Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-next-2.6
[deliverable/linux.git] / drivers / net / bonding / bond_alb.c
1 /*
2 * Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with this program; if not, write to the Free Software Foundation, Inc.,
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 */
22
23 //#define BONDING_DEBUG 1
24
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/pkt_sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/ip.h>
33 #include <linux/ipv6.h>
34 #include <linux/if_arp.h>
35 #include <linux/if_ether.h>
36 #include <linux/if_bonding.h>
37 #include <linux/if_vlan.h>
38 #include <linux/in.h>
39 #include <net/ipx.h>
40 #include <net/arp.h>
41 #include <net/ipv6.h>
42 #include <asm/byteorder.h>
43 #include "bonding.h"
44 #include "bond_alb.h"
45
46
47 #define ALB_TIMER_TICKS_PER_SEC 10 /* should be a divisor of HZ */
48 #define BOND_TLB_REBALANCE_INTERVAL 10 /* In seconds, periodic re-balancing.
49 * Used for division - never set
50 * to zero !!!
51 */
52 #define BOND_ALB_LP_INTERVAL 1 /* In seconds, periodic send of
53 * learning packets to the switch
54 */
55
56 #define BOND_TLB_REBALANCE_TICKS (BOND_TLB_REBALANCE_INTERVAL \
57 * ALB_TIMER_TICKS_PER_SEC)
58
59 #define BOND_ALB_LP_TICKS (BOND_ALB_LP_INTERVAL \
60 * ALB_TIMER_TICKS_PER_SEC)
61
62 #define TLB_HASH_TABLE_SIZE 256 /* The size of the clients hash table.
63 * Note that this value MUST NOT be smaller
64 * because the key hash table is BYTE wide !
65 */
66
67
68 #define TLB_NULL_INDEX 0xffffffff
69 #define MAX_LP_BURST 3
70
71 /* rlb defs */
72 #define RLB_HASH_TABLE_SIZE 256
73 #define RLB_NULL_INDEX 0xffffffff
74 #define RLB_UPDATE_DELAY 2*ALB_TIMER_TICKS_PER_SEC /* 2 seconds */
75 #define RLB_ARP_BURST_SIZE 2
76 #define RLB_UPDATE_RETRY 3 /* 3-ticks - must be smaller than the rlb
77 * rebalance interval (5 min).
78 */
79 /* RLB_PROMISC_TIMEOUT = 10 sec equals the time that the current slave is
80 * promiscuous after failover
81 */
82 #define RLB_PROMISC_TIMEOUT 10*ALB_TIMER_TICKS_PER_SEC
83
84 static const u8 mac_bcast[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff};
85 static const u8 mac_v6_allmcast[ETH_ALEN] = {0x33,0x33,0x00,0x00,0x00,0x01};
86 static const int alb_delta_in_ticks = HZ / ALB_TIMER_TICKS_PER_SEC;
87
88 #pragma pack(1)
89 struct learning_pkt {
90 u8 mac_dst[ETH_ALEN];
91 u8 mac_src[ETH_ALEN];
92 __be16 type;
93 u8 padding[ETH_ZLEN - ETH_HLEN];
94 };
95
96 struct arp_pkt {
97 __be16 hw_addr_space;
98 __be16 prot_addr_space;
99 u8 hw_addr_len;
100 u8 prot_addr_len;
101 __be16 op_code;
102 u8 mac_src[ETH_ALEN]; /* sender hardware address */
103 __be32 ip_src; /* sender IP address */
104 u8 mac_dst[ETH_ALEN]; /* target hardware address */
105 __be32 ip_dst; /* target IP address */
106 };
107 #pragma pack()
108
109 static inline struct arp_pkt *arp_pkt(const struct sk_buff *skb)
110 {
111 return (struct arp_pkt *)skb_network_header(skb);
112 }
113
114 /* Forward declaration */
115 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[]);
116
117 static inline u8 _simple_hash(const u8 *hash_start, int hash_size)
118 {
119 int i;
120 u8 hash = 0;
121
122 for (i = 0; i < hash_size; i++) {
123 hash ^= hash_start[i];
124 }
125
126 return hash;
127 }
128
129 /*********************** tlb specific functions ***************************/
130
131 static inline void _lock_tx_hashtbl(struct bonding *bond)
132 {
133 spin_lock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
134 }
135
136 static inline void _unlock_tx_hashtbl(struct bonding *bond)
137 {
138 spin_unlock_bh(&(BOND_ALB_INFO(bond).tx_hashtbl_lock));
139 }
140
141 /* Caller must hold tx_hashtbl lock */
142 static inline void tlb_init_table_entry(struct tlb_client_info *entry, int save_load)
143 {
144 if (save_load) {
145 entry->load_history = 1 + entry->tx_bytes /
146 BOND_TLB_REBALANCE_INTERVAL;
147 entry->tx_bytes = 0;
148 }
149
150 entry->tx_slave = NULL;
151 entry->next = TLB_NULL_INDEX;
152 entry->prev = TLB_NULL_INDEX;
153 }
154
155 static inline void tlb_init_slave(struct slave *slave)
156 {
157 SLAVE_TLB_INFO(slave).load = 0;
158 SLAVE_TLB_INFO(slave).head = TLB_NULL_INDEX;
159 }
160
161 /* Caller must hold bond lock for read */
162 static void tlb_clear_slave(struct bonding *bond, struct slave *slave, int save_load)
163 {
164 struct tlb_client_info *tx_hash_table;
165 u32 index;
166
167 _lock_tx_hashtbl(bond);
168
169 /* clear slave from tx_hashtbl */
170 tx_hash_table = BOND_ALB_INFO(bond).tx_hashtbl;
171
172 /* skip this if we've already freed the tx hash table */
173 if (tx_hash_table) {
174 index = SLAVE_TLB_INFO(slave).head;
175 while (index != TLB_NULL_INDEX) {
176 u32 next_index = tx_hash_table[index].next;
177 tlb_init_table_entry(&tx_hash_table[index], save_load);
178 index = next_index;
179 }
180 }
181
182 tlb_init_slave(slave);
183
184 _unlock_tx_hashtbl(bond);
185 }
186
187 /* Must be called before starting the monitor timer */
188 static int tlb_initialize(struct bonding *bond)
189 {
190 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
191 int size = TLB_HASH_TABLE_SIZE * sizeof(struct tlb_client_info);
192 struct tlb_client_info *new_hashtbl;
193 int i;
194
195 spin_lock_init(&(bond_info->tx_hashtbl_lock));
196
197 new_hashtbl = kzalloc(size, GFP_KERNEL);
198 if (!new_hashtbl) {
199 printk(KERN_ERR DRV_NAME
200 ": %s: Error: Failed to allocate TLB hash table\n",
201 bond->dev->name);
202 return -1;
203 }
204 _lock_tx_hashtbl(bond);
205
206 bond_info->tx_hashtbl = new_hashtbl;
207
208 for (i = 0; i < TLB_HASH_TABLE_SIZE; i++) {
209 tlb_init_table_entry(&bond_info->tx_hashtbl[i], 1);
210 }
211
212 _unlock_tx_hashtbl(bond);
213
214 return 0;
215 }
216
217 /* Must be called only after all slaves have been released */
218 static void tlb_deinitialize(struct bonding *bond)
219 {
220 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
221
222 _lock_tx_hashtbl(bond);
223
224 kfree(bond_info->tx_hashtbl);
225 bond_info->tx_hashtbl = NULL;
226
227 _unlock_tx_hashtbl(bond);
228 }
229
230 /* Caller must hold bond lock for read */
231 static struct slave *tlb_get_least_loaded_slave(struct bonding *bond)
232 {
233 struct slave *slave, *least_loaded;
234 s64 max_gap;
235 int i, found = 0;
236
237 /* Find the first enabled slave */
238 bond_for_each_slave(bond, slave, i) {
