Merge git://git.infradead.org/iommu-2.6
[deliverable/linux.git] / drivers / net / bonding / bond_main.c
1 /*
2 * originally based on the dummy device.
3 *
4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5 * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6 *
7 * bonding.c: an Ethernet Bonding driver
8 *
9 * This is useful to talk to a Cisco EtherChannel compatible equipment:
10 * Cisco 5500
11 * Sun Trunking (Solaris)
12 * Alteon AceDirector Trunks
13 * Linux Bonding
14 * and probably many L2 switches ...
15 *
16 * How it works:
17 * ifconfig bond0 ipaddress netmask up
18 * will setup a network device, with an ip address. No mac address
19 * will be assigned at this time. The hw mac address will come from
20 * the first slave bonded to the channel. All slaves will then use
21 * this hw mac address.
22 *
23 * ifconfig bond0 down
24 * will release all slaves, marking them as down.
25 *
26 * ifenslave bond0 eth0
27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either
28 * a: be used as initial mac address
29 * b: if a hw mac address already is there, eth0's hw mac address
30 * will then be set from bond0.
31 *
32 */
33
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <linux/io.h>
57 #include <asm/system.h>
58 #include <asm/dma.h>
59 #include <linux/uaccess.h>
60 #include <linux/errno.h>
61 #include <linux/netdevice.h>
62 #include <linux/netpoll.h>
63 #include <linux/inetdevice.h>
64 #include <linux/igmp.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/rtnetlink.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/smp.h>
72 #include <linux/if_ether.h>
73 #include <net/arp.h>
74 #include <linux/mii.h>
75 #include <linux/ethtool.h>
76 #include <linux/if_vlan.h>
77 #include <linux/if_bonding.h>
78 #include <linux/jiffies.h>
79 #include <net/route.h>
80 #include <net/net_namespace.h>
81 #include <net/netns/generic.h>
82 #include "bonding.h"
83 #include "bond_3ad.h"
84 #include "bond_alb.h"
85
86 /*---------------------------- Module parameters ----------------------------*/
87
88 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
89 #define BOND_LINK_MON_INTERV 0
90 #define BOND_LINK_ARP_INTERV 0
91
92 static int max_bonds = BOND_DEFAULT_MAX_BONDS;
93 static int num_grat_arp = 1;
94 static int num_unsol_na = 1;
95 static int miimon = BOND_LINK_MON_INTERV;
96 static int updelay;
97 static int downdelay;
98 static int use_carrier = 1;
99 static char *mode;
100 static char *primary;
101 static char *primary_reselect;
102 static char *lacp_rate;
103 static char *ad_select;
104 static char *xmit_hash_policy;
105 static int arp_interval = BOND_LINK_ARP_INTERV;
106 static char *arp_ip_target[BOND_MAX_ARP_TARGETS];
107 static char *arp_validate;
108 static char *fail_over_mac;
109 static struct bond_params bonding_defaults;
110
111 module_param(max_bonds, int, 0);
112 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
113 module_param(num_grat_arp, int, 0644);
114 MODULE_PARM_DESC(num_grat_arp, "Number of gratuitous ARP packets to send on failover event");
115 module_param(num_unsol_na, int, 0644);
116 MODULE_PARM_DESC(num_unsol_na, "Number of unsolicited IPv6 Neighbor Advertisements packets to send on failover event");
117 module_param(miimon, int, 0);
118 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
119 module_param(updelay, int, 0);
120 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
121 module_param(downdelay, int, 0);
122 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
123 "in milliseconds");
124 module_param(use_carrier, int, 0);
125 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
126 "0 for off, 1 for on (default)");
127 module_param(mode, charp, 0);
128 MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, "
129 "1 for active-backup, 2 for balance-xor, "
130 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
131 "6 for balance-alb");
132 module_param(primary, charp, 0);
133 MODULE_PARM_DESC(primary, "Primary network device to use");
134 module_param(primary_reselect, charp, 0);
135 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave "
136 "once it comes up; "
137 "0 for always (default), "
138 "1 for only if speed of primary is "
139 "better, "
140 "2 for only on active slave "
141 "failure");
142 module_param(lacp_rate, charp, 0);
143 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner "
144 "(slow/fast)");
145 module_param(ad_select, charp, 0);
146 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic: stable (0, default), bandwidth (1), count (2)");
147 module_param(xmit_hash_policy, charp, 0);
148 MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)"
149 ", 1 for layer 3+4");
150 module_param(arp_interval, int, 0);
151 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
152 module_param_array(arp_ip_target, charp, NULL, 0);
153 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
154 module_param(arp_validate, charp, 0);
155 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all");
156 module_param(fail_over_mac, charp, 0);
157 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. none (default), active or follow");
158
159 /*----------------------------- Global variables ----------------------------*/
160
161 static const char * const version =
162 DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n";
163
164 int bond_net_id __read_mostly;
165
166 static __be32 arp_target[BOND_MAX_ARP_TARGETS];
167 static int arp_ip_count;
168 static int bond_mode = BOND_MODE_ROUNDROBIN;
169 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2;
170 static int lacp_fast;
171
172
173 const struct bond_parm_tbl bond_lacp_tbl[] = {
174 { "slow", AD_LACP_SLOW},
175 { "fast", AD_LACP_FAST},
176 { NULL, -1},
177 };
178
179 const struct bond_parm_tbl bond_mode_tbl[] = {
180 { "balance-rr", BOND_MODE_ROUNDROBIN},
181 { "active-backup", BOND_MODE_ACTIVEBACKUP},
182 { "balance-xor", BOND_MODE_XOR},
183 { "broadcast", BOND_MODE_BROADCAST},
184 { "802.3ad", BOND_MODE_8023AD},
185 { "balance-tlb", BOND_MODE_TLB},
186 { "balance-alb", BOND_MODE_ALB},
187 { NULL, -1},
188 };
189
190 const struct bond_parm_tbl xmit_hashtype_tbl[] = {
191 { "layer2", BOND_XMIT_POLICY_LAYER2},
192 { "layer3+4", BOND_XMIT_POLICY_LAYER34},
193 { "layer2+3", BOND_XMIT_POLICY_LAYER23},
194 { NULL, -1},
195 };
196
197 const struct bond_parm_tbl arp_validate_tbl[] = {
198 { "none", BOND_ARP_VALIDATE_NONE},
199 { "active", BOND_ARP_VALIDATE_ACTIVE},
200 { "backup", BOND_ARP_VALIDATE_BACKUP},
201 { "all", BOND_ARP_VALIDATE_ALL},
202 { NULL, -1},
203 };
204
205 const struct bond_parm_tbl fail_over_mac_tbl[] = {
206 { "none", BOND_FOM_NONE},
207 { "active", BOND_FOM_ACTIVE},
208 { "follow", BOND_FOM_FOLLOW},
209 { NULL, -1},
210 };
211
212 const struct bond_parm_tbl pri_reselect_tbl[] = {
213 { "always", BOND_PRI_RESELECT_ALWAYS},
214 { "better", BOND_PRI_RESELECT_BETTER},
215 { "failure", BOND_PRI_RESELECT_FAILURE},
216 { NULL, -1},
217 };
218
219 struct bond_parm_tbl ad_select_tbl[] = {
220 { "stable", BOND_AD_STABLE},
221 { "bandwidth", BOND_AD_BANDWIDTH},
222 { "count", BOND_AD_COUNT},
223 { NULL, -1},
224 };
225
226 /*-------------------------- Forward declarations ---------------------------*/
227
228 static void bond_send_gratuitous_arp(struct bonding *bond);
229 static int bond_init(struct net_device *bond_dev);
230 static void bond_uninit(struct net_device *bond_dev);
231
232 /*---------------------------- General routines -----------------------------*/
233
234 static const char *bond_mode_name(int mode)
235 {
236 static const char *names[] = {
237 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)",
238 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)",
239 [BOND_MODE_XOR] = "load balancing (xor)",
240 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)",
241 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation",
242 [BOND_MODE_TLB] = "transmit load balancing",
243 [BOND_MODE_ALB] = "adaptive load balancing",
244 };
245
246 if (mode < 0 || mode > BOND_MODE_ALB)
247 return "unknown";
248
249 return names[mode];
250 }
251
252 /*---------------------------------- VLAN -----------------------------------*/
253
254 /**
255 * bond_add_vlan - add a new vlan id on bond
256 * @bond: bond that got the notification
257 * @vlan_id: the vlan id to add
258 *
259 * Returns -ENOMEM if allocation failed.
260 */
261 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
262 {
263 struct vlan_entry *vlan;
264
265 pr_debug("bond: %s, vlan id %d\n",
266 (bond ? bond->dev->name : "None"), vlan_id);
267
268 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL);
269 if (!vlan)
270 return -ENOMEM;
271
272 INIT_LIST_HEAD(&vlan->vlan_list);
273 vlan->vlan_id = vlan_id;
274
275 write_lock_bh(&bond->lock);
276
277 list_add_tail(&vlan->vlan_list, &bond->vlan_list);
278
279 write_unlock_bh(&bond->lock);
280
281 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
282
283 return 0;
284 }
285
286 /**
287 * bond_del_vlan - delete a vlan id from bond
288 * @bond: bond that got the notification
289 * @vlan_id: the vlan id to delete
290 *
291 * returns -ENODEV if @vlan_id was not found in @bond.
292 */
293 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
294 {
295 struct vlan_entry *vlan;
296 int res = -ENODEV;
297
298 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
299
300 write_lock_bh(&bond->lock);
301
302 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
303 if (vlan->vlan_id == vlan_id) {
304 list_del(&vlan->vlan_list);
305
306 if (bond_is_lb(bond))
307 bond_alb_clear_vlan(bond, vlan_id);
308
309 pr_debug("removed VLAN ID %d from bond %s\n",
310 vlan_id, bond->dev->name);
311
312 kfree(vlan);
313
314 if (list_empty(&bond->vlan_list) &&
315 (bond->slave_cnt == 0)) {
316 /* Last VLAN removed and no slaves, so
317 * restore block on adding VLANs. This will
318 * be removed once new slaves that are not
319 * VLAN challenged will be added.
320 */
321 bond->dev->features |= NETIF_F_VLAN_CHALLENGED;
322 }
323
324 res = 0;
325 goto out;
326 }
327 }
328
329 pr_debug("couldn't find VLAN ID %d in bond %s\n",
330 vlan_id, bond->dev->name);
331
332 out:
333 write_unlock_bh(&bond->lock);
334 return res;
335 }
336
337 /**
338 * bond_has_challenged_slaves
339 * @bond: the bond we're working on
340 *
341 * Searches the slave list. Returns 1 if a vlan challenged slave
342 * was found, 0 otherwise.
343 *
344 * Assumes bond->lock is held.
345 */
346 static int bond_has_challenged_slaves(struct bonding *bond)
347 {
348 struct slave *slave;
349 int i;
350
351 bond_for_each_slave(bond, slave, i) {
352 if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) {
353 pr_debug("found VLAN challenged slave - %s\n",
354 slave->dev->name);
355 return 1;
356 }
357 }
358
359 pr_debug("no VLAN challenged slaves found\n");
360 return 0;
361 }
362
363 /**
364 * bond_next_vlan - safely skip to the next item in the vlans list.
365 * @bond: the bond we're working on
366 * @curr: item we're advancing from
367 *
368 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
369 * or @curr->next otherwise (even if it is @curr itself again).
370 *
371 * Caller must hold bond->lock
372 */
373 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
374 {
375 struct vlan_entry *next, *last;
376
377 if (list_empty(&bond->vlan_list))
378 return NULL;
379
380 if (!curr) {
381 next = list_entry(bond->vlan_list.next,
382 struct vlan_entry, vlan_list);
383 } else {
384 last = list_entry(bond->vlan_list.prev,
385 struct vlan_entry, vlan_list);
386 if (last == curr) {
387 next = list_entry(bond->vlan_list.next,
388 struct vlan_entry, vlan_list);
389 } else {
390 next = list_entry(curr->vlan_list.next,
391 struct vlan_entry, vlan_list);
392 }
393 }
394
395 return next;
396 }
397
398 /**
399 * bond_dev_queue_xmit - Prepare skb for xmit.
400 *
401 * @bond: bond device that got this skb for tx.
402 * @skb: hw accel VLAN tagged skb to transmit
403 * @slave_dev: slave that is supposed to xmit this skbuff
404 *
405 * When the bond gets an skb to transmit that is
406 * already hardware accelerated VLAN tagged, and it
407 * needs to relay this skb to a slave that is not
408 * hw accel capable, the skb needs to be "unaccelerated",
409 * i.e. strip the hwaccel tag and re-insert it as part
410 * of the payload.
411 */
412 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb,
413 struct net_device *slave_dev)
414 {
415 unsigned short uninitialized_var(vlan_id);
416
417 if (!list_empty(&bond->vlan_list) &&
418 !(slave_dev->features & NETIF_F_HW_VLAN_TX) &&
419 vlan_get_tag(skb, &vlan_id) == 0) {
420 skb->dev = slave_dev;
421 skb = vlan_put_tag(skb, vlan_id);
422 if (!skb) {
423 /* vlan_put_tag() frees the skb in case of error,
424 * so return success here so the calling functions
425 * won't attempt to free is again.
426 */
427 return 0;
428 }
429 } else {
430 skb->dev = slave_dev;
431 }
432
433 skb->priority = 1;
434 #ifdef CONFIG_NET_POLL_CONTROLLER
435 if (unlikely(bond->dev->priv_flags & IFF_IN_NETPOLL)) {
436 struct netpoll *np = bond->dev->npinfo->netpoll;
437 slave_dev->npinfo = bond->dev->npinfo;
438 np->real_dev = np->dev = skb->dev;
439 slave_dev->priv_flags |= IFF_IN_NETPOLL;
440 netpoll_send_skb(np, skb);
441 slave_dev->priv_flags &= ~IFF_IN_NETPOLL;
442 np->dev = bond->dev;
443 } else
444 #endif
445 dev_queue_xmit(skb);
446
447 return 0;
448 }
449
450 /*
451 * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid
452 * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a
453 * lock because:
454 * a. This operation is performed in IOCTL context,
455 * b. The operation is protected by the RTNL semaphore in the 8021q code,
456 * c. Holding a lock with BH disabled while directly calling a base driver
457 * entry point is generally a BAD idea.
458 *
459 * The design of synchronization/protection for this operation in the 8021q
460 * module is good for one or more VLAN devices over a single physical device
461 * and cannot be extended for a teaming solution like bonding, so there is a
462 * potential race condition here where a net device from the vlan group might
463 * be referenced (either by a base driver or the 8021q code) while it is being
464 * removed from the system. However, it turns out we're not making matters
465 * worse, and if it works for regular VLAN usage it will work here too.
466 */
467
468 /**
469 * bond_vlan_rx_register - Propagates registration to slaves
470 * @bond_dev: bonding net device that got called
471 * @grp: vlan group being registered
472 */
473 static void bond_vlan_rx_register(struct net_device *bond_dev,
474 struct vlan_group *grp)
475 {
476 struct bonding *bond = netdev_priv(bond_dev);
477 struct slave *slave;
478 int i;
479
480 bond->vlgrp = grp;
481
482 bond_for_each_slave(bond, slave, i) {
483 struct net_device *slave_dev = slave->dev;
484 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
485
486 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
487 slave_ops->ndo_vlan_rx_register) {
488 slave_ops->ndo_vlan_rx_register(slave_dev, grp);
489 }
490 }
491 }
492
493 /**
494 * bond_vlan_rx_add_vid - Propagates adding an id to slaves
495 * @bond_dev: bonding net device that got called
496 * @vid: vlan id being added
497 */
498 static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
499 {
500 struct bonding *bond = netdev_priv(bond_dev);
501 struct slave *slave;
502 int i, res;
503
504 bond_for_each_slave(bond, slave, i) {
505 struct net_device *slave_dev = slave->dev;
506 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
507
508 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
509 slave_ops->ndo_vlan_rx_add_vid) {
510 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vid);
511 }
512 }
513
514 res = bond_add_vlan(bond, vid);
515 if (res) {
516 pr_err("%s: Error: Failed to add vlan id %d\n",
517 bond_dev->name, vid);
518 }
519 }
520
521 /**
522 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
523 * @bond_dev: bonding net device that got called
524 * @vid: vlan id being removed
525 */
526 static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
527 {
528 struct bonding *bond = netdev_priv(bond_dev);
529 struct slave *slave;
530 struct net_device *vlan_dev;
531 int i, res;
532
533 bond_for_each_slave(bond, slave, i) {
534 struct net_device *slave_dev = slave->dev;
535 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
536
537 if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) &&
538 slave_ops->ndo_vlan_rx_kill_vid) {
539 /* Save and then restore vlan_dev in the grp array,
540 * since the slave's driver might clear it.
541 */
542 vlan_dev = vlan_group_get_device(bond->vlgrp, vid);
543 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vid);
544 vlan_group_set_device(bond->vlgrp, vid, vlan_dev);
545 }
546 }
547
548 res = bond_del_vlan(bond, vid);
549 if (res) {
550 pr_err("%s: Error: Failed to remove vlan id %d\n",
551 bond_dev->name, vid);
552 }
553 }
554
555 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
556 {
557 struct vlan_entry *vlan;
558 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
559
560 write_lock_bh(&bond->lock);
561
562 if (list_empty(&bond->vlan_list))
563 goto out;
564
565 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
566 slave_ops->ndo_vlan_rx_register)
567 slave_ops->ndo_vlan_rx_register(slave_dev, bond->vlgrp);
568
569 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
570 !(slave_ops->ndo_vlan_rx_add_vid))
571 goto out;
572
573 list_for_each_entry(vlan, &bond->vlan_list, vlan_list)
574 slave_ops->ndo_vlan_rx_add_vid(slave_dev, vlan->vlan_id);
575
576 out:
577 write_unlock_bh(&bond->lock);
578 }
579
580 static void bond_del_vlans_from_slave(struct bonding *bond,
581 struct net_device *slave_dev)
582 {
583 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
584 struct vlan_entry *vlan;
585 struct net_device *vlan_dev;
586
587 write_lock_bh(&bond->lock);
588
589 if (list_empty(&bond->vlan_list))
590 goto out;
591
592 if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) ||
593 !(slave_ops->ndo_vlan_rx_kill_vid))
594 goto unreg;
595
596 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
597 /* Save and then restore vlan_dev in the grp array,
598 * since the slave's driver might clear it.
599 */
600 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
601 slave_ops->ndo_vlan_rx_kill_vid(slave_dev, vlan->vlan_id);
602 vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev);
603 }
604
605 unreg:
606 if ((slave_dev->features & NETIF_F_HW_VLAN_RX) &&
607 slave_ops->ndo_vlan_rx_register)
608 slave_ops->ndo_vlan_rx_register(slave_dev, NULL);
609
610 out:
611 write_unlock_bh(&bond->lock);
612 }
613
614 /*------------------------------- Link status -------------------------------*/
615
616 /*
617 * Set the carrier state for the master according to the state of its
618 * slaves. If any slaves are up, the master is up. In 802.3ad mode,
619 * do special 802.3ad magic.
620 *
621 * Returns zero if carrier state does not change, nonzero if it does.
622 */
623 static int bond_set_carrier(struct bonding *bond)
624 {
625 struct slave *slave;
626 int i;
627
628 if (bond->slave_cnt == 0)
629 goto down;
630
631 if (bond->params.mode == BOND_MODE_8023AD)
632 return bond_3ad_set_carrier(bond);
633
634 bond_for_each_slave(bond, slave, i) {
635 if (slave->link == BOND_LINK_UP) {
636 if (!netif_carrier_ok(bond->dev)) {
637 netif_carrier_on(bond->dev);
638 return 1;
639 }
640 return 0;
641 }
642 }
643
644 down:
645 if (netif_carrier_ok(bond->dev)) {
646 netif_carrier_off(bond->dev);
647 return 1;
648 }
649 return 0;
650 }
651
652 /*
653 * Get link speed and duplex from the slave's base driver
654 * using ethtool. If for some reason the call fails or the
655 * values are invalid, fake speed and duplex to 100/Full
656 * and return error.
657 */
658 static int bond_update_speed_duplex(struct slave *slave)
659 {
660 struct net_device *slave_dev = slave->dev;
661 struct ethtool_cmd etool;
662 int res;
663
664 /* Fake speed and duplex */
665 slave->speed = SPEED_100;
666 slave->duplex = DUPLEX_FULL;
667
668 if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings)
669 return -1;
670
671 res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool);
672 if (res < 0)
673 return -1;
674
675 switch (etool.speed) {
676 case SPEED_10:
677 case SPEED_100:
678 case SPEED_1000:
679 case SPEED_10000:
680 break;
681 default:
682 return -1;
683 }
684
685 switch (etool.duplex) {
686 case DUPLEX_FULL:
687 case DUPLEX_HALF:
688 break;
689 default:
690 return -1;
691 }
692
693 slave->speed = etool.speed;
694 slave->duplex = etool.duplex;
695
696 return 0;
697 }
698
699 /*
700 * if <dev> supports MII link status reporting, check its link status.
