regmap: add helper macro to set min/max range of register
[deliverable/linux.git] / drivers / net / bonding / bond_main.c
1 /*
2 * originally based on the dummy device.
3 *
4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5 * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6 *
7 * bonding.c: an Ethernet Bonding driver
8 *
9 * This is useful to talk to a Cisco EtherChannel compatible equipment:
10 * Cisco 5500
11 * Sun Trunking (Solaris)
12 * Alteon AceDirector Trunks
13 * Linux Bonding
14 * and probably many L2 switches ...
15 *
16 * How it works:
17 * ifconfig bond0 ipaddress netmask up
18 * will setup a network device, with an ip address. No mac address
19 * will be assigned at this time. The hw mac address will come from
20 * the first slave bonded to the channel. All slaves will then use
21 * this hw mac address.
22 *
23 * ifconfig bond0 down
24 * will release all slaves, marking them as down.
25 *
26 * ifenslave bond0 eth0
27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either
28 * a: be used as initial mac address
29 * b: if a hw mac address already is there, eth0's hw mac address
30 * will then be set from bond0.
31 *
32 */
33
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <linux/io.h>
57 #include <asm/dma.h>
58 #include <linux/uaccess.h>
59 #include <linux/errno.h>
60 #include <linux/netdevice.h>
61 #include <linux/inetdevice.h>
62 #include <linux/igmp.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <net/sock.h>
66 #include <linux/rtnetlink.h>
67 #include <linux/smp.h>
68 #include <linux/if_ether.h>
69 #include <net/arp.h>
70 #include <linux/mii.h>
71 #include <linux/ethtool.h>
72 #include <linux/if_vlan.h>
73 #include <linux/if_bonding.h>
74 #include <linux/jiffies.h>
75 #include <linux/preempt.h>
76 #include <net/route.h>
77 #include <net/net_namespace.h>
78 #include <net/netns/generic.h>
79 #include <net/pkt_sched.h>
80 #include <linux/rculist.h>
81 #include "bonding.h"
82 #include "bond_3ad.h"
83 #include "bond_alb.h"
84
85 /*---------------------------- Module parameters ----------------------------*/
86
87 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
88 #define BOND_LINK_MON_INTERV 0
89 #define BOND_LINK_ARP_INTERV 0
90
91 static int max_bonds = BOND_DEFAULT_MAX_BONDS;
92 static int tx_queues = BOND_DEFAULT_TX_QUEUES;
93 static int num_peer_notif = 1;
94 static int miimon = BOND_LINK_MON_INTERV;
95 static int updelay;
96 static int downdelay;
97 static int use_carrier = 1;
98 static char *mode;
99 static char *primary;
100 static char *primary_reselect;
101 static char *lacp_rate;
102 static int min_links;
103 static char *ad_select;
104 static char *xmit_hash_policy;
105 static int arp_interval = BOND_LINK_ARP_INTERV;
106 static char *arp_ip_target[BOND_MAX_ARP_TARGETS];
107 static char *arp_validate;
108 static char *arp_all_targets;
109 static char *fail_over_mac;
110 static int all_slaves_active;
111 static struct bond_params bonding_defaults;
112 static int resend_igmp = BOND_DEFAULT_RESEND_IGMP;
113
114 module_param(max_bonds, int, 0);
115 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
116 module_param(tx_queues, int, 0);
117 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)");
118 module_param_named(num_grat_arp, num_peer_notif, int, 0644);
119 MODULE_PARM_DESC(num_grat_arp, "Number of peer notifications to send on "
120 "failover event (alias of num_unsol_na)");
121 module_param_named(num_unsol_na, num_peer_notif, int, 0644);
122 MODULE_PARM_DESC(num_unsol_na, "Number of peer notifications to send on "
123 "failover event (alias of num_grat_arp)");
124 module_param(miimon, int, 0);
125 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
126 module_param(updelay, int, 0);
127 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
128 module_param(downdelay, int, 0);
129 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
130 "in milliseconds");
131 module_param(use_carrier, int, 0);
132 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
133 "0 for off, 1 for on (default)");
134 module_param(mode, charp, 0);
135 MODULE_PARM_DESC(mode, "Mode of operation; 0 for balance-rr, "
136 "1 for active-backup, 2 for balance-xor, "
137 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
138 "6 for balance-alb");
139 module_param(primary, charp, 0);
140 MODULE_PARM_DESC(primary, "Primary network device to use");
141 module_param(primary_reselect, charp, 0);
142 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave "
143 "once it comes up; "
144 "0 for always (default), "
145 "1 for only if speed of primary is "
146 "better, "
147 "2 for only on active slave "
148 "failure");
149 module_param(lacp_rate, charp, 0);
150 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner; "
151 "0 for slow, 1 for fast");
152 module_param(ad_select, charp, 0);
153 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic; "
154 "0 for stable (default), 1 for bandwidth, "
155 "2 for count");
156 module_param(min_links, int, 0);
157 MODULE_PARM_DESC(min_links, "Minimum number of available links before turning on carrier");
158
159 module_param(xmit_hash_policy, charp, 0);
160 MODULE_PARM_DESC(xmit_hash_policy, "balance-xor and 802.3ad hashing method; "
161 "0 for layer 2 (default), 1 for layer 3+4, "
162 "2 for layer 2+3");
163 module_param(arp_interval, int, 0);
164 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
165 module_param_array(arp_ip_target, charp, NULL, 0);
166 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
167 module_param(arp_validate, charp, 0);
168 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes; "
169 "0 for none (default), 1 for active, "
170 "2 for backup, 3 for all");
171 module_param(arp_all_targets, charp, 0);
172 MODULE_PARM_DESC(arp_all_targets, "fail on any/all arp targets timeout; 0 for any (default), 1 for all");
173 module_param(fail_over_mac, charp, 0);
174 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to "
175 "the same MAC; 0 for none (default), "
176 "1 for active, 2 for follow");
177 module_param(all_slaves_active, int, 0);
178 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface"
179 "by setting active flag for all slaves; "
180 "0 for never (default), 1 for always.");
181 module_param(resend_igmp, int, 0);
182 MODULE_PARM_DESC(resend_igmp, "Number of IGMP membership reports to send on "
183 "link failure");
184
185 /*----------------------------- Global variables ----------------------------*/
186
187 #ifdef CONFIG_NET_POLL_CONTROLLER
188 atomic_t netpoll_block_tx = ATOMIC_INIT(0);
189 #endif
190
191 int bond_net_id __read_mostly;
192
193 static __be32 arp_target[BOND_MAX_ARP_TARGETS];
194 static int arp_ip_count;
195 static int bond_mode = BOND_MODE_ROUNDROBIN;
196 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2;
197 static int lacp_fast;
198
199 const struct bond_parm_tbl bond_lacp_tbl[] = {
200 { "slow", AD_LACP_SLOW},
201 { "fast", AD_LACP_FAST},
202 { NULL, -1},
203 };
204
205 const struct bond_parm_tbl bond_mode_tbl[] = {
206 { "balance-rr", BOND_MODE_ROUNDROBIN},
207 { "active-backup", BOND_MODE_ACTIVEBACKUP},
208 { "balance-xor", BOND_MODE_XOR},
209 { "broadcast", BOND_MODE_BROADCAST},
210 { "802.3ad", BOND_MODE_8023AD},
211 { "balance-tlb", BOND_MODE_TLB},
212 { "balance-alb", BOND_MODE_ALB},
213 { NULL, -1},
214 };
215
216 const struct bond_parm_tbl xmit_hashtype_tbl[] = {
217 { "layer2", BOND_XMIT_POLICY_LAYER2},
218 { "layer3+4", BOND_XMIT_POLICY_LAYER34},
219 { "layer2+3", BOND_XMIT_POLICY_LAYER23},
220 { NULL, -1},
221 };
222
223 const struct bond_parm_tbl arp_all_targets_tbl[] = {
224 { "any", BOND_ARP_TARGETS_ANY},
225 { "all", BOND_ARP_TARGETS_ALL},
226 { NULL, -1},
227 };
228
229 const struct bond_parm_tbl arp_validate_tbl[] = {
230 { "none", BOND_ARP_VALIDATE_NONE},
231 { "active", BOND_ARP_VALIDATE_ACTIVE},
232 { "backup", BOND_ARP_VALIDATE_BACKUP},
233 { "all", BOND_ARP_VALIDATE_ALL},
234 { NULL, -1},
235 };
236
237 const struct bond_parm_tbl fail_over_mac_tbl[] = {
238 { "none", BOND_FOM_NONE},
239 { "active", BOND_FOM_ACTIVE},
240 { "follow", BOND_FOM_FOLLOW},
241 { NULL, -1},
242 };
243
244 const struct bond_parm_tbl pri_reselect_tbl[] = {
245 { "always", BOND_PRI_RESELECT_ALWAYS},
246 { "better", BOND_PRI_RESELECT_BETTER},
247 { "failure", BOND_PRI_RESELECT_FAILURE},
248 { NULL, -1},
249 };
250
251 struct bond_parm_tbl ad_select_tbl[] = {
252 { "stable", BOND_AD_STABLE},
253 { "bandwidth", BOND_AD_BANDWIDTH},
254 { "count", BOND_AD_COUNT},
255 { NULL, -1},
256 };
257
258 /*-------------------------- Forward declarations ---------------------------*/
259
260 static int bond_init(struct net_device *bond_dev);
261 static void bond_uninit(struct net_device *bond_dev);
262
263 /*---------------------------- General routines -----------------------------*/
264
265 const char *bond_mode_name(int mode)
266 {
267 static const char *names[] = {
268 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)",
269 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)",
270 [BOND_MODE_XOR] = "load balancing (xor)",
271 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)",
272 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation",
273 [BOND_MODE_TLB] = "transmit load balancing",
274 [BOND_MODE_ALB] = "adaptive load balancing",
275 };
276
277 if (mode < BOND_MODE_ROUNDROBIN || mode > BOND_MODE_ALB)
278 return "unknown";
279
280 return names[mode];
281 }
282
283 /*---------------------------------- VLAN -----------------------------------*/
284
285 /**
286 * bond_dev_queue_xmit - Prepare skb for xmit.
287 *
288 * @bond: bond device that got this skb for tx.
289 * @skb: hw accel VLAN tagged skb to transmit
290 * @slave_dev: slave that is supposed to xmit this skbuff
291 */
292 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb,
293 struct net_device *slave_dev)
294 {
295 skb->dev = slave_dev;
296
297 BUILD_BUG_ON(sizeof(skb->queue_mapping) !=
298 sizeof(qdisc_skb_cb(skb)->slave_dev_queue_mapping));
299 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
300
301 if (unlikely(netpoll_tx_running(bond->dev)))
302 bond_netpoll_send_skb(bond_get_slave_by_dev(bond, slave_dev), skb);
303 else
304 dev_queue_xmit(skb);
305
306 return 0;
307 }
308
309 /*
310 * In the following 2 functions, bond_vlan_rx_add_vid and bond_vlan_rx_kill_vid,
311 * We don't protect the slave list iteration with a lock because:
312 * a. This operation is performed in IOCTL context,
313 * b. The operation is protected by the RTNL semaphore in the 8021q code,
314 * c. Holding a lock with BH disabled while directly calling a base driver
315 * entry point is generally a BAD idea.
316 *
317 * The design of synchronization/protection for this operation in the 8021q
318 * module is good for one or more VLAN devices over a single physical device
319 * and cannot be extended for a teaming solution like bonding, so there is a
320 * potential race condition here where a net device from the vlan group might
321 * be referenced (either by a base driver or the 8021q code) while it is being
322 * removed from the system. However, it turns out we're not making matters
323 * worse, and if it works for regular VLAN usage it will work here too.
324 */
325
326 /**
327 * bond_vlan_rx_add_vid - Propagates adding an id to slaves
328 * @bond_dev: bonding net device that got called
329 * @vid: vlan id being added
330 */
331 static int bond_vlan_rx_add_vid(struct net_device *bond_dev,
332 __be16 proto, u16 vid)
333 {
334 struct bonding *bond = netdev_priv(bond_dev);
335 struct slave *slave;
336 int res;
337
338 bond_for_each_slave(bond, slave) {
339 res = vlan_vid_add(slave->dev, proto, vid);
340 if (res)
341 goto unwind;
342 }
343
344 return 0;
345
346 unwind:
347 /* unwind from the slave that failed */
348 bond_for_each_slave_continue_reverse(bond, slave)
349 vlan_vid_del(slave->dev, proto, vid);
350
351 return res;
352 }
353
354 /**
355 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
356 * @bond_dev: bonding net device that got called
357 * @vid: vlan id being removed
358 */
359 static int bond_vlan_rx_kill_vid(struct net_device *bond_dev,
360 __be16 proto, u16 vid)
361 {
362 struct bonding *bond = netdev_priv(bond_dev);
363 struct slave *slave;
364
365 bond_for_each_slave(bond, slave)
366 vlan_vid_del(slave->dev, proto, vid);
367
368 if (bond_is_lb(bond))
369 bond_alb_clear_vlan(bond, vid);
370
371 return 0;
372 }
373
374 /*------------------------------- Link status -------------------------------*/
375
376 /*
377 * Set the carrier state for the master according to the state of its
378 * slaves. If any slaves are up, the master is up. In 802.3ad mode,
379 * do special 802.3ad magic.
380 *
381 * Returns zero if carrier state does not change, nonzero if it does.
382 */
383 static int bond_set_carrier(struct bonding *bond)
384 {
385 struct slave *slave;
386
387 if (list_empty(&bond->slave_list))
388 goto down;
389
390 if (bond->params.mode == BOND_MODE_8023AD)
391 return bond_3ad_set_carrier(bond);
392
393 bond_for_each_slave(bond, slave) {
394 if (slave->link == BOND_LINK_UP) {
395 if (!netif_carrier_ok(bond->dev)) {
396 netif_carrier_on(bond->dev);
397 return 1;
398 }
399 return 0;
400 }
401 }
402
403 down:
404 if (netif_carrier_ok(bond->dev)) {
405 netif_carrier_off(bond->dev);
406 return 1;
407 }
408 return 0;
409 }
410
411 /*
412 * Get link speed and duplex from the slave's base driver
413 * using ethtool. If for some reason the call fails or the
414 * values are invalid, set speed and duplex to -1,
415 * and return.
416 */
417 static void bond_update_speed_duplex(struct slave *slave)
418 {
419 struct net_device *slave_dev = slave->dev;
420 struct ethtool_cmd ecmd;
421 u32 slave_speed;
422 int res;
423
424 slave->speed = SPEED_UNKNOWN;
425 slave->duplex = DUPLEX_UNKNOWN;
426
427 res = __ethtool_get_settings(slave_dev, &ecmd);
428 if (res < 0)
429 return;
430
431 slave_speed = ethtool_cmd_speed(&ecmd);
432 if (slave_speed == 0 || slave_speed == ((__u32) -1))
433 return;
434
435 switch (ecmd.duplex) {
436 case DUPLEX_FULL:
437 case DUPLEX_HALF:
438 break;
439 default:
440 return;
441 }
442
443 slave->speed = slave_speed;
444 slave->duplex = ecmd.duplex;
445
446 return;
447 }
448
449 /*
450 * if <dev> supports MII link status reporting, check its link status.
451 *
452 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
453 * depending upon the setting of the use_carrier parameter.
454 *
455 * Return either BMSR_LSTATUS, meaning that the link is up (or we
456 * can't tell and just pretend it is), or 0, meaning that the link is
457 * down.
458 *
459 * If reporting is non-zero, instead of faking link up, return -1 if
460 * both ETHTOOL and MII ioctls fail (meaning the device does not
461 * support them). If use_carrier is set, return whatever it says.
462 * It'd be nice if there was a good way to tell if a driver supports
463 * netif_carrier, but there really isn't.
464 */
465 static int bond_check_dev_link(struct bonding *bond,
466 struct net_device *slave_dev, int reporting)
467 {
468 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
469 int (*ioctl)(struct net_device *, struct ifreq *, int);
470 struct ifreq ifr;
471 struct mii_ioctl_data *mii;
472
473 if (!reporting && !netif_running(slave_dev))
474 return 0;
475
476 if (bond->params.use_carrier)
477 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
478
479 /* Try to get link status using Ethtool first. */
480 if (slave_dev->ethtool_ops->get_link)
481 return slave_dev->ethtool_ops->get_link(slave_dev) ?
482 BMSR_LSTATUS : 0;
483
484 /* Ethtool can't be used, fallback to MII ioctls. */
485 ioctl = slave_ops->ndo_do_ioctl;
486 if (ioctl) {
487 /* TODO: set pointer to correct ioctl on a per team member */
488 /* bases to make this more efficient. that is, once */
489 /* we determine the correct ioctl, we will always */
490 /* call it and not the others for that team */
491 /* member. */
492
493 /*
494 * We cannot assume that SIOCGMIIPHY will also read a
495 * register; not all network drivers (e.g., e100)
496 * support that.
497 */
498
499 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */
500 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
501 mii = if_mii(&ifr);
502 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
503 mii->reg_num = MII_BMSR;
504 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0)
505 return mii->val_out & BMSR_LSTATUS;
506 }
507 }
508
509 /*
510 * If reporting, report that either there's no dev->do_ioctl,
511 * or both SIOCGMIIREG and get_link failed (meaning that we
512 * cannot report link status). If not reporting, pretend
513 * we're ok.
514 */
515 return reporting ? -1 : BMSR_LSTATUS;
516 }
517
518 /*----------------------------- Multicast list ------------------------------*/
519
520 /*
521 * Push the promiscuity flag down to appropriate slaves
522 */
523 static int bond_set_promiscuity(struct bonding *bond, int inc)
524 {
525 int err = 0;
526 if (USES_PRIMARY(bond->params.mode)) {
527 /* write lock already acquired */
528 if (bond->curr_active_slave) {
529 err = dev_set_promiscuity(bond->curr_active_slave->dev,
530 inc);
531 }
532 } else {
533 struct slave *slave;
534
535 bond_for_each_slave(bond, slave) {
536 err = dev_set_promiscuity(slave->dev, inc);
537 if (err)
538 return err;
539 }
540 }
541 return err;
542 }
543
544 /*
545 * Push the allmulti flag down to all slaves
546 */
547 static int bond_set_allmulti(struct bonding *bond, int inc)
548 {
549 int err = 0;
550 if (USES_PRIMARY(bond->params.mode)) {
551 /* write lock already acquired */
552 if (bond->curr_active_slave) {
553 err = dev_set_allmulti(bond->curr_active_slave->dev,
554 inc);
555 }
556 } else {
557 struct slave *slave;
558
559 bond_for_each_slave(bond, slave) {
560 err = dev_set_allmulti(slave->dev, inc);
561 if (err)
562 return err;
563 }
564 }
565 return err;
566 }
567
568 /*
569 * Retrieve the list of registered multicast addresses for the bonding
570 * device and retransmit an IGMP JOIN request to the current active
571 * slave.