239 if (SLAVE_IS_OK(slave)) {
240 found = 1;
241 break;
242 }
243 }
244
245 if (!found) {
246 return NULL;
247 }
248
249 least_loaded = slave;
250 max_gap = (s64)(slave->speed << 20) - /* Convert to Megabit per sec */
251 (s64)(SLAVE_TLB_INFO(slave).load << 3); /* Bytes to bits */
252
253 /* Find the slave with the largest gap */
254 bond_for_each_slave_from(bond, slave, i, least_loaded) {
255 if (SLAVE_IS_OK(slave)) {
256 s64 gap = (s64)(slave->speed << 20) -
257 (s64)(SLAVE_TLB_INFO(slave).load << 3);
258 if (max_gap < gap) {
259 least_loaded = slave;
260 max_gap = gap;
261 }
262 }
263 }
264
265 return least_loaded;
266 }
267
268 /* Caller must hold bond lock for read */
269 static struct slave *tlb_choose_channel(struct bonding *bond, u32 hash_index, u32 skb_len)
270 {
271 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
272 struct tlb_client_info *hash_table;
273 struct slave *assigned_slave;
274
275 _lock_tx_hashtbl(bond);
276
277 hash_table = bond_info->tx_hashtbl;
278 assigned_slave = hash_table[hash_index].tx_slave;
279 if (!assigned_slave) {
280 assigned_slave = tlb_get_least_loaded_slave(bond);
281
282 if (assigned_slave) {
283 struct tlb_slave_info *slave_info =
284 &(SLAVE_TLB_INFO(assigned_slave));
285 u32 next_index = slave_info->head;
286
287 hash_table[hash_index].tx_slave = assigned_slave;
288 hash_table[hash_index].next = next_index;
289 hash_table[hash_index].prev = TLB_NULL_INDEX;
290
291 if (next_index != TLB_NULL_INDEX) {
292 hash_table[next_index].prev = hash_index;
293 }
294
295 slave_info->head = hash_index;
296 slave_info->load +=
297 hash_table[hash_index].load_history;
298 }
299 }
300
301 if (assigned_slave) {
302 hash_table[hash_index].tx_bytes += skb_len;
303 }
304
305 _unlock_tx_hashtbl(bond);
306
307 return assigned_slave;
308 }
309
310 /*********************** rlb specific functions ***************************/
311 static inline void _lock_rx_hashtbl(struct bonding *bond)
312 {
313 spin_lock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
314 }
315
316 static inline void _unlock_rx_hashtbl(struct bonding *bond)
317 {
318 spin_unlock_bh(&(BOND_ALB_INFO(bond).rx_hashtbl_lock));
319 }
320
321 /* when an ARP REPLY is received from a client update its info
322 * in the rx_hashtbl
323 */
324 static void rlb_update_entry_from_arp(struct bonding *bond, struct arp_pkt *arp)
325 {
326 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
327 struct rlb_client_info *client_info;
328 u32 hash_index;
329
330 _lock_rx_hashtbl(bond);
331
332 hash_index = _simple_hash((u8*)&(arp->ip_src), sizeof(arp->ip_src));
333 client_info = &(bond_info->rx_hashtbl[hash_index]);
334
335 if ((client_info->assigned) &&
336 (client_info->ip_src == arp->ip_dst) &&
337 (client_info->ip_dst == arp->ip_src)) {
338 /* update the clients MAC address */
339 memcpy(client_info->mac_dst, arp->mac_src, ETH_ALEN);
340 client_info->ntt = 1;
341 bond_info->rx_ntt = 1;
342 }
343
344 _unlock_rx_hashtbl(bond);
345 }
346
347 static int rlb_arp_recv(struct sk_buff *skb, struct net_device *bond_dev, struct packet_type *ptype, struct net_device *orig_dev)
348 {
349 struct bonding *bond;
350 struct arp_pkt *arp = (struct arp_pkt *)skb->data;
351 int res = NET_RX_DROP;
352
353 if (dev_net(bond_dev) != &init_net)
354 goto out;
355
356 while (bond_dev->priv_flags & IFF_802_1Q_VLAN)
357 bond_dev = vlan_dev_real_dev(bond_dev);
358
359 if (!(bond_dev->priv_flags & IFF_BONDING) ||
360 !(bond_dev->flags & IFF_MASTER))
361 goto out;
362
363 if (!arp) {
364 dprintk("Packet has no ARP data\n");
365 goto out;
366 }
367
368 if (skb->len < sizeof(struct arp_pkt)) {
369 dprintk("Packet is too small to be an ARP\n");
370 goto out;
371 }
372
373 if (arp->op_code == htons(ARPOP_REPLY)) {
374 /* update rx hash table for this ARP */
375 printk("rar: update orig %s bond_dev %s\n", orig_dev->name,
376 bond_dev->name);
377 bond = netdev_priv(bond_dev);
378 rlb_update_entry_from_arp(bond, arp);
379 dprintk("Server received an ARP Reply from client\n");
380 }
381
382 res = NET_RX_SUCCESS;
383
384 out:
385 dev_kfree_skb(skb);
386
387 return res;
388 }
389
390 /* Caller must hold bond lock for read */
391 static struct slave *rlb_next_rx_slave(struct bonding *bond)
392 {
393 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
394 struct slave *rx_slave, *slave, *start_at;
395 int i = 0;
396
397 if (bond_info->next_rx_slave) {
398 start_at = bond_info->next_rx_slave;
399 } else {
400 start_at = bond->first_slave;
401 }
402
403 rx_slave = NULL;
404
405 bond_for_each_slave_from(bond, slave, i, start_at) {
406 if (SLAVE_IS_OK(slave)) {
407 if (!rx_slave) {
408 rx_slave = slave;
409 } else if (slave->speed > rx_slave->speed) {
410 rx_slave = slave;
411 }
412 }
413 }
414
415 if (rx_slave) {
416 bond_info->next_rx_slave = rx_slave->next;
417 }
418
419 return rx_slave;
420 }
421
422 /* teach the switch the mac of a disabled slave
423 * on the primary for fault tolerance
424 *
425 * Caller must hold bond->curr_slave_lock for write or bond lock for write
426 */
427 static void rlb_teach_disabled_mac_on_primary(struct bonding *bond, u8 addr[])
428 {
429 if (!bond->curr_active_slave) {
430 return;
431 }
432
433 if (!bond->alb_info.primary_is_promisc) {
434 if (!dev_set_promiscuity(bond->curr_active_slave->dev, 1))
435 bond->alb_info.primary_is_promisc = 1;
436 else
437 bond->alb_info.primary_is_promisc = 0;
438 }
439
440 bond->alb_info.rlb_promisc_timeout_counter = 0;
441
442 alb_send_learning_packets(bond->curr_active_slave, addr);
443 }
444
445 /* slave being removed should not be active at this point
446 *
447 * Caller must hold bond lock for read
448 */
449 static void rlb_clear_slave(struct bonding *bond, struct slave *slave)
450 {
451 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
452 struct rlb_client_info *rx_hash_table;
453 u32 index, next_index;
454
455 /* clear slave from rx_hashtbl */
456 _lock_rx_hashtbl(bond);
457
458 rx_hash_table = bond_info->rx_hashtbl;
459 index = bond_info->rx_hashtbl_head;
460 for (; index != RLB_NULL_INDEX; index = next_index) {
461 next_index = rx_hash_table[index].next;
462 if (rx_hash_table[index].slave == slave) {
463 struct slave *assigned_slave = rlb_next_rx_slave(bond);
464
465 if (assigned_slave) {
466 rx_hash_table[index].slave = assigned_slave;
