[NET]: Make the device list and device lookups per namespace.
[deliverable/linux.git] / drivers / net / bonding / bond_main.c
1 /*
2 * originally based on the dummy device.
3 *
4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5 * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6 *
7 * bonding.c: an Ethernet Bonding driver
8 *
9 * This is useful to talk to a Cisco EtherChannel compatible equipment:
10 * Cisco 5500
11 * Sun Trunking (Solaris)
12 * Alteon AceDirector Trunks
13 * Linux Bonding
14 * and probably many L2 switches ...
15 *
16 * How it works:
17 * ifconfig bond0 ipaddress netmask up
18 * will setup a network device, with an ip address. No mac address
19 * will be assigned at this time. The hw mac address will come from
20 * the first slave bonded to the channel. All slaves will then use
21 * this hw mac address.
22 *
23 * ifconfig bond0 down
24 * will release all slaves, marking them as down.
25 *
26 * ifenslave bond0 eth0
27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either
28 * a: be used as initial mac address
29 * b: if a hw mac address already is there, eth0's hw mac address
30 * will then be set from bond0.
31 *
32 */
33
34 //#define BONDING_DEBUG 1
35
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <asm/system.h>
57 #include <asm/io.h>
58 #include <asm/dma.h>
59 #include <asm/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/inetdevice.h>
63 #include <linux/igmp.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <net/sock.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/smp.h>
71 #include <linux/if_ether.h>
72 #include <net/arp.h>
73 #include <linux/mii.h>
74 #include <linux/ethtool.h>
75 #include <linux/if_vlan.h>
76 #include <linux/if_bonding.h>
77 #include <net/route.h>
78 #include <net/net_namespace.h>
79 #include "bonding.h"
80 #include "bond_3ad.h"
81 #include "bond_alb.h"
82
83 /*---------------------------- Module parameters ----------------------------*/
84
85 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
86 #define BOND_LINK_MON_INTERV 0
87 #define BOND_LINK_ARP_INTERV 0
88
89 static int max_bonds = BOND_DEFAULT_MAX_BONDS;
90 static int miimon = BOND_LINK_MON_INTERV;
91 static int updelay = 0;
92 static int downdelay = 0;
93 static int use_carrier = 1;
94 static char *mode = NULL;
95 static char *primary = NULL;
96 static char *lacp_rate = NULL;
97 static char *xmit_hash_policy = NULL;
98 static int arp_interval = BOND_LINK_ARP_INTERV;
99 static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, };
100 static char *arp_validate = NULL;
101 struct bond_params bonding_defaults;
102
103 module_param(max_bonds, int, 0);
104 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
105 module_param(miimon, int, 0);
106 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
107 module_param(updelay, int, 0);
108 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
109 module_param(downdelay, int, 0);
110 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
111 "in milliseconds");
112 module_param(use_carrier, int, 0);
113 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
114 "0 for off, 1 for on (default)");
115 module_param(mode, charp, 0);
116 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
117 "1 for active-backup, 2 for balance-xor, "
118 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
119 "6 for balance-alb");
120 module_param(primary, charp, 0);
121 MODULE_PARM_DESC(primary, "Primary network device to use");
122 module_param(lacp_rate, charp, 0);
123 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
124 "(slow/fast)");
125 module_param(xmit_hash_policy, charp, 0);
126 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
127 ", 1 for layer 3+4");
128 module_param(arp_interval, int, 0);
129 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
130 module_param_array(arp_ip_target, charp, NULL, 0);
131 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
132 module_param(arp_validate, charp, 0);
133 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
134
135 /*----------------------------- Global variables ----------------------------*/
136
137 static const char * const version =
138 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
139
140 LIST_HEAD(bond_dev_list);
141
142 #ifdef CONFIG_PROC_FS
143 static struct proc_dir_entry *bond_proc_dir = NULL;
144 #endif
145
146 extern struct rw_semaphore bonding_rwsem;
147 static u32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ;
148 static int arp_ip_count = 0;
149 static int bond_mode = BOND_MODE_ROUNDROBIN;
150 static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2;
151 static int lacp_fast = 0;
152
153
154 struct bond_parm_tbl bond_lacp_tbl[] = {
155 { "slow", AD_LACP_SLOW},
156 { "fast", AD_LACP_FAST},
157 { NULL, -1},
158 };
159
160 struct bond_parm_tbl bond_mode_tbl[] = {
161 { "balance-rr", BOND_MODE_ROUNDROBIN},
162 { "active-backup", BOND_MODE_ACTIVEBACKUP},
163 { "balance-xor", BOND_MODE_XOR},
164 { "broadcast", BOND_MODE_BROADCAST},
165 { "802.3ad", BOND_MODE_8023AD},
166 { "balance-tlb", BOND_MODE_TLB},
167 { "balance-alb", BOND_MODE_ALB},
168 { NULL, -1},
169 };
170
171 struct bond_parm_tbl xmit_hashtype_tbl[] = {
172 { "layer2", BOND_XMIT_POLICY_LAYER2},
173 { "layer3+4", BOND_XMIT_POLICY_LAYER34},
174 { NULL, -1},
175 };
176
177 struct bond_parm_tbl arp_validate_tbl[] = {
178 { "none", BOND_ARP_VALIDATE_NONE},
179 { "active", BOND_ARP_VALIDATE_ACTIVE},
180 { "backup", BOND_ARP_VALIDATE_BACKUP},
181 { "all", BOND_ARP_VALIDATE_ALL},
182 { NULL, -1},
183 };
184
185 /*-------------------------- Forward declarations ---------------------------*/
186
187 static void bond_send_gratuitous_arp(struct bonding *bond);
188
189 /*---------------------------- General routines -----------------------------*/
190
191 static const char *bond_mode_name(int mode)
192 {
193 switch (mode) {
194 case BOND_MODE_ROUNDROBIN :
195 return "load balancing (round-robin)";
196 case BOND_MODE_ACTIVEBACKUP :
197 return "fault-tolerance (active-backup)";
198 case BOND_MODE_XOR :
199 return "load balancing (xor)";
200 case BOND_MODE_BROADCAST :
201 return "fault-tolerance (broadcast)";
202 case BOND_MODE_8023AD:
203 return "IEEE 802.3ad Dynamic link aggregation";
204 case BOND_MODE_TLB:
205 return "transmit load balancing";
206 case BOND_MODE_ALB:
207 return "adaptive load balancing";
208 default:
209 return "unknown";
210 }
211 }
212
213 /*---------------------------------- VLAN -----------------------------------*/
214
215 /**
216 * bond_add_vlan - add a new vlan id on bond
217 * @bond: bond that got the notification
218 * @vlan_id: the vlan id to add
219 *
220 * Returns -ENOMEM if allocation failed.
221 */
222 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
223 {
224 struct vlan_entry *vlan;
225
226 dprintk("bond: %s, vlan id %d\n",
227 (bond ? bond->dev->name: "None"), vlan_id);
228
229 vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL);
230 if (!vlan) {
231 return -ENOMEM;
232 }
233
234 INIT_LIST_HEAD(&vlan->vlan_list);
235 vlan->vlan_id = vlan_id;
236 vlan->vlan_ip = 0;
237
238 write_lock_bh(&bond->lock);
239
240 list_add_tail(&vlan->vlan_list, &bond->vlan_list);
241
242 write_unlock_bh(&bond->lock);
243
244 dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
245
246 return 0;
247 }
248
249 /**
250 * bond_del_vlan - delete a vlan id from bond
251 * @bond: bond that got the notification
252 * @vlan_id: the vlan id to delete
253 *
254 * returns -ENODEV if @vlan_id was not found in @bond.
255 */
256 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
257 {
258 struct vlan_entry *vlan, *next;
259 int res = -ENODEV;
260
261 dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
262
263 write_lock_bh(&bond->lock);
264
265 list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) {
266 if (vlan->vlan_id == vlan_id) {
267 list_del(&vlan->vlan_list);
268
269 if ((bond->params.mode == BOND_MODE_TLB) ||
270 (bond->params.mode == BOND_MODE_ALB)) {
271 bond_alb_clear_vlan(bond, vlan_id);
272 }
273
274 dprintk("removed VLAN ID %d from bond %s\n", vlan_id,
275 bond->dev->name);
276
277 kfree(vlan);
278
279 if (list_empty(&bond->vlan_list) &&
280 (bond->slave_cnt == 0)) {
281 /* Last VLAN removed and no slaves, so
282 * restore block on adding VLANs. This will
283 * be removed once new slaves that are not
284 * VLAN challenged will be added.
285 */
286 bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
287 }
288
289 res = 0;
290 goto out;
291 }
292 }
293
294 dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id,
295 bond->dev->name);
296
297 out:
298 write_unlock_bh(&bond->lock);
299 return res;
300 }
301
302 /**
303 * bond_has_challenged_slaves
304 * @bond: the bond we're working on
305 *
306 * Searches the slave list. Returns 1 if a vlan challenged slave
307 * was found, 0 otherwise.
308 *
309 * Assumes bond->lock is held.
310 */
311 static int bond_has_challenged_slaves(struct bonding *bond)
312 {
313 struct slave *slave;
314 int i;
315
316 bond_for_each_slave(bond, slave, i) {
317 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
318 dprintk("found VLAN challenged slave - %s\n",
319 slave->dev->name);
320 return 1;
321 }
322 }
323
324 dprintk("no VLAN challenged slaves found\n");
325 return 0;
326 }
327
328 /**
329 * bond_next_vlan - safely skip to the next item in the vlans list.
330 * @bond: the bond we're working on
331 * @curr: item we're advancing from
332 *
333 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
334 * or @curr->next otherwise (even if it is @curr itself again).
335 *
336 * Caller must hold bond->lock
337 */
338 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
339 {
340 struct vlan_entry *next, *last;
341
342 if (list_empty(&bond->vlan_list)) {
343 return NULL;
344 }
345
346 if (!curr) {
347 next = list_entry(bond->vlan_list.next,
348 struct vlan_entry, vlan_list);
349 } else {
350 last = list_entry(bond->vlan_list.prev,
351 struct vlan_entry, vlan_list);
352 if (last == curr) {
353 next = list_entry(bond->vlan_list.next,
354 struct vlan_entry, vlan_list);
355 } else {
356 next = list_entry(curr->vlan_list.next,
357 struct vlan_entry, vlan_list);
358 }
359 }
360
361 return next;
362 }
363
364 /**
365 * bond_dev_queue_xmit - Prepare skb for xmit.
366 *
367 * @bond: bond device that got this skb for tx.
368 * @skb: hw accel VLAN tagged skb to transmit
369 * @slave_dev: slave that is supposed to xmit this skbuff
370 *
371 * When the bond gets an skb to transmit that is
372 * already hardware accelerated VLAN tagged, and it
373 * needs to relay this skb to a slave that is not
374 * hw accel capable, the skb needs to be "unaccelerated",
375 * i.e. strip the hwaccel tag and re-insert it as part
376 * of the payload.
377 */
378 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev)
379 {
380 unsigned short vlan_id;
381
382 if (!list_empty(&bond->vlan_list) &&
383 !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
384 vlan_get_tag(skb, &vlan_id) == 0) {
385 skb->dev = slave_dev;
386 skb = vlan_put_tag(skb, vlan_id);
387 if (!skb) {
388 /* vlan_put_tag() frees the skb in case of error,
389 * so return success here so the calling functions
390 * won't attempt to free is again.
391 */
392 return 0;
393 }
394 } else {
395 skb->dev = slave_dev;
396 }
397
398 skb->priority = 1;
399 dev_queue_xmit(skb);
400
401 return 0;
402 }
403
404 /*
405 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
406 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
407 * lock because:
408 * a. This operation is performed in IOCTL context,
409 * b. The operation is protected by the RTNL semaphore in the 8021q code,
410 * c. Holding a lock with BH disabled while directly calling a base driver
411 * entry point is generally a BAD idea.
412 *
413 * The design of synchronization/protection for this operation in the 8021q
414 * module is good for one or more VLAN devices over a single physical device
415 * and cannot be extended for a teaming solution like bonding, so there is a
416 * potential race condition here where a net device from the vlan group might
417 * be referenced (either by a base driver or the 8021q code) while it is being
418 * removed from the system. However, it turns out we're not making matters
419 * worse, and if it works for regular VLAN usage it will work here too.
420 */
421
422 /**
423 * bond_vlan_rx_register - Propagates registration to slaves
424 * @bond_dev: bonding net device that got called
425 * @grp: vlan group being registered
426 */
427 static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp)
428 {
429 struct bonding *bond = bond_dev->priv;
430 struct slave *slave;
431 int i;
432
433 bond->vlgrp = grp;
434
435 bond_for_each_slave(bond, slave, i) {
436 struct net_device *slave_dev = slave->dev;
437
438 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
439 slave_dev->vlan_rx_register) {
440 slave_dev->vlan_rx_register(slave_dev, grp);
441 }
442 }
443 }
444
445 /**
446 * bond_vlan_rx_add_vid - Propagates adding an id to slaves
447 * @bond_dev: bonding net device that got called
448 * @vid: vlan id being added
449 */
450 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
451 {
452 struct bonding *bond = bond_dev->priv;
453 struct slave *slave;
454 int i, res;
455
456 bond_for_each_slave(bond, slave, i) {
457 struct net_device *slave_dev = slave->dev;
458
459 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
460 slave_dev->vlan_rx_add_vid) {
461 slave_dev->vlan_rx_add_vid(slave_dev, vid);
462 }
463 }
464
465 res = bond_add_vlan(bond, vid);
466 if (res) {
467 printk(KERN_ERR DRV_NAME
468 ": %s: Error: Failed to add vlan id %d\n",
469 bond_dev->name, vid);
470 }
471 }
472
473 /**
474 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
475 * @bond_dev: bonding net device that got called
476 * @vid: vlan id being removed
477 */
478 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
479 {
480 struct bonding *bond = bond_dev->priv;
481 struct slave *slave;
482 struct net_device *vlan_dev;
483 int i, res;
484
485 bond_for_each_slave(bond, slave, i) {
486 struct net_device *slave_dev = slave->dev;
487
488 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
489 slave_dev->vlan_rx_kill_vid) {
490 /* Save and then restore vlan_dev in the grp array,
491 * since the slave's driver might clear it.
492 */
493 vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
494 slave_dev->vlan_rx_kill_vid(slave_dev, vid);
495 vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
496 }
497 }
498
499 res = bond_del_vlan(bond, vid);
500 if (res) {
501 printk(KERN_ERR DRV_NAME
502 ": %s: Error: Failed to remove vlan id %d\n",
503 bond_dev->name, vid);
504 }
505 }
506
507 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
508 {
509 struct vlan_entry *vlan;
510
511 write_lock_bh(&bond->lock);
512
513 if (list_empty(&bond->vlan_list)) {
514 goto out;
515 }
516
517 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
518 slave_dev->vlan_rx_register) {
519 slave_dev->vlan_rx_register(slave_dev, bond->vlgrp);
520 }
521
522 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
523 !(slave_dev->vlan_rx_add_vid)) {
524 goto out;
525 }
526
527 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
528 slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id);
529 }
530
531 out:
532 write_unlock_bh(&bond->lock);
533 }
534
535 static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev)
536 {
537 struct vlan_entry *vlan;
538 struct net_device *vlan_dev;
539
540 write_lock_bh(&bond->lock);
541
542 if (list_empty(&bond->vlan_list)) {
543 goto out;
544 }
545
546 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
547 !(slave_dev->vlan_rx_kill_vid)) {
548 goto unreg;
549 }
550
551 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
552 /* Save and then restore vlan_dev in the grp array,
553 * since the slave's driver might clear it.
554 */
555 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
556 slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
557 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
558 }
559
560 unreg:
561 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
562 slave_dev->vlan_rx_register) {
563 slave_dev->vlan_rx_register(slave_dev, NULL);
564 }
565
566 out:
567 write_unlock_bh(&bond->lock);
568 }
569
570 /*------------------------------- Link status -------------------------------*/
571
572 /*
573 * Set the carrier state for the master according to the state of its
574 * slaves. If any slaves are up, the master is up. In 802.3ad mode,
575 * do special 802.3ad magic.
576 *
577 * Returns zero if carrier state does not change, nonzero if it does.
578 */
579 static int bond_set_carrier(struct bonding *bond)
580 {
581 struct slave *slave;
582 int i;
583
584 if (bond->slave_cnt == 0)
585 goto down;
586
587 if (bond->params.mode == BOND_MODE_8023AD)
588 return bond_3ad_set_carrier(bond);
589
590 bond_for_each_slave(bond, slave, i) {
591 if (slave->link == BOND_LINK_UP) {
592 if (!netif_carrier_ok(bond->dev)) {
593 netif_carrier_on(bond->dev);
594 return 1;
595 }
596 return 0;
597 }
598 }
599
600 down:
601 if (netif_carrier_ok(bond->dev)) {
602 netif_carrier_off(bond->dev);
603 return 1;
604 }
605 return 0;
606 }
607
608 /*
609 * Get link speed and duplex from the slave's base driver
610 * using ethtool. If for some reason the call fails or the
611 * values are invalid, fake speed and duplex to 100/Full
612 * and return error.
613 */
614 static int bond_update_speed_duplex(struct slave *slave)
615 {
616 struct net_device *slave_dev = slave->dev;
617 struct ethtool_cmd etool;
618 int res;
619
620 /* Fake speed and duplex */
621 slave->speed = SPEED_100;
622 slave->duplex = DUPLEX_FULL;
623
624 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
625 return -1;
626
627 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
628 if (res < 0)
629 return -1;
630
631 switch (etool.speed) {
632 case SPEED_10:
633 case SPEED_100:
634 case SPEED_1000:
635 case SPEED_10000:
636 break;
637 default:
638 return -1;
639 }
640
641 switch (etool.duplex) {
642 case DUPLEX_FULL:
643 case DUPLEX_HALF:
644 break;
645 default:
646 return -1;
647 }
648
649 slave->speed = etool.speed;
650 slave->duplex = etool.duplex;
651
652 return 0;
653 }
654
655 /*
656 * if <dev> supports MII link status reporting, check its link status.
657 *
658 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
659 * depening upon the setting of the use_carrier parameter.
660 *
661 * Return either BMSR_LSTATUS, meaning that the link is up (or we
662 * can't tell and just pretend it is), or 0, meaning that the link is
663 * down.
664 *
665 * If reporting is non-zero, instead of faking link up, return -1 if
666 * both ETHTOOL and MII ioctls fail (meaning the device does not
667 * support them). If use_carrier is set, return whatever it says.
668 * It'd be nice if there was a good way to tell if a driver supports
669 * netif_carrier, but there really isn't.