572 */
573 static void bond_resend_igmp_join_requests(struct bonding *bond)
574 {
575 if (!rtnl_trylock()) {
576 queue_delayed_work(bond->wq, &bond->mcast_work, 1);
577 return;
578 }
579 call_netdevice_notifiers(NETDEV_RESEND_IGMP, bond->dev);
580 rtnl_unlock();
581
582 /* We use curr_slave_lock to protect against concurrent access to
583 * igmp_retrans from multiple running instances of this function and
584 * bond_change_active_slave
585 */
586 write_lock_bh(&bond->curr_slave_lock);
587 if (bond->igmp_retrans > 1) {
588 bond->igmp_retrans--;
589 queue_delayed_work(bond->wq, &bond->mcast_work, HZ/5);
590 }
591 write_unlock_bh(&bond->curr_slave_lock);
592 }
593
594 static void bond_resend_igmp_join_requests_delayed(struct work_struct *work)
595 {
596 struct bonding *bond = container_of(work, struct bonding,
597 mcast_work.work);
598
599 bond_resend_igmp_join_requests(bond);
600 }
601
602 /* Flush bond's hardware addresses from slave
603 */
604 static void bond_hw_addr_flush(struct net_device *bond_dev,
605 struct net_device *slave_dev)
606 {
607 struct bonding *bond = netdev_priv(bond_dev);
608
609 dev_uc_unsync(slave_dev, bond_dev);
610 dev_mc_unsync(slave_dev, bond_dev);
611
612 if (bond->params.mode == BOND_MODE_8023AD) {
613 /* del lacpdu mc addr from mc list */
614 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
615
616 dev_mc_del(slave_dev, lacpdu_multicast);
617 }
618 }
619
620 /*--------------------------- Active slave change ---------------------------*/
621
622 /* Update the hardware address list and promisc/allmulti for the new and
623 * old active slaves (if any). Modes that are !USES_PRIMARY keep all
624 * slaves up date at all times; only the USES_PRIMARY modes need to call
625 * this function to swap these settings during a failover.
626 */
627 static void bond_hw_addr_swap(struct bonding *bond, struct slave *new_active,
628 struct slave *old_active)
629 {
630 ASSERT_RTNL();
631
632 if (old_active) {
633 if (bond->dev->flags & IFF_PROMISC)
634 dev_set_promiscuity(old_active->dev, -1);
635
636 if (bond->dev->flags & IFF_ALLMULTI)
637 dev_set_allmulti(old_active->dev, -1);
638
639 bond_hw_addr_flush(bond->dev, old_active->dev);
640 }
641
642 if (new_active) {
643 /* FIXME: Signal errors upstream. */
644 if (bond->dev->flags & IFF_PROMISC)
645 dev_set_promiscuity(new_active->dev, 1);
646
647 if (bond->dev->flags & IFF_ALLMULTI)
648 dev_set_allmulti(new_active->dev, 1);
649
650 netif_addr_lock_bh(bond->dev);
651 dev_uc_sync(new_active->dev, bond->dev);
652 dev_mc_sync(new_active->dev, bond->dev);
653 netif_addr_unlock_bh(bond->dev);
654 }
655 }
656
657 /**
658 * bond_set_dev_addr - clone slave's address to bond
659 * @bond_dev: bond net device
660 * @slave_dev: slave net device
661 *
662 * Should be called with RTNL held.
663 */
664 static void bond_set_dev_addr(struct net_device *bond_dev,
665 struct net_device *slave_dev)
666 {
667 pr_debug("bond_dev=%p slave_dev=%p slave_dev->addr_len=%d\n",
668 bond_dev, slave_dev, slave_dev->addr_len);
669 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
670 bond_dev->addr_assign_type = NET_ADDR_STOLEN;
671 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond_dev);
672 }
673
674 /*
675 * bond_do_fail_over_mac
676 *
677 * Perform special MAC address swapping for fail_over_mac settings
678 *
679 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
680 */
681 static void bond_do_fail_over_mac(struct bonding *bond,
682 struct slave *new_active,
683 struct slave *old_active)
684 __releases(&bond->curr_slave_lock)
685 __releases(&bond->lock)
686 __acquires(&bond->lock)
687 __acquires(&bond->curr_slave_lock)
688 {
689 u8 tmp_mac[ETH_ALEN];
690 struct sockaddr saddr;
691 int rv;
692
693 switch (bond->params.fail_over_mac) {
694 case BOND_FOM_ACTIVE:
695 if (new_active) {
696 write_unlock_bh(&bond->curr_slave_lock);
697 read_unlock(&bond->lock);
698 bond_set_dev_addr(bond->dev, new_active->dev);
699 read_lock(&bond->lock);
700 write_lock_bh(&bond->curr_slave_lock);
701 }
702 break;
703 case BOND_FOM_FOLLOW:
704 /*
705 * if new_active && old_active, swap them
706 * if just old_active, do nothing (going to no active slave)
707 * if just new_active, set new_active to bond's MAC
708 */
709 if (!new_active)
710 return;
711
712 write_unlock_bh(&bond->curr_slave_lock);
713 read_unlock(&bond->lock);
714
715 if (old_active) {
716 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
717 memcpy(saddr.sa_data, old_active->dev->dev_addr,
718 ETH_ALEN);
719 saddr.sa_family = new_active->dev->type;
720 } else {
721 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
722 saddr.sa_family = bond->dev->type;
723 }
724
725 rv = dev_set_mac_address(new_active->dev, &saddr);
726 if (rv) {
727 pr_err("%s: Error %d setting MAC of slave %s\n",
728 bond->dev->name, -rv, new_active->dev->name);
729 goto out;
730 }
731
732 if (!old_active)
733 goto out;
734
735 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
736 saddr.sa_family = old_active->dev->type;
737
738 rv = dev_set_mac_address(old_active->dev, &saddr);
739 if (rv)
740 pr_err("%s: Error %d setting MAC of slave %s\n",
741 bond->dev->name, -rv, new_active->dev->name);
742 out:
743 read_lock(&bond->lock);
744 write_lock_bh(&bond->curr_slave_lock);
745 break;
746 default:
747 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n",
748 bond->dev->name, bond->params.fail_over_mac);
749 break;
750 }
751
752 }
753
754 static bool bond_should_change_active(struct bonding *bond)
755 {
756 struct slave *prim = bond->primary_slave;
757 struct slave *curr = bond->curr_active_slave;
758
759 if (!prim || !curr || curr->link != BOND_LINK_UP)
760 return true;
761 if (bond->force_primary) {
762 bond->force_primary = false;
763 return true;
764 }
765 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER &&
766 (prim->speed < curr->speed ||
767 (prim->speed == curr->speed && prim->duplex <= curr->duplex)))
768 return false;
769 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE)
770 return false;
771 return true;
772 }
773
774 /**
775 * find_best_interface - select the best available slave to be the active one
776 * @bond: our bonding struct
777 *
778 * Warning: Caller must hold curr_slave_lock for writing.
779 */
780 static struct slave *bond_find_best_slave(struct bonding *bond)
781 {
782 struct slave *new_active, *old_active;
783 struct slave *bestslave = NULL;
784 int mintime = bond->params.updelay;
785 int i;
786
787 new_active = bond->curr_active_slave;
788
789 if (!new_active) { /* there were no active slaves left */
790 new_active = bond_first_slave(bond);
791 if (!new_active)
792 return NULL; /* still no slave, return NULL */
793 }
794
795 if ((bond->primary_slave) &&
796 bond->primary_slave->link == BOND_LINK_UP &&
797 bond_should_change_active(bond)) {
798 new_active = bond->primary_slave;
799 }
800
801 /* remember where to stop iterating over the slaves */
802 old_active = new_active;
803
804 bond_for_each_slave_from(bond, new_active, i, old_active) {
805 if (new_active->link == BOND_LINK_UP) {
806 return new_active;
807 } else if (new_active->link == BOND_LINK_BACK &&
808 IS_UP(new_active->dev)) {
809 /* link up, but waiting for stabilization */
810 if (new_active->delay < mintime) {
811 mintime = new_active->delay;
812 bestslave = new_active;
813 }
814 }
815 }
816
817 return bestslave;
818 }
819
820 static bool bond_should_notify_peers(struct bonding *bond)
821 {
822 struct slave *slave = bond->curr_active_slave;
823
824 pr_debug("bond_should_notify_peers: bond %s slave %s\n",
825 bond->dev->name, slave ? slave->dev->name : "NULL");
826
827 if (!slave || !bond->send_peer_notif ||
828 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
829 return false;
830
831 return true;
832 }
833
834 /**
835 * change_active_interface - change the active slave into the specified one
836 * @bond: our bonding struct
837 * @new: the new slave to make the active one
838 *
839 * Set the new slave to the bond's settings and unset them on the old
840 * curr_active_slave.
841 * Setting include flags, mc-list, promiscuity, allmulti, etc.
842 *
843 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
844 * because it is apparently the best available slave we have, even though its
845 * updelay hasn't timed out yet.
846 *
847 * If new_active is not NULL, caller must hold bond->lock for read and
848 * curr_slave_lock for write_bh.
849 */
850 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
851 {
852 struct slave *old_active = bond->curr_active_slave;
853
854 if (old_active == new_active)
855 return;
856
857 if (new_active) {
858 new_active->jiffies = jiffies;
859
860 if (new_active->link == BOND_LINK_BACK) {
861 if (USES_PRIMARY(bond->params.mode)) {
862 pr_info("%s: making interface %s the new active one %d ms earlier.\n",
863 bond->dev->name, new_active->dev->name,
864 (bond->params.updelay - new_active->delay) * bond->params.miimon);
865 }
866
867 new_active->delay = 0;
868 new_active->link = BOND_LINK_UP;
869
870 if (bond->params.mode == BOND_MODE_8023AD)
871 bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
872
873 if (bond_is_lb(bond))
874 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
875 } else {
876 if (USES_PRIMARY(bond->params.mode)) {
877 pr_info("%s: making interface %s the new active one.\n",
878 bond->dev->name, new_active->dev->name);
879 }
880 }
881 }
882
883 if (USES_PRIMARY(bond->params.mode))
884 bond_hw_addr_swap(bond, new_active, old_active);
885
886 if (bond_is_lb(bond)) {
887 bond_alb_handle_active_change(bond, new_active);
888 if (old_active)
889 bond_set_slave_inactive_flags(old_active);
890 if (new_active)
891 bond_set_slave_active_flags(new_active);
892 } else {
893 rcu_assign_pointer(bond->curr_active_slave, new_active);
894 }
895
896 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
897 if (old_active)
898 bond_set_slave_inactive_flags(old_active);
899
900 if (new_active) {
901 bool should_notify_peers = false;
902
903 bond_set_slave_active_flags(new_active);
904
905 if (bond->params.fail_over_mac)
906 bond_do_fail_over_mac(bond, new_active,
907 old_active);
908
909 if (netif_running(bond->dev)) {
910 bond->send_peer_notif =
911 bond->params.num_peer_notif;
912 should_notify_peers =
913 bond_should_notify_peers(bond);
914 }
915
916 write_unlock_bh(&bond->curr_slave_lock);
917 read_unlock(&bond->lock);
918
919 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, bond->dev);
920 if (should_notify_peers)
921 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS,
922 bond->dev);
923
924 read_lock(&bond->lock);
925 write_lock_bh(&bond->curr_slave_lock);
926 }
927 }
928
929 /* resend IGMP joins since active slave has changed or
930 * all were sent on curr_active_slave.
931 * resend only if bond is brought up with the affected
932 * bonding modes and the retransmission is enabled */
933 if (netif_running(bond->dev) && (bond->params.resend_igmp > 0) &&
934 ((USES_PRIMARY(bond->params.mode) && new_active) ||
935 bond->params.mode == BOND_MODE_ROUNDROBIN)) {
936 bond->igmp_retrans = bond->params.resend_igmp;
937 queue_delayed_work(bond->wq, &bond->mcast_work, 1);
938 }
939 }
940
941 /**
942 * bond_select_active_slave - select a new active slave, if needed
943 * @bond: our bonding struct
944 *
945 * This functions should be called when one of the following occurs:
946 * - The old curr_active_slave has been released or lost its link.
947 * - The primary_slave has got its link back.
948 * - A slave has got its link back and there's no old curr_active_slave.
949 *
950 * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
951 */
952 void bond_select_active_slave(struct bonding *bond)
953 {
954 struct slave *best_slave;
955 int rv;
956
957 best_slave = bond_find_best_slave(bond);
958 if (best_slave != bond->curr_active_slave) {
959 bond_change_active_slave(bond, best_slave);
960 rv = bond_set_carrier(bond);
961 if (!rv)
962 return;
963
964 if (netif_carrier_ok(bond->dev)) {
965 pr_info("%s: first active interface up!\n",
966 bond->dev->name);
967 } else {
968 pr_info("%s: now running without any active interface !\n",
969 bond->dev->name);
970 }
971 }
972 }
973
974 /*--------------------------- slave list handling ---------------------------*/
975
976 /*
977 * This function attaches the slave to the end of list.
978 *
979 * bond->lock held for writing by caller.
980 */
981 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
982 {
983 list_add_tail_rcu(&new_slave->list, &bond->slave_list);
984 bond->slave_cnt++;
985 }
986
987 /*
988 * This function detaches the slave from the list.
989 * WARNING: no check is made to verify if the slave effectively
990 * belongs to <bond>.
991 * Nothing is freed on return, structures are just unchained.
992 * If any slave pointer in bond was pointing to <slave>,
993 * it should be changed by the calling function.
994 *
995 * bond->lock held for writing by caller.
996 */
997 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
998 {
999 list_del_rcu(&slave->list);
1000 bond->slave_cnt--;
1001 }
1002
1003 #ifdef CONFIG_NET_POLL_CONTROLLER
1004 static inline int slave_enable_netpoll(struct slave *slave)
1005 {
1006 struct netpoll *np;
1007 int err = 0;
1008
1009 np = kzalloc(sizeof(*np), GFP_ATOMIC);
1010 err = -ENOMEM;
1011 if (!np)
1012 goto out;
1013
1014 err = __netpoll_setup(np, slave->dev, GFP_ATOMIC);
1015 if (err) {
1016 kfree(np);
1017 goto out;
1018 }
1019 slave->np = np;
1020 out:
1021 return err;
1022 }
1023 static inline void slave_disable_netpoll(struct slave *slave)
1024 {
1025 struct netpoll *np = slave->np;
1026
1027 if (!np)
1028 return;
1029
1030 slave->np = NULL;
1031 __netpoll_free_async(np);
1032 }
1033 static inline bool slave_dev_support_netpoll(struct net_device *slave_dev)
1034 {
1035 if (slave_dev->priv_flags & IFF_DISABLE_NETPOLL)
1036 return false;
1037 if (!slave_dev->netdev_ops->ndo_poll_controller)
1038 return false;
1039 return true;
1040 }
1041
1042 static void bond_poll_controller(struct net_device *bond_dev)
1043 {
1044 }
1045
1046 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1047 {
1048 struct bonding *bond = netdev_priv(bond_dev);
1049 struct slave *slave;
1050
1051 bond_for_each_slave(bond, slave)
1052 if (IS_UP(slave->dev))
1053 slave_disable_netpoll(slave);
1054 }
1055
1056 static int bond_netpoll_setup(struct net_device *dev, struct netpoll_info *ni, gfp_t gfp)
1057 {
1058 struct bonding *bond = netdev_priv(dev);
1059 struct slave *slave;
1060 int err = 0;
1061
1062 bond_for_each_slave(bond, slave) {
1063 err = slave_enable_netpoll(slave);
1064 if (err) {
1065 bond_netpoll_cleanup(dev);
1066 break;
1067 }
1068 }
1069 return err;
1070 }
1071 #else
1072 static inline int slave_enable_netpoll(struct slave *slave)
1073 {
1074 return 0;
1075 }
1076 static inline void slave_disable_netpoll(struct slave *slave)
1077 {
1078 }
1079 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1080 {
1081 }
1082 #endif
1083
1084 /*---------------------------------- IOCTL ----------------------------------*/
1085
1086 static netdev_features_t bond_fix_features(struct net_device *dev,
1087 netdev_features_t features)
1088 {
1089 struct bonding *bond = netdev_priv(dev);
1090 netdev_features_t mask;
1091 struct slave *slave;
1092
1093 if (list_empty(&bond->slave_list)) {
1094 /* Disable adding VLANs to empty bond. But why? --mq */
1095 features |= NETIF_F_VLAN_CHALLENGED;
1096 return features;
1097 }
1098
1099 mask = features;
1100 features &= ~NETIF_F_ONE_FOR_ALL;
1101 features |= NETIF_F_ALL_FOR_ALL;
1102
1103 bond_for_each_slave(bond, slave) {
1104 features = netdev_increment_features(features,
1105 slave->dev->features,
1106 mask);
1107 }
1108 features = netdev_add_tso_features(features, mask);
1109
1110 return features;
1111 }
1112
1113 #define BOND_VLAN_FEATURES (NETIF_F_ALL_CSUM | NETIF_F_SG | \
1114 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \
1115 NETIF_F_HIGHDMA | NETIF_F_LRO)
1116
1117 static void bond_compute_features(struct bonding *bond)
1118 {
1119 unsigned int flags, dst_release_flag = IFF_XMIT_DST_RELEASE;
1120 netdev_features_t vlan_features = BOND_VLAN_FEATURES;
1121 unsigned short max_hard_header_len = ETH_HLEN;
1122 unsigned int gso_max_size = GSO_MAX_SIZE;
1123 struct net_device *bond_dev = bond->dev;
1124 u16 gso_max_segs = GSO_MAX_SEGS;
1125 struct slave *slave;
1126
1127 if (list_empty(&bond->slave_list))
1128 goto done;
1129
1130 bond_for_each_slave(bond, slave) {
1131 vlan_features = netdev_increment_features(vlan_features,
1132 slave->dev->vlan_features, BOND_VLAN_FEATURES);
1133
1134 dst_release_flag &= slave->dev->priv_flags;
1135 if (slave->dev->hard_header_len > max_hard_header_len)
1136 max_hard_header_len = slave->dev->hard_header_len;
1137
1138 gso_max_size = min(gso_max_size, slave->dev->gso_max_size);
1139 gso_max_segs = min(gso_max_segs, slave->dev->gso_max_segs);
1140 }
1141
1142 done:
1143 bond_dev->vlan_features = vlan_features;
1144 bond_dev->hard_header_len = max_hard_header_len;
1145 bond_dev->gso_max_segs = gso_max_segs;
1146 netif_set_gso_max_size(bond_dev, gso_max_size);
1147
1148 flags = bond_dev->priv_flags & ~IFF_XMIT_DST_RELEASE;
1149 bond_dev->priv_flags = flags | dst_release_flag;
1150
1151 netdev_change_features(bond_dev);
1152 }
1153
1154 static void bond_setup_by_slave(struct net_device *bond_dev,
1155 struct net_device *slave_dev)
1156 {
1157 bond_dev->header_ops = slave_dev->header_ops;
1158
1159 bond_dev->type = slave_dev->type;
1160 bond_dev->hard_header_len = slave_dev->hard_header_len;
1161 bond_dev->addr_len = slave_dev->addr_len;
1162
1163 memcpy(bond_dev->broadcast, slave_dev->broadcast,
1164 slave_dev->addr_len);
1165 }
1166
1167 /* On bonding slaves other than the currently active slave, suppress
1168 * duplicates except for alb non-mcast/bcast.
