_table;
163 u32 index;
164
165 _lock_tx_hashtbl(bond);
166
167 /* clear slave from tx_hashtbl */
168 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
169
170 index = SLAVE_TLB_INFO(slave).head;
171 while (index != TLB_NULL_INDEX) {
172 u32 next_index = tx_hash_table[index].next;
173 tlb_init_table_entry(&tx_hash_table[index], save_load);
174 index = next_index;
175 }
176
177 tlb_init_slave(slave);
178
179 _unlock_tx_hashtbl(bond);
180 }
181
182 /* Must be called before starting the monitor timer */
183 static int tlb_initialize(struct bonding *bond)
184 {
185 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
186 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
187 struct tlb_client_info *new_hashtbl;
188 int i;
189
190 spin_lock_init(&(bond_info->tx_hashtbl_lock));
191
192 new_hashtbl = kzalloc(size, GFP_KERNEL);
193 if (!new_hashtbl) {
194 printk(KERN_ERR DRV_NAME
195 ": %s: Error: Failed to allocate TLB hash table\n",
196 bond->dev->name);
197 return -1;
198 }
199 _lock_tx_hashtbl(bond);
200
201 bond_info->tx_hashtbl = new_hashtbl;
202
203 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
204 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
205 }
206
207 _unlock_tx_hashtbl(bond);
208
209 return 0;
210 }
211
212 /* Must be called only after all slaves have been released */
213 static void tlb_deinitialize(struct bonding *bond)
214 {
215 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
216
217 _lock_tx_hashtbl(bond);
218
219 kfree(bond_info->tx_hashtbl);
220 bond_info->tx_hashtbl = NULL;
221
222 _unlock_tx_hashtbl(bond);
223 }
224
225 /* Caller must hold bond lock for read */
226 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
227 {
228 struct slave *slave, *least_loaded;
229 s64 max_gap;
230 int i, found = 0;
231
232 /* Find the first enabled slave */
233 bond_for_each_slave(bond, slave, i) {
234 if (SLAVE_IS_OK(slave)) {
235 found = 1;
236 break;
237 }
238 }
239
240 if (!found) {
241 return NULL;
242 }
243
244 least_loaded = slave;
245 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
246 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
247
248 /* Find the slave with the largest gap */
249 bond_for_each_slave_from(bond, slave, i, least_loaded) {
250 if (SLAVE_IS_OK(slave)) {
251 s64 gap = (s64)(slave->speed << 20) -
252 (s64)(SLAVE_TLB_INFO(slave).load << 3);
253 if (max_gap < gap) {
254 least_loaded = slave;
255 max_gap = gap;
256 }
257 }
258 }
259
260 return least_loaded;
261 }
262
263 /* Caller must hold bond lock for read */
264 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
265 {
266 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
267 struct tlb_client_info *hash_table;
268 struct slave *assigned_slave;
269
270 _lock_tx_hashtbl(bond);
271
272 hash_table = bond_info->tx_hashtbl;
273 assigned_slave = hash_table[hash_index].tx_slave;
274 if (!assigned_slave) {
275 assigned_slave = tlb_get_least_loaded_slave(bond);
276
277 if (assigned_slave) {
278 struct tlb_slave_info *slave_info =
279 &(SLAVE_TLB_INFO(assigned_slave));
280 u32 next_index = slave_info->head;
281
282 hash_table[hash_index].tx_slave = assigned_slave;
283 hash_table[hash_index].next = next_index;
284 hash_table[hash_index].prev = TLB_NULL_INDEX;
285
286 if (next_index != TLB_NULL_INDEX) {
287 hash_table[next_index].prev = hash_index;
288 }
289
290 slave_info->head = hash_index;
291 slave_info->load +=
292 hash_table[hash_index].load_history;
293 }
294 }
295
296 if (assigned_slave) {
297 hash_table[hash_index].tx_bytes += skb_len;
298 }
299
300 _unlock_tx_hashtbl(bond);
301
302 return assigned_slave;
303 }
304
305 /*********************** rlb specific functions ***************************/
306 static inline void _lock_rx_hashtbl(struct bonding *bond)
307 {
308 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
309 }
310
311 static inline void _unlock_rx_hashtbl(struct bonding *bond)
312 {
313 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314 }
315
316 /* when an ARP REPLY is received from a client update its info
317 * in the rx_hashtbl
318 */
319 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
320 {
321 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
322 struct rlb_client_info *client_info;
323 u32 hash_index;
324
325 _lock_rx_hashtbl(bond);
326
327 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
328 client_info = &(bond_info->rx_hashtbl[hash_index]);
329
330 if ((client_info->assigned) &&
331 (client_info->ip_src == arp->ip_dst) &&
332 (client_info->ip_dst == arp->ip_src)) {
333 /* update the clients MAC address */
334 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
335 client_info->ntt = 1;
336 bond_info->rx_ntt = 1;
337 }
338
339 _unlock_rx_hashtbl(bond);
340 }
341
342 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
343 {
344 struct bonding *bond = bond_dev->priv;
345 struct arp_pkt *arp = (struct arp_pkt *)skb->data;
346 int res = NET_RX_DROP;
347
348 if (dev_net(bond_dev) != &init_net)
349 goto out;
350
351 if (!(bond_dev->flags & IFF_MASTER))
352 goto out;
353
354 if (!arp) {
355 dprintk("Packet has no ARP data\n");