670 */
671 static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting)
672 {
673 static int (* ioctl)(struct net_device *, struct ifreq *, int);
674 struct ifreq ifr;
675 struct mii_ioctl_data *mii;
676
677 if (bond->params.use_carrier) {
678 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
679 }
680
681 ioctl = slave_dev->do_ioctl;
682 if (ioctl) {
683 /* TODO: set pointer to correct ioctl on a per team member */
684 /* bases to make this more efficient. that is, once */
685 /* we determine the correct ioctl, we will always */
686 /* call it and not the others for that team */
687 /* member. */
688
689 /*
690 * We cannot assume that SIOCGMIIPHY will also read a
691 * register; not all network drivers (e.g., e100)
692 * support that.
693 */
694
695 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */
696 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
697 mii = if_mii(&ifr);
698 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
699 mii->reg_num = MII_BMSR;
700 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) {
701 return (mii->val_out & BMSR_LSTATUS);
702 }
703 }
704 }
705
706 /*
707 * Some drivers cache ETHTOOL_GLINK for a period of time so we only
708 * attempt to get link status from it if the above MII ioctls fail.
709 */
710 if (slave_dev->ethtool_ops) {
711 if (slave_dev->ethtool_ops->get_link) {
712 u32 link;
713
714 link = slave_dev->ethtool_ops->get_link(slave_dev);
715
716 return link ? BMSR_LSTATUS : 0;
717 }
718 }
719
720 /*
721 * If reporting, report that either there's no dev->do_ioctl,
722 * or both SIOCGMIIREG and get_link failed (meaning that we
723 * cannot report link status). If not reporting, pretend
724 * we're ok.
725 */
726 return (reporting ? -1 : BMSR_LSTATUS);
727 }
728
729 /*----------------------------- Multicast list ------------------------------*/
730
731 /*
732 * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise
733 */
734 static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2)
735 {
736 return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 &&
737 dmi1->dmi_addrlen == dmi2->dmi_addrlen;
738 }
739
740 /*
741 * returns dmi entry if found, NULL otherwise
742 */
743 static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
744 {
745 struct dev_mc_list *idmi;
746
747 for (idmi = mc_list; idmi; idmi = idmi->next) {
748 if (bond_is_dmi_same(dmi, idmi)) {
749 return idmi;
750 }
751 }
752
753 return NULL;
754 }
755
756 /*
757 * Push the promiscuity flag down to appropriate slaves
758 */
759 static void bond_set_promiscuity(struct bonding *bond, int inc)
760 {
761 if (USES_PRIMARY(bond->params.mode)) {
762 /* write lock already acquired */
763 if (bond->curr_active_slave) {
764 dev_set_promiscuity(bond->curr_active_slave->dev, inc);
765 }
766 } else {
767 struct slave *slave;
768 int i;
769 bond_for_each_slave(bond, slave, i) {
770 dev_set_promiscuity(slave->dev, inc);
771 }
772 }
773 }
774
775 /*
776 * Push the allmulti flag down to all slaves
777 */
778 static void bond_set_allmulti(struct bonding *bond, int inc)
779 {
780 if (USES_PRIMARY(bond->params.mode)) {
781 /* write lock already acquired */
782 if (bond->curr_active_slave) {
783 dev_set_allmulti(bond->curr_active_slave->dev, inc);
784 }
785 } else {
786 struct slave *slave;
787 int i;
788 bond_for_each_slave(bond, slave, i) {
789 dev_set_allmulti(slave->dev, inc);
790 }
791 }
792 }
793
794 /*
795 * Add a Multicast address to slaves
796 * according to mode
797 */
798 static void bond_mc_add(struct bonding *bond, void *addr, int alen)
799 {
800 if (USES_PRIMARY(bond->params.mode)) {
801 /* write lock already acquired */
802 if (bond->curr_active_slave) {
803 dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0);
804 }
805 } else {
806 struct slave *slave;
807 int i;
808 bond_for_each_slave(bond, slave, i) {
809 dev_mc_add(slave->dev, addr, alen, 0);
810 }
811 }
812 }
813
814 /*
815 * Remove a multicast address from slave
816 * according to mode
817 */
818 static void bond_mc_delete(struct bonding *bond, void *addr, int alen)
819 {
820 if (USES_PRIMARY(bond->params.mode)) {
821 /* write lock already acquired */
822 if (bond->curr_active_slave) {
823 dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0);
824 }
825 } else {
826 struct slave *slave;
827 int i;
828 bond_for_each_slave(bond, slave, i) {
829 dev_mc_delete(slave->dev, addr, alen, 0);
830 }
831 }
832 }
833
834
835 /*
836 * Retrieve the list of registered multicast addresses for the bonding
837 * device and retransmit an IGMP JOIN request to the current active
838 * slave.
839 */
840 static void bond_resend_igmp_join_requests(struct bonding *bond)
841 {
842 struct in_device *in_dev;
843 struct ip_mc_list *im;
844
845 rcu_read_lock();
846 in_dev = __in_dev_get_rcu(bond->dev);
847 if (in_dev) {
848 for (im = in_dev->mc_list; im; im = im->next) {
849 ip_mc_rejoin_group(im);
850 }
851 }
852
853 rcu_read_unlock();
854 }
855
856 /*
857 * Totally destroys the mc_list in bond
858 */
859 static void bond_mc_list_destroy(struct bonding *bond)
860 {
861 struct dev_mc_list *dmi;
862
863 dmi = bond->mc_list;
864 while (dmi) {
865 bond->mc_list = dmi->next;
866 kfree(dmi);
867 dmi = bond->mc_list;
868 }
869 bond->mc_list = NULL;
870 }
871
872 /*
873 * Copy all the Multicast addresses from src to the bonding device dst
874 */
875 static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond,
876 gfp_t gfp_flag)
877 {
878 struct dev_mc_list *dmi, *new_dmi;
879
880 for (dmi = mc_list; dmi; dmi = dmi->next) {
881 new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag);
882
883 if (!new_dmi) {
884 /* FIXME: Potential memory leak !!! */
885 return -ENOMEM;
886 }
887
888 new_dmi->next = bond->mc_list;
889 bond->mc_list = new_dmi;
890 new_dmi->dmi_addrlen = dmi->dmi_addrlen;
891 memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen);
892 new_dmi->dmi_users = dmi->dmi_users;
893 new_dmi->dmi_gusers = dmi->dmi_gusers;
894 }
895
896 return 0;
897 }
898
899 /*
900 * flush all members of flush->mc_list from device dev->mc_list
901 */
902 static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev)
903 {
904 struct bonding *bond = bond_dev->priv;
905 struct dev_mc_list *dmi;
906
907 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
908 dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
909 }
910
911 if (bond->params.mode == BOND_MODE_8023AD) {
912 /* del lacpdu mc addr from mc list */
913 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
914
915 dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
916 }
917 }
918
919 /*--------------------------- Active slave change ---------------------------*/
920
921 /*
922 * Update the mc list and multicast-related flags for the new and
923 * old active slaves (if any) according to the multicast mode, and
924 * promiscuous flags unconditionally.
925 */
926 static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active)
927 {
928 struct dev_mc_list *dmi;
929
930 if (!USES_PRIMARY(bond->params.mode)) {
931 /* nothing to do - mc list is already up-to-date on
932 * all slaves
933 */
934 return;
935 }
936
937 if (old_active) {
938 if (bond->dev->flags & IFF_PROMISC) {
939 dev_set_promiscuity(old_active->dev, -1);
940 }
941
942 if (bond->dev->flags & IFF_ALLMULTI) {
943 dev_set_allmulti(old_active->dev, -1);
944 }
945
946 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
947 dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
948 }
949 }
950
951 if (new_active) {
952 if (bond->dev->flags & IFF_PROMISC) {
953 dev_set_promiscuity(new_active->dev, 1);
954 }
955
956 if (bond->dev->flags & IFF_ALLMULTI) {
957 dev_set_allmulti(new_active->dev, 1);
958 }
959
960 for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) {
961 dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
962 }
963 bond_resend_igmp_join_requests(bond);
964 }
965 }
966
967 /**
968 * find_best_interface - select the best available slave to be the active one
969 * @bond: our bonding struct
970 *
971 * Warning: Caller must hold curr_slave_lock for writing.
972 */
973 static struct slave *bond_find_best_slave(struct bonding *bond)
974 {
975 struct slave *new_active, *old_active;
976 struct slave *bestslave = NULL;
977 int mintime = bond->params.updelay;
978 int i;
979
980 new_active = old_active = bond->curr_active_slave;
981
982 if (!new_active) { /* there were no active slaves left */
983 if (bond->slave_cnt > 0) { /* found one slave */
984 new_active = bond->first_slave;
985 } else {
986 return NULL; /* still no slave, return NULL */
987 }
988 }
989
990 /* first try the primary link; if arping, a link must tx/rx traffic
991 * before it can be considered the curr_active_slave - also, we would skip
992 * slaves between the curr_active_slave and primary_slave that may be up
993 * and able to arp
994 */
995 if ((bond->primary_slave) &&
996 (!bond->params.arp_interval) &&
997 (IS_UP(bond->primary_slave->dev))) {
998 new_active = bond->primary_slave;
999 }
1000
1001 /* remember where to stop iterating over the slaves */
1002 old_active = new_active;
1003
1004 bond_for_each_slave_from(bond, new_active, i, old_active) {
1005 if (IS_UP(new_active->dev)) {
1006 if (new_active->link == BOND_LINK_UP) {
1007 return new_active;
1008 } else if (new_active->link == BOND_LINK_BACK) {
1009 /* link up, but waiting for stabilization */
1010 if (new_active->delay < mintime) {
1011 mintime = new_active->delay;
1012 bestslave = new_active;
1013 }
1014 }
1015 }
1016 }
1017
1018 return bestslave;
1019 }
1020
1021 /**
1022 * change_active_interface - change the active slave into the specified one
1023 * @bond: our bonding struct
1024 * @new: the new slave to make the active one
1025 *
1026 * Set the new slave to the bond's settings and unset them on the old
1027 * curr_active_slave.
1028 * Setting include flags, mc-list, promiscuity, allmulti, etc.
1029 *
1030 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1031 * because it is apparently the best available slave we have, even though its
1032 * updelay hasn't timed out yet.
1033 *
1034 * Warning: Caller must hold curr_slave_lock for writing.
1035 */
1036 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1037 {
1038 struct slave *old_active = bond->curr_active_slave;
1039
1040 if (old_active == new_active) {
1041 return;
1042 }
1043
1044 if (new_active) {
1045 if (new_active->link == BOND_LINK_BACK) {
1046 if (USES_PRIMARY(bond->params.mode)) {
1047 printk(KERN_INFO DRV_NAME
1048 ": %s: making interface %s the new "
1049 "active one %d ms earlier.\n",
1050 bond->dev->name, new_active->dev->name,
1051 (bond->params.updelay - new_active->delay) * bond->params.miimon);
1052 }
1053
1054 new_active->delay = 0;
1055 new_active->link = BOND_LINK_UP;
1056 new_active->jiffies = jiffies;
1057
1058 if (bond->params.mode == BOND_MODE_8023AD) {
1059 bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1060 }
1061
1062 if ((bond->params.mode == BOND_MODE_TLB) ||
1063 (bond->params.mode == BOND_MODE_ALB)) {
1064 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1065 }
1066 } else {
1067 if (USES_PRIMARY(bond->params.mode)) {
1068 printk(KERN_INFO DRV_NAME
1069 ": %s: making interface %s the new "
1070 "active one.\n",
1071 bond->dev->name, new_active->dev->name);
1072 }
1073 }
1074 }
1075
1076 if (USES_PRIMARY(bond->params.mode)) {
1077 bond_mc_swap(bond, new_active, old_active);
1078 }
1079
1080 if ((bond->params.mode == BOND_MODE_TLB) ||
1081 (bond->params.mode == BOND_MODE_ALB)) {
1082 bond_alb_handle_active_change(bond, new_active);
1083 if (old_active)
1084 bond_set_slave_inactive_flags(old_active);
1085 if (new_active)
1086 bond_set_slave_active_flags(new_active);
1087 } else {
1088 bond->curr_active_slave = new_active;
1089 }
1090
1091 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1092 if (old_active) {
1093 bond_set_slave_inactive_flags(old_active);
1094 }
1095
1096 if (new_active) {
1097 bond_set_slave_active_flags(new_active);
1098 }
1099 bond_send_gratuitous_arp(bond);
1100 }
1101 }
1102
1103 /**
1104 * bond_select_active_slave - select a new active slave, if needed
1105 * @bond: our bonding struct
1106 *
1107 * This functions shoud be called when one of the following occurs:
1108 * - The old curr_active_slave has been released or lost its link.
1109 * - The primary_slave has got its link back.
1110 * - A slave has got its link back and there's no old curr_active_slave.
1111 *
1112 * Warning: Caller must hold curr_slave_lock for writing.
1113 */
1114 void bond_select_active_slave(struct bonding *bond)
1115 {
1116 struct slave *best_slave;
1117 int rv;
1118
1119 best_slave = bond_find_best_slave(bond);
1120 if (best_slave != bond->curr_active_slave) {
1121 bond_change_active_slave(bond, best_slave);
1122 rv = bond_set_carrier(bond);
1123 if (!rv)
1124 return;
1125
1126 if (netif_carrier_ok(bond->dev)) {
1127 printk(KERN_INFO DRV_NAME
1128 ": %s: first active interface up!\n",
1129 bond->dev->name);
1130 } else {
1131 printk(KERN_INFO DRV_NAME ": %s: "
1132 "now running without any active interface !\n",
1133 bond->dev->name);
1134 }
1135 }
1136 }
1137
1138 /*--------------------------- slave list handling ---------------------------*/
1139
1140 /*
1141 * This function attaches the slave to the end of list.
1142 *
1143 * bond->lock held for writing by caller.
1144 */
1145 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1146 {
1147 if (bond->first_slave == NULL) { /* attaching the first slave */
1148 new_slave->next = new_slave;
1149 new_slave->prev = new_slave;
1150 bond->first_slave = new_slave;
1151 } else {
1152 new_slave->next = bond->first_slave;
1153 new_slave->prev = bond->first_slave->prev;
1154 new_slave->next->prev = new_slave;
1155 new_slave->prev->next = new_slave;
1156 }
1157
1158 bond->slave_cnt++;
1159 }
1160
1161 /*
1162 * This function detaches the slave from the list.
1163 * WARNING: no check is made to verify if the slave effectively
1164 * belongs to <bond>.
1165 * Nothing is freed on return, structures are just unchained.
1166 * If any slave pointer in bond was pointing to <slave>,
1167 * it should be changed by the calling function.
1168 *
1169 * bond->lock held for writing by caller.
1170 */
1171 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1172 {
1173 if (slave->next) {
1174 slave->next->prev = slave->prev;
1175 }
1176
1177 if (slave->prev) {
1178 slave->prev->next = slave->next;
1179 }
1180
1181 if (bond->first_slave == slave) { /* slave is the first slave */
1182 if (bond->slave_cnt > 1) { /* there are more slave */
1183 bond->first_slave = slave->next;
1184 } else {
1185 bond->first_slave = NULL; /* slave was the last one */
1186 }
1187 }
1188
1189 slave->next = NULL;
1190 slave->prev = NULL;
1191 bond->slave_cnt--;
1192 }
1193
1194 /*---------------------------------- IOCTL ----------------------------------*/
1195
1196 static int bond_sethwaddr(struct net_device *bond_dev,
1197 struct net_device *slave_dev)
1198 {
1199 dprintk("bond_dev=%p\n", bond_dev);
1200 dprintk("slave_dev=%p\n", slave_dev);
1201 dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1202 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1203 return 0;
1204 }
1205
1206 #define BOND_VLAN_FEATURES \
1207 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1208 NETIF_F_HW_VLAN_FILTER)
1209
1210 /*
1211 * Compute the common dev->feature set available to all slaves. Some
1212 * feature bits are managed elsewhere, so preserve those feature bits
1213 * on the master device.
1214 */
1215 static int bond_compute_features(struct bonding *bond)
1216 {
1217 struct slave *slave;
1218 struct net_device *bond_dev = bond->dev;
1219 unsigned long features = bond_dev->features;
1220 unsigned short max_hard_header_len = ETH_HLEN;
1221 int i;
1222
1223 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1224 features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA |
1225 NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1226
1227 bond_for_each_slave(bond, slave, i) {
1228 features = netdev_compute_features(features,
1229 slave->dev->features);
1230 if (slave->dev->hard_header_len > max_hard_header_len)
1231 max_hard_header_len = slave->dev->hard_header_len;
1232 }
1233
1234 features |= (bond_dev->features & BOND_VLAN_FEATURES);
1235 bond_dev->features = features;
1236 bond_dev->hard_header_len = max_hard_header_len;
1237
1238 return 0;
1239 }
1240
1241 /* enslave device <slave> to bond device <master> */
1242 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1243 {
1244 struct bonding *bond = bond_dev->priv;
1245 struct slave *new_slave = NULL;
1246 struct dev_mc_list *dmi;
1247 struct sockaddr addr;
1248 int link_reporting;
1249 int old_features = bond_dev->features;
1250 int res = 0;
1251
1252 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1253 slave_dev->do_ioctl == NULL) {
1254 printk(KERN_WARNING DRV_NAME
1255 ": %s: Warning: no link monitoring support for %s\n",
1256 bond_dev->name, slave_dev->name);
1257 }
1258
1259 /* bond must be initialized by bond_open() before enslaving */
1260 if (!(bond_dev->flags & IFF_UP)) {
1261 dprintk("Error, master_dev is not up\n");
1262 return -EPERM;
1263 }
1264
1265 /* already enslaved */
1266 if (slave_dev->flags & IFF_SLAVE) {
1267 dprintk("Error, Device was already enslaved\n");
1268 return -EBUSY;
1269 }
1270
1271 /* vlan challenged mutual exclusion */
1272 /* no need to lock since we're protected by rtnl_lock */
1273 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1274 dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1275 if (!list_empty(&bond->vlan_list)) {
1276 printk(KERN_ERR DRV_NAME
1277 ": %s: Error: cannot enslave VLAN "
1278 "challenged slave %s on VLAN enabled "
1279 "bond %s\n", bond_dev->name, slave_dev->name,
1280 bond_dev->name);
1281 return -EPERM;
1282 } else {
1283 printk(KERN_WARNING DRV_NAME
1284 ": %s: Warning: enslaved VLAN challenged "
1285 "slave %s. Adding VLANs will be blocked as "
1286 "long as %s is part of bond %s\n",
1287 bond_dev->name, slave_dev->name, slave_dev->name,
1288 bond_dev->name);
1289 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1290 }
1291 } else {
1292 dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1293 if (bond->slave_cnt == 0) {
1294 /* First slave, and it is not VLAN challenged,
1295 * so remove the block of adding VLANs over the bond.
1296 */
1297 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1298 }
1299 }
1300
1301 /*
1302 * Old ifenslave binaries are no longer supported. These can
1303 * be identified with moderate accurary by the state of the slave:
1304 * the current ifenslave will set the interface down prior to
1305 * enslaving it; the old ifenslave will not.