1169 */
1170 static bool bond_should_deliver_exact_match(struct sk_buff *skb,
1171 struct slave *slave,
1172 struct bonding *bond)
1173 {
1174 if (bond_is_slave_inactive(slave)) {
1175 if (bond->params.mode == BOND_MODE_ALB &&
1176 skb->pkt_type != PACKET_BROADCAST &&
1177 skb->pkt_type != PACKET_MULTICAST)
1178 return false;
1179 return true;
1180 }
1181 return false;
1182 }
1183
1184 static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb)
1185 {
1186 struct sk_buff *skb = *pskb;
1187 struct slave *slave;
1188 struct bonding *bond;
1189 int (*recv_probe)(const struct sk_buff *, struct bonding *,
1190 struct slave *);
1191 int ret = RX_HANDLER_ANOTHER;
1192
1193 skb = skb_share_check(skb, GFP_ATOMIC);
1194 if (unlikely(!skb))
1195 return RX_HANDLER_CONSUMED;
1196
1197 *pskb = skb;
1198
1199 slave = bond_slave_get_rcu(skb->dev);
1200 bond = slave->bond;
1201
1202 if (bond->params.arp_interval)
1203 slave->dev->last_rx = jiffies;
1204
1205 recv_probe = ACCESS_ONCE(bond->recv_probe);
1206 if (recv_probe) {
1207 ret = recv_probe(skb, bond, slave);
1208 if (ret == RX_HANDLER_CONSUMED) {
1209 consume_skb(skb);
1210 return ret;
1211 }
1212 }
1213
1214 if (bond_should_deliver_exact_match(skb, slave, bond)) {
1215 return RX_HANDLER_EXACT;
1216 }
1217
1218 skb->dev = bond->dev;
1219
1220 if (bond->params.mode == BOND_MODE_ALB &&
1221 bond->dev->priv_flags & IFF_BRIDGE_PORT &&
1222 skb->pkt_type == PACKET_HOST) {
1223
1224 if (unlikely(skb_cow_head(skb,
1225 skb->data - skb_mac_header(skb)))) {
1226 kfree_skb(skb);
1227 return RX_HANDLER_CONSUMED;
1228 }
1229 memcpy(eth_hdr(skb)->h_dest, bond->dev->dev_addr, ETH_ALEN);
1230 }
1231
1232 return ret;
1233 }
1234
1235 static int bond_master_upper_dev_link(struct net_device *bond_dev,
1236 struct net_device *slave_dev)
1237 {
1238 int err;
1239
1240 err = netdev_master_upper_dev_link(slave_dev, bond_dev);
1241 if (err)
1242 return err;
1243 slave_dev->flags |= IFF_SLAVE;
1244 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE);
1245 return 0;
1246 }
1247
1248 static void bond_upper_dev_unlink(struct net_device *bond_dev,
1249 struct net_device *slave_dev)
1250 {
1251 netdev_upper_dev_unlink(slave_dev, bond_dev);
1252 slave_dev->flags &= ~IFF_SLAVE;
1253 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE);
1254 }
1255
1256 /* enslave device <slave> to bond device <master> */
1257 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1258 {
1259 struct bonding *bond = netdev_priv(bond_dev);
1260 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
1261 struct slave *new_slave = NULL;
1262 struct sockaddr addr;
1263 int link_reporting;
1264 int res = 0, i;
1265
1266 if (!bond->params.use_carrier &&
1267 slave_dev->ethtool_ops->get_link == NULL &&
1268 slave_ops->ndo_do_ioctl == NULL) {
1269 pr_warning("%s: Warning: no link monitoring support for %s\n",
1270 bond_dev->name, slave_dev->name);
1271 }
1272
1273 /* already enslaved */
1274 if (slave_dev->flags & IFF_SLAVE) {
1275 pr_debug("Error, Device was already enslaved\n");
1276 return -EBUSY;
1277 }
1278
1279 /* vlan challenged mutual exclusion */
1280 /* no need to lock since we're protected by rtnl_lock */
1281 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1282 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1283 if (vlan_uses_dev(bond_dev)) {
1284 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n",
1285 bond_dev->name, slave_dev->name, bond_dev->name);
1286 return -EPERM;
1287 } else {
1288 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n",
1289 bond_dev->name, slave_dev->name,
1290 slave_dev->name, bond_dev->name);
1291 }
1292 } else {
1293 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1294 }
1295
1296 /*
1297 * Old ifenslave binaries are no longer supported. These can
1298 * be identified with moderate accuracy by the state of the slave:
1299 * the current ifenslave will set the interface down prior to
1300 * enslaving it; the old ifenslave will not.
1301 */
1302 if ((slave_dev->flags & IFF_UP)) {
1303 pr_err("%s is up. This may be due to an out of date ifenslave.\n",
1304 slave_dev->name);
1305 res = -EPERM;
1306 goto err_undo_flags;
1307 }
1308
1309 /* set bonding device ether type by slave - bonding netdevices are
1310 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1311 * there is a need to override some of the type dependent attribs/funcs.
1312 *
1313 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1314 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1315 */
1316 if (list_empty(&bond->slave_list)) {
1317 if (bond_dev->type != slave_dev->type) {
1318 pr_debug("%s: change device type from %d to %d\n",
1319 bond_dev->name,
1320 bond_dev->type, slave_dev->type);
1321
1322 res = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE,
1323 bond_dev);
1324 res = notifier_to_errno(res);
1325 if (res) {
1326 pr_err("%s: refused to change device type\n",
1327 bond_dev->name);
1328 res = -EBUSY;
1329 goto err_undo_flags;
1330 }
1331
1332 /* Flush unicast and multicast addresses */
1333 dev_uc_flush(bond_dev);
1334 dev_mc_flush(bond_dev);
1335
1336 if (slave_dev->type != ARPHRD_ETHER)
1337 bond_setup_by_slave(bond_dev, slave_dev);
1338 else {
1339 ether_setup(bond_dev);
1340 bond_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1341 }
1342
1343 call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE,
1344 bond_dev);
1345 }
1346 } else if (bond_dev->type != slave_dev->type) {
1347 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n",
1348 slave_dev->name,
1349 slave_dev->type, bond_dev->type);
1350 res = -EINVAL;
1351 goto err_undo_flags;
1352 }
1353
1354 if (slave_ops->ndo_set_mac_address == NULL) {
1355 if (list_empty(&bond->slave_list)) {
1356 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.",
1357 bond_dev->name);
1358 bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1359 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1360 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n",
1361 bond_dev->name);
1362 res = -EOPNOTSUPP;
1363 goto err_undo_flags;
1364 }
1365 }
1366
1367 call_netdevice_notifiers(NETDEV_JOIN, slave_dev);
1368
1369 /* If this is the first slave, then we need to set the master's hardware
1370 * address to be the same as the slave's. */
1371 if (list_empty(&bond->slave_list) &&
1372 bond->dev->addr_assign_type == NET_ADDR_RANDOM)
1373 bond_set_dev_addr(bond->dev, slave_dev);
1374
1375 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1376 if (!new_slave) {
1377 res = -ENOMEM;
1378 goto err_undo_flags;
1379 }
1380 INIT_LIST_HEAD(&new_slave->list);
1381 /*
1382 * Set the new_slave's queue_id to be zero. Queue ID mapping
1383 * is set via sysfs or module option if desired.
1384 */
1385 new_slave->queue_id = 0;
1386
1387 /* Save slave's original mtu and then set it to match the bond */
1388 new_slave->original_mtu = slave_dev->mtu;
1389 res = dev_set_mtu(slave_dev, bond->dev->mtu);
1390 if (res) {
1391 pr_debug("Error %d calling dev_set_mtu\n", res);
1392 goto err_free;
1393 }
1394
1395 /*
1396 * Save slave's original ("permanent") mac address for modes
1397 * that need it, and for restoring it upon release, and then
1398 * set it to the master's address
1399 */
1400 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1401
1402 if (!bond->params.fail_over_mac) {
1403 /*
1404 * Set slave to master's mac address. The application already
1405 * set the master's mac address to that of the first slave
1406 */
1407 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1408 addr.sa_family = slave_dev->type;
1409 res = dev_set_mac_address(slave_dev, &addr);
1410 if (res) {
1411 pr_debug("Error %d calling set_mac_address\n", res);
1412 goto err_restore_mtu;
1413 }
1414 }
1415
1416 res = bond_master_upper_dev_link(bond_dev, slave_dev);
1417 if (res) {
1418 pr_debug("Error %d calling bond_master_upper_dev_link\n", res);
1419 goto err_restore_mac;
1420 }
1421
1422 /* open the slave since the application closed it */
1423 res = dev_open(slave_dev);
1424 if (res) {
1425 pr_debug("Opening slave %s failed\n", slave_dev->name);
1426 goto err_unset_master;
1427 }
1428
1429 new_slave->bond = bond;
1430 new_slave->dev = slave_dev;
1431 slave_dev->priv_flags |= IFF_BONDING;
1432
1433 if (bond_is_lb(bond)) {
1434 /* bond_alb_init_slave() must be called before all other stages since
1435 * it might fail and we do not want to have to undo everything
1436 */
1437 res = bond_alb_init_slave(bond, new_slave);
1438 if (res)
1439 goto err_close;
1440 }
1441
1442 /* If the mode USES_PRIMARY, then the following is handled by
1443 * bond_change_active_slave().
1444 */
1445 if (!USES_PRIMARY(bond->params.mode)) {
1446 /* set promiscuity level to new slave */
1447 if (bond_dev->flags & IFF_PROMISC) {
1448 res = dev_set_promiscuity(slave_dev, 1);
1449 if (res)
1450 goto err_close;
1451 }
1452
1453 /* set allmulti level to new slave */
1454 if (bond_dev->flags & IFF_ALLMULTI) {
1455 res = dev_set_allmulti(slave_dev, 1);
1456 if (res)
1457 goto err_close;
1458 }
1459
1460 netif_addr_lock_bh(bond_dev);
1461
1462 dev_mc_sync_multiple(slave_dev, bond_dev);
1463 dev_uc_sync_multiple(slave_dev, bond_dev);
1464
1465 netif_addr_unlock_bh(bond_dev);
1466 }
1467
1468 if (bond->params.mode == BOND_MODE_8023AD) {
1469 /* add lacpdu mc addr to mc list */
1470 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1471
1472 dev_mc_add(slave_dev, lacpdu_multicast);
1473 }
1474
1475 res = vlan_vids_add_by_dev(slave_dev, bond_dev);
1476 if (res) {
1477 pr_err("%s: Error: Couldn't add bond vlan ids to %s\n",
1478 bond_dev->name, slave_dev->name);
1479 goto err_close;
1480 }
1481
1482 write_lock_bh(&bond->lock);
1483
1484 bond_attach_slave(bond, new_slave);
1485
1486 new_slave->delay = 0;
1487 new_slave->link_failure_count = 0;
1488
1489 write_unlock_bh(&bond->lock);
1490
1491 bond_compute_features(bond);
1492
1493 bond_update_speed_duplex(new_slave);
1494
1495 read_lock(&bond->lock);
1496
1497 new_slave->last_arp_rx = jiffies -
1498 (msecs_to_jiffies(bond->params.arp_interval) + 1);
1499 for (i = 0; i < BOND_MAX_ARP_TARGETS; i++)
1500 new_slave->target_last_arp_rx[i] = new_slave->last_arp_rx;
1501
1502 if (bond->params.miimon && !bond->params.use_carrier) {
1503 link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1504
1505 if ((link_reporting == -1) && !bond->params.arp_interval) {
1506 /*
1507 * miimon is set but a bonded network driver
1508 * does not support ETHTOOL/MII and
1509 * arp_interval is not set. Note: if
1510 * use_carrier is enabled, we will never go
1511 * here (because netif_carrier is always
1512 * supported); thus, we don't need to change
1513 * the messages for netif_carrier.
1514 */
1515 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n",
1516 bond_dev->name, slave_dev->name);
1517 } else if (link_reporting == -1) {
1518 /* unable get link status using mii/ethtool */
1519 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n",
1520 bond_dev->name, slave_dev->name);
1521 }
1522 }
1523
1524 /* check for initial state */
1525 if (bond->params.miimon) {
1526 if (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS) {
1527 if (bond->params.updelay) {
1528 new_slave->link = BOND_LINK_BACK;
1529 new_slave->delay = bond->params.updelay;
1530 } else {
1531 new_slave->link = BOND_LINK_UP;
1532 }
1533 } else {
1534 new_slave->link = BOND_LINK_DOWN;
1535 }
1536 } else if (bond->params.arp_interval) {
1537 new_slave->link = (netif_carrier_ok(slave_dev) ?
1538 BOND_LINK_UP : BOND_LINK_DOWN);
1539 } else {
1540 new_slave->link = BOND_LINK_UP;
1541 }
1542
1543 if (new_slave->link != BOND_LINK_DOWN)
1544 new_slave->jiffies = jiffies;
1545 pr_debug("Initial state of slave_dev is BOND_LINK_%s\n",
1546 new_slave->link == BOND_LINK_DOWN ? "DOWN" :
1547 (new_slave->link == BOND_LINK_UP ? "UP" : "BACK"));
1548
1549 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1550 /* if there is a primary slave, remember it */
1551 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1552 bond->primary_slave = new_slave;
1553 bond->force_primary = true;
1554 }
1555 }
1556
1557 write_lock_bh(&bond->curr_slave_lock);
1558
1559 switch (bond->params.mode) {
1560 case BOND_MODE_ACTIVEBACKUP:
1561 bond_set_slave_inactive_flags(new_slave);
1562 bond_select_active_slave(bond);
1563 break;
1564 case BOND_MODE_8023AD:
1565 /* in 802.3ad mode, the internal mechanism
1566 * will activate the slaves in the selected
1567 * aggregator
1568 */
1569 bond_set_slave_inactive_flags(new_slave);
1570 /* if this is the first slave */
1571 if (bond_first_slave(bond) == new_slave) {
1572 SLAVE_AD_INFO(new_slave).id = 1;
1573 /* Initialize AD with the number of times that the AD timer is called in 1 second
1574 * can be called only after the mac address of the bond is set
1575 */
1576 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL);
1577 } else {
1578 struct slave *prev_slave;
1579
1580 prev_slave = bond_prev_slave(bond, new_slave);
1581 SLAVE_AD_INFO(new_slave).id =
1582 SLAVE_AD_INFO(prev_slave).id + 1;
1583 }
1584
1585 bond_3ad_bind_slave(new_slave);
1586 break;
1587 case BOND_MODE_TLB:
1588 case BOND_MODE_ALB:
1589 bond_set_active_slave(new_slave);
1590 bond_set_slave_inactive_flags(new_slave);
1591 bond_select_active_slave(bond);
1592 break;
1593 default:
1594 pr_debug("This slave is always active in trunk mode\n");
1595
1596 /* always active in trunk mode */
1597 bond_set_active_slave(new_slave);
1598
1599 /* In trunking mode there is little meaning to curr_active_slave
1600 * anyway (it holds no special properties of the bond device),
1601 * so we can change it without calling change_active_interface()
1602 */
1603 if (!bond->curr_active_slave && new_slave->link == BOND_LINK_UP)
1604 rcu_assign_pointer(bond->curr_active_slave, new_slave);
1605
1606 break;
1607 } /* switch(bond_mode) */
1608
1609 write_unlock_bh(&bond->curr_slave_lock);
1610
1611 bond_set_carrier(bond);
1612
1613 #ifdef CONFIG_NET_POLL_CONTROLLER
1614 slave_dev->npinfo = bond->dev->npinfo;
1615 if (slave_dev->npinfo) {
1616 if (slave_enable_netpoll(new_slave)) {
1617 read_unlock(&bond->lock);
1618 pr_info("Error, %s: master_dev is using netpoll, "
1619 "but new slave device does not support netpoll.\n",
1620 bond_dev->name);
1621 res = -EBUSY;
1622 goto err_detach;
1623 }
1624 }
1625 #endif
1626
1627 read_unlock(&bond->lock);
1628
1629 res = bond_create_slave_symlinks(bond_dev, slave_dev);
1630 if (res)
1631 goto err_detach;
1632
1633 res = netdev_rx_handler_register(slave_dev, bond_handle_frame,
1634 new_slave);
1635 if (res) {
1636 pr_debug("Error %d calling netdev_rx_handler_register\n", res);
1637 goto err_dest_symlinks;
1638 }
1639
1640 pr_info("%s: enslaving %s as a%s interface with a%s link.\n",
1641 bond_dev->name, slave_dev->name,
1642 bond_is_active_slave(new_slave) ? "n active" : " backup",
1643 new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1644
1645 /* enslave is successful */
1646 return 0;
1647
1648 /* Undo stages on error */
1649 err_dest_symlinks:
1650 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1651
1652 err_detach:
1653 if (!USES_PRIMARY(bond->params.mode))
1654 bond_hw_addr_flush(bond_dev, slave_dev);
1655
1656 vlan_vids_del_by_dev(slave_dev, bond_dev);
1657 write_lock_bh(&bond->lock);
1658 bond_detach_slave(bond, new_slave);
1659 if (bond->primary_slave == new_slave)
1660 bond->primary_slave = NULL;
1661 if (bond->curr_active_slave == new_slave) {
1662 bond_change_active_slave(bond, NULL);
1663 write_unlock_bh(&bond->lock);
1664 read_lock(&bond->lock);
1665 write_lock_bh(&bond->curr_slave_lock);
1666 bond_select_active_slave(bond);
1667 write_unlock_bh(&bond->curr_slave_lock);
1668 read_unlock(&bond->lock);
1669 } else {
1670 write_unlock_bh(&bond->lock);
1671 }
1672 slave_disable_netpoll(new_slave);
1673
1674 err_close:
1675 slave_dev->priv_flags &= ~IFF_BONDING;
1676 dev_close(slave_dev);
1677
1678 err_unset_master:
1679 bond_upper_dev_unlink(bond_dev, slave_dev);
1680
1681 err_restore_mac:
1682 if (!bond->params.fail_over_mac) {
1683 /* XXX TODO - fom follow mode needs to change master's
1684 * MAC if this slave's MAC is in use by the bond, or at
1685 * least print a warning.
1686 */
1687 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1688 addr.sa_family = slave_dev->type;
1689 dev_set_mac_address(slave_dev, &addr);
1690 }
1691
1692 err_restore_mtu:
1693 dev_set_mtu(slave_dev, new_slave->original_mtu);
1694
1695 err_free:
1696 kfree(new_slave);
1697
1698 err_undo_flags:
1699 bond_compute_features(bond);
1700 /* Enslave of first slave has failed and we need to fix master's mac */
1701 if (list_empty(&bond->slave_list) &&
1702 ether_addr_equal(bond_dev->dev_addr, slave_dev->dev_addr))
1703 eth_hw_addr_random(bond_dev);
1704
1705 return res;
1706 }
1707
1708 /*
1709 * Try to release the slave device <slave> from the bond device <master>
1710 * It is legal to access curr_active_slave without a lock because all the function
1711 * is write-locked. If "all" is true it means that the function is being called
1712 * while destroying a bond interface and all slaves are being released.
1713 *
1714 * The rules for slave state should be:
1715 * for Active/Backup:
1716 * Active stays on all backups go down
1717 * for Bonded connections:
1718 * The first up interface should be left on and all others downed.
1719 */
1720 static int __bond_release_one(struct net_device *bond_dev,
1721 struct net_device *slave_dev,
1722 bool all)
1723 {
1724 struct bonding *bond = netdev_priv(bond_dev);
1725 struct slave *slave, *oldcurrent;
1726 struct sockaddr addr;
1727 netdev_features_t old_features = bond_dev->features;
1728
1729 /* slave is not a slave or master is not master of this slave */
1730 if (!(slave_dev->flags & IFF_SLAVE) ||
1731 !netdev_has_upper_dev(slave_dev, bond_dev)) {
1732 pr_err("%s: Error: cannot release %s.\n",
1733 bond_dev->name, slave_dev->name);
1734 return -EINVAL;
1735 }
1736
1737 block_netpoll_tx();
1738 write_lock_bh(&bond->lock);
1739
1740 slave = bond_get_slave_by_dev(bond, slave_dev);
1741 if (!slave) {
1742 /* not a slave of this bond */
1743 pr_info("%s: %s not enslaved\n",
1744 bond_dev->name, slave_dev->name);
1745 write_unlock_bh(&bond->lock);
1746 unblock_netpoll_tx();
1747 return -EINVAL;
1748 }
1749
1750 write_unlock_bh(&bond->lock);
1751 /* unregister rx_handler early so bond_handle_frame wouldn't be called
1752 * for this slave anymore.