467 if (memcmp(rx_hash_table[index].mac_dst,
468 mac_bcast, ETH_ALEN)) {
469 bond_info->rx_hashtbl[index].ntt = 1;
470 bond_info->rx_ntt = 1;
471 /* A slave has been removed from the
472 * table because it is either disabled
473 * or being released. We must retry the
474 * update to avoid clients from not
475 * being updated & disconnecting when
476 * there is stress
477 */
478 bond_info->rlb_update_retry_counter =
479 RLB_UPDATE_RETRY;
480 }
481 } else { /* there is no active slave */
482 rx_hash_table[index].slave = NULL;
483 }
484 }
485 }
486
487 _unlock_rx_hashtbl(bond);
488
489 write_lock_bh(&bond->curr_slave_lock);
490
491 if (slave != bond->curr_active_slave) {
492 rlb_teach_disabled_mac_on_primary(bond, slave->dev->dev_addr);
493 }
494
495 write_unlock_bh(&bond->curr_slave_lock);
496 }
497
498 static void rlb_update_client(struct rlb_client_info *client_info)
499 {
500 int i;
501
502 if (!client_info->slave) {
503 return;
504 }
505
506 for (i = 0; i < RLB_ARP_BURST_SIZE; i++) {
507 struct sk_buff *skb;
508
509 skb = arp_create(ARPOP_REPLY, ETH_P_ARP,
510 client_info->ip_dst,
511 client_info->slave->dev,
512 client_info->ip_src,
513 client_info->mac_dst,
514 client_info->slave->dev->dev_addr,
515 client_info->mac_dst);
516 if (!skb) {
517 printk(KERN_ERR DRV_NAME
518 ": %s: Error: failed to create an ARP packet\n",
519 client_info->slave->dev->master->name);
520 continue;
521 }
522
523 skb->dev = client_info->slave->dev;
524
525 if (client_info->tag) {
526 skb = vlan_put_tag(skb, client_info->vlan_id);
527 if (!skb) {
528 printk(KERN_ERR DRV_NAME
529 ": %s: Error: failed to insert VLAN tag\n",
530 client_info->slave->dev->master->name);
531 continue;
532 }
533 }
534
535 arp_xmit(skb);
536 }
537 }
538
539 /* sends ARP REPLIES that update the clients that need updating */
540 static void rlb_update_rx_clients(struct bonding *bond)
541 {
542 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
543 struct rlb_client_info *client_info;
544 u32 hash_index;
545
546 _lock_rx_hashtbl(bond);
547
548 hash_index = bond_info->rx_hashtbl_head;
549 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
550 client_info = &(bond_info->rx_hashtbl[hash_index]);
551 if (client_info->ntt) {
552 rlb_update_client(client_info);
553 if (bond_info->rlb_update_retry_counter == 0) {
554 client_info->ntt = 0;
555 }
556 }
557 }
558
559 /* do not update the entries again untill this counter is zero so that
560 * not to confuse the clients.
561 */
562 bond_info->rlb_update_delay_counter = RLB_UPDATE_DELAY;
563
564 _unlock_rx_hashtbl(bond);
565 }
566
567 /* The slave was assigned a new mac address - update the clients */
568 static void rlb_req_update_slave_clients(struct bonding *bond, struct slave *slave)
569 {
570 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
571 struct rlb_client_info *client_info;
572 int ntt = 0;
573 u32 hash_index;
574
575 _lock_rx_hashtbl(bond);
576
577 hash_index = bond_info->rx_hashtbl_head;
578 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
579 client_info = &(bond_info->rx_hashtbl[hash_index]);
580
581 if ((client_info->slave == slave) &&
582 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
583 client_info->ntt = 1;
584 ntt = 1;
585 }
586 }
587
588 // update the team's flag only after the whole iteration
589 if (ntt) {
590 bond_info->rx_ntt = 1;
591 //fasten the change
592 bond_info->rlb_update_retry_counter = RLB_UPDATE_RETRY;
593 }
594
595 _unlock_rx_hashtbl(bond);
596 }
597
598 /* mark all clients using src_ip to be updated */
599 static void rlb_req_update_subnet_clients(struct bonding *bond, __be32 src_ip)
600 {
601 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
602 struct rlb_client_info *client_info;
603 u32 hash_index;
604
605 _lock_rx_hashtbl(bond);
606
607 hash_index = bond_info->rx_hashtbl_head;
608 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
609 client_info = &(bond_info->rx_hashtbl[hash_index]);
610
611 if (!client_info->slave) {
612 printk(KERN_ERR DRV_NAME
613 ": %s: Error: found a client with no channel in "
614 "the client's hash table\n",
615 bond->dev->name);
616 continue;
617 }
618 /*update all clients using this src_ip, that are not assigned
619 * to the team's address (curr_active_slave) and have a known
620 * unicast mac address.
621 */
622 if ((client_info->ip_src == src_ip) &&
623 memcmp(client_info->slave->dev->dev_addr,
624 bond->dev->dev_addr, ETH_ALEN) &&
625 memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
626 client_info->ntt = 1;
627 bond_info->rx_ntt = 1;
628 }
629 }
630
631 _unlock_rx_hashtbl(bond);
632 }
633
634 /* Caller must hold both bond and ptr locks for read */
635 static struct slave *rlb_choose_channel(struct sk_buff *skb, struct bonding *bond)
636 {
637 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
638 struct arp_pkt *arp = arp_pkt(skb);
639 struct slave *assigned_slave;
640 struct rlb_client_info *client_info;
641 u32 hash_index = 0;
642
643 _lock_rx_hashtbl(bond);
644
645 hash_index = _simple_hash((u8 *)&arp->ip_dst, sizeof(arp->ip_src));
646 client_info = &(bond_info->rx_hashtbl[hash_index]);
647
648 if (client_info->assigned) {
649 if ((client_info->ip_src == arp->ip_src) &&
650 (client_info->ip_dst == arp->ip_dst)) {
651 /* the entry is already assigned to this client */
652 if (memcmp(arp->mac_dst, mac_bcast, ETH_ALEN)) {
653 /* update mac address from arp */
654 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
655 }
656
657 assigned_slave = client_info->slave;
658 if (assigned_slave) {
659 _unlock_rx_hashtbl(bond);
660 return assigned_slave;
661 }
662 } else {
663 /* the entry is already assigned to some other client,
664 * move the old client to primary (curr_active_slave) so
665 * that the new client can be assigned to this entry.
666 */
667 if (bond->curr_active_slave &&
668 client_info->slave != bond->curr_active_slave) {
669 client_info->slave = bond->curr_active_slave;
670 rlb_update_client(client_info);
671 }
672 }
673 }
674 /* assign a new slave */
675 assigned_slave = rlb_next_rx_slave(bond);
676
677 if (assigned_slave) {
678 client_info->ip_src = arp->ip_src;
679 client_info->ip_dst = arp->ip_dst;
680 /* arp->mac_dst is broadcast for arp reqeusts.
681 * will be updated with clients actual unicast mac address
682 * upon receiving an arp reply.
