gpu: host1x: Remove second host1x driver
[deliverable/linux.git] / drivers / net / bonding / bond_main.c
1 /*
2 * originally based on the dummy device.
3 *
4 * Copyright 1999, Thomas Davis, tadavis@lbl.gov.
5 * Licensed under the GPL. Based on dummy.c, and eql.c devices.
6 *
7 * bonding.c: an Ethernet Bonding driver
8 *
9 * This is useful to talk to a Cisco EtherChannel compatible equipment:
10 * Cisco 5500
11 * Sun Trunking (Solaris)
12 * Alteon AceDirector Trunks
13 * Linux Bonding
14 * and probably many L2 switches ...
15 *
16 * How it works:
17 * ifconfig bond0 ipaddress netmask up
18 * will setup a network device, with an ip address. No mac address
19 * will be assigned at this time. The hw mac address will come from
20 * the first slave bonded to the channel. All slaves will then use
21 * this hw mac address.
22 *
23 * ifconfig bond0 down
24 * will release all slaves, marking them as down.
25 *
26 * ifenslave bond0 eth0
27 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either
28 * a: be used as initial mac address
29 * b: if a hw mac address already is there, eth0's hw mac address
30 * will then be set from bond0.
31 *
32 */
33
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/fcntl.h>
40 #include <linux/interrupt.h>
41 #include <linux/ptrace.h>
42 #include <linux/ioport.h>
43 #include <linux/in.h>
44 #include <net/ip.h>
45 #include <linux/ip.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/init.h>
51 #include <linux/timer.h>
52 #include <linux/socket.h>
53 #include <linux/ctype.h>
54 #include <linux/inet.h>
55 #include <linux/bitops.h>
56 #include <linux/io.h>
57 #include <asm/dma.h>
58 #include <linux/uaccess.h>
59 #include <linux/errno.h>
60 #include <linux/netdevice.h>
61 #include <linux/inetdevice.h>
62 #include <linux/igmp.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <net/sock.h>
66 #include <linux/rtnetlink.h>
67 #include <linux/smp.h>
68 #include <linux/if_ether.h>
69 #include <net/arp.h>
70 #include <linux/mii.h>
71 #include <linux/ethtool.h>
72 #include <linux/if_vlan.h>
73 #include <linux/if_bonding.h>
74 #include <linux/jiffies.h>
75 #include <linux/preempt.h>
76 #include <net/route.h>
77 #include <net/net_namespace.h>
78 #include <net/netns/generic.h>
79 #include <net/pkt_sched.h>
80 #include "bonding.h"
81 #include "bond_3ad.h"
82 #include "bond_alb.h"
83
84 /*---------------------------- Module parameters ----------------------------*/
85
86 /* monitor all links that often (in milliseconds). <=0 disables monitoring */
87 #define BOND_LINK_MON_INTERV 0
88 #define BOND_LINK_ARP_INTERV 0
89
90 static int max_bonds = BOND_DEFAULT_MAX_BONDS;
91 static int tx_queues = BOND_DEFAULT_TX_QUEUES;
92 static int num_peer_notif = 1;
93 static int miimon = BOND_LINK_MON_INTERV;
94 static int updelay;
95 static int downdelay;
96 static int use_carrier = 1;
97 static char *mode;
98 static char *primary;
99 static char *primary_reselect;
100 static char *lacp_rate;
101 static int min_links;
102 static char *ad_select;
103 static char *xmit_hash_policy;
104 static int arp_interval = BOND_LINK_ARP_INTERV;
105 static char *arp_ip_target[BOND_MAX_ARP_TARGETS];
106 static char *arp_validate;
107 static char *fail_over_mac;
108 static int all_slaves_active = 0;
109 static struct bond_params bonding_defaults;
110 static int resend_igmp = BOND_DEFAULT_RESEND_IGMP;
111
112 module_param(max_bonds, int, 0);
113 MODULE_PARM_DESC(max_bonds, "Max number of bonded devices");
114 module_param(tx_queues, int, 0);
115 MODULE_PARM_DESC(tx_queues, "Max number of transmit queues (default = 16)");
116 module_param_named(num_grat_arp, num_peer_notif, int, 0644);
117 MODULE_PARM_DESC(num_grat_arp, "Number of peer notifications to send on "
118 "failover event (alias of num_unsol_na)");
119 module_param_named(num_unsol_na, num_peer_notif, int, 0644);
120 MODULE_PARM_DESC(num_unsol_na, "Number of peer notifications to send on "
121 "failover event (alias of num_grat_arp)");
122 module_param(miimon, int, 0);
123 MODULE_PARM_DESC(miimon, "Link check interval in milliseconds");
124 module_param(updelay, int, 0);
125 MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds");
126 module_param(downdelay, int, 0);
127 MODULE_PARM_DESC(downdelay, "Delay before considering link down, "
128 "in milliseconds");
129 module_param(use_carrier, int, 0);
130 MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; "
131 "0 for off, 1 for on (default)");
132 module_param(mode, charp, 0);
133 MODULE_PARM_DESC(mode, "Mode of operation; 0 for balance-rr, "
134 "1 for active-backup, 2 for balance-xor, "
135 "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, "
136 "6 for balance-alb");
137 module_param(primary, charp, 0);
138 MODULE_PARM_DESC(primary, "Primary network device to use");
139 module_param(primary_reselect, charp, 0);
140 MODULE_PARM_DESC(primary_reselect, "Reselect primary slave "
141 "once it comes up; "
142 "0 for always (default), "
143 "1 for only if speed of primary is "
144 "better, "
145 "2 for only on active slave "
146 "failure");
147 module_param(lacp_rate, charp, 0);
148 MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner; "
149 "0 for slow, 1 for fast");
150 module_param(ad_select, charp, 0);
151 MODULE_PARM_DESC(ad_select, "803.ad aggregation selection logic; "
152 "0 for stable (default), 1 for bandwidth, "
153 "2 for count");
154 module_param(min_links, int, 0);
155 MODULE_PARM_DESC(min_links, "Minimum number of available links before turning on carrier");
156
157 module_param(xmit_hash_policy, charp, 0);
158 MODULE_PARM_DESC(xmit_hash_policy, "balance-xor and 802.3ad hashing method; "
159 "0 for layer 2 (default), 1 for layer 3+4, "
160 "2 for layer 2+3");
161 module_param(arp_interval, int, 0);
162 MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds");
163 module_param_array(arp_ip_target, charp, NULL, 0);
164 MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form");
165 module_param(arp_validate, charp, 0);
166 MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes; "
167 "0 for none (default), 1 for active, "
168 "2 for backup, 3 for all");
169 module_param(fail_over_mac, charp, 0);
170 MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to "
171 "the same MAC; 0 for none (default), "
172 "1 for active, 2 for follow");
173 module_param(all_slaves_active, int, 0);
174 MODULE_PARM_DESC(all_slaves_active, "Keep all frames received on an interface"
175 "by setting active flag for all slaves; "
176 "0 for never (default), 1 for always.");
177 module_param(resend_igmp, int, 0);
178 MODULE_PARM_DESC(resend_igmp, "Number of IGMP membership reports to send on "
179 "link failure");
180
181 /*----------------------------- Global variables ----------------------------*/
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 atomic_t netpoll_block_tx = ATOMIC_INIT(0);
185 #endif
186
187 int bond_net_id __read_mostly;
188
189 static __be32 arp_target[BOND_MAX_ARP_TARGETS];
190 static int arp_ip_count;
191 static int bond_mode = BOND_MODE_ROUNDROBIN;
192 static int xmit_hashtype = BOND_XMIT_POLICY_LAYER2;
193 static int lacp_fast;
194
195 const struct bond_parm_tbl bond_lacp_tbl[] = {
196 { "slow", AD_LACP_SLOW},
197 { "fast", AD_LACP_FAST},
198 { NULL, -1},
199 };
200
201 const struct bond_parm_tbl bond_mode_tbl[] = {
202 { "balance-rr", BOND_MODE_ROUNDROBIN},
203 { "active-backup", BOND_MODE_ACTIVEBACKUP},
204 { "balance-xor", BOND_MODE_XOR},
205 { "broadcast", BOND_MODE_BROADCAST},
206 { "802.3ad", BOND_MODE_8023AD},
207 { "balance-tlb", BOND_MODE_TLB},
208 { "balance-alb", BOND_MODE_ALB},
209 { NULL, -1},
210 };
211
212 const struct bond_parm_tbl xmit_hashtype_tbl[] = {
213 { "layer2", BOND_XMIT_POLICY_LAYER2},
214 { "layer3+4", BOND_XMIT_POLICY_LAYER34},
215 { "layer2+3", BOND_XMIT_POLICY_LAYER23},
216 { NULL, -1},
217 };
218
219 const struct bond_parm_tbl arp_validate_tbl[] = {
220 { "none", BOND_ARP_VALIDATE_NONE},
221 { "active", BOND_ARP_VALIDATE_ACTIVE},
222 { "backup", BOND_ARP_VALIDATE_BACKUP},
223 { "all", BOND_ARP_VALIDATE_ALL},
224 { NULL, -1},
225 };
226
227 const struct bond_parm_tbl fail_over_mac_tbl[] = {
228 { "none", BOND_FOM_NONE},
229 { "active", BOND_FOM_ACTIVE},
230 { "follow", BOND_FOM_FOLLOW},
231 { NULL, -1},
232 };
233
234 const struct bond_parm_tbl pri_reselect_tbl[] = {
235 { "always", BOND_PRI_RESELECT_ALWAYS},
236 { "better", BOND_PRI_RESELECT_BETTER},
237 { "failure", BOND_PRI_RESELECT_FAILURE},
238 { NULL, -1},
239 };
240
241 struct bond_parm_tbl ad_select_tbl[] = {
242 { "stable", BOND_AD_STABLE},
243 { "bandwidth", BOND_AD_BANDWIDTH},
244 { "count", BOND_AD_COUNT},
245 { NULL, -1},
246 };
247
248 /*-------------------------- Forward declarations ---------------------------*/
249
250 static int bond_init(struct net_device *bond_dev);
251 static void bond_uninit(struct net_device *bond_dev);
252
253 /*---------------------------- General routines -----------------------------*/
254
255 const char *bond_mode_name(int mode)
256 {
257 static const char *names[] = {
258 [BOND_MODE_ROUNDROBIN] = "load balancing (round-robin)",
259 [BOND_MODE_ACTIVEBACKUP] = "fault-tolerance (active-backup)",
260 [BOND_MODE_XOR] = "load balancing (xor)",
261 [BOND_MODE_BROADCAST] = "fault-tolerance (broadcast)",
262 [BOND_MODE_8023AD] = "IEEE 802.3ad Dynamic link aggregation",
263 [BOND_MODE_TLB] = "transmit load balancing",
264 [BOND_MODE_ALB] = "adaptive load balancing",
265 };
266
267 if (mode < 0 || mode > BOND_MODE_ALB)
268 return "unknown";
269
270 return names[mode];
271 }
272
273 /*---------------------------------- VLAN -----------------------------------*/
274
275 /**
276 * bond_add_vlan - add a new vlan id on bond
277 * @bond: bond that got the notification
278 * @vlan_id: the vlan id to add
279 *
280 * Returns -ENOMEM if allocation failed.
281 */
282 static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id)
283 {
284 struct vlan_entry *vlan;
285
286 pr_debug("bond: %s, vlan id %d\n",
287 (bond ? bond->dev->name : "None"), vlan_id);
288
289 vlan = kzalloc(sizeof(struct vlan_entry), GFP_KERNEL);
290 if (!vlan)
291 return -ENOMEM;
292
293 INIT_LIST_HEAD(&vlan->vlan_list);
294 vlan->vlan_id = vlan_id;
295
296 write_lock_bh(&bond->lock);
297
298 list_add_tail(&vlan->vlan_list, &bond->vlan_list);
299
300 write_unlock_bh(&bond->lock);
301
302 pr_debug("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name);
303
304 return 0;
305 }
306
307 /**
308 * bond_del_vlan - delete a vlan id from bond
309 * @bond: bond that got the notification
310 * @vlan_id: the vlan id to delete
311 *
312 * returns -ENODEV if @vlan_id was not found in @bond.
313 */
314 static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id)
315 {
316 struct vlan_entry *vlan;
317 int res = -ENODEV;
318
319 pr_debug("bond: %s, vlan id %d\n", bond->dev->name, vlan_id);
320
321 block_netpoll_tx();
322 write_lock_bh(&bond->lock);
323
324 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
325 if (vlan->vlan_id == vlan_id) {
326 list_del(&vlan->vlan_list);
327
328 if (bond_is_lb(bond))
329 bond_alb_clear_vlan(bond, vlan_id);
330
331 pr_debug("removed VLAN ID %d from bond %s\n",
332 vlan_id, bond->dev->name);
333
334 kfree(vlan);
335
336 res = 0;
337 goto out;
338 }
339 }
340
341 pr_debug("couldn't find VLAN ID %d in bond %s\n",
342 vlan_id, bond->dev->name);
343
344 out:
345 write_unlock_bh(&bond->lock);
346 unblock_netpoll_tx();
347 return res;
348 }
349
350 /**
351 * bond_next_vlan - safely skip to the next item in the vlans list.
352 * @bond: the bond we're working on
353 * @curr: item we're advancing from
354 *
355 * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL,
356 * or @curr->next otherwise (even if it is @curr itself again).
357 *
358 * Caller must hold bond->lock
359 */
360 struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr)
361 {
362 struct vlan_entry *next, *last;
363
364 if (list_empty(&bond->vlan_list))
365 return NULL;
366
367 if (!curr) {
368 next = list_entry(bond->vlan_list.next,
369 struct vlan_entry, vlan_list);
370 } else {
371 last = list_entry(bond->vlan_list.prev,
372 struct vlan_entry, vlan_list);
373 if (last == curr) {
374 next = list_entry(bond->vlan_list.next,
375 struct vlan_entry, vlan_list);
376 } else {
377 next = list_entry(curr->vlan_list.next,
378 struct vlan_entry, vlan_list);
379 }
380 }
381
382 return next;
383 }
384
385 /**
386 * bond_dev_queue_xmit - Prepare skb for xmit.
387 *
388 * @bond: bond device that got this skb for tx.
389 * @skb: hw accel VLAN tagged skb to transmit
390 * @slave_dev: slave that is supposed to xmit this skbuff
391 */
392 int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb,
393 struct net_device *slave_dev)
394 {
395 skb->dev = slave_dev;
396
397 BUILD_BUG_ON(sizeof(skb->queue_mapping) !=
398 sizeof(qdisc_skb_cb(skb)->slave_dev_queue_mapping));
399 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
400
401 if (unlikely(netpoll_tx_running(bond->dev)))
402 bond_netpoll_send_skb(bond_get_slave_by_dev(bond, slave_dev), skb);
403 else
404 dev_queue_xmit(skb);
405
406 return 0;
407 }
408
409 /*
410 * In the following 2 functions, bond_vlan_rx_add_vid and bond_vlan_rx_kill_vid,
411 * We don't protect the slave list iteration with a lock because:
412 * a. This operation is performed in IOCTL context,
413 * b. The operation is protected by the RTNL semaphore in the 8021q code,
414 * c. Holding a lock with BH disabled while directly calling a base driver
415 * entry point is generally a BAD idea.
416 *
417 * The design of synchronization/protection for this operation in the 8021q
418 * module is good for one or more VLAN devices over a single physical device
419 * and cannot be extended for a teaming solution like bonding, so there is a
420 * potential race condition here where a net device from the vlan group might
421 * be referenced (either by a base driver or the 8021q code) while it is being
422 * removed from the system. However, it turns out we're not making matters
423 * worse, and if it works for regular VLAN usage it will work here too.
424 */
425
426 /**
427 * bond_vlan_rx_add_vid - Propagates adding an id to slaves
428 * @bond_dev: bonding net device that got called
429 * @vid: vlan id being added
430 */
431 static int bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid)
432 {
433 struct bonding *bond = netdev_priv(bond_dev);
434 struct slave *slave, *stop_at;
435 int i, res;
436
437 bond_for_each_slave(bond, slave, i) {
438 res = vlan_vid_add(slave->dev, vid);
439 if (res)
440 goto unwind;
441 }
442
443 res = bond_add_vlan(bond, vid);
444 if (res) {
445 pr_err("%s: Error: Failed to add vlan id %d\n",
446 bond_dev->name, vid);
447 return res;
448 }
449
450 return 0;
451
452 unwind:
453 /* unwind from head to the slave that failed */
454 stop_at = slave;
455 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at)
456 vlan_vid_del(slave->dev, vid);
457
458 return res;
459 }
460
461 /**
462 * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves
463 * @bond_dev: bonding net device that got called
464 * @vid: vlan id being removed
465 */
466 static int bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid)
467 {
468 struct bonding *bond = netdev_priv(bond_dev);
469 struct slave *slave;
470 int i, res;
471
472 bond_for_each_slave(bond, slave, i)
473 vlan_vid_del(slave->dev, vid);
474
475 res = bond_del_vlan(bond, vid);
476 if (res) {
477 pr_err("%s: Error: Failed to remove vlan id %d\n",
478 bond_dev->name, vid);
479 return res;
480 }
481
482 return 0;
483 }
484
485 static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev)
486 {
487 struct vlan_entry *vlan;
488 int res;
489
490 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
491 res = vlan_vid_add(slave_dev, vlan->vlan_id);
492 if (res)
493 pr_warning("%s: Failed to add vlan id %d to device %s\n",
494 bond->dev->name, vlan->vlan_id,
495 slave_dev->name);
496 }
497 }
498
499 static void bond_del_vlans_from_slave(struct bonding *bond,
500 struct net_device *slave_dev)
501 {
502 struct vlan_entry *vlan;
503
504 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
505 if (!vlan->vlan_id)
506 continue;
507 vlan_vid_del(slave_dev, vlan->vlan_id);
508 }
509 }
510
511 /*------------------------------- Link status -------------------------------*/
512
513 /*
514 * Set the carrier state for the master according to the state of its
515 * slaves. If any slaves are up, the master is up. In 802.3ad mode,
516 * do special 802.3ad magic.
517 *
518 * Returns zero if carrier state does not change, nonzero if it does.
519 */
520 static int bond_set_carrier(struct bonding *bond)
521 {
522 struct slave *slave;
523 int i;
524
525 if (bond->slave_cnt == 0)
526 goto down;
527
528 if (bond->params.mode == BOND_MODE_8023AD)
529 return bond_3ad_set_carrier(bond);
530
531 bond_for_each_slave(bond, slave, i) {
532 if (slave->link == BOND_LINK_UP) {
533 if (!netif_carrier_ok(bond->dev)) {
534 netif_carrier_on(bond->dev);
535 return 1;
536 }
537 return 0;
538 }
539 }
540
541 down:
542 if (netif_carrier_ok(bond->dev)) {
543 netif_carrier_off(bond->dev);
544 return 1;
545 }
546 return 0;
547 }
548
549 /*
550 * Get link speed and duplex from the slave's base driver
551 * using ethtool. If for some reason the call fails or the
552 * values are invalid, set speed and duplex to -1,
553 * and return.
554 */
555 static void bond_update_speed_duplex(struct slave *slave)
556 {
557 struct net_device *slave_dev = slave->dev;
558 struct ethtool_cmd ecmd;
559 u32 slave_speed;
560 int res;
561
562 slave->speed = SPEED_UNKNOWN;
563 slave->duplex = DUPLEX_UNKNOWN;
564
565 res = __ethtool_get_settings(slave_dev, &ecmd);
566 if (res < 0)
567 return;
568
569 slave_speed = ethtool_cmd_speed(&ecmd);
570 if (slave_speed == 0 || slave_speed == ((__u32) -1))
571 return;
572
573 switch (ecmd.duplex) {
574 case DUPLEX_FULL:
575 case DUPLEX_HALF:
576 break;
577 default:
578 return;
579 }
580
581 slave->speed = slave_speed;
582 slave->duplex = ecmd.duplex;
583
584 return;
585 }
586
587 /*
588 * if <dev> supports MII link status reporting, check its link status.
589 *
590 * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(),
591 * depending upon the setting of the use_carrier parameter.
592 *
593 * Return either BMSR_LSTATUS, meaning that the link is up (or we
594 * can't tell and just pretend it is), or 0, meaning that the link is
595 * down.
596 *
597 * If reporting is non-zero, instead of faking link up, return -1 if
598 * both ETHTOOL and MII ioctls fail (meaning the device does not
599 * support them). If use_carrier is set, return whatever it says.
600 * It'd be nice if there was a good way to tell if a driver supports
601 * netif_carrier, but there really isn't.
602 */
603 static int bond_check_dev_link(struct bonding *bond,
604 struct net_device *slave_dev, int reporting)
605 {
606 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
607 int (*ioctl)(struct net_device *, struct ifreq *, int);
608 struct ifreq ifr;
609 struct mii_ioctl_data *mii;
610
611 if (!reporting && !netif_running(slave_dev))
612 return 0;
613
614 if (bond->params.use_carrier)
615 return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0;
616
617 /* Try to get link status using Ethtool first. */
618 if (slave_dev->ethtool_ops->get_link)
619 return slave_dev->ethtool_ops->get_link(slave_dev) ?
620 BMSR_LSTATUS : 0;
621
622 /* Ethtool can't be used, fallback to MII ioctls. */
623 ioctl = slave_ops->ndo_do_ioctl;
624 if (ioctl) {
625 /* TODO: set pointer to correct ioctl on a per team member */
626 /* bases to make this more efficient. that is, once */
627 /* we determine the correct ioctl, we will always */
628 /* call it and not the others for that team */
629 /* member. */
630
631 /*
632 * We cannot assume that SIOCGMIIPHY will also read a
633 * register; not all network drivers (e.g., e100)
634 * support that.