701 *
702 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
703 * depending upon the setting of the use_carrier parameter.
704 *
705 * Return either BMSR_LSTATUS, meaning that the link is up (or we
706 * can't tell and just pretend it is), or 0, meaning that the link is
707 * down.
708 *
709 * If reporting is non-zero, instead of faking link up, return -1 if
710 * both ETHTOOL and MII ioctls fail (meaning the device does not
711 * support them). If use_carrier is set, return whatever it says.
712 * It'd be nice if there was a good way to tell if a driver supports
713 * netif_carrier, but there really isn't.
714 */
715 static int bond_check_dev_link(struct bonding *bond,
716 struct net_device *slave_dev, int reporting)
717 {
718 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
719 int (*ioctl)(struct net_device *, struct ifreq *, int);
720 struct ifreq ifr;
721 struct mii_ioctl_data *mii;
722
723 if (!reporting && !netif_running(slave_dev))
724 return 0;
725
726 if (bond->params.use_carrier)
727 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
728
729 /* Try to get link status using Ethtool first. */
730 if (slave_dev->ethtool_ops) {
731 if (slave_dev->ethtool_ops->get_link) {
732 u32 link;
733
734 link = slave_dev->ethtool_ops->get_link(slave_dev);
735
736 return link ? BMSR_LSTATUS : 0;
737 }
738 }
739
740 /* Ethtool can't be used, fallback to MII ioctls. */
741 ioctl = slave_ops->ndo_do_ioctl;
742 if (ioctl) {
743 /* TODO: set pointer to correct ioctl on a per team member */
744 /* bases to make this more efficient. that is, once */
745 /* we determine the correct ioctl, we will always */
746 /* call it and not the others for that team */
747 /* member. */
748
749 /*
750 * We cannot assume that SIOCGMIIPHY will also read a
751 * register; not all network drivers (e.g., e100)
752 * support that.
753 */
754
755 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */
756 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
757 mii = if_mii(&ifr);
758 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
759 mii->reg_num = MII_BMSR;
760 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0)
761 return mii->val_out & BMSR_LSTATUS;
762 }
763 }
764
765 /*
766 * If reporting, report that either there's no dev->do_ioctl,
767 * or both SIOCGMIIREG and get_link failed (meaning that we
768 * cannot report link status). If not reporting, pretend
769 * we're ok.
770 */
771 return reporting ? -1 : BMSR_LSTATUS;
772 }
773
774 /*----------------------------- Multicast list ------------------------------*/
775
776 /*
777 * Push the promiscuity flag down to appropriate slaves
778 */
779 static int bond_set_promiscuity(struct bonding *bond, int inc)
780 {
781 int err = 0;
782 if (USES_PRIMARY(bond->params.mode)) {
783 /* write lock already acquired */
784 if (bond->curr_active_slave) {
785 err = dev_set_promiscuity(bond->curr_active_slave->dev,
786 inc);
787 }
788 } else {
789 struct slave *slave;
790 int i;
791 bond_for_each_slave(bond, slave, i) {
792 err = dev_set_promiscuity(slave->dev, inc);
793 if (err)
794 return err;
795 }
796 }
797 return err;
798 }
799
800 /*
801 * Push the allmulti flag down to all slaves
802 */
803 static int bond_set_allmulti(struct bonding *bond, int inc)
804 {
805 int err = 0;
806 if (USES_PRIMARY(bond->params.mode)) {
807 /* write lock already acquired */
808 if (bond->curr_active_slave) {
809 err = dev_set_allmulti(bond->curr_active_slave->dev,
810 inc);
811 }
812 } else {
813 struct slave *slave;
814 int i;
815 bond_for_each_slave(bond, slave, i) {
816 err = dev_set_allmulti(slave->dev, inc);
817 if (err)
818 return err;
819 }
820 }
821 return err;
822 }
823
824 /*
825 * Add a Multicast address to slaves
826 * according to mode
827 */
828 static void bond_mc_add(struct bonding *bond, void *addr)
829 {
830 if (USES_PRIMARY(bond->params.mode)) {
831 /* write lock already acquired */
832 if (bond->curr_active_slave)
833 dev_mc_add(bond->curr_active_slave->dev, addr);
834 } else {
835 struct slave *slave;
836 int i;
837
838 bond_for_each_slave(bond, slave, i)
839 dev_mc_add(slave->dev, addr);
840 }
841 }
842
843 /*
844 * Remove a multicast address from slave
845 * according to mode
846 */
847 static void bond_mc_del(struct bonding *bond, void *addr)
848 {
849 if (USES_PRIMARY(bond->params.mode)) {
850 /* write lock already acquired */
851 if (bond->curr_active_slave)
852 dev_mc_del(bond->curr_active_slave->dev, addr);
853 } else {
854 struct slave *slave;
855 int i;
856 bond_for_each_slave(bond, slave, i) {
857 dev_mc_del(slave->dev, addr);
858 }
859 }
860 }
861
862
863 /*
864 * Retrieve the list of registered multicast addresses for the bonding
865 * device and retransmit an IGMP JOIN request to the current active
866 * slave.
867 */
868 static void bond_resend_igmp_join_requests(struct bonding *bond)
869 {
870 struct in_device *in_dev;
871 struct ip_mc_list *im;
872
873 rcu_read_lock();
874 in_dev = __in_dev_get_rcu(bond->dev);
875 if (in_dev) {
876 for (im = in_dev->mc_list; im; im = im->next)
877 ip_mc_rejoin_group(im);
878 }
879
880 rcu_read_unlock();
881 }
882
883 /*
884 * flush all members of flush->mc_list from device dev->mc_list
885 */
886 static void bond_mc_list_flush(struct net_device *bond_dev,
887 struct net_device *slave_dev)
888 {
889 struct bonding *bond = netdev_priv(bond_dev);
890 struct netdev_hw_addr *ha;
891
892 netdev_for_each_mc_addr(ha, bond_dev)
893 dev_mc_del(slave_dev, ha->addr);
894
895 if (bond->params.mode == BOND_MODE_8023AD) {
896 /* del lacpdu mc addr from mc list */
897 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
898
899 dev_mc_del(slave_dev, lacpdu_multicast);
900 }
901 }
902
903 /*--------------------------- Active slave change ---------------------------*/
904
905 /*
906 * Update the mc list and multicast-related flags for the new and
907 * old active slaves (if any) according to the multicast mode, and
908 * promiscuous flags unconditionally.
909 */
910 static void bond_mc_swap(struct bonding *bond, struct slave *new_active,
911 struct slave *old_active)
912 {
913 struct netdev_hw_addr *ha;
914
915 if (!USES_PRIMARY(bond->params.mode))
916 /* nothing to do - mc list is already up-to-date on
917 * all slaves
918 */
919 return;
920
921 if (old_active) {
922 if (bond->dev->flags & IFF_PROMISC)
923 dev_set_promiscuity(old_active->dev, -1);
924
925 if (bond->dev->flags & IFF_ALLMULTI)
926 dev_set_allmulti(old_active->dev, -1);
927
928 netdev_for_each_mc_addr(ha, bond->dev)
929 dev_mc_del(old_active->dev, ha->addr);
930 }
931
932 if (new_active) {
933 /* FIXME: Signal errors upstream. */
934 if (bond->dev->flags & IFF_PROMISC)
935 dev_set_promiscuity(new_active->dev, 1);
936
937 if (bond->dev->flags & IFF_ALLMULTI)
938 dev_set_allmulti(new_active->dev, 1);
939
940 netdev_for_each_mc_addr(ha, bond->dev)
941 dev_mc_add(new_active->dev, ha->addr);
942 bond_resend_igmp_join_requests(bond);
943 }
944 }
945
946 /*
947 * bond_do_fail_over_mac
948 *
949 * Perform special MAC address swapping for fail_over_mac settings
950 *
951 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
952 */
953 static void bond_do_fail_over_mac(struct bonding *bond,
954 struct slave *new_active,
955 struct slave *old_active)
956 __releases(&bond->curr_slave_lock)
957 __releases(&bond->lock)
958 __acquires(&bond->lock)
959 __acquires(&bond->curr_slave_lock)
960 {
961 u8 tmp_mac[ETH_ALEN];
962 struct sockaddr saddr;
963 int rv;
964
965 switch (bond->params.fail_over_mac) {
966 case BOND_FOM_ACTIVE:
967 if (new_active)
968 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr,
969 new_active->dev->addr_len);
970 break;
971 case BOND_FOM_FOLLOW:
972 /*
973 * if new_active && old_active, swap them
974 * if just old_active, do nothing (going to no active slave)
975 * if just new_active, set new_active to bond's MAC
976 */
977 if (!new_active)
978 return;
979
980 write_unlock_bh(&bond->curr_slave_lock);
981 read_unlock(&bond->lock);
982
983 if (old_active) {
984 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
985 memcpy(saddr.sa_data, old_active->dev->dev_addr,
986 ETH_ALEN);
987 saddr.sa_family = new_active->dev->type;
988 } else {
989 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
990 saddr.sa_family = bond->dev->type;
991 }
992
993 rv = dev_set_mac_address(new_active->dev, &saddr);
994 if (rv) {
995 pr_err("%s: Error %d setting MAC of slave %s\n",
996 bond->dev->name, -rv, new_active->dev->name);
997 goto out;
998 }
999
1000 if (!old_active)
1001 goto out;
1002
1003 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
1004 saddr.sa_family = old_active->dev->type;
1005
1006 rv = dev_set_mac_address(old_active->dev, &saddr);
1007 if (rv)
1008 pr_err("%s: Error %d setting MAC of slave %s\n",
1009 bond->dev->name, -rv, new_active->dev->name);
1010 out:
1011 read_lock(&bond->lock);
1012 write_lock_bh(&bond->curr_slave_lock);
1013 break;
1014 default:
1015 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n",
1016 bond->dev->name, bond->params.fail_over_mac);
1017 break;
1018 }
1019
1020 }
1021
1022 static bool bond_should_change_active(struct bonding *bond)
1023 {
1024 struct slave *prim = bond->primary_slave;
1025 struct slave *curr = bond->curr_active_slave;
1026
1027 if (!prim || !curr || curr->link != BOND_LINK_UP)
1028 return true;
1029 if (bond->force_primary) {
1030 bond->force_primary = false;
1031 return true;
1032 }
1033 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER &&
1034 (prim->speed < curr->speed ||
1035 (prim->speed == curr->speed && prim->duplex <= curr->duplex)))
1036 return false;
1037 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE)
1038 return false;
1039 return true;
1040 }
1041
1042 /**
1043 * find_best_interface - select the best available slave to be the active one
1044 * @bond: our bonding struct
1045 *
1046 * Warning: Caller must hold curr_slave_lock for writing.
1047 */
1048 static struct slave *bond_find_best_slave(struct bonding *bond)
1049 {
1050 struct slave *new_active, *old_active;
1051 struct slave *bestslave = NULL;
1052 int mintime = bond->params.updelay;
1053 int i;
1054
1055 new_active = bond->curr_active_slave;
1056
1057 if (!new_active) { /* there were no active slaves left */
1058 if (bond->slave_cnt > 0) /* found one slave */
1059 new_active = bond->first_slave;
1060 else
1061 return NULL; /* still no slave, return NULL */
1062 }
1063
1064 if ((bond->primary_slave) &&
1065 bond->primary_slave->link == BOND_LINK_UP &&
1066 bond_should_change_active(bond)) {
1067 new_active = bond->primary_slave;
1068 }
1069
1070 /* remember where to stop iterating over the slaves */
1071 old_active = new_active;
1072
1073 bond_for_each_slave_from(bond, new_active, i, old_active) {
1074 if (new_active->link == BOND_LINK_UP) {
1075 return new_active;
1076 } else if (new_active->link == BOND_LINK_BACK &&
1077 IS_UP(new_active->dev)) {
1078 /* link up, but waiting for stabilization */
1079 if (new_active->delay < mintime) {
1080 mintime = new_active->delay;
1081 bestslave = new_active;
1082 }
1083 }
1084 }
1085
1086 return bestslave;
1087 }
1088
1089 /**
1090 * change_active_interface - change the active slave into the specified one
1091 * @bond: our bonding struct
1092 * @new: the new slave to make the active one
1093 *
1094 * Set the new slave to the bond's settings and unset them on the old
1095 * curr_active_slave.
1096 * Setting include flags, mc-list, promiscuity, allmulti, etc.
1097 *
1098 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1099 * because it is apparently the best available slave we have, even though its
1100 * updelay hasn't timed out yet.
1101 *
1102 * If new_active is not NULL, caller must hold bond->lock for read and
1103 * curr_slave_lock for write_bh.
1104 */
1105 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1106 {
1107 struct slave *old_active = bond->curr_active_slave;
1108
1109 if (old_active == new_active)
1110 return;
1111
1112 if (new_active) {
1113 new_active->jiffies = jiffies;
1114
1115 if (new_active->link == BOND_LINK_BACK) {
1116 if (USES_PRIMARY(bond->params.mode)) {
1117 pr_info("%s: making interface %s the new active one %d ms earlier.\n",
1118 bond->dev->name, new_active->dev->name,
1119 (bond->params.updelay - new_active->delay) * bond->params.miimon);
1120 }
1121
1122 new_active->delay = 0;
1123 new_active->link = BOND_LINK_UP;
1124
1125 if (bond->params.mode == BOND_MODE_8023AD)
1126 bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1127
1128 if (bond_is_lb(bond))
1129 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1130 } else {
1131 if (USES_PRIMARY(bond->params.mode)) {
1132 pr_info("%s: making interface %s the new active one.\n",
1133 bond->dev->name, new_active->dev->name);
1134 }
1135 }
1136 }
1137
1138 if (USES_PRIMARY(bond->params.mode))
1139 bond_mc_swap(bond, new_active, old_active);
1140
1141 if (bond_is_lb(bond)) {
1142 bond_alb_handle_active_change(bond, new_active);
1143 if (old_active)
1144 bond_set_slave_inactive_flags(old_active);
1145 if (new_active)
1146 bond_set_slave_active_flags(new_active);
1147 } else {
1148 bond->curr_active_slave = new_active;
1149 }
1150
1151 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1152 if (old_active)
1153 bond_set_slave_inactive_flags(old_active);
1154
1155 if (new_active) {
1156 bond_set_slave_active_flags(new_active);
1157
1158 if (bond->params.fail_over_mac)
1159 bond_do_fail_over_mac(bond, new_active,
1160 old_active);
1161
1162 bond->send_grat_arp = bond->params.num_grat_arp;
1163 bond_send_gratuitous_arp(bond);
1164
1165 bond->send_unsol_na = bond->params.num_unsol_na;
1166 bond_send_unsolicited_na(bond);
1167
1168 write_unlock_bh(&bond->curr_slave_lock);
1169 read_unlock(&bond->lock);
1170
1171 netdev_bonding_change(bond->dev, NETDEV_BONDING_FAILOVER);
1172
1173 read_lock(&bond->lock);
1174 write_lock_bh(&bond->curr_slave_lock);
1175 }
1176 }
1177
1178 /* resend IGMP joins since all were sent on curr_active_slave */
1179 if (bond->params.mode == BOND_MODE_ROUNDROBIN) {
1180 bond_resend_igmp_join_requests(bond);
1181 }
1182 }
1183
1184 /**
1185 * bond_select_active_slave - select a new active slave, if needed
1186 * @bond: our bonding struct
1187 *
1188 * This functions should be called when one of the following occurs:
1189 * - The old curr_active_slave has been released or lost its link.
1190 * - The primary_slave has got its link back.
1191 * - A slave has got its link back and there's no old curr_active_slave.
1192 *
1193 * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
1194 */
1195 void bond_select_active_slave(struct bonding *bond)
1196 {
1197 struct slave *best_slave;
1198 int rv;
1199
1200 best_slave = bond_find_best_slave(bond);
1201 if (best_slave != bond->curr_active_slave) {
1202 bond_change_active_slave(bond, best_slave);
1203 rv = bond_set_carrier(bond);
1204 if (!rv)
1205 return;
1206
1207 if (netif_carrier_ok(bond->dev)) {
1208 pr_info("%s: first active interface up!\n",
1209 bond->dev->name);
1210 } else {
1211 pr_info("%s: now running without any active interface !\n",
1212 bond->dev->name);
1213 }
1214 }
1215 }
1216
1217 /*--------------------------- slave list handling ---------------------------*/
1218
1219 /*
1220 * This function attaches the slave to the end of list.
1221 *
1222 * bond->lock held for writing by caller.
1223 */
1224 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1225 {
1226 if (bond->first_slave == NULL) { /* attaching the first slave */
1227 new_slave->next = new_slave;
1228 new_slave->prev = new_slave;
1229 bond->first_slave = new_slave;
1230 } else {
1231 new_slave->next = bond->first_slave;
1232 new_slave->prev = bond->first_slave->prev;
1233 new_slave->next->prev = new_slave;
1234 new_slave->prev->next = new_slave;
1235 }
1236
1237 bond->slave_cnt++;
1238 }
1239
1240 /*
1241 * This function detaches the slave from the list.
1242 * WARNING: no check is made to verify if the slave effectively
1243 * belongs to <bond>.
1244 * Nothing is freed on return, structures are just unchained.
1245 * If any slave pointer in bond was pointing to <slave>,
1246 * it should be changed by the calling function.
1247 *
1248 * bond->lock held for writing by caller.
1249 */
1250 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1251 {
1252 if (slave->next)
1253 slave->next->prev = slave->prev;
1254
1255 if (slave->prev)
1256 slave->prev->next = slave->next;
1257
1258 if (bond->first_slave == slave) { /* slave is the first slave */
1259 if (bond->slave_cnt > 1) { /* there are more slave */
1260 bond->first_slave = slave->next;
1261 } else {
1262 bond->first_slave = NULL; /* slave was the last one */
1263 }
1264 }
1265
1266 slave->next = NULL;
1267 slave->prev = NULL;
1268 bond->slave_cnt--;
1269 }
1270
1271 #ifdef CONFIG_NET_POLL_CONTROLLER
1272 /*
1273 * You must hold read lock on bond->lock before calling this.
1274 */
1275 static bool slaves_support_netpoll(struct net_device *bond_dev)
1276 {
1277 struct bonding *bond = netdev_priv(bond_dev);
1278 struct slave *slave;
1279 int i = 0;
1280 bool ret = true;
1281
1282 bond_for_each_slave(bond, slave, i) {
1283 if ((slave->dev->priv_flags & IFF_DISABLE_NETPOLL) ||
1284 !slave->dev->netdev_ops->ndo_poll_controller)
1285 ret = false;
1286 }
1287 return i != 0 && ret;
1288 }
1289
1290 static void bond_poll_controller(struct net_device *bond_dev)
1291 {
1292 struct net_device *dev = bond_dev->npinfo->netpoll->real_dev;
1293 if (dev != bond_dev)
1294 netpoll_poll_dev(dev);
1295 }
1296
1297 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1298 {
1299 struct bonding *bond = netdev_priv(bond_dev);
1300 struct slave *slave;
1301 const struct net_device_ops *ops;
1302 int i;
1303
1304 read_lock(&bond->lock);
1305 bond_dev->npinfo = NULL;
1306 bond_for_each_slave(bond, slave, i) {
1307 if (slave->dev) {
1308 ops = slave->dev->netdev_ops;
1309 if (ops->ndo_netpoll_cleanup)
1310 ops->ndo_netpoll_cleanup(slave->dev);
1311 else
1312 slave->dev->npinfo = NULL;
1313 }
1314 }
1315 read_unlock(&bond->lock);
1316 }
1317
1318 #else
1319
1320 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1321 {
1322 }
1323
1324 #endif
1325
1326 /*---------------------------------- IOCTL ----------------------------------*/
1327
1328 static int bond_sethwaddr(struct net_device *bond_dev,
1329 struct net_device *slave_dev)
1330 {
1331 pr_debug("bond_dev=%p\n", bond_dev);
1332 pr_debug("slave_dev=%p\n", slave_dev);
1333 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1334 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1335 return 0;
1336 }
1337
1338 #define BOND_VLAN_FEATURES \
1339 (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \
1340 NETIF_F_HW_VLAN_FILTER)
1341
1342 /*
1343 * Compute the common dev->feature set available to all slaves. Some
1344 * feature bits are managed elsewhere, so preserve those feature bits
1345 * on the master device.