1753 */
1754 netdev_rx_handler_unregister(slave_dev);
1755 write_lock_bh(&bond->lock);
1756
1757 /* Inform AD package of unbinding of slave. */
1758 if (bond->params.mode == BOND_MODE_8023AD) {
1759 /* must be called before the slave is
1760 * detached from the list
1761 */
1762 bond_3ad_unbind_slave(slave);
1763 }
1764
1765 pr_info("%s: releasing %s interface %s\n",
1766 bond_dev->name,
1767 bond_is_active_slave(slave) ? "active" : "backup",
1768 slave_dev->name);
1769
1770 oldcurrent = bond->curr_active_slave;
1771
1772 bond->current_arp_slave = NULL;
1773
1774 /* release the slave from its bond */
1775 bond_detach_slave(bond, slave);
1776
1777 if (!all && !bond->params.fail_over_mac) {
1778 if (ether_addr_equal(bond_dev->dev_addr, slave->perm_hwaddr) &&
1779 !list_empty(&bond->slave_list))
1780 pr_warn("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n",
1781 bond_dev->name, slave_dev->name,
1782 slave->perm_hwaddr,
1783 bond_dev->name, slave_dev->name);
1784 }
1785
1786 if (bond->primary_slave == slave)
1787 bond->primary_slave = NULL;
1788
1789 if (oldcurrent == slave)
1790 bond_change_active_slave(bond, NULL);
1791
1792 if (bond_is_lb(bond)) {
1793 /* Must be called only after the slave has been
1794 * detached from the list and the curr_active_slave
1795 * has been cleared (if our_slave == old_current),
1796 * but before a new active slave is selected.
1797 */
1798 write_unlock_bh(&bond->lock);
1799 bond_alb_deinit_slave(bond, slave);
1800 write_lock_bh(&bond->lock);
1801 }
1802
1803 if (all) {
1804 rcu_assign_pointer(bond->curr_active_slave, NULL);
1805 } else if (oldcurrent == slave) {
1806 /*
1807 * Note that we hold RTNL over this sequence, so there
1808 * is no concern that another slave add/remove event
1809 * will interfere.
1810 */
1811 write_unlock_bh(&bond->lock);
1812 read_lock(&bond->lock);
1813 write_lock_bh(&bond->curr_slave_lock);
1814
1815 bond_select_active_slave(bond);
1816
1817 write_unlock_bh(&bond->curr_slave_lock);
1818 read_unlock(&bond->lock);
1819 write_lock_bh(&bond->lock);
1820 }
1821
1822 if (list_empty(&bond->slave_list)) {
1823 bond_set_carrier(bond);
1824 eth_hw_addr_random(bond_dev);
1825
1826 if (vlan_uses_dev(bond_dev)) {
1827 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n",
1828 bond_dev->name, bond_dev->name);
1829 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n",
1830 bond_dev->name);
1831 }
1832 }
1833
1834 write_unlock_bh(&bond->lock);
1835 unblock_netpoll_tx();
1836 synchronize_rcu();
1837
1838 if (list_empty(&bond->slave_list)) {
1839 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev);
1840 call_netdevice_notifiers(NETDEV_RELEASE, bond->dev);
1841 }
1842
1843 bond_compute_features(bond);
1844 if (!(bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
1845 (old_features & NETIF_F_VLAN_CHALLENGED))
1846 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n",
1847 bond_dev->name, slave_dev->name, bond_dev->name);
1848
1849 /* must do this from outside any spinlocks */
1850 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1851
1852 vlan_vids_del_by_dev(slave_dev, bond_dev);
1853
1854 /* If the mode USES_PRIMARY, then this cases was handled above by
1855 * bond_change_active_slave(..., NULL)
1856 */
1857 if (!USES_PRIMARY(bond->params.mode)) {
1858 /* unset promiscuity level from slave */
1859 if (bond_dev->flags & IFF_PROMISC)
1860 dev_set_promiscuity(slave_dev, -1);
1861
1862 /* unset allmulti level from slave */
1863 if (bond_dev->flags & IFF_ALLMULTI)
1864 dev_set_allmulti(slave_dev, -1);
1865
1866 bond_hw_addr_flush(bond_dev, slave_dev);
1867 }
1868
1869 bond_upper_dev_unlink(bond_dev, slave_dev);
1870
1871 slave_disable_netpoll(slave);
1872
1873 /* close slave before restoring its mac address */
1874 dev_close(slave_dev);
1875
1876 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1877 /* restore original ("permanent") mac address */
1878 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
1879 addr.sa_family = slave_dev->type;
1880 dev_set_mac_address(slave_dev, &addr);
1881 }
1882
1883 dev_set_mtu(slave_dev, slave->original_mtu);
1884
1885 slave_dev->priv_flags &= ~IFF_BONDING;
1886
1887 kfree(slave);
1888
1889 return 0; /* deletion OK */
1890 }
1891
1892 /* A wrapper used because of ndo_del_link */
1893 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
1894 {
1895 return __bond_release_one(bond_dev, slave_dev, false);
1896 }
1897
1898 /*
1899 * First release a slave and then destroy the bond if no more slaves are left.
1900 * Must be under rtnl_lock when this function is called.
1901 */
1902 static int bond_release_and_destroy(struct net_device *bond_dev,
1903 struct net_device *slave_dev)
1904 {
1905 struct bonding *bond = netdev_priv(bond_dev);
1906 int ret;
1907
1908 ret = bond_release(bond_dev, slave_dev);
1909 if (ret == 0 && list_empty(&bond->slave_list)) {
1910 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL;
1911 pr_info("%s: destroying bond %s.\n",
1912 bond_dev->name, bond_dev->name);
1913 unregister_netdevice(bond_dev);
1914 }
1915 return ret;
1916 }
1917
1918 /*
1919 * This function changes the active slave to slave <slave_dev>.
1920 * It returns -EINVAL in the following cases.
1921 * - <slave_dev> is not found in the list.
1922 * - There is not active slave now.
1923 * - <slave_dev> is already active.
1924 * - The link state of <slave_dev> is not BOND_LINK_UP.
1925 * - <slave_dev> is not running.
1926 * In these cases, this function does nothing.
1927 * In the other cases, current_slave pointer is changed and 0 is returned.
1928 */
1929 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
1930 {
1931 struct bonding *bond = netdev_priv(bond_dev);
1932 struct slave *old_active = NULL;
1933 struct slave *new_active = NULL;
1934 int res = 0;
1935
1936 if (!USES_PRIMARY(bond->params.mode))
1937 return -EINVAL;
1938
1939 /* Verify that bond_dev is indeed the master of slave_dev */
1940 if (!(slave_dev->flags & IFF_SLAVE) ||
1941 !netdev_has_upper_dev(slave_dev, bond_dev))
1942 return -EINVAL;
1943
1944 read_lock(&bond->lock);
1945
1946 old_active = bond->curr_active_slave;
1947 new_active = bond_get_slave_by_dev(bond, slave_dev);
1948 /*
1949 * Changing to the current active: do nothing; return success.
1950 */
1951 if (new_active && new_active == old_active) {
1952 read_unlock(&bond->lock);
1953 return 0;
1954 }
1955
1956 if (new_active &&
1957 old_active &&
1958 new_active->link == BOND_LINK_UP &&
1959 IS_UP(new_active->dev)) {
1960 block_netpoll_tx();
1961 write_lock_bh(&bond->curr_slave_lock);
1962 bond_change_active_slave(bond, new_active);
1963 write_unlock_bh(&bond->curr_slave_lock);
1964 unblock_netpoll_tx();
1965 } else
1966 res = -EINVAL;
1967
1968 read_unlock(&bond->lock);
1969
1970 return res;
1971 }
1972
1973 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
1974 {
1975 struct bonding *bond = netdev_priv(bond_dev);
1976
1977 info->bond_mode = bond->params.mode;
1978 info->miimon = bond->params.miimon;
1979
1980 read_lock(&bond->lock);
1981 info->num_slaves = bond->slave_cnt;
1982 read_unlock(&bond->lock);
1983
1984 return 0;
1985 }
1986
1987 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
1988 {
1989 struct bonding *bond = netdev_priv(bond_dev);
1990 int i = 0, res = -ENODEV;
1991 struct slave *slave;
1992
1993 read_lock(&bond->lock);
1994 bond_for_each_slave(bond, slave) {
1995 if (i++ == (int)info->slave_id) {
1996 res = 0;
1997 strcpy(info->slave_name, slave->dev->name);
1998 info->link = slave->link;
1999 info->state = bond_slave_state(slave);
2000 info->link_failure_count = slave->link_failure_count;
2001 break;
2002 }
2003 }
2004 read_unlock(&bond->lock);
2005
2006 return res;
2007 }
2008
2009 /*-------------------------------- Monitoring -------------------------------*/
2010
2011
2012 static int bond_miimon_inspect(struct bonding *bond)
2013 {
2014 int link_state, commit = 0;
2015 struct slave *slave;
2016 bool ignore_updelay;
2017
2018 ignore_updelay = !bond->curr_active_slave ? true : false;
2019
2020 bond_for_each_slave(bond, slave) {
2021 slave->new_link = BOND_LINK_NOCHANGE;
2022
2023 link_state = bond_check_dev_link(bond, slave->dev, 0);
2024
2025 switch (slave->link) {
2026 case BOND_LINK_UP:
2027 if (link_state)
2028 continue;
2029
2030 slave->link = BOND_LINK_FAIL;
2031 slave->delay = bond->params.downdelay;
2032 if (slave->delay) {
2033 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n",
2034 bond->dev->name,
2035 (bond->params.mode ==
2036 BOND_MODE_ACTIVEBACKUP) ?
2037 (bond_is_active_slave(slave) ?
2038 "active " : "backup ") : "",
2039 slave->dev->name,
2040 bond->params.downdelay * bond->params.miimon);
2041 }
2042 /*FALLTHRU*/
2043 case BOND_LINK_FAIL:
2044 if (link_state) {
2045 /*
2046 * recovered before downdelay expired
2047 */
2048 slave->link = BOND_LINK_UP;
2049 slave->jiffies = jiffies;
2050 pr_info("%s: link status up again after %d ms for interface %s.\n",
2051 bond->dev->name,
2052 (bond->params.downdelay - slave->delay) *
2053 bond->params.miimon,
2054 slave->dev->name);
2055 continue;
2056 }
2057
2058 if (slave->delay <= 0) {
2059 slave->new_link = BOND_LINK_DOWN;
2060 commit++;
2061 continue;
2062 }
2063
2064 slave->delay--;
2065 break;
2066
2067 case BOND_LINK_DOWN:
2068 if (!link_state)
2069 continue;
2070
2071 slave->link = BOND_LINK_BACK;
2072 slave->delay = bond->params.updelay;
2073
2074 if (slave->delay) {
2075 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n",
2076 bond->dev->name, slave->dev->name,
2077 ignore_updelay ? 0 :
2078 bond->params.updelay *
2079 bond->params.miimon);
2080 }
2081 /*FALLTHRU*/
2082 case BOND_LINK_BACK:
2083 if (!link_state) {
2084 slave->link = BOND_LINK_DOWN;
2085 pr_info("%s: link status down again after %d ms for interface %s.\n",
2086 bond->dev->name,
2087 (bond->params.updelay - slave->delay) *
2088 bond->params.miimon,
2089 slave->dev->name);
2090
2091 continue;
2092 }
2093
2094 if (ignore_updelay)
2095 slave->delay = 0;
2096
2097 if (slave->delay <= 0) {
2098 slave->new_link = BOND_LINK_UP;
2099 commit++;
2100 ignore_updelay = false;
2101 continue;
2102 }
2103
2104 slave->delay--;
2105 break;
2106 }
2107 }
2108
2109 return commit;
2110 }
2111
2112 static void bond_miimon_commit(struct bonding *bond)
2113 {
2114 struct slave *slave;
2115
2116 bond_for_each_slave(bond, slave) {
2117 switch (slave->new_link) {
2118 case BOND_LINK_NOCHANGE:
2119 continue;
2120
2121 case BOND_LINK_UP:
2122 slave->link = BOND_LINK_UP;
2123 slave->jiffies = jiffies;
2124
2125 if (bond->params.mode == BOND_MODE_8023AD) {
2126 /* prevent it from being the active one */
2127 bond_set_backup_slave(slave);
2128 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2129 /* make it immediately active */
2130 bond_set_active_slave(slave);
2131 } else if (slave != bond->primary_slave) {
2132 /* prevent it from being the active one */
2133 bond_set_backup_slave(slave);
2134 }
2135
2136 pr_info("%s: link status definitely up for interface %s, %u Mbps %s duplex.\n",
2137 bond->dev->name, slave->dev->name,
2138 slave->speed == SPEED_UNKNOWN ? 0 : slave->speed,
2139 slave->duplex ? "full" : "half");
2140
2141 /* notify ad that the link status has changed */
2142 if (bond->params.mode == BOND_MODE_8023AD)
2143 bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2144
2145 if (bond_is_lb(bond))
2146 bond_alb_handle_link_change(bond, slave,
2147 BOND_LINK_UP);
2148
2149 if (!bond->curr_active_slave ||
2150 (slave == bond->primary_slave))
2151 goto do_failover;
2152
2153 continue;
2154
2155 case BOND_LINK_DOWN:
2156 if (slave->link_failure_count < UINT_MAX)
2157 slave->link_failure_count++;
2158
2159 slave->link = BOND_LINK_DOWN;
2160
2161 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2162 bond->params.mode == BOND_MODE_8023AD)
2163 bond_set_slave_inactive_flags(slave);
2164
2165 pr_info("%s: link status definitely down for interface %s, disabling it\n",
2166 bond->dev->name, slave->dev->name);
2167
2168 if (bond->params.mode == BOND_MODE_8023AD)
2169 bond_3ad_handle_link_change(slave,
2170 BOND_LINK_DOWN);
2171
2172 if (bond_is_lb(bond))
2173 bond_alb_handle_link_change(bond, slave,
2174 BOND_LINK_DOWN);
2175
2176 if (slave == bond->curr_active_slave)
2177 goto do_failover;
2178
2179 continue;
2180
2181 default:
2182 pr_err("%s: invalid new link %d on slave %s\n",
2183 bond->dev->name, slave->new_link,
2184 slave->dev->name);
2185 slave->new_link = BOND_LINK_NOCHANGE;
2186
2187 continue;
2188 }
2189
2190 do_failover:
2191 ASSERT_RTNL();
2192 block_netpoll_tx();
2193 write_lock_bh(&bond->curr_slave_lock);
2194 bond_select_active_slave(bond);
2195 write_unlock_bh(&bond->curr_slave_lock);
2196 unblock_netpoll_tx();
2197 }
2198
2199 bond_set_carrier(bond);
2200 }
2201
2202 /*
2203 * bond_mii_monitor
2204 *
2205 * Really a wrapper that splits the mii monitor into two phases: an
2206 * inspection, then (if inspection indicates something needs to be done)
2207 * an acquisition of appropriate locks followed by a commit phase to
2208 * implement whatever link state changes are indicated.
2209 */
2210 void bond_mii_monitor(struct work_struct *work)
2211 {
2212 struct bonding *bond = container_of(work, struct bonding,
2213 mii_work.work);
2214 bool should_notify_peers = false;
2215 unsigned long delay;
2216
2217 read_lock(&bond->lock);
2218
2219 delay = msecs_to_jiffies(bond->params.miimon);
2220
2221 if (list_empty(&bond->slave_list))
2222 goto re_arm;
2223
2224 should_notify_peers = bond_should_notify_peers(bond);
2225
2226 if (bond_miimon_inspect(bond)) {
2227 read_unlock(&bond->lock);
2228
2229 /* Race avoidance with bond_close cancel of workqueue */
2230 if (!rtnl_trylock()) {
2231 read_lock(&bond->lock);
2232 delay = 1;
2233 should_notify_peers = false;
2234 goto re_arm;
2235 }
2236
2237 read_lock(&bond->lock);
2238
2239 bond_miimon_commit(bond);
2240
2241 read_unlock(&bond->lock);
2242 rtnl_unlock(); /* might sleep, hold no other locks */
2243 read_lock(&bond->lock);
2244 }
2245
2246 re_arm:
2247 if (bond->params.miimon)
2248 queue_delayed_work(bond->wq, &bond->mii_work, delay);
2249
2250 read_unlock(&bond->lock);
2251
2252 if (should_notify_peers) {
2253 if (!rtnl_trylock())
2254 return;
2255 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev);
2256 rtnl_unlock();
2257 }
2258 }
2259
2260 static bool bond_has_this_ip(struct bonding *bond, __be32 ip)
2261 {
2262 struct net_device *upper;
2263 struct list_head *iter;
2264 bool ret = false;
2265
2266 if (ip == bond_confirm_addr(bond->dev, 0, ip))
2267 return true;
2268
2269 rcu_read_lock();
2270 netdev_for_each_upper_dev_rcu(bond->dev, upper, iter) {
2271 if (ip == bond_confirm_addr(upper, 0, ip)) {
2272 ret = true;
2273 break;
2274 }
2275 }
2276 rcu_read_unlock();
2277
2278 return ret;
2279 }
2280
2281 /*
2282 * We go to the (large) trouble of VLAN tagging ARP frames because
2283 * switches in VLAN mode (especially if ports are configured as
2284 * "native" to a VLAN) might not pass non-tagged frames.
2285 */
2286 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2287 {
2288 struct sk_buff *skb;
2289
2290 pr_debug("arp %d on slave %s: dst %pI4 src %pI4 vid %d\n", arp_op,
2291 slave_dev->name, &dest_ip, &src_ip, vlan_id);
2292
2293 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2294 NULL, slave_dev->dev_addr, NULL);
2295
2296 if (!skb) {
2297 pr_err("ARP packet allocation failed\n");
2298 return;
2299 }
2300 if (vlan_id) {
2301 skb = vlan_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2302 if (!skb) {
2303 pr_err("failed to insert VLAN tag\n");
2304 return;
2305 }
2306 }
2307 arp_xmit(skb);
2308 }
2309
2310
2311 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2312 {
2313 struct net_device *upper, *vlan_upper;
2314 struct list_head *iter, *vlan_iter;
2315 struct rtable *rt;
2316 __be32 *targets = bond->params.arp_targets, addr;
2317 int i, vlan_id;
2318
2319 for (i = 0; i < BOND_MAX_ARP_TARGETS && targets[i]; i++) {
2320 pr_debug("basa: target %pI4\n", &targets[i]);
2321
2322 /* Find out through which dev should the packet go */
2323 rt = ip_route_output(dev_net(bond->dev), targets[i], 0,
2324 RTO_ONLINK, 0);
2325 if (IS_ERR(rt)) {
2326 pr_debug("%s: no route to arp_ip_target %pI4\n",
2327 bond->dev->name, &targets[i]);
2328 continue;
2329 }
2330
2331 vlan_id = 0;
2332
2333 /* bond device itself */
2334 if (rt->dst.dev == bond->dev)
2335 goto found;
2336
2337 rcu_read_lock();
2338 /* first we search only for vlan devices. for every vlan
2339 * found we verify its upper dev list, searching for the
2340 * rt->dst.dev. If found we save the tag of the vlan and
2341 * proceed to send the packet.
2342 *
2343 * TODO: QinQ?