635 */
636
637 /* Yes, the mii is overlaid on the ifreq.ifr_ifru */
638 strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ);
639 mii = if_mii(&ifr);
640 if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) {
641 mii->reg_num = MII_BMSR;
642 if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0)
643 return mii->val_out & BMSR_LSTATUS;
644 }
645 }
646
647 /*
648 * If reporting, report that either there's no dev->do_ioctl,
649 * or both SIOCGMIIREG and get_link failed (meaning that we
650 * cannot report link status). If not reporting, pretend
651 * we're ok.
652 */
653 return reporting ? -1 : BMSR_LSTATUS;
654 }
655
656 /*----------------------------- Multicast list ------------------------------*/
657
658 /*
659 * Push the promiscuity flag down to appropriate slaves
660 */
661 static int bond_set_promiscuity(struct bonding *bond, int inc)
662 {
663 int err = 0;
664 if (USES_PRIMARY(bond->params.mode)) {
665 /* write lock already acquired */
666 if (bond->curr_active_slave) {
667 err = dev_set_promiscuity(bond->curr_active_slave->dev,
668 inc);
669 }
670 } else {
671 struct slave *slave;
672 int i;
673 bond_for_each_slave(bond, slave, i) {
674 err = dev_set_promiscuity(slave->dev, inc);
675 if (err)
676 return err;
677 }
678 }
679 return err;
680 }
681
682 /*
683 * Push the allmulti flag down to all slaves
684 */
685 static int bond_set_allmulti(struct bonding *bond, int inc)
686 {
687 int err = 0;
688 if (USES_PRIMARY(bond->params.mode)) {
689 /* write lock already acquired */
690 if (bond->curr_active_slave) {
691 err = dev_set_allmulti(bond->curr_active_slave->dev,
692 inc);
693 }
694 } else {
695 struct slave *slave;
696 int i;
697 bond_for_each_slave(bond, slave, i) {
698 err = dev_set_allmulti(slave->dev, inc);
699 if (err)
700 return err;
701 }
702 }
703 return err;
704 }
705
706 /*
707 * Add a Multicast address to slaves
708 * according to mode
709 */
710 static void bond_mc_add(struct bonding *bond, void *addr)
711 {
712 if (USES_PRIMARY(bond->params.mode)) {
713 /* write lock already acquired */
714 if (bond->curr_active_slave)
715 dev_mc_add(bond->curr_active_slave->dev, addr);
716 } else {
717 struct slave *slave;
718 int i;
719
720 bond_for_each_slave(bond, slave, i)
721 dev_mc_add(slave->dev, addr);
722 }
723 }
724
725 /*
726 * Remove a multicast address from slave
727 * according to mode
728 */
729 static void bond_mc_del(struct bonding *bond, void *addr)
730 {
731 if (USES_PRIMARY(bond->params.mode)) {
732 /* write lock already acquired */
733 if (bond->curr_active_slave)
734 dev_mc_del(bond->curr_active_slave->dev, addr);
735 } else {
736 struct slave *slave;
737 int i;
738 bond_for_each_slave(bond, slave, i) {
739 dev_mc_del(slave->dev, addr);
740 }
741 }
742 }
743
744
745 static void __bond_resend_igmp_join_requests(struct net_device *dev)
746 {
747 struct in_device *in_dev;
748
749 in_dev = __in_dev_get_rcu(dev);
750 if (in_dev)
751 ip_mc_rejoin_groups(in_dev);
752 }
753
754 /*
755 * Retrieve the list of registered multicast addresses for the bonding
756 * device and retransmit an IGMP JOIN request to the current active
757 * slave.
758 */
759 static void bond_resend_igmp_join_requests(struct bonding *bond)
760 {
761 struct net_device *bond_dev, *vlan_dev, *upper_dev;
762 struct vlan_entry *vlan;
763
764 rcu_read_lock();
765 read_lock(&bond->lock);
766
767 bond_dev = bond->dev;
768
769 /* rejoin all groups on bond device */
770 __bond_resend_igmp_join_requests(bond_dev);
771
772 /*
773 * if bond is enslaved to a bridge,
774 * then rejoin all groups on its master
775 */
776 upper_dev = netdev_master_upper_dev_get_rcu(bond_dev);
777 if (upper_dev && upper_dev->priv_flags & IFF_EBRIDGE)
778 __bond_resend_igmp_join_requests(upper_dev);
779
780 /* rejoin all groups on vlan devices */
781 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
782 vlan_dev = __vlan_find_dev_deep(bond_dev,
783 vlan->vlan_id);
784 if (vlan_dev)
785 __bond_resend_igmp_join_requests(vlan_dev);
786 }
787
788 if (--bond->igmp_retrans > 0)
789 queue_delayed_work(bond->wq, &bond->mcast_work, HZ/5);
790
791 read_unlock(&bond->lock);
792 rcu_read_unlock();
793 }
794
795 static void bond_resend_igmp_join_requests_delayed(struct work_struct *work)
796 {
797 struct bonding *bond = container_of(work, struct bonding,
798 mcast_work.work);
799 rcu_read_lock();
800 bond_resend_igmp_join_requests(bond);
801 rcu_read_unlock();
802 }
803
804 /*
805 * flush all members of flush->mc_list from device dev->mc_list
806 */
807 static void bond_mc_list_flush(struct net_device *bond_dev,
808 struct net_device *slave_dev)
809 {
810 struct bonding *bond = netdev_priv(bond_dev);
811 struct netdev_hw_addr *ha;
812
813 netdev_for_each_mc_addr(ha, bond_dev)
814 dev_mc_del(slave_dev, ha->addr);
815
816 if (bond->params.mode == BOND_MODE_8023AD) {
817 /* del lacpdu mc addr from mc list */
818 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
819
820 dev_mc_del(slave_dev, lacpdu_multicast);
821 }
822 }
823
824 /*--------------------------- Active slave change ---------------------------*/
825
826 /*
827 * Update the mc list and multicast-related flags for the new and
828 * old active slaves (if any) according to the multicast mode, and
829 * promiscuous flags unconditionally.
830 */
831 static void bond_mc_swap(struct bonding *bond, struct slave *new_active,
832 struct slave *old_active)
833 {
834 struct netdev_hw_addr *ha;
835
836 if (!USES_PRIMARY(bond->params.mode))
837 /* nothing to do - mc list is already up-to-date on
838 * all slaves
839 */
840 return;
841
842 if (old_active) {
843 if (bond->dev->flags & IFF_PROMISC)
844 dev_set_promiscuity(old_active->dev, -1);
845
846 if (bond->dev->flags & IFF_ALLMULTI)
847 dev_set_allmulti(old_active->dev, -1);
848
849 netdev_for_each_mc_addr(ha, bond->dev)
850 dev_mc_del(old_active->dev, ha->addr);
851 }
852
853 if (new_active) {
854 /* FIXME: Signal errors upstream. */
855 if (bond->dev->flags & IFF_PROMISC)
856 dev_set_promiscuity(new_active->dev, 1);
857
858 if (bond->dev->flags & IFF_ALLMULTI)
859 dev_set_allmulti(new_active->dev, 1);
860
861 netdev_for_each_mc_addr(ha, bond->dev)
862 dev_mc_add(new_active->dev, ha->addr);
863 }
864 }
865
866 /*
867 * bond_do_fail_over_mac
868 *
869 * Perform special MAC address swapping for fail_over_mac settings
870 *
871 * Called with RTNL, bond->lock for read, curr_slave_lock for write_bh.
872 */
873 static void bond_do_fail_over_mac(struct bonding *bond,
874 struct slave *new_active,
875 struct slave *old_active)
876 __releases(&bond->curr_slave_lock)
877 __releases(&bond->lock)
878 __acquires(&bond->lock)
879 __acquires(&bond->curr_slave_lock)
880 {
881 u8 tmp_mac[ETH_ALEN];
882 struct sockaddr saddr;
883 int rv;
884
885 switch (bond->params.fail_over_mac) {
886 case BOND_FOM_ACTIVE:
887 if (new_active) {
888 memcpy(bond->dev->dev_addr, new_active->dev->dev_addr,
889 new_active->dev->addr_len);
890 write_unlock_bh(&bond->curr_slave_lock);
891 read_unlock(&bond->lock);
892 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev);
893 read_lock(&bond->lock);
894 write_lock_bh(&bond->curr_slave_lock);
895 }
896 break;
897 case BOND_FOM_FOLLOW:
898 /*
899 * if new_active && old_active, swap them
900 * if just old_active, do nothing (going to no active slave)
901 * if just new_active, set new_active to bond's MAC
902 */
903 if (!new_active)
904 return;
905
906 write_unlock_bh(&bond->curr_slave_lock);
907 read_unlock(&bond->lock);
908
909 if (old_active) {
910 memcpy(tmp_mac, new_active->dev->dev_addr, ETH_ALEN);
911 memcpy(saddr.sa_data, old_active->dev->dev_addr,
912 ETH_ALEN);
913 saddr.sa_family = new_active->dev->type;
914 } else {
915 memcpy(saddr.sa_data, bond->dev->dev_addr, ETH_ALEN);
916 saddr.sa_family = bond->dev->type;
917 }
918
919 rv = dev_set_mac_address(new_active->dev, &saddr);
920 if (rv) {
921 pr_err("%s: Error %d setting MAC of slave %s\n",
922 bond->dev->name, -rv, new_active->dev->name);
923 goto out;
924 }
925
926 if (!old_active)
927 goto out;
928
929 memcpy(saddr.sa_data, tmp_mac, ETH_ALEN);
930 saddr.sa_family = old_active->dev->type;
931
932 rv = dev_set_mac_address(old_active->dev, &saddr);
933 if (rv)
934 pr_err("%s: Error %d setting MAC of slave %s\n",
935 bond->dev->name, -rv, new_active->dev->name);
936 out:
937 read_lock(&bond->lock);
938 write_lock_bh(&bond->curr_slave_lock);
939 break;
940 default:
941 pr_err("%s: bond_do_fail_over_mac impossible: bad policy %d\n",
942 bond->dev->name, bond->params.fail_over_mac);
943 break;
944 }
945
946 }
947
948 static bool bond_should_change_active(struct bonding *bond)
949 {
950 struct slave *prim = bond->primary_slave;
951 struct slave *curr = bond->curr_active_slave;
952
953 if (!prim || !curr || curr->link != BOND_LINK_UP)
954 return true;
955 if (bond->force_primary) {
956 bond->force_primary = false;
957 return true;
958 }
959 if (bond->params.primary_reselect == BOND_PRI_RESELECT_BETTER &&
960 (prim->speed < curr->speed ||
961 (prim->speed == curr->speed && prim->duplex <= curr->duplex)))
962 return false;
963 if (bond->params.primary_reselect == BOND_PRI_RESELECT_FAILURE)
964 return false;
965 return true;
966 }
967
968 /**
969 * find_best_interface - select the best available slave to be the active one
970 * @bond: our bonding struct
971 *
972 * Warning: Caller must hold curr_slave_lock for writing.
973 */
974 static struct slave *bond_find_best_slave(struct bonding *bond)
975 {
976 struct slave *new_active, *old_active;
977 struct slave *bestslave = NULL;
978 int mintime = bond->params.updelay;
979 int i;
980
981 new_active = bond->curr_active_slave;
982
983 if (!new_active) { /* there were no active slaves left */
984 if (bond->slave_cnt > 0) /* found one slave */
985 new_active = bond->first_slave;
986 else
987 return NULL; /* still no slave, return NULL */
988 }
989
990 if ((bond->primary_slave) &&
991 bond->primary_slave->link == BOND_LINK_UP &&
992 bond_should_change_active(bond)) {
993 new_active = bond->primary_slave;
994 }
995
996 /* remember where to stop iterating over the slaves */
997 old_active = new_active;
998
999 bond_for_each_slave_from(bond, new_active, i, old_active) {
1000 if (new_active->link == BOND_LINK_UP) {
1001 return new_active;
1002 } else if (new_active->link == BOND_LINK_BACK &&
1003 IS_UP(new_active->dev)) {
1004 /* link up, but waiting for stabilization */
1005 if (new_active->delay < mintime) {
1006 mintime = new_active->delay;
1007 bestslave = new_active;
1008 }
1009 }
1010 }
1011
1012 return bestslave;
1013 }
1014
1015 static bool bond_should_notify_peers(struct bonding *bond)
1016 {
1017 struct slave *slave = bond->curr_active_slave;
1018
1019 pr_debug("bond_should_notify_peers: bond %s slave %s\n",
1020 bond->dev->name, slave ? slave->dev->name : "NULL");
1021
1022 if (!slave || !bond->send_peer_notif ||
1023 test_bit(__LINK_STATE_LINKWATCH_PENDING, &slave->dev->state))
1024 return false;
1025
1026 bond->send_peer_notif--;
1027 return true;
1028 }
1029
1030 /**
1031 * change_active_interface - change the active slave into the specified one
1032 * @bond: our bonding struct
1033 * @new: the new slave to make the active one
1034 *
1035 * Set the new slave to the bond's settings and unset them on the old
1036 * curr_active_slave.
1037 * Setting include flags, mc-list, promiscuity, allmulti, etc.
1038 *
1039 * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP,
1040 * because it is apparently the best available slave we have, even though its
1041 * updelay hasn't timed out yet.
1042 *
1043 * If new_active is not NULL, caller must hold bond->lock for read and
1044 * curr_slave_lock for write_bh.
1045 */
1046 void bond_change_active_slave(struct bonding *bond, struct slave *new_active)
1047 {
1048 struct slave *old_active = bond->curr_active_slave;
1049
1050 if (old_active == new_active)
1051 return;
1052
1053 if (new_active) {
1054 new_active->jiffies = jiffies;
1055
1056 if (new_active->link == BOND_LINK_BACK) {
1057 if (USES_PRIMARY(bond->params.mode)) {
1058 pr_info("%s: making interface %s the new active one %d ms earlier.\n",
1059 bond->dev->name, new_active->dev->name,
1060 (bond->params.updelay - new_active->delay) * bond->params.miimon);
1061 }
1062
1063 new_active->delay = 0;
1064 new_active->link = BOND_LINK_UP;
1065
1066 if (bond->params.mode == BOND_MODE_8023AD)
1067 bond_3ad_handle_link_change(new_active, BOND_LINK_UP);
1068
1069 if (bond_is_lb(bond))
1070 bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP);
1071 } else {
1072 if (USES_PRIMARY(bond->params.mode)) {
1073 pr_info("%s: making interface %s the new active one.\n",
1074 bond->dev->name, new_active->dev->name);
1075 }
1076 }
1077 }
1078
1079 if (USES_PRIMARY(bond->params.mode))
1080 bond_mc_swap(bond, new_active, old_active);
1081
1082 if (bond_is_lb(bond)) {
1083 bond_alb_handle_active_change(bond, new_active);
1084 if (old_active)
1085 bond_set_slave_inactive_flags(old_active);
1086 if (new_active)
1087 bond_set_slave_active_flags(new_active);
1088 } else {
1089 bond->curr_active_slave = new_active;
1090 }
1091
1092 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) {
1093 if (old_active)
1094 bond_set_slave_inactive_flags(old_active);
1095
1096 if (new_active) {
1097 bool should_notify_peers = false;
1098
1099 bond_set_slave_active_flags(new_active);
1100
1101 if (bond->params.fail_over_mac)
1102 bond_do_fail_over_mac(bond, new_active,
1103 old_active);
1104
1105 if (netif_running(bond->dev)) {
1106 bond->send_peer_notif =
1107 bond->params.num_peer_notif;
1108 should_notify_peers =
1109 bond_should_notify_peers(bond);
1110 }
1111
1112 write_unlock_bh(&bond->curr_slave_lock);
1113 read_unlock(&bond->lock);
1114
1115 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, bond->dev);
1116 if (should_notify_peers)
1117 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS,
1118 bond->dev);
1119
1120 read_lock(&bond->lock);
1121 write_lock_bh(&bond->curr_slave_lock);
1122 }
1123 }
1124
1125 /* resend IGMP joins since active slave has changed or
1126 * all were sent on curr_active_slave.
1127 * resend only if bond is brought up with the affected
1128 * bonding modes and the retransmission is enabled */
1129 if (netif_running(bond->dev) && (bond->params.resend_igmp > 0) &&
1130 ((USES_PRIMARY(bond->params.mode) && new_active) ||
1131 bond->params.mode == BOND_MODE_ROUNDROBIN)) {
1132 bond->igmp_retrans = bond->params.resend_igmp;
1133 queue_delayed_work(bond->wq, &bond->mcast_work, 0);
1134 }
1135 }
1136
1137 /**
1138 * bond_select_active_slave - select a new active slave, if needed
1139 * @bond: our bonding struct
1140 *
1141 * This functions should be called when one of the following occurs:
1142 * - The old curr_active_slave has been released or lost its link.
1143 * - The primary_slave has got its link back.
1144 * - A slave has got its link back and there's no old curr_active_slave.
1145 *
1146 * Caller must hold bond->lock for read and curr_slave_lock for write_bh.
1147 */
1148 void bond_select_active_slave(struct bonding *bond)
1149 {
1150 struct slave *best_slave;
1151 int rv;
1152
1153 best_slave = bond_find_best_slave(bond);
1154 if (best_slave != bond->curr_active_slave) {
1155 bond_change_active_slave(bond, best_slave);
1156 rv = bond_set_carrier(bond);
1157 if (!rv)
1158 return;
1159
1160 if (netif_carrier_ok(bond->dev)) {
1161 pr_info("%s: first active interface up!\n",
1162 bond->dev->name);
1163 } else {
1164 pr_info("%s: now running without any active interface !\n",
1165 bond->dev->name);
1166 }
1167 }
1168 }
1169
1170 /*--------------------------- slave list handling ---------------------------*/
1171
1172 /*
1173 * This function attaches the slave to the end of list.
1174 *
1175 * bond->lock held for writing by caller.
1176 */
1177 static void bond_attach_slave(struct bonding *bond, struct slave *new_slave)
1178 {
1179 if (bond->first_slave == NULL) { /* attaching the first slave */
1180 new_slave->next = new_slave;
1181 new_slave->prev = new_slave;
1182 bond->first_slave = new_slave;
1183 } else {
1184 new_slave->next = bond->first_slave;
1185 new_slave->prev = bond->first_slave->prev;
1186 new_slave->next->prev = new_slave;
1187 new_slave->prev->next = new_slave;
1188 }
1189
1190 bond->slave_cnt++;
1191 }
1192
1193 /*
1194 * This function detaches the slave from the list.
1195 * WARNING: no check is made to verify if the slave effectively
1196 * belongs to <bond>.
1197 * Nothing is freed on return, structures are just unchained.
1198 * If any slave pointer in bond was pointing to <slave>,
1199 * it should be changed by the calling function.
1200 *
1201 * bond->lock held for writing by caller.