1306 */
1307 if ((slave_dev->flags & IFF_UP)) {
1308 printk(KERN_ERR DRV_NAME ": %s is up. "
1309 "This may be due to an out of date ifenslave.\n",
1310 slave_dev->name);
1311 res = -EPERM;
1312 goto err_undo_flags;
1313 }
1314
1315 if (slave_dev->set_mac_address == NULL) {
1316 printk(KERN_ERR DRV_NAME
1317 ": %s: Error: The slave device you specified does "
1318 "not support setting the MAC address. "
1319 "Your kernel likely does not support slave "
1320 "devices.\n", bond_dev->name);
1321 res = -EOPNOTSUPP;
1322 goto err_undo_flags;
1323 }
1324
1325 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1326 if (!new_slave) {
1327 res = -ENOMEM;
1328 goto err_undo_flags;
1329 }
1330
1331 /* save slave's original flags before calling
1332 * netdev_set_master and dev_open
1333 */
1334 new_slave->original_flags = slave_dev->flags;
1335
1336 /*
1337 * Save slave's original ("permanent") mac address for modes
1338 * that need it, and for restoring it upon release, and then
1339 * set it to the master's address
1340 */
1341 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1342
1343 /*
1344 * Set slave to master's mac address. The application already
1345 * set the master's mac address to that of the first slave
1346 */
1347 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1348 addr.sa_family = slave_dev->type;
1349 res = dev_set_mac_address(slave_dev, &addr);
1350 if (res) {
1351 dprintk("Error %d calling set_mac_address\n", res);
1352 goto err_free;
1353 }
1354
1355 res = netdev_set_master(slave_dev, bond_dev);
1356 if (res) {
1357 dprintk("Error %d calling netdev_set_master\n", res);
1358 goto err_close;
1359 }
1360 /* open the slave since the application closed it */
1361 res = dev_open(slave_dev);
1362 if (res) {
1363 dprintk("Openning slave %s failed\n", slave_dev->name);
1364 goto err_restore_mac;
1365 }
1366
1367 new_slave->dev = slave_dev;
1368 slave_dev->priv_flags |= IFF_BONDING;
1369
1370 if ((bond->params.mode == BOND_MODE_TLB) ||
1371 (bond->params.mode == BOND_MODE_ALB)) {
1372 /* bond_alb_init_slave() must be called before all other stages since
1373 * it might fail and we do not want to have to undo everything
1374 */
1375 res = bond_alb_init_slave(bond, new_slave);
1376 if (res) {
1377 goto err_unset_master;
1378 }
1379 }
1380
1381 /* If the mode USES_PRIMARY, then the new slave gets the
1382 * master's promisc (and mc) settings only if it becomes the
1383 * curr_active_slave, and that is taken care of later when calling
1384 * bond_change_active()
1385 */
1386 if (!USES_PRIMARY(bond->params.mode)) {
1387 /* set promiscuity level to new slave */
1388 if (bond_dev->flags & IFF_PROMISC) {
1389 dev_set_promiscuity(slave_dev, 1);
1390 }
1391
1392 /* set allmulti level to new slave */
1393 if (bond_dev->flags & IFF_ALLMULTI) {
1394 dev_set_allmulti(slave_dev, 1);
1395 }
1396
1397 /* upload master's mc_list to new slave */
1398 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
1399 dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
1400 }
1401 }
1402
1403 if (bond->params.mode == BOND_MODE_8023AD) {
1404 /* add lacpdu mc addr to mc list */
1405 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1406
1407 dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0);
1408 }
1409
1410 bond_add_vlans_on_slave(bond, slave_dev);
1411
1412 write_lock_bh(&bond->lock);
1413
1414 bond_attach_slave(bond, new_slave);
1415
1416 new_slave->delay = 0;
1417 new_slave->link_failure_count = 0;
1418
1419 bond_compute_features(bond);
1420
1421 new_slave->last_arp_rx = jiffies;
1422
1423 if (bond->params.miimon && !bond->params.use_carrier) {
1424 link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1425
1426 if ((link_reporting == -1) && !bond->params.arp_interval) {
1427 /*
1428 * miimon is set but a bonded network driver
1429 * does not support ETHTOOL/MII and
1430 * arp_interval is not set. Note: if
1431 * use_carrier is enabled, we will never go
1432 * here (because netif_carrier is always
1433 * supported); thus, we don't need to change
1434 * the messages for netif_carrier.
1435 */
1436 printk(KERN_WARNING DRV_NAME
1437 ": %s: Warning: MII and ETHTOOL support not "
1438 "available for interface %s, and "
1439 "arp_interval/arp_ip_target module parameters "
1440 "not specified, thus bonding will not detect "
1441 "link failures! see bonding.txt for details.\n",
1442 bond_dev->name, slave_dev->name);
1443 } else if (link_reporting == -1) {
1444 /* unable get link status using mii/ethtool */
1445 printk(KERN_WARNING DRV_NAME
1446 ": %s: Warning: can't get link status from "
1447 "interface %s; the network driver associated "
1448 "with this interface does not support MII or "
1449 "ETHTOOL link status reporting, thus miimon "
1450 "has no effect on this interface.\n",
1451 bond_dev->name, slave_dev->name);
1452 }
1453 }
1454
1455 /* check for initial state */
1456 if (!bond->params.miimon ||
1457 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1458 if (bond->params.updelay) {
1459 dprintk("Initial state of slave_dev is "
1460 "BOND_LINK_BACK\n");
1461 new_slave->link = BOND_LINK_BACK;
1462 new_slave->delay = bond->params.updelay;
1463 } else {
1464 dprintk("Initial state of slave_dev is "
1465 "BOND_LINK_UP\n");
1466 new_slave->link = BOND_LINK_UP;
1467 }
1468 new_slave->jiffies = jiffies;
1469 } else {
1470 dprintk("Initial state of slave_dev is "
1471 "BOND_LINK_DOWN\n");
1472 new_slave->link = BOND_LINK_DOWN;
1473 }
1474
1475 if (bond_update_speed_duplex(new_slave) &&
1476 (new_slave->link != BOND_LINK_DOWN)) {
1477 printk(KERN_WARNING DRV_NAME
1478 ": %s: Warning: failed to get speed and duplex from %s, "
1479 "assumed to be 100Mb/sec and Full.\n",
1480 bond_dev->name, new_slave->dev->name);
1481
1482 if (bond->params.mode == BOND_MODE_8023AD) {
1483 printk(KERN_WARNING DRV_NAME
1484 ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL "
1485 "support in base driver for proper aggregator "
1486 "selection.\n", bond_dev->name);
1487 }
1488 }
1489
1490 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1491 /* if there is a primary slave, remember it */
1492 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1493 bond->primary_slave = new_slave;
1494 }
1495 }
1496
1497 switch (bond->params.mode) {
1498 case BOND_MODE_ACTIVEBACKUP:
1499 bond_set_slave_inactive_flags(new_slave);
1500 bond_select_active_slave(bond);
1501 break;
1502 case BOND_MODE_8023AD:
1503 /* in 802.3ad mode, the internal mechanism
1504 * will activate the slaves in the selected
1505 * aggregator
1506 */
1507 bond_set_slave_inactive_flags(new_slave);
1508 /* if this is the first slave */
1509 if (bond->slave_cnt == 1) {
1510 SLAVE_AD_INFO(new_slave).id = 1;
1511 /* Initialize AD with the number of times that the AD timer is called in 1 second
1512 * can be called only after the mac address of the bond is set
1513 */
1514 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1515 bond->params.lacp_fast);
1516 } else {
1517 SLAVE_AD_INFO(new_slave).id =
1518 SLAVE_AD_INFO(new_slave->prev).id + 1;
1519 }
1520
1521 bond_3ad_bind_slave(new_slave);
1522 break;
1523 case BOND_MODE_TLB:
1524 case BOND_MODE_ALB:
1525 new_slave->state = BOND_STATE_ACTIVE;
1526 if ((!bond->curr_active_slave) &&
1527 (new_slave->link != BOND_LINK_DOWN)) {
1528 /* first slave or no active slave yet, and this link
1529 * is OK, so make this interface the active one
1530 */
1531 bond_change_active_slave(bond, new_slave);
1532 } else {
1533 bond_set_slave_inactive_flags(new_slave);
1534 }
1535 break;
1536 default:
1537 dprintk("This slave is always active in trunk mode\n");
1538
1539 /* always active in trunk mode */
1540 new_slave->state = BOND_STATE_ACTIVE;
1541
1542 /* In trunking mode there is little meaning to curr_active_slave
1543 * anyway (it holds no special properties of the bond device),
1544 * so we can change it without calling change_active_interface()
1545 */
1546 if (!bond->curr_active_slave) {
1547 bond->curr_active_slave = new_slave;
1548 }
1549 break;
1550 } /* switch(bond_mode) */
1551
1552 bond_set_carrier(bond);
1553
1554 write_unlock_bh(&bond->lock);
1555
1556 res = bond_create_slave_symlinks(bond_dev, slave_dev);
1557 if (res)
1558 goto err_unset_master;
1559
1560 printk(KERN_INFO DRV_NAME
1561 ": %s: enslaving %s as a%s interface with a%s link.\n",
1562 bond_dev->name, slave_dev->name,
1563 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1564 new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1565
1566 /* enslave is successful */
1567 return 0;
1568
1569 /* Undo stages on error */
1570 err_unset_master:
1571 netdev_set_master(slave_dev, NULL);
1572
1573 err_close:
1574 dev_close(slave_dev);
1575
1576 err_restore_mac:
1577 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1578 addr.sa_family = slave_dev->type;
1579 dev_set_mac_address(slave_dev, &addr);
1580
1581 err_free:
1582 kfree(new_slave);
1583
1584 err_undo_flags:
1585 bond_dev->features = old_features;
1586
1587 return res;
1588 }
1589
1590 /*
1591 * Try to release the slave device <slave> from the bond device <master>
1592 * It is legal to access curr_active_slave without a lock because all the function
1593 * is write-locked.
1594 *
1595 * The rules for slave state should be:
1596 * for Active/Backup:
1597 * Active stays on all backups go down
1598 * for Bonded connections:
1599 * The first up interface should be left on and all others downed.
1600 */
1601 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1602 {
1603 struct bonding *bond = bond_dev->priv;
1604 struct slave *slave, *oldcurrent;
1605 struct sockaddr addr;
1606 int mac_addr_differ;
1607
1608 /* slave is not a slave or master is not master of this slave */
1609 if (!(slave_dev->flags & IFF_SLAVE) ||
1610 (slave_dev->master != bond_dev)) {
1611 printk(KERN_ERR DRV_NAME
1612 ": %s: Error: cannot release %s.\n",
1613 bond_dev->name, slave_dev->name);
1614 return -EINVAL;
1615 }
1616
1617 write_lock_bh(&bond->lock);
1618
1619 slave = bond_get_slave_by_dev(bond, slave_dev);
1620 if (!slave) {
1621 /* not a slave of this bond */
1622 printk(KERN_INFO DRV_NAME
1623 ": %s: %s not enslaved\n",
1624 bond_dev->name, slave_dev->name);
1625 write_unlock_bh(&bond->lock);
1626 return -EINVAL;
1627 }
1628
1629 mac_addr_differ = memcmp(bond_dev->dev_addr,
1630 slave->perm_hwaddr,
1631 ETH_ALEN);
1632 if (!mac_addr_differ && (bond->slave_cnt > 1)) {
1633 printk(KERN_WARNING DRV_NAME
1634 ": %s: Warning: the permanent HWaddr of %s "
1635 "- %02X:%02X:%02X:%02X:%02X:%02X - is "
1636 "still in use by %s. Set the HWaddr of "
1637 "%s to a different address to avoid "
1638 "conflicts.\n",
1639 bond_dev->name,
1640 slave_dev->name,
1641 slave->perm_hwaddr[0],
1642 slave->perm_hwaddr[1],
1643 slave->perm_hwaddr[2],
1644 slave->perm_hwaddr[3],
1645 slave->perm_hwaddr[4],
1646 slave->perm_hwaddr[5],
1647 bond_dev->name,
1648 slave_dev->name);
1649 }
1650
1651 /* Inform AD package of unbinding of slave. */
1652 if (bond->params.mode == BOND_MODE_8023AD) {
1653 /* must be called before the slave is
1654 * detached from the list
1655 */
1656 bond_3ad_unbind_slave(slave);
1657 }
1658
1659 printk(KERN_INFO DRV_NAME
1660 ": %s: releasing %s interface %s\n",
1661 bond_dev->name,
1662 (slave->state == BOND_STATE_ACTIVE)
1663 ? "active" : "backup",
1664 slave_dev->name);
1665
1666 oldcurrent = bond->curr_active_slave;
1667
1668 bond->current_arp_slave = NULL;
1669
1670 /* release the slave from its bond */
1671 bond_detach_slave(bond, slave);
1672
1673 bond_compute_features(bond);
1674
1675 if (bond->primary_slave == slave) {
1676 bond->primary_slave = NULL;
1677 }
1678
1679 if (oldcurrent == slave) {
1680 bond_change_active_slave(bond, NULL);
1681 }
1682
1683 if ((bond->params.mode == BOND_MODE_TLB) ||
1684 (bond->params.mode == BOND_MODE_ALB)) {
1685 /* Must be called only after the slave has been
1686 * detached from the list and the curr_active_slave
1687 * has been cleared (if our_slave == old_current),
1688 * but before a new active slave is selected.
1689 */
1690 bond_alb_deinit_slave(bond, slave);
1691 }
1692
1693 if (oldcurrent == slave)
1694 bond_select_active_slave(bond);
1695
1696 if (bond->slave_cnt == 0) {
1697 bond_set_carrier(bond);
1698
1699 /* if the last slave was removed, zero the mac address
1700 * of the master so it will be set by the application
1701 * to the mac address of the first slave
1702 */
1703 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1704
1705 if (list_empty(&bond->vlan_list)) {
1706 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1707 } else {
1708 printk(KERN_WARNING DRV_NAME
1709 ": %s: Warning: clearing HW address of %s while it "
1710 "still has VLANs.\n",
1711 bond_dev->name, bond_dev->name);
1712 printk(KERN_WARNING DRV_NAME
1713 ": %s: When re-adding slaves, make sure the bond's "
1714 "HW address matches its VLANs'.\n",
1715 bond_dev->name);
1716 }
1717 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1718 !bond_has_challenged_slaves(bond)) {
1719 printk(KERN_INFO DRV_NAME
1720 ": %s: last VLAN challenged slave %s "
1721 "left bond %s. VLAN blocking is removed\n",
1722 bond_dev->name, slave_dev->name, bond_dev->name);
1723 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1724 }
1725
1726 write_unlock_bh(&bond->lock);
1727
1728 /* must do this from outside any spinlocks */
1729 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1730
1731 bond_del_vlans_from_slave(bond, slave_dev);
1732
1733 /* If the mode USES_PRIMARY, then we should only remove its
1734 * promisc and mc settings if it was the curr_active_slave, but that was
1735 * already taken care of above when we detached the slave
1736 */
1737 if (!USES_PRIMARY(bond->params.mode)) {
1738 /* unset promiscuity level from slave */
1739 if (bond_dev->flags & IFF_PROMISC) {
1740 dev_set_promiscuity(slave_dev, -1);
1741 }
1742
1743 /* unset allmulti level from slave */
1744 if (bond_dev->flags & IFF_ALLMULTI) {
1745 dev_set_allmulti(slave_dev, -1);
1746 }
1747
1748 /* flush master's mc_list from slave */
1749 bond_mc_list_flush(bond_dev, slave_dev);
1750 }
1751
1752 netdev_set_master(slave_dev, NULL);
1753
1754 /* close slave before restoring its mac address */
1755 dev_close(slave_dev);
1756
1757 /* restore original ("permanent") mac address */
1758 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1759 addr.sa_family = slave_dev->type;
1760 dev_set_mac_address(slave_dev, &addr);
1761
1762 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1763 IFF_SLAVE_INACTIVE | IFF_BONDING |
1764 IFF_SLAVE_NEEDARP);
1765
1766 kfree(slave);
1767
1768 return 0; /* deletion OK */
1769 }
1770
1771 /*
1772 * This function releases all slaves.
1773 */
1774 static int bond_release_all(struct net_device *bond_dev)
1775 {
1776 struct bonding *bond = bond_dev->priv;
1777 struct slave *slave;
1778 struct net_device *slave_dev;
1779 struct sockaddr addr;
1780
1781 write_lock_bh(&bond->lock);
1782
1783 netif_carrier_off(bond_dev);
1784
1785 if (bond->slave_cnt == 0) {
1786 goto out;
1787 }
1788
1789 bond->current_arp_slave = NULL;
1790 bond->primary_slave = NULL;
1791 bond_change_active_slave(bond, NULL);
1792
1793 while ((slave = bond->first_slave) != NULL) {
1794 /* Inform AD package of unbinding of slave
1795 * before slave is detached from the list.
1796 */
1797 if (bond->params.mode == BOND_MODE_8023AD) {
1798 bond_3ad_unbind_slave(slave);
1799 }
1800
1801 slave_dev = slave->dev;
1802 bond_detach_slave(bond, slave);
1803
1804 if ((bond->params.mode == BOND_MODE_TLB) ||
1805 (bond->params.mode == BOND_MODE_ALB)) {
1806 /* must be called only after the slave
1807 * has been detached from the list
1808 */
1809 bond_alb_deinit_slave(bond, slave);
1810 }
1811
1812 bond_compute_features(bond);
1813
1814 /* now that the slave is detached, unlock and perform
1815 * all the undo steps that should not be called from
1816 * within a lock.
1817 */
1818 write_unlock_bh(&bond->lock);
1819
1820 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1821 bond_del_vlans_from_slave(bond, slave_dev);
1822
1823 /* If the mode USES_PRIMARY, then we should only remove its
1824 * promisc and mc settings if it was the curr_active_slave, but that was
1825 * already taken care of above when we detached the slave
1826 */
1827 if (!USES_PRIMARY(bond->params.mode)) {
1828 /* unset promiscuity level from slave */
1829 if (bond_dev->flags & IFF_PROMISC) {
1830 dev_set_promiscuity(slave_dev, -1);
1831 }
1832
1833 /* unset allmulti level from slave */
1834 if (bond_dev->flags & IFF_ALLMULTI) {
1835 dev_set_allmulti(slave_dev, -1);
1836 }
1837
1838 /* flush master's mc_list from slave */
1839 bond_mc_list_flush(bond_dev, slave_dev);
1840 }
1841
1842 netdev_set_master(slave_dev, NULL);
1843
1844 /* close slave before restoring its mac address */
1845 dev_close(slave_dev);
1846
1847 /* restore original ("permanent") mac address*/
1848 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1849 addr.sa_family = slave_dev->type;
1850 dev_set_mac_address(slave_dev, &addr);
1851
1852 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1853 IFF_SLAVE_INACTIVE);
1854
1855 kfree(slave);
1856
1857 /* re-acquire the lock before getting the next slave */
1858 write_lock_bh(&bond->lock);
1859 }
1860
1861 /* zero the mac address of the master so it will be
1862 * set by the application to the mac address of the
1863 * first slave
1864 */
1865 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1866
1867 if (list_empty(&bond->vlan_list)) {
1868 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1869 } else {
1870 printk(KERN_WARNING DRV_NAME
1871 ": %s: Warning: clearing HW address of %s while it "
1872 "still has VLANs.\n",
1873 bond_dev->name, bond_dev->name);
1874 printk(KERN_WARNING DRV_NAME
1875 ": %s: When re-adding slaves, make sure the bond's "
1876 "HW address matches its VLANs'.\n",
1877 bond_dev->name);
1878 }
1879
1880 printk(KERN_INFO DRV_NAME
1881 ": %s: released all slaves\n",
1882 bond_dev->name);
1883
1884 out:
1885 write_unlock_bh(&bond->lock);
1886
1887 return 0;
1888 }
1889
1890 /*
1891 * This function changes the active slave to slave <slave_dev>.