2344 */
2345 netdev_for_each_upper_dev_rcu(bond->dev, vlan_upper, vlan_iter) {
2346 if (!is_vlan_dev(vlan_upper))
2347 continue;
2348 netdev_for_each_upper_dev_rcu(vlan_upper, upper, iter) {
2349 if (upper == rt->dst.dev) {
2350 vlan_id = vlan_dev_vlan_id(vlan_upper);
2351 rcu_read_unlock();
2352 goto found;
2353 }
2354 }
2355 }
2356
2357 /* if the device we're looking for is not on top of any of
2358 * our upper vlans, then just search for any dev that
2359 * matches, and in case it's a vlan - save the id
2360 */
2361 netdev_for_each_upper_dev_rcu(bond->dev, upper, iter) {
2362 if (upper == rt->dst.dev) {
2363 /* if it's a vlan - get its VID */
2364 if (is_vlan_dev(upper))
2365 vlan_id = vlan_dev_vlan_id(upper);
2366
2367 rcu_read_unlock();
2368 goto found;
2369 }
2370 }
2371 rcu_read_unlock();
2372
2373 /* Not our device - skip */
2374 pr_debug("%s: no path to arp_ip_target %pI4 via rt.dev %s\n",
2375 bond->dev->name, &targets[i],
2376 rt->dst.dev ? rt->dst.dev->name : "NULL");
2377
2378 ip_rt_put(rt);
2379 continue;
2380
2381 found:
2382 addr = bond_confirm_addr(rt->dst.dev, targets[i], 0);
2383 ip_rt_put(rt);
2384 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2385 addr, vlan_id);
2386 }
2387 }
2388
2389 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2390 {
2391 int i;
2392
2393 if (!sip || !bond_has_this_ip(bond, tip)) {
2394 pr_debug("bva: sip %pI4 tip %pI4 not found\n", &sip, &tip);
2395 return;
2396 }
2397
2398 i = bond_get_targets_ip(bond->params.arp_targets, sip);
2399 if (i == -1) {
2400 pr_debug("bva: sip %pI4 not found in targets\n", &sip);
2401 return;
2402 }
2403 slave->last_arp_rx = jiffies;
2404 slave->target_last_arp_rx[i] = jiffies;
2405 }
2406
2407 int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond,
2408 struct slave *slave)
2409 {
2410 struct arphdr *arp = (struct arphdr *)skb->data;
2411 unsigned char *arp_ptr;
2412 __be32 sip, tip;
2413 int alen;
2414
2415 if (skb->protocol != __cpu_to_be16(ETH_P_ARP))
2416 return RX_HANDLER_ANOTHER;
2417
2418 read_lock(&bond->lock);
2419
2420 if (!slave_do_arp_validate(bond, slave))
2421 goto out_unlock;
2422
2423 alen = arp_hdr_len(bond->dev);
2424
2425 pr_debug("bond_arp_rcv: bond %s skb->dev %s\n",
2426 bond->dev->name, skb->dev->name);
2427
2428 if (alen > skb_headlen(skb)) {
2429 arp = kmalloc(alen, GFP_ATOMIC);
2430 if (!arp)
2431 goto out_unlock;
2432 if (skb_copy_bits(skb, 0, arp, alen) < 0)
2433 goto out_unlock;
2434 }
2435
2436 if (arp->ar_hln != bond->dev->addr_len ||
2437 skb->pkt_type == PACKET_OTHERHOST ||
2438 skb->pkt_type == PACKET_LOOPBACK ||
2439 arp->ar_hrd != htons(ARPHRD_ETHER) ||
2440 arp->ar_pro != htons(ETH_P_IP) ||
2441 arp->ar_pln != 4)
2442 goto out_unlock;
2443
2444 arp_ptr = (unsigned char *)(arp + 1);
2445 arp_ptr += bond->dev->addr_len;
2446 memcpy(&sip, arp_ptr, 4);
2447 arp_ptr += 4 + bond->dev->addr_len;
2448 memcpy(&tip, arp_ptr, 4);
2449
2450 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n",
2451 bond->dev->name, slave->dev->name, bond_slave_state(slave),
2452 bond->params.arp_validate, slave_do_arp_validate(bond, slave),
2453 &sip, &tip);
2454
2455 /*
2456 * Backup slaves won't see the ARP reply, but do come through
2457 * here for each ARP probe (so we swap the sip/tip to validate
2458 * the probe). In a "redundant switch, common router" type of
2459 * configuration, the ARP probe will (hopefully) travel from
2460 * the active, through one switch, the router, then the other
2461 * switch before reaching the backup.
2462 *
2463 * We 'trust' the arp requests if there is an active slave and
2464 * it received valid arp reply(s) after it became active. This
2465 * is done to avoid endless looping when we can't reach the
2466 * arp_ip_target and fool ourselves with our own arp requests.
2467 */
2468 if (bond_is_active_slave(slave))
2469 bond_validate_arp(bond, slave, sip, tip);
2470 else if (bond->curr_active_slave &&
2471 time_after(slave_last_rx(bond, bond->curr_active_slave),
2472 bond->curr_active_slave->jiffies))
2473 bond_validate_arp(bond, slave, tip, sip);
2474
2475 out_unlock:
2476 read_unlock(&bond->lock);
2477 if (arp != (struct arphdr *)skb->data)
2478 kfree(arp);
2479 return RX_HANDLER_ANOTHER;
2480 }
2481
2482 /* function to verify if we're in the arp_interval timeslice, returns true if
2483 * (last_act - arp_interval) <= jiffies <= (last_act + mod * arp_interval +
2484 * arp_interval/2) . the arp_interval/2 is needed for really fast networks.
2485 */
2486 static bool bond_time_in_interval(struct bonding *bond, unsigned long last_act,
2487 int mod)
2488 {
2489 int delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2490
2491 return time_in_range(jiffies,
2492 last_act - delta_in_ticks,
2493 last_act + mod * delta_in_ticks + delta_in_ticks/2);
2494 }
2495
2496 /*
2497 * this function is called regularly to monitor each slave's link
2498 * ensuring that traffic is being sent and received when arp monitoring
2499 * is used in load-balancing mode. if the adapter has been dormant, then an
2500 * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2501 * arp monitoring in active backup mode.
2502 */
2503 void bond_loadbalance_arp_mon(struct work_struct *work)
2504 {
2505 struct bonding *bond = container_of(work, struct bonding,
2506 arp_work.work);
2507 struct slave *slave, *oldcurrent;
2508 int do_failover = 0;
2509
2510 read_lock(&bond->lock);
2511
2512 if (list_empty(&bond->slave_list))
2513 goto re_arm;
2514
2515 oldcurrent = bond->curr_active_slave;
2516 /* see if any of the previous devices are up now (i.e. they have
2517 * xmt and rcv traffic). the curr_active_slave does not come into
2518 * the picture unless it is null. also, slave->jiffies is not needed
2519 * here because we send an arp on each slave and give a slave as
2520 * long as it needs to get the tx/rx within the delta.
2521 * TODO: what about up/down delay in arp mode? it wasn't here before
2522 * so it can wait
2523 */
2524 bond_for_each_slave(bond, slave) {
2525 unsigned long trans_start = dev_trans_start(slave->dev);
2526
2527 if (slave->link != BOND_LINK_UP) {
2528 if (bond_time_in_interval(bond, trans_start, 1) &&
2529 bond_time_in_interval(bond, slave->dev->last_rx, 1)) {
2530
2531 slave->link = BOND_LINK_UP;
2532 bond_set_active_slave(slave);
2533
2534 /* primary_slave has no meaning in round-robin
2535 * mode. the window of a slave being up and
2536 * curr_active_slave being null after enslaving
2537 * is closed.
2538 */
2539 if (!oldcurrent) {
2540 pr_info("%s: link status definitely up for interface %s, ",
2541 bond->dev->name,
2542 slave->dev->name);
2543 do_failover = 1;
2544 } else {
2545 pr_info("%s: interface %s is now up\n",
2546 bond->dev->name,
2547 slave->dev->name);
2548 }
2549 }
2550 } else {
2551 /* slave->link == BOND_LINK_UP */
2552
2553 /* not all switches will respond to an arp request
2554 * when the source ip is 0, so don't take the link down
2555 * if we don't know our ip yet
2556 */
2557 if (!bond_time_in_interval(bond, trans_start, 2) ||
2558 !bond_time_in_interval(bond, slave->dev->last_rx, 2)) {
2559
2560 slave->link = BOND_LINK_DOWN;
2561 bond_set_backup_slave(slave);
2562
2563 if (slave->link_failure_count < UINT_MAX)
2564 slave->link_failure_count++;
2565
2566 pr_info("%s: interface %s is now down.\n",
2567 bond->dev->name,
2568 slave->dev->name);
2569
2570 if (slave == oldcurrent)
2571 do_failover = 1;
2572 }
2573 }
2574
2575 /* note: if switch is in round-robin mode, all links
2576 * must tx arp to ensure all links rx an arp - otherwise
2577 * links may oscillate or not come up at all; if switch is
2578 * in something like xor mode, there is nothing we can
2579 * do - all replies will be rx'ed on same link causing slaves
2580 * to be unstable during low/no traffic periods
2581 */
2582 if (IS_UP(slave->dev))
2583 bond_arp_send_all(bond, slave);
2584 }
2585
2586 if (do_failover) {
2587 block_netpoll_tx();
2588 write_lock_bh(&bond->curr_slave_lock);
2589
2590 bond_select_active_slave(bond);
2591
2592 write_unlock_bh(&bond->curr_slave_lock);
2593 unblock_netpoll_tx();
2594 }
2595
2596 re_arm:
2597 if (bond->params.arp_interval)
2598 queue_delayed_work(bond->wq, &bond->arp_work,
2599 msecs_to_jiffies(bond->params.arp_interval));
2600
2601 read_unlock(&bond->lock);
2602 }
2603
2604 /*
2605 * Called to inspect slaves for active-backup mode ARP monitor link state
2606 * changes. Sets new_link in slaves to specify what action should take
2607 * place for the slave. Returns 0 if no changes are found, >0 if changes
2608 * to link states must be committed.
2609 *
2610 * Called with bond->lock held for read.
2611 */
2612 static int bond_ab_arp_inspect(struct bonding *bond)
2613 {
2614 unsigned long trans_start, last_rx;
2615 struct slave *slave;
2616 int commit = 0;
2617
2618 bond_for_each_slave(bond, slave) {
2619 slave->new_link = BOND_LINK_NOCHANGE;
2620 last_rx = slave_last_rx(bond, slave);
2621
2622 if (slave->link != BOND_LINK_UP) {
2623 if (bond_time_in_interval(bond, last_rx, 1)) {
2624 slave->new_link = BOND_LINK_UP;
2625 commit++;
2626 }
2627 continue;
2628 }
2629
2630 /*
2631 * Give slaves 2*delta after being enslaved or made
2632 * active. This avoids bouncing, as the last receive
2633 * times need a full ARP monitor cycle to be updated.
2634 */
2635 if (bond_time_in_interval(bond, slave->jiffies, 2))
2636 continue;
2637
2638 /*
2639 * Backup slave is down if:
2640 * - No current_arp_slave AND
2641 * - more than 3*delta since last receive AND
2642 * - the bond has an IP address
2643 *
2644 * Note: a non-null current_arp_slave indicates
2645 * the curr_active_slave went down and we are
2646 * searching for a new one; under this condition
2647 * we only take the curr_active_slave down - this
2648 * gives each slave a chance to tx/rx traffic
2649 * before being taken out
2650 */
2651 if (!bond_is_active_slave(slave) &&
2652 !bond->current_arp_slave &&
2653 !bond_time_in_interval(bond, last_rx, 3)) {
2654 slave->new_link = BOND_LINK_DOWN;
2655 commit++;
2656 }
2657
2658 /*
2659 * Active slave is down if:
2660 * - more than 2*delta since transmitting OR
2661 * - (more than 2*delta since receive AND
2662 * the bond has an IP address)
2663 */
2664 trans_start = dev_trans_start(slave->dev);
2665 if (bond_is_active_slave(slave) &&
2666 (!bond_time_in_interval(bond, trans_start, 2) ||
2667 !bond_time_in_interval(bond, last_rx, 2))) {
2668 slave->new_link = BOND_LINK_DOWN;
2669 commit++;
2670 }
2671 }
2672
2673 return commit;
2674 }
2675
2676 /*
2677 * Called to commit link state changes noted by inspection step of
2678 * active-backup mode ARP monitor.
2679 *
2680 * Called with RTNL and bond->lock for read.
2681 */
2682 static void bond_ab_arp_commit(struct bonding *bond)
2683 {
2684 unsigned long trans_start;
2685 struct slave *slave;
2686
2687 bond_for_each_slave(bond, slave) {
2688 switch (slave->new_link) {
2689 case BOND_LINK_NOCHANGE:
2690 continue;
2691
2692 case BOND_LINK_UP:
2693 trans_start = dev_trans_start(slave->dev);
2694 if (bond->curr_active_slave != slave ||
2695 (!bond->curr_active_slave &&
2696 bond_time_in_interval(bond, trans_start, 1))) {
2697 slave->link = BOND_LINK_UP;
2698 if (bond->current_arp_slave) {
2699 bond_set_slave_inactive_flags(
2700 bond->current_arp_slave);
2701 bond->current_arp_slave = NULL;
2702 }
2703
2704 pr_info("%s: link status definitely up for interface %s.\n",
2705 bond->dev->name, slave->dev->name);
2706
2707 if (!bond->curr_active_slave ||
2708 (slave == bond->primary_slave))
2709 goto do_failover;
2710
2711 }
2712
2713 continue;
2714
2715 case BOND_LINK_DOWN:
2716 if (slave->link_failure_count < UINT_MAX)
2717 slave->link_failure_count++;
2718
2719 slave->link = BOND_LINK_DOWN;
2720 bond_set_slave_inactive_flags(slave);
2721
2722 pr_info("%s: link status definitely down for interface %s, disabling it\n",
2723 bond->dev->name, slave->dev->name);
2724
2725 if (slave == bond->curr_active_slave) {
2726 bond->current_arp_slave = NULL;
2727 goto do_failover;
2728 }
2729
2730 continue;
2731
2732 default:
2733 pr_err("%s: impossible: new_link %d on slave %s\n",
2734 bond->dev->name, slave->new_link,
2735 slave->dev->name);
2736 continue;
2737 }
2738
2739 do_failover:
2740 ASSERT_RTNL();
2741 block_netpoll_tx();
2742 write_lock_bh(&bond->curr_slave_lock);
2743 bond_select_active_slave(bond);
2744 write_unlock_bh(&bond->curr_slave_lock);
2745 unblock_netpoll_tx();
2746 }
2747
2748 bond_set_carrier(bond);
2749 }
2750
2751 /*
2752 * Send ARP probes for active-backup mode ARP monitor.
2753 *
2754 * Called with bond->lock held for read.
2755 */
2756 static void bond_ab_arp_probe(struct bonding *bond)
2757 {
2758 struct slave *slave, *next_slave;
2759 int i;
2760
2761 read_lock(&bond->curr_slave_lock);
2762
2763 if (bond->current_arp_slave && bond->curr_active_slave)
2764 pr_info("PROBE: c_arp %s && cas %s BAD\n",
2765 bond->current_arp_slave->dev->name,
2766 bond->curr_active_slave->dev->name);
2767
2768 if (bond->curr_active_slave) {
2769 bond_arp_send_all(bond, bond->curr_active_slave);
2770 read_unlock(&bond->curr_slave_lock);
2771 return;
2772 }
2773
2774 read_unlock(&bond->curr_slave_lock);
2775
2776 /* if we don't have a curr_active_slave, search for the next available
2777 * backup slave from the current_arp_slave and make it the candidate
2778 * for becoming the curr_active_slave
2779 */
2780
2781 if (!bond->current_arp_slave) {
2782 bond->current_arp_slave = bond_first_slave(bond);
2783 if (!bond->current_arp_slave)
2784 return;
2785 }
2786
2787 bond_set_slave_inactive_flags(bond->current_arp_slave);
2788
2789 /* search for next candidate */
2790 next_slave = bond_next_slave(bond, bond->current_arp_slave);
2791 bond_for_each_slave_from(bond, slave, i, next_slave) {
2792 if (IS_UP(slave->dev)) {
2793 slave->link = BOND_LINK_BACK;
2794 bond_set_slave_active_flags(slave);
2795 bond_arp_send_all(bond, slave);
2796 slave->jiffies = jiffies;
2797 bond->current_arp_slave = slave;
2798 break;
2799 }
2800
2801 /* if the link state is up at this point, we
2802 * mark it down - this can happen if we have
2803 * simultaneous link failures and
2804 * reselect_active_interface doesn't make this
2805 * one the current slave so it is still marked
2806 * up when it is actually down
2807 */
2808 if (slave->link == BOND_LINK_UP) {
2809 slave->link = BOND_LINK_DOWN;
2810 if (slave->link_failure_count < UINT_MAX)
2811 slave->link_failure_count++;
2812
2813 bond_set_slave_inactive_flags(slave);
2814
2815 pr_info("%s: backup interface %s is now down.\n",
2816 bond->dev->name, slave->dev->name);
2817 }
2818 }
2819 }
2820
2821 void bond_activebackup_arp_mon(struct work_struct *work)
2822 {
2823 struct bonding *bond = container_of(work, struct bonding,
2824 arp_work.work);
2825 bool should_notify_peers = false;
2826 int delta_in_ticks;
2827
2828 read_lock(&bond->lock);
2829
2830 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2831
2832 if (list_empty(&bond->slave_list))
2833 goto re_arm;
2834
2835 should_notify_peers = bond_should_notify_peers(bond);
2836
2837 if (bond_ab_arp_inspect(bond)) {
2838 read_unlock(&bond->lock);
2839
2840 /* Race avoidance with bond_close flush of workqueue */
2841 if (!rtnl_trylock()) {
2842 read_lock(&bond->lock);
2843 delta_in_ticks = 1;
2844 should_notify_peers = false;
2845 goto re_arm;
2846 }
2847
2848 read_lock(&bond->lock);
2849
2850 bond_ab_arp_commit(bond);
2851
2852 read_unlock(&bond->lock);
2853 rtnl_unlock();
2854 read_lock(&bond->lock);
2855 }
2856
2857 bond_ab_arp_probe(bond);
2858
2859 re_arm:
2860 if (bond->params.arp_interval)
2861 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2862
2863 read_unlock(&bond->lock);
2864
2865 if (should_notify_peers) {
2866 if (!rtnl_trylock())
2867 return;
2868 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev);
2869 rtnl_unlock();
2870 }
2871 }
2872
2873 /*-------------------------- netdev event handling --------------------------*/
2874
2875 /*
2876 * Change device name
2877 */
2878 static int bond_event_changename(struct bonding *bond)
2879 {
2880 bond_remove_proc_entry(bond);
2881 bond_create_proc_entry(bond);
2882
2883 bond_debug_reregister(bond);
2884
2885 return NOTIFY_DONE;
2886 }
2887
2888 static int bond_master_netdev_event(unsigned long event,
2889 struct net_device *bond_dev)
2890 {
2891 struct bonding *event_bond = netdev_priv(bond_dev);
2892
2893 switch (event) {
2894 case NETDEV_CHANGENAME:
2895 return bond_event_changename(event_bond);
2896 case NETDEV_UNREGISTER:
2897 bond_remove_proc_entry(event_bond);
2898 break;
2899 case NETDEV_REGISTER:
2900 bond_create_proc_entry(event_bond);
2901 break;
2902 case NETDEV_NOTIFY_PEERS:
2903 if (event_bond->send_peer_notif)
2904 event_bond->send_peer_notif--;
2905 break;
2906 default:
2907 break;
2908 }
2909
2910 return NOTIFY_DONE;
2911 }
2912
2913 static int bond_slave_netdev_event(unsigned long event,
2914 struct net_device *slave_dev)
2915 {
2916 struct slave *slave = bond_slave_get_rtnl(slave_dev);
2917 struct bonding *bond;
2918 struct net_device *bond_dev;
2919 u32 old_speed;
2920 u8 old_duplex;
2921
2922 /* A netdev event can be generated while enslaving a device
2923 * before netdev_rx_handler_register is called in which case
2924 * slave will be NULL
2925 */
2926 if (!slave)
2927 return NOTIFY_DONE;
2928 bond_dev = slave->bond->dev;
2929 bond = slave->bond;
2930
2931 switch (event) {
2932 case NETDEV_UNREGISTER:
2933 if (bond_dev->type != ARPHRD_ETHER)
2934 bond_release_and_destroy(bond_dev, slave_dev);
2935 else
2936 bond_release(bond_dev, slave_dev);
2937 break;
2938 case NETDEV_UP:
2939 case NETDEV_CHANGE:
2940 old_speed = slave->speed;
2941 old_duplex = slave->duplex;
2942
2943 bond_update_speed_duplex(slave);
2944
2945 if (bond->params.mode == BOND_MODE_8023AD) {
2946 if (old_speed != slave->speed)
2947 bond_3ad_adapter_speed_changed(slave);
2948 if (old_duplex != slave->duplex)
2949 bond_3ad_adapter_duplex_changed(slave);
2950 }
2951 break;
2952 case NETDEV_DOWN:
2953 /*
2954 * ... Or is it this?