356 goto out;
357 }
358
359 if (skb->len < sizeof(struct arp_pkt)) {
360 dprintk("Packet is too small to be an ARP\n");
361 goto out;
362 }
363
364 if (arp->op_code == htons(ARPOP_REPLY)) {
365 /* update rx hash table for this ARP */
366 rlb_update_entry_from_arp(bond, arp);
367 dprintk("Server received an ARP Reply from client\n");
368 }
369
370 res = NET_RX_SUCCESS;
371
372 out:
373 dev_kfree_skb(skb);
374
375 return res;
376 }
377
378 /* Caller must hold bond lock for read */
379 static struct slave *rlb_next_rx_slave(struct bonding *bond)
380 {
381 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
382 struct slave *rx_slave, *slave, *start_at;
383 int i = 0;
384
385 if (bond_info->next_rx_slave) {
386 start_at = bond_info->next_rx_slave;
387 } else {
388 start_at = bond->first_slave;
389 }
390
391 rx_slave = NULL;
392
393 bond_for_each_slave_from(bond, slave, i, start_at) {
394 if (SLAVE_IS_OK(slave)) {
395 if (!rx_slave) {
396 rx_slave = slave;
397 } else if (slave->speed > rx_slave->speed) {
398 rx_slave = slave;
399 }
400 }
401 }
402
403 if (rx_slave) {
404 bond_info->next_rx_slave = rx_slave->next;
405 }
406
407 return rx_slave;
408 }
409
410 /* teach the switch the mac of a disabled slave
411 * on the primary for fault tolerance
412 *
413 * Caller must hold bond->curr_slave_lock for write or bond lock for write
414 */
415 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
416 {
417 if (!bond->curr_active_slave) {
418 return;
419 }
420
421 if (!bond->alb_info.primary_is_promisc) {
422 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
423 bond->alb_info.primary_is_promisc = 1;
424 else
425 bond->alb_info.primary_is_promisc = 0;
426 }
427
428 bond->alb_info.rlb_promisc_timeout_counter = 0;
429
430 alb_send_learning_packets(bond->curr_active_slave, addr);
431 }
432
433 /* slave being removed should not be active at this point
434 *
435 * Caller must hold bond lock for read
436 */
437 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
438 {
439 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
440 struct rlb_client_info *rx_hash_table;
441 u32 index, next_index;
442
443 /* clear slave from rx_hashtbl */
444 _lock_rx_hashtbl(bond);
445
446 rx_hash_table = bond_info->rx_hashtbl;
447 index = bond_info->rx_hashtbl_head;
448 for (; index != RLB_NULL_INDEX; index = next_index) {
449 next_index = rx_hash_table[index].next;
450 if (rx_hash_table[index].slave == slave) {
451 struct slave *assigned_slave = rlb_next_rx_slave(bond);
452
453 if (assigned_slave) {
454 rx_hash_table[index].slave = assigned_slave;
455 if (memcmp(rx_hash_table[index].mac_dst,
456 mac_bcast, ETH_ALEN)) {
457 bond_info->rx_hashtbl[index].ntt = 1;
458 bond_info->rx_ntt = 1;
459 /* A slave has been removed from the
460 * table because it is either disabled
461 * or being released. We must retry the
462 * update to avoid clients from not
463 * being updated & disconnecting when
464 * there is stress
465 */
466 bond_info->rlb_update_retry_counter =
467 RLB_UPDATE_RETRY;
468 }
469 } else { /* there is no active slave */
470 rx_hash_table[index].slave = NULL;
471 }
472 }
473 }
474
475 _unlock_rx_hashtbl(bond);
476
477 write_lock_bh(&bond->curr_slave_lock);
478
479 if (slave != bond->curr_active_slave) {
480 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
481 }
482
483 write_unlock_bh(&bond->curr_slave_lock);
484 }
485
486 static void rlb_update_client(struct rlb_client_info *client_info)
487 {
488 int i;
489
490 if (!client_info->slave) {
491 return;
492 }
493
494 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
495 struct sk_buff *skb;
496
497 skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
498 client_info->ip_dst,
499 client_info->slave->dev,
500 client_info->ip_src,
501 client_info->mac_dst,
502 client_info->slave->dev->dev_addr,
503 client_info->mac_dst);
504 if (!skb) {
505 printk(KERN_ERR DRV_NAME
506 ": %s: Error: failed to create an ARP packet\n",
507 client_info->slave->dev->master->name);
508 continue;
509 }
510
511 skb->dev = client_info->slave->dev;
512
513 if (client_info->tag) {
514 skb = vlan_put_tag(skb, client_info->vlan_id);
515 if (!skb) {
516 printk(KERN_ERR DRV_NAME
517 ": %s: Error: failed to insert VLAN tag\n",
518 client_info->slave->dev->master->name);
519 continue;
520 }
521 }
522
523 arp_xmit(skb);
524 }
525 }
526
527 /* sends ARP REPLIES that update the clients that need updating */
528 static void rlb_update_rx_clients(struct bonding *bond)
529 {
530 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
531 struct rlb_client_info *client_info;
532 u32 hash_index;
533
534 _lock_rx_hashtbl(bond);
535
536 hash_index = bond_info->rx_hashtbl_head;
537 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
538 client_info = &(bond_info->rx_hashtbl[hash_index]);
539 if (client_info->ntt) {
540 rlb_update_client(client_info);
541 if (bond_info->rlb_update_retry_counter == 0) {
542 client_info->ntt = 0;
543 }
544 }
545 }
546
547 /* do not update the entries again untill this counter is zero so that
548 * not to confuse the clients.