1892 * It returns -EINVAL in the following cases.
1893 * - <slave_dev> is not found in the list.
1894 * - There is not active slave now.
1895 * - <slave_dev> is already active.
1896 * - The link state of <slave_dev> is not BOND_LINK_UP.
1897 * - <slave_dev> is not running.
1898 * In these cases, this fuction does nothing.
1899 * In the other cases, currnt_slave pointer is changed and 0 is returned.
1900 */
1901 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
1902 {
1903 struct bonding *bond = bond_dev->priv;
1904 struct slave *old_active = NULL;
1905 struct slave *new_active = NULL;
1906 int res = 0;
1907
1908 if (!USES_PRIMARY(bond->params.mode)) {
1909 return -EINVAL;
1910 }
1911
1912 /* Verify that master_dev is indeed the master of slave_dev */
1913 if (!(slave_dev->flags & IFF_SLAVE) ||
1914 (slave_dev->master != bond_dev)) {
1915 return -EINVAL;
1916 }
1917
1918 write_lock_bh(&bond->lock);
1919
1920 old_active = bond->curr_active_slave;
1921 new_active = bond_get_slave_by_dev(bond, slave_dev);
1922
1923 /*
1924 * Changing to the current active: do nothing; return success.
1925 */
1926 if (new_active && (new_active == old_active)) {
1927 write_unlock_bh(&bond->lock);
1928 return 0;
1929 }
1930
1931 if ((new_active) &&
1932 (old_active) &&
1933 (new_active->link == BOND_LINK_UP) &&
1934 IS_UP(new_active->dev)) {
1935 bond_change_active_slave(bond, new_active);
1936 } else {
1937 res = -EINVAL;
1938 }
1939
1940 write_unlock_bh(&bond->lock);
1941
1942 return res;
1943 }
1944
1945 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
1946 {
1947 struct bonding *bond = bond_dev->priv;
1948
1949 info->bond_mode = bond->params.mode;
1950 info->miimon = bond->params.miimon;
1951
1952 read_lock_bh(&bond->lock);
1953 info->num_slaves = bond->slave_cnt;
1954 read_unlock_bh(&bond->lock);
1955
1956 return 0;
1957 }
1958
1959 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
1960 {
1961 struct bonding *bond = bond_dev->priv;
1962 struct slave *slave;
1963 int i, found = 0;
1964
1965 if (info->slave_id < 0) {
1966 return -ENODEV;
1967 }
1968
1969 read_lock_bh(&bond->lock);
1970
1971 bond_for_each_slave(bond, slave, i) {
1972 if (i == (int)info->slave_id) {
1973 found = 1;
1974 break;
1975 }
1976 }
1977
1978 read_unlock_bh(&bond->lock);
1979
1980 if (found) {
1981 strcpy(info->slave_name, slave->dev->name);
1982 info->link = slave->link;
1983 info->state = slave->state;
1984 info->link_failure_count = slave->link_failure_count;
1985 } else {
1986 return -ENODEV;
1987 }
1988
1989 return 0;
1990 }
1991
1992 /*-------------------------------- Monitoring -------------------------------*/
1993
1994 /* this function is called regularly to monitor each slave's link. */
1995 void bond_mii_monitor(struct net_device *bond_dev)
1996 {
1997 struct bonding *bond = bond_dev->priv;
1998 struct slave *slave, *oldcurrent;
1999 int do_failover = 0;
2000 int delta_in_ticks;
2001 int i;
2002
2003 read_lock(&bond->lock);
2004
2005 delta_in_ticks = (bond->params.miimon * HZ) / 1000;
2006
2007 if (bond->kill_timers) {
2008 goto out;
2009 }
2010
2011 if (bond->slave_cnt == 0) {
2012 goto re_arm;
2013 }
2014
2015 /* we will try to read the link status of each of our slaves, and
2016 * set their IFF_RUNNING flag appropriately. For each slave not
2017 * supporting MII status, we won't do anything so that a user-space
2018 * program could monitor the link itself if needed.
2019 */
2020
2021 read_lock(&bond->curr_slave_lock);
2022 oldcurrent = bond->curr_active_slave;
2023 read_unlock(&bond->curr_slave_lock);
2024
2025 bond_for_each_slave(bond, slave, i) {
2026 struct net_device *slave_dev = slave->dev;
2027 int link_state;
2028 u16 old_speed = slave->speed;
2029 u8 old_duplex = slave->duplex;
2030
2031 link_state = bond_check_dev_link(bond, slave_dev, 0);
2032
2033 switch (slave->link) {
2034 case BOND_LINK_UP: /* the link was up */
2035 if (link_state == BMSR_LSTATUS) {
2036 /* link stays up, nothing more to do */
2037 break;
2038 } else { /* link going down */
2039 slave->link = BOND_LINK_FAIL;
2040 slave->delay = bond->params.downdelay;
2041
2042 if (slave->link_failure_count < UINT_MAX) {
2043 slave->link_failure_count++;
2044 }
2045
2046 if (bond->params.downdelay) {
2047 printk(KERN_INFO DRV_NAME
2048 ": %s: link status down for %s "
2049 "interface %s, disabling it in "
2050 "%d ms.\n",
2051 bond_dev->name,
2052 IS_UP(slave_dev)
2053 ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
2054 ? ((slave == oldcurrent)
2055 ? "active " : "backup ")
2056 : "")
2057 : "idle ",
2058 slave_dev->name,
2059 bond->params.downdelay * bond->params.miimon);
2060 }
2061 }
2062 /* no break ! fall through the BOND_LINK_FAIL test to
2063 ensure proper action to be taken
2064 */
2065 case BOND_LINK_FAIL: /* the link has just gone down */
2066 if (link_state != BMSR_LSTATUS) {
2067 /* link stays down */
2068 if (slave->delay <= 0) {
2069 /* link down for too long time */
2070 slave->link = BOND_LINK_DOWN;
2071
2072 /* in active/backup mode, we must
2073 * completely disable this interface
2074 */
2075 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ||
2076 (bond->params.mode == BOND_MODE_8023AD)) {
2077 bond_set_slave_inactive_flags(slave);
2078 }
2079
2080 printk(KERN_INFO DRV_NAME
2081 ": %s: link status definitely "
2082 "down for interface %s, "
2083 "disabling it\n",
2084 bond_dev->name,
2085 slave_dev->name);
2086
2087 /* notify ad that the link status has changed */
2088 if (bond->params.mode == BOND_MODE_8023AD) {
2089 bond_3ad_handle_link_change(slave, BOND_LINK_DOWN);
2090 }
2091
2092 if ((bond->params.mode == BOND_MODE_TLB) ||
2093 (bond->params.mode == BOND_MODE_ALB)) {
2094 bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN);
2095 }
2096
2097 if (slave == oldcurrent) {
2098 do_failover = 1;
2099 }
2100 } else {
2101 slave->delay--;
2102 }
2103 } else {
2104 /* link up again */
2105 slave->link = BOND_LINK_UP;
2106 slave->jiffies = jiffies;
2107 printk(KERN_INFO DRV_NAME
2108 ": %s: link status up again after %d "
2109 "ms for interface %s.\n",
2110 bond_dev->name,
2111 (bond->params.downdelay - slave->delay) * bond->params.miimon,
2112 slave_dev->name);
2113 }
2114 break;
2115 case BOND_LINK_DOWN: /* the link was down */
2116 if (link_state != BMSR_LSTATUS) {
2117 /* the link stays down, nothing more to do */
2118 break;
2119 } else { /* link going up */
2120 slave->link = BOND_LINK_BACK;
2121 slave->delay = bond->params.updelay;
2122
2123 if (bond->params.updelay) {
2124 /* if updelay == 0, no need to
2125 advertise about a 0 ms delay */
2126 printk(KERN_INFO DRV_NAME
2127 ": %s: link status up for "
2128 "interface %s, enabling it "
2129 "in %d ms.\n",
2130 bond_dev->name,
2131 slave_dev->name,
2132 bond->params.updelay * bond->params.miimon);
2133 }
2134 }
2135 /* no break ! fall through the BOND_LINK_BACK state in
2136 case there's something to do.
2137 */
2138 case BOND_LINK_BACK: /* the link has just come back */
2139 if (link_state != BMSR_LSTATUS) {
2140 /* link down again */
2141 slave->link = BOND_LINK_DOWN;
2142
2143 printk(KERN_INFO DRV_NAME
2144 ": %s: link status down again after %d "
2145 "ms for interface %s.\n",
2146 bond_dev->name,
2147 (bond->params.updelay - slave->delay) * bond->params.miimon,
2148 slave_dev->name);
2149 } else {
2150 /* link stays up */
2151 if (slave->delay == 0) {
2152 /* now the link has been up for long time enough */
2153 slave->link = BOND_LINK_UP;
2154 slave->jiffies = jiffies;
2155
2156 if (bond->params.mode == BOND_MODE_8023AD) {
2157 /* prevent it from being the active one */
2158 slave->state = BOND_STATE_BACKUP;
2159 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2160 /* make it immediately active */
2161 slave->state = BOND_STATE_ACTIVE;
2162 } else if (slave != bond->primary_slave) {
2163 /* prevent it from being the active one */
2164 slave->state = BOND_STATE_BACKUP;
2165 }
2166
2167 printk(KERN_INFO DRV_NAME
2168 ": %s: link status definitely "
2169 "up for interface %s.\n",
2170 bond_dev->name,
2171 slave_dev->name);
2172
2173 /* notify ad that the link status has changed */
2174 if (bond->params.mode == BOND_MODE_8023AD) {
2175 bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2176 }
2177
2178 if ((bond->params.mode == BOND_MODE_TLB) ||
2179 (bond->params.mode == BOND_MODE_ALB)) {
2180 bond_alb_handle_link_change(bond, slave, BOND_LINK_UP);
2181 }
2182
2183 if ((!oldcurrent) ||
2184 (slave == bond->primary_slave)) {
2185 do_failover = 1;
2186 }
2187 } else {
2188 slave->delay--;
2189 }
2190 }
2191 break;
2192 default:
2193 /* Should not happen */
2194 printk(KERN_ERR DRV_NAME
2195 ": %s: Error: %s Illegal value (link=%d)\n",
2196 bond_dev->name,
2197 slave->dev->name,
2198 slave->link);
2199 goto out;
2200 } /* end of switch (slave->link) */
2201
2202 bond_update_speed_duplex(slave);
2203
2204 if (bond->params.mode == BOND_MODE_8023AD) {
2205 if (old_speed != slave->speed) {
2206 bond_3ad_adapter_speed_changed(slave);
2207 }
2208
2209 if (old_duplex != slave->duplex) {
2210 bond_3ad_adapter_duplex_changed(slave);
2211 }
2212 }
2213
2214 } /* end of for */
2215
2216 if (do_failover) {
2217 write_lock(&bond->curr_slave_lock);
2218
2219 bond_select_active_slave(bond);
2220
2221 write_unlock(&bond->curr_slave_lock);
2222 } else
2223 bond_set_carrier(bond);
2224
2225 re_arm:
2226 if (bond->params.miimon) {
2227 mod_timer(&bond->mii_timer, jiffies + delta_in_ticks);
2228 }
2229 out:
2230 read_unlock(&bond->lock);
2231 }
2232
2233
2234 static u32 bond_glean_dev_ip(struct net_device *dev)
2235 {
2236 struct in_device *idev;
2237 struct in_ifaddr *ifa;
2238 __be32 addr = 0;
2239
2240 if (!dev)
2241 return 0;
2242
2243 rcu_read_lock();
2244 idev = __in_dev_get_rcu(dev);
2245 if (!idev)
2246 goto out;
2247
2248 ifa = idev->ifa_list;
2249 if (!ifa)
2250 goto out;
2251
2252 addr = ifa->ifa_local;
2253 out:
2254 rcu_read_unlock();
2255 return addr;
2256 }
2257
2258 static int bond_has_ip(struct bonding *bond)
2259 {
2260 struct vlan_entry *vlan, *vlan_next;
2261
2262 if (bond->master_ip)
2263 return 1;
2264
2265 if (list_empty(&bond->vlan_list))
2266 return 0;
2267
2268 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2269 vlan_list) {
2270 if (vlan->vlan_ip)
2271 return 1;
2272 }
2273
2274 return 0;
2275 }
2276
2277 static int bond_has_this_ip(struct bonding *bond, u32 ip)
2278 {
2279 struct vlan_entry *vlan, *vlan_next;
2280
2281 if (ip == bond->master_ip)
2282 return 1;
2283
2284 if (list_empty(&bond->vlan_list))
2285 return 0;
2286
2287 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2288 vlan_list) {
2289 if (ip == vlan->vlan_ip)
2290 return 1;
2291 }
2292
2293 return 0;
2294 }
2295
2296 /*
2297 * We go to the (large) trouble of VLAN tagging ARP frames because
2298 * switches in VLAN mode (especially if ports are configured as
2299 * "native" to a VLAN) might not pass non-tagged frames.
2300 */
2301 static void bond_arp_send(struct net_device *slave_dev, int arp_op, u32 dest_ip, u32 src_ip, unsigned short vlan_id)
2302 {
2303 struct sk_buff *skb;
2304
2305 dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2306 slave_dev->name, dest_ip, src_ip, vlan_id);
2307
2308 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2309 NULL, slave_dev->dev_addr, NULL);
2310
2311 if (!skb) {
2312 printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n");
2313 return;
2314 }
2315 if (vlan_id) {
2316 skb = vlan_put_tag(skb, vlan_id);
2317 if (!skb) {
2318 printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n");
2319 return;
2320 }
2321 }
2322 arp_xmit(skb);
2323 }
2324
2325
2326 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2327 {
2328 int i, vlan_id, rv;
2329 u32 *targets = bond->params.arp_targets;
2330 struct vlan_entry *vlan, *vlan_next;
2331 struct net_device *vlan_dev;
2332 struct flowi fl;
2333 struct rtable *rt;
2334
2335 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2336 if (!targets[i])
2337 continue;
2338 dprintk("basa: target %x\n", targets[i]);
2339 if (list_empty(&bond->vlan_list)) {
2340 dprintk("basa: empty vlan: arp_send\n");
2341 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2342 bond->master_ip, 0);
2343 continue;
2344 }
2345
2346 /*
2347 * If VLANs are configured, we do a route lookup to
2348 * determine which VLAN interface would be used, so we
2349 * can tag the ARP with the proper VLAN tag.
2350 */
2351 memset(&fl, 0, sizeof(fl));
2352 fl.fl4_dst = targets[i];
2353 fl.fl4_tos = RTO_ONLINK;
2354
2355 rv = ip_route_output_key(&rt, &fl);
2356 if (rv) {
2357 if (net_ratelimit()) {
2358 printk(KERN_WARNING DRV_NAME
2359 ": %s: no route to arp_ip_target %u.%u.%u.%u\n",
2360 bond->dev->name, NIPQUAD(fl.fl4_dst));
2361 }
2362 continue;
2363 }
2364
2365 /*
2366 * This target is not on a VLAN
2367 */
2368 if (rt->u.dst.dev == bond->dev) {
2369 ip_rt_put(rt);
2370 dprintk("basa: rtdev == bond->dev: arp_send\n");
2371 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2372 bond->master_ip, 0);
2373 continue;
2374 }
2375
2376 vlan_id = 0;
2377 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
2378 vlan_list) {
2379 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2380 if (vlan_dev == rt->u.dst.dev) {
2381 vlan_id = vlan->vlan_id;
2382 dprintk("basa: vlan match on %s %d\n",
2383 vlan_dev->name, vlan_id);
2384 break;
2385 }
2386 }
2387
2388 if (vlan_id) {
2389 ip_rt_put(rt);
2390 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2391 vlan->vlan_ip, vlan_id);
2392 continue;
2393 }
2394
2395 if (net_ratelimit()) {
2396 printk(KERN_WARNING DRV_NAME
2397 ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n",
2398 bond->dev->name, NIPQUAD(fl.fl4_dst),
2399 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2400 }
2401 ip_rt_put(rt);
2402 }
2403 }
2404
2405 /*
2406 * Kick out a gratuitous ARP for an IP on the bonding master plus one
2407 * for each VLAN above us.
2408 */
2409 static void bond_send_gratuitous_arp(struct bonding *bond)
2410 {
2411 struct slave *slave = bond->curr_active_slave;
2412 struct vlan_entry *vlan;
2413 struct net_device *vlan_dev;
2414
2415 dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name,
2416 slave ? slave->dev->name : "NULL");
2417 if (!slave)
2418 return;
2419
2420 if (bond->master_ip) {
2421 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2422 bond->master_ip, 0);
2423 }
2424
2425 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2426 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2427 if (vlan->vlan_ip) {
2428 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2429 vlan->vlan_ip, vlan->vlan_id);
2430 }
2431 }
2432 }
2433
2434 static void bond_validate_arp(struct bonding *bond, struct slave *slave, u32 sip, u32 tip)
2435 {
2436 int i;
2437 u32 *targets = bond->params.arp_targets;
2438
2439 targets = bond->params.arp_targets;
2440 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2441 dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] "
2442 "%u.%u.%u.%u bhti(tip) %d\n",
2443 NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]),
2444 bond_has_this_ip(bond, tip));
2445 if (sip == targets[i]) {
2446 if (bond_has_this_ip(bond, tip))
2447 slave->last_arp_rx = jiffies;
2448 return;
2449 }
2450 }
2451 }
2452
2453 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2454 {
2455 struct arphdr *arp;
2456 struct slave *slave;
2457 struct bonding *bond;
2458 unsigned char *arp_ptr;
2459 u32 sip, tip;
2460
2461 if (dev->nd_net != &init_net)
2462 goto out;
2463
2464 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2465 goto out;
2466
2467 bond = dev->priv;
2468 read_lock(&bond->lock);
2469
2470 dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2471 bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2472 orig_dev ? orig_dev->name : "NULL");
2473
2474 slave = bond_get_slave_by_dev(bond, orig_dev);
2475 if (!slave || !slave_do_arp_validate(bond, slave))
2476 goto out_unlock;
2477
2478 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
2479 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
2480 (2 * dev->addr_len) +
2481 (2 * sizeof(u32)))))
2482 goto out_unlock;
2483
2484 arp = arp_hdr(skb);
2485 if (arp->ar_hln != dev->addr_len ||
2486 skb->pkt_type == PACKET_OTHERHOST ||
2487 skb->pkt_type == PACKET_LOOPBACK ||
2488 arp->ar_hrd != htons(ARPHRD_ETHER) ||
2489 arp->ar_pro != htons(ETH_P_IP) ||
2490 arp->ar_pln != 4)
2491 goto out_unlock;
2492
2493 arp_ptr = (unsigned char *)(arp + 1);
2494 arp_ptr += dev->addr_len;
2495 memcpy(&sip, arp_ptr, 4);
2496 arp_ptr += 4 + dev->addr_len;
2497 memcpy(&tip, arp_ptr, 4);
2498
2499 dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u"
2500 " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name,
2501 slave->state, bond->params.arp_validate,
2502 slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip));
2503
2504 /*
2505 * Backup slaves won't see the ARP reply, but do come through
2506 * here for each ARP probe (so we swap the sip/tip to validate
2507 * the probe). In a "redundant switch, common router" type of
2508 * configuration, the ARP probe will (hopefully) travel from
2509 * the active, through one switch, the router, then the other
2510 * switch before reaching the backup.