683 */
684 memcpy(client_info->mac_dst, arp->mac_dst, ETH_ALEN);
685 client_info->slave = assigned_slave;
686
687 if (memcmp(client_info->mac_dst, mac_bcast, ETH_ALEN)) {
688 client_info->ntt = 1;
689 bond->alb_info.rx_ntt = 1;
690 } else {
691 client_info->ntt = 0;
692 }
693
694 if (!list_empty(&bond->vlan_list)) {
695 if (!vlan_get_tag(skb, &client_info->vlan_id))
696 client_info->tag = 1;
697 }
698
699 if (!client_info->assigned) {
700 u32 prev_tbl_head = bond_info->rx_hashtbl_head;
701 bond_info->rx_hashtbl_head = hash_index;
702 client_info->next = prev_tbl_head;
703 if (prev_tbl_head != RLB_NULL_INDEX) {
704 bond_info->rx_hashtbl[prev_tbl_head].prev =
705 hash_index;
706 }
707 client_info->assigned = 1;
708 }
709 }
710
711 _unlock_rx_hashtbl(bond);
712
713 return assigned_slave;
714 }
715
716 /* chooses (and returns) transmit channel for arp reply
717 * does not choose channel for other arp types since they are
718 * sent on the curr_active_slave
719 */
720 static struct slave *rlb_arp_xmit(struct sk_buff *skb, struct bonding *bond)
721 {
722 struct arp_pkt *arp = arp_pkt(skb);
723 struct slave *tx_slave = NULL;
724
725 if (arp->op_code == htons(ARPOP_REPLY)) {
726 /* the arp must be sent on the selected
727 * rx channel
728 */
729 tx_slave = rlb_choose_channel(skb, bond);
730 if (tx_slave) {
731 memcpy(arp->mac_src,tx_slave->dev->dev_addr, ETH_ALEN);
732 }
733 dprintk("Server sent ARP Reply packet\n");
734 } else if (arp->op_code == htons(ARPOP_REQUEST)) {
735 /* Create an entry in the rx_hashtbl for this client as a
736 * place holder.
737 * When the arp reply is received the entry will be updated
738 * with the correct unicast address of the client.
739 */
740 rlb_choose_channel(skb, bond);
741
742 /* The ARP relpy packets must be delayed so that
743 * they can cancel out the influence of the ARP request.
744 */
745 bond->alb_info.rlb_update_delay_counter = RLB_UPDATE_DELAY;
746
747 /* arp requests are broadcast and are sent on the primary
748 * the arp request will collapse all clients on the subnet to
749 * the primary slave. We must register these clients to be
750 * updated with their assigned mac.
751 */
752 rlb_req_update_subnet_clients(bond, arp->ip_src);
753 dprintk("Server sent ARP Request packet\n");
754 }
755
756 return tx_slave;
757 }
758
759 /* Caller must hold bond lock for read */
760 static void rlb_rebalance(struct bonding *bond)
761 {
762 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
763 struct slave *assigned_slave;
764 struct rlb_client_info *client_info;
765 int ntt;
766 u32 hash_index;
767
768 _lock_rx_hashtbl(bond);
769
770 ntt = 0;
771 hash_index = bond_info->rx_hashtbl_head;
772 for (; hash_index != RLB_NULL_INDEX; hash_index = client_info->next) {
773 client_info = &(bond_info->rx_hashtbl[hash_index]);
774 assigned_slave = rlb_next_rx_slave(bond);
775 if (assigned_slave && (client_info->slave != assigned_slave)) {
776 client_info->slave = assigned_slave;
777 client_info->ntt = 1;
778 ntt = 1;
779 }
780 }
781
782 /* update the team's flag only after the whole iteration */
783 if (ntt) {
784 bond_info->rx_ntt = 1;
785 }
786 _unlock_rx_hashtbl(bond);
787 }
788
789 /* Caller must hold rx_hashtbl lock */
790 static void rlb_init_table_entry(struct rlb_client_info *entry)
791 {
792 memset(entry, 0, sizeof(struct rlb_client_info));
793 entry->next = RLB_NULL_INDEX;
794 entry->prev = RLB_NULL_INDEX;
795 }
796
797 static int rlb_initialize(struct bonding *bond)
798 {
799 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
800 struct packet_type *pk_type = &(BOND_ALB_INFO(bond).rlb_pkt_type);
801 struct rlb_client_info *new_hashtbl;
802 int size = RLB_HASH_TABLE_SIZE * sizeof(struct rlb_client_info);
803 int i;
804
805 spin_lock_init(&(bond_info->rx_hashtbl_lock));
806
807 new_hashtbl = kmalloc(size, GFP_KERNEL);
808 if (!new_hashtbl) {
809 printk(KERN_ERR DRV_NAME
810 ": %s: Error: Failed to allocate RLB hash table\n",
811 bond->dev->name);
812 return -1;
813 }
814 _lock_rx_hashtbl(bond);
815
816 bond_info->rx_hashtbl = new_hashtbl;
817
818 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
819
820 for (i = 0; i < RLB_HASH_TABLE_SIZE; i++) {
821 rlb_init_table_entry(bond_info->rx_hashtbl + i);
822 }
823
824 _unlock_rx_hashtbl(bond);
825
826 /*initialize packet type*/
827 pk_type->type = __constant_htons(ETH_P_ARP);
828 pk_type->dev = NULL;
829 pk_type->func = rlb_arp_recv;
830
831 /* register to receive ARPs */
832 dev_add_pack(pk_type);
833
834 return 0;
835 }
836
837 static void rlb_deinitialize(struct bonding *bond)
838 {
839 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
840
841 dev_remove_pack(&(bond_info->rlb_pkt_type));
842
843 _lock_rx_hashtbl(bond);
844
845 kfree(bond_info->rx_hashtbl);
846 bond_info->rx_hashtbl = NULL;
847 bond_info->rx_hashtbl_head = RLB_NULL_INDEX;
848
849 _unlock_rx_hashtbl(bond);
850 }
851
852 static void rlb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
853 {
854 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
855 u32 curr_index;
856
857 _lock_rx_hashtbl(bond);
858
859 curr_index = bond_info->rx_hashtbl_head;
860 while (curr_index != RLB_NULL_INDEX) {
861 struct rlb_client_info *curr = &(bond_info->rx_hashtbl[curr_index]);
862 u32 next_index = bond_info->rx_hashtbl[curr_index].next;
863 u32 prev_index = bond_info->rx_hashtbl[curr_index].prev;
864
865 if (curr->tag && (curr->vlan_id == vlan_id)) {
866 if (curr_index == bond_info->rx_hashtbl_head) {
867 bond_info->rx_hashtbl_head = next_index;
868 }
869 if (prev_index != RLB_NULL_INDEX) {
870 bond_info->rx_hashtbl[prev_index].next = next_index;
871 }
872 if (next_index != RLB_NULL_INDEX) {
873 bond_info->rx_hashtbl[next_index].prev = prev_index;
874 }
875
876 rlb_init_table_entry(curr);
877 }
878
879 curr_index = next_index;
880 }
881
882 _unlock_rx_hashtbl(bond);
883 }
884
885 /*********************** tlb/rlb shared functions *********************/
886
887 static void alb_send_learning_packets(struct slave *slave, u8 mac_addr[])
888 {
889 struct bonding *bond = bond_get_bond_by_slave(slave);
890 struct learning_pkt pkt;
891 int size = sizeof(struct learning_pkt);
892 int i;
893
894 memset(&pkt, 0, size);
895 memcpy(pkt.mac_dst, mac_addr, ETH_ALEN);
896 memcpy(pkt.mac_src, mac_addr, ETH_ALEN);
897 pkt.type = __constant_htons(ETH_P_LOOP);
898
899 for (i = 0; i < MAX_LP_BURST; i++) {
900 struct sk_buff *skb;
901 char *data;
902
903 skb = dev_alloc_skb(size);
904 if (!skb) {
905 return;
906 }
907
908 data = skb_put(skb, size);