549 */
550 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
551
552 _unlock_rx_hashtbl(bond);
553 }
554
555 /* The slave was assigned a new mac address - update the clients */
556 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
557 {
558 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
559 struct rlb_client_info *client_info;
560 int ntt = 0;
561 u32 hash_index;
562
563 _lock_rx_hashtbl(bond);
564
565 hash_index = bond_info->rx_hashtbl_head;
566 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
567 client_info = &(bond_info->rx_hashtbl[hash_index]);
568
569 if ((client_info->slave == slave) &&
570 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
571 client_info->ntt = 1;
572 ntt = 1;
573 }
574 }
575
576 // update the team's flag only after the whole iteration
577 if (ntt) {
578 bond_info->rx_ntt = 1;
579 //fasten the change
580 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
581 }
582
583 _unlock_rx_hashtbl(bond);
584 }
585
586 /* mark all clients using src_ip to be updated */
587 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
588 {
589 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
590 struct rlb_client_info *client_info;
591 u32 hash_index;
592
593 _lock_rx_hashtbl(bond);
594
595 hash_index = bond_info->rx_hashtbl_head;
596 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
597 client_info = &(bond_info->rx_hashtbl[hash_index]);
598
599 if (!client_info->slave) {
600 printk(KERN_ERR DRV_NAME
601 ": %s: Error: found a client with no channel in "
602 "the client's hash table\n",
603 bond->dev->name);
604 continue;
605 }
606 /*update all clients using this src_ip, that are not assigned
607 * to the team's address (curr_active_slave) and have a known
608 * unicast mac address.
609 */
610 if ((client_info->ip_src == src_ip) &&
611 memcmp(client_info->slave->dev->dev_addr,
612 bond->dev->dev_addr, ETH_ALEN) &&
613 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
614 client_info->ntt = 1;
615 bond_info->rx_ntt = 1;
616 }
617 }
618
619 _unlock_rx_hashtbl(bond);
620 }
621
622 /* Caller must hold both bond and ptr locks for read */
623 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
624 {
625 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
626 struct arp_pkt *arp = arp_pkt(skb);
627 struct slave *assigned_slave;
628 struct rlb_client_info *client_info;
629 u32 hash_index = 0;
630
631 _lock_rx_hashtbl(bond);
632
633 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
634 client_info = &(bond_info->rx_hashtbl[hash_index]);
635
636 if (client_info->assigned) {
637 if ((client_info->ip_src == arp->ip_src) &&
638 (client_info->ip_dst == arp->ip_dst)) {
639 /* the entry is already assigned to this client */
640 if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
641 /* update mac address from arp */
642 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
643 }
644
645 assigned_slave = client_info->slave;
646 if (assigned_slave) {
647 _unlock_rx_hashtbl(bond);
648 return assigned_slave;
649 }
650 } else {
651 /* the entry is already assigned to some other client,
652 * move the old client to primary (curr_active_slave) so
653 * that the new client can be assigned to this entry.
654 */
655 if (bond->curr_active_slave &&
656 client_info->slave != bond->curr_active_slave) {
657 client_info->slave = bond->curr_active_slave;
658 rlb_update_client(client_info);
659 }
660 }
661 }
662 /* assign a new slave */
663 assigned_slave = rlb_next_rx_slave(bond);
664
665 if (assigned_slave) {
666 client_info->ip_src = arp->ip_src;
667 client_info->ip_dst = arp->ip_dst;
668 /* arp->mac_dst is broadcast for arp reqeusts.
669 * will be updated with clients actual unicast mac address
670 * upon receiving an arp reply.
671 */
672 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
673 client_info->slave = assigned_slave;
674
675 if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
676 client_info->ntt = 1;
677 bond->alb_info.rx_ntt = 1;
678 } else {
679 client_info->ntt = 0;
680 }
681
682 if (!list_empty(&bond->vlan_list)) {
683 if (!vlan_get_tag(skb, &client_info->vlan_id))
684 client_info->tag = 1;
685 }
686
687 if (!client_info->assigned) {
688 u32 prev_tbl_head = bond_info->rx_hashtbl_head;
689 bond_info->rx_hashtbl_head = hash_index;
690 client_info->next = prev_tbl_head;
691 if (prev_tbl_head != RLB_NULL_INDEX) {
692 bond_info->rx_hashtbl[prev_tbl_head].prev =
693 hash_index;
694 }
695 client_info->assigned = 1;
696 }
697 }
698
699 _unlock_rx_hashtbl(bond);
700
701 return assigned_slave;
702 }
703
704 /* chooses (and returns) transmit channel for arp reply
705 * does not choose channel for other arp types since they are
706 * sent on the curr_active_slave
707 */
708 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
709 {
710 struct arp_pkt *arp = arp_pkt(skb);
711 struct slave *tx_slave = NULL;
712
713 if (arp->op_code == __constant_htons(ARPOP_REPLY)) {
714 /* the arp must be sent on the selected
715 * rx channel
716 */
717 tx_slave = rlb_choose_channel(skb, bond);
718 if (tx_slave) {
719 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
720 }
721 dprintk("Server sent ARP Reply packet\n");
722 } else if (arp->op_code == __constant_htons(ARPOP_REQUEST)) {
723 /* Create an entry in the rx_hashtbl for this client as a
724 * place holder.
725 * When the arp reply is received the entry will be updated
726 * with the correct unicast address of the client.
727 */
728 rlb_choose_channel(skb, bond);
729
730 /* The ARP relpy packets must be delayed so that
731 * they can cancel out the influence of the ARP request.
732 */
733 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
734
735 /* arp requests are broadcast and are sent on the primary
736 * the arp request will collapse all clients on the subnet to
737 * the primary slave. We must register these clients to be
738 * updated with their assigned mac.