1202 */
1203 static void bond_detach_slave(struct bonding *bond, struct slave *slave)
1204 {
1205 if (slave->next)
1206 slave->next->prev = slave->prev;
1207
1208 if (slave->prev)
1209 slave->prev->next = slave->next;
1210
1211 if (bond->first_slave == slave) { /* slave is the first slave */
1212 if (bond->slave_cnt > 1) { /* there are more slave */
1213 bond->first_slave = slave->next;
1214 } else {
1215 bond->first_slave = NULL; /* slave was the last one */
1216 }
1217 }
1218
1219 slave->next = NULL;
1220 slave->prev = NULL;
1221 bond->slave_cnt--;
1222 }
1223
1224 #ifdef CONFIG_NET_POLL_CONTROLLER
1225 static inline int slave_enable_netpoll(struct slave *slave)
1226 {
1227 struct netpoll *np;
1228 int err = 0;
1229
1230 np = kzalloc(sizeof(*np), GFP_ATOMIC);
1231 err = -ENOMEM;
1232 if (!np)
1233 goto out;
1234
1235 err = __netpoll_setup(np, slave->dev, GFP_ATOMIC);
1236 if (err) {
1237 kfree(np);
1238 goto out;
1239 }
1240 slave->np = np;
1241 out:
1242 return err;
1243 }
1244 static inline void slave_disable_netpoll(struct slave *slave)
1245 {
1246 struct netpoll *np = slave->np;
1247
1248 if (!np)
1249 return;
1250
1251 slave->np = NULL;
1252 __netpoll_free_async(np);
1253 }
1254 static inline bool slave_dev_support_netpoll(struct net_device *slave_dev)
1255 {
1256 if (slave_dev->priv_flags & IFF_DISABLE_NETPOLL)
1257 return false;
1258 if (!slave_dev->netdev_ops->ndo_poll_controller)
1259 return false;
1260 return true;
1261 }
1262
1263 static void bond_poll_controller(struct net_device *bond_dev)
1264 {
1265 }
1266
1267 static void __bond_netpoll_cleanup(struct bonding *bond)
1268 {
1269 struct slave *slave;
1270 int i;
1271
1272 bond_for_each_slave(bond, slave, i)
1273 if (IS_UP(slave->dev))
1274 slave_disable_netpoll(slave);
1275 }
1276 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1277 {
1278 struct bonding *bond = netdev_priv(bond_dev);
1279
1280 read_lock(&bond->lock);
1281 __bond_netpoll_cleanup(bond);
1282 read_unlock(&bond->lock);
1283 }
1284
1285 static int bond_netpoll_setup(struct net_device *dev, struct netpoll_info *ni, gfp_t gfp)
1286 {
1287 struct bonding *bond = netdev_priv(dev);
1288 struct slave *slave;
1289 int i, err = 0;
1290
1291 read_lock(&bond->lock);
1292 bond_for_each_slave(bond, slave, i) {
1293 err = slave_enable_netpoll(slave);
1294 if (err) {
1295 __bond_netpoll_cleanup(bond);
1296 break;
1297 }
1298 }
1299 read_unlock(&bond->lock);
1300 return err;
1301 }
1302
1303 static struct netpoll_info *bond_netpoll_info(struct bonding *bond)
1304 {
1305 return bond->dev->npinfo;
1306 }
1307
1308 #else
1309 static inline int slave_enable_netpoll(struct slave *slave)
1310 {
1311 return 0;
1312 }
1313 static inline void slave_disable_netpoll(struct slave *slave)
1314 {
1315 }
1316 static void bond_netpoll_cleanup(struct net_device *bond_dev)
1317 {
1318 }
1319 #endif
1320
1321 /*---------------------------------- IOCTL ----------------------------------*/
1322
1323 static void bond_set_dev_addr(struct net_device *bond_dev,
1324 struct net_device *slave_dev)
1325 {
1326 pr_debug("bond_dev=%p\n", bond_dev);
1327 pr_debug("slave_dev=%p\n", slave_dev);
1328 pr_debug("slave_dev->addr_len=%d\n", slave_dev->addr_len);
1329 memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len);
1330 bond_dev->addr_assign_type = NET_ADDR_SET;
1331 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond_dev);
1332 }
1333
1334 static netdev_features_t bond_fix_features(struct net_device *dev,
1335 netdev_features_t features)
1336 {
1337 struct slave *slave;
1338 struct bonding *bond = netdev_priv(dev);
1339 netdev_features_t mask;
1340 int i;
1341
1342 read_lock(&bond->lock);
1343
1344 if (!bond->first_slave) {
1345 /* Disable adding VLANs to empty bond. But why? --mq */
1346 features |= NETIF_F_VLAN_CHALLENGED;
1347 goto out;
1348 }
1349
1350 mask = features;
1351 features &= ~NETIF_F_ONE_FOR_ALL;
1352 features |= NETIF_F_ALL_FOR_ALL;
1353
1354 bond_for_each_slave(bond, slave, i) {
1355 features = netdev_increment_features(features,
1356 slave->dev->features,
1357 mask);
1358 }
1359
1360 out:
1361 read_unlock(&bond->lock);
1362 return features;
1363 }
1364
1365 #define BOND_VLAN_FEATURES (NETIF_F_ALL_CSUM | NETIF_F_SG | \
1366 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \
1367 NETIF_F_HIGHDMA | NETIF_F_LRO)
1368
1369 static void bond_compute_features(struct bonding *bond)
1370 {
1371 struct slave *slave;
1372 struct net_device *bond_dev = bond->dev;
1373 netdev_features_t vlan_features = BOND_VLAN_FEATURES;
1374 unsigned short max_hard_header_len = ETH_HLEN;
1375 unsigned int gso_max_size = GSO_MAX_SIZE;
1376 u16 gso_max_segs = GSO_MAX_SEGS;
1377 int i;
1378 unsigned int flags, dst_release_flag = IFF_XMIT_DST_RELEASE;
1379
1380 read_lock(&bond->lock);
1381
1382 if (!bond->first_slave)
1383 goto done;
1384
1385 bond_for_each_slave(bond, slave, i) {
1386 vlan_features = netdev_increment_features(vlan_features,
1387 slave->dev->vlan_features, BOND_VLAN_FEATURES);
1388
1389 dst_release_flag &= slave->dev->priv_flags;
1390 if (slave->dev->hard_header_len > max_hard_header_len)
1391 max_hard_header_len = slave->dev->hard_header_len;
1392
1393 gso_max_size = min(gso_max_size, slave->dev->gso_max_size);
1394 gso_max_segs = min(gso_max_segs, slave->dev->gso_max_segs);
1395 }
1396
1397 done:
1398 bond_dev->vlan_features = vlan_features;
1399 bond_dev->hard_header_len = max_hard_header_len;
1400 bond_dev->gso_max_segs = gso_max_segs;
1401 netif_set_gso_max_size(bond_dev, gso_max_size);
1402
1403 flags = bond_dev->priv_flags & ~IFF_XMIT_DST_RELEASE;
1404 bond_dev->priv_flags = flags | dst_release_flag;
1405
1406 read_unlock(&bond->lock);
1407
1408 netdev_change_features(bond_dev);
1409 }
1410
1411 static void bond_setup_by_slave(struct net_device *bond_dev,
1412 struct net_device *slave_dev)
1413 {
1414 struct bonding *bond = netdev_priv(bond_dev);
1415
1416 bond_dev->header_ops = slave_dev->header_ops;
1417
1418 bond_dev->type = slave_dev->type;
1419 bond_dev->hard_header_len = slave_dev->hard_header_len;
1420 bond_dev->addr_len = slave_dev->addr_len;
1421
1422 memcpy(bond_dev->broadcast, slave_dev->broadcast,
1423 slave_dev->addr_len);
1424 bond->setup_by_slave = 1;
1425 }
1426
1427 /* On bonding slaves other than the currently active slave, suppress
1428 * duplicates except for alb non-mcast/bcast.
1429 */
1430 static bool bond_should_deliver_exact_match(struct sk_buff *skb,
1431 struct slave *slave,
1432 struct bonding *bond)
1433 {
1434 if (bond_is_slave_inactive(slave)) {
1435 if (bond->params.mode == BOND_MODE_ALB &&
1436 skb->pkt_type != PACKET_BROADCAST &&
1437 skb->pkt_type != PACKET_MULTICAST)
1438 return false;
1439 return true;
1440 }
1441 return false;
1442 }
1443
1444 static rx_handler_result_t bond_handle_frame(struct sk_buff **pskb)
1445 {
1446 struct sk_buff *skb = *pskb;
1447 struct slave *slave;
1448 struct bonding *bond;
1449 int (*recv_probe)(const struct sk_buff *, struct bonding *,
1450 struct slave *);
1451 int ret = RX_HANDLER_ANOTHER;
1452
1453 skb = skb_share_check(skb, GFP_ATOMIC);
1454 if (unlikely(!skb))
1455 return RX_HANDLER_CONSUMED;
1456
1457 *pskb = skb;
1458
1459 slave = bond_slave_get_rcu(skb->dev);
1460 bond = slave->bond;
1461
1462 if (bond->params.arp_interval)
1463 slave->dev->last_rx = jiffies;
1464
1465 recv_probe = ACCESS_ONCE(bond->recv_probe);
1466 if (recv_probe) {
1467 ret = recv_probe(skb, bond, slave);
1468 if (ret == RX_HANDLER_CONSUMED) {
1469 consume_skb(skb);
1470 return ret;
1471 }
1472 }
1473
1474 if (bond_should_deliver_exact_match(skb, slave, bond)) {
1475 return RX_HANDLER_EXACT;
1476 }
1477
1478 skb->dev = bond->dev;
1479
1480 if (bond->params.mode == BOND_MODE_ALB &&
1481 bond->dev->priv_flags & IFF_BRIDGE_PORT &&
1482 skb->pkt_type == PACKET_HOST) {
1483
1484 if (unlikely(skb_cow_head(skb,
1485 skb->data - skb_mac_header(skb)))) {
1486 kfree_skb(skb);
1487 return RX_HANDLER_CONSUMED;
1488 }
1489 memcpy(eth_hdr(skb)->h_dest, bond->dev->dev_addr, ETH_ALEN);
1490 }
1491
1492 return ret;
1493 }
1494
1495 static int bond_master_upper_dev_link(struct net_device *bond_dev,
1496 struct net_device *slave_dev)
1497 {
1498 int err;
1499
1500 err = netdev_master_upper_dev_link(slave_dev, bond_dev);
1501 if (err)
1502 return err;
1503 slave_dev->flags |= IFF_SLAVE;
1504 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE);
1505 return 0;
1506 }
1507
1508 static void bond_upper_dev_unlink(struct net_device *bond_dev,
1509 struct net_device *slave_dev)
1510 {
1511 netdev_upper_dev_unlink(slave_dev, bond_dev);
1512 slave_dev->flags &= ~IFF_SLAVE;
1513 rtmsg_ifinfo(RTM_NEWLINK, slave_dev, IFF_SLAVE);
1514 }
1515
1516 /* enslave device <slave> to bond device <master> */
1517 int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev)
1518 {
1519 struct bonding *bond = netdev_priv(bond_dev);
1520 const struct net_device_ops *slave_ops = slave_dev->netdev_ops;
1521 struct slave *new_slave = NULL;
1522 struct netdev_hw_addr *ha;
1523 struct sockaddr addr;
1524 int link_reporting;
1525 int res = 0;
1526
1527 if (!bond->params.use_carrier &&
1528 slave_dev->ethtool_ops->get_link == NULL &&
1529 slave_ops->ndo_do_ioctl == NULL) {
1530 pr_warning("%s: Warning: no link monitoring support for %s\n",
1531 bond_dev->name, slave_dev->name);
1532 }
1533
1534 /* already enslaved */
1535 if (slave_dev->flags & IFF_SLAVE) {
1536 pr_debug("Error, Device was already enslaved\n");
1537 return -EBUSY;
1538 }
1539
1540 /* vlan challenged mutual exclusion */
1541 /* no need to lock since we're protected by rtnl_lock */
1542 if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) {
1543 pr_debug("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1544 if (vlan_uses_dev(bond_dev)) {
1545 pr_err("%s: Error: cannot enslave VLAN challenged slave %s on VLAN enabled bond %s\n",
1546 bond_dev->name, slave_dev->name, bond_dev->name);
1547 return -EPERM;
1548 } else {
1549 pr_warning("%s: Warning: enslaved VLAN challenged slave %s. Adding VLANs will be blocked as long as %s is part of bond %s\n",
1550 bond_dev->name, slave_dev->name,
1551 slave_dev->name, bond_dev->name);
1552 }
1553 } else {
1554 pr_debug("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name);
1555 }
1556
1557 /*
1558 * Old ifenslave binaries are no longer supported. These can
1559 * be identified with moderate accuracy by the state of the slave:
1560 * the current ifenslave will set the interface down prior to
1561 * enslaving it; the old ifenslave will not.
1562 */
1563 if ((slave_dev->flags & IFF_UP)) {
1564 pr_err("%s is up. This may be due to an out of date ifenslave.\n",
1565 slave_dev->name);
1566 res = -EPERM;
1567 goto err_undo_flags;
1568 }
1569
1570 /* set bonding device ether type by slave - bonding netdevices are
1571 * created with ether_setup, so when the slave type is not ARPHRD_ETHER
1572 * there is a need to override some of the type dependent attribs/funcs.
1573 *
1574 * bond ether type mutual exclusion - don't allow slaves of dissimilar
1575 * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond
1576 */
1577 if (bond->slave_cnt == 0) {
1578 if (bond_dev->type != slave_dev->type) {
1579 pr_debug("%s: change device type from %d to %d\n",
1580 bond_dev->name,
1581 bond_dev->type, slave_dev->type);
1582
1583 res = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE,
1584 bond_dev);
1585 res = notifier_to_errno(res);
1586 if (res) {
1587 pr_err("%s: refused to change device type\n",
1588 bond_dev->name);
1589 res = -EBUSY;
1590 goto err_undo_flags;
1591 }
1592
1593 /* Flush unicast and multicast addresses */
1594 dev_uc_flush(bond_dev);
1595 dev_mc_flush(bond_dev);
1596
1597 if (slave_dev->type != ARPHRD_ETHER)
1598 bond_setup_by_slave(bond_dev, slave_dev);
1599 else {
1600 ether_setup(bond_dev);
1601 bond_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
1602 }
1603
1604 call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE,
1605 bond_dev);
1606 }
1607 } else if (bond_dev->type != slave_dev->type) {
1608 pr_err("%s ether type (%d) is different from other slaves (%d), can not enslave it.\n",
1609 slave_dev->name,
1610 slave_dev->type, bond_dev->type);
1611 res = -EINVAL;
1612 goto err_undo_flags;
1613 }
1614
1615 if (slave_ops->ndo_set_mac_address == NULL) {
1616 if (bond->slave_cnt == 0) {
1617 pr_warning("%s: Warning: The first slave device specified does not support setting the MAC address. Setting fail_over_mac to active.",
1618 bond_dev->name);
1619 bond->params.fail_over_mac = BOND_FOM_ACTIVE;
1620 } else if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
1621 pr_err("%s: Error: The slave device specified does not support setting the MAC address, but fail_over_mac is not set to active.\n",
1622 bond_dev->name);
1623 res = -EOPNOTSUPP;
1624 goto err_undo_flags;
1625 }
1626 }
1627
1628 call_netdevice_notifiers(NETDEV_JOIN, slave_dev);
1629
1630 /* If this is the first slave, then we need to set the master's hardware
1631 * address to be the same as the slave's. */
1632 if (bond->slave_cnt == 0 && bond->dev_addr_from_first)
1633 bond_set_dev_addr(bond->dev, slave_dev);
1634
1635 new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL);
1636 if (!new_slave) {
1637 res = -ENOMEM;
1638 goto err_undo_flags;
1639 }
1640
1641 /*
1642 * Set the new_slave's queue_id to be zero. Queue ID mapping
1643 * is set via sysfs or module option if desired.
1644 */
1645 new_slave->queue_id = 0;
1646
1647 /* Save slave's original mtu and then set it to match the bond */
1648 new_slave->original_mtu = slave_dev->mtu;
1649 res = dev_set_mtu(slave_dev, bond->dev->mtu);
1650 if (res) {
1651 pr_debug("Error %d calling dev_set_mtu\n", res);
1652 goto err_free;
1653 }
1654
1655 /*
1656 * Save slave's original ("permanent") mac address for modes
1657 * that need it, and for restoring it upon release, and then
1658 * set it to the master's address
1659 */
1660 memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN);
1661
1662 if (!bond->params.fail_over_mac) {
1663 /*
1664 * Set slave to master's mac address. The application already
1665 * set the master's mac address to that of the first slave
1666 */
1667 memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
1668 addr.sa_family = slave_dev->type;
1669 res = dev_set_mac_address(slave_dev, &addr);
1670 if (res) {
1671 pr_debug("Error %d calling set_mac_address\n", res);
1672 goto err_restore_mtu;
1673 }
1674 }
1675
1676 res = bond_master_upper_dev_link(bond_dev, slave_dev);
1677 if (res) {
1678 pr_debug("Error %d calling bond_master_upper_dev_link\n", res);
1679 goto err_restore_mac;
1680 }
1681
1682 /* open the slave since the application closed it */
1683 res = dev_open(slave_dev);
1684 if (res) {
1685 pr_debug("Opening slave %s failed\n", slave_dev->name);
1686 goto err_unset_master;
1687 }
1688
1689 new_slave->bond = bond;
1690 new_slave->dev = slave_dev;
1691 slave_dev->priv_flags |= IFF_BONDING;
1692
1693 if (bond_is_lb(bond)) {
1694 /* bond_alb_init_slave() must be called before all other stages since
1695 * it might fail and we do not want to have to undo everything
1696 */
1697 res = bond_alb_init_slave(bond, new_slave);
1698 if (res)
1699 goto err_close;
1700 }
1701
1702 /* If the mode USES_PRIMARY, then the new slave gets the
1703 * master's promisc (and mc) settings only if it becomes the
1704 * curr_active_slave, and that is taken care of later when calling
1705 * bond_change_active()
1706 */
1707 if (!USES_PRIMARY(bond->params.mode)) {
1708 /* set promiscuity level to new slave */
1709 if (bond_dev->flags & IFF_PROMISC) {
1710 res = dev_set_promiscuity(slave_dev, 1);
1711 if (res)
1712 goto err_close;
1713 }
1714
1715 /* set allmulti level to new slave */
1716 if (bond_dev->flags & IFF_ALLMULTI) {
1717 res = dev_set_allmulti(slave_dev, 1);
1718 if (res)
1719 goto err_close;
1720 }
1721
1722 netif_addr_lock_bh(bond_dev);
1723 /* upload master's mc_list to new slave */
1724 netdev_for_each_mc_addr(ha, bond_dev)
1725 dev_mc_add(slave_dev, ha->addr);
1726 netif_addr_unlock_bh(bond_dev);
1727 }
1728
1729 if (bond->params.mode == BOND_MODE_8023AD) {
1730 /* add lacpdu mc addr to mc list */
1731 u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR;
1732
1733 dev_mc_add(slave_dev, lacpdu_multicast);
1734 }
1735
1736 bond_add_vlans_on_slave(bond, slave_dev);
1737
1738 write_lock_bh(&bond->lock);
1739
1740 bond_attach_slave(bond, new_slave);
1741
1742 new_slave->delay = 0;
1743 new_slave->link_failure_count = 0;
1744
1745 write_unlock_bh(&bond->lock);
1746
1747 bond_compute_features(bond);
1748
1749 bond_update_speed_duplex(new_slave);
1750
1751 read_lock(&bond->lock);
1752
1753 new_slave->last_arp_rx = jiffies -
1754 (msecs_to_jiffies(bond->params.arp_interval) + 1);
1755
1756 if (bond->params.miimon && !bond->params.use_carrier) {
1757 link_reporting = bond_check_dev_link(bond, slave_dev, 1);
1758
1759 if ((link_reporting == -1) && !bond->params.arp_interval) {
1760 /*
1761 * miimon is set but a bonded network driver
1762 * does not support ETHTOOL/MII and
1763 * arp_interval is not set. Note: if
1764 * use_carrier is enabled, we will never go
1765 * here (because netif_carrier is always
1766 * supported); thus, we don't need to change
1767 * the messages for netif_carrier.
1768 */
1769 pr_warning("%s: Warning: MII and ETHTOOL support not available for interface %s, and arp_interval/arp_ip_target module parameters not specified, thus bonding will not detect link failures! see bonding.txt for details.\n",
1770 bond_dev->name, slave_dev->name);
1771 } else if (link_reporting == -1) {
1772 /* unable get link status using mii/ethtool */
1773 pr_warning("%s: Warning: can't get link status from interface %s; the network driver associated with this interface does not support MII or ETHTOOL link status reporting, thus miimon has no effect on this interface.\n",
1774 bond_dev->name, slave_dev->name);
1775 }
1776 }
1777
1778 /* check for initial state */
1779 if (bond->params.miimon) {
1780 if (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS) {
1781 if (bond->params.updelay) {
1782 new_slave->link = BOND_LINK_BACK;
1783 new_slave->delay = bond->params.updelay;
1784 } else {
1785 new_slave->link = BOND_LINK_UP;
1786 }
1787 } else {
1788 new_slave->link = BOND_LINK_DOWN;
1789 }
1790 } else if (bond->params.arp_interval) {
1791 new_slave->link = (netif_carrier_ok(slave_dev) ?
1792 BOND_LINK_UP : BOND_LINK_DOWN);
1793 } else {
1794 new_slave->link = BOND_LINK_UP;
1795 }
1796
1797 if (new_slave->link != BOND_LINK_DOWN)
1798 new_slave->jiffies = jiffies;
1799 pr_debug("Initial state of slave_dev is BOND_LINK_%s\n",
1800 new_slave->link == BOND_LINK_DOWN ? "DOWN" :
1801 (new_slave->link == BOND_LINK_UP ? "UP" : "BACK"));
1802
1803 if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) {
1804 /* if there is a primary slave, remember it */
1805 if (strcmp(bond->params.primary, new_slave->dev->name) == 0) {
1806 bond->primary_slave = new_slave;
1807 bond->force_primary = true;
1808 }
1809 }
1810
1811 write_lock_bh(&bond->curr_slave_lock);
1812
1813 switch (bond->params.mode) {
1814 case BOND_MODE_ACTIVEBACKUP:
1815 bond_set_slave_inactive_flags(new_slave);
1816 bond_select_active_slave(bond);
1817 break;
1818 case BOND_MODE_8023AD:
1819 /* in 802.3ad mode, the internal mechanism
1820 * will activate the slaves in the selected
1821 * aggregator
1822 */
1823 bond_set_slave_inactive_flags(new_slave);
1824 /* if this is the first slave */
1825 if (bond->slave_cnt == 1) {
1826 SLAVE_AD_INFO(new_slave).id = 1;
1827 /* Initialize AD with the number of times that the AD timer is called in 1 second
1828 * can be called only after the mac address of the bond is set
1829 */
1830 bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL);
1831 } else {
1832 SLAVE_AD_INFO(new_slave).id =
1833 SLAVE_AD_INFO(new_slave->prev).id + 1;
1834 }
1835
1836 bond_3ad_bind_slave(new_slave);
1837 break;
1838 case BOND_MODE_TLB:
1839 case BOND_MODE_ALB:
1840 bond_set_active_slave(new_slave);
1841 bond_set_slave_inactive_flags(new_slave);
1842 bond_select_active_slave(bond);
1843 break;
1844 default:
1845 pr_debug("This slave is always active in trunk mode\n");
1846
1847 /* always active in trunk mode */
1848 bond_set_active_slave(new_slave);
1849
1850 /* In trunking mode there is little meaning to curr_active_slave
1851 * anyway (it holds no special properties of the bond device),
1852 * so we can change it without calling change_active_interface()
1853 */
1854 if (!bond->curr_active_slave && new_slave->link == BOND_LINK_UP)
1855 bond->curr_active_slave = new_slave;
1856
1857 break;
1858 } /* switch(bond_mode) */
1859
1860 write_unlock_bh(&bond->curr_slave_lock);
1861
1862 bond_set_carrier(bond);
1863
1864 #ifdef CONFIG_NET_POLL_CONTROLLER
1865 slave_dev->npinfo = bond_netpoll_info(bond);
1866 if (slave_dev->npinfo) {
1867 if (slave_enable_netpoll(new_slave)) {
1868 read_unlock(&bond->lock);
1869 pr_info("Error, %s: master_dev is using netpoll, "
1870 "but new slave device does not support netpoll.\n",
1871 bond_dev->name);
1872 res = -EBUSY;
1873 goto err_detach;
1874 }
1875 }
1876 #endif
1877
1878 read_unlock(&bond->lock);
1879
1880 res = bond_create_slave_symlinks(bond_dev, slave_dev);
1881 if (res)
1882 goto err_detach;
1883
1884 res = netdev_rx_handler_register(slave_dev, bond_handle_frame,
1885 new_slave);
1886 if (res) {
1887 pr_debug("Error %d calling netdev_rx_handler_register\n", res);
1888 goto err_dest_symlinks;
1889 }
1890
1891 pr_info("%s: enslaving %s as a%s interface with a%s link.\n",
1892 bond_dev->name, slave_dev->name,
1893 bond_is_active_slave(new_slave) ? "n active" : " backup",
1894 new_slave->link != BOND_LINK_DOWN ? "n up" : " down");
1895
1896 /* enslave is successful */
1897 return 0;
1898
1899 /* Undo stages on error */
1900 err_dest_symlinks:
1901 bond_destroy_slave_symlinks(bond_dev, slave_dev);
1902
1903 err_detach:
1904 write_lock_bh(&bond->lock);
1905 bond_detach_slave(bond, new_slave);
1906 write_unlock_bh(&bond->lock);
1907
1908 err_close:
1909 dev_close(slave_dev);
1910
1911 err_unset_master:
1912 bond_upper_dev_unlink(bond_dev, slave_dev);
1913
1914 err_restore_mac:
1915 if (!bond->params.fail_over_mac) {
1916 /* XXX TODO - fom follow mode needs to change master's
1917 * MAC if this slave's MAC is in use by the bond, or at
1918 * least print a warning.