2511 */
2512 if (slave->state == BOND_STATE_ACTIVE)
2513 bond_validate_arp(bond, slave, sip, tip);
2514 else
2515 bond_validate_arp(bond, slave, tip, sip);
2516
2517 out_unlock:
2518 read_unlock(&bond->lock);
2519 out:
2520 dev_kfree_skb(skb);
2521 return NET_RX_SUCCESS;
2522 }
2523
2524 /*
2525 * this function is called regularly to monitor each slave's link
2526 * ensuring that traffic is being sent and received when arp monitoring
2527 * is used in load-balancing mode. if the adapter has been dormant, then an
2528 * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2529 * arp monitoring in active backup mode.
2530 */
2531 void bond_loadbalance_arp_mon(struct net_device *bond_dev)
2532 {
2533 struct bonding *bond = bond_dev->priv;
2534 struct slave *slave, *oldcurrent;
2535 int do_failover = 0;
2536 int delta_in_ticks;
2537 int i;
2538
2539 read_lock(&bond->lock);
2540
2541 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2542
2543 if (bond->kill_timers) {
2544 goto out;
2545 }
2546
2547 if (bond->slave_cnt == 0) {
2548 goto re_arm;
2549 }
2550
2551 read_lock(&bond->curr_slave_lock);
2552 oldcurrent = bond->curr_active_slave;
2553 read_unlock(&bond->curr_slave_lock);
2554
2555 /* see if any of the previous devices are up now (i.e. they have
2556 * xmt and rcv traffic). the curr_active_slave does not come into
2557 * the picture unless it is null. also, slave->jiffies is not needed
2558 * here because we send an arp on each slave and give a slave as
2559 * long as it needs to get the tx/rx within the delta.
2560 * TODO: what about up/down delay in arp mode? it wasn't here before
2561 * so it can wait
2562 */
2563 bond_for_each_slave(bond, slave, i) {
2564 if (slave->link != BOND_LINK_UP) {
2565 if (((jiffies - slave->dev->trans_start) <= delta_in_ticks) &&
2566 ((jiffies - slave->dev->last_rx) <= delta_in_ticks)) {
2567
2568 slave->link = BOND_LINK_UP;
2569 slave->state = BOND_STATE_ACTIVE;
2570
2571 /* primary_slave has no meaning in round-robin
2572 * mode. the window of a slave being up and
2573 * curr_active_slave being null after enslaving
2574 * is closed.
2575 */
2576 if (!oldcurrent) {
2577 printk(KERN_INFO DRV_NAME
2578 ": %s: link status definitely "
2579 "up for interface %s, ",
2580 bond_dev->name,
2581 slave->dev->name);
2582 do_failover = 1;
2583 } else {
2584 printk(KERN_INFO DRV_NAME
2585 ": %s: interface %s is now up\n",
2586 bond_dev->name,
2587 slave->dev->name);
2588 }
2589 }
2590 } else {
2591 /* slave->link == BOND_LINK_UP */
2592
2593 /* not all switches will respond to an arp request
2594 * when the source ip is 0, so don't take the link down
2595 * if we don't know our ip yet
2596 */
2597 if (((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2598 (((jiffies - slave->dev->last_rx) >= (2*delta_in_ticks)) &&
2599 bond_has_ip(bond))) {
2600
2601 slave->link = BOND_LINK_DOWN;
2602 slave->state = BOND_STATE_BACKUP;
2603
2604 if (slave->link_failure_count < UINT_MAX) {
2605 slave->link_failure_count++;
2606 }
2607
2608 printk(KERN_INFO DRV_NAME
2609 ": %s: interface %s is now down.\n",
2610 bond_dev->name,
2611 slave->dev->name);
2612
2613 if (slave == oldcurrent) {
2614 do_failover = 1;
2615 }
2616 }
2617 }
2618
2619 /* note: if switch is in round-robin mode, all links
2620 * must tx arp to ensure all links rx an arp - otherwise
2621 * links may oscillate or not come up at all; if switch is
2622 * in something like xor mode, there is nothing we can
2623 * do - all replies will be rx'ed on same link causing slaves
2624 * to be unstable during low/no traffic periods
2625 */
2626 if (IS_UP(slave->dev)) {
2627 bond_arp_send_all(bond, slave);
2628 }
2629 }
2630
2631 if (do_failover) {
2632 write_lock(&bond->curr_slave_lock);
2633
2634 bond_select_active_slave(bond);
2635
2636 write_unlock(&bond->curr_slave_lock);
2637 }
2638
2639 re_arm:
2640 if (bond->params.arp_interval) {
2641 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2642 }
2643 out:
2644 read_unlock(&bond->lock);
2645 }
2646
2647 /*
2648 * When using arp monitoring in active-backup mode, this function is
2649 * called to determine if any backup slaves have went down or a new
2650 * current slave needs to be found.
2651 * The backup slaves never generate traffic, they are considered up by merely
2652 * receiving traffic. If the current slave goes down, each backup slave will
2653 * be given the opportunity to tx/rx an arp before being taken down - this
2654 * prevents all slaves from being taken down due to the current slave not
2655 * sending any traffic for the backups to receive. The arps are not necessarily
2656 * necessary, any tx and rx traffic will keep the current slave up. While any
2657 * rx traffic will keep the backup slaves up, the current slave is responsible
2658 * for generating traffic to keep them up regardless of any other traffic they
2659 * may have received.
2660 * see loadbalance_arp_monitor for arp monitoring in load balancing mode
2661 */
2662 void bond_activebackup_arp_mon(struct net_device *bond_dev)
2663 {
2664 struct bonding *bond = bond_dev->priv;
2665 struct slave *slave;
2666 int delta_in_ticks;
2667 int i;
2668
2669 read_lock(&bond->lock);
2670
2671 delta_in_ticks = (bond->params.arp_interval * HZ) / 1000;
2672
2673 if (bond->kill_timers) {
2674 goto out;
2675 }
2676
2677 if (bond->slave_cnt == 0) {
2678 goto re_arm;
2679 }
2680
2681 /* determine if any slave has come up or any backup slave has
2682 * gone down
2683 * TODO: what about up/down delay in arp mode? it wasn't here before
2684 * so it can wait
2685 */
2686 bond_for_each_slave(bond, slave, i) {
2687 if (slave->link != BOND_LINK_UP) {
2688 if ((jiffies - slave_last_rx(bond, slave)) <=
2689 delta_in_ticks) {
2690
2691 slave->link = BOND_LINK_UP;
2692
2693 write_lock(&bond->curr_slave_lock);
2694
2695 if ((!bond->curr_active_slave) &&
2696 ((jiffies - slave->dev->trans_start) <= delta_in_ticks)) {
2697 bond_change_active_slave(bond, slave);
2698 bond->current_arp_slave = NULL;
2699 } else if (bond->curr_active_slave != slave) {
2700 /* this slave has just come up but we
2701 * already have a current slave; this
2702 * can also happen if bond_enslave adds
2703 * a new slave that is up while we are
2704 * searching for a new slave
2705 */
2706 bond_set_slave_inactive_flags(slave);
2707 bond->current_arp_slave = NULL;
2708 }
2709
2710 bond_set_carrier(bond);
2711
2712 if (slave == bond->curr_active_slave) {
2713 printk(KERN_INFO DRV_NAME
2714 ": %s: %s is up and now the "
2715 "active interface\n",
2716 bond_dev->name,
2717 slave->dev->name);
2718 netif_carrier_on(bond->dev);
2719 } else {
2720 printk(KERN_INFO DRV_NAME
2721 ": %s: backup interface %s is "
2722 "now up\n",
2723 bond_dev->name,
2724 slave->dev->name);
2725 }
2726
2727 write_unlock(&bond->curr_slave_lock);
2728 }
2729 } else {
2730 read_lock(&bond->curr_slave_lock);
2731
2732 if ((slave != bond->curr_active_slave) &&
2733 (!bond->current_arp_slave) &&
2734 (((jiffies - slave_last_rx(bond, slave)) >= 3*delta_in_ticks) &&
2735 bond_has_ip(bond))) {
2736 /* a backup slave has gone down; three times
2737 * the delta allows the current slave to be
2738 * taken out before the backup slave.
2739 * note: a non-null current_arp_slave indicates
2740 * the curr_active_slave went down and we are
2741 * searching for a new one; under this
2742 * condition we only take the curr_active_slave
2743 * down - this gives each slave a chance to
2744 * tx/rx traffic before being taken out
2745 */
2746
2747 read_unlock(&bond->curr_slave_lock);
2748
2749 slave->link = BOND_LINK_DOWN;
2750
2751 if (slave->link_failure_count < UINT_MAX) {
2752 slave->link_failure_count++;
2753 }
2754
2755 bond_set_slave_inactive_flags(slave);
2756
2757 printk(KERN_INFO DRV_NAME
2758 ": %s: backup interface %s is now down\n",
2759 bond_dev->name,
2760 slave->dev->name);
2761 } else {
2762 read_unlock(&bond->curr_slave_lock);
2763 }
2764 }
2765 }
2766
2767 read_lock(&bond->curr_slave_lock);
2768 slave = bond->curr_active_slave;
2769 read_unlock(&bond->curr_slave_lock);
2770
2771 if (slave) {
2772 /* if we have sent traffic in the past 2*arp_intervals but
2773 * haven't xmit and rx traffic in that time interval, select
2774 * a different slave. slave->jiffies is only updated when
2775 * a slave first becomes the curr_active_slave - not necessarily
2776 * after every arp; this ensures the slave has a full 2*delta
2777 * before being taken out. if a primary is being used, check
2778 * if it is up and needs to take over as the curr_active_slave
2779 */
2780 if ((((jiffies - slave->dev->trans_start) >= (2*delta_in_ticks)) ||
2781 (((jiffies - slave_last_rx(bond, slave)) >= (2*delta_in_ticks)) &&
2782 bond_has_ip(bond))) &&
2783 ((jiffies - slave->jiffies) >= 2*delta_in_ticks)) {
2784
2785 slave->link = BOND_LINK_DOWN;
2786
2787 if (slave->link_failure_count < UINT_MAX) {
2788 slave->link_failure_count++;
2789 }
2790
2791 printk(KERN_INFO DRV_NAME
2792 ": %s: link status down for active interface "
2793 "%s, disabling it\n",
2794 bond_dev->name,
2795 slave->dev->name);
2796
2797 write_lock(&bond->curr_slave_lock);
2798
2799 bond_select_active_slave(bond);
2800 slave = bond->curr_active_slave;
2801
2802 write_unlock(&bond->curr_slave_lock);
2803
2804 bond->current_arp_slave = slave;
2805
2806 if (slave) {
2807 slave->jiffies = jiffies;
2808 }
2809 } else if ((bond->primary_slave) &&
2810 (bond->primary_slave != slave) &&
2811 (bond->primary_slave->link == BOND_LINK_UP)) {
2812 /* at this point, slave is the curr_active_slave */
2813 printk(KERN_INFO DRV_NAME
2814 ": %s: changing from interface %s to primary "
2815 "interface %s\n",
2816 bond_dev->name,
2817 slave->dev->name,
2818 bond->primary_slave->dev->name);
2819
2820 /* primary is up so switch to it */
2821 write_lock(&bond->curr_slave_lock);
2822 bond_change_active_slave(bond, bond->primary_slave);
2823 write_unlock(&bond->curr_slave_lock);
2824
2825 slave = bond->primary_slave;
2826 slave->jiffies = jiffies;
2827 } else {
2828 bond->current_arp_slave = NULL;
2829 }
2830
2831 /* the current slave must tx an arp to ensure backup slaves
2832 * rx traffic
2833 */
2834 if (slave && bond_has_ip(bond)) {
2835 bond_arp_send_all(bond, slave);
2836 }
2837 }
2838
2839 /* if we don't have a curr_active_slave, search for the next available
2840 * backup slave from the current_arp_slave and make it the candidate
2841 * for becoming the curr_active_slave
2842 */
2843 if (!slave) {
2844 if (!bond->current_arp_slave) {
2845 bond->current_arp_slave = bond->first_slave;
2846 }
2847
2848 if (bond->current_arp_slave) {
2849 bond_set_slave_inactive_flags(bond->current_arp_slave);
2850
2851 /* search for next candidate */
2852 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
2853 if (IS_UP(slave->dev)) {
2854 slave->link = BOND_LINK_BACK;
2855 bond_set_slave_active_flags(slave);
2856 bond_arp_send_all(bond, slave);
2857 slave->jiffies = jiffies;
2858 bond->current_arp_slave = slave;
2859 break;
2860 }
2861
2862 /* if the link state is up at this point, we
2863 * mark it down - this can happen if we have
2864 * simultaneous link failures and
2865 * reselect_active_interface doesn't make this
2866 * one the current slave so it is still marked
2867 * up when it is actually down
2868 */
2869 if (slave->link == BOND_LINK_UP) {
2870 slave->link = BOND_LINK_DOWN;
2871 if (slave->link_failure_count < UINT_MAX) {
2872 slave->link_failure_count++;
2873 }
2874
2875 bond_set_slave_inactive_flags(slave);
2876
2877 printk(KERN_INFO DRV_NAME
2878 ": %s: backup interface %s is "
2879 "now down.\n",
2880 bond_dev->name,
2881 slave->dev->name);
2882 }
2883 }
2884 }
2885 }
2886
2887 re_arm:
2888 if (bond->params.arp_interval) {
2889 mod_timer(&bond->arp_timer, jiffies + delta_in_ticks);
2890 }
2891 out:
2892 read_unlock(&bond->lock);
2893 }
2894
2895 /*------------------------------ proc/seq_file-------------------------------*/
2896
2897 #ifdef CONFIG_PROC_FS
2898
2899 #define SEQ_START_TOKEN ((void *)1)
2900
2901 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
2902 {
2903 struct bonding *bond = seq->private;
2904 loff_t off = 0;
2905 struct slave *slave;
2906 int i;
2907
2908 /* make sure the bond won't be taken away */
2909 read_lock(&dev_base_lock);
2910 read_lock_bh(&bond->lock);
2911
2912 if (*pos == 0) {
2913 return SEQ_START_TOKEN;
2914 }
2915
2916 bond_for_each_slave(bond, slave, i) {
2917 if (++off == *pos) {
2918 return slave;
2919 }
2920 }
2921
2922 return NULL;
2923 }
2924
2925 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2926 {
2927 struct bonding *bond = seq->private;
2928 struct slave *slave = v;
2929
2930 ++*pos;
2931 if (v == SEQ_START_TOKEN) {
2932 return bond->first_slave;
2933 }
2934
2935 slave = slave->next;
2936
2937 return (slave == bond->first_slave) ? NULL : slave;
2938 }
2939
2940 static void bond_info_seq_stop(struct seq_file *seq, void *v)
2941 {
2942 struct bonding *bond = seq->private;
2943
2944 read_unlock_bh(&bond->lock);
2945 read_unlock(&dev_base_lock);
2946 }
2947
2948 static void bond_info_show_master(struct seq_file *seq)
2949 {
2950 struct bonding *bond = seq->private;
2951 struct slave *curr;
2952 int i;
2953 u32 target;
2954
2955 read_lock(&bond->curr_slave_lock);
2956 curr = bond->curr_active_slave;
2957 read_unlock(&bond->curr_slave_lock);
2958
2959 seq_printf(seq, "Bonding Mode: %s\n",
2960 bond_mode_name(bond->params.mode));
2961
2962 if (bond->params.mode == BOND_MODE_XOR ||
2963 bond->params.mode == BOND_MODE_8023AD) {
2964 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
2965 xmit_hashtype_tbl[bond->params.xmit_policy].modename,
2966 bond->params.xmit_policy);
2967 }
2968
2969 if (USES_PRIMARY(bond->params.mode)) {
2970 seq_printf(seq, "Primary Slave: %s\n",
2971 (bond->primary_slave) ?