739 */
740 rlb_req_update_subnet_clients(bond, arp->ip_src);
741 dprintk("Server sent ARP Request packet\n");
742 }
743
744 return tx_slave;
745 }
746
747 /* Caller must hold bond lock for read */
748 static void rlb_rebalance(struct bonding *bond)
749 {
750 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
751 struct slave *assigned_slave;
752 struct rlb_client_info *client_info;
753 int ntt;
754 u32 hash_index;
755
756 _lock_rx_hashtbl(bond);
757
758 ntt = 0;
759 hash_index = bond_info->rx_hashtbl_head;
760 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
761 client_info = &(bond_info->rx_hashtbl[hash_index]);
762 assigned_slave = rlb_next_rx_slave(bond);
763 if (assigned_slave && (client_info->slave != assigned_slave)) {
764 client_info->slave = assigned_slave;
765 client_info->ntt = 1;
766 ntt = 1;
767 }
768 }
769
770 /* update the team's flag only after the whole iteration */
771 if (ntt) {
772 bond_info->rx_ntt = 1;
773 }
774 _unlock_rx_hashtbl(bond);
775 }
776
777 /* Caller must hold rx_hashtbl lock */
778 static void rlb_init_table_entry(struct rlb_client_info *entry)
779 {
780 memset(entry, 0, sizeof(struct rlb_client_info));
781 entry->next = RLB_NULL_INDEX;
782 entry->prev = RLB_NULL_INDEX;
783 }
784
785 static int rlb_initialize(struct bonding *bond)
786 {
787 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
788 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
789 struct rlb_client_info *new_hashtbl;
790 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
791 int i;
792
793 spin_lock_init(&(bond_info->rx_hashtbl_lock));
794
795 new_hashtbl = kmalloc(size, GFP_KERNEL);
796 if (!new_hashtbl) {
797 printk(KERN_ERR DRV_NAME
798 ": %s: Error: Failed to allocate RLB hash table\n",
799 bond->dev->name);
800 return -1;
801 }
802 _lock_rx_hashtbl(bond);
803
804 bond_info->rx_hashtbl = new_hashtbl;
805
806 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
807
808 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
809 rlb_init_table_entry(bond_info->rx_hashtbl + i);
810 }
811
812 _unlock_rx_hashtbl(bond);
813
814 /*initialize packet type*/
815 pk_type->type = __constant_htons(ETH_P_ARP);
816 pk_type->dev = bond->dev;
817 pk_type->func = rlb_arp_recv;
818
819 /* register to receive ARPs */
820 dev_add_pack(pk_type);
821
822 return 0;
823 }
824
825 static void rlb_deinitialize(struct bonding *bond)
826 {
827 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
828
829 dev_remove_pack(&(bond_info->rlb_pkt_type));
830
831 _lock_rx_hashtbl(bond);
832
833 kfree(bond_info->rx_hashtbl);
834 bond_info->rx_hashtbl = NULL;
835 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
836
837 _unlock_rx_hashtbl(bond);
838 }
839
840 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
841 {
842 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
843 u32 curr_index;
844
845 _lock_rx_hashtbl(bond);
846
847 curr_index = bond_info->rx_hashtbl_head;
848 while (curr_index != RLB_NULL_INDEX) {
849 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
850 u32 next_index = bond_info->rx_hashtbl[curr_index].next;
851 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
852
853 if (curr->tag && (curr->vlan_id == vlan_id)) {
854 if (curr_index == bond_info->rx_hashtbl_head) {
855 bond_info->rx_hashtbl_head = next_index;
856 }
857 if (prev_index != RLB_NULL_INDEX) {
858 bond_info->rx_hashtbl[prev_index].next = next_index;
859 }
860 if (next_index != RLB_NULL_INDEX) {
861 bond_info->rx_hashtbl[next_index].prev = prev_index;
862 }
863
864 rlb_init_table_entry(curr);
865 }
866
867 curr_index = next_index;
868 }
869
870 _unlock_rx_hashtbl(bond);
871 }
872
873 /*********************** tlb/rlb shared functions *********************/
874
875 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
876 {
877 struct bonding *bond = bond_get_bond_by_slave(slave);
878 struct learning_pkt pkt;
879 int size = sizeof(struct learning_pkt);
880 int i;
881
882 memset(&pkt, 0, size);
883 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
884 memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
885 pkt.type = __constant_htons(ETH_P_LOOP);
886
887 for (i = 0; i < MAX_LP_BURST; i++) {
888 struct sk_buff *skb;
889 char *data;
890
891 skb = dev_alloc_skb(size);
892 if (!skb) {
893 return;
894 }
895
896 data = skb_put(skb, size);
897 memcpy(data, &pkt, size);
898
899 skb_reset_mac_header(skb);
900 skb->network_header = skb->mac_header + ETH_HLEN;
901 skb->protocol = pkt.type;
902 skb->priority = TC_PRIO_CONTROL;
903 skb->dev = slave->dev;
904
905 if (!list_empty(&bond->vlan_list)) {
906 struct vlan_entry *vlan;
907
908 vlan = bond_next_vlan(bond,
909 bond->alb_info.current_alb_vlan);
910
911 bond->alb_info.current_alb_vlan = vlan;
912 if (!vlan) {
913 kfree_skb(skb);
914 continue;
915 }
916
917 skb = vlan_put_tag(skb, vlan->vlan_id);
918 if (!skb) {
919 printk(KERN_ERR DRV_NAME
920 ": %s: Error: failed to insert VLAN tag\n",
921 bond->dev->name);
922 continue;
923 }
924 }
925
926 dev_queue_xmit(skb);
927 }
928 }
929
930 /* hw is a boolean parameter that determines whether we should try and
931 * set the hw address of the device as well as the hw address of the
932 * net_device
933 */
934 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
935 {
936 struct net_device *dev = slave->dev;
937 struct sockaddr s_addr;
938
939 if (!hw) {
940 memcpy(dev->dev_addr, addr, dev->addr_len);
941 return 0;
942 }
943
944 /* for rlb each slave must have a unique hw mac addresses so that */
945 /* each slave will receive packets destined to a different mac */
946 memcpy(s_addr.sa_data, addr, dev->addr_len);
947 s_addr.sa_family = dev->type;
948 if (dev_set_mac_address(dev, &s_addr)) {
949 printk(KERN_ERR DRV_NAME
950 ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
951 "mode requires that the base driver support setting "
952 "the hw address also when the network device's "
953 "interface is open\n",
954 dev->master->name, dev->name);
955 return -EOPNOTSUPP;
956 }
957 return 0;
958 }
959
960 /*
961 * Swap MAC addresses between two slaves.