1919 */
1920 memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN);
1921 addr.sa_family = slave_dev->type;
1922 dev_set_mac_address(slave_dev, &addr);
1923 }
1924
1925 err_restore_mtu:
1926 dev_set_mtu(slave_dev, new_slave->original_mtu);
1927
1928 err_free:
1929 kfree(new_slave);
1930
1931 err_undo_flags:
1932 bond_compute_features(bond);
1933
1934 return res;
1935 }
1936
1937 /*
1938 * Try to release the slave device <slave> from the bond device <master>
1939 * It is legal to access curr_active_slave without a lock because all the function
1940 * is write-locked. If "all" is true it means that the function is being called
1941 * while destroying a bond interface and all slaves are being released.
1942 *
1943 * The rules for slave state should be:
1944 * for Active/Backup:
1945 * Active stays on all backups go down
1946 * for Bonded connections:
1947 * The first up interface should be left on and all others downed.
1948 */
1949 static int __bond_release_one(struct net_device *bond_dev,
1950 struct net_device *slave_dev,
1951 bool all)
1952 {
1953 struct bonding *bond = netdev_priv(bond_dev);
1954 struct slave *slave, *oldcurrent;
1955 struct sockaddr addr;
1956 netdev_features_t old_features = bond_dev->features;
1957
1958 /* slave is not a slave or master is not master of this slave */
1959 if (!(slave_dev->flags & IFF_SLAVE) ||
1960 !netdev_has_upper_dev(slave_dev, bond_dev)) {
1961 pr_err("%s: Error: cannot release %s.\n",
1962 bond_dev->name, slave_dev->name);
1963 return -EINVAL;
1964 }
1965
1966 block_netpoll_tx();
1967 write_lock_bh(&bond->lock);
1968
1969 slave = bond_get_slave_by_dev(bond, slave_dev);
1970 if (!slave) {
1971 /* not a slave of this bond */
1972 pr_info("%s: %s not enslaved\n",
1973 bond_dev->name, slave_dev->name);
1974 write_unlock_bh(&bond->lock);
1975 unblock_netpoll_tx();
1976 return -EINVAL;
1977 }
1978
1979 write_unlock_bh(&bond->lock);
1980 /* unregister rx_handler early so bond_handle_frame wouldn't be called
1981 * for this slave anymore.
1982 */
1983 netdev_rx_handler_unregister(slave_dev);
1984 write_lock_bh(&bond->lock);
1985
1986 if (!all && !bond->params.fail_over_mac) {
1987 if (ether_addr_equal(bond_dev->dev_addr, slave->perm_hwaddr) &&
1988 bond->slave_cnt > 1)
1989 pr_warning("%s: Warning: the permanent HWaddr of %s - %pM - is still in use by %s. Set the HWaddr of %s to a different address to avoid conflicts.\n",
1990 bond_dev->name, slave_dev->name,
1991 slave->perm_hwaddr,
1992 bond_dev->name, slave_dev->name);
1993 }
1994
1995 /* Inform AD package of unbinding of slave. */
1996 if (bond->params.mode == BOND_MODE_8023AD) {
1997 /* must be called before the slave is
1998 * detached from the list
1999 */
2000 bond_3ad_unbind_slave(slave);
2001 }
2002
2003 pr_info("%s: releasing %s interface %s\n",
2004 bond_dev->name,
2005 bond_is_active_slave(slave) ? "active" : "backup",
2006 slave_dev->name);
2007
2008 oldcurrent = bond->curr_active_slave;
2009
2010 bond->current_arp_slave = NULL;
2011
2012 /* release the slave from its bond */
2013 bond_detach_slave(bond, slave);
2014
2015 if (bond->primary_slave == slave)
2016 bond->primary_slave = NULL;
2017
2018 if (oldcurrent == slave)
2019 bond_change_active_slave(bond, NULL);
2020
2021 if (bond_is_lb(bond)) {
2022 /* Must be called only after the slave has been
2023 * detached from the list and the curr_active_slave
2024 * has been cleared (if our_slave == old_current),
2025 * but before a new active slave is selected.
2026 */
2027 write_unlock_bh(&bond->lock);
2028 bond_alb_deinit_slave(bond, slave);
2029 write_lock_bh(&bond->lock);
2030 }
2031
2032 if (all) {
2033 bond->curr_active_slave = NULL;
2034 } else if (oldcurrent == slave) {
2035 /*
2036 * Note that we hold RTNL over this sequence, so there
2037 * is no concern that another slave add/remove event
2038 * will interfere.
2039 */
2040 write_unlock_bh(&bond->lock);
2041 read_lock(&bond->lock);
2042 write_lock_bh(&bond->curr_slave_lock);
2043
2044 bond_select_active_slave(bond);
2045
2046 write_unlock_bh(&bond->curr_slave_lock);
2047 read_unlock(&bond->lock);
2048 write_lock_bh(&bond->lock);
2049 }
2050
2051 if (bond->slave_cnt == 0) {
2052 bond_set_carrier(bond);
2053 eth_hw_addr_random(bond_dev);
2054 bond->dev_addr_from_first = true;
2055
2056 if (bond_vlan_used(bond)) {
2057 pr_warning("%s: Warning: clearing HW address of %s while it still has VLANs.\n",
2058 bond_dev->name, bond_dev->name);
2059 pr_warning("%s: When re-adding slaves, make sure the bond's HW address matches its VLANs'.\n",
2060 bond_dev->name);
2061 }
2062 }
2063
2064 write_unlock_bh(&bond->lock);
2065 unblock_netpoll_tx();
2066
2067 if (bond->slave_cnt == 0) {
2068 call_netdevice_notifiers(NETDEV_CHANGEADDR, bond->dev);
2069 call_netdevice_notifiers(NETDEV_RELEASE, bond->dev);
2070 }
2071
2072 bond_compute_features(bond);
2073 if (!(bond_dev->features & NETIF_F_VLAN_CHALLENGED) &&
2074 (old_features & NETIF_F_VLAN_CHALLENGED))
2075 pr_info("%s: last VLAN challenged slave %s left bond %s. VLAN blocking is removed\n",
2076 bond_dev->name, slave_dev->name, bond_dev->name);
2077
2078 /* must do this from outside any spinlocks */
2079 bond_destroy_slave_symlinks(bond_dev, slave_dev);
2080
2081 bond_del_vlans_from_slave(bond, slave_dev);
2082
2083 /* If the mode USES_PRIMARY, then we should only remove its
2084 * promisc and mc settings if it was the curr_active_slave, but that was
2085 * already taken care of above when we detached the slave
2086 */
2087 if (!USES_PRIMARY(bond->params.mode)) {
2088 /* unset promiscuity level from slave */
2089 if (bond_dev->flags & IFF_PROMISC)
2090 dev_set_promiscuity(slave_dev, -1);
2091
2092 /* unset allmulti level from slave */
2093 if (bond_dev->flags & IFF_ALLMULTI)
2094 dev_set_allmulti(slave_dev, -1);
2095
2096 /* flush master's mc_list from slave */
2097 netif_addr_lock_bh(bond_dev);
2098 bond_mc_list_flush(bond_dev, slave_dev);
2099 netif_addr_unlock_bh(bond_dev);
2100 }
2101
2102 bond_upper_dev_unlink(bond_dev, slave_dev);
2103
2104 slave_disable_netpoll(slave);
2105
2106 /* close slave before restoring its mac address */
2107 dev_close(slave_dev);
2108
2109 if (bond->params.fail_over_mac != BOND_FOM_ACTIVE) {
2110 /* restore original ("permanent") mac address */
2111 memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN);
2112 addr.sa_family = slave_dev->type;
2113 dev_set_mac_address(slave_dev, &addr);
2114 }
2115
2116 dev_set_mtu(slave_dev, slave->original_mtu);
2117
2118 slave_dev->priv_flags &= ~IFF_BONDING;
2119
2120 kfree(slave);
2121
2122 return 0; /* deletion OK */
2123 }
2124
2125 /* A wrapper used because of ndo_del_link */
2126 int bond_release(struct net_device *bond_dev, struct net_device *slave_dev)
2127 {
2128 return __bond_release_one(bond_dev, slave_dev, false);
2129 }
2130
2131 /*
2132 * First release a slave and then destroy the bond if no more slaves are left.
2133 * Must be under rtnl_lock when this function is called.
2134 */
2135 static int bond_release_and_destroy(struct net_device *bond_dev,
2136 struct net_device *slave_dev)
2137 {
2138 struct bonding *bond = netdev_priv(bond_dev);
2139 int ret;
2140
2141 ret = bond_release(bond_dev, slave_dev);
2142 if ((ret == 0) && (bond->slave_cnt == 0)) {
2143 bond_dev->priv_flags |= IFF_DISABLE_NETPOLL;
2144 pr_info("%s: destroying bond %s.\n",
2145 bond_dev->name, bond_dev->name);
2146 unregister_netdevice(bond_dev);
2147 }
2148 return ret;
2149 }
2150
2151 /*
2152 * This function changes the active slave to slave <slave_dev>.
2153 * It returns -EINVAL in the following cases.
2154 * - <slave_dev> is not found in the list.
2155 * - There is not active slave now.
2156 * - <slave_dev> is already active.
2157 * - The link state of <slave_dev> is not BOND_LINK_UP.
2158 * - <slave_dev> is not running.
2159 * In these cases, this function does nothing.
2160 * In the other cases, current_slave pointer is changed and 0 is returned.
2161 */
2162 static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev)
2163 {
2164 struct bonding *bond = netdev_priv(bond_dev);
2165 struct slave *old_active = NULL;
2166 struct slave *new_active = NULL;
2167 int res = 0;
2168
2169 if (!USES_PRIMARY(bond->params.mode))
2170 return -EINVAL;
2171
2172 /* Verify that bond_dev is indeed the master of slave_dev */
2173 if (!(slave_dev->flags & IFF_SLAVE) ||
2174 !netdev_has_upper_dev(slave_dev, bond_dev))
2175 return -EINVAL;
2176
2177 read_lock(&bond->lock);
2178
2179 read_lock(&bond->curr_slave_lock);
2180 old_active = bond->curr_active_slave;
2181 read_unlock(&bond->curr_slave_lock);
2182
2183 new_active = bond_get_slave_by_dev(bond, slave_dev);
2184
2185 /*
2186 * Changing to the current active: do nothing; return success.
2187 */
2188 if (new_active && (new_active == old_active)) {
2189 read_unlock(&bond->lock);
2190 return 0;
2191 }
2192
2193 if ((new_active) &&
2194 (old_active) &&
2195 (new_active->link == BOND_LINK_UP) &&
2196 IS_UP(new_active->dev)) {
2197 block_netpoll_tx();
2198 write_lock_bh(&bond->curr_slave_lock);
2199 bond_change_active_slave(bond, new_active);
2200 write_unlock_bh(&bond->curr_slave_lock);
2201 unblock_netpoll_tx();
2202 } else
2203 res = -EINVAL;
2204
2205 read_unlock(&bond->lock);
2206
2207 return res;
2208 }
2209
2210 static int bond_info_query(struct net_device *bond_dev, struct ifbond *info)
2211 {
2212 struct bonding *bond = netdev_priv(bond_dev);
2213
2214 info->bond_mode = bond->params.mode;
2215 info->miimon = bond->params.miimon;
2216
2217 read_lock(&bond->lock);
2218 info->num_slaves = bond->slave_cnt;
2219 read_unlock(&bond->lock);
2220
2221 return 0;
2222 }
2223
2224 static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info)
2225 {
2226 struct bonding *bond = netdev_priv(bond_dev);
2227 struct slave *slave;
2228 int i, res = -ENODEV;
2229
2230 read_lock(&bond->lock);
2231
2232 bond_for_each_slave(bond, slave, i) {
2233 if (i == (int)info->slave_id) {
2234 res = 0;
2235 strcpy(info->slave_name, slave->dev->name);
2236 info->link = slave->link;
2237 info->state = bond_slave_state(slave);
2238 info->link_failure_count = slave->link_failure_count;
2239 break;
2240 }
2241 }
2242
2243 read_unlock(&bond->lock);
2244
2245 return res;
2246 }
2247
2248 /*-------------------------------- Monitoring -------------------------------*/
2249
2250
2251 static int bond_miimon_inspect(struct bonding *bond)
2252 {
2253 struct slave *slave;
2254 int i, link_state, commit = 0;
2255 bool ignore_updelay;
2256
2257 ignore_updelay = !bond->curr_active_slave ? true : false;
2258
2259 bond_for_each_slave(bond, slave, i) {
2260 slave->new_link = BOND_LINK_NOCHANGE;
2261
2262 link_state = bond_check_dev_link(bond, slave->dev, 0);
2263
2264 switch (slave->link) {
2265 case BOND_LINK_UP:
2266 if (link_state)
2267 continue;
2268
2269 slave->link = BOND_LINK_FAIL;
2270 slave->delay = bond->params.downdelay;
2271 if (slave->delay) {
2272 pr_info("%s: link status down for %sinterface %s, disabling it in %d ms.\n",
2273 bond->dev->name,
2274 (bond->params.mode ==
2275 BOND_MODE_ACTIVEBACKUP) ?
2276 (bond_is_active_slave(slave) ?
2277 "active " : "backup ") : "",
2278 slave->dev->name,
2279 bond->params.downdelay * bond->params.miimon);
2280 }
2281 /*FALLTHRU*/
2282 case BOND_LINK_FAIL:
2283 if (link_state) {
2284 /*
2285 * recovered before downdelay expired
2286 */
2287 slave->link = BOND_LINK_UP;
2288 slave->jiffies = jiffies;
2289 pr_info("%s: link status up again after %d ms for interface %s.\n",
2290 bond->dev->name,
2291 (bond->params.downdelay - slave->delay) *
2292 bond->params.miimon,
2293 slave->dev->name);
2294 continue;
2295 }
2296
2297 if (slave->delay <= 0) {
2298 slave->new_link = BOND_LINK_DOWN;
2299 commit++;
2300 continue;
2301 }
2302
2303 slave->delay--;
2304 break;
2305
2306 case BOND_LINK_DOWN:
2307 if (!link_state)
2308 continue;
2309
2310 slave->link = BOND_LINK_BACK;
2311 slave->delay = bond->params.updelay;
2312
2313 if (slave->delay) {
2314 pr_info("%s: link status up for interface %s, enabling it in %d ms.\n",
2315 bond->dev->name, slave->dev->name,
2316 ignore_updelay ? 0 :
2317 bond->params.updelay *
2318 bond->params.miimon);
2319 }
2320 /*FALLTHRU*/
2321 case BOND_LINK_BACK:
2322 if (!link_state) {
2323 slave->link = BOND_LINK_DOWN;
2324 pr_info("%s: link status down again after %d ms for interface %s.\n",
2325 bond->dev->name,
2326 (bond->params.updelay - slave->delay) *
2327 bond->params.miimon,
2328 slave->dev->name);
2329
2330 continue;
2331 }
2332
2333 if (ignore_updelay)
2334 slave->delay = 0;
2335
2336 if (slave->delay <= 0) {
2337 slave->new_link = BOND_LINK_UP;
2338 commit++;
2339 ignore_updelay = false;
2340 continue;
2341 }
2342
2343 slave->delay--;
2344 break;
2345 }
2346 }
2347
2348 return commit;
2349 }
2350
2351 static void bond_miimon_commit(struct bonding *bond)
2352 {
2353 struct slave *slave;
2354 int i;
2355
2356 bond_for_each_slave(bond, slave, i) {
2357 switch (slave->new_link) {
2358 case BOND_LINK_NOCHANGE:
2359 continue;
2360
2361 case BOND_LINK_UP:
2362 slave->link = BOND_LINK_UP;
2363 slave->jiffies = jiffies;
2364
2365 if (bond->params.mode == BOND_MODE_8023AD) {
2366 /* prevent it from being the active one */
2367 bond_set_backup_slave(slave);
2368 } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) {
2369 /* make it immediately active */
2370 bond_set_active_slave(slave);
2371 } else if (slave != bond->primary_slave) {
2372 /* prevent it from being the active one */
2373 bond_set_backup_slave(slave);
2374 }
2375
2376 pr_info("%s: link status definitely up for interface %s, %u Mbps %s duplex.\n",
2377 bond->dev->name, slave->dev->name,
2378 slave->speed, slave->duplex ? "full" : "half");
2379
2380 /* notify ad that the link status has changed */
2381 if (bond->params.mode == BOND_MODE_8023AD)
2382 bond_3ad_handle_link_change(slave, BOND_LINK_UP);
2383
2384 if (bond_is_lb(bond))
2385 bond_alb_handle_link_change(bond, slave,
2386 BOND_LINK_UP);
2387
2388 if (!bond->curr_active_slave ||
2389 (slave == bond->primary_slave))
2390 goto do_failover;
2391
2392 continue;
2393
2394 case BOND_LINK_DOWN:
2395 if (slave->link_failure_count < UINT_MAX)
2396 slave->link_failure_count++;
2397
2398 slave->link = BOND_LINK_DOWN;
2399
2400 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP ||
2401 bond->params.mode == BOND_MODE_8023AD)
2402 bond_set_slave_inactive_flags(slave);
2403
2404 pr_info("%s: link status definitely down for interface %s, disabling it\n",
2405 bond->dev->name, slave->dev->name);
2406
2407 if (bond->params.mode == BOND_MODE_8023AD)
2408 bond_3ad_handle_link_change(slave,
2409 BOND_LINK_DOWN);
2410
2411 if (bond_is_lb(bond))
2412 bond_alb_handle_link_change(bond, slave,
2413 BOND_LINK_DOWN);
2414
2415 if (slave == bond->curr_active_slave)
2416 goto do_failover;
2417
2418 continue;
2419
2420 default:
2421 pr_err("%s: invalid new link %d on slave %s\n",
2422 bond->dev->name, slave->new_link,
2423 slave->dev->name);
2424 slave->new_link = BOND_LINK_NOCHANGE;
2425
2426 continue;
2427 }
2428
2429 do_failover:
2430 ASSERT_RTNL();
2431 block_netpoll_tx();
2432 write_lock_bh(&bond->curr_slave_lock);
2433 bond_select_active_slave(bond);
2434 write_unlock_bh(&bond->curr_slave_lock);
2435 unblock_netpoll_tx();
2436 }
2437
2438 bond_set_carrier(bond);
2439 }
2440
2441 /*
2442 * bond_mii_monitor
2443 *
2444 * Really a wrapper that splits the mii monitor into two phases: an
2445 * inspection, then (if inspection indicates something needs to be done)
2446 * an acquisition of appropriate locks followed by a commit phase to
2447 * implement whatever link state changes are indicated.
2448 */
2449 void bond_mii_monitor(struct work_struct *work)
2450 {
2451 struct bonding *bond = container_of(work, struct bonding,
2452 mii_work.work);
2453 bool should_notify_peers = false;
2454 unsigned long delay;
2455
2456 read_lock(&bond->lock);
2457
2458 delay = msecs_to_jiffies(bond->params.miimon);
2459
2460 if (bond->slave_cnt == 0)
2461 goto re_arm;
2462
2463 should_notify_peers = bond_should_notify_peers(bond);
2464
2465 if (bond_miimon_inspect(bond)) {
2466 read_unlock(&bond->lock);
2467
2468 /* Race avoidance with bond_close cancel of workqueue */
2469 if (!rtnl_trylock()) {
2470 read_lock(&bond->lock);
2471 delay = 1;
2472 should_notify_peers = false;
2473 goto re_arm;
2474 }
2475
2476 read_lock(&bond->lock);
2477
2478 bond_miimon_commit(bond);
2479
2480 read_unlock(&bond->lock);
2481 rtnl_unlock(); /* might sleep, hold no other locks */
2482 read_lock(&bond->lock);
2483 }
2484
2485 re_arm:
2486 if (bond->params.miimon)
2487 queue_delayed_work(bond->wq, &bond->mii_work, delay);
2488
2489 read_unlock(&bond->lock);
2490
2491 if (should_notify_peers) {
2492 if (!rtnl_trylock()) {
2493 read_lock(&bond->lock);
2494 bond->send_peer_notif++;
2495 read_unlock(&bond->lock);
2496 return;
2497 }
2498 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev);
2499 rtnl_unlock();
2500 }
2501 }
2502
2503 static int bond_has_this_ip(struct bonding *bond, __be32 ip)
2504 {
2505 struct vlan_entry *vlan;
2506 struct net_device *vlan_dev;
2507
2508 if (ip == bond_confirm_addr(bond->dev, 0, ip))
2509 return 1;
2510
2511 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2512 rcu_read_lock();
2513 vlan_dev = __vlan_find_dev_deep(bond->dev, vlan->vlan_id);
2514 rcu_read_unlock();
2515 if (vlan_dev && ip == bond_confirm_addr(vlan_dev, 0, ip))
2516 return 1;
2517 }
2518
2519 return 0;
2520 }
2521
2522 /*
2523 * We go to the (large) trouble of VLAN tagging ARP frames because
2524 * switches in VLAN mode (especially if ports are configured as
2525 * "native" to a VLAN) might not pass non-tagged frames.