1346 */
1347 static int bond_compute_features(struct bonding *bond)
1348 {
1349 struct slave *slave;
1350 struct net_device *bond_dev = bond->dev;
1351 unsigned long features = bond_dev->features;
1352 unsigned long vlan_features = 0;
1353 unsigned short max_hard_header_len = max((u16)ETH_HLEN,
1354 bond_dev->hard_header_len);
1355 int i;
1356
1357 features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES);
1358 features |= NETIF_F_GSO_MASK | NETIF_F_NO_CSUM;
1359
1360 if (!bond->first_slave)
1361 goto done;
1362
1363 features &= ~NETIF_F_ONE_FOR_ALL;
1364
1365 vlan_features = bond->first_slave->dev->vlan_features;
1366 bond_for_each_slave(bond, slave, i) {
1367 features = netdev_increment_features(features,
1368 slave->dev->features,
1369 NETIF_F_ONE_FOR_ALL);
1370 vlan_features = netdev_increment_features(vlan_features,
1371 slave->dev->vlan_features,
1372 NETIF_F_ONE_FOR_ALL);
1373 if (slave->dev->hard_header_len > max_hard_header_len)
1374 max_hard_header_len = slave->dev->hard_header_len;
1375 }
1376
1377 done:
1378 features |= (bond_dev->features & BOND_VLAN_FEATURES);
1379 bond_dev->features = netdev_fix_features(features, NULL);
1380 bond_dev->vlan_features = netdev_fix_features(vlan_features, NULL);
1381 bond_dev->hard_header_len = max_hard_header_len;
1382
1383 return 0;
1384 }
1385
1386 static void bond_setup_by_slave(struct net_device *bond_dev,
1387 struct net_device *slave_dev)
1388 {
1389 struct bonding *bond = netdev_priv(bond_dev);
1390
1391 bond_dev->header_ops = slave_dev->header_ops;
1392
1393 bond_dev->type = slave_dev->type;
1394 bond_dev->hard_header_len = slave_dev->hard_header_len;
1395 bond_dev->addr_len = slave_dev->addr_len;
1396
1397 memcpy(bond_dev->broadcast, slave_dev->broadcast,
1398 slave_dev->addr_len);
1399 bond->setup_by_slave = 1;
1400 }
1401
1402 /* enslave device <slave> to bond device <master> */
1403 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1404 {
1405 struct bonding *bond = netdev_priv(bond_dev);
1406 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
1407 struct slave *new_slave = NULL;
1408 struct netdev_hw_addr *ha;
1409 struct sockaddr addr;
1410 int link_reporting;
1411 int old_features = bond_dev->features;
1412 int res = 0;
1413
1414 if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL &&
1415 slave_ops->ndo_do_ioctl == NULL) {
1416 pr_warning("%s: Warning: no link monitoring support for %s\n",
1417 bond_dev->name, slave_dev->name);
1418 }
1419
1420 /* bond must be initialized by bond_open() before enslaving */
1421 if (!(bond_dev->flags & IFF_UP)) {
1422 pr_warning("%s: master_dev is not up in bond_enslave\n",
1423 bond_dev->name);
1424 }
1425
1426 /* already enslaved */
1427 if (slave_dev->flags & IFF_SLAVE) {
1428 pr_debug("Error, Device was already enslaved\n");
1429 return -EBUSY;
1430 }
1431
1432 /* vlan challenged mutual exclusion */
1433 /* no need to lock since we're protected by rtnl_lock */
1434 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1435 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1436 if (!list_empty(&bond->vlan_list)) {
1437 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n",
1438 bond_dev->name, slave_dev->name, bond_dev->name);
1439 return -EPERM;
1440 } else {
1441 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n",
1442 bond_dev->name, slave_dev->name,
1443 slave_dev->name, bond_dev->name);
1444 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1445 }
1446 } else {
1447 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1448 if (bond->slave_cnt == 0) {
1449 /* First slave, and it is not VLAN challenged,
1450 * so remove the block of adding VLANs over the bond.
1451 */
1452 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1453 }
1454 }
1455
1456 /*
1457 * Old ifenslave binaries are no longer supported. These can
1458 * be identified with moderate accuracy by the state of the slave:
1459 * the current ifenslave will set the interface down prior to
1460 * enslaving it; the old ifenslave will not.
1461 */
1462 if ((slave_dev->flags & IFF_UP)) {
1463 pr_err("%s is up. This may be due to an out of date ifenslave.\n",
1464 slave_dev->name);
1465 res = -EPERM;
1466 goto err_undo_flags;
1467 }
1468
1469 /* set bonding device ether type by slave - bonding netdevices are
1470 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1471 * there is a need to override some of the type dependent attribs/funcs.
1472 *
1473 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1474 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1475 */
1476 if (bond->slave_cnt == 0) {
1477 if (bond_dev->type != slave_dev->type) {
1478 pr_debug("%s: change device type from %d to %d\n",
1479 bond_dev->name,
1480 bond_dev->type, slave_dev->type);
1481
1482 res = netdev_bonding_change(bond_dev,
1483 NETDEV_PRE_TYPE_CHANGE);
1484 res = notifier_to_errno(res);
1485 if (res) {
1486 pr_err("%s: refused to change device type\n",
1487 bond_dev->name);
1488 res = -EBUSY;
1489 goto err_undo_flags;
1490 }
1491
1492 /* Flush unicast and multicast addresses */
1493 dev_uc_flush(bond_dev);
1494 dev_mc_flush(bond_dev);
1495
1496 if (slave_dev->type != ARPHRD_ETHER)
1497 bond_setup_by_slave(bond_dev, slave_dev);
1498 else
1499 ether_setup(bond_dev);
1500
1501 netdev_bonding_change(bond_dev,
1502 NETDEV_POST_TYPE_CHANGE);
1503 }
1504 } else if (bond_dev->type != slave_dev->type) {
1505 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n",
1506 slave_dev->name,
1507 slave_dev->type, bond_dev->type);
1508 res = -EINVAL;
1509 goto err_undo_flags;
1510 }
1511
1512 if (slave_ops->ndo_set_mac_address == NULL) {
1513 if (bond->slave_cnt == 0) {
1514 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.",
1515 bond_dev->name);
1516 bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1517 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1518 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n",
1519 bond_dev->name);
1520 res = -EOPNOTSUPP;
1521 goto err_undo_flags;
1522 }
1523 }
1524
1525 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1526 if (!new_slave) {
1527 res = -ENOMEM;
1528 goto err_undo_flags;
1529 }
1530
1531 /* save slave's original flags before calling
1532 * netdev_set_master and dev_open
1533 */
1534 new_slave->original_flags = slave_dev->flags;
1535
1536 /*
1537 * Save slave's original ("permanent") mac address for modes
1538 * that need it, and for restoring it upon release, and then
1539 * set it to the master's address
1540 */
1541 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1542
1543 if (!bond->params.fail_over_mac) {
1544 /*
1545 * Set slave to master's mac address. The application already
1546 * set the master's mac address to that of the first slave
1547 */
1548 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1549 addr.sa_family = slave_dev->type;
1550 res = dev_set_mac_address(slave_dev, &addr);
1551 if (res) {
1552 pr_debug("Error %d calling set_mac_address\n", res);
1553 goto err_free;
1554 }
1555 }
1556
1557 res = netdev_set_master(slave_dev, bond_dev);
1558 if (res) {
1559 pr_debug("Error %d calling netdev_set_master\n", res);
1560 goto err_restore_mac;
1561 }
1562 /* open the slave since the application closed it */
1563 res = dev_open(slave_dev);
1564 if (res) {
1565 pr_debug("Opening slave %s failed\n", slave_dev->name);
1566 goto err_unset_master;
1567 }
1568
1569 new_slave->dev = slave_dev;
1570 slave_dev->priv_flags |= IFF_BONDING;
1571
1572 if (bond_is_lb(bond)) {
1573 /* bond_alb_init_slave() must be called before all other stages since
1574 * it might fail and we do not want to have to undo everything
1575 */
1576 res = bond_alb_init_slave(bond, new_slave);
1577 if (res)
1578 goto err_close;
1579 }
1580
1581 /* If the mode USES_PRIMARY, then the new slave gets the
1582 * master's promisc (and mc) settings only if it becomes the
1583 * curr_active_slave, and that is taken care of later when calling
1584 * bond_change_active()
1585 */
1586 if (!USES_PRIMARY(bond->params.mode)) {
1587 /* set promiscuity level to new slave */
1588 if (bond_dev->flags & IFF_PROMISC) {
1589 res = dev_set_promiscuity(slave_dev, 1);
1590 if (res)
1591 goto err_close;
1592 }
1593
1594 /* set allmulti level to new slave */
1595 if (bond_dev->flags & IFF_ALLMULTI) {
1596 res = dev_set_allmulti(slave_dev, 1);
1597 if (res)
1598 goto err_close;
1599 }
1600
1601 netif_addr_lock_bh(bond_dev);
1602 /* upload master's mc_list to new slave */
1603 netdev_for_each_mc_addr(ha, bond_dev)
1604 dev_mc_add(slave_dev, ha->addr);
1605 netif_addr_unlock_bh(bond_dev);
1606 }
1607
1608 if (bond->params.mode == BOND_MODE_8023AD) {
1609 /* add lacpdu mc addr to mc list */
1610 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1611
1612 dev_mc_add(slave_dev, lacpdu_multicast);
1613 }
1614
1615 bond_add_vlans_on_slave(bond, slave_dev);
1616
1617 write_lock_bh(&bond->lock);
1618
1619 bond_attach_slave(bond, new_slave);
1620
1621 new_slave->delay = 0;
1622 new_slave->link_failure_count = 0;
1623
1624 bond_compute_features(bond);
1625
1626 write_unlock_bh(&bond->lock);
1627
1628 read_lock(&bond->lock);
1629
1630 new_slave->last_arp_rx = jiffies;
1631
1632 if (bond->params.miimon && !bond->params.use_carrier) {
1633 link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1634
1635 if ((link_reporting == -1) && !bond->params.arp_interval) {
1636 /*
1637 * miimon is set but a bonded network driver
1638 * does not support ETHTOOL/MII and
1639 * arp_interval is not set. Note: if
1640 * use_carrier is enabled, we will never go
1641 * here (because netif_carrier is always
1642 * supported); thus, we don't need to change
1643 * the messages for netif_carrier.
1644 */
1645 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n",
1646 bond_dev->name, slave_dev->name);
1647 } else if (link_reporting == -1) {
1648 /* unable get link status using mii/ethtool */
1649 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n",
1650 bond_dev->name, slave_dev->name);
1651 }
1652 }
1653
1654 /* check for initial state */
1655 if (!bond->params.miimon ||
1656 (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) {
1657 if (bond->params.updelay) {
1658 pr_debug("Initial state of slave_dev is BOND_LINK_BACK\n");
1659 new_slave->link = BOND_LINK_BACK;
1660 new_slave->delay = bond->params.updelay;
1661 } else {
1662 pr_debug("Initial state of slave_dev is BOND_LINK_UP\n");
1663 new_slave->link = BOND_LINK_UP;
1664 }
1665 new_slave->jiffies = jiffies;
1666 } else {
1667 pr_debug("Initial state of slave_dev is BOND_LINK_DOWN\n");
1668 new_slave->link = BOND_LINK_DOWN;
1669 }
1670
1671 if (bond_update_speed_duplex(new_slave) &&
1672 (new_slave->link != BOND_LINK_DOWN)) {
1673 pr_warning("%s: Warning: failed to get speed and duplex from %s, assumed to be 100Mb/sec and Full.\n",
1674 bond_dev->name, new_slave->dev->name);
1675
1676 if (bond->params.mode == BOND_MODE_8023AD) {
1677 pr_warning("%s: Warning: Operation of 802.3ad mode requires ETHTOOL support in base driver for proper aggregator selection.\n",
1678 bond_dev->name);
1679 }
1680 }
1681
1682 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1683 /* if there is a primary slave, remember it */
1684 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1685 bond->primary_slave = new_slave;
1686 bond->force_primary = true;
1687 }
1688 }
1689
1690 write_lock_bh(&bond->curr_slave_lock);
1691
1692 switch (bond->params.mode) {
1693 case BOND_MODE_ACTIVEBACKUP:
1694 bond_set_slave_inactive_flags(new_slave);
1695 bond_select_active_slave(bond);
1696 break;
1697 case BOND_MODE_8023AD:
1698 /* in 802.3ad mode, the internal mechanism
1699 * will activate the slaves in the selected
1700 * aggregator
1701 */
1702 bond_set_slave_inactive_flags(new_slave);
1703 /* if this is the first slave */
1704 if (bond->slave_cnt == 1) {
1705 SLAVE_AD_INFO(new_slave).id = 1;
1706 /* Initialize AD with the number of times that the AD timer is called in 1 second
1707 * can be called only after the mac address of the bond is set
1708 */
1709 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL,
1710 bond->params.lacp_fast);
1711 } else {
1712 SLAVE_AD_INFO(new_slave).id =
1713 SLAVE_AD_INFO(new_slave->prev).id + 1;
1714 }
1715
1716 bond_3ad_bind_slave(new_slave);
1717 break;
1718 case BOND_MODE_TLB:
1719 case BOND_MODE_ALB:
1720 new_slave->state = BOND_STATE_ACTIVE;
1721 bond_set_slave_inactive_flags(new_slave);
1722 bond_select_active_slave(bond);
1723 break;
1724 default:
1725 pr_debug("This slave is always active in trunk mode\n");
1726
1727 /* always active in trunk mode */
1728 new_slave->state = BOND_STATE_ACTIVE;
1729
1730 /* In trunking mode there is little meaning to curr_active_slave
1731 * anyway (it holds no special properties of the bond device),
1732 * so we can change it without calling change_active_interface()
1733 */
1734 if (!bond->curr_active_slave)
1735 bond->curr_active_slave = new_slave;
1736
1737 break;
1738 } /* switch(bond_mode) */
1739
1740 write_unlock_bh(&bond->curr_slave_lock);
1741
1742 bond_set_carrier(bond);
1743
1744 #ifdef CONFIG_NET_POLL_CONTROLLER
1745 if (slaves_support_netpoll(bond_dev)) {
1746 bond_dev->priv_flags &= ~IFF_DISABLE_NETPOLL;
1747 if (bond_dev->npinfo)
1748 slave_dev->npinfo = bond_dev->npinfo;
1749 } else if (!(bond_dev->priv_flags & IFF_DISABLE_NETPOLL)) {
1750 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL;
1751 pr_info("New slave device %s does not support netpoll\n",
1752 slave_dev->name);
1753 pr_info("Disabling netpoll support for %s\n", bond_dev->name);
1754 }
1755 #endif
1756 read_unlock(&bond->lock);
1757
1758 res = bond_create_slave_symlinks(bond_dev, slave_dev);
1759 if (res)
1760 goto err_close;
1761
1762 pr_info("%s: enslaving %s as a%s interface with a%s link.\n",
1763 bond_dev->name, slave_dev->name,
1764 new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup",
1765 new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1766
1767 /* enslave is successful */
1768 return 0;
1769
1770 /* Undo stages on error */
1771 err_close:
1772 dev_close(slave_dev);
1773
1774 err_unset_master:
1775 netdev_set_master(slave_dev, NULL);
1776
1777 err_restore_mac:
1778 if (!bond->params.fail_over_mac) {
1779 /* XXX TODO - fom follow mode needs to change master's
1780 * MAC if this slave's MAC is in use by the bond, or at
1781 * least print a warning.
1782 */
1783 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1784 addr.sa_family = slave_dev->type;
1785 dev_set_mac_address(slave_dev, &addr);
1786 }
1787
1788 err_free:
1789 kfree(new_slave);
1790
1791 err_undo_flags:
1792 bond_dev->features = old_features;
1793
1794 return res;
1795 }
1796
1797 /*
1798 * Try to release the slave device <slave> from the bond device <master>
1799 * It is legal to access curr_active_slave without a lock because all the function
1800 * is write-locked.
1801 *
1802 * The rules for slave state should be:
1803 * for Active/Backup:
1804 * Active stays on all backups go down
1805 * for Bonded connections:
1806 * The first up interface should be left on and all others downed.
1807 */
1808 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1809 {
1810 struct bonding *bond = netdev_priv(bond_dev);
1811 struct slave *slave, *oldcurrent;
1812 struct sockaddr addr;
1813
1814 /* slave is not a slave or master is not master of this slave */
1815 if (!(slave_dev->flags & IFF_SLAVE) ||
1816 (slave_dev->master != bond_dev)) {
1817 pr_err("%s: Error: cannot release %s.\n",
1818 bond_dev->name, slave_dev->name);
1819 return -EINVAL;
1820 }
1821
1822 netdev_bonding_change(bond_dev, NETDEV_BONDING_DESLAVE);
1823 write_lock_bh(&bond->lock);
1824
1825 slave = bond_get_slave_by_dev(bond, slave_dev);
1826 if (!slave) {
1827 /* not a slave of this bond */
1828 pr_info("%s: %s not enslaved\n",
1829 bond_dev->name, slave_dev->name);
1830 write_unlock_bh(&bond->lock);
1831 return -EINVAL;
1832 }
1833
1834 if (!bond->params.fail_over_mac) {
1835 if (!compare_ether_addr(bond_dev->dev_addr, slave->perm_hwaddr) &&
1836 bond->slave_cnt > 1)
1837 pr_warning("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n",
1838 bond_dev->name, slave_dev->name,
1839 slave->perm_hwaddr,
1840 bond_dev->name, slave_dev->name);
1841 }
1842
1843 /* Inform AD package of unbinding of slave. */
1844 if (bond->params.mode == BOND_MODE_8023AD) {
1845 /* must be called before the slave is
1846 * detached from the list
1847 */
1848 bond_3ad_unbind_slave(slave);
1849 }
1850
1851 pr_info("%s: releasing %s interface %s\n",
1852 bond_dev->name,
1853 (slave->state == BOND_STATE_ACTIVE) ? "active" : "backup",
1854 slave_dev->name);
1855
1856 oldcurrent = bond->curr_active_slave;
1857
1858 bond->current_arp_slave = NULL;
1859
1860 /* release the slave from its bond */
1861 bond_detach_slave(bond, slave);
1862
1863 bond_compute_features(bond);
1864
1865 if (bond->primary_slave == slave)
1866 bond->primary_slave = NULL;
1867
1868 if (oldcurrent == slave)
1869 bond_change_active_slave(bond, NULL);
1870
1871 if (bond_is_lb(bond)) {
1872 /* Must be called only after the slave has been
1873 * detached from the list and the curr_active_slave
1874 * has been cleared (if our_slave == old_current),
1875 * but before a new active slave is selected.
1876 */
1877 write_unlock_bh(&bond->lock);
1878 bond_alb_deinit_slave(bond, slave);
1879 write_lock_bh(&bond->lock);
1880 }
1881
1882 if (oldcurrent == slave) {
1883 /*
1884 * Note that we hold RTNL over this sequence, so there
1885 * is no concern that another slave add/remove event
1886 * will interfere.
1887 */
1888 write_unlock_bh(&bond->lock);
1889 read_lock(&bond->lock);
1890 write_lock_bh(&bond->curr_slave_lock);
1891
1892 bond_select_active_slave(bond);
1893
1894 write_unlock_bh(&bond->curr_slave_lock);
1895 read_unlock(&bond->lock);
1896 write_lock_bh(&bond->lock);
1897 }
1898
1899 if (bond->slave_cnt == 0) {
1900 bond_set_carrier(bond);
1901
1902 /* if the last slave was removed, zero the mac address
1903 * of the master so it will be set by the application
1904 * to the mac address of the first slave
1905 */
1906 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
1907
1908 if (list_empty(&bond->vlan_list)) {
1909 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
1910 } else {
1911 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n",
1912 bond_dev->name, bond_dev->name);
1913 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n",
1914 bond_dev->name);
1915 }
1916 } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1917 !bond_has_challenged_slaves(bond)) {
1918 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n",
1919 bond_dev->name, slave_dev->name, bond_dev->name);
1920 bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED;
1921 }
1922
1923 write_unlock_bh(&bond->lock);
1924
1925 /* must do this from outside any spinlocks */
1926 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1927
1928 bond_del_vlans_from_slave(bond, slave_dev);
1929
1930 /* If the mode USES_PRIMARY, then we should only remove its
1931 * promisc and mc settings if it was the curr_active_slave, but that was
1932 * already taken care of above when we detached the slave
1933 */
1934 if (!USES_PRIMARY(bond->params.mode)) {
1935 /* unset promiscuity level from slave */
1936 if (bond_dev->flags & IFF_PROMISC)
1937 dev_set_promiscuity(slave_dev, -1);
1938
1939 /* unset allmulti level from slave */
1940 if (bond_dev->flags & IFF_ALLMULTI)
1941 dev_set_allmulti(slave_dev, -1);
1942
1943 /* flush master's mc_list from slave */
1944 netif_addr_lock_bh(bond_dev);
1945 bond_mc_list_flush(bond_dev, slave_dev);
1946 netif_addr_unlock_bh(bond_dev);
1947 }
1948
1949 netdev_set_master(slave_dev, NULL);
1950
1951 #ifdef CONFIG_NET_POLL_CONTROLLER
1952 read_lock_bh(&bond->lock);
1953 if (slaves_support_netpoll(bond_dev))
1954 bond_dev->priv_flags &= ~IFF_DISABLE_NETPOLL;
1955 read_unlock_bh(&bond->lock);
1956 if (slave_dev->netdev_ops->ndo_netpoll_cleanup)
1957 slave_dev->netdev_ops->ndo_netpoll_cleanup(slave_dev);
1958 else
1959 slave_dev->npinfo = NULL;
1960 #endif
1961
1962 /* close slave before restoring its mac address */
1963 dev_close(slave_dev);
1964
1965 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1966 /* restore original ("permanent") mac address */
1967 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1968 addr.sa_family = slave_dev->type;
1969 dev_set_mac_address(slave_dev, &addr);
1970 }
1971
1972 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
1973 IFF_SLAVE_INACTIVE | IFF_BONDING |
1974 IFF_SLAVE_NEEDARP);
1975
1976 kfree(slave);
1977
1978 return 0; /* deletion OK */
1979 }
1980
1981 /*
1982 * First release a slave and than destroy the bond if no more slaves are left.