962 *
963 * Called with RTNL held, and no other locks.
964 *
965 */
966
967 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
968 {
969 u8 tmp_mac_addr[ETH_ALEN];
970
971 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
972 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
973 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
974
975 }
976
977 /*
978 * Send learning packets after MAC address swap.
979 *
980 * Called with RTNL and no other locks
981 */
982 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
983 struct slave *slave2)
984 {
985 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
986 struct slave *disabled_slave = NULL;
987
988 ASSERT_RTNL();
989
990 /* fasten the change in the switch */
991 if (SLAVE_IS_OK(slave1)) {
992 alb_send_learning_packets(slave1, slave1->dev->dev_addr);
993 if (bond->alb_info.rlb_enabled) {
994 /* inform the clients that the mac address
995 * has changed
996 */
997 rlb_req_update_slave_clients(bond, slave1);
998 }
999 } else {
1000 disabled_slave = slave1;
1001 }
1002
1003 if (SLAVE_IS_OK(slave2)) {
1004 alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1005 if (bond->alb_info.rlb_enabled) {
1006 /* inform the clients that the mac address
1007 * has changed
1008 */
1009 rlb_req_update_slave_clients(bond, slave2);
1010 }
1011 } else {
1012 disabled_slave = slave2;
1013 }
1014
1015 if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1016 /* A disabled slave was assigned an active mac addr */
1017 rlb_teach_disabled_mac_on_primary(bond,
1018 disabled_slave->dev->dev_addr);
1019 }
1020 }
1021
1022 /**
1023 * alb_change_hw_addr_on_detach
1024 * @bond: bonding we're working on
1025 * @slave: the slave that was just detached
1026 *
1027 * We assume that @slave was already detached from the slave list.
1028 *
1029 * If @slave's permanent hw address is different both from its current
1030 * address and from @bond's address, then somewhere in the bond there's
1031 * a slave that has @slave's permanet address as its current address.
1032 * We'll make sure that that slave no longer uses @slave's permanent address.
1033 *
1034 * Caller must hold RTNL and no other locks
1035 */
1036 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1037 {
1038 int perm_curr_diff;
1039 int perm_bond_diff;
1040
1041 perm_curr_diff = memcmp(slave->perm_hwaddr,
1042 slave->dev->dev_addr,
1043 ETH_ALEN);
1044 perm_bond_diff = memcmp(slave->perm_hwaddr,
1045 bond->dev->dev_addr,
1046 ETH_ALEN);
1047
1048 if (perm_curr_diff && perm_bond_diff) {
1049 struct slave *tmp_slave;
1050 int i, found = 0;
1051
1052 bond_for_each_slave(bond, tmp_slave, i) {
1053 if (!memcmp(slave->perm_hwaddr,
1054 tmp_slave->dev->dev_addr,
1055 ETH_ALEN)) {
1056 found = 1;
1057 break;
1058 }
1059 }
1060
1061 if (found) {
1062 /* locking: needs RTNL and nothing else */
1063 alb_swap_mac_addr(bond, slave, tmp_slave);
1064 alb_fasten_mac_swap(bond, slave, tmp_slave);
1065 }
1066 }
1067 }
1068
1069 /**
1070 * alb_handle_addr_collision_on_attach
1071 * @bond: bonding we're working on
1072 * @slave: the slave that was just attached
1073 *
1074 * checks uniqueness of slave's mac address and handles the case the
1075 * new slave uses the bonds mac address.
1076 *
1077 * If the permanent hw address of @slave is @bond's hw address, we need to
1078 * find a different hw address to give @slave, that isn't in use by any other
1079 * slave in the bond. This address must be, of course, one of the premanent
1080 * addresses of the other slaves.
1081 *
1082 * We go over the slave list, and for each slave there we compare its
1083 * permanent hw address with the current address of all the other slaves.
1084 * If no match was found, then we've found a slave with a permanent address
1085 * that isn't used by any other slave in the bond, so we can assign it to
1086 * @slave.
1087 *
1088 * assumption: this function is called before @slave is attached to the
1089 * bond slave list.
1090 *
1091 * caller must hold the bond lock for write since the mac addresses are compared
1092 * and may be swapped.
1093 */
1094 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1095 {
1096 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1097 struct slave *has_bond_addr = bond->curr_active_slave;
1098 int i, j, found = 0;
1099
1100 if (bond->slave_cnt == 0) {
1101 /* this is the first slave */
1102 return 0;
1103 }
1104
1105 /* if slave's mac address differs from bond's mac address
1106 * check uniqueness of slave's mac address against the other
1107 * slaves in the bond.
1108 */
1109 if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1110 bond_for_each_slave(bond, tmp_slave1, i) {
1111 if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1112 ETH_ALEN)) {
1113 found = 1;
1114 break;
1115 }
1116 }
1117
1118 if (!found)
1119 return 0;
1120
1121 /* Try setting slave mac to bond address and fall-through
1122 to code handling that situation below... */
1123 alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1124 bond->alb_info.rlb_enabled);
1125 }
1126
1127 /* The slave's address is equal to the address of the bond.
1128 * Search for a spare address in the bond for this slave.