2955 */
2956 break;
2957 case NETDEV_CHANGEMTU:
2958 /*
2959 * TODO: Should slaves be allowed to
2960 * independently alter their MTU? For
2961 * an active-backup bond, slaves need
2962 * not be the same type of device, so
2963 * MTUs may vary. For other modes,
2964 * slaves arguably should have the
2965 * same MTUs. To do this, we'd need to
2966 * take over the slave's change_mtu
2967 * function for the duration of their
2968 * servitude.
2969 */
2970 break;
2971 case NETDEV_CHANGENAME:
2972 /*
2973 * TODO: handle changing the primary's name
2974 */
2975 break;
2976 case NETDEV_FEAT_CHANGE:
2977 bond_compute_features(bond);
2978 break;
2979 case NETDEV_RESEND_IGMP:
2980 /* Propagate to master device */
2981 call_netdevice_notifiers(event, slave->bond->dev);
2982 break;
2983 default:
2984 break;
2985 }
2986
2987 return NOTIFY_DONE;
2988 }
2989
2990 /*
2991 * bond_netdev_event: handle netdev notifier chain events.
2992 *
2993 * This function receives events for the netdev chain. The caller (an
2994 * ioctl handler calling blocking_notifier_call_chain) holds the necessary
2995 * locks for us to safely manipulate the slave devices (RTNL lock,
2996 * dev_probe_lock).
2997 */
2998 static int bond_netdev_event(struct notifier_block *this,
2999 unsigned long event, void *ptr)
3000 {
3001 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
3002
3003 pr_debug("event_dev: %s, event: %lx\n",
3004 event_dev ? event_dev->name : "None",
3005 event);
3006
3007 if (!(event_dev->priv_flags & IFF_BONDING))
3008 return NOTIFY_DONE;
3009
3010 if (event_dev->flags & IFF_MASTER) {
3011 pr_debug("IFF_MASTER\n");
3012 return bond_master_netdev_event(event, event_dev);
3013 }
3014
3015 if (event_dev->flags & IFF_SLAVE) {
3016 pr_debug("IFF_SLAVE\n");
3017 return bond_slave_netdev_event(event, event_dev);
3018 }
3019
3020 return NOTIFY_DONE;
3021 }
3022
3023 static struct notifier_block bond_netdev_notifier = {
3024 .notifier_call = bond_netdev_event,
3025 };
3026
3027 /*---------------------------- Hashing Policies -----------------------------*/
3028
3029 /*
3030 * Hash for the output device based upon layer 2 data
3031 */
3032 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count)
3033 {
3034 struct ethhdr *data = (struct ethhdr *)skb->data;
3035
3036 if (skb_headlen(skb) >= offsetof(struct ethhdr, h_proto))
3037 return (data->h_dest[5] ^ data->h_source[5]) % count;
3038
3039 return 0;
3040 }
3041
3042 /*
3043 * Hash for the output device based upon layer 2 and layer 3 data. If
3044 * the packet is not IP, fall back on bond_xmit_hash_policy_l2()
3045 */
3046 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count)
3047 {
3048 const struct ethhdr *data;
3049 const struct iphdr *iph;
3050 const struct ipv6hdr *ipv6h;
3051 u32 v6hash;
3052 const __be32 *s, *d;
3053
3054 if (skb->protocol == htons(ETH_P_IP) &&
3055 pskb_network_may_pull(skb, sizeof(*iph))) {
3056 iph = ip_hdr(skb);
3057 data = (struct ethhdr *)skb->data;
3058 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3059 (data->h_dest[5] ^ data->h_source[5])) % count;
3060 } else if (skb->protocol == htons(ETH_P_IPV6) &&
3061 pskb_network_may_pull(skb, sizeof(*ipv6h))) {
3062 ipv6h = ipv6_hdr(skb);
3063 data = (struct ethhdr *)skb->data;
3064 s = &ipv6h->saddr.s6_addr32[0];
3065 d = &ipv6h->daddr.s6_addr32[0];
3066 v6hash = (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
3067 v6hash ^= (v6hash >> 24) ^ (v6hash >> 16) ^ (v6hash >> 8);
3068 return (v6hash ^ data->h_dest[5] ^ data->h_source[5]) % count;
3069 }
3070
3071 return bond_xmit_hash_policy_l2(skb, count);
3072 }
3073
3074 /*
3075 * Hash for the output device based upon layer 3 and layer 4 data. If
3076 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
3077 * altogether not IP, fall back on bond_xmit_hash_policy_l2()
3078 */
3079 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count)
3080 {
3081 u32 layer4_xor = 0;
3082 const struct iphdr *iph;
3083 const struct ipv6hdr *ipv6h;
3084 const __be32 *s, *d;
3085 const __be16 *l4 = NULL;
3086 __be16 _l4[2];
3087 int noff = skb_network_offset(skb);
3088 int poff;
3089
3090 if (skb->protocol == htons(ETH_P_IP) &&
3091 pskb_may_pull(skb, noff + sizeof(*iph))) {
3092 iph = ip_hdr(skb);
3093 poff = proto_ports_offset(iph->protocol);
3094
3095 if (!ip_is_fragment(iph) && poff >= 0) {
3096 l4 = skb_header_pointer(skb, noff + (iph->ihl << 2) + poff,
3097 sizeof(_l4), &_l4);
3098 if (l4)
3099 layer4_xor = ntohs(l4[0] ^ l4[1]);
3100 }
3101 return (layer4_xor ^
3102 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3103 } else if (skb->protocol == htons(ETH_P_IPV6) &&
3104 pskb_may_pull(skb, noff + sizeof(*ipv6h))) {
3105 ipv6h = ipv6_hdr(skb);
3106 poff = proto_ports_offset(ipv6h->nexthdr);
3107 if (poff >= 0) {
3108 l4 = skb_header_pointer(skb, noff + sizeof(*ipv6h) + poff,
3109 sizeof(_l4), &_l4);
3110 if (l4)
3111 layer4_xor = ntohs(l4[0] ^ l4[1]);
3112 }
3113 s = &ipv6h->saddr.s6_addr32[0];
3114 d = &ipv6h->daddr.s6_addr32[0];
3115 layer4_xor ^= (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
3116 layer4_xor ^= (layer4_xor >> 24) ^ (layer4_xor >> 16) ^
3117 (layer4_xor >> 8);
3118 return layer4_xor % count;
3119 }
3120
3121 return bond_xmit_hash_policy_l2(skb, count);
3122 }
3123
3124 /*-------------------------- Device entry points ----------------------------*/
3125
3126 static void bond_work_init_all(struct bonding *bond)
3127 {
3128 INIT_DELAYED_WORK(&bond->mcast_work,
3129 bond_resend_igmp_join_requests_delayed);
3130 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3131 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3132 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3133 INIT_DELAYED_WORK(&bond->arp_work, bond_activebackup_arp_mon);
3134 else
3135 INIT_DELAYED_WORK(&bond->arp_work, bond_loadbalance_arp_mon);
3136 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3137 }
3138
3139 static void bond_work_cancel_all(struct bonding *bond)
3140 {
3141 cancel_delayed_work_sync(&bond->mii_work);
3142 cancel_delayed_work_sync(&bond->arp_work);
3143 cancel_delayed_work_sync(&bond->alb_work);
3144 cancel_delayed_work_sync(&bond->ad_work);
3145 cancel_delayed_work_sync(&bond->mcast_work);
3146 }
3147
3148 static int bond_open(struct net_device *bond_dev)
3149 {
3150 struct bonding *bond = netdev_priv(bond_dev);
3151 struct slave *slave;
3152
3153 /* reset slave->backup and slave->inactive */
3154 read_lock(&bond->lock);
3155 if (!list_empty(&bond->slave_list)) {
3156 read_lock(&bond->curr_slave_lock);
3157 bond_for_each_slave(bond, slave) {
3158 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3159 && (slave != bond->curr_active_slave)) {
3160 bond_set_slave_inactive_flags(slave);
3161 } else {
3162 bond_set_slave_active_flags(slave);
3163 }
3164 }
3165 read_unlock(&bond->curr_slave_lock);
3166 }
3167 read_unlock(&bond->lock);
3168
3169 bond_work_init_all(bond);
3170
3171 if (bond_is_lb(bond)) {
3172 /* bond_alb_initialize must be called before the timer
3173 * is started.
3174 */
3175 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB)))
3176 return -ENOMEM;
3177 queue_delayed_work(bond->wq, &bond->alb_work, 0);
3178 }
3179
3180 if (bond->params.miimon) /* link check interval, in milliseconds. */
3181 queue_delayed_work(bond->wq, &bond->mii_work, 0);
3182
3183 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3184 queue_delayed_work(bond->wq, &bond->arp_work, 0);
3185 if (bond->params.arp_validate)
3186 bond->recv_probe = bond_arp_rcv;
3187 }
3188
3189 if (bond->params.mode == BOND_MODE_8023AD) {
3190 queue_delayed_work(bond->wq, &bond->ad_work, 0);
3191 /* register to receive LACPDUs */
3192 bond->recv_probe = bond_3ad_lacpdu_recv;
3193 bond_3ad_initiate_agg_selection(bond, 1);
3194 }
3195
3196 return 0;
3197 }
3198
3199 static int bond_close(struct net_device *bond_dev)
3200 {
3201 struct bonding *bond = netdev_priv(bond_dev);
3202
3203 bond_work_cancel_all(bond);
3204 bond->send_peer_notif = 0;
3205 if (bond_is_lb(bond))
3206 bond_alb_deinitialize(bond);
3207 bond->recv_probe = NULL;
3208
3209 return 0;
3210 }
3211
3212 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev,
3213 struct rtnl_link_stats64 *stats)
3214 {
3215 struct bonding *bond = netdev_priv(bond_dev);
3216 struct rtnl_link_stats64 temp;
3217 struct slave *slave;
3218
3219 memset(stats, 0, sizeof(*stats));
3220
3221 read_lock_bh(&bond->lock);
3222 bond_for_each_slave(bond, slave) {
3223 const struct rtnl_link_stats64 *sstats =
3224 dev_get_stats(slave->dev, &temp);
3225
3226 stats->rx_packets += sstats->rx_packets;
3227 stats->rx_bytes += sstats->rx_bytes;
3228 stats->rx_errors += sstats->rx_errors;
3229 stats->rx_dropped += sstats->rx_dropped;
3230
3231 stats->tx_packets += sstats->tx_packets;
3232 stats->tx_bytes += sstats->tx_bytes;
3233 stats->tx_errors += sstats->tx_errors;
3234 stats->tx_dropped += sstats->tx_dropped;
3235
3236 stats->multicast += sstats->multicast;
3237 stats->collisions += sstats->collisions;
3238
3239 stats->rx_length_errors += sstats->rx_length_errors;
3240 stats->rx_over_errors += sstats->rx_over_errors;
3241 stats->rx_crc_errors += sstats->rx_crc_errors;
3242 stats->rx_frame_errors += sstats->rx_frame_errors;
3243 stats->rx_fifo_errors += sstats->rx_fifo_errors;
3244 stats->rx_missed_errors += sstats->rx_missed_errors;
3245
3246 stats->tx_aborted_errors += sstats->tx_aborted_errors;
3247 stats->tx_carrier_errors += sstats->tx_carrier_errors;
3248 stats->tx_fifo_errors += sstats->tx_fifo_errors;
3249 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3250 stats->tx_window_errors += sstats->tx_window_errors;
3251 }
3252 read_unlock_bh(&bond->lock);
3253
3254 return stats;
3255 }
3256
3257 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3258 {
3259 struct net_device *slave_dev = NULL;
3260 struct ifbond k_binfo;
3261 struct ifbond __user *u_binfo = NULL;
3262 struct ifslave k_sinfo;
3263 struct ifslave __user *u_sinfo = NULL;
3264 struct mii_ioctl_data *mii = NULL;
3265 struct net *net;
3266 int res = 0;
3267
3268 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd);
3269
3270 switch (cmd) {
3271 case SIOCGMIIPHY:
3272 mii = if_mii(ifr);
3273 if (!mii)
3274 return -EINVAL;
3275
3276 mii->phy_id = 0;
3277 /* Fall Through */
3278 case SIOCGMIIREG:
3279 /*
3280 * We do this again just in case we were called by SIOCGMIIREG
3281 * instead of SIOCGMIIPHY.
3282 */
3283 mii = if_mii(ifr);
3284 if (!mii)
3285 return -EINVAL;
3286
3287
3288 if (mii->reg_num == 1) {
3289 struct bonding *bond = netdev_priv(bond_dev);
3290 mii->val_out = 0;
3291 read_lock(&bond->lock);
3292 read_lock(&bond->curr_slave_lock);
3293 if (netif_carrier_ok(bond->dev))
3294 mii->val_out = BMSR_LSTATUS;
3295
3296 read_unlock(&bond->curr_slave_lock);
3297 read_unlock(&bond->lock);
3298 }
3299
3300 return 0;
3301 case BOND_INFO_QUERY_OLD:
3302 case SIOCBONDINFOQUERY:
3303 u_binfo = (struct ifbond __user *)ifr->ifr_data;
3304
3305 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond)))
3306 return -EFAULT;
3307
3308 res = bond_info_query(bond_dev, &k_binfo);
3309 if (res == 0 &&
3310 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond)))
3311 return -EFAULT;
3312
3313 return res;
3314 case BOND_SLAVE_INFO_QUERY_OLD:
3315 case SIOCBONDSLAVEINFOQUERY:
3316 u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3317
3318 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave)))
3319 return -EFAULT;
3320
3321 res = bond_slave_info_query(bond_dev, &k_sinfo);
3322 if (res == 0 &&
3323 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave)))
3324 return -EFAULT;
3325
3326 return res;
3327 default:
3328 /* Go on */
3329 break;
3330 }
3331
3332 net = dev_net(bond_dev);
3333
3334 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3335 return -EPERM;
3336
3337 slave_dev = dev_get_by_name(net, ifr->ifr_slave);
3338
3339 pr_debug("slave_dev=%p:\n", slave_dev);
3340
3341 if (!slave_dev)
3342 res = -ENODEV;
3343 else {
3344 pr_debug("slave_dev->name=%s:\n", slave_dev->name);
3345 switch (cmd) {
3346 case BOND_ENSLAVE_OLD:
3347 case SIOCBONDENSLAVE:
3348 res = bond_enslave(bond_dev, slave_dev);
3349 break;
3350 case BOND_RELEASE_OLD:
3351 case SIOCBONDRELEASE:
3352 res = bond_release(bond_dev, slave_dev);
3353 break;
3354 case BOND_SETHWADDR_OLD:
3355 case SIOCBONDSETHWADDR:
3356 bond_set_dev_addr(bond_dev, slave_dev);
3357 res = 0;
3358 break;
3359 case BOND_CHANGE_ACTIVE_OLD:
3360 case SIOCBONDCHANGEACTIVE:
3361 res = bond_ioctl_change_active(bond_dev, slave_dev);
3362 break;
3363 default:
3364 res = -EOPNOTSUPP;
3365 }
3366
3367 dev_put(slave_dev);
3368 }
3369
3370 return res;
3371 }
3372
3373 static void bond_change_rx_flags(struct net_device *bond_dev, int change)
3374 {
3375 struct bonding *bond = netdev_priv(bond_dev);
3376
3377 if (change & IFF_PROMISC)
3378 bond_set_promiscuity(bond,
3379 bond_dev->flags & IFF_PROMISC ? 1 : -1);
3380
3381 if (change & IFF_ALLMULTI)
3382 bond_set_allmulti(bond,
3383 bond_dev->flags & IFF_ALLMULTI ? 1 : -1);
3384 }
3385
3386 static void bond_set_rx_mode(struct net_device *bond_dev)
3387 {
3388 struct bonding *bond = netdev_priv(bond_dev);
3389 struct slave *slave;
3390
3391 ASSERT_RTNL();
3392
3393 if (USES_PRIMARY(bond->params.mode)) {
3394 slave = rtnl_dereference(bond->curr_active_slave);
3395 if (slave) {
3396 dev_uc_sync(slave->dev, bond_dev);
3397 dev_mc_sync(slave->dev, bond_dev);
3398 }
3399 } else {
3400 bond_for_each_slave(bond, slave) {
3401 dev_uc_sync_multiple(slave->dev, bond_dev);
3402 dev_mc_sync_multiple(slave->dev, bond_dev);
3403 }
3404 }
3405 }
3406
3407 static int bond_neigh_init(struct neighbour *n)
3408 {
3409 struct bonding *bond = netdev_priv(n->dev);
3410 const struct net_device_ops *slave_ops;
3411 struct neigh_parms parms;
3412 struct slave *slave;
3413 int ret;
3414
3415 slave = bond_first_slave(bond);
3416 if (!slave)
3417 return 0;
3418 slave_ops = slave->dev->netdev_ops;
3419 if (!slave_ops->ndo_neigh_setup)
3420 return 0;
3421
3422 parms.neigh_setup = NULL;
3423 parms.neigh_cleanup = NULL;
3424 ret = slave_ops->ndo_neigh_setup(slave->dev, &parms);
3425 if (ret)
3426 return ret;
3427
3428 /*
3429 * Assign slave's neigh_cleanup to neighbour in case cleanup is called
3430 * after the last slave has been detached. Assumes that all slaves
3431 * utilize the same neigh_cleanup (true at this writing as only user
3432 * is ipoib).
3433 */
3434 n->parms->neigh_cleanup = parms.neigh_cleanup;
3435
3436 if (!parms.neigh_setup)
3437 return 0;
3438
3439 return parms.neigh_setup(n);
3440 }
3441
3442 /*
3443 * The bonding ndo_neigh_setup is called at init time beofre any
3444 * slave exists. So we must declare proxy setup function which will
3445 * be used at run time to resolve the actual slave neigh param setup.
3446 *
3447 * It's also called by master devices (such as vlans) to setup their
3448 * underlying devices. In that case - do nothing, we're already set up from
3449 * our init.
3450 */
3451 static int bond_neigh_setup(struct net_device *dev,
3452 struct neigh_parms *parms)
3453 {
3454 /* modify only our neigh_parms */
3455 if (parms->dev == dev)
3456 parms->neigh_setup = bond_neigh_init;
3457
3458 return 0;
3459 }
3460
3461 /*
3462 * Change the MTU of all of a master's slaves to match the master
3463 */
3464 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3465 {
3466 struct bonding *bond = netdev_priv(bond_dev);
3467 struct slave *slave;
3468 int res = 0;
3469
3470 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond,
3471 (bond_dev ? bond_dev->name : "None"), new_mtu);
3472
3473 /* Can't hold bond->lock with bh disabled here since
3474 * some base drivers panic. On the other hand we can't
3475 * hold bond->lock without bh disabled because we'll
3476 * deadlock. The only solution is to rely on the fact
3477 * that we're under rtnl_lock here, and the slaves
3478 * list won't change. This doesn't solve the problem
3479 * of setting the slave's MTU while it is
3480 * transmitting, but the assumption is that the base
3481 * driver can handle that.
3482 *
3483 * TODO: figure out a way to safely iterate the slaves
3484 * list, but without holding a lock around the actual
3485 * call to the base driver.