2526 */
2527 static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id)
2528 {
2529 struct sk_buff *skb;
2530
2531 pr_debug("arp %d on slave %s: dst %x src %x vid %d\n", arp_op,
2532 slave_dev->name, dest_ip, src_ip, vlan_id);
2533
2534 skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip,
2535 NULL, slave_dev->dev_addr, NULL);
2536
2537 if (!skb) {
2538 pr_err("ARP packet allocation failed\n");
2539 return;
2540 }
2541 if (vlan_id) {
2542 skb = vlan_put_tag(skb, vlan_id);
2543 if (!skb) {
2544 pr_err("failed to insert VLAN tag\n");
2545 return;
2546 }
2547 }
2548 arp_xmit(skb);
2549 }
2550
2551
2552 static void bond_arp_send_all(struct bonding *bond, struct slave *slave)
2553 {
2554 int i, vlan_id;
2555 __be32 *targets = bond->params.arp_targets;
2556 struct vlan_entry *vlan;
2557 struct net_device *vlan_dev = NULL;
2558 struct rtable *rt;
2559
2560 for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) {
2561 __be32 addr;
2562 if (!targets[i])
2563 break;
2564 pr_debug("basa: target %x\n", targets[i]);
2565 if (!bond_vlan_used(bond)) {
2566 pr_debug("basa: empty vlan: arp_send\n");
2567 addr = bond_confirm_addr(bond->dev, targets[i], 0);
2568 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2569 addr, 0);
2570 continue;
2571 }
2572
2573 /*
2574 * If VLANs are configured, we do a route lookup to
2575 * determine which VLAN interface would be used, so we
2576 * can tag the ARP with the proper VLAN tag.
2577 */
2578 rt = ip_route_output(dev_net(bond->dev), targets[i], 0,
2579 RTO_ONLINK, 0);
2580 if (IS_ERR(rt)) {
2581 if (net_ratelimit()) {
2582 pr_warning("%s: no route to arp_ip_target %pI4\n",
2583 bond->dev->name, &targets[i]);
2584 }
2585 continue;
2586 }
2587
2588 /*
2589 * This target is not on a VLAN
2590 */
2591 if (rt->dst.dev == bond->dev) {
2592 ip_rt_put(rt);
2593 pr_debug("basa: rtdev == bond->dev: arp_send\n");
2594 addr = bond_confirm_addr(bond->dev, targets[i], 0);
2595 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2596 addr, 0);
2597 continue;
2598 }
2599
2600 vlan_id = 0;
2601 list_for_each_entry(vlan, &bond->vlan_list, vlan_list) {
2602 rcu_read_lock();
2603 vlan_dev = __vlan_find_dev_deep(bond->dev,
2604 vlan->vlan_id);
2605 rcu_read_unlock();
2606 if (vlan_dev == rt->dst.dev) {
2607 vlan_id = vlan->vlan_id;
2608 pr_debug("basa: vlan match on %s %d\n",
2609 vlan_dev->name, vlan_id);
2610 break;
2611 }
2612 }
2613
2614 if (vlan_id && vlan_dev) {
2615 ip_rt_put(rt);
2616 addr = bond_confirm_addr(vlan_dev, targets[i], 0);
2617 bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i],
2618 addr, vlan_id);
2619 continue;
2620 }
2621
2622 if (net_ratelimit()) {
2623 pr_warning("%s: no path to arp_ip_target %pI4 via rt.dev %s\n",
2624 bond->dev->name, &targets[i],
2625 rt->dst.dev ? rt->dst.dev->name : "NULL");
2626 }
2627 ip_rt_put(rt);
2628 }
2629 }
2630
2631 static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip)
2632 {
2633 int i;
2634 __be32 *targets = bond->params.arp_targets;
2635
2636 for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) {
2637 pr_debug("bva: sip %pI4 tip %pI4 t[%d] %pI4 bhti(tip) %d\n",
2638 &sip, &tip, i, &targets[i],
2639 bond_has_this_ip(bond, tip));
2640 if (sip == targets[i]) {
2641 if (bond_has_this_ip(bond, tip))
2642 slave->last_arp_rx = jiffies;
2643 return;
2644 }
2645 }
2646 }
2647
2648 static int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond,
2649 struct slave *slave)
2650 {
2651 struct arphdr *arp = (struct arphdr *)skb->data;
2652 unsigned char *arp_ptr;
2653 __be32 sip, tip;
2654 int alen;
2655
2656 if (skb->protocol != __cpu_to_be16(ETH_P_ARP))
2657 return RX_HANDLER_ANOTHER;
2658
2659 read_lock(&bond->lock);
2660 alen = arp_hdr_len(bond->dev);
2661
2662 pr_debug("bond_arp_rcv: bond %s skb->dev %s\n",
2663 bond->dev->name, skb->dev->name);
2664
2665 if (alen > skb_headlen(skb)) {
2666 arp = kmalloc(alen, GFP_ATOMIC);
2667 if (!arp)
2668 goto out_unlock;
2669 if (skb_copy_bits(skb, 0, arp, alen) < 0)
2670 goto out_unlock;
2671 }
2672
2673 if (arp->ar_hln != bond->dev->addr_len ||
2674 skb->pkt_type == PACKET_OTHERHOST ||
2675 skb->pkt_type == PACKET_LOOPBACK ||
2676 arp->ar_hrd != htons(ARPHRD_ETHER) ||
2677 arp->ar_pro != htons(ETH_P_IP) ||
2678 arp->ar_pln != 4)
2679 goto out_unlock;
2680
2681 arp_ptr = (unsigned char *)(arp + 1);
2682 arp_ptr += bond->dev->addr_len;
2683 memcpy(&sip, arp_ptr, 4);
2684 arp_ptr += 4 + bond->dev->addr_len;
2685 memcpy(&tip, arp_ptr, 4);
2686
2687 pr_debug("bond_arp_rcv: %s %s/%d av %d sv %d sip %pI4 tip %pI4\n",
2688 bond->dev->name, slave->dev->name, bond_slave_state(slave),
2689 bond->params.arp_validate, slave_do_arp_validate(bond, slave),
2690 &sip, &tip);
2691
2692 /*
2693 * Backup slaves won't see the ARP reply, but do come through
2694 * here for each ARP probe (so we swap the sip/tip to validate
2695 * the probe). In a "redundant switch, common router" type of
2696 * configuration, the ARP probe will (hopefully) travel from
2697 * the active, through one switch, the router, then the other
2698 * switch before reaching the backup.
2699 */
2700 if (bond_is_active_slave(slave))
2701 bond_validate_arp(bond, slave, sip, tip);
2702 else
2703 bond_validate_arp(bond, slave, tip, sip);
2704
2705 out_unlock:
2706 read_unlock(&bond->lock);
2707 if (arp != (struct arphdr *)skb->data)
2708 kfree(arp);
2709 return RX_HANDLER_ANOTHER;
2710 }
2711
2712 /*
2713 * this function is called regularly to monitor each slave's link
2714 * ensuring that traffic is being sent and received when arp monitoring
2715 * is used in load-balancing mode. if the adapter has been dormant, then an
2716 * arp is transmitted to generate traffic. see activebackup_arp_monitor for
2717 * arp monitoring in active backup mode.
2718 */
2719 void bond_loadbalance_arp_mon(struct work_struct *work)
2720 {
2721 struct bonding *bond = container_of(work, struct bonding,
2722 arp_work.work);
2723 struct slave *slave, *oldcurrent;
2724 int do_failover = 0;
2725 int delta_in_ticks, extra_ticks;
2726 int i;
2727
2728 read_lock(&bond->lock);
2729
2730 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
2731 extra_ticks = delta_in_ticks / 2;
2732
2733 if (bond->slave_cnt == 0)
2734 goto re_arm;
2735
2736 read_lock(&bond->curr_slave_lock);
2737 oldcurrent = bond->curr_active_slave;
2738 read_unlock(&bond->curr_slave_lock);
2739
2740 /* see if any of the previous devices are up now (i.e. they have
2741 * xmt and rcv traffic). the curr_active_slave does not come into
2742 * the picture unless it is null. also, slave->jiffies is not needed
2743 * here because we send an arp on each slave and give a slave as
2744 * long as it needs to get the tx/rx within the delta.
2745 * TODO: what about up/down delay in arp mode? it wasn't here before
2746 * so it can wait
2747 */
2748 bond_for_each_slave(bond, slave, i) {
2749 unsigned long trans_start = dev_trans_start(slave->dev);
2750
2751 if (slave->link != BOND_LINK_UP) {
2752 if (time_in_range(jiffies,
2753 trans_start - delta_in_ticks,
2754 trans_start + delta_in_ticks + extra_ticks) &&
2755 time_in_range(jiffies,
2756 slave->dev->last_rx - delta_in_ticks,
2757 slave->dev->last_rx + delta_in_ticks + extra_ticks)) {
2758
2759 slave->link = BOND_LINK_UP;
2760 bond_set_active_slave(slave);
2761
2762 /* primary_slave has no meaning in round-robin
2763 * mode. the window of a slave being up and
2764 * curr_active_slave being null after enslaving
2765 * is closed.
2766 */
2767 if (!oldcurrent) {
2768 pr_info("%s: link status definitely up for interface %s, ",
2769 bond->dev->name,
2770 slave->dev->name);
2771 do_failover = 1;
2772 } else {
2773 pr_info("%s: interface %s is now up\n",
2774 bond->dev->name,
2775 slave->dev->name);
2776 }
2777 }
2778 } else {
2779 /* slave->link == BOND_LINK_UP */
2780
2781 /* not all switches will respond to an arp request
2782 * when the source ip is 0, so don't take the link down
2783 * if we don't know our ip yet
2784 */
2785 if (!time_in_range(jiffies,
2786 trans_start - delta_in_ticks,
2787 trans_start + 2 * delta_in_ticks + extra_ticks) ||
2788 !time_in_range(jiffies,
2789 slave->dev->last_rx - delta_in_ticks,
2790 slave->dev->last_rx + 2 * delta_in_ticks + extra_ticks)) {
2791
2792 slave->link = BOND_LINK_DOWN;
2793 bond_set_backup_slave(slave);
2794
2795 if (slave->link_failure_count < UINT_MAX)
2796 slave->link_failure_count++;
2797
2798 pr_info("%s: interface %s is now down.\n",
2799 bond->dev->name,
2800 slave->dev->name);
2801
2802 if (slave == oldcurrent)
2803 do_failover = 1;
2804 }
2805 }
2806
2807 /* note: if switch is in round-robin mode, all links
2808 * must tx arp to ensure all links rx an arp - otherwise
2809 * links may oscillate or not come up at all; if switch is
2810 * in something like xor mode, there is nothing we can
2811 * do - all replies will be rx'ed on same link causing slaves
2812 * to be unstable during low/no traffic periods
2813 */
2814 if (IS_UP(slave->dev))
2815 bond_arp_send_all(bond, slave);
2816 }
2817
2818 if (do_failover) {
2819 block_netpoll_tx();
2820 write_lock_bh(&bond->curr_slave_lock);
2821
2822 bond_select_active_slave(bond);
2823
2824 write_unlock_bh(&bond->curr_slave_lock);
2825 unblock_netpoll_tx();
2826 }
2827
2828 re_arm:
2829 if (bond->params.arp_interval)
2830 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
2831
2832 read_unlock(&bond->lock);
2833 }
2834
2835 /*
2836 * Called to inspect slaves for active-backup mode ARP monitor link state
2837 * changes. Sets new_link in slaves to specify what action should take
2838 * place for the slave. Returns 0 if no changes are found, >0 if changes
2839 * to link states must be committed.
2840 *
2841 * Called with bond->lock held for read.
2842 */
2843 static int bond_ab_arp_inspect(struct bonding *bond, int delta_in_ticks)
2844 {
2845 struct slave *slave;
2846 int i, commit = 0;
2847 unsigned long trans_start;
2848 int extra_ticks;
2849
2850 /* All the time comparisons below need some extra time. Otherwise, on
2851 * fast networks the ARP probe/reply may arrive within the same jiffy
2852 * as it was sent. Then, the next time the ARP monitor is run, one
2853 * arp_interval will already have passed in the comparisons.
2854 */
2855 extra_ticks = delta_in_ticks / 2;
2856
2857 bond_for_each_slave(bond, slave, i) {
2858 slave->new_link = BOND_LINK_NOCHANGE;
2859
2860 if (slave->link != BOND_LINK_UP) {
2861 if (time_in_range(jiffies,
2862 slave_last_rx(bond, slave) - delta_in_ticks,
2863 slave_last_rx(bond, slave) + delta_in_ticks + extra_ticks)) {
2864
2865 slave->new_link = BOND_LINK_UP;
2866 commit++;
2867 }
2868
2869 continue;
2870 }
2871
2872 /*
2873 * Give slaves 2*delta after being enslaved or made
2874 * active. This avoids bouncing, as the last receive
2875 * times need a full ARP monitor cycle to be updated.
2876 */
2877 if (time_in_range(jiffies,
2878 slave->jiffies - delta_in_ticks,
2879 slave->jiffies + 2 * delta_in_ticks + extra_ticks))
2880 continue;
2881
2882 /*
2883 * Backup slave is down if:
2884 * - No current_arp_slave AND
2885 * - more than 3*delta since last receive AND
2886 * - the bond has an IP address
2887 *
2888 * Note: a non-null current_arp_slave indicates
2889 * the curr_active_slave went down and we are
2890 * searching for a new one; under this condition
2891 * we only take the curr_active_slave down - this
2892 * gives each slave a chance to tx/rx traffic
2893 * before being taken out
2894 */
2895 if (!bond_is_active_slave(slave) &&
2896 !bond->current_arp_slave &&
2897 !time_in_range(jiffies,
2898 slave_last_rx(bond, slave) - delta_in_ticks,
2899 slave_last_rx(bond, slave) + 3 * delta_in_ticks + extra_ticks)) {
2900
2901 slave->new_link = BOND_LINK_DOWN;
2902 commit++;
2903 }
2904
2905 /*
2906 * Active slave is down if:
2907 * - more than 2*delta since transmitting OR
2908 * - (more than 2*delta since receive AND
2909 * the bond has an IP address)
2910 */
2911 trans_start = dev_trans_start(slave->dev);
2912 if (bond_is_active_slave(slave) &&
2913 (!time_in_range(jiffies,
2914 trans_start - delta_in_ticks,
2915 trans_start + 2 * delta_in_ticks + extra_ticks) ||
2916 !time_in_range(jiffies,
2917 slave_last_rx(bond, slave) - delta_in_ticks,
2918 slave_last_rx(bond, slave) + 2 * delta_in_ticks + extra_ticks))) {
2919
2920 slave->new_link = BOND_LINK_DOWN;
2921 commit++;
2922 }
2923 }
2924
2925 return commit;
2926 }
2927
2928 /*
2929 * Called to commit link state changes noted by inspection step of
2930 * active-backup mode ARP monitor.
2931 *
2932 * Called with RTNL and bond->lock for read.
2933 */
2934 static void bond_ab_arp_commit(struct bonding *bond, int delta_in_ticks)
2935 {
2936 struct slave *slave;
2937 int i;
2938 unsigned long trans_start;
2939
2940 bond_for_each_slave(bond, slave, i) {
2941 switch (slave->new_link) {
2942 case BOND_LINK_NOCHANGE:
2943 continue;
2944
2945 case BOND_LINK_UP:
2946 trans_start = dev_trans_start(slave->dev);
2947 if ((!bond->curr_active_slave &&
2948 time_in_range(jiffies,
2949 trans_start - delta_in_ticks,
2950 trans_start + delta_in_ticks + delta_in_ticks / 2)) ||
2951 bond->curr_active_slave != slave) {
2952 slave->link = BOND_LINK_UP;
2953 if (bond->current_arp_slave) {
2954 bond_set_slave_inactive_flags(
2955 bond->current_arp_slave);
2956 bond->current_arp_slave = NULL;
2957 }
2958
2959 pr_info("%s: link status definitely up for interface %s.\n",
2960 bond->dev->name, slave->dev->name);
2961
2962 if (!bond->curr_active_slave ||
2963 (slave == bond->primary_slave))
2964 goto do_failover;
2965
2966 }
2967
2968 continue;
2969
2970 case BOND_LINK_DOWN:
2971 if (slave->link_failure_count < UINT_MAX)
2972 slave->link_failure_count++;
2973
2974 slave->link = BOND_LINK_DOWN;
2975 bond_set_slave_inactive_flags(slave);
2976
2977 pr_info("%s: link status definitely down for interface %s, disabling it\n",
2978 bond->dev->name, slave->dev->name);
2979
2980 if (slave == bond->curr_active_slave) {
2981 bond->current_arp_slave = NULL;
2982 goto do_failover;
2983 }
2984
2985 continue;
2986
2987 default:
2988 pr_err("%s: impossible: new_link %d on slave %s\n",
2989 bond->dev->name, slave->new_link,
2990 slave->dev->name);
2991 continue;
2992 }
2993
2994 do_failover:
2995 ASSERT_RTNL();
2996 block_netpoll_tx();
2997 write_lock_bh(&bond->curr_slave_lock);
2998 bond_select_active_slave(bond);
2999 write_unlock_bh(&bond->curr_slave_lock);
3000 unblock_netpoll_tx();
3001 }
3002
3003 bond_set_carrier(bond);
3004 }
3005
3006 /*
3007 * Send ARP probes for active-backup mode ARP monitor.
3008 *
3009 * Called with bond->lock held for read.
3010 */
3011 static void bond_ab_arp_probe(struct bonding *bond)
3012 {
3013 struct slave *slave;
3014 int i;
3015
3016 read_lock(&bond->curr_slave_lock);
3017
3018 if (bond->current_arp_slave && bond->curr_active_slave)
3019 pr_info("PROBE: c_arp %s && cas %s BAD\n",
3020 bond->current_arp_slave->dev->name,
3021 bond->curr_active_slave->dev->name);
3022
3023 if (bond->curr_active_slave) {
3024 bond_arp_send_all(bond, bond->curr_active_slave);
3025 read_unlock(&bond->curr_slave_lock);
3026 return;
3027 }
3028
3029 read_unlock(&bond->curr_slave_lock);
3030
3031 /* if we don't have a curr_active_slave, search for the next available
3032 * backup slave from the current_arp_slave and make it the candidate
3033 * for becoming the curr_active_slave
3034 */
3035
3036 if (!bond->current_arp_slave) {
3037 bond->current_arp_slave = bond->first_slave;
3038 if (!bond->current_arp_slave)
3039 return;
3040 }
3041
3042 bond_set_slave_inactive_flags(bond->current_arp_slave);
3043
3044 /* search for next candidate */
3045 bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) {
3046 if (IS_UP(slave->dev)) {
3047 slave->link = BOND_LINK_BACK;
3048 bond_set_slave_active_flags(slave);
3049 bond_arp_send_all(bond, slave);
3050 slave->jiffies = jiffies;
3051 bond->current_arp_slave = slave;
3052 break;
3053 }
3054
3055 /* if the link state is up at this point, we
3056 * mark it down - this can happen if we have
3057 * simultaneous link failures and
3058 * reselect_active_interface doesn't make this
3059 * one the current slave so it is still marked
3060 * up when it is actually down
3061 */
3062 if (slave->link == BOND_LINK_UP) {
3063 slave->link = BOND_LINK_DOWN;
3064 if (slave->link_failure_count < UINT_MAX)
3065 slave->link_failure_count++;
3066
3067 bond_set_slave_inactive_flags(slave);
3068
3069 pr_info("%s: backup interface %s is now down.\n",
3070 bond->dev->name, slave->dev->name);
3071 }
3072 }
3073 }
3074
3075 void bond_activebackup_arp_mon(struct work_struct *work)
3076 {
3077 struct bonding *bond = container_of(work, struct bonding,
3078 arp_work.work);
3079 bool should_notify_peers = false;
3080 int delta_in_ticks;
3081
3082 read_lock(&bond->lock);
3083
3084 delta_in_ticks = msecs_to_jiffies(bond->params.arp_interval);
3085
3086 if (bond->slave_cnt == 0)
3087 goto re_arm;
3088
3089 should_notify_peers = bond_should_notify_peers(bond);
3090
3091 if (bond_ab_arp_inspect(bond, delta_in_ticks)) {
3092 read_unlock(&bond->lock);
3093
3094 /* Race avoidance with bond_close flush of workqueue */
3095 if (!rtnl_trylock()) {
3096 read_lock(&bond->lock);
3097 delta_in_ticks = 1;
3098 should_notify_peers = false;
3099 goto re_arm;
3100 }
3101
3102 read_lock(&bond->lock);
3103
3104 bond_ab_arp_commit(bond, delta_in_ticks);
3105
3106 read_unlock(&bond->lock);
3107 rtnl_unlock();
3108 read_lock(&bond->lock);
3109 }
3110
3111 bond_ab_arp_probe(bond);
3112
3113 re_arm:
3114 if (bond->params.arp_interval)
3115 queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks);
3116
3117 read_unlock(&bond->lock);
3118
3119 if (should_notify_peers) {
3120 if (!rtnl_trylock()) {
3121 read_lock(&bond->lock);
3122 bond->send_peer_notif++;
3123 read_unlock(&bond->lock);
3124 return;
3125 }
3126 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, bond->dev);
3127 rtnl_unlock();
3128 }
3129 }
3130
3131 /*-------------------------- netdev event handling --------------------------*/
3132
3133 /*
3134 * Change device name
3135 */
3136 static int bond_event_changename(struct bonding *bond)
3137 {
3138 bond_remove_proc_entry(bond);
3139 bond_create_proc_entry(bond);
3140
3141 bond_debug_reregister(bond);
3142
3143 return NOTIFY_DONE;
3144 }
3145
3146 static int bond_master_netdev_event(unsigned long event,
3147 struct net_device *bond_dev)
3148 {
3149 struct bonding *event_bond = netdev_priv(bond_dev);
3150
3151 switch (event) {
3152 case NETDEV_CHANGENAME:
3153 return bond_event_changename(event_bond);
3154 case NETDEV_UNREGISTER:
3155 bond_remove_proc_entry(event_bond);
3156 break;
3157 case NETDEV_REGISTER:
3158 bond_create_proc_entry(event_bond);
3159 break;
3160 default:
3161 break;
3162 }
3163
3164 return NOTIFY_DONE;
3165 }
3166
3167 static int bond_slave_netdev_event(unsigned long event,
3168 struct net_device *slave_dev)
3169 {
3170 struct slave *slave = bond_slave_get_rtnl(slave_dev);
3171 struct bonding *bond = slave->bond;
3172 struct net_device *bond_dev = slave->bond->dev;
3173 u32 old_speed;
3174 u8 old_duplex;
3175
3176 switch (event) {
3177 case NETDEV_UNREGISTER:
3178 if (bond->setup_by_slave)
3179 bond_release_and_destroy(bond_dev, slave_dev);
3180 else
3181 bond_release(bond_dev, slave_dev);
3182 break;
3183 case NETDEV_UP:
3184 case NETDEV_CHANGE:
3185 old_speed = slave->speed;
3186 old_duplex = slave->duplex;
3187
3188 bond_update_speed_duplex(slave);
3189
3190 if (bond->params.mode == BOND_MODE_8023AD) {
3191 if (old_speed != slave->speed)
3192 bond_3ad_adapter_speed_changed(slave);
3193 if (old_duplex != slave->duplex)
3194 bond_3ad_adapter_duplex_changed(slave);
3195 }
3196 break;
3197 case NETDEV_DOWN:
3198 /*
3199 * ... Or is it this?