1983 * Must be under rtnl_lock when this function is called.
1984 */
1985 int bond_release_and_destroy(struct net_device *bond_dev,
1986 struct net_device *slave_dev)
1987 {
1988 struct bonding *bond = netdev_priv(bond_dev);
1989 int ret;
1990
1991 ret = bond_release(bond_dev, slave_dev);
1992 if ((ret == 0) && (bond->slave_cnt == 0)) {
1993 pr_info("%s: destroying bond %s.\n",
1994 bond_dev->name, bond_dev->name);
1995 unregister_netdevice(bond_dev);
1996 }
1997 return ret;
1998 }
1999
2000 /*
2001 * This function releases all slaves.
2002 */
2003 static int bond_release_all(struct net_device *bond_dev)
2004 {
2005 struct bonding *bond = netdev_priv(bond_dev);
2006 struct slave *slave;
2007 struct net_device *slave_dev;
2008 struct sockaddr addr;
2009
2010 write_lock_bh(&bond->lock);
2011
2012 netif_carrier_off(bond_dev);
2013
2014 if (bond->slave_cnt == 0)
2015 goto out;
2016
2017 bond->current_arp_slave = NULL;
2018 bond->primary_slave = NULL;
2019 bond_change_active_slave(bond, NULL);
2020
2021 while ((slave = bond->first_slave) != NULL) {
2022 /* Inform AD package of unbinding of slave
2023 * before slave is detached from the list.
2024 */
2025 if (bond->params.mode == BOND_MODE_8023AD)
2026 bond_3ad_unbind_slave(slave);
2027
2028 slave_dev = slave->dev;
2029 bond_detach_slave(bond, slave);
2030
2031 /* now that the slave is detached, unlock and perform
2032 * all the undo steps that should not be called from
2033 * within a lock.
2034 */
2035 write_unlock_bh(&bond->lock);
2036
2037 if (bond_is_lb(bond)) {
2038 /* must be called only after the slave
2039 * has been detached from the list
2040 */
2041 bond_alb_deinit_slave(bond, slave);
2042 }
2043
2044 bond_compute_features(bond);
2045
2046 bond_destroy_slave_symlinks(bond_dev, slave_dev);
2047 bond_del_vlans_from_slave(bond, slave_dev);
2048
2049 /* If the mode USES_PRIMARY, then we should only remove its
2050 * promisc and mc settings if it was the curr_active_slave, but that was
2051 * already taken care of above when we detached the slave
2052 */
2053 if (!USES_PRIMARY(bond->params.mode)) {
2054 /* unset promiscuity level from slave */
2055 if (bond_dev->flags & IFF_PROMISC)
2056 dev_set_promiscuity(slave_dev, -1);
2057
2058 /* unset allmulti level from slave */
2059 if (bond_dev->flags & IFF_ALLMULTI)
2060 dev_set_allmulti(slave_dev, -1);
2061
2062 /* flush master's mc_list from slave */
2063 netif_addr_lock_bh(bond_dev);
2064 bond_mc_list_flush(bond_dev, slave_dev);
2065 netif_addr_unlock_bh(bond_dev);
2066 }
2067
2068 netdev_set_master(slave_dev, NULL);
2069
2070 /* close slave before restoring its mac address */
2071 dev_close(slave_dev);
2072
2073 if (!bond->params.fail_over_mac) {
2074 /* restore original ("permanent") mac address*/
2075 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
2076 addr.sa_family = slave_dev->type;
2077 dev_set_mac_address(slave_dev, &addr);
2078 }
2079
2080 slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB |
2081 IFF_SLAVE_INACTIVE);
2082
2083 kfree(slave);
2084
2085 /* re-acquire the lock before getting the next slave */
2086 write_lock_bh(&bond->lock);
2087 }
2088
2089 /* zero the mac address of the master so it will be
2090 * set by the application to the mac address of the
2091 * first slave
2092 */
2093 memset(bond_dev->dev_addr, 0, bond_dev->addr_len);
2094
2095 if (list_empty(&bond->vlan_list))
2096 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
2097 else {
2098 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n",
2099 bond_dev->name, bond_dev->name);
2100 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n",
2101 bond_dev->name);
2102 }
2103
2104 pr_info("%s: released all slaves\n", bond_dev->name);
2105
2106 out:
2107 write_unlock_bh(&bond->lock);
2108
2109 return 0;
2110 }
2111
2112 /*
2113 * This function changes the active slave to slave <slave_dev>.
2114 * It returns -EINVAL in the following cases.
2115 * - <slave_dev> is not found in the list.
2116 * - There is not active slave now.
2117 * - <slave_dev> is already active.
2118 * - The link state of <slave_dev> is not BOND_LINK_UP.
2119 * - <slave_dev> is not running.
2120 * In these cases, this function does nothing.
2121 * In the other cases, current_slave pointer is changed and 0 is returned.
2122 */
2123 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2124 {
2125 struct bonding *bond = netdev_priv(bond_dev);
2126 struct slave *old_active = NULL;
2127 struct slave *new_active = NULL;
2128 int res = 0;
2129
2130 if (!USES_PRIMARY(bond->params.mode))
2131 return -EINVAL;
2132
2133 /* Verify that master_dev is indeed the master of slave_dev */
2134 if (!(slave_dev->flags & IFF_SLAVE) || (slave_dev->master != bond_dev))
2135 return -EINVAL;
2136
2137 read_lock(&bond->lock);
2138
2139 read_lock(&bond->curr_slave_lock);
2140 old_active = bond->curr_active_slave;
2141 read_unlock(&bond->curr_slave_lock);
2142
2143 new_active = bond_get_slave_by_dev(bond, slave_dev);
2144
2145 /*
2146 * Changing to the current active: do nothing; return success.
2147 */
2148 if (new_active && (new_active == old_active)) {
2149 read_unlock(&bond->lock);
2150 return 0;
2151 }
2152
2153 if ((new_active) &&
2154 (old_active) &&
2155 (new_active->link == BOND_LINK_UP) &&
2156 IS_UP(new_active->dev)) {
2157 write_lock_bh(&bond->curr_slave_lock);
2158 bond_change_active_slave(bond, new_active);
2159 write_unlock_bh(&bond->curr_slave_lock);
2160 } else
2161 res = -EINVAL;
2162
2163 read_unlock(&bond->lock);
2164
2165 return res;
2166 }
2167
2168 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2169 {
2170 struct bonding *bond = netdev_priv(bond_dev);
2171
2172 info->bond_mode = bond->params.mode;
2173 info->miimon = bond->params.miimon;
2174
2175 read_lock(&bond->lock);
2176 info->num_slaves = bond->slave_cnt;
2177 read_unlock(&bond->lock);
2178
2179 return 0;
2180 }
2181
2182 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2183 {
2184 struct bonding *bond = netdev_priv(bond_dev);
2185 struct slave *slave;
2186 int i, res = -ENODEV;
2187
2188 read_lock(&bond->lock);
2189
2190 bond_for_each_slave(bond, slave, i) {
2191 if (i == (int)info->slave_id) {
2192 res = 0;
2193 strcpy(info->slave_name, slave->dev->name);
2194 info->link = slave->link;
2195 info->state = slave->state;
2196 info->link_failure_count = slave->link_failure_count;
2197 break;
2198 }
2199 }
2200
2201 read_unlock(&bond->lock);
2202
2203 return res;
2204 }
2205
2206 /*-------------------------------- Monitoring -------------------------------*/
2207
2208
2209 static int bond_miimon_inspect(struct bonding *bond)
2210 {
2211 struct slave *slave;
2212 int i, link_state, commit = 0;
2213 bool ignore_updelay;
2214
2215 ignore_updelay = !bond->curr_active_slave ? true : false;
2216
2217 bond_for_each_slave(bond, slave, i) {
2218 slave->new_link = BOND_LINK_NOCHANGE;
2219
2220 link_state = bond_check_dev_link(bond, slave->dev, 0);
2221
2222 switch (slave->link) {
2223 case BOND_LINK_UP:
2224 if (link_state)
2225 continue;
2226
2227 slave->link = BOND_LINK_FAIL;
2228 slave->delay = bond->params.downdelay;
2229 if (slave->delay) {
2230 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n",
2231 bond->dev->name,
2232 (bond->params.mode ==
2233 BOND_MODE_ACTIVEBACKUP) ?
2234 ((slave->state == BOND_STATE_ACTIVE) ?
2235 "active " : "backup ") : "",
2236 slave->dev->name,
2237 bond->params.downdelay * bond->params.miimon);
2238 }
2239 /*FALLTHRU*/
2240 case BOND_LINK_FAIL:
2241 if (link_state) {
2242 /*
2243 * recovered before downdelay expired
2244 */
2245 slave->link = BOND_LINK_UP;
2246 slave->jiffies = jiffies;
2247 pr_info("%s: link status up again after %d ms for interface %s.\n",
2248 bond->dev->name,
2249 (bond->params.downdelay - slave->delay) *
2250 bond->params.miimon,
2251 slave->dev->name);
2252 continue;
2253 }
2254
2255 if (slave->delay <= 0) {
2256 slave->new_link = BOND_LINK_DOWN;
2257 commit++;
2258 continue;
2259 }
2260
2261 slave->delay--;
2262 break;
2263
2264 case BOND_LINK_DOWN:
2265 if (!link_state)
2266 continue;
2267
2268 slave->link = BOND_LINK_BACK;
2269 slave->delay = bond->params.updelay;
2270
2271 if (slave->delay) {
2272 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n",
2273 bond->dev->name, slave->dev->name,
2274 ignore_updelay ? 0 :
2275 bond->params.updelay *
2276 bond->params.miimon);
2277 }
2278 /*FALLTHRU*/
2279 case BOND_LINK_BACK:
2280 if (!link_state) {
2281 slave->link = BOND_LINK_DOWN;
2282 pr_info("%s: link status down again after %d ms for interface %s.\n",
2283 bond->dev->name,
2284 (bond->params.updelay - slave->delay) *
2285 bond->params.miimon,
2286 slave->dev->name);
2287
2288 continue;
2289 }
2290
2291 if (ignore_updelay)
2292 slave->delay = 0;
2293
2294 if (slave->delay <= 0) {
2295 slave->new_link = BOND_LINK_UP;
2296 commit++;
2297 ignore_updelay = false;
2298 continue;
2299 }
2300
2301 slave->delay--;
2302 break;
2303 }
2304 }
2305
2306 return commit;
2307 }
2308
2309 static void bond_miimon_commit(struct bonding *bond)
2310 {
2311 struct slave *slave;
2312 int i;
2313
2314 bond_for_each_slave(bond, slave, i) {
2315 switch (slave->new_link) {
2316 case BOND_LINK_NOCHANGE:
2317 continue;
2318
2319 case BOND_LINK_UP:
2320 slave->link = BOND_LINK_UP;
2321 slave->jiffies = jiffies;
2322
2323 if (bond->params.mode == BOND_MODE_8023AD) {
2324 /* prevent it from being the active one */
2325 slave->state = BOND_STATE_BACKUP;
2326 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2327 /* make it immediately active */
2328 slave->state = BOND_STATE_ACTIVE;
2329 } else if (slave != bond->primary_slave) {
2330 /* prevent it from being the active one */
2331 slave->state = BOND_STATE_BACKUP;
2332 }
2333
2334 pr_info("%s: link status definitely up for interface %s.\n",
2335 bond->dev->name, slave->dev->name);
2336
2337 /* notify ad that the link status has changed */
2338 if (bond->params.mode == BOND_MODE_8023AD)
2339 bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2340
2341 if (bond_is_lb(bond))
2342 bond_alb_handle_link_change(bond, slave,
2343 BOND_LINK_UP);
2344
2345 if (!bond->curr_active_slave ||
2346 (slave == bond->primary_slave))
2347 goto do_failover;
2348
2349 continue;
2350
2351 case BOND_LINK_DOWN:
2352 if (slave->link_failure_count < UINT_MAX)
2353 slave->link_failure_count++;
2354
2355 slave->link = BOND_LINK_DOWN;
2356
2357 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2358 bond->params.mode == BOND_MODE_8023AD)
2359 bond_set_slave_inactive_flags(slave);
2360
2361 pr_info("%s: link status definitely down for interface %s, disabling it\n",
2362 bond->dev->name, slave->dev->name);
2363
2364 if (bond->params.mode == BOND_MODE_8023AD)
2365 bond_3ad_handle_link_change(slave,
2366 BOND_LINK_DOWN);
2367
2368 if (bond_is_lb(bond))
2369 bond_alb_handle_link_change(bond, slave,
2370 BOND_LINK_DOWN);
2371
2372 if (slave == bond->curr_active_slave)
2373 goto do_failover;
2374
2375 continue;
2376
2377 default:
2378 pr_err("%s: invalid new link %d on slave %s\n",
2379 bond->dev->name, slave->new_link,
2380 slave->dev->name);
2381 slave->new_link = BOND_LINK_NOCHANGE;
2382
2383 continue;
2384 }
2385
2386 do_failover:
2387 ASSERT_RTNL();
2388 write_lock_bh(&bond->curr_slave_lock);
2389 bond_select_active_slave(bond);
2390 write_unlock_bh(&bond->curr_slave_lock);
2391 }
2392
2393 bond_set_carrier(bond);
2394 }
2395
2396 /*
2397 * bond_mii_monitor
2398 *
2399 * Really a wrapper that splits the mii monitor into two phases: an
2400 * inspection, then (if inspection indicates something needs to be done)
2401 * an acquisition of appropriate locks followed by a commit phase to
2402 * implement whatever link state changes are indicated.
2403 */
2404 void bond_mii_monitor(struct work_struct *work)
2405 {
2406 struct bonding *bond = container_of(work, struct bonding,
2407 mii_work.work);
2408
2409 read_lock(&bond->lock);
2410 if (bond->kill_timers)
2411 goto out;
2412
2413 if (bond->slave_cnt == 0)
2414 goto re_arm;
2415
2416 if (bond->send_grat_arp) {
2417 read_lock(&bond->curr_slave_lock);
2418 bond_send_gratuitous_arp(bond);
2419 read_unlock(&bond->curr_slave_lock);
2420 }
2421
2422 if (bond->send_unsol_na) {
2423 read_lock(&bond->curr_slave_lock);
2424 bond_send_unsolicited_na(bond);
2425 read_unlock(&bond->curr_slave_lock);
2426 }
2427
2428 if (bond_miimon_inspect(bond)) {
2429 read_unlock(&bond->lock);
2430 rtnl_lock();
2431 read_lock(&bond->lock);
2432
2433 bond_miimon_commit(bond);
2434
2435 read_unlock(&bond->lock);
2436 rtnl_unlock(); /* might sleep, hold no other locks */
2437 read_lock(&bond->lock);
2438 }
2439
2440 re_arm:
2441 if (bond->params.miimon)
2442 queue_delayed_work(bond->wq, &bond->mii_work,
2443 msecs_to_jiffies(bond->params.miimon));
2444 out:
2445 read_unlock(&bond->lock);
2446 }
2447
2448 static __be32 bond_glean_dev_ip(struct net_device *dev)
2449 {
2450 struct in_device *idev;
2451 struct in_ifaddr *ifa;
2452 __be32 addr = 0;
2453
2454 if (!dev)
2455 return 0;
2456
2457 rcu_read_lock();
2458 idev = __in_dev_get_rcu(dev);
2459 if (!idev)
2460 goto out;
2461
2462 ifa = idev->ifa_list;
2463 if (!ifa)
2464 goto out;
2465
2466 addr = ifa->ifa_local;
2467 out:
2468 rcu_read_unlock();
2469 return addr;
2470 }
2471
2472 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2473 {
2474 struct vlan_entry *vlan;
2475
2476 if (ip == bond->master_ip)
2477 return 1;
2478
2479 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2480 if (ip == vlan->vlan_ip)
2481 return 1;
2482 }
2483
2484 return 0;
2485 }
2486
2487 /*
2488 * We go to the (large) trouble of VLAN tagging ARP frames because
2489 * switches in VLAN mode (especially if ports are configured as
2490 * "native" to a VLAN) might not pass non-tagged frames.
2491 */
2492 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2493 {
2494 struct sk_buff *skb;
2495
2496 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2497 slave_dev->name, dest_ip, src_ip, vlan_id);
2498
2499 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2500 NULL, slave_dev->dev_addr, NULL);
2501
2502 if (!skb) {
2503 pr_err("ARP packet allocation failed\n");
2504 return;
2505 }
2506 if (vlan_id) {
2507 skb = vlan_put_tag(skb, vlan_id);
2508 if (!skb) {
2509 pr_err("failed to insert VLAN tag\n");
2510 return;
2511 }
2512 }
2513 arp_xmit(skb);
2514 }
2515
2516
2517 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2518 {
2519 int i, vlan_id, rv;
2520 __be32 *targets = bond->params.arp_targets;
2521 struct vlan_entry *vlan;
2522 struct net_device *vlan_dev;
2523 struct flowi fl;
2524 struct rtable *rt;
2525
2526 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2527 if (!targets[i])
2528 break;
2529 pr_debug("basa: target %x\n", targets[i]);
2530 if (list_empty(&bond->vlan_list)) {
2531 pr_debug("basa: empty vlan: arp_send\n");
2532 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2533 bond->master_ip, 0);
2534 continue;
2535 }
2536
2537 /*
2538 * If VLANs are configured, we do a route lookup to
2539 * determine which VLAN interface would be used, so we
2540 * can tag the ARP with the proper VLAN tag.
2541 */
2542 memset(&fl, 0, sizeof(fl));
2543 fl.fl4_dst = targets[i];
2544 fl.fl4_tos = RTO_ONLINK;
2545
2546 rv = ip_route_output_key(dev_net(bond->dev), &rt, &fl);
2547 if (rv) {
2548 if (net_ratelimit()) {
2549 pr_warning("%s: no route to arp_ip_target %pI4\n",
2550 bond->dev->name, &fl.fl4_dst);
2551 }
2552 continue;
2553 }
2554
2555 /*
2556 * This target is not on a VLAN
2557 */
2558 if (rt->u.dst.dev == bond->dev) {
2559 ip_rt_put(rt);
2560 pr_debug("basa: rtdev == bond->dev: arp_send\n");
2561 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2562 bond->master_ip, 0);
2563 continue;
2564 }
2565
2566 vlan_id = 0;
2567 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2568 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2569 if (vlan_dev == rt->u.dst.dev) {
2570 vlan_id = vlan->vlan_id;
2571 pr_debug("basa: vlan match on %s %d\n",
2572 vlan_dev->name, vlan_id);
2573 break;
2574 }
2575 }
2576
2577 if (vlan_id) {
2578 ip_rt_put(rt);
2579 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2580 vlan->vlan_ip, vlan_id);
2581 continue;
2582 }
2583
2584 if (net_ratelimit()) {
2585 pr_warning("%s: no path to arp_ip_target %pI4 via rt.dev %s\n",
2586 bond->dev->name, &fl.fl4_dst,
2587 rt->u.dst.dev ? rt->u.dst.dev->name : "NULL");
2588 }
2589 ip_rt_put(rt);
2590 }
2591 }
2592
2593 /*
2594 * Kick out a gratuitous ARP for an IP on the bonding master plus one
2595 * for each VLAN above us.