3486 */
3487
3488 bond_for_each_slave(bond, slave) {
3489 pr_debug("s %p s->p %p c_m %p\n",
3490 slave,
3491 bond_prev_slave(bond, slave),
3492 slave->dev->netdev_ops->ndo_change_mtu);
3493
3494 res = dev_set_mtu(slave->dev, new_mtu);
3495
3496 if (res) {
3497 /* If we failed to set the slave's mtu to the new value
3498 * we must abort the operation even in ACTIVE_BACKUP
3499 * mode, because if we allow the backup slaves to have
3500 * different mtu values than the active slave we'll
3501 * need to change their mtu when doing a failover. That
3502 * means changing their mtu from timer context, which
3503 * is probably not a good idea.
3504 */
3505 pr_debug("err %d %s\n", res, slave->dev->name);
3506 goto unwind;
3507 }
3508 }
3509
3510 bond_dev->mtu = new_mtu;
3511
3512 return 0;
3513
3514 unwind:
3515 /* unwind from head to the slave that failed */
3516 bond_for_each_slave_continue_reverse(bond, slave) {
3517 int tmp_res;
3518
3519 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3520 if (tmp_res) {
3521 pr_debug("unwind err %d dev %s\n",
3522 tmp_res, slave->dev->name);
3523 }
3524 }
3525
3526 return res;
3527 }
3528
3529 /*
3530 * Change HW address
3531 *
3532 * Note that many devices must be down to change the HW address, and
3533 * downing the master releases all slaves. We can make bonds full of
3534 * bonding devices to test this, however.
3535 */
3536 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3537 {
3538 struct bonding *bond = netdev_priv(bond_dev);
3539 struct sockaddr *sa = addr, tmp_sa;
3540 struct slave *slave;
3541 int res = 0;
3542
3543 if (bond->params.mode == BOND_MODE_ALB)
3544 return bond_alb_set_mac_address(bond_dev, addr);
3545
3546
3547 pr_debug("bond=%p, name=%s\n",
3548 bond, bond_dev ? bond_dev->name : "None");
3549
3550 /* If fail_over_mac is enabled, do nothing and return success.
3551 * Returning an error causes ifenslave to fail.
3552 */
3553 if (bond->params.fail_over_mac)
3554 return 0;
3555
3556 if (!is_valid_ether_addr(sa->sa_data))
3557 return -EADDRNOTAVAIL;
3558
3559 /* Can't hold bond->lock with bh disabled here since
3560 * some base drivers panic. On the other hand we can't
3561 * hold bond->lock without bh disabled because we'll
3562 * deadlock. The only solution is to rely on the fact
3563 * that we're under rtnl_lock here, and the slaves
3564 * list won't change. This doesn't solve the problem
3565 * of setting the slave's hw address while it is
3566 * transmitting, but the assumption is that the base
3567 * driver can handle that.
3568 *
3569 * TODO: figure out a way to safely iterate the slaves
3570 * list, but without holding a lock around the actual
3571 * call to the base driver.
3572 */
3573
3574 bond_for_each_slave(bond, slave) {
3575 const struct net_device_ops *slave_ops = slave->dev->netdev_ops;
3576 pr_debug("slave %p %s\n", slave, slave->dev->name);
3577
3578 if (slave_ops->ndo_set_mac_address == NULL) {
3579 res = -EOPNOTSUPP;
3580 pr_debug("EOPNOTSUPP %s\n", slave->dev->name);
3581 goto unwind;
3582 }
3583
3584 res = dev_set_mac_address(slave->dev, addr);
3585 if (res) {
3586 /* TODO: consider downing the slave
3587 * and retry ?
3588 * User should expect communications
3589 * breakage anyway until ARP finish
3590 * updating, so...
3591 */
3592 pr_debug("err %d %s\n", res, slave->dev->name);
3593 goto unwind;
3594 }
3595 }
3596
3597 /* success */
3598 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3599 return 0;
3600
3601 unwind:
3602 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3603 tmp_sa.sa_family = bond_dev->type;
3604
3605 /* unwind from head to the slave that failed */
3606 bond_for_each_slave_continue_reverse(bond, slave) {
3607 int tmp_res;
3608
3609 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3610 if (tmp_res) {
3611 pr_debug("unwind err %d dev %s\n",
3612 tmp_res, slave->dev->name);
3613 }
3614 }
3615
3616 return res;
3617 }
3618
3619 /**
3620 * bond_xmit_slave_id - transmit skb through slave with slave_id
3621 * @bond: bonding device that is transmitting
3622 * @skb: buffer to transmit
3623 * @slave_id: slave id up to slave_cnt-1 through which to transmit
3624 *
3625 * This function tries to transmit through slave with slave_id but in case
3626 * it fails, it tries to find the first available slave for transmission.
3627 * The skb is consumed in all cases, thus the function is void.
3628 */
3629 void bond_xmit_slave_id(struct bonding *bond, struct sk_buff *skb, int slave_id)
3630 {
3631 struct slave *slave;
3632 int i = slave_id;
3633
3634 /* Here we start from the slave with slave_id */
3635 bond_for_each_slave_rcu(bond, slave) {
3636 if (--i < 0) {
3637 if (slave_can_tx(slave)) {
3638 bond_dev_queue_xmit(bond, skb, slave->dev);
3639 return;
3640 }
3641 }
3642 }
3643
3644 /* Here we start from the first slave up to slave_id */
3645 i = slave_id;
3646 bond_for_each_slave_rcu(bond, slave) {
3647 if (--i < 0)
3648 break;
3649 if (slave_can_tx(slave)) {
3650 bond_dev_queue_xmit(bond, skb, slave->dev);
3651 return;
3652 }
3653 }
3654 /* no slave that can tx has been found */
3655 kfree_skb(skb);
3656 }
3657
3658 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
3659 {
3660 struct bonding *bond = netdev_priv(bond_dev);
3661 struct iphdr *iph = ip_hdr(skb);
3662 struct slave *slave;
3663
3664 /*
3665 * Start with the curr_active_slave that joined the bond as the
3666 * default for sending IGMP traffic. For failover purposes one
3667 * needs to maintain some consistency for the interface that will
3668 * send the join/membership reports. The curr_active_slave found
3669 * will send all of this type of traffic.
3670 */
3671 if (iph->protocol == IPPROTO_IGMP && skb->protocol == htons(ETH_P_IP)) {
3672 slave = rcu_dereference(bond->curr_active_slave);
3673 if (slave && slave_can_tx(slave))
3674 bond_dev_queue_xmit(bond, skb, slave->dev);
3675 else
3676 bond_xmit_slave_id(bond, skb, 0);
3677 } else {
3678 bond_xmit_slave_id(bond, skb,
3679 bond->rr_tx_counter++ % bond->slave_cnt);
3680 }
3681
3682 return NETDEV_TX_OK;
3683 }
3684
3685 /*
3686 * in active-backup mode, we know that bond->curr_active_slave is always valid if
3687 * the bond has a usable interface.
3688 */
3689 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
3690 {
3691 struct bonding *bond = netdev_priv(bond_dev);
3692 struct slave *slave;
3693
3694 slave = rcu_dereference(bond->curr_active_slave);
3695 if (slave)
3696 bond_dev_queue_xmit(bond, skb, slave->dev);
3697 else
3698 kfree_skb(skb);
3699
3700 return NETDEV_TX_OK;
3701 }
3702
3703 /*
3704 * In bond_xmit_xor() , we determine the output device by using a pre-
3705 * determined xmit_hash_policy(), If the selected device is not enabled,
3706 * find the next active slave.
3707 */
3708 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
3709 {
3710 struct bonding *bond = netdev_priv(bond_dev);
3711
3712 bond_xmit_slave_id(bond, skb,
3713 bond->xmit_hash_policy(skb, bond->slave_cnt));
3714
3715 return NETDEV_TX_OK;
3716 }
3717
3718 /* in broadcast mode, we send everything to all usable interfaces. */
3719 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
3720 {
3721 struct bonding *bond = netdev_priv(bond_dev);
3722 struct slave *slave = NULL;
3723
3724 bond_for_each_slave_rcu(bond, slave) {
3725 if (bond_is_last_slave(bond, slave))
3726 break;
3727 if (IS_UP(slave->dev) && slave->link == BOND_LINK_UP) {
3728 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3729
3730 if (!skb2) {
3731 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n",
3732 bond_dev->name);
3733 continue;
3734 }
3735 /* bond_dev_queue_xmit always returns 0 */
3736 bond_dev_queue_xmit(bond, skb2, slave->dev);
3737 }
3738 }
3739 if (slave && IS_UP(slave->dev) && slave->link == BOND_LINK_UP)
3740 bond_dev_queue_xmit(bond, skb, slave->dev);
3741 else
3742 kfree_skb(skb);
3743
3744 return NETDEV_TX_OK;
3745 }
3746
3747 /*------------------------- Device initialization ---------------------------*/
3748
3749 static void bond_set_xmit_hash_policy(struct bonding *bond)
3750 {
3751 switch (bond->params.xmit_policy) {
3752 case BOND_XMIT_POLICY_LAYER23:
3753 bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
3754 break;
3755 case BOND_XMIT_POLICY_LAYER34:
3756 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
3757 break;
3758 case BOND_XMIT_POLICY_LAYER2:
3759 default:
3760 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
3761 break;
3762 }
3763 }
3764
3765 /*
3766 * Lookup the slave that corresponds to a qid
3767 */
3768 static inline int bond_slave_override(struct bonding *bond,
3769 struct sk_buff *skb)
3770 {
3771 struct slave *slave = NULL;
3772 struct slave *check_slave;
3773 int res = 1;
3774
3775 if (!skb->queue_mapping)
3776 return 1;
3777
3778 /* Find out if any slaves have the same mapping as this skb. */
3779 bond_for_each_slave_rcu(bond, check_slave) {
3780 if (check_slave->queue_id == skb->queue_mapping) {
3781 slave = check_slave;
3782 break;
3783 }
3784 }
3785
3786 /* If the slave isn't UP, use default transmit policy. */
3787 if (slave && slave->queue_id && IS_UP(slave->dev) &&
3788 (slave->link == BOND_LINK_UP)) {
3789 res = bond_dev_queue_xmit(bond, skb, slave->dev);
3790 }
3791
3792 return res;
3793 }
3794
3795
3796 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb)
3797 {
3798 /*
3799 * This helper function exists to help dev_pick_tx get the correct
3800 * destination queue. Using a helper function skips a call to
3801 * skb_tx_hash and will put the skbs in the queue we expect on their
3802 * way down to the bonding driver.
3803 */
3804 u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
3805
3806 /*
3807 * Save the original txq to restore before passing to the driver
3808 */
3809 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
3810
3811 if (unlikely(txq >= dev->real_num_tx_queues)) {
3812 do {
3813 txq -= dev->real_num_tx_queues;
3814 } while (txq >= dev->real_num_tx_queues);
3815 }
3816 return txq;
3817 }
3818
3819 static netdev_tx_t __bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
3820 {
3821 struct bonding *bond = netdev_priv(dev);
3822
3823 if (TX_QUEUE_OVERRIDE(bond->params.mode)) {
3824 if (!bond_slave_override(bond, skb))
3825 return NETDEV_TX_OK;
3826 }
3827
3828 switch (bond->params.mode) {
3829 case BOND_MODE_ROUNDROBIN:
3830 return bond_xmit_roundrobin(skb, dev);
3831 case BOND_MODE_ACTIVEBACKUP:
3832 return bond_xmit_activebackup(skb, dev);
3833 case BOND_MODE_XOR:
3834 return bond_xmit_xor(skb, dev);
3835 case BOND_MODE_BROADCAST:
3836 return bond_xmit_broadcast(skb, dev);
3837 case BOND_MODE_8023AD:
3838 return bond_3ad_xmit_xor(skb, dev);
3839 case BOND_MODE_ALB:
3840 case BOND_MODE_TLB:
3841 return bond_alb_xmit(skb, dev);
3842 default:
3843 /* Should never happen, mode already checked */
3844 pr_err("%s: Error: Unknown bonding mode %d\n",
3845 dev->name, bond->params.mode);
3846 WARN_ON_ONCE(1);
3847 kfree_skb(skb);
3848 return NETDEV_TX_OK;
3849 }
3850 }
3851
3852 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
3853 {
3854 struct bonding *bond = netdev_priv(dev);
3855 netdev_tx_t ret = NETDEV_TX_OK;
3856
3857 /*
3858 * If we risk deadlock from transmitting this in the
3859 * netpoll path, tell netpoll to queue the frame for later tx
3860 */
3861 if (is_netpoll_tx_blocked(dev))
3862 return NETDEV_TX_BUSY;
3863
3864 rcu_read_lock();
3865 if (!list_empty(&bond->slave_list))
3866 ret = __bond_start_xmit(skb, dev);
3867 else
3868 kfree_skb(skb);
3869 rcu_read_unlock();
3870
3871 return ret;
3872 }
3873
3874 /*
3875 * set bond mode specific net device operations
3876 */
3877 void bond_set_mode_ops(struct bonding *bond, int mode)
3878 {
3879 struct net_device *bond_dev = bond->dev;
3880
3881 switch (mode) {
3882 case BOND_MODE_ROUNDROBIN:
3883 break;
3884 case BOND_MODE_ACTIVEBACKUP:
3885 break;
3886 case BOND_MODE_XOR:
3887 bond_set_xmit_hash_policy(bond);
3888 break;
3889 case BOND_MODE_BROADCAST:
3890 break;
3891 case BOND_MODE_8023AD:
3892 bond_set_xmit_hash_policy(bond);
3893 break;
3894 case BOND_MODE_ALB:
3895 /* FALLTHRU */
3896 case BOND_MODE_TLB:
3897 break;
3898 default:
3899 /* Should never happen, mode already checked */
3900 pr_err("%s: Error: Unknown bonding mode %d\n",
3901 bond_dev->name, mode);
3902 break;
3903 }
3904 }
3905
3906 static int bond_ethtool_get_settings(struct net_device *bond_dev,
3907 struct ethtool_cmd *ecmd)
3908 {
3909 struct bonding *bond = netdev_priv(bond_dev);
3910 unsigned long speed = 0;
3911 struct slave *slave;
3912
3913 ecmd->duplex = DUPLEX_UNKNOWN;
3914 ecmd->port = PORT_OTHER;
3915
3916 /* Since SLAVE_IS_OK returns false for all inactive or down slaves, we
3917 * do not need to check mode. Though link speed might not represent
3918 * the true receive or transmit bandwidth (not all modes are symmetric)
3919 * this is an accurate maximum.
3920 */
3921 read_lock(&bond->lock);
3922 bond_for_each_slave(bond, slave) {
3923 if (SLAVE_IS_OK(slave)) {
3924 if (slave->speed != SPEED_UNKNOWN)
3925 speed += slave->speed;
3926 if (ecmd->duplex == DUPLEX_UNKNOWN &&
3927 slave->duplex != DUPLEX_UNKNOWN)
3928 ecmd->duplex = slave->duplex;
3929 }
3930 }
3931 ethtool_cmd_speed_set(ecmd, speed ? : SPEED_UNKNOWN);
3932 read_unlock(&bond->lock);
3933
3934 return 0;
3935 }
3936
3937 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
3938 struct ethtool_drvinfo *drvinfo)
3939 {
3940 strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
3941 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
3942 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), "%d",
3943 BOND_ABI_VERSION);
3944 }
3945
3946 static const struct ethtool_ops bond_ethtool_ops = {
3947 .get_drvinfo = bond_ethtool_get_drvinfo,
3948 .get_settings = bond_ethtool_get_settings,
3949 .get_link = ethtool_op_get_link,
3950 };
3951
3952 static const struct net_device_ops bond_netdev_ops = {
3953 .ndo_init = bond_init,
3954 .ndo_uninit = bond_uninit,
3955 .ndo_open = bond_open,
3956 .ndo_stop = bond_close,
3957 .ndo_start_xmit = bond_start_xmit,
3958 .ndo_select_queue = bond_select_queue,
3959 .ndo_get_stats64 = bond_get_stats,
3960 .ndo_do_ioctl = bond_do_ioctl,
3961 .ndo_change_rx_flags = bond_change_rx_flags,
3962 .ndo_set_rx_mode = bond_set_rx_mode,
3963 .ndo_change_mtu = bond_change_mtu,
3964 .ndo_set_mac_address = bond_set_mac_address,
3965 .ndo_neigh_setup = bond_neigh_setup,
3966 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid,
3967 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid,
3968 #ifdef CONFIG_NET_POLL_CONTROLLER
3969 .ndo_netpoll_setup = bond_netpoll_setup,
3970 .ndo_netpoll_cleanup = bond_netpoll_cleanup,
3971 .ndo_poll_controller = bond_poll_controller,
3972 #endif
3973 .ndo_add_slave = bond_enslave,
3974 .ndo_del_slave = bond_release,
3975 .ndo_fix_features = bond_fix_features,
3976 };
3977
3978 static const struct device_type bond_type = {
3979 .name = "bond",
3980 };
3981
3982 static void bond_destructor(struct net_device *bond_dev)
3983 {
3984 struct bonding *bond = netdev_priv(bond_dev);
3985 if (bond->wq)
3986 destroy_workqueue(bond->wq);
3987 free_netdev(bond_dev);
3988 }
3989
3990 static void bond_setup(struct net_device *bond_dev)
3991 {
3992 struct bonding *bond = netdev_priv(bond_dev);
3993
3994 /* initialize rwlocks */
3995 rwlock_init(&bond->lock);
3996 rwlock_init(&bond->curr_slave_lock);
3997 INIT_LIST_HEAD(&bond->slave_list);
3998 bond->params = bonding_defaults;
3999
4000 /* Initialize pointers */
4001 bond->dev = bond_dev;
4002
4003 /* Initialize the device entry points */
4004 ether_setup(bond_dev);
4005 bond_dev->netdev_ops = &bond_netdev_ops;
4006 bond_dev->ethtool_ops = &bond_ethtool_ops;
4007 bond_set_mode_ops(bond, bond->params.mode);
4008
4009 bond_dev->destructor = bond_destructor;
4010
4011 SET_NETDEV_DEVTYPE(bond_dev, &bond_type);
4012
4013 /* Initialize the device options */
4014 bond_dev->tx_queue_len = 0;
4015 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4016 bond_dev->priv_flags |= IFF_BONDING;
4017 bond_dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING);
4018
4019 /* At first, we block adding VLANs. That's the only way to
4020 * prevent problems that occur when adding VLANs over an
4021 * empty bond. The block will be removed once non-challenged
4022 * slaves are enslaved.
4023 */
4024 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4025
4026 /* don't acquire bond device's netif_tx_lock when
4027 * transmitting */
4028 bond_dev->features |= NETIF_F_LLTX;
4029
4030 /* By default, we declare the bond to be fully
4031 * VLAN hardware accelerated capable. Special
4032 * care is taken in the various xmit functions
4033 * when there are slaves that are not hw accel
4034 * capable
4035 */
4036
4037 bond_dev->hw_features = BOND_VLAN_FEATURES |
4038 NETIF_F_HW_VLAN_CTAG_TX |
4039 NETIF_F_HW_VLAN_CTAG_RX |
4040 NETIF_F_HW_VLAN_CTAG_FILTER;
4041
4042 bond_dev->hw_features &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_HW_CSUM);
4043 bond_dev->features |= bond_dev->hw_features;
4044 }
4045
4046 /*
4047 * Destroy a bonding device.
4048 * Must be under rtnl_lock when this function is called.