3200 */
3201 break;
3202 case NETDEV_CHANGEMTU:
3203 /*
3204 * TODO: Should slaves be allowed to
3205 * independently alter their MTU? For
3206 * an active-backup bond, slaves need
3207 * not be the same type of device, so
3208 * MTUs may vary. For other modes,
3209 * slaves arguably should have the
3210 * same MTUs. To do this, we'd need to
3211 * take over the slave's change_mtu
3212 * function for the duration of their
3213 * servitude.
3214 */
3215 break;
3216 case NETDEV_CHANGENAME:
3217 /*
3218 * TODO: handle changing the primary's name
3219 */
3220 break;
3221 case NETDEV_FEAT_CHANGE:
3222 bond_compute_features(bond);
3223 break;
3224 default:
3225 break;
3226 }
3227
3228 return NOTIFY_DONE;
3229 }
3230
3231 /*
3232 * bond_netdev_event: handle netdev notifier chain events.
3233 *
3234 * This function receives events for the netdev chain. The caller (an
3235 * ioctl handler calling blocking_notifier_call_chain) holds the necessary
3236 * locks for us to safely manipulate the slave devices (RTNL lock,
3237 * dev_probe_lock).
3238 */
3239 static int bond_netdev_event(struct notifier_block *this,
3240 unsigned long event, void *ptr)
3241 {
3242 struct net_device *event_dev = (struct net_device *)ptr;
3243
3244 pr_debug("event_dev: %s, event: %lx\n",
3245 event_dev ? event_dev->name : "None",
3246 event);
3247
3248 if (!(event_dev->priv_flags & IFF_BONDING))
3249 return NOTIFY_DONE;
3250
3251 if (event_dev->flags & IFF_MASTER) {
3252 pr_debug("IFF_MASTER\n");
3253 return bond_master_netdev_event(event, event_dev);
3254 }
3255
3256 if (event_dev->flags & IFF_SLAVE) {
3257 pr_debug("IFF_SLAVE\n");
3258 return bond_slave_netdev_event(event, event_dev);
3259 }
3260
3261 return NOTIFY_DONE;
3262 }
3263
3264 static struct notifier_block bond_netdev_notifier = {
3265 .notifier_call = bond_netdev_event,
3266 };
3267
3268 /*---------------------------- Hashing Policies -----------------------------*/
3269
3270 /*
3271 * Hash for the output device based upon layer 2 data
3272 */
3273 static int bond_xmit_hash_policy_l2(struct sk_buff *skb, int count)
3274 {
3275 struct ethhdr *data = (struct ethhdr *)skb->data;
3276
3277 if (skb_headlen(skb) >= offsetof(struct ethhdr, h_proto))
3278 return (data->h_dest[5] ^ data->h_source[5]) % count;
3279
3280 return 0;
3281 }
3282
3283 /*
3284 * Hash for the output device based upon layer 2 and layer 3 data. If
3285 * the packet is not IP, fall back on bond_xmit_hash_policy_l2()
3286 */
3287 static int bond_xmit_hash_policy_l23(struct sk_buff *skb, int count)
3288 {
3289 struct ethhdr *data = (struct ethhdr *)skb->data;
3290 struct iphdr *iph;
3291 struct ipv6hdr *ipv6h;
3292 u32 v6hash;
3293 __be32 *s, *d;
3294
3295 if (skb->protocol == htons(ETH_P_IP) &&
3296 skb_network_header_len(skb) >= sizeof(*iph)) {
3297 iph = ip_hdr(skb);
3298 return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^
3299 (data->h_dest[5] ^ data->h_source[5])) % count;
3300 } else if (skb->protocol == htons(ETH_P_IPV6) &&
3301 skb_network_header_len(skb) >= sizeof(*ipv6h)) {
3302 ipv6h = ipv6_hdr(skb);
3303 s = &ipv6h->saddr.s6_addr32[0];
3304 d = &ipv6h->daddr.s6_addr32[0];
3305 v6hash = (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
3306 v6hash ^= (v6hash >> 24) ^ (v6hash >> 16) ^ (v6hash >> 8);
3307 return (v6hash ^ data->h_dest[5] ^ data->h_source[5]) % count;
3308 }
3309
3310 return bond_xmit_hash_policy_l2(skb, count);
3311 }
3312
3313 /*
3314 * Hash for the output device based upon layer 3 and layer 4 data. If
3315 * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is
3316 * altogether not IP, fall back on bond_xmit_hash_policy_l2()
3317 */
3318 static int bond_xmit_hash_policy_l34(struct sk_buff *skb, int count)
3319 {
3320 u32 layer4_xor = 0;
3321 struct iphdr *iph;
3322 struct ipv6hdr *ipv6h;
3323 __be32 *s, *d;
3324 __be16 *layer4hdr;
3325
3326 if (skb->protocol == htons(ETH_P_IP) &&
3327 skb_network_header_len(skb) >= sizeof(*iph)) {
3328 iph = ip_hdr(skb);
3329 if (!ip_is_fragment(iph) &&
3330 (iph->protocol == IPPROTO_TCP ||
3331 iph->protocol == IPPROTO_UDP) &&
3332 (skb_headlen(skb) - skb_network_offset(skb) >=
3333 iph->ihl * sizeof(u32) + sizeof(*layer4hdr) * 2)) {
3334 layer4hdr = (__be16 *)((u32 *)iph + iph->ihl);
3335 layer4_xor = ntohs(*layer4hdr ^ *(layer4hdr + 1));
3336 }
3337 return (layer4_xor ^
3338 ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count;
3339 } else if (skb->protocol == htons(ETH_P_IPV6) &&
3340 skb_network_header_len(skb) >= sizeof(*ipv6h)) {
3341 ipv6h = ipv6_hdr(skb);
3342 if ((ipv6h->nexthdr == IPPROTO_TCP ||
3343 ipv6h->nexthdr == IPPROTO_UDP) &&
3344 (skb_headlen(skb) - skb_network_offset(skb) >=
3345 sizeof(*ipv6h) + sizeof(*layer4hdr) * 2)) {
3346 layer4hdr = (__be16 *)(ipv6h + 1);
3347 layer4_xor = ntohs(*layer4hdr ^ *(layer4hdr + 1));
3348 }
3349 s = &ipv6h->saddr.s6_addr32[0];
3350 d = &ipv6h->daddr.s6_addr32[0];
3351 layer4_xor ^= (s[1] ^ d[1]) ^ (s[2] ^ d[2]) ^ (s[3] ^ d[3]);
3352 layer4_xor ^= (layer4_xor >> 24) ^ (layer4_xor >> 16) ^
3353 (layer4_xor >> 8);
3354 return layer4_xor % count;
3355 }
3356
3357 return bond_xmit_hash_policy_l2(skb, count);
3358 }
3359
3360 /*-------------------------- Device entry points ----------------------------*/
3361
3362 static void bond_work_init_all(struct bonding *bond)
3363 {
3364 INIT_DELAYED_WORK(&bond->mcast_work,
3365 bond_resend_igmp_join_requests_delayed);
3366 INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor);
3367 INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor);
3368 if (bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3369 INIT_DELAYED_WORK(&bond->arp_work, bond_activebackup_arp_mon);
3370 else
3371 INIT_DELAYED_WORK(&bond->arp_work, bond_loadbalance_arp_mon);
3372 INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler);
3373 }
3374
3375 static void bond_work_cancel_all(struct bonding *bond)
3376 {
3377 cancel_delayed_work_sync(&bond->mii_work);
3378 cancel_delayed_work_sync(&bond->arp_work);
3379 cancel_delayed_work_sync(&bond->alb_work);
3380 cancel_delayed_work_sync(&bond->ad_work);
3381 cancel_delayed_work_sync(&bond->mcast_work);
3382 }
3383
3384 static int bond_open(struct net_device *bond_dev)
3385 {
3386 struct bonding *bond = netdev_priv(bond_dev);
3387 struct slave *slave;
3388 int i;
3389
3390 /* reset slave->backup and slave->inactive */
3391 read_lock(&bond->lock);
3392 if (bond->slave_cnt > 0) {
3393 read_lock(&bond->curr_slave_lock);
3394 bond_for_each_slave(bond, slave, i) {
3395 if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP)
3396 && (slave != bond->curr_active_slave)) {
3397 bond_set_slave_inactive_flags(slave);
3398 } else {
3399 bond_set_slave_active_flags(slave);
3400 }
3401 }
3402 read_unlock(&bond->curr_slave_lock);
3403 }
3404 read_unlock(&bond->lock);
3405
3406 bond_work_init_all(bond);
3407
3408 if (bond_is_lb(bond)) {
3409 /* bond_alb_initialize must be called before the timer
3410 * is started.
3411 */
3412 if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB)))
3413 return -ENOMEM;
3414 queue_delayed_work(bond->wq, &bond->alb_work, 0);
3415 }
3416
3417 if (bond->params.miimon) /* link check interval, in milliseconds. */
3418 queue_delayed_work(bond->wq, &bond->mii_work, 0);
3419
3420 if (bond->params.arp_interval) { /* arp interval, in milliseconds. */
3421 queue_delayed_work(bond->wq, &bond->arp_work, 0);
3422 if (bond->params.arp_validate)
3423 bond->recv_probe = bond_arp_rcv;
3424 }
3425
3426 if (bond->params.mode == BOND_MODE_8023AD) {
3427 queue_delayed_work(bond->wq, &bond->ad_work, 0);
3428 /* register to receive LACPDUs */
3429 bond->recv_probe = bond_3ad_lacpdu_recv;
3430 bond_3ad_initiate_agg_selection(bond, 1);
3431 }
3432
3433 return 0;
3434 }
3435
3436 static int bond_close(struct net_device *bond_dev)
3437 {
3438 struct bonding *bond = netdev_priv(bond_dev);
3439
3440 write_lock_bh(&bond->lock);
3441 bond->send_peer_notif = 0;
3442 write_unlock_bh(&bond->lock);
3443
3444 bond_work_cancel_all(bond);
3445 if (bond_is_lb(bond)) {
3446 /* Must be called only after all
3447 * slaves have been released
3448 */
3449 bond_alb_deinitialize(bond);
3450 }
3451 bond->recv_probe = NULL;
3452
3453 return 0;
3454 }
3455
3456 static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev,
3457 struct rtnl_link_stats64 *stats)
3458 {
3459 struct bonding *bond = netdev_priv(bond_dev);
3460 struct rtnl_link_stats64 temp;
3461 struct slave *slave;
3462 int i;
3463
3464 memset(stats, 0, sizeof(*stats));
3465
3466 read_lock_bh(&bond->lock);
3467
3468 bond_for_each_slave(bond, slave, i) {
3469 const struct rtnl_link_stats64 *sstats =
3470 dev_get_stats(slave->dev, &temp);
3471
3472 stats->rx_packets += sstats->rx_packets;
3473 stats->rx_bytes += sstats->rx_bytes;
3474 stats->rx_errors += sstats->rx_errors;
3475 stats->rx_dropped += sstats->rx_dropped;
3476
3477 stats->tx_packets += sstats->tx_packets;
3478 stats->tx_bytes += sstats->tx_bytes;
3479 stats->tx_errors += sstats->tx_errors;
3480 stats->tx_dropped += sstats->tx_dropped;
3481
3482 stats->multicast += sstats->multicast;
3483 stats->collisions += sstats->collisions;
3484
3485 stats->rx_length_errors += sstats->rx_length_errors;
3486 stats->rx_over_errors += sstats->rx_over_errors;
3487 stats->rx_crc_errors += sstats->rx_crc_errors;
3488 stats->rx_frame_errors += sstats->rx_frame_errors;
3489 stats->rx_fifo_errors += sstats->rx_fifo_errors;
3490 stats->rx_missed_errors += sstats->rx_missed_errors;
3491
3492 stats->tx_aborted_errors += sstats->tx_aborted_errors;
3493 stats->tx_carrier_errors += sstats->tx_carrier_errors;
3494 stats->tx_fifo_errors += sstats->tx_fifo_errors;
3495 stats->tx_heartbeat_errors += sstats->tx_heartbeat_errors;
3496 stats->tx_window_errors += sstats->tx_window_errors;
3497 }
3498
3499 read_unlock_bh(&bond->lock);
3500
3501 return stats;
3502 }
3503
3504 static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd)
3505 {
3506 struct net_device *slave_dev = NULL;
3507 struct ifbond k_binfo;
3508 struct ifbond __user *u_binfo = NULL;
3509 struct ifslave k_sinfo;
3510 struct ifslave __user *u_sinfo = NULL;
3511 struct mii_ioctl_data *mii = NULL;
3512 struct net *net;
3513 int res = 0;
3514
3515 pr_debug("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd);
3516
3517 switch (cmd) {
3518 case SIOCGMIIPHY:
3519 mii = if_mii(ifr);
3520 if (!mii)
3521 return -EINVAL;
3522
3523 mii->phy_id = 0;
3524 /* Fall Through */
3525 case SIOCGMIIREG:
3526 /*
3527 * We do this again just in case we were called by SIOCGMIIREG
3528 * instead of SIOCGMIIPHY.
3529 */
3530 mii = if_mii(ifr);
3531 if (!mii)
3532 return -EINVAL;
3533
3534
3535 if (mii->reg_num == 1) {
3536 struct bonding *bond = netdev_priv(bond_dev);
3537 mii->val_out = 0;
3538 read_lock(&bond->lock);
3539 read_lock(&bond->curr_slave_lock);
3540 if (netif_carrier_ok(bond->dev))
3541 mii->val_out = BMSR_LSTATUS;
3542
3543 read_unlock(&bond->curr_slave_lock);
3544 read_unlock(&bond->lock);
3545 }
3546
3547 return 0;
3548 case BOND_INFO_QUERY_OLD:
3549 case SIOCBONDINFOQUERY:
3550 u_binfo = (struct ifbond __user *)ifr->ifr_data;
3551
3552 if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond)))
3553 return -EFAULT;
3554
3555 res = bond_info_query(bond_dev, &k_binfo);
3556 if (res == 0 &&
3557 copy_to_user(u_binfo, &k_binfo, sizeof(ifbond)))
3558 return -EFAULT;
3559
3560 return res;
3561 case BOND_SLAVE_INFO_QUERY_OLD:
3562 case SIOCBONDSLAVEINFOQUERY:
3563 u_sinfo = (struct ifslave __user *)ifr->ifr_data;
3564
3565 if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave)))
3566 return -EFAULT;
3567
3568 res = bond_slave_info_query(bond_dev, &k_sinfo);
3569 if (res == 0 &&
3570 copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave)))
3571 return -EFAULT;
3572
3573 return res;
3574 default:
3575 /* Go on */
3576 break;
3577 }
3578
3579 net = dev_net(bond_dev);
3580
3581 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3582 return -EPERM;
3583
3584 slave_dev = dev_get_by_name(net, ifr->ifr_slave);
3585
3586 pr_debug("slave_dev=%p:\n", slave_dev);
3587
3588 if (!slave_dev)
3589 res = -ENODEV;
3590 else {
3591 pr_debug("slave_dev->name=%s:\n", slave_dev->name);
3592 switch (cmd) {
3593 case BOND_ENSLAVE_OLD:
3594 case SIOCBONDENSLAVE:
3595 res = bond_enslave(bond_dev, slave_dev);
3596 break;
3597 case BOND_RELEASE_OLD:
3598 case SIOCBONDRELEASE:
3599 res = bond_release(bond_dev, slave_dev);
3600 break;
3601 case BOND_SETHWADDR_OLD:
3602 case SIOCBONDSETHWADDR:
3603 bond_set_dev_addr(bond_dev, slave_dev);
3604 res = 0;
3605 break;
3606 case BOND_CHANGE_ACTIVE_OLD:
3607 case SIOCBONDCHANGEACTIVE:
3608 res = bond_ioctl_change_active(bond_dev, slave_dev);
3609 break;
3610 default:
3611 res = -EOPNOTSUPP;
3612 }
3613
3614 dev_put(slave_dev);
3615 }
3616
3617 return res;
3618 }
3619
3620 static bool bond_addr_in_mc_list(unsigned char *addr,
3621 struct netdev_hw_addr_list *list,
3622 int addrlen)
3623 {
3624 struct netdev_hw_addr *ha;
3625
3626 netdev_hw_addr_list_for_each(ha, list)
3627 if (!memcmp(ha->addr, addr, addrlen))
3628 return true;
3629
3630 return false;
3631 }
3632
3633 static void bond_change_rx_flags(struct net_device *bond_dev, int change)
3634 {
3635 struct bonding *bond = netdev_priv(bond_dev);
3636
3637 if (change & IFF_PROMISC)
3638 bond_set_promiscuity(bond,
3639 bond_dev->flags & IFF_PROMISC ? 1 : -1);
3640
3641 if (change & IFF_ALLMULTI)
3642 bond_set_allmulti(bond,
3643 bond_dev->flags & IFF_ALLMULTI ? 1 : -1);
3644 }
3645
3646 static void bond_set_multicast_list(struct net_device *bond_dev)
3647 {
3648 struct bonding *bond = netdev_priv(bond_dev);
3649 struct netdev_hw_addr *ha;
3650 bool found;
3651
3652 read_lock(&bond->lock);
3653
3654 /* looking for addresses to add to slaves' mc list */
3655 netdev_for_each_mc_addr(ha, bond_dev) {
3656 found = bond_addr_in_mc_list(ha->addr, &bond->mc_list,
3657 bond_dev->addr_len);
3658 if (!found)
3659 bond_mc_add(bond, ha->addr);
3660 }
3661
3662 /* looking for addresses to delete from slaves' list */
3663 netdev_hw_addr_list_for_each(ha, &bond->mc_list) {
3664 found = bond_addr_in_mc_list(ha->addr, &bond_dev->mc,
3665 bond_dev->addr_len);
3666 if (!found)
3667 bond_mc_del(bond, ha->addr);
3668 }
3669
3670 /* save master's multicast list */
3671 __hw_addr_flush(&bond->mc_list);
3672 __hw_addr_add_multiple(&bond->mc_list, &bond_dev->mc,
3673 bond_dev->addr_len, NETDEV_HW_ADDR_T_MULTICAST);
3674
3675 read_unlock(&bond->lock);
3676 }
3677
3678 static int bond_neigh_init(struct neighbour *n)
3679 {
3680 struct bonding *bond = netdev_priv(n->dev);
3681 struct slave *slave = bond->first_slave;
3682 const struct net_device_ops *slave_ops;
3683 struct neigh_parms parms;
3684 int ret;
3685
3686 if (!slave)
3687 return 0;
3688
3689 slave_ops = slave->dev->netdev_ops;
3690
3691 if (!slave_ops->ndo_neigh_setup)
3692 return 0;
3693
3694 parms.neigh_setup = NULL;
3695 parms.neigh_cleanup = NULL;
3696 ret = slave_ops->ndo_neigh_setup(slave->dev, &parms);
3697 if (ret)
3698 return ret;
3699
3700 /*
3701 * Assign slave's neigh_cleanup to neighbour in case cleanup is called
3702 * after the last slave has been detached. Assumes that all slaves
3703 * utilize the same neigh_cleanup (true at this writing as only user
3704 * is ipoib).