909 memcpy(data, &pkt, size);
910
911 skb_reset_mac_header(skb);
912 skb->network_header = skb->mac_header + ETH_HLEN;
913 skb->protocol = pkt.type;
914 skb->priority = TC_PRIO_CONTROL;
915 skb->dev = slave->dev;
916
917 if (!list_empty(&bond->vlan_list)) {
918 struct vlan_entry *vlan;
919
920 vlan = bond_next_vlan(bond,
921 bond->alb_info.current_alb_vlan);
922
923 bond->alb_info.current_alb_vlan = vlan;
924 if (!vlan) {
925 kfree_skb(skb);
926 continue;
927 }
928
929 skb = vlan_put_tag(skb, vlan->vlan_id);
930 if (!skb) {
931 printk(KERN_ERR DRV_NAME
932 ": %s: Error: failed to insert VLAN tag\n",
933 bond->dev->name);
934 continue;
935 }
936 }
937
938 dev_queue_xmit(skb);
939 }
940 }
941
942 /* hw is a boolean parameter that determines whether we should try and
943 * set the hw address of the device as well as the hw address of the
944 * net_device
945 */
946 static int alb_set_slave_mac_addr(struct slave *slave, u8 addr[], int hw)
947 {
948 struct net_device *dev = slave->dev;
949 struct sockaddr s_addr;
950
951 if (!hw) {
952 memcpy(dev->dev_addr, addr, dev->addr_len);
953 return 0;
954 }
955
956 /* for rlb each slave must have a unique hw mac addresses so that */
957 /* each slave will receive packets destined to a different mac */
958 memcpy(s_addr.sa_data, addr, dev->addr_len);
959 s_addr.sa_family = dev->type;
960 if (dev_set_mac_address(dev, &s_addr)) {
961 printk(KERN_ERR DRV_NAME
962 ": %s: Error: dev_set_mac_address of dev %s failed! ALB "
963 "mode requires that the base driver support setting "
964 "the hw address also when the network device's "
965 "interface is open\n",
966 dev->master->name, dev->name);
967 return -EOPNOTSUPP;
968 }
969 return 0;
970 }
971
972 /*
973 * Swap MAC addresses between two slaves.
974 *
975 * Called with RTNL held, and no other locks.
976 *
977 */
978
979 static void alb_swap_mac_addr(struct bonding *bond, struct slave *slave1, struct slave *slave2)
980 {
981 u8 tmp_mac_addr[ETH_ALEN];
982
983 memcpy(tmp_mac_addr, slave1->dev->dev_addr, ETH_ALEN);
984 alb_set_slave_mac_addr(slave1, slave2->dev->dev_addr, bond->alb_info.rlb_enabled);
985 alb_set_slave_mac_addr(slave2, tmp_mac_addr, bond->alb_info.rlb_enabled);
986
987 }
988
989 /*
990 * Send learning packets after MAC address swap.
991 *
992 * Called with RTNL and no other locks
993 */
994 static void alb_fasten_mac_swap(struct bonding *bond, struct slave *slave1,
995 struct slave *slave2)
996 {
997 int slaves_state_differ = (SLAVE_IS_OK(slave1) != SLAVE_IS_OK(slave2));
998 struct slave *disabled_slave = NULL;
999
1000 ASSERT_RTNL();
1001
1002 /* fasten the change in the switch */
1003 if (SLAVE_IS_OK(slave1)) {
1004 alb_send_learning_packets(slave1, slave1->dev->dev_addr);
1005 if (bond->alb_info.rlb_enabled) {
1006 /* inform the clients that the mac address
1007 * has changed
1008 */
1009 rlb_req_update_slave_clients(bond, slave1);
1010 }
1011 } else {
1012 disabled_slave = slave1;
1013 }
1014
1015 if (SLAVE_IS_OK(slave2)) {
1016 alb_send_learning_packets(slave2, slave2->dev->dev_addr);
1017 if (bond->alb_info.rlb_enabled) {
1018 /* inform the clients that the mac address
1019 * has changed
1020 */
1021 rlb_req_update_slave_clients(bond, slave2);
1022 }
1023 } else {
1024 disabled_slave = slave2;
1025 }
1026
1027 if (bond->alb_info.rlb_enabled && slaves_state_differ) {
1028 /* A disabled slave was assigned an active mac addr */
1029 rlb_teach_disabled_mac_on_primary(bond,
1030 disabled_slave->dev->dev_addr);
1031 }
1032 }
1033
1034 /**
1035 * alb_change_hw_addr_on_detach
1036 * @bond: bonding we're working on
1037 * @slave: the slave that was just detached
1038 *
1039 * We assume that @slave was already detached from the slave list.
1040 *
1041 * If @slave's permanent hw address is different both from its current
1042 * address and from @bond's address, then somewhere in the bond there's
1043 * a slave that has @slave's permanet address as its current address.
1044 * We'll make sure that that slave no longer uses @slave's permanent address.
1045 *
1046 * Caller must hold RTNL and no other locks
1047 */
1048 static void alb_change_hw_addr_on_detach(struct bonding *bond, struct slave *slave)
1049 {
1050 int perm_curr_diff;
1051 int perm_bond_diff;
1052
1053 perm_curr_diff = memcmp(slave->perm_hwaddr,
1054 slave->dev->dev_addr,
1055 ETH_ALEN);
1056 perm_bond_diff = memcmp(slave->perm_hwaddr,
1057 bond->dev->dev_addr,
1058 ETH_ALEN);
1059
1060 if (perm_curr_diff && perm_bond_diff) {
1061 struct slave *tmp_slave;
1062 int i, found = 0;
1063
1064 bond_for_each_slave(bond, tmp_slave, i) {
1065 if (!memcmp(slave->perm_hwaddr,
1066 tmp_slave->dev->dev_addr,
1067 ETH_ALEN)) {
1068 found = 1;
1069 break;
1070 }
1071 }
1072
1073 if (found) {
1074 /* locking: needs RTNL and nothing else */
1075 alb_swap_mac_addr(bond, slave, tmp_slave);
1076 alb_fasten_mac_swap(bond, slave, tmp_slave);
1077 }
1078 }
1079 }
1080
1081 /**
1082 * alb_handle_addr_collision_on_attach
1083 * @bond: bonding we're working on
1084 * @slave: the slave that was just attached
1085 *
1086 * checks uniqueness of slave's mac address and handles the case the
1087 * new slave uses the bonds mac address.
1088 *
1089 * If the permanent hw address of @slave is @bond's hw address, we need to
1090 * find a different hw address to give @slave, that isn't in use by any other
1091 * slave in the bond. This address must be, of course, one of the premanent
1092 * addresses of the other slaves.
1093 *
1094 * We go over the slave list, and for each slave there we compare its
1095 * permanent hw address with the current address of all the other slaves.
1096 * If no match was found, then we've found a slave with a permanent address
1097 * that isn't used by any other slave in the bond, so we can assign it to
1098 * @slave.
1099 *
1100 * assumption: this function is called before @slave is attached to the
1101 * bond slave list.
1102 *
1103 * caller must hold the bond lock for write since the mac addresses are compared
1104 * and may be swapped.
1105 */
1106 static int alb_handle_addr_collision_on_attach(struct bonding *bond, struct slave *slave)
1107 {
1108 struct slave *tmp_slave1, *tmp_slave2, *free_mac_slave;
1109 struct slave *has_bond_addr = bond->curr_active_slave;
1110 int i, j, found = 0;
1111
1112 if (bond->slave_cnt == 0) {
1113 /* this is the first slave */
1114 return 0;
1115 }
1116
1117 /* if slave's mac address differs from bond's mac address
1118 * check uniqueness of slave's mac address against the other
1119 * slaves in the bond.