2972 bond->primary_slave->dev->name : "None");
2973
2974 seq_printf(seq, "Currently Active Slave: %s\n",
2975 (curr) ? curr->dev->name : "None");
2976 }
2977
2978 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
2979 "up" : "down");
2980 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
2981 seq_printf(seq, "Up Delay (ms): %d\n",
2982 bond->params.updelay * bond->params.miimon);
2983 seq_printf(seq, "Down Delay (ms): %d\n",
2984 bond->params.downdelay * bond->params.miimon);
2985
2986
2987 /* ARP information */
2988 if(bond->params.arp_interval > 0) {
2989 int printed=0;
2990 seq_printf(seq, "ARP Polling Interval (ms): %d\n",
2991 bond->params.arp_interval);
2992
2993 seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
2994
2995 for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) {
2996 if (!bond->params.arp_targets[i])
2997 continue;
2998 if (printed)
2999 seq_printf(seq, ",");
3000 target = ntohl(bond->params.arp_targets[i]);
3001 seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target));
3002 printed = 1;
3003 }
3004 seq_printf(seq, "\n");
3005 }
3006
3007 if (bond->params.mode == BOND_MODE_8023AD) {
3008 struct ad_info ad_info;
3009
3010 seq_puts(seq, "\n802.3ad info\n");
3011 seq_printf(seq, "LACP rate: %s\n",
3012 (bond->params.lacp_fast) ? "fast" : "slow");
3013
3014 if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3015 seq_printf(seq, "bond %s has no active aggregator\n",
3016 bond->dev->name);
3017 } else {
3018 seq_printf(seq, "Active Aggregator Info:\n");
3019
3020 seq_printf(seq, "\tAggregator ID: %d\n",
3021 ad_info.aggregator_id);
3022 seq_printf(seq, "\tNumber of ports: %d\n",
3023 ad_info.ports);
3024 seq_printf(seq, "\tActor Key: %d\n",
3025 ad_info.actor_key);
3026 seq_printf(seq, "\tPartner Key: %d\n",
3027 ad_info.partner_key);
3028 seq_printf(seq, "\tPartner Mac Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
3029 ad_info.partner_system[0],
3030 ad_info.partner_system[1],
3031 ad_info.partner_system[2],
3032 ad_info.partner_system[3],
3033 ad_info.partner_system[4],
3034 ad_info.partner_system[5]);
3035 }
3036 }
3037 }
3038
3039 static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave)
3040 {
3041 struct bonding *bond = seq->private;
3042
3043 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3044 seq_printf(seq, "MII Status: %s\n",
3045 (slave->link == BOND_LINK_UP) ? "up" : "down");
3046 seq_printf(seq, "Link Failure Count: %u\n",
3047 slave->link_failure_count);
3048
3049 seq_printf(seq,
3050 "Permanent HW addr: %02x:%02x:%02x:%02x:%02x:%02x\n",
3051 slave->perm_hwaddr[0], slave->perm_hwaddr[1],
3052 slave->perm_hwaddr[2], slave->perm_hwaddr[3],
3053 slave->perm_hwaddr[4], slave->perm_hwaddr[5]);
3054
3055 if (bond->params.mode == BOND_MODE_8023AD) {
3056 const struct aggregator *agg
3057 = SLAVE_AD_INFO(slave).port.aggregator;
3058
3059 if (agg) {
3060 seq_printf(seq, "Aggregator ID: %d\n",
3061 agg->aggregator_identifier);
3062 } else {
3063 seq_puts(seq, "Aggregator ID: N/A\n");
3064 }
3065 }
3066 }
3067
3068 static int bond_info_seq_show(struct seq_file *seq, void *v)
3069 {
3070 if (v == SEQ_START_TOKEN) {
3071 seq_printf(seq, "%s\n", version);
3072 bond_info_show_master(seq);
3073 } else {
3074 bond_info_show_slave(seq, v);
3075 }
3076
3077 return 0;
3078 }
3079
3080 static struct seq_operations bond_info_seq_ops = {
3081 .start = bond_info_seq_start,
3082 .next = bond_info_seq_next,
3083 .stop = bond_info_seq_stop,
3084 .show = bond_info_seq_show,
3085 };
3086
3087 static int bond_info_open(struct inode *inode, struct file *file)
3088 {
3089 struct seq_file *seq;
3090 struct proc_dir_entry *proc;
3091 int res;
3092
3093 res = seq_open(file, &bond_info_seq_ops);
3094 if (!res) {
3095 /* recover the pointer buried in proc_dir_entry data */
3096 seq = file->private_data;
3097 proc = PDE(inode);
3098 seq->private = proc->data;
3099 }
3100
3101 return res;
3102 }
3103
3104 static const struct file_operations bond_info_fops = {
3105 .owner = THIS_MODULE,
3106 .open = bond_info_open,
3107 .read = seq_read,
3108 .llseek = seq_lseek,
3109 .release = seq_release,
3110 };
3111
3112 static int bond_create_proc_entry(struct bonding *bond)
3113 {
3114 struct net_device *bond_dev = bond->dev;
3115
3116 if (bond_proc_dir) {
3117 bond->proc_entry = create_proc_entry(bond_dev->name,
3118 S_IRUGO,
3119 bond_proc_dir);
3120 if (bond->proc_entry == NULL) {
3121 printk(KERN_WARNING DRV_NAME
3122 ": Warning: Cannot create /proc/net/%s/%s\n",
3123 DRV_NAME, bond_dev->name);
3124 } else {
3125 bond->proc_entry->data = bond;
3126 bond->proc_entry->proc_fops = &bond_info_fops;
3127 bond->proc_entry->owner = THIS_MODULE;
3128 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3129 }
3130 }
3131
3132 return 0;
3133 }
3134
3135 static void bond_remove_proc_entry(struct bonding *bond)
3136 {
3137 if (bond_proc_dir && bond->proc_entry) {
3138 remove_proc_entry(bond->proc_file_name, bond_proc_dir);
3139 memset(bond->proc_file_name, 0, IFNAMSIZ);
3140 bond->proc_entry = NULL;
3141 }
3142 }
3143
3144 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3145 * Caller must hold rtnl_lock.
3146 */
3147 static void bond_create_proc_dir(void)
3148 {
3149 int len = strlen(DRV_NAME);
3150
3151 for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir;
3152 bond_proc_dir = bond_proc_dir->next) {
3153 if ((bond_proc_dir->namelen == len) &&
3154 !memcmp(bond_proc_dir->name, DRV_NAME, len)) {
3155 break;
3156 }
3157 }
3158
3159 if (!bond_proc_dir) {
3160 bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net);
3161 if (bond_proc_dir) {
3162 bond_proc_dir->owner = THIS_MODULE;
3163 } else {
3164 printk(KERN_WARNING DRV_NAME
3165 ": Warning: cannot create /proc/net/%s\n",
3166 DRV_NAME);
3167 }
3168 }
3169 }
3170
3171 /* Destroy the bonding directory under /proc/net, if empty.
3172 * Caller must hold rtnl_lock.
3173 */
3174 static void bond_destroy_proc_dir(void)
3175 {
3176 struct proc_dir_entry *de;
3177
3178 if (!bond_proc_dir) {
3179 return;
3180 }
3181
3182 /* verify that the /proc dir is empty */
3183 for (de = bond_proc_dir->subdir; de; de = de->next) {
3184 /* ignore . and .. */
3185 if (*(de->name) != '.') {
3186 break;
3187 }
3188 }
3189
3190 if (de) {
3191 if (bond_proc_dir->owner == THIS_MODULE) {
3192 bond_proc_dir->owner = NULL;
3193 }
3194 } else {
3195 remove_proc_entry(DRV_NAME, init_net.proc_net);
3196 bond_proc_dir = NULL;
3197 }
3198 }
3199 #endif /* CONFIG_PROC_FS */
3200
3201 /*-------------------------- netdev event handling --------------------------*/
3202
3203 /*
3204 * Change device name
3205 */
3206 static int bond_event_changename(struct bonding *bond)
3207 {
3208 #ifdef CONFIG_PROC_FS
3209 bond_remove_proc_entry(bond);
3210 bond_create_proc_entry(bond);
3211 #endif
3212 down_write(&(bonding_rwsem));
3213 bond_destroy_sysfs_entry(bond);
3214 bond_create_sysfs_entry(bond);
3215 up_write(&(bonding_rwsem));
3216 return NOTIFY_DONE;
3217 }
3218
3219 static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev)
3220 {
3221 struct bonding *event_bond = bond_dev->priv;
3222
3223 switch (event) {
3224 case NETDEV_CHANGENAME:
3225 return bond_event_changename(event_bond);
3226 case NETDEV_UNREGISTER:
3227 /*
3228 * TODO: remove a bond from the list?
3229 */
3230 break;
3231 default:
3232 break;
3233 }
3234
3235 return NOTIFY_DONE;
3236 }
3237
3238 static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev)
3239 {
3240 struct net_device *bond_dev = slave_dev->master;
3241 struct bonding *bond = bond_dev->priv;
3242
3243 switch (event) {
3244 case NETDEV_UNREGISTER:
3245 if (bond_dev) {
3246 bond_release(bond_dev, slave_dev);
3247 }
3248 break;
3249 case NETDEV_CHANGE:
3250 /*
3251 * TODO: is this what we get if somebody
3252 * sets up a hierarchical bond, then rmmod's
3253 * one of the slave bonding devices?
3254 */
3255 break;
3256 case NETDEV_DOWN:
3257 /*
3258 * ... Or is it this?
3259 */
3260 break;
3261 case NETDEV_CHANGEMTU:
3262 /*
3263 * TODO: Should slaves be allowed to
3264 * independently alter their MTU? For
3265 * an active-backup bond, slaves need
3266 * not be the same type of device, so
3267 * MTUs may vary. For other modes,
3268 * slaves arguably should have the
3269 * same MTUs. To do this, we'd need to
3270 * take over the slave's change_mtu
3271 * function for the duration of their
3272 * servitude.
3273 */
3274 break;
3275 case NETDEV_CHANGENAME:
3276 /*
3277 * TODO: handle changing the primary's name
3278 */
3279 break;
3280 case NETDEV_FEAT_CHANGE:
3281 bond_compute_features(bond);
3282 break;
3283 default:
3284 break;
3285 }
3286
3287 return NOTIFY_DONE;
3288 }
3289
3290 /*
3291 * bond_netdev_event: handle netdev notifier chain events.
3292 *
3293 * This function receives events for the netdev chain. The caller (an
3294 * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3295 * locks for us to safely manipulate the slave devices (RTNL lock,
3296 * dev_probe_lock).
3297 */
3298 static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
3299 {
3300 struct net_device *event_dev = (struct net_device *)ptr;
3301
3302 if (event_dev->nd_net != &init_net)
3303 return NOTIFY_DONE;
3304
3305 dprintk("event_dev: %s, event: %lx\n",
3306 (event_dev ? event_dev->name : "None"),
3307 event);
3308
3309 if (!(event_dev->priv_flags & IFF_BONDING))
3310 return NOTIFY_DONE;
3311
3312 if (event_dev->flags & IFF_MASTER) {
3313 dprintk("IFF_MASTER\n");
3314 return bond_master_netdev_event(event, event_dev);
3315 }
3316
3317 if (event_dev->flags & IFF_SLAVE) {
3318 dprintk("IFF_SLAVE\n");
3319 return bond_slave_netdev_event(event, event_dev);
3320 }
3321
3322 return NOTIFY_DONE;
3323 }
3324
3325 /*
3326 * bond_inetaddr_event: handle inetaddr notifier chain events.
3327 *
3328 * We keep track of device IPs primarily to use as source addresses in
3329 * ARP monitor probes (rather than spewing out broadcasts all the time).
3330 *
3331 * We track one IP for the main device (if it has one), plus one per VLAN.
3332 */
3333 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3334 {
3335 struct in_ifaddr *ifa = ptr;
3336 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3337 struct bonding *bond, *bond_next;
3338 struct vlan_entry *vlan, *vlan_next;
3339
3340 list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) {
3341 if (bond->dev == event_dev) {
3342 switch (event) {
3343 case NETDEV_UP:
3344 bond->master_ip = ifa->ifa_local;
3345 return NOTIFY_OK;
3346 case NETDEV_DOWN:
3347 bond->master_ip = bond_glean_dev_ip(bond->dev);
3348 return NOTIFY_OK;
3349 default:
3350 return NOTIFY_DONE;
3351 }
3352 }
3353
3354 if (list_empty(&bond->vlan_list))
3355 continue;
3356
3357 list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list,
3358 vlan_list) {
3359 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3360 if (vlan_dev == event_dev) {
3361 switch (event) {
3362 case NETDEV_UP:
3363 vlan->vlan_ip = ifa->ifa_local;
3364 return NOTIFY_OK;
3365 case NETDEV_DOWN:
3366 vlan->vlan_ip =
3367 bond_glean_dev_ip(vlan_dev);
3368 return NOTIFY_OK;
3369 default:
3370 return NOTIFY_DONE;
3371 }
3372 }
3373 }
3374 }
3375 return NOTIFY_DONE;
3376 }
3377
3378 static struct notifier_block bond_netdev_notifier = {
3379 .notifier_call = bond_netdev_event,
3380 };
3381
3382 static struct notifier_block bond_inetaddr_notifier = {
3383 .notifier_call = bond_inetaddr_event,
3384 };
3385
3386 /*-------------------------- Packet type handling ---------------------------*/
3387
3388 /* register to receive lacpdus on a bond */
3389 static void bond_register_lacpdu(struct bonding *bond)
3390 {
3391 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3392
3393 /* initialize packet type */
3394 pk_type->type = PKT_TYPE_LACPDU;
3395 pk_type->dev = bond->dev;
3396 pk_type->func = bond_3ad_lacpdu_recv;
3397
3398 dev_add_pack(pk_type);
3399 }
3400
3401 /* unregister to receive lacpdus on a bond */
3402 static void bond_unregister_lacpdu(struct bonding *bond)
3403 {
3404 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3405 }
3406
3407 void bond_register_arp(struct bonding *bond)
3408 {
3409 struct packet_type *pt = &bond->arp_mon_pt;
3410
3411 if (pt->type)
3412 return;
3413
3414 pt->type = htons(ETH_P_ARP);
3415 pt->dev = bond->dev;
3416 pt->func = bond_arp_rcv;
3417 dev_add_pack(pt);
3418 }
3419
3420 void bond_unregister_arp(struct bonding *bond)
3421 {
3422 struct packet_type *pt = &bond->arp_mon_pt;
3423
3424 dev_remove_pack(pt);
3425 pt->type = 0;
3426 }
3427
3428 /*---------------------------- Hashing Policies -----------------------------*/
3429
3430 /*
3431 * Hash for the output device based upon layer 3 and layer 4 data. If
3432 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
3433 * altogether not IP, mimic bond_xmit_hash_policy_l2()
3434 */
3435 static int bond_xmit_hash_policy_l34(struct sk_buff *skb,
3436 struct net_device *bond_dev, int count)
3437 {
3438 struct ethhdr *data = (struct ethhdr *)skb->data;
3439 struct iphdr *iph = ip_hdr(skb);
3440 u16 *layer4hdr = (u16 *)((u32 *)iph + iph->ihl);
3441 int layer4_xor = 0;
3442
3443 if (skb->protocol == __constant_htons(ETH_P_IP)) {
3444 if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) &&
3445 (iph->protocol == IPPROTO_TCP ||
3446 iph->protocol == IPPROTO_UDP)) {
3447 layer4_xor = htons((*layer4hdr ^ *(layer4hdr + 1)));
3448 }
3449 return (layer4_xor ^
3450 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3451
3452 }
3453
3454 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3455 }
3456
3457 /*
3458 * Hash for the output device based upon layer 2 data
3459 */
3460 static int bond_xmit_hash_policy_l2(struct sk_buff *skb,
3461 struct net_device *bond_dev, int count)
3462 {
3463 struct ethhdr *data = (struct ethhdr *)skb->data;
3464
3465 return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count;
3466 }
3467
3468 /*-------------------------- Device entry points ----------------------------*/
3469
3470 static int bond_open(struct net_device *bond_dev)
3471 {
3472 struct bonding *bond = bond_dev->priv;
3473 struct timer_list *mii_timer = &bond->mii_timer;
3474 struct timer_list *arp_timer = &bond->arp_timer;
3475
3476 bond->kill_timers = 0;
3477
3478 if ((bond->params.mode == BOND_MODE_TLB) ||
3479 (bond->params.mode == BOND_MODE_ALB)) {
3480 struct timer_list *alb_timer = &(BOND_ALB_INFO(bond).alb_timer);
3481
3482 /* bond_alb_initialize must be called before the timer
3483 * is started.
3484 */
3485 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3486 /* something went wrong - fail the open operation */
3487 return -1;
3488 }
3489
3490 init_timer(alb_timer);
3491 alb_timer->expires = jiffies + 1;
3492 alb_timer->data = (unsigned long)bond;
3493 alb_timer->function = (void *)&bond_alb_monitor;
3494 add_timer(alb_timer);
3495 }
3496
3497 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3498 init_timer(mii_timer);
3499 mii_timer->expires = jiffies + 1;
3500 mii_timer->data = (unsigned long)bond_dev;
3501 mii_timer->function = (void *)&bond_mii_monitor;
3502 add_timer(mii_timer);
3503 }
3504
3505 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3506 init_timer(arp_timer);
3507 arp_timer->expires = jiffies + 1;
3508 arp_timer->data = (unsigned long)bond_dev;
3509 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
3510 arp_timer->function = (void *)&bond_activebackup_arp_mon;
3511 } else {
3512 arp_timer->function = (void *)&bond_loadbalance_arp_mon;
3513 }
3514 if (bond->params.arp_validate)
3515 bond_register_arp(bond);
3516
3517 add_timer(arp_timer);
3518 }
3519
3520 if (bond->params.mode == BOND_MODE_8023AD) {
3521 struct timer_list *ad_timer = &(BOND_AD_INFO(bond).ad_timer);
3522 init_timer(ad_timer);
3523 ad_timer->expires = jiffies + 1;
3524 ad_timer->data = (unsigned long)bond;
3525 ad_timer->function = (void *)&bond_3ad_state_machine_handler;
3526 add_timer(ad_timer);
3527
3528 /* register to receive LACPDUs */
3529 bond_register_lacpdu(bond);
3530 }
3531
3532 return 0;
3533 }
3534
3535 static int bond_close(struct net_device *bond_dev)
3536 {
3537 struct bonding *bond = bond_dev->priv;
3538
3539 if (bond->params.mode == BOND_MODE_8023AD) {
3540 /* Unregister the receive of LACPDUs */
3541 bond_unregister_lacpdu(bond);
3542 }
3543
3544 if (bond->params.arp_validate)
3545 bond_unregister_arp(bond);
3546
3547 write_lock_bh(&bond->lock);
3548
3549
3550 /* signal timers not to re-arm */
3551 bond->kill_timers = 1;
3552
3553 write_unlock_bh(&bond->lock);
3554
3555 /* del_timer_sync must run without holding the bond->lock
3556 * because a running timer might be trying to hold it too
3557 */
3558
3559 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3560 del_timer_sync(&bond->mii_timer);
3561 }
3562
3563 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3564 del_timer_sync(&bond->arp_timer);
3565 }
3566
3567 switch (bond->params.mode) {
3568 case BOND_MODE_8023AD:
3569 del_timer_sync(&(BOND_AD_INFO(bond).ad_timer));
3570 break;
3571 case BOND_MODE_TLB:
3572 case BOND_MODE_ALB:
3573 del_timer_sync(&(BOND_ALB_INFO(bond).alb_timer));
3574 break;
3575 default:
3576 break;
3577 }
3578
3579
3580 if ((bond->params.mode == BOND_MODE_TLB) ||
3581 (bond->params.mode == BOND_MODE_ALB)) {
3582 /* Must be called only after all
3583 * slaves have been released
3584 */
3585 bond_alb_deinitialize(bond);
3586 }
3587
3588 return 0;
3589 }
3590
3591 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3592 {
3593 struct bonding *bond = bond_dev->priv;
3594 struct net_device_stats *stats = &(bond->stats), *sstats;
3595 struct slave *slave;
3596 int i;
3597
3598 memset(stats, 0, sizeof(struct net_device_stats));
3599
3600 read_lock_bh(&bond->lock);
3601
3602 bond_for_each_slave(bond, slave, i) {
3603 sstats = slave->dev->get_stats(slave->dev);
3604 stats->rx_packets += sstats->rx_packets;
3605 stats->rx_bytes += sstats->rx_bytes;
3606 stats->rx_errors += sstats->rx_errors;
3607 stats->rx_dropped += sstats->rx_dropped;
3608
3609 stats->tx_packets += sstats->tx_packets;
3610 stats->tx_bytes += sstats->tx_bytes;
3611 stats->tx_errors += sstats->tx_errors;
3612 stats->tx_dropped += sstats->tx_dropped;
3613
3614 stats->multicast += sstats->multicast;
3615 stats->collisions += sstats->collisions;
3616
3617 stats->rx_length_errors += sstats->rx_length_errors;
3618 stats->rx_over_errors += sstats->rx_over_errors;
3619 stats->rx_crc_errors += sstats->rx_crc_errors;
3620 stats->rx_frame_errors += sstats->rx_frame_errors;
3621 stats->rx_fifo_errors += sstats->rx_fifo_errors;
3622 stats->rx_missed_errors += sstats->rx_missed_errors;
3623
3624 stats->tx_aborted_errors += sstats->tx_aborted_errors;
3625 stats->tx_carrier_errors += sstats->tx_carrier_errors;
3626 stats->tx_fifo_errors += sstats->tx_fifo_errors;
3627 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3628 stats->tx_window_errors += sstats->tx_window_errors;
3629 }
3630
3631 read_unlock_bh(&bond->lock);
3632
3633 return stats;
3634 }
3635
3636 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3637 {
3638 struct net_device *slave_dev = NULL;
3639 struct ifbond k_binfo;
3640 struct ifbond __user *u_binfo = NULL;
3641 struct ifslave k_sinfo;
3642 struct ifslave __user *u_sinfo = NULL;
3643 struct mii_ioctl_data *mii = NULL;
3644 int res = 0;
3645
3646 dprintk("bond_ioctl: master=%s, cmd=%d\n",
3647 bond_dev->name, cmd);
3648
3649 switch (cmd) {
3650 case SIOCGMIIPHY:
3651 mii = if_mii(ifr);
3652 if (!mii) {
3653 return -EINVAL;
3654 }
3655 mii->phy_id = 0;
3656 /* Fall Through */
3657 case SIOCGMIIREG:
3658 /*
3659 * We do this again just in case we were called by SIOCGMIIREG
3660 * instead of SIOCGMIIPHY.