2596 *
2597 * Caller must hold curr_slave_lock for read or better
2598 */
2599 static void bond_send_gratuitous_arp(struct bonding *bond)
2600 {
2601 struct slave *slave = bond->curr_active_slave;
2602 struct vlan_entry *vlan;
2603 struct net_device *vlan_dev;
2604
2605 pr_debug("bond_send_grat_arp: bond %s slave %s\n",
2606 bond->dev->name, slave ? slave->dev->name : "NULL");
2607
2608 if (!slave || !bond->send_grat_arp ||
2609 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
2610 return;
2611
2612 bond->send_grat_arp--;
2613
2614 if (bond->master_ip) {
2615 bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip,
2616 bond->master_ip, 0);
2617 }
2618
2619 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2620 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
2621 if (vlan->vlan_ip) {
2622 bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip,
2623 vlan->vlan_ip, vlan->vlan_id);
2624 }
2625 }
2626 }
2627
2628 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2629 {
2630 int i;
2631 __be32 *targets = bond->params.arp_targets;
2632
2633 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2634 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n",
2635 &sip, &tip, i, &targets[i],
2636 bond_has_this_ip(bond, tip));
2637 if (sip == targets[i]) {
2638 if (bond_has_this_ip(bond, tip))
2639 slave->last_arp_rx = jiffies;
2640 return;
2641 }
2642 }
2643 }
2644
2645 static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
2646 {
2647 struct arphdr *arp;
2648 struct slave *slave;
2649 struct bonding *bond;
2650 unsigned char *arp_ptr;
2651 __be32 sip, tip;
2652
2653 if (dev->priv_flags & IFF_802_1Q_VLAN) {
2654 /*
2655 * When using VLANS and bonding, dev and oriv_dev may be
2656 * incorrect if the physical interface supports VLAN
2657 * acceleration. With this change ARP validation now
2658 * works for hosts only reachable on the VLAN interface.
2659 */
2660 dev = vlan_dev_real_dev(dev);
2661 orig_dev = dev_get_by_index_rcu(dev_net(skb->dev),skb->skb_iif);
2662 }
2663
2664 if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER))
2665 goto out;
2666
2667 bond = netdev_priv(dev);
2668 read_lock(&bond->lock);
2669
2670 pr_debug("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n",
2671 bond->dev->name, skb->dev ? skb->dev->name : "NULL",
2672 orig_dev ? orig_dev->name : "NULL");
2673
2674 slave = bond_get_slave_by_dev(bond, orig_dev);
2675 if (!slave || !slave_do_arp_validate(bond, slave))
2676 goto out_unlock;
2677
2678 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
2679 goto out_unlock;
2680
2681 arp = arp_hdr(skb);
2682 if (arp->ar_hln != dev->addr_len ||
2683 skb->pkt_type == PACKET_OTHERHOST ||
2684 skb->pkt_type == PACKET_LOOPBACK ||
2685 arp->ar_hrd != htons(ARPHRD_ETHER) ||
2686 arp->ar_pro != htons(ETH_P_IP) ||
2687 arp->ar_pln != 4)
2688 goto out_unlock;
2689
2690 arp_ptr = (unsigned char *)(arp + 1);
2691 arp_ptr += dev->addr_len;
2692 memcpy(&sip, arp_ptr, 4);
2693 arp_ptr += 4 + dev->addr_len;
2694 memcpy(&tip, arp_ptr, 4);
2695
2696 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n",
2697 bond->dev->name, slave->dev->name, slave->state,
2698 bond->params.arp_validate, slave_do_arp_validate(bond, slave),
2699 &sip, &tip);
2700
2701 /*
2702 * Backup slaves won't see the ARP reply, but do come through
2703 * here for each ARP probe (so we swap the sip/tip to validate
2704 * the probe). In a "redundant switch, common router" type of
2705 * configuration, the ARP probe will (hopefully) travel from
2706 * the active, through one switch, the router, then the other
2707 * switch before reaching the backup.
2708 */
2709 if (slave->state == BOND_STATE_ACTIVE)
2710 bond_validate_arp(bond, slave, sip, tip);
2711 else
2712 bond_validate_arp(bond, slave, tip, sip);
2713
2714 out_unlock:
2715 read_unlock(&bond->lock);
2716 out:
2717 dev_kfree_skb(skb);
2718 return NET_RX_SUCCESS;
2719 }
2720
2721 /*
2722 * this function is called regularly to monitor each slave's link
2723 * ensuring that traffic is being sent and received when arp monitoring
2724 * is used in load-balancing mode. if the adapter has been dormant, then an
2725 * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2726 * arp monitoring in active backup mode.
2727 */
2728 void bond_loadbalance_arp_mon(struct work_struct *work)
2729 {
2730 struct bonding *bond = container_of(work, struct bonding,
2731 arp_work.work);
2732 struct slave *slave, *oldcurrent;
2733 int do_failover = 0;
2734 int delta_in_ticks;
2735 int i;
2736
2737 read_lock(&bond->lock);
2738
2739 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2740
2741 if (bond->kill_timers)
2742 goto out;
2743
2744 if (bond->slave_cnt == 0)
2745 goto re_arm;
2746
2747 read_lock(&bond->curr_slave_lock);
2748 oldcurrent = bond->curr_active_slave;
2749 read_unlock(&bond->curr_slave_lock);
2750
2751 /* see if any of the previous devices are up now (i.e. they have
2752 * xmt and rcv traffic). the curr_active_slave does not come into
2753 * the picture unless it is null. also, slave->jiffies is not needed
2754 * here because we send an arp on each slave and give a slave as
2755 * long as it needs to get the tx/rx within the delta.
2756 * TODO: what about up/down delay in arp mode? it wasn't here before
2757 * so it can wait
2758 */
2759 bond_for_each_slave(bond, slave, i) {
2760 if (slave->link != BOND_LINK_UP) {
2761 if (time_before_eq(jiffies, dev_trans_start(slave->dev) + delta_in_ticks) &&
2762 time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) {
2763
2764 slave->link = BOND_LINK_UP;
2765 slave->state = BOND_STATE_ACTIVE;
2766
2767 /* primary_slave has no meaning in round-robin
2768 * mode. the window of a slave being up and
2769 * curr_active_slave being null after enslaving
2770 * is closed.
2771 */
2772 if (!oldcurrent) {
2773 pr_info("%s: link status definitely up for interface %s, ",
2774 bond->dev->name,
2775 slave->dev->name);
2776 do_failover = 1;
2777 } else {
2778 pr_info("%s: interface %s is now up\n",
2779 bond->dev->name,
2780 slave->dev->name);
2781 }
2782 }
2783 } else {
2784 /* slave->link == BOND_LINK_UP */
2785
2786 /* not all switches will respond to an arp request
2787 * when the source ip is 0, so don't take the link down
2788 * if we don't know our ip yet
2789 */
2790 if (time_after_eq(jiffies, dev_trans_start(slave->dev) + 2*delta_in_ticks) ||
2791 (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks))) {
2792
2793 slave->link = BOND_LINK_DOWN;
2794 slave->state = BOND_STATE_BACKUP;
2795
2796 if (slave->link_failure_count < UINT_MAX)
2797 slave->link_failure_count++;
2798
2799 pr_info("%s: interface %s is now down.\n",
2800 bond->dev->name,
2801 slave->dev->name);
2802
2803 if (slave == oldcurrent)
2804 do_failover = 1;
2805 }
2806 }
2807
2808 /* note: if switch is in round-robin mode, all links
2809 * must tx arp to ensure all links rx an arp - otherwise
2810 * links may oscillate or not come up at all; if switch is
2811 * in something like xor mode, there is nothing we can
2812 * do - all replies will be rx'ed on same link causing slaves
2813 * to be unstable during low/no traffic periods
2814 */
2815 if (IS_UP(slave->dev))
2816 bond_arp_send_all(bond, slave);
2817 }
2818
2819 if (do_failover) {
2820 write_lock_bh(&bond->curr_slave_lock);
2821
2822 bond_select_active_slave(bond);
2823
2824 write_unlock_bh(&bond->curr_slave_lock);
2825 }
2826
2827 re_arm:
2828 if (bond->params.arp_interval)
2829 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2830 out:
2831 read_unlock(&bond->lock);
2832 }
2833
2834 /*
2835 * Called to inspect slaves for active-backup mode ARP monitor link state
2836 * changes. Sets new_link in slaves to specify what action should take
2837 * place for the slave. Returns 0 if no changes are found, >0 if changes
2838 * to link states must be committed.
2839 *
2840 * Called with bond->lock held for read.
2841 */
2842 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks)
2843 {
2844 struct slave *slave;
2845 int i, commit = 0;
2846
2847 bond_for_each_slave(bond, slave, i) {
2848 slave->new_link = BOND_LINK_NOCHANGE;
2849
2850 if (slave->link != BOND_LINK_UP) {
2851 if (time_before_eq(jiffies, slave_last_rx(bond, slave) +
2852 delta_in_ticks)) {
2853 slave->new_link = BOND_LINK_UP;
2854 commit++;
2855 }
2856
2857 continue;
2858 }
2859
2860 /*
2861 * Give slaves 2*delta after being enslaved or made
2862 * active. This avoids bouncing, as the last receive
2863 * times need a full ARP monitor cycle to be updated.
2864 */
2865 if (!time_after_eq(jiffies, slave->jiffies +
2866 2 * delta_in_ticks))
2867 continue;
2868
2869 /*
2870 * Backup slave is down if:
2871 * - No current_arp_slave AND
2872 * - more than 3*delta since last receive AND
2873 * - the bond has an IP address
2874 *
2875 * Note: a non-null current_arp_slave indicates
2876 * the curr_active_slave went down and we are
2877 * searching for a new one; under this condition
2878 * we only take the curr_active_slave down - this
2879 * gives each slave a chance to tx/rx traffic
2880 * before being taken out
2881 */
2882 if (slave->state == BOND_STATE_BACKUP &&
2883 !bond->current_arp_slave &&
2884 time_after(jiffies, slave_last_rx(bond, slave) +
2885 3 * delta_in_ticks)) {
2886 slave->new_link = BOND_LINK_DOWN;
2887 commit++;
2888 }
2889
2890 /*
2891 * Active slave is down if:
2892 * - more than 2*delta since transmitting OR
2893 * - (more than 2*delta since receive AND
2894 * the bond has an IP address)
2895 */
2896 if ((slave->state == BOND_STATE_ACTIVE) &&
2897 (time_after_eq(jiffies, dev_trans_start(slave->dev) +
2898 2 * delta_in_ticks) ||
2899 (time_after_eq(jiffies, slave_last_rx(bond, slave)
2900 + 2 * delta_in_ticks)))) {
2901 slave->new_link = BOND_LINK_DOWN;
2902 commit++;
2903 }
2904 }
2905
2906 return commit;
2907 }
2908
2909 /*
2910 * Called to commit link state changes noted by inspection step of
2911 * active-backup mode ARP monitor.
2912 *
2913 * Called with RTNL and bond->lock for read.
2914 */
2915 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks)
2916 {
2917 struct slave *slave;
2918 int i;
2919
2920 bond_for_each_slave(bond, slave, i) {
2921 switch (slave->new_link) {
2922 case BOND_LINK_NOCHANGE:
2923 continue;
2924
2925 case BOND_LINK_UP:
2926 if ((!bond->curr_active_slave &&
2927 time_before_eq(jiffies,
2928 dev_trans_start(slave->dev) +
2929 delta_in_ticks)) ||
2930 bond->curr_active_slave != slave) {
2931 slave->link = BOND_LINK_UP;
2932 bond->current_arp_slave = NULL;
2933
2934 pr_info("%s: link status definitely up for interface %s.\n",
2935 bond->dev->name, slave->dev->name);
2936
2937 if (!bond->curr_active_slave ||
2938 (slave == bond->primary_slave))
2939 goto do_failover;
2940
2941 }
2942
2943 continue;
2944
2945 case BOND_LINK_DOWN:
2946 if (slave->link_failure_count < UINT_MAX)
2947 slave->link_failure_count++;
2948
2949 slave->link = BOND_LINK_DOWN;
2950 bond_set_slave_inactive_flags(slave);
2951
2952 pr_info("%s: link status definitely down for interface %s, disabling it\n",
2953 bond->dev->name, slave->dev->name);
2954
2955 if (slave == bond->curr_active_slave) {
2956 bond->current_arp_slave = NULL;
2957 goto do_failover;
2958 }
2959
2960 continue;
2961
2962 default:
2963 pr_err("%s: impossible: new_link %d on slave %s\n",
2964 bond->dev->name, slave->new_link,
2965 slave->dev->name);
2966 continue;
2967 }
2968
2969 do_failover:
2970 ASSERT_RTNL();
2971 write_lock_bh(&bond->curr_slave_lock);
2972 bond_select_active_slave(bond);
2973 write_unlock_bh(&bond->curr_slave_lock);
2974 }
2975
2976 bond_set_carrier(bond);
2977 }
2978
2979 /*
2980 * Send ARP probes for active-backup mode ARP monitor.
2981 *
2982 * Called with bond->lock held for read.
2983 */
2984 static void bond_ab_arp_probe(struct bonding *bond)
2985 {
2986 struct slave *slave;
2987 int i;
2988
2989 read_lock(&bond->curr_slave_lock);
2990
2991 if (bond->current_arp_slave && bond->curr_active_slave)
2992 pr_info("PROBE: c_arp %s && cas %s BAD\n",
2993 bond->current_arp_slave->dev->name,
2994 bond->curr_active_slave->dev->name);
2995
2996 if (bond->curr_active_slave) {
2997 bond_arp_send_all(bond, bond->curr_active_slave);
2998 read_unlock(&bond->curr_slave_lock);
2999 return;
3000 }
3001
3002 read_unlock(&bond->curr_slave_lock);
3003
3004 /* if we don't have a curr_active_slave, search for the next available
3005 * backup slave from the current_arp_slave and make it the candidate
3006 * for becoming the curr_active_slave
3007 */
3008
3009 if (!bond->current_arp_slave) {
3010 bond->current_arp_slave = bond->first_slave;
3011 if (!bond->current_arp_slave)
3012 return;
3013 }
3014
3015 bond_set_slave_inactive_flags(bond->current_arp_slave);
3016
3017 /* search for next candidate */
3018 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3019 if (IS_UP(slave->dev)) {
3020 slave->link = BOND_LINK_BACK;
3021 bond_set_slave_active_flags(slave);
3022 bond_arp_send_all(bond, slave);
3023 slave->jiffies = jiffies;
3024 bond->current_arp_slave = slave;
3025 break;
3026 }
3027
3028 /* if the link state is up at this point, we
3029 * mark it down - this can happen if we have
3030 * simultaneous link failures and
3031 * reselect_active_interface doesn't make this
3032 * one the current slave so it is still marked
3033 * up when it is actually down
3034 */
3035 if (slave->link == BOND_LINK_UP) {
3036 slave->link = BOND_LINK_DOWN;
3037 if (slave->link_failure_count < UINT_MAX)
3038 slave->link_failure_count++;
3039
3040 bond_set_slave_inactive_flags(slave);
3041
3042 pr_info("%s: backup interface %s is now down.\n",
3043 bond->dev->name, slave->dev->name);
3044 }
3045 }
3046 }
3047
3048 void bond_activebackup_arp_mon(struct work_struct *work)
3049 {
3050 struct bonding *bond = container_of(work, struct bonding,
3051 arp_work.work);
3052 int delta_in_ticks;
3053
3054 read_lock(&bond->lock);
3055
3056 if (bond->kill_timers)
3057 goto out;
3058
3059 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
3060
3061 if (bond->slave_cnt == 0)
3062 goto re_arm;
3063
3064 if (bond->send_grat_arp) {
3065 read_lock(&bond->curr_slave_lock);
3066 bond_send_gratuitous_arp(bond);
3067 read_unlock(&bond->curr_slave_lock);
3068 }
3069
3070 if (bond->send_unsol_na) {
3071 read_lock(&bond->curr_slave_lock);
3072 bond_send_unsolicited_na(bond);
3073 read_unlock(&bond->curr_slave_lock);
3074 }
3075
3076 if (bond_ab_arp_inspect(bond, delta_in_ticks)) {
3077 read_unlock(&bond->lock);
3078 rtnl_lock();
3079 read_lock(&bond->lock);
3080
3081 bond_ab_arp_commit(bond, delta_in_ticks);
3082
3083 read_unlock(&bond->lock);
3084 rtnl_unlock();
3085 read_lock(&bond->lock);
3086 }
3087
3088 bond_ab_arp_probe(bond);
3089
3090 re_arm:
3091 if (bond->params.arp_interval)
3092 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3093 out:
3094 read_unlock(&bond->lock);
3095 }
3096
3097 /*------------------------------ proc/seq_file-------------------------------*/
3098
3099 #ifdef CONFIG_PROC_FS
3100
3101 static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos)
3102 __acquires(&dev_base_lock)
3103 __acquires(&bond->lock)
3104 {
3105 struct bonding *bond = seq->private;
3106 loff_t off = 0;
3107 struct slave *slave;
3108 int i;
3109
3110 /* make sure the bond won't be taken away */
3111 read_lock(&dev_base_lock);
3112 read_lock(&bond->lock);
3113
3114 if (*pos == 0)
3115 return SEQ_START_TOKEN;
3116
3117 bond_for_each_slave(bond, slave, i) {
3118 if (++off == *pos)
3119 return slave;
3120 }
3121
3122 return NULL;
3123 }
3124
3125 static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3126 {
3127 struct bonding *bond = seq->private;
3128 struct slave *slave = v;
3129
3130 ++*pos;
3131 if (v == SEQ_START_TOKEN)
3132 return bond->first_slave;
3133
3134 slave = slave->next;
3135
3136 return (slave == bond->first_slave) ? NULL : slave;
3137 }
3138
3139 static void bond_info_seq_stop(struct seq_file *seq, void *v)
3140 __releases(&bond->lock)
3141 __releases(&dev_base_lock)
3142 {
3143 struct bonding *bond = seq->private;
3144
3145 read_unlock(&bond->lock);
3146 read_unlock(&dev_base_lock);
3147 }
3148
3149 static void bond_info_show_master(struct seq_file *seq)
3150 {
3151 struct bonding *bond = seq->private;
3152 struct slave *curr;
3153 int i;
3154
3155 read_lock(&bond->curr_slave_lock);
3156 curr = bond->curr_active_slave;
3157 read_unlock(&bond->curr_slave_lock);
3158
3159 seq_printf(seq, "Bonding Mode: %s",
3160 bond_mode_name(bond->params.mode));
3161
3162 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP &&
3163 bond->params.fail_over_mac)
3164 seq_printf(seq, " (fail_over_mac %s)",
3165 fail_over_mac_tbl[bond->params.fail_over_mac].modename);
3166
3167 seq_printf(seq, "\n");
3168
3169 if (bond->params.mode == BOND_MODE_XOR ||
3170 bond->params.mode == BOND_MODE_8023AD) {
3171 seq_printf(seq, "Transmit Hash Policy: %s (%d)\n",
3172 xmit_hashtype_tbl[bond->params.xmit_policy].modename,
3173 bond->params.xmit_policy);
3174 }
3175
3176 if (USES_PRIMARY(bond->params.mode)) {
3177 seq_printf(seq, "Primary Slave: %s",
3178 (bond->primary_slave) ?
3179 bond->primary_slave->dev->name : "None");
3180 if (bond->primary_slave)
3181 seq_printf(seq, " (primary_reselect %s)",
3182 pri_reselect_tbl[bond->params.primary_reselect].modename);
3183
3184 seq_printf(seq, "\nCurrently Active Slave: %s\n",
3185 (curr) ? curr->dev->name : "None");
3186 }
3187
3188 seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ?