1120 */
1121 if (memcmp(slave->perm_hwaddr, bond->dev->dev_addr, ETH_ALEN)) {
1122 bond_for_each_slave(bond, tmp_slave1, i) {
1123 if (!memcmp(tmp_slave1->dev->dev_addr, slave->dev->dev_addr,
1124 ETH_ALEN)) {
1125 found = 1;
1126 break;
1127 }
1128 }
1129
1130 if (!found)
1131 return 0;
1132
1133 /* Try setting slave mac to bond address and fall-through
1134 to code handling that situation below... */
1135 alb_set_slave_mac_addr(slave, bond->dev->dev_addr,
1136 bond->alb_info.rlb_enabled);
1137 }
1138
1139 /* The slave's address is equal to the address of the bond.
1140 * Search for a spare address in the bond for this slave.
1141 */
1142 free_mac_slave = NULL;
1143
1144 bond_for_each_slave(bond, tmp_slave1, i) {
1145 found = 0;
1146 bond_for_each_slave(bond, tmp_slave2, j) {
1147 if (!memcmp(tmp_slave1->perm_hwaddr,
1148 tmp_slave2->dev->dev_addr,
1149 ETH_ALEN)) {
1150 found = 1;
1151 break;
1152 }
1153 }
1154
1155 if (!found) {
1156 /* no slave has tmp_slave1's perm addr
1157 * as its curr addr
1158 */
1159 free_mac_slave = tmp_slave1;
1160 break;
1161 }
1162
1163 if (!has_bond_addr) {
1164 if (!memcmp(tmp_slave1->dev->dev_addr,
1165 bond->dev->dev_addr,
1166 ETH_ALEN)) {
1167
1168 has_bond_addr = tmp_slave1;
1169 }
1170 }
1171 }
1172
1173 if (free_mac_slave) {
1174 alb_set_slave_mac_addr(slave, free_mac_slave->perm_hwaddr,
1175 bond->alb_info.rlb_enabled);
1176
1177 printk(KERN_WARNING DRV_NAME
1178 ": %s: Warning: the hw address of slave %s is in use by "
1179 "the bond; giving it the hw address of %s\n",
1180 bond->dev->name, slave->dev->name, free_mac_slave->dev->name);
1181
1182 } else if (has_bond_addr) {
1183 printk(KERN_ERR DRV_NAME
1184 ": %s: Error: the hw address of slave %s is in use by the "
1185 "bond; couldn't find a slave with a free hw address to "
1186 "give it (this should not have happened)\n",
1187 bond->dev->name, slave->dev->name);
1188 return -EFAULT;
1189 }
1190
1191 return 0;
1192 }
1193
1194 /**
1195 * alb_set_mac_address
1196 * @bond:
1197 * @addr:
1198 *
1199 * In TLB mode all slaves are configured to the bond's hw address, but set
1200 * their dev_addr field to different addresses (based on their permanent hw
1201 * addresses).
1202 *
1203 * For each slave, this function sets the interface to the new address and then
1204 * changes its dev_addr field to its previous value.
1205 *
1206 * Unwinding assumes bond's mac address has not yet changed.
1207 */
1208 static int alb_set_mac_address(struct bonding *bond, void *addr)
1209 {
1210 struct sockaddr sa;
1211 struct slave *slave, *stop_at;
1212 char tmp_addr[ETH_ALEN];
1213 int res;
1214 int i;
1215
1216 if (bond->alb_info.rlb_enabled) {
1217 return 0;
1218 }
1219
1220 bond_for_each_slave(bond, slave, i) {
1221 /* save net_device's current hw address */
1222 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1223
1224 res = dev_set_mac_address(slave->dev, addr);
1225
1226 /* restore net_device's hw address */
1227 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1228
1229 if (res)
1230 goto unwind;
1231 }
1232
1233 return 0;
1234
1235 unwind:
1236 memcpy(sa.sa_data, bond->dev->dev_addr, bond->dev->addr_len);
1237 sa.sa_family = bond->dev->type;
1238
1239 /* unwind from head to the slave that failed */
1240 stop_at = slave;
1241 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
1242 memcpy(tmp_addr, slave->dev->dev_addr, ETH_ALEN);
1243 dev_set_mac_address(slave->dev, &sa);
1244 memcpy(slave->dev->dev_addr, tmp_addr, ETH_ALEN);
1245 }
1246
1247 return res;
1248 }
1249
1250 /************************ exported alb funcions ************************/
1251
1252 int bond_alb_initialize(struct bonding *bond, int rlb_enabled)
1253 {
1254 int res;
1255
1256 res = tlb_initialize(bond);
1257 if (res) {
1258 return res;
1259 }
1260
1261 if (rlb_enabled) {
1262 bond->alb_info.rlb_enabled = 1;
1263 /* initialize rlb */
1264 res = rlb_initialize(bond);
1265 if (res) {
1266 tlb_deinitialize(bond);
1267 return res;
1268 }
1269 } else {
1270 bond->alb_info.rlb_enabled = 0;
1271 }
1272
1273 return 0;
1274 }
1275
1276 void bond_alb_deinitialize(struct bonding *bond)
1277 {
1278 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1279
1280 tlb_deinitialize(bond);
1281
1282 if (bond_info->rlb_enabled) {
1283 rlb_deinitialize(bond);
1284 }
1285 }
1286
1287 int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev)
1288 {
1289 struct bonding *bond = netdev_priv(bond_dev);
1290 struct ethhdr *eth_data;
1291 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1292 struct slave *tx_slave = NULL;
1293 static const __be32 ip_bcast = htonl(0xffffffff);
1294 int hash_size = 0;
1295 int do_tx_balance = 1;
1296 u32 hash_index = 0;
1297 const u8 *hash_start = NULL;
1298 int res = 1;
1299 struct ipv6hdr *ip6hdr;
1300
1301 skb_reset_mac_header(skb);
1302 eth_data = eth_hdr(skb);
1303
1304 /* make sure that the curr_active_slave and the slaves list do
1305 * not change during tx
1306 */
1307 read_lock(&bond->lock);
1308 read_lock(&bond->curr_slave_lock);
1309
1310 if (!BOND_IS_OK(bond)) {
1311 goto out;
1312 }
1313
1314 switch (ntohs(skb->protocol)) {
1315 case ETH_P_IP: {
1316 const struct iphdr *iph = ip_hdr(skb);
1317
1318 if ((memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) ||
1319 (iph->daddr == ip_bcast) ||
1320 (iph->protocol == IPPROTO_IGMP)) {
1321 do_tx_balance = 0;
1322 break;
1323 }
1324 hash_start = (char *)&(iph->daddr);
1325 hash_size = sizeof(iph->daddr);
1326 }
1327 break;
1328 case ETH_P_IPV6:
1329 /* IPv6 doesn't really use broadcast mac address, but leave
1330 * that here just in case.
1331 */
1332 if (memcmp(eth_data->h_dest, mac_bcast, ETH_ALEN) == 0) {
1333 do_tx_balance = 0;
1334 break;
1335 }
1336
1337 /* IPv6 uses all-nodes multicast as an equivalent to
1338 * broadcasts in IPv4.