4049 */
4050 static void bond_uninit(struct net_device *bond_dev)
4051 {
4052 struct bonding *bond = netdev_priv(bond_dev);
4053 struct slave *slave, *tmp_slave;
4054
4055 bond_netpoll_cleanup(bond_dev);
4056
4057 /* Release the bonded slaves */
4058 list_for_each_entry_safe(slave, tmp_slave, &bond->slave_list, list)
4059 __bond_release_one(bond_dev, slave->dev, true);
4060 pr_info("%s: released all slaves\n", bond_dev->name);
4061
4062 list_del(&bond->bond_list);
4063
4064 bond_debug_unregister(bond);
4065 }
4066
4067 /*------------------------- Module initialization ---------------------------*/
4068
4069 /*
4070 * Convert string input module parms. Accept either the
4071 * number of the mode or its string name. A bit complicated because
4072 * some mode names are substrings of other names, and calls from sysfs
4073 * may have whitespace in the name (trailing newlines, for example).
4074 */
4075 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl)
4076 {
4077 int modeint = -1, i, rv;
4078 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4079
4080 for (p = (char *)buf; *p; p++)
4081 if (!(isdigit(*p) || isspace(*p)))
4082 break;
4083
4084 if (*p)
4085 rv = sscanf(buf, "%20s", modestr);
4086 else
4087 rv = sscanf(buf, "%d", &modeint);
4088
4089 if (!rv)
4090 return -1;
4091
4092 for (i = 0; tbl[i].modename; i++) {
4093 if (modeint == tbl[i].mode)
4094 return tbl[i].mode;
4095 if (strcmp(modestr, tbl[i].modename) == 0)
4096 return tbl[i].mode;
4097 }
4098
4099 return -1;
4100 }
4101
4102 static int bond_check_params(struct bond_params *params)
4103 {
4104 int arp_validate_value, fail_over_mac_value, primary_reselect_value, i;
4105 int arp_all_targets_value;
4106
4107 /*
4108 * Convert string parameters.
4109 */
4110 if (mode) {
4111 bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4112 if (bond_mode == -1) {
4113 pr_err("Error: Invalid bonding mode \"%s\"\n",
4114 mode == NULL ? "NULL" : mode);
4115 return -EINVAL;
4116 }
4117 }
4118
4119 if (xmit_hash_policy) {
4120 if ((bond_mode != BOND_MODE_XOR) &&
4121 (bond_mode != BOND_MODE_8023AD)) {
4122 pr_info("xmit_hash_policy param is irrelevant in mode %s\n",
4123 bond_mode_name(bond_mode));
4124 } else {
4125 xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4126 xmit_hashtype_tbl);
4127 if (xmit_hashtype == -1) {
4128 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n",
4129 xmit_hash_policy == NULL ? "NULL" :
4130 xmit_hash_policy);
4131 return -EINVAL;
4132 }
4133 }
4134 }
4135
4136 if (lacp_rate) {
4137 if (bond_mode != BOND_MODE_8023AD) {
4138 pr_info("lacp_rate param is irrelevant in mode %s\n",
4139 bond_mode_name(bond_mode));
4140 } else {
4141 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4142 if (lacp_fast == -1) {
4143 pr_err("Error: Invalid lacp rate \"%s\"\n",
4144 lacp_rate == NULL ? "NULL" : lacp_rate);
4145 return -EINVAL;
4146 }
4147 }
4148 }
4149
4150 if (ad_select) {
4151 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl);
4152 if (params->ad_select == -1) {
4153 pr_err("Error: Invalid ad_select \"%s\"\n",
4154 ad_select == NULL ? "NULL" : ad_select);
4155 return -EINVAL;
4156 }
4157
4158 if (bond_mode != BOND_MODE_8023AD) {
4159 pr_warning("ad_select param only affects 802.3ad mode\n");
4160 }
4161 } else {
4162 params->ad_select = BOND_AD_STABLE;
4163 }
4164
4165 if (max_bonds < 0) {
4166 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4167 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4168 max_bonds = BOND_DEFAULT_MAX_BONDS;
4169 }
4170
4171 if (miimon < 0) {
4172 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n",
4173 miimon, INT_MAX, BOND_LINK_MON_INTERV);
4174 miimon = BOND_LINK_MON_INTERV;
4175 }
4176
4177 if (updelay < 0) {
4178 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4179 updelay, INT_MAX);
4180 updelay = 0;
4181 }
4182
4183 if (downdelay < 0) {
4184 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4185 downdelay, INT_MAX);
4186 downdelay = 0;
4187 }
4188
4189 if ((use_carrier != 0) && (use_carrier != 1)) {
4190 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n",
4191 use_carrier);
4192 use_carrier = 1;
4193 }
4194
4195 if (num_peer_notif < 0 || num_peer_notif > 255) {
4196 pr_warning("Warning: num_grat_arp/num_unsol_na (%d) not in range 0-255 so it was reset to 1\n",
4197 num_peer_notif);
4198 num_peer_notif = 1;
4199 }
4200
4201 /* reset values for 802.3ad */
4202 if (bond_mode == BOND_MODE_8023AD) {
4203 if (!miimon) {
4204 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n");
4205 pr_warning("Forcing miimon to 100msec\n");
4206 miimon = 100;
4207 }
4208 }
4209
4210 if (tx_queues < 1 || tx_queues > 255) {
4211 pr_warning("Warning: tx_queues (%d) should be between "
4212 "1 and 255, resetting to %d\n",
4213 tx_queues, BOND_DEFAULT_TX_QUEUES);
4214 tx_queues = BOND_DEFAULT_TX_QUEUES;
4215 }
4216
4217 if ((all_slaves_active != 0) && (all_slaves_active != 1)) {
4218 pr_warning("Warning: all_slaves_active module parameter (%d), "
4219 "not of valid value (0/1), so it was set to "
4220 "0\n", all_slaves_active);
4221 all_slaves_active = 0;
4222 }
4223
4224 if (resend_igmp < 0 || resend_igmp > 255) {
4225 pr_warning("Warning: resend_igmp (%d) should be between "
4226 "0 and 255, resetting to %d\n",
4227 resend_igmp, BOND_DEFAULT_RESEND_IGMP);
4228 resend_igmp = BOND_DEFAULT_RESEND_IGMP;
4229 }
4230
4231 /* reset values for TLB/ALB */
4232 if ((bond_mode == BOND_MODE_TLB) ||
4233 (bond_mode == BOND_MODE_ALB)) {
4234 if (!miimon) {
4235 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n");
4236 pr_warning("Forcing miimon to 100msec\n");
4237 miimon = 100;
4238 }
4239 }
4240
4241 if (bond_mode == BOND_MODE_ALB) {
4242 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n",
4243 updelay);
4244 }
4245
4246 if (!miimon) {
4247 if (updelay || downdelay) {
4248 /* just warn the user the up/down delay will have
4249 * no effect since miimon is zero...
4250 */
4251 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n",
4252 updelay, downdelay);
4253 }
4254 } else {
4255 /* don't allow arp monitoring */
4256 if (arp_interval) {
4257 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n",
4258 miimon, arp_interval);
4259 arp_interval = 0;
4260 }
4261
4262 if ((updelay % miimon) != 0) {
4263 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n",
4264 updelay, miimon,
4265 (updelay / miimon) * miimon);
4266 }
4267
4268 updelay /= miimon;
4269
4270 if ((downdelay % miimon) != 0) {
4271 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n",
4272 downdelay, miimon,
4273 (downdelay / miimon) * miimon);
4274 }
4275
4276 downdelay /= miimon;
4277 }
4278
4279 if (arp_interval < 0) {
4280 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n",
4281 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4282 arp_interval = BOND_LINK_ARP_INTERV;
4283 }
4284
4285 for (arp_ip_count = 0, i = 0;
4286 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[i]; i++) {
4287 /* not complete check, but should be good enough to
4288 catch mistakes */
4289 __be32 ip = in_aton(arp_ip_target[i]);
4290 if (!isdigit(arp_ip_target[i][0]) || ip == 0 ||
4291 ip == htonl(INADDR_BROADCAST)) {
4292 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n",
4293 arp_ip_target[i]);
4294 arp_interval = 0;
4295 } else {
4296 if (bond_get_targets_ip(arp_target, ip) == -1)
4297 arp_target[arp_ip_count++] = ip;
4298 else
4299 pr_warning("Warning: duplicate address %pI4 in arp_ip_target, skipping\n",
4300 &ip);
4301 }
4302 }
4303
4304 if (arp_interval && !arp_ip_count) {
4305 /* don't allow arping if no arp_ip_target given... */
4306 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n",
4307 arp_interval);
4308 arp_interval = 0;
4309 }
4310
4311 if (arp_validate) {
4312 if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4313 pr_err("arp_validate only supported in active-backup mode\n");
4314 return -EINVAL;
4315 }
4316 if (!arp_interval) {
4317 pr_err("arp_validate requires arp_interval\n");
4318 return -EINVAL;
4319 }
4320
4321 arp_validate_value = bond_parse_parm(arp_validate,
4322 arp_validate_tbl);
4323 if (arp_validate_value == -1) {
4324 pr_err("Error: invalid arp_validate \"%s\"\n",
4325 arp_validate == NULL ? "NULL" : arp_validate);
4326 return -EINVAL;
4327 }
4328 } else
4329 arp_validate_value = 0;
4330
4331 arp_all_targets_value = 0;
4332 if (arp_all_targets) {
4333 arp_all_targets_value = bond_parse_parm(arp_all_targets,
4334 arp_all_targets_tbl);
4335
4336 if (arp_all_targets_value == -1) {
4337 pr_err("Error: invalid arp_all_targets_value \"%s\"\n",
4338 arp_all_targets);
4339 arp_all_targets_value = 0;
4340 }
4341 }
4342
4343 if (miimon) {
4344 pr_info("MII link monitoring set to %d ms\n", miimon);
4345 } else if (arp_interval) {
4346 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):",
4347 arp_interval,
4348 arp_validate_tbl[arp_validate_value].modename,
4349 arp_ip_count);
4350
4351 for (i = 0; i < arp_ip_count; i++)
4352 pr_info(" %s", arp_ip_target[i]);
4353
4354 pr_info("\n");
4355
4356 } else if (max_bonds) {
4357 /* miimon and arp_interval not set, we need one so things
4358 * work as expected, see bonding.txt for details
4359 */
4360 pr_debug("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n");
4361 }
4362
4363 if (primary && !USES_PRIMARY(bond_mode)) {
4364 /* currently, using a primary only makes sense
4365 * in active backup, TLB or ALB modes
4366 */
4367 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n",
4368 primary, bond_mode_name(bond_mode));
4369 primary = NULL;
4370 }
4371
4372 if (primary && primary_reselect) {
4373 primary_reselect_value = bond_parse_parm(primary_reselect,
4374 pri_reselect_tbl);
4375 if (primary_reselect_value == -1) {
4376 pr_err("Error: Invalid primary_reselect \"%s\"\n",
4377 primary_reselect ==
4378 NULL ? "NULL" : primary_reselect);
4379 return -EINVAL;
4380 }
4381 } else {
4382 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS;
4383 }
4384
4385 if (fail_over_mac) {
4386 fail_over_mac_value = bond_parse_parm(fail_over_mac,
4387 fail_over_mac_tbl);
4388 if (fail_over_mac_value == -1) {
4389 pr_err("Error: invalid fail_over_mac \"%s\"\n",
4390 arp_validate == NULL ? "NULL" : arp_validate);
4391 return -EINVAL;
4392 }
4393
4394 if (bond_mode != BOND_MODE_ACTIVEBACKUP)
4395 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n");
4396 } else {
4397 fail_over_mac_value = BOND_FOM_NONE;
4398 }
4399
4400 /* fill params struct with the proper values */
4401 params->mode = bond_mode;
4402 params->xmit_policy = xmit_hashtype;
4403 params->miimon = miimon;
4404 params->num_peer_notif = num_peer_notif;
4405 params->arp_interval = arp_interval;
4406 params->arp_validate = arp_validate_value;
4407 params->arp_all_targets = arp_all_targets_value;
4408 params->updelay = updelay;
4409 params->downdelay = downdelay;
4410 params->use_carrier = use_carrier;
4411 params->lacp_fast = lacp_fast;
4412 params->primary[0] = 0;
4413 params->primary_reselect = primary_reselect_value;
4414 params->fail_over_mac = fail_over_mac_value;
4415 params->tx_queues = tx_queues;
4416 params->all_slaves_active = all_slaves_active;
4417 params->resend_igmp = resend_igmp;
4418 params->min_links = min_links;
4419
4420 if (primary) {
4421 strncpy(params->primary, primary, IFNAMSIZ);
4422 params->primary[IFNAMSIZ - 1] = 0;
4423 }
4424
4425 memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4426
4427 return 0;
4428 }
4429
4430 static struct lock_class_key bonding_netdev_xmit_lock_key;
4431 static struct lock_class_key bonding_netdev_addr_lock_key;
4432 static struct lock_class_key bonding_tx_busylock_key;
4433
4434 static void bond_set_lockdep_class_one(struct net_device *dev,
4435 struct netdev_queue *txq,
4436 void *_unused)
4437 {
4438 lockdep_set_class(&txq->_xmit_lock,
4439 &bonding_netdev_xmit_lock_key);
4440 }
4441
4442 static void bond_set_lockdep_class(struct net_device *dev)
4443 {
4444 lockdep_set_class(&dev->addr_list_lock,
4445 &bonding_netdev_addr_lock_key);
4446 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
4447 dev->qdisc_tx_busylock = &bonding_tx_busylock_key;
4448 }
4449
4450 /*
4451 * Called from registration process
4452 */
4453 static int bond_init(struct net_device *bond_dev)
4454 {
4455 struct bonding *bond = netdev_priv(bond_dev);
4456 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
4457 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
4458
4459 pr_debug("Begin bond_init for %s\n", bond_dev->name);
4460
4461 /*
4462 * Initialize locks that may be required during
4463 * en/deslave operations. All of the bond_open work
4464 * (of which this is part) should really be moved to
4465 * a phase prior to dev_open
4466 */
4467 spin_lock_init(&(bond_info->tx_hashtbl_lock));
4468 spin_lock_init(&(bond_info->rx_hashtbl_lock));
4469
4470 bond->wq = create_singlethread_workqueue(bond_dev->name);
4471 if (!bond->wq)
4472 return -ENOMEM;
4473
4474 bond_set_lockdep_class(bond_dev);
4475
4476 list_add_tail(&bond->bond_list, &bn->dev_list);
4477
4478 bond_prepare_sysfs_group(bond);
4479
4480 bond_debug_register(bond);
4481
4482 /* Ensure valid dev_addr */
4483 if (is_zero_ether_addr(bond_dev->dev_addr) &&
4484 bond_dev->addr_assign_type == NET_ADDR_PERM)
4485 eth_hw_addr_random(bond_dev);
4486
4487 return 0;
4488 }
4489
4490 static int bond_validate(struct nlattr *tb[], struct nlattr *data[])
4491 {
4492 if (tb[IFLA_ADDRESS]) {
4493 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
4494 return -EINVAL;
4495 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
4496 return -EADDRNOTAVAIL;
4497 }
4498 return 0;
4499 }
4500
4501 static unsigned int bond_get_num_tx_queues(void)
4502 {
4503 return tx_queues;
4504 }
4505
4506 static struct rtnl_link_ops bond_link_ops __read_mostly = {
4507 .kind = "bond",
4508 .priv_size = sizeof(struct bonding),
4509 .setup = bond_setup,
4510 .validate = bond_validate,
4511 .get_num_tx_queues = bond_get_num_tx_queues,
4512 .get_num_rx_queues = bond_get_num_tx_queues, /* Use the same number
4513 as for TX queues */
4514 };
4515
4516 /* Create a new bond based on the specified name and bonding parameters.
4517 * If name is NULL, obtain a suitable "bond%d" name for us.
4518 * Caller must NOT hold rtnl_lock; we need to release it here before we
4519 * set up our sysfs entries.
4520 */
4521 int bond_create(struct net *net, const char *name)
4522 {
4523 struct net_device *bond_dev;
4524 int res;
4525
4526 rtnl_lock();
4527
4528 bond_dev = alloc_netdev_mq(sizeof(struct bonding),
4529 name ? name : "bond%d",
4530 bond_setup, tx_queues);
4531 if (!bond_dev) {
4532 pr_err("%s: eek! can't alloc netdev!\n", name);
4533 rtnl_unlock();
4534 return -ENOMEM;
4535 }
4536
4537 dev_net_set(bond_dev, net);
4538 bond_dev->rtnl_link_ops = &bond_link_ops;
4539
4540 res = register_netdevice(bond_dev);
4541
4542 netif_carrier_off(bond_dev);
4543
4544 rtnl_unlock();
4545 if (res < 0)
4546 bond_destructor(bond_dev);
4547 return res;
4548 }
4549
4550 static int __net_init bond_net_init(struct net *net)
4551 {
4552 struct bond_net *bn = net_generic(net, bond_net_id);
4553
4554 bn->net = net;
4555 INIT_LIST_HEAD(&bn->dev_list);
4556
4557 bond_create_proc_dir(bn);
4558 bond_create_sysfs(bn);
4559
4560 return 0;
4561 }
4562
4563 static void __net_exit bond_net_exit(struct net *net)
4564 {
4565 struct bond_net *bn = net_generic(net, bond_net_id);
4566 struct bonding *bond, *tmp_bond;
4567 LIST_HEAD(list);
4568
4569 bond_destroy_sysfs(bn);
4570 bond_destroy_proc_dir(bn);
4571
4572 /* Kill off any bonds created after unregistering bond rtnl ops */
4573 rtnl_lock();
4574 list_for_each_entry_safe(bond, tmp_bond, &bn->dev_list, bond_list)
4575 unregister_netdevice_queue(bond->dev, &list);
4576 unregister_netdevice_many(&list);
4577 rtnl_unlock();
4578 }
4579
4580 static struct pernet_operations bond_net_ops = {
4581 .init = bond_net_init,
4582 .exit = bond_net_exit,
4583 .id = &bond_net_id,
4584 .size = sizeof(struct bond_net),
4585 };
4586
4587 static int __init bonding_init(void)
4588 {
4589 int i;
4590 int res;
4591
4592 pr_info("%s", bond_version);
4593
4594 res = bond_check_params(&bonding_defaults);
4595 if (res)
4596 goto out;
4597
4598 res = register_pernet_subsys(&bond_net_ops);
4599 if (res)
4600 goto out;
4601
4602 res = rtnl_link_register(&bond_link_ops);
4603 if (res)
4604 goto err_link;
4605
4606 bond_create_debugfs();
4607
4608 for (i = 0; i < max_bonds; i++) {
4609 res = bond_create(&init_net, NULL);
4610 if (res)
4611 goto err;
4612 }
4613
4614 register_netdevice_notifier(&bond_netdev_notifier);
4615 out:
4616 return res;
4617 err:
4618 rtnl_link_unregister(&bond_link_ops);
4619 err_link:
4620 unregister_pernet_subsys(&bond_net_ops);
4621 goto out;
4622
4623 }
4624
4625 static void __exit bonding_exit(void)
4626 {
4627 unregister_netdevice_notifier(&bond_netdev_notifier);
4628
4629 bond_destroy_debugfs();
4630
4631 rtnl_link_unregister(&bond_link_ops);
4632 unregister_pernet_subsys(&bond_net_ops);
4633
4634 #ifdef CONFIG_NET_POLL_CONTROLLER
4635 /*
4636 * Make sure we don't have an imbalance on our netpoll blocking
4637 */
4638 WARN_ON(atomic_read(&netpoll_block_tx));
4639 #endif
4640 }
4641
4642 module_init(bonding_init);
4643 module_exit(bonding_exit);
4644 MODULE_LICENSE("GPL");
4645 MODULE_VERSION(DRV_VERSION);
4646 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4647 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4648 MODULE_ALIAS_RTNL_LINK("bond");
This page took 0.155968 seconds and 5 git commands to generate.