3189 "up" : "down");
3190 seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon);
3191 seq_printf(seq, "Up Delay (ms): %d\n",
3192 bond->params.updelay * bond->params.miimon);
3193 seq_printf(seq, "Down Delay (ms): %d\n",
3194 bond->params.downdelay * bond->params.miimon);
3195
3196
3197 /* ARP information */
3198 if (bond->params.arp_interval > 0) {
3199 int printed = 0;
3200 seq_printf(seq, "ARP Polling Interval (ms): %d\n",
3201 bond->params.arp_interval);
3202
3203 seq_printf(seq, "ARP IP target/s (n.n.n.n form):");
3204
3205 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
3206 if (!bond->params.arp_targets[i])
3207 break;
3208 if (printed)
3209 seq_printf(seq, ",");
3210 seq_printf(seq, " %pI4", &bond->params.arp_targets[i]);
3211 printed = 1;
3212 }
3213 seq_printf(seq, "\n");
3214 }
3215
3216 if (bond->params.mode == BOND_MODE_8023AD) {
3217 struct ad_info ad_info;
3218
3219 seq_puts(seq, "\n802.3ad info\n");
3220 seq_printf(seq, "LACP rate: %s\n",
3221 (bond->params.lacp_fast) ? "fast" : "slow");
3222 seq_printf(seq, "Aggregator selection policy (ad_select): %s\n",
3223 ad_select_tbl[bond->params.ad_select].modename);
3224
3225 if (bond_3ad_get_active_agg_info(bond, &ad_info)) {
3226 seq_printf(seq, "bond %s has no active aggregator\n",
3227 bond->dev->name);
3228 } else {
3229 seq_printf(seq, "Active Aggregator Info:\n");
3230
3231 seq_printf(seq, "\tAggregator ID: %d\n",
3232 ad_info.aggregator_id);
3233 seq_printf(seq, "\tNumber of ports: %d\n",
3234 ad_info.ports);
3235 seq_printf(seq, "\tActor Key: %d\n",
3236 ad_info.actor_key);
3237 seq_printf(seq, "\tPartner Key: %d\n",
3238 ad_info.partner_key);
3239 seq_printf(seq, "\tPartner Mac Address: %pM\n",
3240 ad_info.partner_system);
3241 }
3242 }
3243 }
3244
3245 static void bond_info_show_slave(struct seq_file *seq,
3246 const struct slave *slave)
3247 {
3248 struct bonding *bond = seq->private;
3249
3250 seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name);
3251 seq_printf(seq, "MII Status: %s\n",
3252 (slave->link == BOND_LINK_UP) ? "up" : "down");
3253 seq_printf(seq, "Link Failure Count: %u\n",
3254 slave->link_failure_count);
3255
3256 seq_printf(seq, "Permanent HW addr: %pM\n", slave->perm_hwaddr);
3257
3258 if (bond->params.mode == BOND_MODE_8023AD) {
3259 const struct aggregator *agg
3260 = SLAVE_AD_INFO(slave).port.aggregator;
3261
3262 if (agg)
3263 seq_printf(seq, "Aggregator ID: %d\n",
3264 agg->aggregator_identifier);
3265 else
3266 seq_puts(seq, "Aggregator ID: N/A\n");
3267 }
3268 }
3269
3270 static int bond_info_seq_show(struct seq_file *seq, void *v)
3271 {
3272 if (v == SEQ_START_TOKEN) {
3273 seq_printf(seq, "%s\n", version);
3274 bond_info_show_master(seq);
3275 } else
3276 bond_info_show_slave(seq, v);
3277
3278 return 0;
3279 }
3280
3281 static const struct seq_operations bond_info_seq_ops = {
3282 .start = bond_info_seq_start,
3283 .next = bond_info_seq_next,
3284 .stop = bond_info_seq_stop,
3285 .show = bond_info_seq_show,
3286 };
3287
3288 static int bond_info_open(struct inode *inode, struct file *file)
3289 {
3290 struct seq_file *seq;
3291 struct proc_dir_entry *proc;
3292 int res;
3293
3294 res = seq_open(file, &bond_info_seq_ops);
3295 if (!res) {
3296 /* recover the pointer buried in proc_dir_entry data */
3297 seq = file->private_data;
3298 proc = PDE(inode);
3299 seq->private = proc->data;
3300 }
3301
3302 return res;
3303 }
3304
3305 static const struct file_operations bond_info_fops = {
3306 .owner = THIS_MODULE,
3307 .open = bond_info_open,
3308 .read = seq_read,
3309 .llseek = seq_lseek,
3310 .release = seq_release,
3311 };
3312
3313 static void bond_create_proc_entry(struct bonding *bond)
3314 {
3315 struct net_device *bond_dev = bond->dev;
3316 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
3317
3318 if (bn->proc_dir) {
3319 bond->proc_entry = proc_create_data(bond_dev->name,
3320 S_IRUGO, bn->proc_dir,
3321 &bond_info_fops, bond);
3322 if (bond->proc_entry == NULL)
3323 pr_warning("Warning: Cannot create /proc/net/%s/%s\n",
3324 DRV_NAME, bond_dev->name);
3325 else
3326 memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ);
3327 }
3328 }
3329
3330 static void bond_remove_proc_entry(struct bonding *bond)
3331 {
3332 struct net_device *bond_dev = bond->dev;
3333 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
3334
3335 if (bn->proc_dir && bond->proc_entry) {
3336 remove_proc_entry(bond->proc_file_name, bn->proc_dir);
3337 memset(bond->proc_file_name, 0, IFNAMSIZ);
3338 bond->proc_entry = NULL;
3339 }
3340 }
3341
3342 /* Create the bonding directory under /proc/net, if doesn't exist yet.
3343 * Caller must hold rtnl_lock.
3344 */
3345 static void __net_init bond_create_proc_dir(struct bond_net *bn)
3346 {
3347 if (!bn->proc_dir) {
3348 bn->proc_dir = proc_mkdir(DRV_NAME, bn->net->proc_net);
3349 if (!bn->proc_dir)
3350 pr_warning("Warning: cannot create /proc/net/%s\n",
3351 DRV_NAME);
3352 }
3353 }
3354
3355 /* Destroy the bonding directory under /proc/net, if empty.
3356 * Caller must hold rtnl_lock.
3357 */
3358 static void __net_exit bond_destroy_proc_dir(struct bond_net *bn)
3359 {
3360 if (bn->proc_dir) {
3361 remove_proc_entry(DRV_NAME, bn->net->proc_net);
3362 bn->proc_dir = NULL;
3363 }
3364 }
3365
3366 #else /* !CONFIG_PROC_FS */
3367
3368 static void bond_create_proc_entry(struct bonding *bond)
3369 {
3370 }
3371
3372 static void bond_remove_proc_entry(struct bonding *bond)
3373 {
3374 }
3375
3376 static inline void bond_create_proc_dir(struct bond_net *bn)
3377 {
3378 }
3379
3380 static inline void bond_destroy_proc_dir(struct bond_net *bn)
3381 {
3382 }
3383
3384 #endif /* CONFIG_PROC_FS */
3385
3386
3387 /*-------------------------- netdev event handling --------------------------*/
3388
3389 /*
3390 * Change device name
3391 */
3392 static int bond_event_changename(struct bonding *bond)
3393 {
3394 bond_remove_proc_entry(bond);
3395 bond_create_proc_entry(bond);
3396
3397 return NOTIFY_DONE;
3398 }
3399
3400 static int bond_master_netdev_event(unsigned long event,
3401 struct net_device *bond_dev)
3402 {
3403 struct bonding *event_bond = netdev_priv(bond_dev);
3404
3405 switch (event) {
3406 case NETDEV_CHANGENAME:
3407 return bond_event_changename(event_bond);
3408 default:
3409 break;
3410 }
3411
3412 return NOTIFY_DONE;
3413 }
3414
3415 static int bond_slave_netdev_event(unsigned long event,
3416 struct net_device *slave_dev)
3417 {
3418 struct net_device *bond_dev = slave_dev->master;
3419 struct bonding *bond = netdev_priv(bond_dev);
3420
3421 switch (event) {
3422 case NETDEV_UNREGISTER:
3423 if (bond_dev) {
3424 if (bond->setup_by_slave)
3425 bond_release_and_destroy(bond_dev, slave_dev);
3426 else
3427 bond_release(bond_dev, slave_dev);
3428 }
3429 break;
3430 case NETDEV_CHANGE:
3431 if (bond->params.mode == BOND_MODE_8023AD || bond_is_lb(bond)) {
3432 struct slave *slave;
3433
3434 slave = bond_get_slave_by_dev(bond, slave_dev);
3435 if (slave) {
3436 u16 old_speed = slave->speed;
3437 u16 old_duplex = slave->duplex;
3438
3439 bond_update_speed_duplex(slave);
3440
3441 if (bond_is_lb(bond))
3442 break;
3443
3444 if (old_speed != slave->speed)
3445 bond_3ad_adapter_speed_changed(slave);
3446 if (old_duplex != slave->duplex)
3447 bond_3ad_adapter_duplex_changed(slave);
3448 }
3449 }
3450
3451 break;
3452 case NETDEV_DOWN:
3453 /*
3454 * ... Or is it this?
3455 */
3456 break;
3457 case NETDEV_CHANGEMTU:
3458 /*
3459 * TODO: Should slaves be allowed to
3460 * independently alter their MTU? For
3461 * an active-backup bond, slaves need
3462 * not be the same type of device, so
3463 * MTUs may vary. For other modes,
3464 * slaves arguably should have the
3465 * same MTUs. To do this, we'd need to
3466 * take over the slave's change_mtu
3467 * function for the duration of their
3468 * servitude.
3469 */
3470 break;
3471 case NETDEV_CHANGENAME:
3472 /*
3473 * TODO: handle changing the primary's name
3474 */
3475 break;
3476 case NETDEV_FEAT_CHANGE:
3477 bond_compute_features(bond);
3478 break;
3479 default:
3480 break;
3481 }
3482
3483 return NOTIFY_DONE;
3484 }
3485
3486 /*
3487 * bond_netdev_event: handle netdev notifier chain events.
3488 *
3489 * This function receives events for the netdev chain. The caller (an
3490 * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3491 * locks for us to safely manipulate the slave devices (RTNL lock,
3492 * dev_probe_lock).
3493 */
3494 static int bond_netdev_event(struct notifier_block *this,
3495 unsigned long event, void *ptr)
3496 {
3497 struct net_device *event_dev = (struct net_device *)ptr;
3498
3499 pr_debug("event_dev: %s, event: %lx\n",
3500 event_dev ? event_dev->name : "None",
3501 event);
3502
3503 if (!(event_dev->priv_flags & IFF_BONDING))
3504 return NOTIFY_DONE;
3505
3506 if (event_dev->flags & IFF_MASTER) {
3507 pr_debug("IFF_MASTER\n");
3508 return bond_master_netdev_event(event, event_dev);
3509 }
3510
3511 if (event_dev->flags & IFF_SLAVE) {
3512 pr_debug("IFF_SLAVE\n");
3513 return bond_slave_netdev_event(event, event_dev);
3514 }
3515
3516 return NOTIFY_DONE;
3517 }
3518
3519 /*
3520 * bond_inetaddr_event: handle inetaddr notifier chain events.
3521 *
3522 * We keep track of device IPs primarily to use as source addresses in
3523 * ARP monitor probes (rather than spewing out broadcasts all the time).
3524 *
3525 * We track one IP for the main device (if it has one), plus one per VLAN.
3526 */
3527 static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr)
3528 {
3529 struct in_ifaddr *ifa = ptr;
3530 struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev;
3531 struct bond_net *bn = net_generic(dev_net(event_dev), bond_net_id);
3532 struct bonding *bond;
3533 struct vlan_entry *vlan;
3534
3535 list_for_each_entry(bond, &bn->dev_list, bond_list) {
3536 if (bond->dev == event_dev) {
3537 switch (event) {
3538 case NETDEV_UP:
3539 bond->master_ip = ifa->ifa_local;
3540 return NOTIFY_OK;
3541 case NETDEV_DOWN:
3542 bond->master_ip = bond_glean_dev_ip(bond->dev);
3543 return NOTIFY_OK;
3544 default:
3545 return NOTIFY_DONE;
3546 }
3547 }
3548
3549 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
3550 vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id);
3551 if (vlan_dev == event_dev) {
3552 switch (event) {
3553 case NETDEV_UP:
3554 vlan->vlan_ip = ifa->ifa_local;
3555 return NOTIFY_OK;
3556 case NETDEV_DOWN:
3557 vlan->vlan_ip =
3558 bond_glean_dev_ip(vlan_dev);
3559 return NOTIFY_OK;
3560 default:
3561 return NOTIFY_DONE;
3562 }
3563 }
3564 }
3565 }
3566 return NOTIFY_DONE;
3567 }
3568
3569 static struct notifier_block bond_netdev_notifier = {
3570 .notifier_call = bond_netdev_event,
3571 };
3572
3573 static struct notifier_block bond_inetaddr_notifier = {
3574 .notifier_call = bond_inetaddr_event,
3575 };
3576
3577 /*-------------------------- Packet type handling ---------------------------*/
3578
3579 /* register to receive lacpdus on a bond */
3580 static void bond_register_lacpdu(struct bonding *bond)
3581 {
3582 struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type);
3583
3584 /* initialize packet type */
3585 pk_type->type = PKT_TYPE_LACPDU;
3586 pk_type->dev = bond->dev;
3587 pk_type->func = bond_3ad_lacpdu_recv;
3588
3589 dev_add_pack(pk_type);
3590 }
3591
3592 /* unregister to receive lacpdus on a bond */
3593 static void bond_unregister_lacpdu(struct bonding *bond)
3594 {
3595 dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type));
3596 }
3597
3598 void bond_register_arp(struct bonding *bond)
3599 {
3600 struct packet_type *pt = &bond->arp_mon_pt;
3601
3602 if (pt->type)
3603 return;
3604
3605 pt->type = htons(ETH_P_ARP);
3606 pt->dev = bond->dev;
3607 pt->func = bond_arp_rcv;
3608 dev_add_pack(pt);
3609 }
3610
3611 void bond_unregister_arp(struct bonding *bond)
3612 {
3613 struct packet_type *pt = &bond->arp_mon_pt;
3614
3615 dev_remove_pack(pt);
3616 pt->type = 0;
3617 }
3618
3619 /*---------------------------- Hashing Policies -----------------------------*/
3620
3621 /*
3622 * Hash for the output device based upon layer 2 and layer 3 data. If
3623 * the packet is not IP mimic bond_xmit_hash_policy_l2()
3624 */
3625 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count)
3626 {
3627 struct ethhdr *data = (struct ethhdr *)skb->data;
3628 struct iphdr *iph = ip_hdr(skb);
3629
3630 if (skb->protocol == htons(ETH_P_IP)) {
3631 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3632 (data->h_dest[5] ^ data->h_source[5])) % count;
3633 }
3634
3635 return (data->h_dest[5] ^ data->h_source[5]) % count;
3636 }
3637
3638 /*
3639 * Hash for the output device based upon layer 3 and layer 4 data. If
3640 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
3641 * altogether not IP, mimic bond_xmit_hash_policy_l2()
3642 */
3643 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count)
3644 {
3645 struct ethhdr *data = (struct ethhdr *)skb->data;
3646 struct iphdr *iph = ip_hdr(skb);
3647 __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3648 int layer4_xor = 0;
3649
3650 if (skb->protocol == htons(ETH_P_IP)) {
3651 if (!(iph->frag_off & htons(IP_MF|IP_OFFSET)) &&
3652 (iph->protocol == IPPROTO_TCP ||
3653 iph->protocol == IPPROTO_UDP)) {
3654 layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1)));
3655 }
3656 return (layer4_xor ^
3657 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3658
3659 }
3660
3661 return (data->h_dest[5] ^ data->h_source[5]) % count;
3662 }
3663
3664 /*
3665 * Hash for the output device based upon layer 2 data
3666 */
3667 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count)
3668 {
3669 struct ethhdr *data = (struct ethhdr *)skb->data;
3670
3671 return (data->h_dest[5] ^ data->h_source[5]) % count;
3672 }
3673
3674 /*-------------------------- Device entry points ----------------------------*/
3675
3676 static int bond_open(struct net_device *bond_dev)
3677 {
3678 struct bonding *bond = netdev_priv(bond_dev);
3679
3680 bond->kill_timers = 0;
3681
3682 if (bond_is_lb(bond)) {
3683 /* bond_alb_initialize must be called before the timer
3684 * is started.
3685 */
3686 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) {
3687 /* something went wrong - fail the open operation */
3688 return -ENOMEM;
3689 }
3690
3691 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3692 queue_delayed_work(bond->wq, &bond->alb_work, 0);
3693 }
3694
3695 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3696 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3697 queue_delayed_work(bond->wq, &bond->mii_work, 0);
3698 }
3699
3700 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3701 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3702 INIT_DELAYED_WORK(&bond->arp_work,
3703 bond_activebackup_arp_mon);
3704 else
3705 INIT_DELAYED_WORK(&bond->arp_work,
3706 bond_loadbalance_arp_mon);
3707
3708 queue_delayed_work(bond->wq, &bond->arp_work, 0);
3709 if (bond->params.arp_validate)
3710 bond_register_arp(bond);
3711 }
3712
3713 if (bond->params.mode == BOND_MODE_8023AD) {
3714 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3715 queue_delayed_work(bond->wq, &bond->ad_work, 0);
3716 /* register to receive LACPDUs */
3717 bond_register_lacpdu(bond);
3718 bond_3ad_initiate_agg_selection(bond, 1);
3719 }
3720
3721 return 0;
3722 }
3723
3724 static int bond_close(struct net_device *bond_dev)
3725 {
3726 struct bonding *bond = netdev_priv(bond_dev);
3727
3728 if (bond->params.mode == BOND_MODE_8023AD) {
3729 /* Unregister the receive of LACPDUs */
3730 bond_unregister_lacpdu(bond);
3731 }
3732
3733 if (bond->params.arp_validate)
3734 bond_unregister_arp(bond);
3735
3736 write_lock_bh(&bond->lock);
3737
3738 bond->send_grat_arp = 0;
3739 bond->send_unsol_na = 0;
3740
3741 /* signal timers not to re-arm */
3742 bond->kill_timers = 1;
3743
3744 write_unlock_bh(&bond->lock);
3745
3746 if (bond->params.miimon) { /* link check interval, in milliseconds. */
3747 cancel_delayed_work(&bond->mii_work);
3748 }
3749
3750 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3751 cancel_delayed_work(&bond->arp_work);
3752 }
3753
3754 switch (bond->params.mode) {
3755 case BOND_MODE_8023AD:
3756 cancel_delayed_work(&bond->ad_work);
3757 break;
3758 case BOND_MODE_TLB:
3759 case BOND_MODE_ALB:
3760 cancel_delayed_work(&bond->alb_work);
3761 break;
3762 default:
3763 break;
3764 }
3765
3766
3767 if (bond_is_lb(bond)) {
3768 /* Must be called only after all
3769 * slaves have been released
3770 */
3771 bond_alb_deinitialize(bond);
3772 }
3773
3774 return 0;
3775 }
3776
3777 static struct net_device_stats *bond_get_stats(struct net_device *bond_dev)
3778 {
3779 struct bonding *bond = netdev_priv(bond_dev);
3780 struct net_device_stats *stats = &bond_dev->stats;
3781 struct net_device_stats local_stats;
3782 struct slave *slave;
3783 int i;
3784
3785 memset(&local_stats, 0, sizeof(struct net_device_stats));
3786
3787 read_lock_bh(&bond->lock);
3788
3789 bond_for_each_slave(bond, slave, i) {
3790 const struct net_device_stats *sstats = dev_get_stats(slave->dev);
3791
3792 local_stats.rx_packets += sstats->rx_packets;
3793 local_stats.rx_bytes += sstats->rx_bytes;
3794 local_stats.rx_errors += sstats->rx_errors;
3795 local_stats.rx_dropped += sstats->rx_dropped;
3796
3797 local_stats.tx_packets += sstats->tx_packets;
3798 local_stats.tx_bytes += sstats->tx_bytes;
3799 local_stats.tx_errors += sstats->tx_errors;
3800 local_stats.tx_dropped += sstats->tx_dropped;
3801
3802 local_stats.multicast += sstats->multicast;
3803 local_stats.collisions += sstats->collisions;
3804
3805 local_stats.rx_length_errors += sstats->rx_length_errors;
3806 local_stats.rx_over_errors += sstats->rx_over_errors;
3807 local_stats.rx_crc_errors += sstats->rx_crc_errors;
3808 local_stats.rx_frame_errors += sstats->rx_frame_errors;
3809 local_stats.rx_fifo_errors += sstats->rx_fifo_errors;
3810 local_stats.rx_missed_errors += sstats->rx_missed_errors;
3811
3812 local_stats.tx_aborted_errors += sstats->tx_aborted_errors;
3813 local_stats.tx_carrier_errors += sstats->tx_carrier_errors;
3814 local_stats.tx_fifo_errors += sstats->tx_fifo_errors;
3815 local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3816 local_stats.tx_window_errors += sstats->tx_window_errors;
3817 }
3818
3819 memcpy(stats, &local_stats, sizeof(struct net_device_stats));
3820
3821 read_unlock_bh(&bond->lock);
3822
3823 return stats;
3824 }
3825
3826 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3827 {
3828 struct net_device *slave_dev = NULL;
3829 struct ifbond k_binfo;
3830 struct ifbond __user *u_binfo = NULL;
3831 struct ifslave k_sinfo;
3832 struct ifslave __user *u_sinfo = NULL;
3833 struct mii_ioctl_data *mii = NULL;
3834 int res = 0;
3835
3836 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd);
3837
3838 switch (cmd) {
3839 case SIOCGMIIPHY:
3840 mii = if_mii(ifr);
3841 if (!mii)
3842 return -EINVAL;
3843
3844 mii->phy_id = 0;
3845 /* Fall Through */
3846 case SIOCGMIIREG:
3847 /*
3848 * We do this again just in case we were called by SIOCGMIIREG
3849 * instead of SIOCGMIIPHY.