1339 */
1340 if (memcmp(eth_data->h_dest, mac_v6_allmcast, ETH_ALEN) == 0) {
1341 do_tx_balance = 0;
1342 break;
1343 }
1344
1345 /* Additianally, DAD probes should not be tx-balanced as that
1346 * will lead to false positives for duplicate addresses and
1347 * prevent address configuration from working.
1348 */
1349 ip6hdr = ipv6_hdr(skb);
1350 if (ipv6_addr_any(&ip6hdr->saddr)) {
1351 do_tx_balance = 0;
1352 break;
1353 }
1354
1355 hash_start = (char *)&(ipv6_hdr(skb)->daddr);
1356 hash_size = sizeof(ipv6_hdr(skb)->daddr);
1357 break;
1358 case ETH_P_IPX:
1359 if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) {
1360 /* something is wrong with this packet */
1361 do_tx_balance = 0;
1362 break;
1363 }
1364
1365 if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) {
1366 /* The only protocol worth balancing in
1367 * this family since it has an "ARP" like
1368 * mechanism
1369 */
1370 do_tx_balance = 0;
1371 break;
1372 }
1373
1374 hash_start = (char*)eth_data->h_dest;
1375 hash_size = ETH_ALEN;
1376 break;
1377 case ETH_P_ARP:
1378 do_tx_balance = 0;
1379 if (bond_info->rlb_enabled) {
1380 tx_slave = rlb_arp_xmit(skb, bond);
1381 }
1382 break;
1383 default:
1384 do_tx_balance = 0;
1385 break;
1386 }
1387
1388 if (do_tx_balance) {
1389 hash_index = _simple_hash(hash_start, hash_size);
1390 tx_slave = tlb_choose_channel(bond, hash_index, skb->len);
1391 }
1392
1393 if (!tx_slave) {
1394 /* unbalanced or unassigned, send through primary */
1395 tx_slave = bond->curr_active_slave;
1396 bond_info->unbalanced_load += skb->len;
1397 }
1398
1399 if (tx_slave && SLAVE_IS_OK(tx_slave)) {
1400 if (tx_slave != bond->curr_active_slave) {
1401 memcpy(eth_data->h_source,
1402 tx_slave->dev->dev_addr,
1403 ETH_ALEN);
1404 }
1405
1406 res = bond_dev_queue_xmit(bond, skb, tx_slave->dev);
1407 } else {
1408 if (tx_slave) {
1409 tlb_clear_slave(bond, tx_slave, 0);
1410 }
1411 }
1412
1413 out:
1414 if (res) {
1415 /* no suitable interface, frame not sent */
1416 dev_kfree_skb(skb);
1417 }
1418 read_unlock(&bond->curr_slave_lock);
1419 read_unlock(&bond->lock);
1420 return 0;
1421 }
1422
1423 void bond_alb_monitor(struct work_struct *work)
1424 {
1425 struct bonding *bond = container_of(work, struct bonding,
1426 alb_work.work);
1427 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1428 struct slave *slave;
1429 int i;
1430
1431 read_lock(&bond->lock);
1432
1433 if (bond->kill_timers) {
1434 goto out;
1435 }
1436
1437 if (bond->slave_cnt == 0) {
1438 bond_info->tx_rebalance_counter = 0;
1439 bond_info->lp_counter = 0;
1440 goto re_arm;
1441 }
1442
1443 bond_info->tx_rebalance_counter++;
1444 bond_info->lp_counter++;
1445
1446 /* send learning packets */
1447 if (bond_info->lp_counter >= BOND_ALB_LP_TICKS) {
1448 /* change of curr_active_slave involves swapping of mac addresses.
1449 * in order to avoid this swapping from happening while
1450 * sending the learning packets, the curr_slave_lock must be held for
1451 * read.
1452 */
1453 read_lock(&bond->curr_slave_lock);
1454
1455 bond_for_each_slave(bond, slave, i) {
1456 alb_send_learning_packets(slave, slave->dev->dev_addr);
1457 }
1458
1459 read_unlock(&bond->curr_slave_lock);
1460
1461 bond_info->lp_counter = 0;
1462 }
1463
1464 /* rebalance tx traffic */
1465 if (bond_info->tx_rebalance_counter >= BOND_TLB_REBALANCE_TICKS) {
1466
1467 read_lock(&bond->curr_slave_lock);
1468
1469 bond_for_each_slave(bond, slave, i) {
1470 tlb_clear_slave(bond, slave, 1);
1471 if (slave == bond->curr_active_slave) {
1472 SLAVE_TLB_INFO(slave).load =
1473 bond_info->unbalanced_load /
1474 BOND_TLB_REBALANCE_INTERVAL;
1475 bond_info->unbalanced_load = 0;
1476 }
1477 }
1478
1479 read_unlock(&bond->curr_slave_lock);
1480
1481 bond_info->tx_rebalance_counter = 0;
1482 }
1483
1484 /* handle rlb stuff */
1485 if (bond_info->rlb_enabled) {
1486 if (bond_info->primary_is_promisc &&
1487 (++bond_info->rlb_promisc_timeout_counter >= RLB_PROMISC_TIMEOUT)) {
1488
1489 /*
1490 * dev_set_promiscuity requires rtnl and
1491 * nothing else.
1492 */
1493 read_unlock(&bond->lock);
1494 rtnl_lock();
1495
1496 bond_info->rlb_promisc_timeout_counter = 0;
1497
1498 /* If the primary was set to promiscuous mode
1499 * because a slave was disabled then
1500 * it can now leave promiscuous mode.
1501 */
1502 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1503 bond_info->primary_is_promisc = 0;
1504
1505 rtnl_unlock();
1506 read_lock(&bond->lock);
1507 }
1508
1509 if (bond_info->rlb_rebalance) {
1510 bond_info->rlb_rebalance = 0;
1511 rlb_rebalance(bond);
1512 }
1513
1514 /* check if clients need updating */
1515 if (bond_info->rx_ntt) {
1516 if (bond_info->rlb_update_delay_counter) {
1517 --bond_info->rlb_update_delay_counter;
1518 } else {
1519 rlb_update_rx_clients(bond);
1520 if (bond_info->rlb_update_retry_counter) {
1521 --bond_info->rlb_update_retry_counter;
1522 } else {
1523 bond_info->rx_ntt = 0;
1524 }
1525 }
1526 }
1527 }
1528
1529 re_arm:
1530 queue_delayed_work(bond->wq, &bond->alb_work, alb_delta_in_ticks);
1531 out:
1532 read_unlock(&bond->lock);
1533 }
1534
1535 /* assumption: called before the slave is attached to the bond
1536 * and not locked by the bond lock
1537 */
1538 int bond_alb_init_slave(struct bonding *bond, struct slave *slave)
1539 {
1540 int res;
1541
1542 res = alb_set_slave_mac_addr(slave, slave->perm_hwaddr,
1543 bond->alb_info.rlb_enabled);
1544 if (res) {
1545 return res;
1546 }
1547
1548 /* caller must hold the bond lock for write since the mac addresses
1549 * are compared and may be swapped.
1550 */
1551 read_lock(&bond->lock);
1552
1553 res = alb_handle_addr_collision_on_attach(bond, slave);
1554
1555 read_unlock(&bond->lock);
1556
1557 if (res) {
1558 return res;
1559 }
1560
1561 tlb_init_slave(slave);
1562
1563 /* order a rebalance ASAP */
1564 bond->alb_info.tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1565
1566 if (bond->alb_info.rlb_enabled) {
1567 bond->alb_info.rlb_rebalance = 1;
1568 }
1569
1570 return 0;
1571 }
1572
1573 /*
1574 * Remove slave from tlb and rlb hash tables, and fix up MAC addresses
1575 * if necessary.