3705 */
3706 n->parms->neigh_cleanup = parms.neigh_cleanup;
3707
3708 if (!parms.neigh_setup)
3709 return 0;
3710
3711 return parms.neigh_setup(n);
3712 }
3713
3714 /*
3715 * The bonding ndo_neigh_setup is called at init time beofre any
3716 * slave exists. So we must declare proxy setup function which will
3717 * be used at run time to resolve the actual slave neigh param setup.
3718 */
3719 static int bond_neigh_setup(struct net_device *dev,
3720 struct neigh_parms *parms)
3721 {
3722 parms->neigh_setup = bond_neigh_init;
3723
3724 return 0;
3725 }
3726
3727 /*
3728 * Change the MTU of all of a master's slaves to match the master
3729 */
3730 static int bond_change_mtu(struct net_device *bond_dev, int new_mtu)
3731 {
3732 struct bonding *bond = netdev_priv(bond_dev);
3733 struct slave *slave, *stop_at;
3734 int res = 0;
3735 int i;
3736
3737 pr_debug("bond=%p, name=%s, new_mtu=%d\n", bond,
3738 (bond_dev ? bond_dev->name : "None"), new_mtu);
3739
3740 /* Can't hold bond->lock with bh disabled here since
3741 * some base drivers panic. On the other hand we can't
3742 * hold bond->lock without bh disabled because we'll
3743 * deadlock. The only solution is to rely on the fact
3744 * that we're under rtnl_lock here, and the slaves
3745 * list won't change. This doesn't solve the problem
3746 * of setting the slave's MTU while it is
3747 * transmitting, but the assumption is that the base
3748 * driver can handle that.
3749 *
3750 * TODO: figure out a way to safely iterate the slaves
3751 * list, but without holding a lock around the actual
3752 * call to the base driver.
3753 */
3754
3755 bond_for_each_slave(bond, slave, i) {
3756 pr_debug("s %p s->p %p c_m %p\n",
3757 slave,
3758 slave->prev,
3759 slave->dev->netdev_ops->ndo_change_mtu);
3760
3761 res = dev_set_mtu(slave->dev, new_mtu);
3762
3763 if (res) {
3764 /* If we failed to set the slave's mtu to the new value
3765 * we must abort the operation even in ACTIVE_BACKUP
3766 * mode, because if we allow the backup slaves to have
3767 * different mtu values than the active slave we'll
3768 * need to change their mtu when doing a failover. That
3769 * means changing their mtu from timer context, which
3770 * is probably not a good idea.
3771 */
3772 pr_debug("err %d %s\n", res, slave->dev->name);
3773 goto unwind;
3774 }
3775 }
3776
3777 bond_dev->mtu = new_mtu;
3778
3779 return 0;
3780
3781 unwind:
3782 /* unwind from head to the slave that failed */
3783 stop_at = slave;
3784 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3785 int tmp_res;
3786
3787 tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu);
3788 if (tmp_res) {
3789 pr_debug("unwind err %d dev %s\n",
3790 tmp_res, slave->dev->name);
3791 }
3792 }
3793
3794 return res;
3795 }
3796
3797 /*
3798 * Change HW address
3799 *
3800 * Note that many devices must be down to change the HW address, and
3801 * downing the master releases all slaves. We can make bonds full of
3802 * bonding devices to test this, however.
3803 */
3804 static int bond_set_mac_address(struct net_device *bond_dev, void *addr)
3805 {
3806 struct bonding *bond = netdev_priv(bond_dev);
3807 struct sockaddr *sa = addr, tmp_sa;
3808 struct slave *slave, *stop_at;
3809 int res = 0;
3810 int i;
3811
3812 if (bond->params.mode == BOND_MODE_ALB)
3813 return bond_alb_set_mac_address(bond_dev, addr);
3814
3815
3816 pr_debug("bond=%p, name=%s\n",
3817 bond, bond_dev ? bond_dev->name : "None");
3818
3819 /*
3820 * If fail_over_mac is set to active, do nothing and return
3821 * success. Returning an error causes ifenslave to fail.
3822 */
3823 if (bond->params.fail_over_mac == BOND_FOM_ACTIVE)
3824 return 0;
3825
3826 if (!is_valid_ether_addr(sa->sa_data))
3827 return -EADDRNOTAVAIL;
3828
3829 /* Can't hold bond->lock with bh disabled here since
3830 * some base drivers panic. On the other hand we can't
3831 * hold bond->lock without bh disabled because we'll
3832 * deadlock. The only solution is to rely on the fact
3833 * that we're under rtnl_lock here, and the slaves
3834 * list won't change. This doesn't solve the problem
3835 * of setting the slave's hw address while it is
3836 * transmitting, but the assumption is that the base
3837 * driver can handle that.
3838 *
3839 * TODO: figure out a way to safely iterate the slaves
3840 * list, but without holding a lock around the actual
3841 * call to the base driver.
3842 */
3843
3844 bond_for_each_slave(bond, slave, i) {
3845 const struct net_device_ops *slave_ops = slave->dev->netdev_ops;
3846 pr_debug("slave %p %s\n", slave, slave->dev->name);
3847
3848 if (slave_ops->ndo_set_mac_address == NULL) {
3849 res = -EOPNOTSUPP;
3850 pr_debug("EOPNOTSUPP %s\n", slave->dev->name);
3851 goto unwind;
3852 }
3853
3854 res = dev_set_mac_address(slave->dev, addr);
3855 if (res) {
3856 /* TODO: consider downing the slave
3857 * and retry ?
3858 * User should expect communications
3859 * breakage anyway until ARP finish
3860 * updating, so...
3861 */
3862 pr_debug("err %d %s\n", res, slave->dev->name);
3863 goto unwind;
3864 }
3865 }
3866
3867 /* success */
3868 memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len);
3869 return 0;
3870
3871 unwind:
3872 memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len);
3873 tmp_sa.sa_family = bond_dev->type;
3874
3875 /* unwind from head to the slave that failed */
3876 stop_at = slave;
3877 bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) {
3878 int tmp_res;
3879
3880 tmp_res = dev_set_mac_address(slave->dev, &tmp_sa);
3881 if (tmp_res) {
3882 pr_debug("unwind err %d dev %s\n",
3883 tmp_res, slave->dev->name);
3884 }
3885 }
3886
3887 return res;
3888 }
3889
3890 static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev)
3891 {
3892 struct bonding *bond = netdev_priv(bond_dev);
3893 struct slave *slave, *start_at;
3894 int i, slave_no, res = 1;
3895 struct iphdr *iph = ip_hdr(skb);
3896
3897 /*
3898 * Start with the curr_active_slave that joined the bond as the
3899 * default for sending IGMP traffic. For failover purposes one
3900 * needs to maintain some consistency for the interface that will
3901 * send the join/membership reports. The curr_active_slave found
3902 * will send all of this type of traffic.
3903 */
3904 if ((iph->protocol == IPPROTO_IGMP) &&
3905 (skb->protocol == htons(ETH_P_IP))) {
3906
3907 read_lock(&bond->curr_slave_lock);
3908 slave = bond->curr_active_slave;
3909 read_unlock(&bond->curr_slave_lock);
3910
3911 if (!slave)
3912 goto out;
3913 } else {
3914 /*
3915 * Concurrent TX may collide on rr_tx_counter; we accept
3916 * that as being rare enough not to justify using an
3917 * atomic op here.
3918 */
3919 slave_no = bond->rr_tx_counter++ % bond->slave_cnt;
3920
3921 bond_for_each_slave(bond, slave, i) {
3922 slave_no--;
3923 if (slave_no < 0)
3924 break;
3925 }
3926 }
3927
3928 start_at = slave;
3929 bond_for_each_slave_from(bond, slave, i, start_at) {
3930 if (IS_UP(slave->dev) &&
3931 (slave->link == BOND_LINK_UP) &&
3932 bond_is_active_slave(slave)) {
3933 res = bond_dev_queue_xmit(bond, skb, slave->dev);
3934 break;
3935 }
3936 }
3937
3938 out:
3939 if (res) {
3940 /* no suitable interface, frame not sent */
3941 kfree_skb(skb);
3942 }
3943
3944 return NETDEV_TX_OK;
3945 }
3946
3947
3948 /*
3949 * in active-backup mode, we know that bond->curr_active_slave is always valid if
3950 * the bond has a usable interface.
3951 */
3952 static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev)
3953 {
3954 struct bonding *bond = netdev_priv(bond_dev);
3955 int res = 1;
3956
3957 read_lock(&bond->curr_slave_lock);
3958
3959 if (bond->curr_active_slave)
3960 res = bond_dev_queue_xmit(bond, skb,
3961 bond->curr_active_slave->dev);
3962
3963 read_unlock(&bond->curr_slave_lock);
3964
3965 if (res)
3966 /* no suitable interface, frame not sent */
3967 kfree_skb(skb);
3968
3969 return NETDEV_TX_OK;
3970 }
3971
3972 /*
3973 * In bond_xmit_xor() , we determine the output device by using a pre-
3974 * determined xmit_hash_policy(), If the selected device is not enabled,
3975 * find the next active slave.
3976 */
3977 static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev)
3978 {
3979 struct bonding *bond = netdev_priv(bond_dev);
3980 struct slave *slave, *start_at;
3981 int slave_no;
3982 int i;
3983 int res = 1;
3984
3985 slave_no = bond->xmit_hash_policy(skb, bond->slave_cnt);
3986
3987 bond_for_each_slave(bond, slave, i) {
3988 slave_no--;
3989 if (slave_no < 0)
3990 break;
3991 }
3992
3993 start_at = slave;
3994
3995 bond_for_each_slave_from(bond, slave, i, start_at) {
3996 if (IS_UP(slave->dev) &&
3997 (slave->link == BOND_LINK_UP) &&
3998 bond_is_active_slave(slave)) {
3999 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4000 break;
4001 }
4002 }
4003
4004 if (res) {
4005 /* no suitable interface, frame not sent */
4006 kfree_skb(skb);
4007 }
4008
4009 return NETDEV_TX_OK;
4010 }
4011
4012 /*
4013 * in broadcast mode, we send everything to all usable interfaces.
4014 */
4015 static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev)
4016 {
4017 struct bonding *bond = netdev_priv(bond_dev);
4018 struct slave *slave, *start_at;
4019 struct net_device *tx_dev = NULL;
4020 int i;
4021 int res = 1;
4022
4023 read_lock(&bond->curr_slave_lock);
4024 start_at = bond->curr_active_slave;
4025 read_unlock(&bond->curr_slave_lock);
4026
4027 if (!start_at)
4028 goto out;
4029
4030 bond_for_each_slave_from(bond, slave, i, start_at) {
4031 if (IS_UP(slave->dev) &&
4032 (slave->link == BOND_LINK_UP) &&
4033 bond_is_active_slave(slave)) {
4034 if (tx_dev) {
4035 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
4036 if (!skb2) {
4037 pr_err("%s: Error: bond_xmit_broadcast(): skb_clone() failed\n",
4038 bond_dev->name);
4039 continue;
4040 }
4041
4042 res = bond_dev_queue_xmit(bond, skb2, tx_dev);
4043 if (res) {
4044 kfree_skb(skb2);
4045 continue;
4046 }
4047 }
4048 tx_dev = slave->dev;
4049 }
4050 }
4051
4052 if (tx_dev)
4053 res = bond_dev_queue_xmit(bond, skb, tx_dev);
4054
4055 out:
4056 if (res)
4057 /* no suitable interface, frame not sent */
4058 kfree_skb(skb);
4059
4060 /* frame sent to all suitable interfaces */
4061 return NETDEV_TX_OK;
4062 }
4063
4064 /*------------------------- Device initialization ---------------------------*/
4065
4066 static void bond_set_xmit_hash_policy(struct bonding *bond)
4067 {
4068 switch (bond->params.xmit_policy) {
4069 case BOND_XMIT_POLICY_LAYER23:
4070 bond->xmit_hash_policy = bond_xmit_hash_policy_l23;
4071 break;
4072 case BOND_XMIT_POLICY_LAYER34:
4073 bond->xmit_hash_policy = bond_xmit_hash_policy_l34;
4074 break;
4075 case BOND_XMIT_POLICY_LAYER2:
4076 default:
4077 bond->xmit_hash_policy = bond_xmit_hash_policy_l2;
4078 break;
4079 }
4080 }
4081
4082 /*
4083 * Lookup the slave that corresponds to a qid
4084 */
4085 static inline int bond_slave_override(struct bonding *bond,
4086 struct sk_buff *skb)
4087 {
4088 int i, res = 1;
4089 struct slave *slave = NULL;
4090 struct slave *check_slave;
4091
4092 if (!skb->queue_mapping)
4093 return 1;
4094
4095 /* Find out if any slaves have the same mapping as this skb. */
4096 bond_for_each_slave(bond, check_slave, i) {
4097 if (check_slave->queue_id == skb->queue_mapping) {
4098 slave = check_slave;
4099 break;
4100 }
4101 }
4102
4103 /* If the slave isn't UP, use default transmit policy. */
4104 if (slave && slave->queue_id && IS_UP(slave->dev) &&
4105 (slave->link == BOND_LINK_UP)) {
4106 res = bond_dev_queue_xmit(bond, skb, slave->dev);
4107 }
4108
4109 return res;
4110 }
4111
4112
4113 static u16 bond_select_queue(struct net_device *dev, struct sk_buff *skb)
4114 {
4115 /*
4116 * This helper function exists to help dev_pick_tx get the correct
4117 * destination queue. Using a helper function skips a call to
4118 * skb_tx_hash and will put the skbs in the queue we expect on their
4119 * way down to the bonding driver.
4120 */
4121 u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
4122
4123 /*
4124 * Save the original txq to restore before passing to the driver
4125 */
4126 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
4127
4128 if (unlikely(txq >= dev->real_num_tx_queues)) {
4129 do {
4130 txq -= dev->real_num_tx_queues;
4131 } while (txq >= dev->real_num_tx_queues);
4132 }
4133 return txq;
4134 }
4135
4136 static netdev_tx_t __bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
4137 {
4138 struct bonding *bond = netdev_priv(dev);
4139
4140 if (TX_QUEUE_OVERRIDE(bond->params.mode)) {
4141 if (!bond_slave_override(bond, skb))
4142 return NETDEV_TX_OK;
4143 }
4144
4145 switch (bond->params.mode) {
4146 case BOND_MODE_ROUNDROBIN:
4147 return bond_xmit_roundrobin(skb, dev);
4148 case BOND_MODE_ACTIVEBACKUP:
4149 return bond_xmit_activebackup(skb, dev);
4150 case BOND_MODE_XOR:
4151 return bond_xmit_xor(skb, dev);
4152 case BOND_MODE_BROADCAST:
4153 return bond_xmit_broadcast(skb, dev);
4154 case BOND_MODE_8023AD:
4155 return bond_3ad_xmit_xor(skb, dev);
4156 case BOND_MODE_ALB:
4157 case BOND_MODE_TLB:
4158 return bond_alb_xmit(skb, dev);
4159 default:
4160 /* Should never happen, mode already checked */
4161 pr_err("%s: Error: Unknown bonding mode %d\n",
4162 dev->name, bond->params.mode);
4163 WARN_ON_ONCE(1);
4164 kfree_skb(skb);
4165 return NETDEV_TX_OK;
4166 }
4167 }
4168
4169 static netdev_tx_t bond_start_xmit(struct sk_buff *skb, struct net_device *dev)
4170 {
4171 struct bonding *bond = netdev_priv(dev);
4172 netdev_tx_t ret = NETDEV_TX_OK;
4173
4174 /*
4175 * If we risk deadlock from transmitting this in the
4176 * netpoll path, tell netpoll to queue the frame for later tx
4177 */
4178 if (is_netpoll_tx_blocked(dev))
4179 return NETDEV_TX_BUSY;
4180
4181 read_lock(&bond->lock);
4182
4183 if (bond->slave_cnt)
4184 ret = __bond_start_xmit(skb, dev);
4185 else
4186 kfree_skb(skb);
4187
4188 read_unlock(&bond->lock);
4189
4190 return ret;
4191 }
4192
4193 /*
4194 * set bond mode specific net device operations
4195 */
4196 void bond_set_mode_ops(struct bonding *bond, int mode)
4197 {
4198 struct net_device *bond_dev = bond->dev;
4199
4200 switch (mode) {
4201 case BOND_MODE_ROUNDROBIN:
4202 break;
4203 case BOND_MODE_ACTIVEBACKUP:
4204 break;
4205 case BOND_MODE_XOR:
4206 bond_set_xmit_hash_policy(bond);
4207 break;
4208 case BOND_MODE_BROADCAST:
4209 break;
4210 case BOND_MODE_8023AD:
4211 bond_set_xmit_hash_policy(bond);
4212 break;
4213 case BOND_MODE_ALB:
4214 /* FALLTHRU */
4215 case BOND_MODE_TLB:
4216 break;
4217 default:
4218 /* Should never happen, mode already checked */
4219 pr_err("%s: Error: Unknown bonding mode %d\n",
4220 bond_dev->name, mode);
4221 break;
4222 }
4223 }
4224
4225 static void bond_ethtool_get_drvinfo(struct net_device *bond_dev,
4226 struct ethtool_drvinfo *drvinfo)
4227 {
4228 strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
4229 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
4230 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version), "%d",
4231 BOND_ABI_VERSION);
4232 }
4233
4234 static const struct ethtool_ops bond_ethtool_ops = {
4235 .get_drvinfo = bond_ethtool_get_drvinfo,
4236 .get_link = ethtool_op_get_link,
4237 };
4238
4239 static const struct net_device_ops bond_netdev_ops = {
4240 .ndo_init = bond_init,
4241 .ndo_uninit = bond_uninit,
4242 .ndo_open = bond_open,
4243 .ndo_stop = bond_close,
4244 .ndo_start_xmit = bond_start_xmit,
4245 .ndo_select_queue = bond_select_queue,
4246 .ndo_get_stats64 = bond_get_stats,
4247 .ndo_do_ioctl = bond_do_ioctl,
4248 .ndo_change_rx_flags = bond_change_rx_flags,
4249 .ndo_set_rx_mode = bond_set_multicast_list,
4250 .ndo_change_mtu = bond_change_mtu,
4251 .ndo_set_mac_address = bond_set_mac_address,
4252 .ndo_neigh_setup = bond_neigh_setup,
4253 .ndo_vlan_rx_add_vid = bond_vlan_rx_add_vid,
4254 .ndo_vlan_rx_kill_vid = bond_vlan_rx_kill_vid,
4255 #ifdef CONFIG_NET_POLL_CONTROLLER
4256 .ndo_netpoll_setup = bond_netpoll_setup,
4257 .ndo_netpoll_cleanup = bond_netpoll_cleanup,
4258 .ndo_poll_controller = bond_poll_controller,
4259 #endif
4260 .ndo_add_slave = bond_enslave,
4261 .ndo_del_slave = bond_release,
4262 .ndo_fix_features = bond_fix_features,
4263 };
4264
4265 static const struct device_type bond_type = {
4266 .name = "bond",
4267 };
4268
4269 static void bond_destructor(struct net_device *bond_dev)
4270 {
4271 struct bonding *bond = netdev_priv(bond_dev);
4272 if (bond->wq)
4273 destroy_workqueue(bond->wq);
4274 free_netdev(bond_dev);
4275 }
4276
4277 static void bond_setup(struct net_device *bond_dev)
4278 {
4279 struct bonding *bond = netdev_priv(bond_dev);
4280
4281 /* initialize rwlocks */
4282 rwlock_init(&bond->lock);
4283 rwlock_init(&bond->curr_slave_lock);
4284
4285 bond->params = bonding_defaults;
4286
4287 /* Initialize pointers */
4288 bond->dev = bond_dev;
4289 INIT_LIST_HEAD(&bond->vlan_list);
4290
4291 /* Initialize the device entry points */
4292 ether_setup(bond_dev);
4293 bond_dev->netdev_ops = &bond_netdev_ops;
4294 bond_dev->ethtool_ops = &bond_ethtool_ops;
4295 bond_set_mode_ops(bond, bond->params.mode);
4296
4297 bond_dev->destructor = bond_destructor;
4298
4299 SET_NETDEV_DEVTYPE(bond_dev, &bond_type);
4300
4301 /* Initialize the device options */
4302 bond_dev->tx_queue_len = 0;
4303 bond_dev->flags |= IFF_MASTER|IFF_MULTICAST;
4304 bond_dev->priv_flags |= IFF_BONDING;
4305 bond_dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING);
4306
4307 /* At first, we block adding VLANs. That's the only way to
4308 * prevent problems that occur when adding VLANs over an
4309 * empty bond. The block will be removed once non-challenged
4310 * slaves are enslaved.
4311 */
4312 bond_dev->features |= NETIF_F_VLAN_CHALLENGED;
4313
4314 /* don't acquire bond device's netif_tx_lock when
4315 * transmitting */
4316 bond_dev->features |= NETIF_F_LLTX;
4317
4318 /* By default, we declare the bond to be fully
4319 * VLAN hardware accelerated capable. Special
4320 * care is taken in the various xmit functions
4321 * when there are slaves that are not hw accel
4322 * capable
4323 */
4324
4325 bond_dev->hw_features = BOND_VLAN_FEATURES |
4326 NETIF_F_HW_VLAN_TX |
4327 NETIF_F_HW_VLAN_RX |
4328 NETIF_F_HW_VLAN_FILTER;
4329
4330 bond_dev->hw_features &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_HW_CSUM);
4331 bond_dev->features |= bond_dev->hw_features;
4332 }
4333
4334 /*
4335 * Destroy a bonding device.
4336 * Must be under rtnl_lock when this function is called.