3850 */
3851 mii = if_mii(ifr);
3852 if (!mii)
3853 return -EINVAL;
3854
3855
3856 if (mii->reg_num == 1) {
3857 struct bonding *bond = netdev_priv(bond_dev);
3858 mii->val_out = 0;
3859 read_lock(&bond->lock);
3860 read_lock(&bond->curr_slave_lock);
3861 if (netif_carrier_ok(bond->dev))
3862 mii->val_out = BMSR_LSTATUS;
3863
3864 read_unlock(&bond->curr_slave_lock);
3865 read_unlock(&bond->lock);
3866 }
3867
3868 return 0;
3869 case BOND_INFO_QUERY_OLD:
3870 case SIOCBONDINFOQUERY:
3871 u_binfo = (struct ifbond __user *)ifr->ifr_data;
3872
3873 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond)))
3874 return -EFAULT;
3875
3876 res = bond_info_query(bond_dev, &k_binfo);
3877 if (res == 0 &&
3878 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond)))
3879 return -EFAULT;
3880
3881 return res;
3882 case BOND_SLAVE_INFO_QUERY_OLD:
3883 case SIOCBONDSLAVEINFOQUERY:
3884 u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3885
3886 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave)))
3887 return -EFAULT;
3888
3889 res = bond_slave_info_query(bond_dev, &k_sinfo);
3890 if (res == 0 &&
3891 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave)))
3892 return -EFAULT;
3893
3894 return res;
3895 default:
3896 /* Go on */
3897 break;
3898 }
3899
3900 if (!capable(CAP_NET_ADMIN))
3901 return -EPERM;
3902
3903 slave_dev = dev_get_by_name(dev_net(bond_dev), ifr->ifr_slave);
3904
3905 pr_debug("slave_dev=%p:\n", slave_dev);
3906
3907 if (!slave_dev)
3908 res = -ENODEV;
3909 else {
3910 pr_debug("slave_dev->name=%s:\n", slave_dev->name);
3911 switch (cmd) {
3912 case BOND_ENSLAVE_OLD:
3913 case SIOCBONDENSLAVE:
3914 res = bond_enslave(bond_dev, slave_dev);
3915 break;
3916 case BOND_RELEASE_OLD:
3917 case SIOCBONDRELEASE:
3918 res = bond_release(bond_dev, slave_dev);
3919 break;
3920 case BOND_SETHWADDR_OLD:
3921 case SIOCBONDSETHWADDR:
3922 res = bond_sethwaddr(bond_dev, slave_dev);
3923 break;
3924 case BOND_CHANGE_ACTIVE_OLD:
3925 case SIOCBONDCHANGEACTIVE:
3926 res = bond_ioctl_change_active(bond_dev, slave_dev);
3927 break;
3928 default:
3929 res = -EOPNOTSUPP;
3930 }
3931
3932 dev_put(slave_dev);
3933 }
3934
3935 return res;
3936 }
3937
3938 static bool bond_addr_in_mc_list(unsigned char *addr,
3939 struct netdev_hw_addr_list *list,
3940 int addrlen)
3941 {
3942 struct netdev_hw_addr *ha;
3943
3944 netdev_hw_addr_list_for_each(ha, list)
3945 if (!memcmp(ha->addr, addr, addrlen))
3946 return true;
3947
3948 return false;
3949 }
3950
3951 static void bond_set_multicast_list(struct net_device *bond_dev)
3952 {
3953 struct bonding *bond = netdev_priv(bond_dev);
3954 struct netdev_hw_addr *ha;
3955 bool found;
3956
3957 /*
3958 * Do promisc before checking multicast_mode
3959 */
3960 if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC))
3961 /*
3962 * FIXME: Need to handle the error when one of the multi-slaves
3963 * encounters error.
3964 */
3965 bond_set_promiscuity(bond, 1);
3966
3967
3968 if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC))
3969 bond_set_promiscuity(bond, -1);
3970
3971
3972 /* set allmulti flag to slaves */
3973 if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI))
3974 /*
3975 * FIXME: Need to handle the error when one of the multi-slaves
3976 * encounters error.
3977 */
3978 bond_set_allmulti(bond, 1);
3979
3980
3981 if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI))
3982 bond_set_allmulti(bond, -1);
3983
3984
3985 read_lock(&bond->lock);
3986
3987 bond->flags = bond_dev->flags;
3988
3989 /* looking for addresses to add to slaves' mc list */
3990 netdev_for_each_mc_addr(ha, bond_dev) {
3991 found = bond_addr_in_mc_list(ha->addr, &bond->mc_list,
3992 bond_dev->addr_len);
3993 if (!found)
3994 bond_mc_add(bond, ha->addr);
3995 }
3996
3997 /* looking for addresses to delete from slaves' list */
3998 netdev_hw_addr_list_for_each(ha, &bond->mc_list) {
3999 found = bond_addr_in_mc_list(ha->addr, &bond_dev->mc,
4000 bond_dev->addr_len);
4001 if (!found)
4002 bond_mc_del(bond, ha->addr);
4003 }
4004
4005 /* save master's multicast list */
4006 __hw_addr_flush(&bond->mc_list);
4007 __hw_addr_add_multiple(&bond->mc_list, &bond_dev->mc,
4008 bond_dev->addr_len, NETDEV_HW_ADDR_T_MULTICAST);
4009
4010 read_unlock(&bond->lock);
4011 }
4012
4013 static int bond_neigh_setup(struct net_device *dev, struct neigh_parms *parms)
4014 {
4015 struct bonding *bond = netdev_priv(dev);
4016 struct slave *slave = bond->first_slave;
4017
4018 if (slave) {
4019 const struct net_device_ops *slave_ops
4020 = slave->dev->netdev_ops;
4021 if (slave_ops->ndo_neigh_setup)
4022 return slave_ops->ndo_neigh_setup(slave->dev, parms);
4023 }
4024 return 0;
4025 }
4026
4027 /*
4028 * Change the MTU of all of a master's slaves to match the master
4029 */
4030 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
4031 {
4032 struct bonding *bond = netdev_priv(bond_dev);
4033 struct slave *slave, *stop_at;
4034 int res = 0;
4035 int i;
4036
4037 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond,
4038 (bond_dev ? bond_dev->name : "None"), new_mtu);
4039
4040 /* Can't hold bond->lock with bh disabled here since
4041 * some base drivers panic. On the other hand we can't
4042 * hold bond->lock without bh disabled because we'll
4043 * deadlock. The only solution is to rely on the fact
4044 * that we're under rtnl_lock here, and the slaves
4045 * list won't change. This doesn't solve the problem
4046 * of setting the slave's MTU while it is
4047 * transmitting, but the assumption is that the base
4048 * driver can handle that.
4049 *
4050 * TODO: figure out a way to safely iterate the slaves
4051 * list, but without holding a lock around the actual
4052 * call to the base driver.
4053 */
4054
4055 bond_for_each_slave(bond, slave, i) {
4056 pr_debug("s %p s->p %p c_m %p\n",
4057 slave,
4058 slave->prev,
4059 slave->dev->netdev_ops->ndo_change_mtu);
4060
4061 res = dev_set_mtu(slave->dev, new_mtu);
4062
4063 if (res) {
4064 /* If we failed to set the slave's mtu to the new value
4065 * we must abort the operation even in ACTIVE_BACKUP
4066 * mode, because if we allow the backup slaves to have
4067 * different mtu values than the active slave we'll
4068 * need to change their mtu when doing a failover. That
4069 * means changing their mtu from timer context, which
4070 * is probably not a good idea.
4071 */
4072 pr_debug("err %d %s\n", res, slave->dev->name);
4073 goto unwind;
4074 }
4075 }
4076
4077 bond_dev->mtu = new_mtu;
4078
4079 return 0;
4080
4081 unwind:
4082 /* unwind from head to the slave that failed */
4083 stop_at = slave;
4084 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4085 int tmp_res;
4086
4087 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
4088 if (tmp_res) {
4089 pr_debug("unwind err %d dev %s\n",
4090 tmp_res, slave->dev->name);
4091 }
4092 }
4093
4094 return res;
4095 }
4096
4097 /*
4098 * Change HW address
4099 *
4100 * Note that many devices must be down to change the HW address, and
4101 * downing the master releases all slaves. We can make bonds full of
4102 * bonding devices to test this, however.
4103 */
4104 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
4105 {
4106 struct bonding *bond = netdev_priv(bond_dev);
4107 struct sockaddr *sa = addr, tmp_sa;
4108 struct slave *slave, *stop_at;
4109 int res = 0;
4110 int i;
4111
4112 if (bond->params.mode == BOND_MODE_ALB)
4113 return bond_alb_set_mac_address(bond_dev, addr);
4114
4115
4116 pr_debug("bond=%p, name=%s\n",
4117 bond, bond_dev ? bond_dev->name : "None");
4118
4119 /*
4120 * If fail_over_mac is set to active, do nothing and return
4121 * success. Returning an error causes ifenslave to fail.
4122 */
4123 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE)
4124 return 0;
4125
4126 if (!is_valid_ether_addr(sa->sa_data))
4127 return -EADDRNOTAVAIL;
4128
4129 /* Can't hold bond->lock with bh disabled here since
4130 * some base drivers panic. On the other hand we can't
4131 * hold bond->lock without bh disabled because we'll
4132 * deadlock. The only solution is to rely on the fact
4133 * that we're under rtnl_lock here, and the slaves
4134 * list won't change. This doesn't solve the problem
4135 * of setting the slave's hw address while it is
4136 * transmitting, but the assumption is that the base
4137 * driver can handle that.
4138 *
4139 * TODO: figure out a way to safely iterate the slaves
4140 * list, but without holding a lock around the actual
4141 * call to the base driver.
4142 */
4143
4144 bond_for_each_slave(bond, slave, i) {
4145 const struct net_device_ops *slave_ops = slave->dev->netdev_ops;
4146 pr_debug("slave %p %s\n", slave, slave->dev->name);
4147
4148 if (slave_ops->ndo_set_mac_address == NULL) {
4149 res = -EOPNOTSUPP;
4150 pr_debug("EOPNOTSUPP %s\n", slave->dev->name);
4151 goto unwind;
4152 }
4153
4154 res = dev_set_mac_address(slave->dev, addr);
4155 if (res) {
4156 /* TODO: consider downing the slave
4157 * and retry ?
4158 * User should expect communications
4159 * breakage anyway until ARP finish
4160 * updating, so...
4161 */
4162 pr_debug("err %d %s\n", res, slave->dev->name);
4163 goto unwind;
4164 }
4165 }
4166
4167 /* success */
4168 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
4169 return 0;
4170
4171 unwind:
4172 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
4173 tmp_sa.sa_family = bond_dev->type;
4174
4175 /* unwind from head to the slave that failed */
4176 stop_at = slave;
4177 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
4178 int tmp_res;
4179
4180 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
4181 if (tmp_res) {
4182 pr_debug("unwind err %d dev %s\n",
4183 tmp_res, slave->dev->name);
4184 }
4185 }
4186
4187 return res;
4188 }
4189
4190 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
4191 {
4192 struct bonding *bond = netdev_priv(bond_dev);
4193 struct slave *slave, *start_at;
4194 int i, slave_no, res = 1;
4195 struct iphdr *iph = ip_hdr(skb);
4196
4197 read_lock(&bond->lock);
4198
4199 if (!BOND_IS_OK(bond))
4200 goto out;
4201 /*
4202 * Start with the curr_active_slave that joined the bond as the
4203 * default for sending IGMP traffic. For failover purposes one
4204 * needs to maintain some consistency for the interface that will
4205 * send the join/membership reports. The curr_active_slave found
4206 * will send all of this type of traffic.
4207 */
4208 if ((iph->protocol == IPPROTO_IGMP) &&
4209 (skb->protocol == htons(ETH_P_IP))) {
4210
4211 read_lock(&bond->curr_slave_lock);
4212 slave = bond->curr_active_slave;
4213 read_unlock(&bond->curr_slave_lock);
4214
4215 if (!slave)
4216 goto out;
4217 } else {
4218 /*
4219 * Concurrent TX may collide on rr_tx_counter; we accept
4220 * that as being rare enough not to justify using an
4221 * atomic op here.
4222 */
4223 slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
4224
4225 bond_for_each_slave(bond, slave, i) {
4226 slave_no--;
4227 if (slave_no < 0)
4228 break;
4229 }
4230 }
4231
4232 start_at = slave;
4233 bond_for_each_slave_from(bond, slave, i, start_at) {
4234 if (IS_UP(slave->dev) &&
4235 (slave->link == BOND_LINK_UP) &&
4236 (slave->state == BOND_STATE_ACTIVE)) {
4237 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4238 break;
4239 }
4240 }
4241
4242 out:
4243 if (res) {
4244 /* no suitable interface, frame not sent */
4245 dev_kfree_skb(skb);
4246 }
4247 read_unlock(&bond->lock);
4248 return NETDEV_TX_OK;
4249 }
4250
4251
4252 /*
4253 * in active-backup mode, we know that bond->curr_active_slave is always valid if
4254 * the bond has a usable interface.
4255 */
4256 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
4257 {
4258 struct bonding *bond = netdev_priv(bond_dev);
4259 int res = 1;
4260
4261 read_lock(&bond->lock);
4262 read_lock(&bond->curr_slave_lock);
4263
4264 if (!BOND_IS_OK(bond))
4265 goto out;
4266
4267 if (!bond->curr_active_slave)
4268 goto out;
4269
4270 res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev);
4271
4272 out:
4273 if (res)
4274 /* no suitable interface, frame not sent */
4275 dev_kfree_skb(skb);
4276
4277 read_unlock(&bond->curr_slave_lock);
4278 read_unlock(&bond->lock);
4279 return NETDEV_TX_OK;
4280 }
4281
4282 /*
4283 * In bond_xmit_xor() , we determine the output device by using a pre-
4284 * determined xmit_hash_policy(), If the selected device is not enabled,
4285 * find the next active slave.
4286 */
4287 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
4288 {
4289 struct bonding *bond = netdev_priv(bond_dev);
4290 struct slave *slave, *start_at;
4291 int slave_no;
4292 int i;
4293 int res = 1;
4294
4295 read_lock(&bond->lock);
4296
4297 if (!BOND_IS_OK(bond))
4298 goto out;
4299
4300 slave_no = bond->xmit_hash_policy(skb, bond->slave_cnt);
4301
4302 bond_for_each_slave(bond, slave, i) {
4303 slave_no--;
4304 if (slave_no < 0)
4305 break;
4306 }
4307
4308 start_at = slave;
4309
4310 bond_for_each_slave_from(bond, slave, i, start_at) {
4311 if (IS_UP(slave->dev) &&
4312 (slave->link == BOND_LINK_UP) &&
4313 (slave->state == BOND_STATE_ACTIVE)) {
4314 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4315 break;
4316 }
4317 }
4318
4319 out:
4320 if (res) {
4321 /* no suitable interface, frame not sent */
4322 dev_kfree_skb(skb);
4323 }
4324 read_unlock(&bond->lock);
4325 return NETDEV_TX_OK;
4326 }
4327
4328 /*
4329 * in broadcast mode, we send everything to all usable interfaces.
4330 */
4331 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4332 {
4333 struct bonding *bond = netdev_priv(bond_dev);
4334 struct slave *slave, *start_at;
4335 struct net_device *tx_dev = NULL;
4336 int i;
4337 int res = 1;
4338
4339 read_lock(&bond->lock);
4340
4341 if (!BOND_IS_OK(bond))
4342 goto out;
4343
4344 read_lock(&bond->curr_slave_lock);
4345 start_at = bond->curr_active_slave;
4346 read_unlock(&bond->curr_slave_lock);
4347
4348 if (!start_at)
4349 goto out;
4350
4351 bond_for_each_slave_from(bond, slave, i, start_at) {
4352 if (IS_UP(slave->dev) &&
4353 (slave->link == BOND_LINK_UP) &&
4354 (slave->state == BOND_STATE_ACTIVE)) {
4355 if (tx_dev) {
4356 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4357 if (!skb2) {
4358 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n",
4359 bond_dev->name);
4360 continue;
4361 }
4362
4363 res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4364 if (res) {
4365 dev_kfree_skb(skb2);
4366 continue;
4367 }
4368 }
4369 tx_dev = slave->dev;
4370 }
4371 }
4372
4373 if (tx_dev)
4374 res = bond_dev_queue_xmit(bond, skb, tx_dev);
4375
4376 out:
4377 if (res)
4378 /* no suitable interface, frame not sent */
4379 dev_kfree_skb(skb);
4380
4381 /* frame sent to all suitable interfaces */
4382 read_unlock(&bond->lock);
4383 return NETDEV_TX_OK;
4384 }
4385
4386 /*------------------------- Device initialization ---------------------------*/
4387
4388 static void bond_set_xmit_hash_policy(struct bonding *bond)
4389 {
4390 switch (bond->params.xmit_policy) {
4391 case BOND_XMIT_POLICY_LAYER23:
4392 bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4393 break;
4394 case BOND_XMIT_POLICY_LAYER34:
4395 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4396 break;
4397 case BOND_XMIT_POLICY_LAYER2:
4398 default:
4399 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4400 break;
4401 }
4402 }
4403
4404 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
4405 {
4406 const struct bonding *bond = netdev_priv(dev);
4407
4408 switch (bond->params.mode) {
4409 case BOND_MODE_ROUNDROBIN:
4410 return bond_xmit_roundrobin(skb, dev);
4411 case BOND_MODE_ACTIVEBACKUP:
4412 return bond_xmit_activebackup(skb, dev);
4413 case BOND_MODE_XOR:
4414 return bond_xmit_xor(skb, dev);
4415 case BOND_MODE_BROADCAST:
4416 return bond_xmit_broadcast(skb, dev);
4417 case BOND_MODE_8023AD:
4418 return bond_3ad_xmit_xor(skb, dev);
4419 case BOND_MODE_ALB:
4420 case BOND_MODE_TLB:
4421 return bond_alb_xmit(skb, dev);
4422 default:
4423 /* Should never happen, mode already checked */
4424 pr_err("%s: Error: Unknown bonding mode %d\n",
4425 dev->name, bond->params.mode);
4426 WARN_ON_ONCE(1);
4427 dev_kfree_skb(skb);
4428 return NETDEV_TX_OK;
4429 }
4430 }
4431
4432
4433 /*
4434 * set bond mode specific net device operations
4435 */
4436 void bond_set_mode_ops(struct bonding *bond, int mode)
4437 {
4438 struct net_device *bond_dev = bond->dev;
4439
4440 switch (mode) {
4441 case BOND_MODE_ROUNDROBIN:
4442 break;
4443 case BOND_MODE_ACTIVEBACKUP:
4444 break;
4445 case BOND_MODE_XOR:
4446 bond_set_xmit_hash_policy(bond);
4447 break;
4448 case BOND_MODE_BROADCAST:
4449 break;
4450 case BOND_MODE_8023AD:
4451 bond_set_master_3ad_flags(bond);
4452 bond_set_xmit_hash_policy(bond);
4453 break;
4454 case BOND_MODE_ALB:
4455 bond_set_master_alb_flags(bond);
4456 /* FALLTHRU */
4457 case BOND_MODE_TLB:
4458 break;
4459 default:
4460 /* Should never happen, mode already checked */
4461 pr_err("%s: Error: Unknown bonding mode %d\n",
4462 bond_dev->name, mode);
4463 break;
4464 }
4465 }
4466
4467 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4468 struct ethtool_drvinfo *drvinfo)
4469 {
4470 strncpy(drvinfo->driver, DRV_NAME, 32);
4471 strncpy(drvinfo->version, DRV_VERSION, 32);
4472 snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION);
4473 }
4474
4475 static const struct ethtool_ops bond_ethtool_ops = {
4476 .get_drvinfo = bond_ethtool_get_drvinfo,
4477 .get_link = ethtool_op_get_link,
4478 .get_tx_csum = ethtool_op_get_tx_csum,
4479 .get_sg = ethtool_op_get_sg,
4480 .get_tso = ethtool_op_get_tso,
4481 .get_ufo = ethtool_op_get_ufo,
4482 .get_flags = ethtool_op_get_flags,
4483 };
4484
4485 static const struct net_device_ops bond_netdev_ops = {
4486 .ndo_init = bond_init,
4487 .ndo_uninit = bond_uninit,
4488 .ndo_open = bond_open,
4489 .ndo_stop = bond_close,
4490 .ndo_start_xmit = bond_start_xmit,
4491 .ndo_get_stats = bond_get_stats,
4492 .ndo_do_ioctl = bond_do_ioctl,
4493 .ndo_set_multicast_list = bond_set_multicast_list,
4494 .ndo_change_mtu = bond_change_mtu,
4495 .ndo_set_mac_address = bond_set_mac_address,
4496 .ndo_neigh_setup = bond_neigh_setup,
4497 .ndo_vlan_rx_register = bond_vlan_rx_register,
4498 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid,
4499 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid,
4500 #ifdef CONFIG_NET_POLL_CONTROLLER
4501 .ndo_netpoll_cleanup = bond_netpoll_cleanup,
4502 .ndo_poll_controller = bond_poll_controller,
4503 #endif
4504 };
4505
4506 static void bond_destructor(struct net_device *bond_dev)
4507 {
4508 struct bonding *bond = netdev_priv(bond_dev);
4509 if (bond->wq)
4510 destroy_workqueue(bond->wq);
4511 free_netdev(bond_dev);
4512 }
4513
4514 static void bond_setup(struct net_device *bond_dev)
4515 {
4516 struct bonding *bond = netdev_priv(bond_dev);
4517
4518 /* initialize rwlocks */
4519 rwlock_init(&bond->lock);
4520 rwlock_init(&bond->curr_slave_lock);
4521
4522 bond->params = bonding_defaults;
4523
4524 /* Initialize pointers */
4525 bond->dev = bond_dev;
4526 INIT_LIST_HEAD(&bond->vlan_list);
4527
4528 /* Initialize the device entry points */
4529 ether_setup(bond_dev);
4530 bond_dev->netdev_ops = &bond_netdev_ops;
4531 bond_dev->ethtool_ops = &bond_ethtool_ops;
4532 bond_set_mode_ops(bond, bond->params.mode);
4533
4534 bond_dev->destructor = bond_destructor;
4535
4536 /* Initialize the device options */
4537 bond_dev->tx_queue_len = 0;
4538 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4539 bond_dev->priv_flags |= IFF_BONDING;
4540 bond_dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
4541
4542 if (bond->params.arp_interval)
4543 bond_dev->priv_flags |= IFF_MASTER_ARPMON;
4544
4545 /* At first, we block adding VLANs. That's the only way to
4546 * prevent problems that occur when adding VLANs over an
4547 * empty bond. The block will be removed once non-challenged
4548 * slaves are enslaved.