1129 */
1130 free_mac_slave = NULL;
1131
1132 bond_for_each_slave(bond, tmp_slave1, i) {
1133 found = 0;
1134 bond_for_each_slave(bond, tmp_slave2, j) {
1135 if (!memcmp(tmp_slave1->perm_hwaddr,
1136 tmp_slave2->dev->dev_addr,
1137 ETH_ALEN)) {
1138 found = 1;
1139 break;
1140 }
1141 }
1142
1143 if (!found) {
1144 /* no slave has tmp_slave1's perm addr
1145 * as its curr addr
1146 */
1147 free_mac_slave = tmp_slave1;
1148 break;
1149 }
1150
1151 if (!has_bond_addr) {
1152 if (!memcmp(tmp_slave1->dev->dev_addr,
1153 bond->dev->dev_addr,
1154 ETH_ALEN)) {
1155
1156 has_bond_addr = tmp_slave1;
1157 }
1158 }
1159 }
1160
1161 if (free_mac_slave) {
1162 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1163 bond->alb_info.rlb_enabled);
1164
1165 printk(KERN_WARNING DRV_NAME
1166 ": %s: Warning: the hw address of slave %s is in use by "
1167 "the bond; giving it the hw address of %s\n",
1168 bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1169
1170 } else if (has_bond_addr) {
1171 printk(KERN_ERR DRV_NAME
1172 ": %s: Error: the hw address of slave %s is in use by the "
1173 "bond; couldn't find a slave with a free hw address to "
1174 "give it (this should not have happened)\n",
1175 bond->dev->name, slave->dev->name);
1176 return -EFAULT;
1177 }
1178
1179 return 0;
1180 }
1181
1182 /**
1183 * alb_set_mac_address
1184 * @bond:
1185 * @addr:
1186 *
1187 * In TLB mode all slaves are configured to the bond's hw address, but set
1188 * their dev_addr field to different addresses (based on their permanent hw
1189 * addresses).
1190 *
1191 * For each slave, this function sets the interface to the new address and then
1192 * changes its dev_addr field to its previous value.
1193 *
1194 * Unwinding assumes bond's mac address has not yet changed.
1195 */
1196 static int alb_set_mac_address(struct bonding *bond, void *addr)
1197 {
1198 struct sockaddr sa;
1199 struct slave *slave, *stop_at;
1200 char tmp_addr[ETH_ALEN];
1201 int res;
1202 int i;
1203
1204 if (bond->alb_info.rlb_enabled) {
1205 return 0;
1206 }
1207
1208 bond_for_each_slave(bond, slave, i) {
1209 if (slave->dev->set_mac_address == NULL) {
1210 res = -EOPNOTSUPP;
1211 goto unwind;
1212 }
1213
1214 /* save net_device's current hw address */
1215 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1216
1217 res = dev_set_mac_address(slave->dev, addr);
1218
1219 /* restore net_device's hw address */
1220 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1221
1222 if (res) {
1223 goto unwind;
1224 }
1225 }
1226
1227 return 0;
1228
1229 unwind:
1230 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1231 sa.sa_family = bond->dev->type;
1232
1233 /* unwind from head to the slave that failed */
1234 stop_at = slave;
1235 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1236 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1237 dev_set_mac_address(slave->dev, &sa);
1238 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1239 }
1240
1241 return res;
1242 }
1243
1244 /************************ exported alb funcions ************************/
1245
1246 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1247 {
1248 int res;
1249
1250 res = tlb_initialize(bond);
1251 if (res) {
1252 return res;
1253 }
1254
1255 if (rlb_enabled) {
1256 bond->alb_info.rlb_enabled = 1;
1257 /* initialize rlb */
1258 res = rlb_initialize(bond);
1259 if (res) {
1260 tlb_deinitialize(bond);
1261 return res;
1262 }
1263 } else {
1264 bond->alb_info.rlb_enabled = 0;
1265 }
1266
1267 return 0;
1268 }
1269
1270 void bond_alb_deinitialize(struct bonding *bond)
1271 {
1272 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1273
1274 tlb_deinitialize(bond);
1275
1276 if (bond_info->rlb_enabled) {
1277 rlb_deinitialize(bond);
1278 }
1279 }
1280
1281 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1282 {
1283 struct bonding *bond = bond_dev->priv;
1284 struct ethhdr *eth_data;
1285 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1286 struct slave *tx_slave = NULL;
1287 static const __be32 ip_bcast = htonl(0xffffffff);
1288 int hash_size = 0;
1289 int do_tx_balance = 1;
1290 u32 hash_index = 0;
1291 const u8 *hash_start = NULL;
1292 int res = 1;
1293
1294 skb_reset_mac_header(skb);
1295 eth_data = eth_hdr(skb);
1296
1297 /* make sure that the curr_active_slave and the slaves list do
1298 * not change during tx
1299 */
1300 read_lock(&bond->lock);
1301 read_lock(&bond->curr_slave_lock);
1302
1303 if (!BOND_IS_OK(bond)) {
1304 goto out;
1305 }
1306
1307 switch (ntohs(skb->protocol)) {
1308 case ETH_P_IP: {
1309 const struct iphdr *iph = ip_hdr(skb);
1310
1311 if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1312 (iph->daddr == ip_bcast) ||
1313 (iph->protocol == IPPROTO_IGMP)) {
1314 do_tx_balance = 0;
1315 break;
1316 }
1317 hash_start = (char *)&(iph->daddr);
1318 hash_size = sizeof(iph->daddr);
1319 }
1320 break;
1321 case ETH_P_IPV6:
1322 if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1323 do_tx_balance = 0;
1324 break;
1325 }
1326
1327 hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1328 hash_size = sizeof(ipv6_hdr(skb)->daddr);
1329 break;
1330 case ETH_P_IPX:
1331 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1332 /* something is wrong with this packet */
1333 do_tx_balance = 0;
1334 break;
1335 }
1336