4337 */
4338 static void bond_uninit(struct net_device *bond_dev)
4339 {
4340 struct bonding *bond = netdev_priv(bond_dev);
4341 struct vlan_entry *vlan, *tmp;
4342
4343 bond_netpoll_cleanup(bond_dev);
4344
4345 /* Release the bonded slaves */
4346 while (bond->first_slave != NULL)
4347 __bond_release_one(bond_dev, bond->first_slave->dev, true);
4348 pr_info("%s: released all slaves\n", bond_dev->name);
4349
4350 list_del(&bond->bond_list);
4351
4352 bond_debug_unregister(bond);
4353
4354 __hw_addr_flush(&bond->mc_list);
4355
4356 list_for_each_entry_safe(vlan, tmp, &bond->vlan_list, vlan_list) {
4357 list_del(&vlan->vlan_list);
4358 kfree(vlan);
4359 }
4360 }
4361
4362 /*------------------------- Module initialization ---------------------------*/
4363
4364 /*
4365 * Convert string input module parms. Accept either the
4366 * number of the mode or its string name. A bit complicated because
4367 * some mode names are substrings of other names, and calls from sysfs
4368 * may have whitespace in the name (trailing newlines, for example).
4369 */
4370 int bond_parse_parm(const char *buf, const struct bond_parm_tbl *tbl)
4371 {
4372 int modeint = -1, i, rv;
4373 char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, };
4374
4375 for (p = (char *)buf; *p; p++)
4376 if (!(isdigit(*p) || isspace(*p)))
4377 break;
4378
4379 if (*p)
4380 rv = sscanf(buf, "%20s", modestr);
4381 else
4382 rv = sscanf(buf, "%d", &modeint);
4383
4384 if (!rv)
4385 return -1;
4386
4387 for (i = 0; tbl[i].modename; i++) {
4388 if (modeint == tbl[i].mode)
4389 return tbl[i].mode;
4390 if (strcmp(modestr, tbl[i].modename) == 0)
4391 return tbl[i].mode;
4392 }
4393
4394 return -1;
4395 }
4396
4397 static int bond_check_params(struct bond_params *params)
4398 {
4399 int arp_validate_value, fail_over_mac_value, primary_reselect_value;
4400
4401 /*
4402 * Convert string parameters.
4403 */
4404 if (mode) {
4405 bond_mode = bond_parse_parm(mode, bond_mode_tbl);
4406 if (bond_mode == -1) {
4407 pr_err("Error: Invalid bonding mode \"%s\"\n",
4408 mode == NULL ? "NULL" : mode);
4409 return -EINVAL;
4410 }
4411 }
4412
4413 if (xmit_hash_policy) {
4414 if ((bond_mode != BOND_MODE_XOR) &&
4415 (bond_mode != BOND_MODE_8023AD)) {
4416 pr_info("xmit_hash_policy param is irrelevant in mode %s\n",
4417 bond_mode_name(bond_mode));
4418 } else {
4419 xmit_hashtype = bond_parse_parm(xmit_hash_policy,
4420 xmit_hashtype_tbl);
4421 if (xmit_hashtype == -1) {
4422 pr_err("Error: Invalid xmit_hash_policy \"%s\"\n",
4423 xmit_hash_policy == NULL ? "NULL" :
4424 xmit_hash_policy);
4425 return -EINVAL;
4426 }
4427 }
4428 }
4429
4430 if (lacp_rate) {
4431 if (bond_mode != BOND_MODE_8023AD) {
4432 pr_info("lacp_rate param is irrelevant in mode %s\n",
4433 bond_mode_name(bond_mode));
4434 } else {
4435 lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl);
4436 if (lacp_fast == -1) {
4437 pr_err("Error: Invalid lacp rate \"%s\"\n",
4438 lacp_rate == NULL ? "NULL" : lacp_rate);
4439 return -EINVAL;
4440 }
4441 }
4442 }
4443
4444 if (ad_select) {
4445 params->ad_select = bond_parse_parm(ad_select, ad_select_tbl);
4446 if (params->ad_select == -1) {
4447 pr_err("Error: Invalid ad_select \"%s\"\n",
4448 ad_select == NULL ? "NULL" : ad_select);
4449 return -EINVAL;
4450 }
4451
4452 if (bond_mode != BOND_MODE_8023AD) {
4453 pr_warning("ad_select param only affects 802.3ad mode\n");
4454 }
4455 } else {
4456 params->ad_select = BOND_AD_STABLE;
4457 }
4458
4459 if (max_bonds < 0) {
4460 pr_warning("Warning: max_bonds (%d) not in range %d-%d, so it was reset to BOND_DEFAULT_MAX_BONDS (%d)\n",
4461 max_bonds, 0, INT_MAX, BOND_DEFAULT_MAX_BONDS);
4462 max_bonds = BOND_DEFAULT_MAX_BONDS;
4463 }
4464
4465 if (miimon < 0) {
4466 pr_warning("Warning: miimon module parameter (%d), not in range 0-%d, so it was reset to %d\n",
4467 miimon, INT_MAX, BOND_LINK_MON_INTERV);
4468 miimon = BOND_LINK_MON_INTERV;
4469 }
4470
4471 if (updelay < 0) {
4472 pr_warning("Warning: updelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4473 updelay, INT_MAX);
4474 updelay = 0;
4475 }
4476
4477 if (downdelay < 0) {
4478 pr_warning("Warning: downdelay module parameter (%d), not in range 0-%d, so it was reset to 0\n",
4479 downdelay, INT_MAX);
4480 downdelay = 0;
4481 }
4482
4483 if ((use_carrier != 0) && (use_carrier != 1)) {
4484 pr_warning("Warning: use_carrier module parameter (%d), not of valid value (0/1), so it was set to 1\n",
4485 use_carrier);
4486 use_carrier = 1;
4487 }
4488
4489 if (num_peer_notif < 0 || num_peer_notif > 255) {
4490 pr_warning("Warning: num_grat_arp/num_unsol_na (%d) not in range 0-255 so it was reset to 1\n",
4491 num_peer_notif);
4492 num_peer_notif = 1;
4493 }
4494
4495 /* reset values for 802.3ad */
4496 if (bond_mode == BOND_MODE_8023AD) {
4497 if (!miimon) {
4498 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure, speed and duplex which are essential for 802.3ad operation\n");
4499 pr_warning("Forcing miimon to 100msec\n");
4500 miimon = 100;
4501 }
4502 }
4503
4504 if (tx_queues < 1 || tx_queues > 255) {
4505 pr_warning("Warning: tx_queues (%d) should be between "
4506 "1 and 255, resetting to %d\n",
4507 tx_queues, BOND_DEFAULT_TX_QUEUES);
4508 tx_queues = BOND_DEFAULT_TX_QUEUES;
4509 }
4510
4511 if ((all_slaves_active != 0) && (all_slaves_active != 1)) {
4512 pr_warning("Warning: all_slaves_active module parameter (%d), "
4513 "not of valid value (0/1), so it was set to "
4514 "0\n", all_slaves_active);
4515 all_slaves_active = 0;
4516 }
4517
4518 if (resend_igmp < 0 || resend_igmp > 255) {
4519 pr_warning("Warning: resend_igmp (%d) should be between "
4520 "0 and 255, resetting to %d\n",
4521 resend_igmp, BOND_DEFAULT_RESEND_IGMP);
4522 resend_igmp = BOND_DEFAULT_RESEND_IGMP;
4523 }
4524
4525 /* reset values for TLB/ALB */
4526 if ((bond_mode == BOND_MODE_TLB) ||
4527 (bond_mode == BOND_MODE_ALB)) {
4528 if (!miimon) {
4529 pr_warning("Warning: miimon must be specified, otherwise bonding will not detect link failure and link speed which are essential for TLB/ALB load balancing\n");
4530 pr_warning("Forcing miimon to 100msec\n");
4531 miimon = 100;
4532 }
4533 }
4534
4535 if (bond_mode == BOND_MODE_ALB) {
4536 pr_notice("In ALB mode you might experience client disconnections upon reconnection of a link if the bonding module updelay parameter (%d msec) is incompatible with the forwarding delay time of the switch\n",
4537 updelay);
4538 }
4539
4540 if (!miimon) {
4541 if (updelay || downdelay) {
4542 /* just warn the user the up/down delay will have
4543 * no effect since miimon is zero...
4544 */
4545 pr_warning("Warning: miimon module parameter not set and updelay (%d) or downdelay (%d) module parameter is set; updelay and downdelay have no effect unless miimon is set\n",
4546 updelay, downdelay);
4547 }
4548 } else {
4549 /* don't allow arp monitoring */
4550 if (arp_interval) {
4551 pr_warning("Warning: miimon (%d) and arp_interval (%d) can't be used simultaneously, disabling ARP monitoring\n",
4552 miimon, arp_interval);
4553 arp_interval = 0;
4554 }
4555
4556 if ((updelay % miimon) != 0) {
4557 pr_warning("Warning: updelay (%d) is not a multiple of miimon (%d), updelay rounded to %d ms\n",
4558 updelay, miimon,
4559 (updelay / miimon) * miimon);
4560 }
4561
4562 updelay /= miimon;
4563
4564 if ((downdelay % miimon) != 0) {
4565 pr_warning("Warning: downdelay (%d) is not a multiple of miimon (%d), downdelay rounded to %d ms\n",
4566 downdelay, miimon,
4567 (downdelay / miimon) * miimon);
4568 }
4569
4570 downdelay /= miimon;
4571 }
4572
4573 if (arp_interval < 0) {
4574 pr_warning("Warning: arp_interval module parameter (%d) , not in range 0-%d, so it was reset to %d\n",
4575 arp_interval, INT_MAX, BOND_LINK_ARP_INTERV);
4576 arp_interval = BOND_LINK_ARP_INTERV;
4577 }
4578
4579 for (arp_ip_count = 0;
4580 (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count];
4581 arp_ip_count++) {
4582 /* not complete check, but should be good enough to
4583 catch mistakes */
4584 __be32 ip = in_aton(arp_ip_target[arp_ip_count]);
4585 if (!isdigit(arp_ip_target[arp_ip_count][0]) ||
4586 ip == 0 || ip == htonl(INADDR_BROADCAST)) {
4587 pr_warning("Warning: bad arp_ip_target module parameter (%s), ARP monitoring will not be performed\n",
4588 arp_ip_target[arp_ip_count]);
4589 arp_interval = 0;
4590 } else {
4591 arp_target[arp_ip_count] = ip;
4592 }
4593 }
4594
4595 if (arp_interval && !arp_ip_count) {
4596 /* don't allow arping if no arp_ip_target given... */
4597 pr_warning("Warning: arp_interval module parameter (%d) specified without providing an arp_ip_target parameter, arp_interval was reset to 0\n",
4598 arp_interval);
4599 arp_interval = 0;
4600 }
4601
4602 if (arp_validate) {
4603 if (bond_mode != BOND_MODE_ACTIVEBACKUP) {
4604 pr_err("arp_validate only supported in active-backup mode\n");
4605 return -EINVAL;
4606 }
4607 if (!arp_interval) {
4608 pr_err("arp_validate requires arp_interval\n");
4609 return -EINVAL;
4610 }
4611
4612 arp_validate_value = bond_parse_parm(arp_validate,
4613 arp_validate_tbl);
4614 if (arp_validate_value == -1) {
4615 pr_err("Error: invalid arp_validate \"%s\"\n",
4616 arp_validate == NULL ? "NULL" : arp_validate);
4617 return -EINVAL;
4618 }
4619 } else
4620 arp_validate_value = 0;
4621
4622 if (miimon) {
4623 pr_info("MII link monitoring set to %d ms\n", miimon);
4624 } else if (arp_interval) {
4625 int i;
4626
4627 pr_info("ARP monitoring set to %d ms, validate %s, with %d target(s):",
4628 arp_interval,
4629 arp_validate_tbl[arp_validate_value].modename,
4630 arp_ip_count);
4631
4632 for (i = 0; i < arp_ip_count; i++)
4633 pr_info(" %s", arp_ip_target[i]);
4634
4635 pr_info("\n");
4636
4637 } else if (max_bonds) {
4638 /* miimon and arp_interval not set, we need one so things
4639 * work as expected, see bonding.txt for details
4640 */
4641 pr_debug("Warning: either miimon or arp_interval and arp_ip_target module parameters must be specified, otherwise bonding will not detect link failures! see bonding.txt for details.\n");
4642 }
4643
4644 if (primary && !USES_PRIMARY(bond_mode)) {
4645 /* currently, using a primary only makes sense
4646 * in active backup, TLB or ALB modes
4647 */
4648 pr_warning("Warning: %s primary device specified but has no effect in %s mode\n",
4649 primary, bond_mode_name(bond_mode));
4650 primary = NULL;
4651 }
4652
4653 if (primary && primary_reselect) {
4654 primary_reselect_value = bond_parse_parm(primary_reselect,
4655 pri_reselect_tbl);
4656 if (primary_reselect_value == -1) {
4657 pr_err("Error: Invalid primary_reselect \"%s\"\n",
4658 primary_reselect ==
4659 NULL ? "NULL" : primary_reselect);
4660 return -EINVAL;
4661 }
4662 } else {
4663 primary_reselect_value = BOND_PRI_RESELECT_ALWAYS;
4664 }
4665
4666 if (fail_over_mac) {
4667 fail_over_mac_value = bond_parse_parm(fail_over_mac,
4668 fail_over_mac_tbl);
4669 if (fail_over_mac_value == -1) {
4670 pr_err("Error: invalid fail_over_mac \"%s\"\n",
4671 arp_validate == NULL ? "NULL" : arp_validate);
4672 return -EINVAL;
4673 }
4674
4675 if (bond_mode != BOND_MODE_ACTIVEBACKUP)
4676 pr_warning("Warning: fail_over_mac only affects active-backup mode.\n");
4677 } else {
4678 fail_over_mac_value = BOND_FOM_NONE;
4679 }
4680
4681 /* fill params struct with the proper values */
4682 params->mode = bond_mode;
4683 params->xmit_policy = xmit_hashtype;
4684 params->miimon = miimon;
4685 params->num_peer_notif = num_peer_notif;
4686 params->arp_interval = arp_interval;
4687 params->arp_validate = arp_validate_value;
4688 params->updelay = updelay;
4689 params->downdelay = downdelay;
4690 params->use_carrier = use_carrier;
4691 params->lacp_fast = lacp_fast;
4692 params->primary[0] = 0;
4693 params->primary_reselect = primary_reselect_value;
4694 params->fail_over_mac = fail_over_mac_value;
4695 params->tx_queues = tx_queues;
4696 params->all_slaves_active = all_slaves_active;
4697 params->resend_igmp = resend_igmp;
4698 params->min_links = min_links;
4699
4700 if (primary) {
4701 strncpy(params->primary, primary, IFNAMSIZ);
4702 params->primary[IFNAMSIZ - 1] = 0;
4703 }
4704
4705 memcpy(params->arp_targets, arp_target, sizeof(arp_target));
4706
4707 return 0;
4708 }
4709
4710 static struct lock_class_key bonding_netdev_xmit_lock_key;
4711 static struct lock_class_key bonding_netdev_addr_lock_key;
4712 static struct lock_class_key bonding_tx_busylock_key;
4713
4714 static void bond_set_lockdep_class_one(struct net_device *dev,
4715 struct netdev_queue *txq,
4716 void *_unused)
4717 {
4718 lockdep_set_class(&txq->_xmit_lock,
4719 &bonding_netdev_xmit_lock_key);
4720 }
4721
4722 static void bond_set_lockdep_class(struct net_device *dev)
4723 {
4724 lockdep_set_class(&dev->addr_list_lock,
4725 &bonding_netdev_addr_lock_key);
4726 netdev_for_each_tx_queue(dev, bond_set_lockdep_class_one, NULL);
4727 dev->qdisc_tx_busylock = &bonding_tx_busylock_key;
4728 }
4729
4730 /*
4731 * Called from registration process
4732 */
4733 static int bond_init(struct net_device *bond_dev)
4734 {
4735 struct bonding *bond = netdev_priv(bond_dev);
4736 struct bond_net *bn = net_generic(dev_net(bond_dev), bond_net_id);
4737 struct alb_bond_info *bond_info = &(BOND_ALB_INFO(bond));
4738
4739 pr_debug("Begin bond_init for %s\n", bond_dev->name);
4740
4741 /*
4742 * Initialize locks that may be required during
4743 * en/deslave operations. All of the bond_open work
4744 * (of which this is part) should really be moved to
4745 * a phase prior to dev_open
4746 */
4747 spin_lock_init(&(bond_info->tx_hashtbl_lock));
4748 spin_lock_init(&(bond_info->rx_hashtbl_lock));
4749
4750 bond->wq = create_singlethread_workqueue(bond_dev->name);
4751 if (!bond->wq)
4752 return -ENOMEM;
4753
4754 bond_set_lockdep_class(bond_dev);
4755
4756 list_add_tail(&bond->bond_list, &bn->dev_list);
4757
4758 bond_prepare_sysfs_group(bond);
4759
4760 bond_debug_register(bond);
4761
4762 /* Ensure valid dev_addr */
4763 if (is_zero_ether_addr(bond_dev->dev_addr) &&
4764 bond_dev->addr_assign_type == NET_ADDR_PERM) {
4765 eth_hw_addr_random(bond_dev);
4766 bond->dev_addr_from_first = true;
4767 }
4768
4769 __hw_addr_init(&bond->mc_list);
4770 return 0;
4771 }
4772
4773 static int bond_validate(struct nlattr *tb[], struct nlattr *data[])
4774 {
4775 if (tb[IFLA_ADDRESS]) {
4776 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
4777 return -EINVAL;
4778 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
4779 return -EADDRNOTAVAIL;
4780 }
4781 return 0;
4782 }
4783
4784 static unsigned int bond_get_num_tx_queues(void)
4785 {
4786 return tx_queues;
4787 }
4788
4789 static struct rtnl_link_ops bond_link_ops __read_mostly = {
4790 .kind = "bond",
4791 .priv_size = sizeof(struct bonding),
4792 .setup = bond_setup,
4793 .validate = bond_validate,
4794 .get_num_tx_queues = bond_get_num_tx_queues,
4795 .get_num_rx_queues = bond_get_num_tx_queues, /* Use the same number
4796 as for TX queues */
4797 };
4798
4799 /* Create a new bond based on the specified name and bonding parameters.
4800 * If name is NULL, obtain a suitable "bond%d" name for us.
4801 * Caller must NOT hold rtnl_lock; we need to release it here before we
4802 * set up our sysfs entries.
4803 */
4804 int bond_create(struct net *net, const char *name)
4805 {
4806 struct net_device *bond_dev;
4807 int res;
4808
4809 rtnl_lock();
4810
4811 bond_dev = alloc_netdev_mq(sizeof(struct bonding),
4812 name ? name : "bond%d",
4813 bond_setup, tx_queues);
4814 if (!bond_dev) {
4815 pr_err("%s: eek! can't alloc netdev!\n", name);
4816 rtnl_unlock();
4817 return -ENOMEM;
4818 }
4819
4820 dev_net_set(bond_dev, net);
4821 bond_dev->rtnl_link_ops = &bond_link_ops;
4822
4823 res = register_netdevice(bond_dev);
4824
4825 netif_carrier_off(bond_dev);
4826
4827 rtnl_unlock();
4828 if (res < 0)
4829 bond_destructor(bond_dev);
4830 return res;
4831 }
4832
4833 static int __net_init bond_net_init(struct net *net)
4834 {
4835 struct bond_net *bn = net_generic(net, bond_net_id);
4836
4837 bn->net = net;
4838 INIT_LIST_HEAD(&bn->dev_list);
4839
4840 bond_create_proc_dir(bn);
4841 bond_create_sysfs(bn);
4842
4843 return 0;
4844 }
4845
4846 static void __net_exit bond_net_exit(struct net *net)
4847 {
4848 struct bond_net *bn = net_generic(net, bond_net_id);
4849
4850 bond_destroy_sysfs(bn);
4851 bond_destroy_proc_dir(bn);
4852 }
4853
4854 static struct pernet_operations bond_net_ops = {
4855 .init = bond_net_init,
4856 .exit = bond_net_exit,
4857 .id = &bond_net_id,
4858 .size = sizeof(struct bond_net),
4859 };
4860
4861 static int __init bonding_init(void)
4862 {
4863 int i;
4864 int res;
4865
4866 pr_info("%s", bond_version);
4867
4868 res = bond_check_params(&bonding_defaults);
4869 if (res)
4870 goto out;
4871
4872 res = register_pernet_subsys(&bond_net_ops);
4873 if (res)
4874 goto out;
4875
4876 res = rtnl_link_register(&bond_link_ops);
4877 if (res)
4878 goto err_link;
4879
4880 bond_create_debugfs();
4881
4882 for (i = 0; i < max_bonds; i++) {
4883 res = bond_create(&init_net, NULL);
4884 if (res)
4885 goto err;
4886 }
4887
4888 register_netdevice_notifier(&bond_netdev_notifier);
4889 out:
4890 return res;
4891 err:
4892 rtnl_link_unregister(&bond_link_ops);
4893 err_link:
4894 unregister_pernet_subsys(&bond_net_ops);
4895 goto out;
4896
4897 }
4898
4899 static void __exit bonding_exit(void)
4900 {
4901 unregister_netdevice_notifier(&bond_netdev_notifier);
4902
4903 bond_destroy_debugfs();
4904
4905 rtnl_link_unregister(&bond_link_ops);
4906 unregister_pernet_subsys(&bond_net_ops);
4907
4908 #ifdef CONFIG_NET_POLL_CONTROLLER
4909 /*
4910 * Make sure we don't have an imbalance on our netpoll blocking
4911 */
4912 WARN_ON(atomic_read(&netpoll_block_tx));
4913 #endif
4914 }
4915
4916 module_init(bonding_init);
4917 module_exit(bonding_exit);
4918 MODULE_LICENSE("GPL");
4919 MODULE_VERSION(DRV_VERSION);
4920 MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION);
4921 MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others");
4922 MODULE_ALIAS_RTNL_LINK("bond");
This page took 0.192506 seconds and 5 git commands to generate.