3661 */
3662 mii = if_mii(ifr);
3663 if (!mii) {
3664 return -EINVAL;
3665 }
3666
3667 if (mii->reg_num == 1) {
3668 struct bonding *bond = bond_dev->priv;
3669 mii->val_out = 0;
3670 read_lock_bh(&bond->lock);
3671 read_lock(&bond->curr_slave_lock);
3672 if (netif_carrier_ok(bond->dev)) {
3673 mii->val_out = BMSR_LSTATUS;
3674 }
3675 read_unlock(&bond->curr_slave_lock);
3676 read_unlock_bh(&bond->lock);
3677 }
3678
3679 return 0;
3680 case BOND_INFO_QUERY_OLD:
3681 case SIOCBONDINFOQUERY:
3682 u_binfo = (struct ifbond __user *)ifr->ifr_data;
3683
3684 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) {
3685 return -EFAULT;
3686 }
3687
3688 res = bond_info_query(bond_dev, &k_binfo);
3689 if (res == 0) {
3690 if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) {
3691 return -EFAULT;
3692 }
3693 }
3694
3695 return res;
3696 case BOND_SLAVE_INFO_QUERY_OLD:
3697 case SIOCBONDSLAVEINFOQUERY:
3698 u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3699
3700 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) {
3701 return -EFAULT;
3702 }
3703
3704 res = bond_slave_info_query(bond_dev, &k_sinfo);
3705 if (res == 0) {
3706 if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) {
3707 return -EFAULT;
3708 }
3709 }
3710
3711 return res;
3712 default:
3713 /* Go on */
3714 break;
3715 }
3716
3717 if (!capable(CAP_NET_ADMIN)) {
3718 return -EPERM;
3719 }
3720
3721 down_write(&(bonding_rwsem));
3722 slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave);
3723
3724 dprintk("slave_dev=%p: \n", slave_dev);
3725
3726 if (!slave_dev) {
3727 res = -ENODEV;
3728 } else {
3729 dprintk("slave_dev->name=%s: \n", slave_dev->name);
3730 switch (cmd) {
3731 case BOND_ENSLAVE_OLD:
3732 case SIOCBONDENSLAVE:
3733 res = bond_enslave(bond_dev, slave_dev);
3734 break;
3735 case BOND_RELEASE_OLD:
3736 case SIOCBONDRELEASE:
3737 res = bond_release(bond_dev, slave_dev);
3738 break;
3739 case BOND_SETHWADDR_OLD:
3740 case SIOCBONDSETHWADDR:
3741 res = bond_sethwaddr(bond_dev, slave_dev);
3742 break;
3743 case BOND_CHANGE_ACTIVE_OLD:
3744 case SIOCBONDCHANGEACTIVE:
3745 res = bond_ioctl_change_active(bond_dev, slave_dev);
3746 break;
3747 default:
3748 res = -EOPNOTSUPP;
3749 }
3750
3751 dev_put(slave_dev);
3752 }
3753
3754 up_write(&(bonding_rwsem));
3755 return res;
3756 }
3757
3758 static void bond_set_multicast_list(struct net_device *bond_dev)
3759 {
3760 struct bonding *bond = bond_dev->priv;
3761 struct dev_mc_list *dmi;
3762
3763 write_lock_bh(&bond->lock);
3764
3765 /*
3766 * Do promisc before checking multicast_mode
3767 */
3768 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) {
3769 bond_set_promiscuity(bond, 1);
3770 }
3771
3772 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) {
3773 bond_set_promiscuity(bond, -1);
3774 }
3775
3776 /* set allmulti flag to slaves */
3777 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) {
3778 bond_set_allmulti(bond, 1);
3779 }
3780
3781 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) {
3782 bond_set_allmulti(bond, -1);
3783 }
3784
3785 bond->flags = bond_dev->flags;
3786
3787 /* looking for addresses to add to slaves' mc list */
3788 for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) {
3789 if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) {
3790 bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3791 }
3792 }
3793
3794 /* looking for addresses to delete from slaves' list */
3795 for (dmi = bond->mc_list; dmi; dmi = dmi->next) {
3796 if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) {
3797 bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen);
3798 }
3799 }
3800
3801 /* save master's multicast list */
3802 bond_mc_list_destroy(bond);
3803 bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC);
3804
3805 write_unlock_bh(&bond->lock);
3806 }
3807
3808 /*
3809 * Change the MTU of all of a master's slaves to match the master
3810 */
3811 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3812 {
3813 struct bonding *bond = bond_dev->priv;
3814 struct slave *slave, *stop_at;
3815 int res = 0;
3816 int i;
3817
3818 dprintk("bond=%p, name=%s, new_mtu=%d\n", bond,
3819 (bond_dev ? bond_dev->name : "None"), new_mtu);
3820
3821 /* Can't hold bond->lock with bh disabled here since
3822 * some base drivers panic. On the other hand we can't
3823 * hold bond->lock without bh disabled because we'll
3824 * deadlock. The only solution is to rely on the fact
3825 * that we're under rtnl_lock here, and the slaves
3826 * list won't change. This doesn't solve the problem
3827 * of setting the slave's MTU while it is
3828 * transmitting, but the assumption is that the base
3829 * driver can handle that.
3830 *
3831 * TODO: figure out a way to safely iterate the slaves
3832 * list, but without holding a lock around the actual
3833 * call to the base driver.
3834 */
3835
3836 bond_for_each_slave(bond, slave, i) {
3837 dprintk("s %p s->p %p c_m %p\n", slave,
3838 slave->prev, slave->dev->change_mtu);
3839
3840 res = dev_set_mtu(slave->dev, new_mtu);
3841
3842 if (res) {
3843 /* If we failed to set the slave's mtu to the new value
3844 * we must abort the operation even in ACTIVE_BACKUP
3845 * mode, because if we allow the backup slaves to have
3846 * different mtu values than the active slave we'll
3847 * need to change their mtu when doing a failover. That
3848 * means changing their mtu from timer context, which
3849 * is probably not a good idea.
3850 */
3851 dprintk("err %d %s\n", res, slave->dev->name);
3852 goto unwind;
3853 }
3854 }
3855
3856 bond_dev->mtu = new_mtu;
3857
3858 return 0;
3859
3860 unwind:
3861 /* unwind from head to the slave that failed */
3862 stop_at = slave;
3863 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3864 int tmp_res;
3865
3866 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3867 if (tmp_res) {
3868 dprintk("unwind err %d dev %s\n", tmp_res,
3869 slave->dev->name);
3870 }
3871 }
3872
3873 return res;
3874 }
3875
3876 /*
3877 * Change HW address
3878 *
3879 * Note that many devices must be down to change the HW address, and
3880 * downing the master releases all slaves. We can make bonds full of
3881 * bonding devices to test this, however.
3882 */
3883 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3884 {
3885 struct bonding *bond = bond_dev->priv;
3886 struct sockaddr *sa = addr, tmp_sa;
3887 struct slave *slave, *stop_at;
3888 int res = 0;
3889 int i;
3890
3891 dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None"));
3892
3893 if (!is_valid_ether_addr(sa->sa_data)) {
3894 return -EADDRNOTAVAIL;
3895 }
3896
3897 /* Can't hold bond->lock with bh disabled here since
3898 * some base drivers panic. On the other hand we can't
3899 * hold bond->lock without bh disabled because we'll
3900 * deadlock. The only solution is to rely on the fact
3901 * that we're under rtnl_lock here, and the slaves
3902 * list won't change. This doesn't solve the problem
3903 * of setting the slave's hw address while it is
3904 * transmitting, but the assumption is that the base
3905 * driver can handle that.
3906 *
3907 * TODO: figure out a way to safely iterate the slaves
3908 * list, but without holding a lock around the actual
3909 * call to the base driver.
3910 */
3911
3912 bond_for_each_slave(bond, slave, i) {
3913 dprintk("slave %p %s\n", slave, slave->dev->name);
3914
3915 if (slave->dev->set_mac_address == NULL) {
3916 res = -EOPNOTSUPP;
3917 dprintk("EOPNOTSUPP %s\n", slave->dev->name);
3918 goto unwind;
3919 }
3920
3921 res = dev_set_mac_address(slave->dev, addr);
3922 if (res) {
3923 /* TODO: consider downing the slave
3924 * and retry ?
3925 * User should expect communications
3926 * breakage anyway until ARP finish
3927 * updating, so...
3928 */
3929 dprintk("err %d %s\n", res, slave->dev->name);
3930 goto unwind;
3931 }
3932 }
3933
3934 /* success */
3935 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3936 return 0;
3937
3938 unwind:
3939 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3940 tmp_sa.sa_family = bond_dev->type;
3941
3942 /* unwind from head to the slave that failed */
3943 stop_at = slave;
3944 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3945 int tmp_res;
3946
3947 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3948 if (tmp_res) {
3949 dprintk("unwind err %d dev %s\n", tmp_res,
3950 slave->dev->name);
3951 }
3952 }
3953
3954 return res;
3955 }
3956
3957 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
3958 {
3959 struct bonding *bond = bond_dev->priv;
3960 struct slave *slave, *start_at;
3961 int i;
3962 int res = 1;
3963
3964 read_lock(&bond->lock);
3965
3966 if (!BOND_IS_OK(bond)) {
3967 goto out;
3968 }
3969
3970 read_lock(&bond->curr_slave_lock);
3971 slave = start_at = bond->curr_active_slave;
3972 read_unlock(&bond->curr_slave_lock);
3973
3974 if (!slave) {
3975 goto out;
3976 }
3977
3978 bond_for_each_slave_from(bond, slave, i, start_at) {
3979 if (IS_UP(slave->dev) &&
3980 (slave->link == BOND_LINK_UP) &&
3981 (slave->state == BOND_STATE_ACTIVE)) {
3982 res = bond_dev_queue_xmit(bond, skb, slave->dev);
3983
3984 write_lock(&bond->curr_slave_lock);
3985 bond->curr_active_slave = slave->next;
3986 write_unlock(&bond->curr_slave_lock);
3987
3988 break;
3989 }
3990 }
3991
3992
3993 out:
3994 if (res) {
3995 /* no suitable interface, frame not sent */
3996 dev_kfree_skb(skb);
3997 }
3998 read_unlock(&bond->lock);
3999 return 0;
4000 }
4001
4002
4003 /*
4004 * in active-backup mode, we know that bond->curr_active_slave is always valid if
4005 * the bond has a usable interface.
4006 */
4007 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4008 {
4009 struct bonding *bond = bond_dev->priv;
4010 int res = 1;
4011
4012 read_lock(&bond->lock);
4013 read_lock(&bond->curr_slave_lock);
4014
4015 if (!BOND_IS_OK(bond)) {
4016 goto out;
4017 }
4018
4019 if (!bond->curr_active_slave)
4020 goto out;
4021
4022 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4023
4024 out:
4025 if (res) {
4026 /* no suitable interface, frame not sent */
4027 dev_kfree_skb(skb);
4028 }
4029 read_unlock(&bond->curr_slave_lock);
4030 read_unlock(&bond->lock);
4031 return 0;
4032 }
4033
4034 /*
4035 * In bond_xmit_xor() , we determine the output device by using a pre-
4036 * determined xmit_hash_policy(), If the selected device is not enabled,
4037 * find the next active slave.
4038 */
4039 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4040 {
4041 struct bonding *bond = bond_dev->priv;
4042 struct slave *slave, *start_at;
4043 int slave_no;
4044 int i;
4045 int res = 1;
4046
4047 read_lock(&bond->lock);
4048
4049 if (!BOND_IS_OK(bond)) {
4050 goto out;
4051 }
4052
4053 slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt);
4054
4055 bond_for_each_slave(bond, slave, i) {
4056 slave_no--;
4057 if (slave_no < 0) {
4058 break;
4059 }
4060 }
4061
4062 start_at = slave;
4063
4064 bond_for_each_slave_from(bond, slave, i, start_at) {
4065 if (IS_UP(slave->dev) &&
4066 (slave->link == BOND_LINK_UP) &&
4067 (slave->state == BOND_STATE_ACTIVE)) {
4068 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4069 break;
4070 }
4071 }
4072
4073 out:
4074 if (res) {
4075 /* no suitable interface, frame not sent */
4076 dev_kfree_skb(skb);
4077 }
4078 read_unlock(&bond->lock);
4079 return 0;
4080 }
4081
4082 /*
4083 * in broadcast mode, we send everything to all usable interfaces.
4084 */
4085 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4086 {
4087 struct bonding *bond = bond_dev->priv;
4088 struct slave *slave, *start_at;
4089 struct net_device *tx_dev = NULL;
4090 int i;
4091 int res = 1;
4092
4093 read_lock(&bond->lock);
4094
4095 if (!BOND_IS_OK(bond)) {
4096 goto out;
4097 }
4098
4099 read_lock(&bond->curr_slave_lock);
4100 start_at = bond->curr_active_slave;
4101 read_unlock(&bond->curr_slave_lock);
4102
4103 if (!start_at) {
4104 goto out;
4105 }
4106
4107 bond_for_each_slave_from(bond, slave, i, start_at) {
4108 if (IS_UP(slave->dev) &&
4109 (slave->link == BOND_LINK_UP) &&
4110 (slave->state == BOND_STATE_ACTIVE)) {
4111 if (tx_dev) {
4112 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4113 if (!skb2) {
4114 printk(KERN_ERR DRV_NAME
4115 ": %s: Error: bond_xmit_broadcast(): "
4116 "skb_clone() failed\n",
4117 bond_dev->name);
4118 continue;
4119 }
4120
4121 res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4122 if (res) {
4123 dev_kfree_skb(skb2);
4124 continue;
4125 }
4126 }
4127 tx_dev = slave->dev;
4128 }
4129 }
4130
4131 if (tx_dev) {
4132 res = bond_dev_queue_xmit(bond, skb, tx_dev);
4133 }
4134
4135 out:
4136 if (res) {
4137 /* no suitable interface, frame not sent */
4138 dev_kfree_skb(skb);
4139 }
4140 /* frame sent to all suitable interfaces */
4141 read_unlock(&bond->lock);
4142 return 0;
4143 }
4144
4145 /*------------------------- Device initialization ---------------------------*/
4146
4147 /*
4148 * set bond mode specific net device operations
4149 */
4150 void bond_set_mode_ops(struct bonding *bond, int mode)
4151 {
4152 struct net_device *bond_dev = bond->dev;
4153
4154 switch (mode) {
4155 case BOND_MODE_ROUNDROBIN:
4156 bond_dev->hard_start_xmit = bond_xmit_roundrobin;
4157 break;
4158 case BOND_MODE_ACTIVEBACKUP:
4159 bond_dev->hard_start_xmit = bond_xmit_activebackup;
4160 break;
4161 case BOND_MODE_XOR:
4162 bond_dev->hard_start_xmit = bond_xmit_xor;
4163 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4164 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4165 else
4166 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4167 break;
4168 case BOND_MODE_BROADCAST:
4169 bond_dev->hard_start_xmit = bond_xmit_broadcast;
4170 break;
4171 case BOND_MODE_8023AD:
4172 bond_set_master_3ad_flags(bond);
4173 bond_dev->hard_start_xmit = bond_3ad_xmit_xor;
4174 if (bond->params.xmit_policy == BOND_XMIT_POLICY_LAYER34)
4175 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4176 else
4177 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4178 break;
4179 case BOND_MODE_ALB:
4180 bond_set_master_alb_flags(bond);
4181 /* FALLTHRU */
4182 case BOND_MODE_TLB:
4183 bond_dev->hard_start_xmit = bond_alb_xmit;
4184 bond_dev->set_mac_address = bond_alb_set_mac_address;
4185 break;
4186 default:
4187 /* Should never happen, mode already checked */
4188 printk(KERN_ERR DRV_NAME
4189 ": %s: Error: Unknown bonding mode %d\n",
4190 bond_dev->name,
4191 mode);
4192 break;
4193 }
4194 }
4195
4196 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4197 struct ethtool_drvinfo *drvinfo)
4198 {
4199 strncpy(drvinfo->driver, DRV_NAME, 32);
4200 strncpy(drvinfo->version, DRV_VERSION, 32);
4201 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4202 }
4203
4204 static const struct ethtool_ops bond_ethtool_ops = {
4205 .get_tx_csum = ethtool_op_get_tx_csum,
4206 .get_tso = ethtool_op_get_tso,
4207 .get_ufo = ethtool_op_get_ufo,
4208 .get_sg = ethtool_op_get_sg,
4209 .get_drvinfo = bond_ethtool_get_drvinfo,
4210 };
4211
4212 /*
4213 * Does not allocate but creates a /proc entry.
4214 * Allowed to fail.