1337 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1338 /* The only protocol worth balancing in
1339 * this family since it has an "ARP" like
1340 * mechanism
1341 */
1342 do_tx_balance = 0;
1343 break;
1344 }
1345
1346 hash_start = (char*)eth_data->h_dest;
1347 hash_size = ETH_ALEN;
1348 break;
1349 case ETH_P_ARP:
1350 do_tx_balance = 0;
1351 if (bond_info->rlb_enabled) {
1352 tx_slave = rlb_arp_xmit(skb, bond);
1353 }
1354 break;
1355 default:
1356 do_tx_balance = 0;
1357 break;
1358 }
1359
1360 if (do_tx_balance) {
1361 hash_index = _simple_hash(hash_start, hash_size);
1362 tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1363 }
1364
1365 if (!tx_slave) {
1366 /* unbalanced or unassigned, send through primary */
1367 tx_slave = bond->curr_active_slave;
1368 bond_info->unbalanced_load += skb->len;
1369 }
1370
1371 if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1372 if (tx_slave != bond->curr_active_slave) {
1373 memcpy(eth_data->h_source,
1374 tx_slave->dev->dev_addr,
1375 ETH_ALEN);
1376 }
1377
1378 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1379 } else {
1380 if (tx_slave) {
1381 tlb_clear_slave(bond, tx_slave, 0);
1382 }
1383 }
1384
1385 out:
1386 if (res) {
1387 /* no suitable interface, frame not sent */
1388 dev_kfree_skb(skb);
1389 }
1390 read_unlock(&bond->curr_slave_lock);
1391 read_unlock(&bond->lock);
1392 return 0;
1393 }
1394
1395 void bond_alb_monitor(struct work_struct *work)
1396 {
1397 struct bonding *bond = container_of(work, struct bonding,
1398 alb_work.work);
1399 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1400 struct slave *slave;
1401 int i;
1402
1403 read_lock(&bond->lock);
1404
1405 if (bond->kill_timers) {
1406 goto out;
1407 }
1408
1409 if (bond->slave_cnt == 0) {
1410 bond_info->tx_rebalance_counter = 0;
1411 bond_info->lp_counter = 0;
1412 goto re_arm;
1413 }
1414
1415 bond_info->tx_rebalance_counter++;
1416 bond_info->lp_counter++;
1417
1418 /* send learning packets */
1419 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1420 /* change of curr_active_slave involves swapping of mac addresses.
1421 * in order to avoid this swapping from happening while
1422 * sending the learning packets, the curr_slave_lock must be held for
1423 * read.
1424 */
1425 read_lock(&bond->curr_slave_lock);
1426
1427 bond_for_each_slave(bond, slave, i) {
1428 alb_send_learning_packets(slave, slave->dev->dev_addr);
1429 }
1430
1431 read_unlock(&bond->curr_slave_lock);
1432
1433 bond_info->lp_counter = 0;
1434 }
1435
1436 /* rebalance tx traffic */
1437 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1438
1439 read_lock(&bond->curr_slave_lock);
1440
1441 bond_for_each_slave(bond, slave, i) {
1442 tlb_clear_slave(bond, slave, 1);
1443 if (slave == bond->curr_active_slave) {
1444 SLAVE_TLB_INFO(slave).load =
1445 bond_info->unbalanced_load /
1446 BOND_TLB_REBALANCE_INTERVAL;
1447 bond_info->unbalanced_load = 0;
1448 }
1449 }
1450
1451 read_unlock(&bond->curr_slave_lock);
1452
1453 bond_info->tx_rebalance_counter = 0;
1454 }
1455
1456 /* handle rlb stuff */
1457 if (bond_info->rlb_enabled) {
1458 if (bond_info->primary_is_promisc &&
1459 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1460
1461 /*
1462 * dev_set_promiscuity requires rtnl and
1463 * nothing else.
1464 */
1465 read_unlock(&bond->lock);
1466 rtnl_lock();
1467
1468 bond_info->rlb_promisc_timeout_counter = 0;
1469
1470 /* If the primary was set to promiscuous mode
1471 * because a slave was disabled then
1472 * it can now leave promiscuous mode.
1473 */
1474 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1475 bond_info->primary_is_promisc = 0;
1476
1477 rtnl_unlock();
1478 read_lock(&bond->lock);
1479 }
1480
1481 if (bond_info->rlb_rebalance) {
1482 bond_info->rlb_rebalance = 0;
1483 rlb_rebalance(bond);
1484 }
1485
1486 /* check if clients need updating */
1487 if (bond_info->rx_ntt) {
1488 if (bond_info->rlb_update_delay_counter) {
1489 --bond_info->rlb_update_delay_counter;
1490 } else {
1491 rlb_update_rx_clients(bond);
1492 if (bond_info->rlb_update_retry_counter) {
1493 --bond_info->rlb_update_retry_counter;
1494 } else {
1495 bond_info->rx_ntt = 0;
1496 }
1497 }
1498 }
1499 }
1500
1501 re_arm:
1502 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1503 out:
1504 read_unlock(&bond->lock);
1505 }
1506
1507 /* assumption: called before the slave is attached to the bond
1508 * and not locked by the bond lock
1509 */
1510 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1511 {
1512 int res;
1513
1514 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1515 bond->alb_info.rlb_enabled);
1516 if (res) {
1517 return res;
1518 }
1519
1520 /* caller must hold the bond lock for write since the mac addresses
1521 * are compared and may be swapped.
1522 */
1523 read_lock(&bond->lock);
1524
1525 res = alb_handle_addr_collision_on_attach(bond, slave);
1526
1527 read_unlock(&bond->lock);
1528
1529 if (res) {
1530 return res;
1531 }
1532
1533 tlb_init_slave(slave);
1534
1535 /* order a rebalance ASAP */
1536 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1537
1538 if (bond->alb_info.rlb_enabled) {
1539 bond->alb_info.rlb_rebalance = 1;
1540 }
1541
1542 return 0;
1543 }
1544
1545 /*
1546 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1547 * if necessary.