4549 */
4550 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4551
4552 /* don't acquire bond device's netif_tx_lock when
4553 * transmitting */
4554 bond_dev->features |= NETIF_F_LLTX;
4555
4556 /* By default, we declare the bond to be fully
4557 * VLAN hardware accelerated capable. Special
4558 * care is taken in the various xmit functions
4559 * when there are slaves that are not hw accel
4560 * capable
4561 */
4562 bond_dev->features |= (NETIF_F_HW_VLAN_TX |
4563 NETIF_F_HW_VLAN_RX |
4564 NETIF_F_HW_VLAN_FILTER);
4565
4566 }
4567
4568 static void bond_work_cancel_all(struct bonding *bond)
4569 {
4570 write_lock_bh(&bond->lock);
4571 bond->kill_timers = 1;
4572 write_unlock_bh(&bond->lock);
4573
4574 if (bond->params.miimon && delayed_work_pending(&bond->mii_work))
4575 cancel_delayed_work(&bond->mii_work);
4576
4577 if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work))
4578 cancel_delayed_work(&bond->arp_work);
4579
4580 if (bond->params.mode == BOND_MODE_ALB &&
4581 delayed_work_pending(&bond->alb_work))
4582 cancel_delayed_work(&bond->alb_work);
4583
4584 if (bond->params.mode == BOND_MODE_8023AD &&
4585 delayed_work_pending(&bond->ad_work))
4586 cancel_delayed_work(&bond->ad_work);
4587 }
4588
4589 /*
4590 * Destroy a bonding device.
4591 * Must be under rtnl_lock when this function is called.
4592 */
4593 static void bond_uninit(struct net_device *bond_dev)
4594 {
4595 struct bonding *bond = netdev_priv(bond_dev);
4596
4597 bond_netpoll_cleanup(bond_dev);
4598
4599 /* Release the bonded slaves */
4600 bond_release_all(bond_dev);
4601
4602 list_del(&bond->bond_list);
4603
4604 bond_work_cancel_all(bond);
4605
4606 bond_remove_proc_entry(bond);
4607
4608 __hw_addr_flush(&bond->mc_list);
4609 }
4610
4611 /*------------------------- Module initialization ---------------------------*/
4612
4613 /*
4614 * Convert string input module parms. Accept either the
4615 * number of the mode or its string name. A bit complicated because
4616 * some mode names are substrings of other names, and calls from sysfs
4617 * may have whitespace in the name (trailing newlines, for example).
4618 */
4619 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl)
4620 {
4621 int modeint = -1, i, rv;
4622 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4623
4624 for (p = (char *)buf; *p; p++)
4625 if (!(isdigit(*p) || isspace(*p)))
4626 break;
4627
4628 if (*p)
4629 rv = sscanf(buf, "%20s", modestr);
4630 else
4631 rv = sscanf(buf, "%d", &modeint);
4632
4633 if (!rv)
4634 return -1;
4635
4636 for (i = 0; tbl[i].modename; i++) {
4637 if (modeint == tbl[i].mode)
4638 return tbl[i].mode;
4639 if (strcmp(modestr, tbl[i].modename) == 0)
4640 return tbl[i].mode;
4641 }
4642
4643 return -1;
4644 }
4645
4646 static int bond_check_params(struct bond_params *params)
4647 {
4648 int arp_validate_value, fail_over_mac_value, primary_reselect_value;
4649
4650 /*
4651 * Convert string parameters.
4652 */
4653 if (mode) {
4654 bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4655 if (bond_mode == -1) {
4656 pr_err("Error: Invalid bonding mode \"%s\"\n",
4657 mode == NULL ? "NULL" : mode);
4658 return -EINVAL;
4659 }
4660 }
4661
4662 if (xmit_hash_policy) {
4663 if ((bond_mode != BOND_MODE_XOR) &&
4664 (bond_mode != BOND_MODE_8023AD)) {
4665 pr_info("xmit_hash_policy param is irrelevant in mode %s\n",
4666 bond_mode_name(bond_mode));
4667 } else {
4668 xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4669 xmit_hashtype_tbl);
4670 if (xmit_hashtype == -1) {
4671 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n",
4672 xmit_hash_policy == NULL ? "NULL" :
4673 xmit_hash_policy);
4674 return -EINVAL;
4675 }
4676 }
4677 }
4678
4679 if (lacp_rate) {
4680 if (bond_mode != BOND_MODE_8023AD) {
4681 pr_info("lacp_rate param is irrelevant in mode %s\n",
4682 bond_mode_name(bond_mode));
4683 } else {
4684 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4685 if (lacp_fast == -1) {
4686 pr_err("Error: Invalid lacp rate \"%s\"\n",
4687 lacp_rate == NULL ? "NULL" : lacp_rate);
4688 return -EINVAL;
4689 }
4690 }
4691 }
4692
4693 if (ad_select) {
4694 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl);
4695 if (params->ad_select == -1) {
4696 pr_err("Error: Invalid ad_select \"%s\"\n",
4697 ad_select == NULL ? "NULL" : ad_select);
4698 return -EINVAL;
4699 }
4700
4701 if (bond_mode != BOND_MODE_8023AD) {
4702 pr_warning("ad_select param only affects 802.3ad mode\n");
4703 }
4704 } else {
4705 params->ad_select = BOND_AD_STABLE;
4706 }
4707
4708 if (max_bonds < 0) {
4709 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4710 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4711 max_bonds = BOND_DEFAULT_MAX_BONDS;
4712 }
4713
4714 if (miimon < 0) {
4715 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n",
4716 miimon, INT_MAX, BOND_LINK_MON_INTERV);
4717 miimon = BOND_LINK_MON_INTERV;
4718 }
4719
4720 if (updelay < 0) {
4721 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4722 updelay, INT_MAX);
4723 updelay = 0;
4724 }
4725
4726 if (downdelay < 0) {
4727 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4728 downdelay, INT_MAX);
4729 downdelay = 0;
4730 }
4731
4732 if ((use_carrier != 0) && (use_carrier != 1)) {
4733 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n",
4734 use_carrier);
4735 use_carrier = 1;
4736 }
4737
4738 if (num_grat_arp < 0 || num_grat_arp > 255) {
4739 pr_warning("Warning: num_grat_arp (%d) not in range 0-255 so it was reset to 1\n",
4740 num_grat_arp);
4741 num_grat_arp = 1;
4742 }
4743
4744 if (num_unsol_na < 0 || num_unsol_na > 255) {
4745 pr_warning("Warning: num_unsol_na (%d) not in range 0-255 so it was reset to 1\n",
4746 num_unsol_na);
4747 num_unsol_na = 1;
4748 }
4749
4750 /* reset values for 802.3ad */
4751 if (bond_mode == BOND_MODE_8023AD) {
4752 if (!miimon) {
4753 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n");
4754 pr_warning("Forcing miimon to 100msec\n");
4755 miimon = 100;
4756 }
4757 }
4758
4759 /* reset values for TLB/ALB */
4760 if ((bond_mode == BOND_MODE_TLB) ||
4761 (bond_mode == BOND_MODE_ALB)) {
4762 if (!miimon) {
4763 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n");
4764 pr_warning("Forcing miimon to 100msec\n");
4765 miimon = 100;
4766 }
4767 }
4768
4769 if (bond_mode == BOND_MODE_ALB) {
4770 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n",
4771 updelay);
4772 }
4773
4774 if (!miimon) {
4775 if (updelay || downdelay) {
4776 /* just warn the user the up/down delay will have
4777 * no effect since miimon is zero...
4778 */
4779 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n",
4780 updelay, downdelay);
4781 }
4782 } else {
4783 /* don't allow arp monitoring */
4784 if (arp_interval) {
4785 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n",
4786 miimon, arp_interval);
4787 arp_interval = 0;
4788 }
4789
4790 if ((updelay % miimon) != 0) {
4791 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n",
4792 updelay, miimon,
4793 (updelay / miimon) * miimon);
4794 }
4795
4796 updelay /= miimon;
4797
4798 if ((downdelay % miimon) != 0) {
4799 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n",
4800 downdelay, miimon,
4801 (downdelay / miimon) * miimon);
4802 }
4803
4804 downdelay /= miimon;
4805 }
4806
4807 if (arp_interval < 0) {
4808 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n",
4809 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4810 arp_interval = BOND_LINK_ARP_INTERV;
4811 }
4812
4813 for (arp_ip_count = 0;
4814 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4815 arp_ip_count++) {
4816 /* not complete check, but should be good enough to
4817 catch mistakes */
4818 if (!isdigit(arp_ip_target[arp_ip_count][0])) {
4819 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n",
4820 arp_ip_target[arp_ip_count]);
4821 arp_interval = 0;
4822 } else {
4823 __be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4824 arp_target[arp_ip_count] = ip;
4825 }
4826 }
4827
4828 if (arp_interval && !arp_ip_count) {
4829 /* don't allow arping if no arp_ip_target given... */
4830 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n",
4831 arp_interval);
4832 arp_interval = 0;
4833 }
4834
4835 if (arp_validate) {
4836 if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4837 pr_err("arp_validate only supported in active-backup mode\n");
4838 return -EINVAL;
4839 }
4840 if (!arp_interval) {
4841 pr_err("arp_validate requires arp_interval\n");
4842 return -EINVAL;
4843 }
4844
4845 arp_validate_value = bond_parse_parm(arp_validate,
4846 arp_validate_tbl);
4847 if (arp_validate_value == -1) {
4848 pr_err("Error: invalid arp_validate \"%s\"\n",
4849 arp_validate == NULL ? "NULL" : arp_validate);
4850 return -EINVAL;
4851 }
4852 } else
4853 arp_validate_value = 0;
4854
4855 if (miimon) {
4856 pr_info("MII link monitoring set to %d ms\n", miimon);
4857 } else if (arp_interval) {
4858 int i;
4859
4860 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):",
4861 arp_interval,
4862 arp_validate_tbl[arp_validate_value].modename,
4863 arp_ip_count);
4864
4865 for (i = 0; i < arp_ip_count; i++)
4866 pr_info(" %s", arp_ip_target[i]);
4867
4868 pr_info("\n");
4869
4870 } else if (max_bonds) {
4871 /* miimon and arp_interval not set, we need one so things
4872 * work as expected, see bonding.txt for details
4873 */
4874 pr_warning("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n");
4875 }
4876
4877 if (primary && !USES_PRIMARY(bond_mode)) {
4878 /* currently, using a primary only makes sense
4879 * in active backup, TLB or ALB modes
4880 */
4881 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n",
4882 primary, bond_mode_name(bond_mode));
4883 primary = NULL;
4884 }
4885
4886 if (primary && primary_reselect) {
4887 primary_reselect_value = bond_parse_parm(primary_reselect,
4888 pri_reselect_tbl);
4889 if (primary_reselect_value == -1) {
4890 pr_err("Error: Invalid primary_reselect \"%s\"\n",
4891 primary_reselect ==
4892 NULL ? "NULL" : primary_reselect);
4893 return -EINVAL;
4894 }
4895 } else {
4896 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS;
4897 }
4898
4899 if (fail_over_mac) {
4900 fail_over_mac_value = bond_parse_parm(fail_over_mac,
4901 fail_over_mac_tbl);
4902 if (fail_over_mac_value == -1) {
4903 pr_err("Error: invalid fail_over_mac \"%s\"\n",
4904 arp_validate == NULL ? "NULL" : arp_validate);
4905 return -EINVAL;
4906 }
4907
4908 if (bond_mode != BOND_MODE_ACTIVEBACKUP)
4909 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n");
4910 } else {
4911 fail_over_mac_value = BOND_FOM_NONE;
4912 }
4913
4914 /* fill params struct with the proper values */
4915 params->mode = bond_mode;
4916 params->xmit_policy = xmit_hashtype;
4917 params->miimon = miimon;
4918 params->num_grat_arp = num_grat_arp;
4919 params->num_unsol_na = num_unsol_na;
4920 params->arp_interval = arp_interval;
4921 params->arp_validate = arp_validate_value;
4922 params->updelay = updelay;
4923 params->downdelay = downdelay;
4924 params->use_carrier = use_carrier;
4925 params->lacp_fast = lacp_fast;
4926 params->primary[0] = 0;
4927 params->primary_reselect = primary_reselect_value;
4928 params->fail_over_mac = fail_over_mac_value;
4929
4930 if (primary) {
4931 strncpy(params->primary, primary, IFNAMSIZ);
4932 params->primary[IFNAMSIZ - 1] = 0;
4933 }
4934
4935 memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4936
4937 return 0;
4938 }
4939
4940 static struct lock_class_key bonding_netdev_xmit_lock_key;
4941 static struct lock_class_key bonding_netdev_addr_lock_key;
4942
4943 static void bond_set_lockdep_class_one(struct net_device *dev,
4944 struct netdev_queue *txq,
4945 void *_unused)
4946 {
4947 lockdep_set_class(&txq->_xmit_lock,
4948 &bonding_netdev_xmit_lock_key);
4949 }
4950
4951 static void bond_set_lockdep_class(struct net_device *dev)
4952 {
4953 lockdep_set_class(&dev->addr_list_lock,
4954 &bonding_netdev_addr_lock_key);
4955 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
4956 }
4957
4958 /*
4959 * Called from registration process
4960 */
4961 static int bond_init(struct net_device *bond_dev)
4962 {
4963 struct bonding *bond = netdev_priv(bond_dev);
4964 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
4965
4966 pr_debug("Begin bond_init for %s\n", bond_dev->name);
4967
4968 bond->wq = create_singlethread_workqueue(bond_dev->name);
4969 if (!bond->wq)
4970 return -ENOMEM;
4971
4972 bond_set_lockdep_class(bond_dev);
4973
4974 netif_carrier_off(bond_dev);
4975
4976 bond_create_proc_entry(bond);
4977 list_add_tail(&bond->bond_list, &bn->dev_list);
4978
4979 bond_prepare_sysfs_group(bond);
4980
4981 __hw_addr_init(&bond->mc_list);
4982 return 0;
4983 }
4984
4985 static int bond_validate(struct nlattr *tb[], struct nlattr *data[])
4986 {
4987 if (tb[IFLA_ADDRESS]) {
4988 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
4989 return -EINVAL;
4990 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
4991 return -EADDRNOTAVAIL;
4992 }
4993 return 0;
4994 }
4995
4996 static struct rtnl_link_ops bond_link_ops __read_mostly = {
4997 .kind = "bond",
4998 .priv_size = sizeof(struct bonding),
4999 .setup = bond_setup,
5000 .validate = bond_validate,
5001 };
5002
5003 /* Create a new bond based on the specified name and bonding parameters.
5004 * If name is NULL, obtain a suitable "bond%d" name for us.
5005 * Caller must NOT hold rtnl_lock; we need to release it here before we
5006 * set up our sysfs entries.
5007 */
5008 int bond_create(struct net *net, const char *name)
5009 {
5010 struct net_device *bond_dev;
5011 int res;
5012
5013 rtnl_lock();
5014
5015 bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "",
5016 bond_setup);
5017 if (!bond_dev) {
5018 pr_err("%s: eek! can't alloc netdev!\n", name);
5019 rtnl_unlock();
5020 return -ENOMEM;
5021 }
5022
5023 dev_net_set(bond_dev, net);
5024 bond_dev->rtnl_link_ops = &bond_link_ops;
5025
5026 if (!name) {
5027 res = dev_alloc_name(bond_dev, "bond%d");
5028 if (res < 0)
5029 goto out;
5030 }
5031
5032 res = register_netdevice(bond_dev);
5033
5034 out:
5035 rtnl_unlock();
5036 if (res < 0)
5037 bond_destructor(bond_dev);
5038 return res;
5039 }
5040
5041 static int __net_init bond_net_init(struct net *net)
5042 {
5043 struct bond_net *bn = net_generic(net, bond_net_id);
5044
5045 bn->net = net;
5046 INIT_LIST_HEAD(&bn->dev_list);
5047
5048 bond_create_proc_dir(bn);
5049
5050 return 0;
5051 }
5052
5053 static void __net_exit bond_net_exit(struct net *net)
5054 {
5055 struct bond_net *bn = net_generic(net, bond_net_id);
5056
5057 bond_destroy_proc_dir(bn);
5058 }
5059
5060 static struct pernet_operations bond_net_ops = {
5061 .init = bond_net_init,
5062 .exit = bond_net_exit,
5063 .id = &bond_net_id,
5064 .size = sizeof(struct bond_net),
5065 };
5066
5067 static int __init bonding_init(void)
5068 {
5069 int i;
5070 int res;
5071
5072 pr_info("%s", version);
5073
5074 res = bond_check_params(&bonding_defaults);
5075 if (res)
5076 goto out;
5077
5078 res = register_pernet_subsys(&bond_net_ops);
5079 if (res)
5080 goto out;
5081
5082 res = rtnl_link_register(&bond_link_ops);
5083 if (res)
5084 goto err_link;
5085
5086 for (i = 0; i < max_bonds; i++) {
5087 res = bond_create(&init_net, NULL);
5088 if (res)
5089 goto err;
5090 }
5091
5092 res = bond_create_sysfs();
5093 if (res)
5094 goto err;
5095
5096 register_netdevice_notifier(&bond_netdev_notifier);
5097 register_inetaddr_notifier(&bond_inetaddr_notifier);
5098 bond_register_ipv6_notifier();
5099 out:
5100 return res;
5101 err:
5102 rtnl_link_unregister(&bond_link_ops);
5103 err_link:
5104 unregister_pernet_subsys(&bond_net_ops);
5105 goto out;
5106
5107 }
5108
5109 static void __exit bonding_exit(void)
5110 {
5111 unregister_netdevice_notifier(&bond_netdev_notifier);
5112 unregister_inetaddr_notifier(&bond_inetaddr_notifier);
5113 bond_unregister_ipv6_notifier();
5114
5115 bond_destroy_sysfs();
5116
5117 rtnl_link_unregister(&bond_link_ops);
5118 unregister_pernet_subsys(&bond_net_ops);
5119 }
5120
5121 module_init(bonding_init);
5122 module_exit(bonding_exit);
5123 MODULE_LICENSE("GPL");
5124 MODULE_VERSION(DRV_VERSION);
5125 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
5126 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
5127 MODULE_ALIAS_RTNL_LINK("bond");
This page took 0.164305 seconds and 5 git commands to generate.