4215 */
4216 static int bond_init(struct net_device *bond_dev, struct bond_params *params)
4217 {
4218 struct bonding *bond = bond_dev->priv;
4219
4220 dprintk("Begin bond_init for %s\n", bond_dev->name);
4221
4222 /* initialize rwlocks */
4223 rwlock_init(&bond->lock);
4224 rwlock_init(&bond->curr_slave_lock);
4225
4226 bond->params = *params; /* copy params struct */
4227
4228 /* Initialize pointers */
4229 bond->first_slave = NULL;
4230 bond->curr_active_slave = NULL;
4231 bond->current_arp_slave = NULL;
4232 bond->primary_slave = NULL;
4233 bond->dev = bond_dev;
4234 INIT_LIST_HEAD(&bond->vlan_list);
4235
4236 /* Initialize the device entry points */
4237 bond_dev->open = bond_open;
4238 bond_dev->stop = bond_close;
4239 bond_dev->get_stats = bond_get_stats;
4240 bond_dev->do_ioctl = bond_do_ioctl;
4241 bond_dev->ethtool_ops = &bond_ethtool_ops;
4242 bond_dev->set_multicast_list = bond_set_multicast_list;
4243 bond_dev->change_mtu = bond_change_mtu;
4244 bond_dev->set_mac_address = bond_set_mac_address;
4245
4246 bond_set_mode_ops(bond, bond->params.mode);
4247
4248 bond_dev->destructor = free_netdev;
4249
4250 /* Initialize the device options */
4251 bond_dev->tx_queue_len = 0;
4252 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4253 bond_dev->priv_flags |= IFF_BONDING;
4254
4255 /* At first, we block adding VLANs. That's the only way to
4256 * prevent problems that occur when adding VLANs over an
4257 * empty bond. The block will be removed once non-challenged
4258 * slaves are enslaved.
4259 */
4260 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4261
4262 /* don't acquire bond device's netif_tx_lock when
4263 * transmitting */
4264 bond_dev->features |= NETIF_F_LLTX;
4265
4266 /* By default, we declare the bond to be fully
4267 * VLAN hardware accelerated capable. Special
4268 * care is taken in the various xmit functions
4269 * when there are slaves that are not hw accel
4270 * capable
4271 */
4272 bond_dev->vlan_rx_register = bond_vlan_rx_register;
4273 bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid;
4274 bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid;
4275 bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4276 NETIF_F_HW_VLAN_RX |
4277 NETIF_F_HW_VLAN_FILTER);
4278
4279 #ifdef CONFIG_PROC_FS
4280 bond_create_proc_entry(bond);
4281 #endif
4282
4283 list_add_tail(&bond->bond_list, &bond_dev_list);
4284
4285 return 0;
4286 }
4287
4288 /* De-initialize device specific data.
4289 * Caller must hold rtnl_lock.
4290 */
4291 void bond_deinit(struct net_device *bond_dev)
4292 {
4293 struct bonding *bond = bond_dev->priv;
4294
4295 list_del(&bond->bond_list);
4296
4297 #ifdef CONFIG_PROC_FS
4298 bond_remove_proc_entry(bond);
4299 #endif
4300 }
4301
4302 /* Unregister and free all bond devices.
4303 * Caller must hold rtnl_lock.
4304 */
4305 static void bond_free_all(void)
4306 {
4307 struct bonding *bond, *nxt;
4308
4309 list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) {
4310 struct net_device *bond_dev = bond->dev;
4311
4312 bond_mc_list_destroy(bond);
4313 /* Release the bonded slaves */
4314 bond_release_all(bond_dev);
4315 bond_deinit(bond_dev);
4316 unregister_netdevice(bond_dev);
4317 }
4318
4319 #ifdef CONFIG_PROC_FS
4320 bond_destroy_proc_dir();
4321 #endif
4322 }
4323
4324 /*------------------------- Module initialization ---------------------------*/
4325
4326 /*
4327 * Convert string input module parms. Accept either the
4328 * number of the mode or its string name.
4329 */
4330 int bond_parse_parm(char *mode_arg, struct bond_parm_tbl *tbl)
4331 {
4332 int i;
4333
4334 for (i = 0; tbl[i].modename; i++) {
4335 if ((isdigit(*mode_arg) &&
4336 tbl[i].mode == simple_strtol(mode_arg, NULL, 0)) ||
4337 (strncmp(mode_arg, tbl[i].modename,
4338 strlen(tbl[i].modename)) == 0)) {
4339 return tbl[i].mode;
4340 }
4341 }
4342
4343 return -1;
4344 }
4345
4346 static int bond_check_params(struct bond_params *params)
4347 {
4348 int arp_validate_value;
4349
4350 /*
4351 * Convert string parameters.
4352 */
4353 if (mode) {
4354 bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4355 if (bond_mode == -1) {
4356 printk(KERN_ERR DRV_NAME
4357 ": Error: Invalid bonding mode \"%s\"\n",
4358 mode == NULL ? "NULL" : mode);
4359 return -EINVAL;
4360 }
4361 }
4362
4363 if (xmit_hash_policy) {
4364 if ((bond_mode != BOND_MODE_XOR) &&
4365 (bond_mode != BOND_MODE_8023AD)) {
4366 printk(KERN_INFO DRV_NAME
4367 ": xor_mode param is irrelevant in mode %s\n",
4368 bond_mode_name(bond_mode));
4369 } else {
4370 xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4371 xmit_hashtype_tbl);
4372 if (xmit_hashtype == -1) {
4373 printk(KERN_ERR DRV_NAME
4374 ": Error: Invalid xmit_hash_policy \"%s\"\n",
4375 xmit_hash_policy == NULL ? "NULL" :
4376 xmit_hash_policy);
4377 return -EINVAL;
4378 }
4379 }
4380 }
4381
4382 if (lacp_rate) {
4383 if (bond_mode != BOND_MODE_8023AD) {
4384 printk(KERN_INFO DRV_NAME
4385 ": lacp_rate param is irrelevant in mode %s\n",
4386 bond_mode_name(bond_mode));
4387 } else {
4388 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4389 if (lacp_fast == -1) {
4390 printk(KERN_ERR DRV_NAME
4391 ": Error: Invalid lacp rate \"%s\"\n",
4392 lacp_rate == NULL ? "NULL" : lacp_rate);
4393 return -EINVAL;
4394 }
4395 }
4396 }
4397
4398 if (max_bonds < 1 || max_bonds > INT_MAX) {
4399 printk(KERN_WARNING DRV_NAME
4400 ": Warning: max_bonds (%d) not in range %d-%d, so it "
4401 "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4402 max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4403 max_bonds = BOND_DEFAULT_MAX_BONDS;
4404 }
4405
4406 if (miimon < 0) {
4407 printk(KERN_WARNING DRV_NAME
4408 ": Warning: miimon module parameter (%d), "
4409 "not in range 0-%d, so it was reset to %d\n",
4410 miimon, INT_MAX, BOND_LINK_MON_INTERV);
4411 miimon = BOND_LINK_MON_INTERV;
4412 }
4413
4414 if (updelay < 0) {
4415 printk(KERN_WARNING DRV_NAME
4416 ": Warning: updelay module parameter (%d), "
4417 "not in range 0-%d, so it was reset to 0\n",
4418 updelay, INT_MAX);
4419 updelay = 0;
4420 }
4421
4422 if (downdelay < 0) {
4423 printk(KERN_WARNING DRV_NAME
4424 ": Warning: downdelay module parameter (%d), "
4425 "not in range 0-%d, so it was reset to 0\n",
4426 downdelay, INT_MAX);
4427 downdelay = 0;
4428 }
4429
4430 if ((use_carrier != 0) && (use_carrier != 1)) {
4431 printk(KERN_WARNING DRV_NAME
4432 ": Warning: use_carrier module parameter (%d), "
4433 "not of valid value (0/1), so it was set to 1\n",
4434 use_carrier);
4435 use_carrier = 1;
4436 }
4437
4438 /* reset values for 802.3ad */
4439 if (bond_mode == BOND_MODE_8023AD) {
4440 if (!miimon) {
4441 printk(KERN_WARNING DRV_NAME
4442 ": Warning: miimon must be specified, "
4443 "otherwise bonding will not detect link "
4444 "failure, speed and duplex which are "
4445 "essential for 802.3ad operation\n");
4446 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4447 miimon = 100;
4448 }
4449 }
4450
4451 /* reset values for TLB/ALB */
4452 if ((bond_mode == BOND_MODE_TLB) ||
4453 (bond_mode == BOND_MODE_ALB)) {
4454 if (!miimon) {
4455 printk(KERN_WARNING DRV_NAME
4456 ": Warning: miimon must be specified, "
4457 "otherwise bonding will not detect link "
4458 "failure and link speed which are essential "
4459 "for TLB/ALB load balancing\n");
4460 printk(KERN_WARNING "Forcing miimon to 100msec\n");
4461 miimon = 100;
4462 }
4463 }
4464
4465 if (bond_mode == BOND_MODE_ALB) {
4466 printk(KERN_NOTICE DRV_NAME
4467 ": In ALB mode you might experience client "
4468 "disconnections upon reconnection of a link if the "
4469 "bonding module updelay parameter (%d msec) is "
4470 "incompatible with the forwarding delay time of the "
4471 "switch\n",
4472 updelay);
4473 }
4474
4475 if (!miimon) {
4476 if (updelay || downdelay) {
4477 /* just warn the user the up/down delay will have
4478 * no effect since miimon is zero...
4479 */
4480 printk(KERN_WARNING DRV_NAME
4481 ": Warning: miimon module parameter not set "
4482 "and updelay (%d) or downdelay (%d) module "
4483 "parameter is set; updelay and downdelay have "
4484 "no effect unless miimon is set\n",
4485 updelay, downdelay);
4486 }
4487 } else {
4488 /* don't allow arp monitoring */
4489 if (arp_interval) {
4490 printk(KERN_WARNING DRV_NAME
4491 ": Warning: miimon (%d) and arp_interval (%d) "
4492 "can't be used simultaneously, disabling ARP "
4493 "monitoring\n",
4494 miimon, arp_interval);
4495 arp_interval = 0;
4496 }
4497
4498 if ((updelay % miimon) != 0) {
4499 printk(KERN_WARNING DRV_NAME
4500 ": Warning: updelay (%d) is not a multiple "
4501 "of miimon (%d), updelay rounded to %d ms\n",
4502 updelay, miimon, (updelay / miimon) * miimon);
4503 }
4504
4505 updelay /= miimon;
4506
4507 if ((downdelay % miimon) != 0) {
4508 printk(KERN_WARNING DRV_NAME
4509 ": Warning: downdelay (%d) is not a multiple "
4510 "of miimon (%d), downdelay rounded to %d ms\n",
4511 downdelay, miimon,
4512 (downdelay / miimon) * miimon);
4513 }
4514
4515 downdelay /= miimon;
4516 }
4517
4518 if (arp_interval < 0) {
4519 printk(KERN_WARNING DRV_NAME
4520 ": Warning: arp_interval module parameter (%d) "
4521 ", not in range 0-%d, so it was reset to %d\n",
4522 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4523 arp_interval = BOND_LINK_ARP_INTERV;
4524 }
4525
4526 for (arp_ip_count = 0;
4527 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4528 arp_ip_count++) {
4529 /* not complete check, but should be good enough to
4530 catch mistakes */
4531 if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4532 printk(KERN_WARNING DRV_NAME
4533 ": Warning: bad arp_ip_target module parameter "
4534 "(%s), ARP monitoring will not be performed\n",
4535 arp_ip_target[arp_ip_count]);
4536 arp_interval = 0;
4537 } else {
4538 u32 ip = in_aton(arp_ip_target[arp_ip_count]);
4539 arp_target[arp_ip_count] = ip;
4540 }
4541 }
4542
4543 if (arp_interval && !arp_ip_count) {
4544 /* don't allow arping if no arp_ip_target given... */
4545 printk(KERN_WARNING DRV_NAME
4546 ": Warning: arp_interval module parameter (%d) "
4547 "specified without providing an arp_ip_target "
4548 "parameter, arp_interval was reset to 0\n",
4549 arp_interval);
4550 arp_interval = 0;
4551 }
4552
4553 if (arp_validate) {
4554 if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4555 printk(KERN_ERR DRV_NAME
4556 ": arp_validate only supported in active-backup mode\n");
4557 return -EINVAL;
4558 }
4559 if (!arp_interval) {
4560 printk(KERN_ERR DRV_NAME
4561 ": arp_validate requires arp_interval\n");
4562 return -EINVAL;
4563 }
4564
4565 arp_validate_value = bond_parse_parm(arp_validate,
4566 arp_validate_tbl);
4567 if (arp_validate_value == -1) {
4568 printk(KERN_ERR DRV_NAME
4569 ": Error: invalid arp_validate \"%s\"\n",
4570 arp_validate == NULL ? "NULL" : arp_validate);
4571 return -EINVAL;
4572 }
4573 } else
4574 arp_validate_value = 0;
4575
4576 if (miimon) {
4577 printk(KERN_INFO DRV_NAME
4578 ": MII link monitoring set to %d ms\n",
4579 miimon);
4580 } else if (arp_interval) {
4581 int i;
4582
4583 printk(KERN_INFO DRV_NAME
4584 ": ARP monitoring set to %d ms, validate %s, with %d target(s):",
4585 arp_interval,
4586 arp_validate_tbl[arp_validate_value].modename,
4587 arp_ip_count);
4588
4589 for (i = 0; i < arp_ip_count; i++)
4590 printk (" %s", arp_ip_target[i]);
4591
4592 printk("\n");
4593
4594 } else {
4595 /* miimon and arp_interval not set, we need one so things
4596 * work as expected, see bonding.txt for details
4597 */
4598 printk(KERN_WARNING DRV_NAME
4599 ": Warning: either miimon or arp_interval and "
4600 "arp_ip_target module parameters must be specified, "
4601 "otherwise bonding will not detect link failures! see "
4602 "bonding.txt for details.\n");
4603 }
4604
4605 if (primary && !USES_PRIMARY(bond_mode)) {
4606 /* currently, using a primary only makes sense
4607 * in active backup, TLB or ALB modes
4608 */
4609 printk(KERN_WARNING DRV_NAME
4610 ": Warning: %s primary device specified but has no "
4611 "effect in %s mode\n",
4612 primary, bond_mode_name(bond_mode));
4613 primary = NULL;
4614 }
4615
4616 /* fill params struct with the proper values */
4617 params->mode = bond_mode;
4618 params->xmit_policy = xmit_hashtype;
4619 params->miimon = miimon;
4620 params->arp_interval = arp_interval;
4621 params->arp_validate = arp_validate_value;
4622 params->updelay = updelay;
4623 params->downdelay = downdelay;
4624 params->use_carrier = use_carrier;
4625 params->lacp_fast = lacp_fast;
4626 params->primary[0] = 0;
4627
4628 if (primary) {
4629 strncpy(params->primary, primary, IFNAMSIZ);
4630 params->primary[IFNAMSIZ - 1] = 0;
4631 }
4632
4633 memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4634
4635 return 0;
4636 }
4637
4638 static struct lock_class_key bonding_netdev_xmit_lock_key;
4639
4640 /* Create a new bond based on the specified name and bonding parameters.
4641 * If name is NULL, obtain a suitable "bond%d" name for us.
4642 * Caller must NOT hold rtnl_lock; we need to release it here before we
4643 * set up our sysfs entries.
4644 */
4645 int bond_create(char *name, struct bond_params *params, struct bonding **newbond)
4646 {
4647 struct net_device *bond_dev;
4648 int res;
4649
4650 rtnl_lock();
4651 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
4652 ether_setup);
4653 if (!bond_dev) {
4654 printk(KERN_ERR DRV_NAME
4655 ": %s: eek! can't alloc netdev!\n",
4656 name);
4657 res = -ENOMEM;
4658 goto out_rtnl;
4659 }
4660
4661 if (!name) {
4662 res = dev_alloc_name(bond_dev, "bond%d");
4663 if (res < 0)
4664 goto out_netdev;
4665 }
4666
4667 /* bond_init() must be called after dev_alloc_name() (for the
4668 * /proc files), but before register_netdevice(), because we
4669 * need to set function pointers.
4670 */
4671
4672 res = bond_init(bond_dev, params);
4673 if (res < 0) {
4674 goto out_netdev;
4675 }
4676
4677 SET_MODULE_OWNER(bond_dev);
4678
4679 res = register_netdevice(bond_dev);
4680 if (res < 0) {
4681 goto out_bond;
4682 }
4683
4684 lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key);
4685
4686 if (newbond)
4687 *newbond = bond_dev->priv;
4688
4689 netif_carrier_off(bond_dev);
4690
4691 rtnl_unlock(); /* allows sysfs registration of net device */
4692 res = bond_create_sysfs_entry(bond_dev->priv);
4693 if (res < 0) {
4694 rtnl_lock();
4695 goto out_bond;
4696 }
4697
4698 return 0;
4699
4700 out_bond:
4701 bond_deinit(bond_dev);
4702 out_netdev:
4703 free_netdev(bond_dev);
4704 out_rtnl:
4705 rtnl_unlock();
4706 return res;
4707 }
4708
4709 static int __init bonding_init(void)
4710 {
4711 int i;
4712 int res;
4713
4714 printk(KERN_INFO "%s", version);
4715
4716 res = bond_check_params(&bonding_defaults);
4717 if (res) {
4718 goto out;
4719 }
4720
4721 #ifdef CONFIG_PROC_FS
4722 bond_create_proc_dir();
4723 #endif
4724 for (i = 0; i < max_bonds; i++) {
4725 res = bond_create(NULL, &bonding_defaults, NULL);
4726 if (res)
4727 goto err;
4728 }
4729
4730 res = bond_create_sysfs();
4731 if (res)
4732 goto err;
4733
4734 register_netdevice_notifier(&bond_netdev_notifier);
4735 register_inetaddr_notifier(&bond_inetaddr_notifier);
4736
4737 goto out;
4738 err:
4739 rtnl_lock();
4740 bond_free_all();
4741 bond_destroy_sysfs();
4742 rtnl_unlock();
4743 out:
4744 return res;
4745
4746 }
4747
4748 static void __exit bonding_exit(void)
4749 {
4750 unregister_netdevice_notifier(&bond_netdev_notifier);
4751 unregister_inetaddr_notifier(&bond_inetaddr_notifier);
4752
4753 rtnl_lock();
4754 bond_free_all();
4755 bond_destroy_sysfs();
4756 rtnl_unlock();
4757 }
4758
4759 module_init(bonding_init);
4760 module_exit(bonding_exit);
4761 MODULE_LICENSE("GPL");
4762 MODULE_VERSION(DRV_VERSION);
4763 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4764 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4765 MODULE_SUPPORTED_DEVICE("most ethernet devices");
4766
4767 /*
4768 * Local variables:
4769 * c-indent-level: 8
4770 * c-basic-offset: 8
4771 * tab-width: 8
4772 * End:
4773 */
4774
This page took 0.130068 seconds and 5 git commands to generate.