1548 *
1549 * Caller must hold RTNL and no other locks
1550 */
1551 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1552 {
1553 if (bond->slave_cnt > 1) {
1554 alb_change_hw_addr_on_detach(bond, slave);
1555 }
1556
1557 tlb_clear_slave(bond, slave, 0);
1558
1559 if (bond->alb_info.rlb_enabled) {
1560 bond->alb_info.next_rx_slave = NULL;
1561 rlb_clear_slave(bond, slave);
1562 }
1563 }
1564
1565 /* Caller must hold bond lock for read */
1566 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1567 {
1568 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1569
1570 if (link == BOND_LINK_DOWN) {
1571 tlb_clear_slave(bond, slave, 0);
1572 if (bond->alb_info.rlb_enabled) {
1573 rlb_clear_slave(bond, slave);
1574 }
1575 } else if (link == BOND_LINK_UP) {
1576 /* order a rebalance ASAP */
1577 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1578 if (bond->alb_info.rlb_enabled) {
1579 bond->alb_info.rlb_rebalance = 1;
1580 /* If the updelay module parameter is smaller than the
1581 * forwarding delay of the switch the rebalance will
1582 * not work because the rebalance arp replies will
1583 * not be forwarded to the clients..
1584 */
1585 }
1586 }
1587 }
1588
1589 /**
1590 * bond_alb_handle_active_change - assign new curr_active_slave
1591 * @bond: our bonding struct
1592 * @new_slave: new slave to assign
1593 *
1594 * Set the bond->curr_active_slave to @new_slave and handle
1595 * mac address swapping and promiscuity changes as needed.
1596 *
1597 * If new_slave is NULL, caller must hold curr_slave_lock or
1598 * bond->lock for write.
1599 *
1600 * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1601 * read and curr_slave_lock for write. Processing here may sleep, so
1602 * no other locks may be held.
1603 */
1604 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1605 {
1606 struct slave *swap_slave;
1607 int i;
1608
1609 if (bond->curr_active_slave == new_slave) {
1610 return;
1611 }
1612
1613 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1614 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1615 bond->alb_info.primary_is_promisc = 0;
1616 bond->alb_info.rlb_promisc_timeout_counter = 0;
1617 }
1618
1619 swap_slave = bond->curr_active_slave;
1620 bond->curr_active_slave = new_slave;
1621
1622 if (!new_slave || (bond->slave_cnt == 0)) {
1623 return;
1624 }
1625
1626 /* set the new curr_active_slave to the bonds mac address
1627 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1628 */
1629 if (!swap_slave) {
1630 struct slave *tmp_slave;
1631 /* find slave that is holding the bond's mac address */
1632 bond_for_each_slave(bond, tmp_slave, i) {
1633 if (!memcmp(tmp_slave->dev->dev_addr,
1634 bond->dev->dev_addr, ETH_ALEN)) {
1635 swap_slave = tmp_slave;
1636 break;
1637 }
1638 }
1639 }
1640
1641 /*
1642 * Arrange for swap_slave and new_slave to temporarily be
1643 * ignored so we can mess with their MAC addresses without
1644 * fear of interference from transmit activity.
1645 */
1646 if (swap_slave) {
1647 tlb_clear_slave(bond, swap_slave, 1);
1648 }
1649 tlb_clear_slave(bond, new_slave, 1);
1650
1651 write_unlock_bh(&bond->curr_slave_lock);
1652 read_unlock(&bond->lock);
1653
1654 ASSERT_RTNL();
1655
1656 /* curr_active_slave must be set before calling alb_swap_mac_addr */
1657 if (swap_slave) {
1658 /* swap mac address */
1659 alb_swap_mac_addr(bond, swap_slave, new_slave);
1660 } else {
1661 /* set the new_slave to the bond mac address */
1662 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1663 bond->alb_info.rlb_enabled);
1664 }
1665
1666 if (swap_slave) {
1667 alb_fasten_mac_swap(bond, swap_slave, new_slave);
1668 read_lock(&bond->lock);
1669 } else {
1670 read_lock(&bond->lock);
1671 alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1672 }
1673
1674 write_lock_bh(&bond->curr_slave_lock);
1675 }
1676
1677 /*
1678 * Called with RTNL
1679 */
1680 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1681 {
1682 struct bonding *bond = bond_dev->priv;
1683 struct sockaddr *sa = addr;
1684 struct slave *slave, *swap_slave;
1685 int res;
1686 int i;
1687
1688 if (!is_valid_ether_addr(sa->sa_data)) {
1689 return -EADDRNOTAVAIL;
1690 }
1691
1692 res = alb_set_mac_address(bond, addr);
1693 if (res) {
1694 return res;
1695 }
1696
1697 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1698
1699 /* If there is no curr_active_slave there is nothing else to do.
1700 * Otherwise we'll need to pass the new address to it and handle
1701 * duplications.
1702 */
1703 if (!bond->curr_active_slave) {
1704 return 0;
1705 }
1706
1707 swap_slave = NULL;
1708
1709 bond_for_each_slave(bond, slave, i) {
1710 if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1711 swap_slave = slave;
1712 break;
1713 }
1714 }
1715
1716 write_unlock_bh(&bond->curr_slave_lock);
1717 read_unlock(&bond->lock);
1718
1719 if (swap_slave) {
1720 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1721 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1722 } else {
1723 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1724 bond->alb_info.rlb_enabled);
1725
1726 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1727 if (bond->alb_info.rlb_enabled) {
1728 /* inform clients mac address has changed */
1729 rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1730 }
1731 }
1732
1733 read_lock(&bond->lock);
1734 write_lock_bh(&bond->curr_slave_lock);
1735
1736 return 0;
1737 }
1738
1739 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1740 {
1741 if (bond->alb_info.current_alb_vlan &&
1742 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1743 bond->alb_info.current_alb_vlan = NULL;
1744 }
1745
1746 if (bond->alb_info.rlb_enabled) {
1747 rlb_clear_vlan(bond, vlan_id);
1748 }
1749 }
1750
This page took 0.111291 seconds and 5 git commands to generate.