1576 *
1577 * Caller must hold RTNL and no other locks
1578 */
1579 void bond_alb_deinit_slave(struct bonding *bond, struct slave *slave)
1580 {
1581 if (bond->slave_cnt > 1) {
1582 alb_change_hw_addr_on_detach(bond, slave);
1583 }
1584
1585 tlb_clear_slave(bond, slave, 0);
1586
1587 if (bond->alb_info.rlb_enabled) {
1588 bond->alb_info.next_rx_slave = NULL;
1589 rlb_clear_slave(bond, slave);
1590 }
1591 }
1592
1593 /* Caller must hold bond lock for read */
1594 void bond_alb_handle_link_change(struct bonding *bond, struct slave *slave, char link)
1595 {
1596 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
1597
1598 if (link == BOND_LINK_DOWN) {
1599 tlb_clear_slave(bond, slave, 0);
1600 if (bond->alb_info.rlb_enabled) {
1601 rlb_clear_slave(bond, slave);
1602 }
1603 } else if (link == BOND_LINK_UP) {
1604 /* order a rebalance ASAP */
1605 bond_info->tx_rebalance_counter = BOND_TLB_REBALANCE_TICKS;
1606 if (bond->alb_info.rlb_enabled) {
1607 bond->alb_info.rlb_rebalance = 1;
1608 /* If the updelay module parameter is smaller than the
1609 * forwarding delay of the switch the rebalance will
1610 * not work because the rebalance arp replies will
1611 * not be forwarded to the clients..
1612 */
1613 }
1614 }
1615 }
1616
1617 /**
1618 * bond_alb_handle_active_change - assign new curr_active_slave
1619 * @bond: our bonding struct
1620 * @new_slave: new slave to assign
1621 *
1622 * Set the bond->curr_active_slave to @new_slave and handle
1623 * mac address swapping and promiscuity changes as needed.
1624 *
1625 * If new_slave is NULL, caller must hold curr_slave_lock or
1626 * bond->lock for write.
1627 *
1628 * If new_slave is not NULL, caller must hold RTNL, bond->lock for
1629 * read and curr_slave_lock for write. Processing here may sleep, so
1630 * no other locks may be held.
1631 */
1632 void bond_alb_handle_active_change(struct bonding *bond, struct slave *new_slave)
1633 {
1634 struct slave *swap_slave;
1635 int i;
1636
1637 if (bond->curr_active_slave == new_slave) {
1638 return;
1639 }
1640
1641 if (bond->curr_active_slave && bond->alb_info.primary_is_promisc) {
1642 dev_set_promiscuity(bond->curr_active_slave->dev, -1);
1643 bond->alb_info.primary_is_promisc = 0;
1644 bond->alb_info.rlb_promisc_timeout_counter = 0;
1645 }
1646
1647 swap_slave = bond->curr_active_slave;
1648 bond->curr_active_slave = new_slave;
1649
1650 if (!new_slave || (bond->slave_cnt == 0)) {
1651 return;
1652 }
1653
1654 /* set the new curr_active_slave to the bonds mac address
1655 * i.e. swap mac addresses of old curr_active_slave and new curr_active_slave
1656 */
1657 if (!swap_slave) {
1658 struct slave *tmp_slave;
1659 /* find slave that is holding the bond's mac address */
1660 bond_for_each_slave(bond, tmp_slave, i) {
1661 if (!memcmp(tmp_slave->dev->dev_addr,
1662 bond->dev->dev_addr, ETH_ALEN)) {
1663 swap_slave = tmp_slave;
1664 break;
1665 }
1666 }
1667 }
1668
1669 /*
1670 * Arrange for swap_slave and new_slave to temporarily be
1671 * ignored so we can mess with their MAC addresses without
1672 * fear of interference from transmit activity.
1673 */
1674 if (swap_slave) {
1675 tlb_clear_slave(bond, swap_slave, 1);
1676 }
1677 tlb_clear_slave(bond, new_slave, 1);
1678
1679 write_unlock_bh(&bond->curr_slave_lock);
1680 read_unlock(&bond->lock);
1681
1682 ASSERT_RTNL();
1683
1684 /* curr_active_slave must be set before calling alb_swap_mac_addr */
1685 if (swap_slave) {
1686 /* swap mac address */
1687 alb_swap_mac_addr(bond, swap_slave, new_slave);
1688 } else {
1689 /* set the new_slave to the bond mac address */
1690 alb_set_slave_mac_addr(new_slave, bond->dev->dev_addr,
1691 bond->alb_info.rlb_enabled);
1692 }
1693
1694 if (swap_slave) {
1695 alb_fasten_mac_swap(bond, swap_slave, new_slave);
1696 read_lock(&bond->lock);
1697 } else {
1698 read_lock(&bond->lock);
1699 alb_send_learning_packets(new_slave, bond->dev->dev_addr);
1700 }
1701
1702 write_lock_bh(&bond->curr_slave_lock);
1703 }
1704
1705 /*
1706 * Called with RTNL
1707 */
1708 int bond_alb_set_mac_address(struct net_device *bond_dev, void *addr)
1709 {
1710 struct bonding *bond = netdev_priv(bond_dev);
1711 struct sockaddr *sa = addr;
1712 struct slave *slave, *swap_slave;
1713 int res;
1714 int i;
1715
1716 if (!is_valid_ether_addr(sa->sa_data)) {
1717 return -EADDRNOTAVAIL;
1718 }
1719
1720 res = alb_set_mac_address(bond, addr);
1721 if (res) {
1722 return res;
1723 }
1724
1725 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
1726
1727 /* If there is no curr_active_slave there is nothing else to do.
1728 * Otherwise we'll need to pass the new address to it and handle
1729 * duplications.
1730 */
1731 if (!bond->curr_active_slave) {
1732 return 0;
1733 }
1734
1735 swap_slave = NULL;
1736
1737 bond_for_each_slave(bond, slave, i) {
1738 if (!memcmp(slave->dev->dev_addr, bond_dev->dev_addr, ETH_ALEN)) {
1739 swap_slave = slave;
1740 break;
1741 }
1742 }
1743
1744 write_unlock_bh(&bond->curr_slave_lock);
1745 read_unlock(&bond->lock);
1746
1747 if (swap_slave) {
1748 alb_swap_mac_addr(bond, swap_slave, bond->curr_active_slave);
1749 alb_fasten_mac_swap(bond, swap_slave, bond->curr_active_slave);
1750 } else {
1751 alb_set_slave_mac_addr(bond->curr_active_slave, bond_dev->dev_addr,
1752 bond->alb_info.rlb_enabled);
1753
1754 alb_send_learning_packets(bond->curr_active_slave, bond_dev->dev_addr);
1755 if (bond->alb_info.rlb_enabled) {
1756 /* inform clients mac address has changed */
1757 rlb_req_update_slave_clients(bond, bond->curr_active_slave);
1758 }
1759 }
1760
1761 read_lock(&bond->lock);
1762 write_lock_bh(&bond->curr_slave_lock);
1763
1764 return 0;
1765 }
1766
1767 void bond_alb_clear_vlan(struct bonding *bond, unsigned short vlan_id)
1768 {
1769 if (bond->alb_info.current_alb_vlan &&
1770 (bond->alb_info.current_alb_vlan->vlan_id == vlan_id)) {
1771 bond->alb_info.current_alb_vlan = NULL;
1772 }
1773
1774 if (bond->alb_info.rlb_enabled) {
1775 rlb_clear_vlan(bond, vlan_id);
1776 }
1777 }
1778
This page took 0.073732 seconds and 6 git commands to generate.