ARM: dts: Explicitly set dr_mode on exynos5250-snow
[deliverable/linux.git] / drivers / net / can / dev.c
1 /*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/skb.h>
27 #include <linux/can/netlink.h>
28 #include <linux/can/led.h>
29 #include <net/rtnetlink.h>
30
31 #define MOD_DESC "CAN device driver interface"
32
33 MODULE_DESCRIPTION(MOD_DESC);
34 MODULE_LICENSE("GPL v2");
35 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37 /* CAN DLC to real data length conversion helpers */
38
39 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40 8, 12, 16, 20, 24, 32, 48, 64};
41
42 /* get data length from can_dlc with sanitized can_dlc */
43 u8 can_dlc2len(u8 can_dlc)
44 {
45 return dlc2len[can_dlc & 0x0F];
46 }
47 EXPORT_SYMBOL_GPL(can_dlc2len);
48
49 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
50 9, 9, 9, 9, /* 9 - 12 */
51 10, 10, 10, 10, /* 13 - 16 */
52 11, 11, 11, 11, /* 17 - 20 */
53 12, 12, 12, 12, /* 21 - 24 */
54 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
55 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
56 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
57 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
58 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
59
60 /* map the sanitized data length to an appropriate data length code */
61 u8 can_len2dlc(u8 len)
62 {
63 if (unlikely(len > 64))
64 return 0xF;
65
66 return len2dlc[len];
67 }
68 EXPORT_SYMBOL_GPL(can_len2dlc);
69
70 #ifdef CONFIG_CAN_CALC_BITTIMING
71 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73 /*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005 Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86 static int can_update_spt(const struct can_bittiming_const *btc,
87 int sampl_pt, int tseg, int *tseg1, int *tseg2)
88 {
89 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90 if (*tseg2 < btc->tseg2_min)
91 *tseg2 = btc->tseg2_min;
92 if (*tseg2 > btc->tseg2_max)
93 *tseg2 = btc->tseg2_max;
94 *tseg1 = tseg - *tseg2;
95 if (*tseg1 > btc->tseg1_max) {
96 *tseg1 = btc->tseg1_max;
97 *tseg2 = tseg - *tseg1;
98 }
99 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100 }
101
102 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103 const struct can_bittiming_const *btc)
104 {
105 struct can_priv *priv = netdev_priv(dev);
106 long best_error = 1000000000, error = 0;
107 int best_tseg = 0, best_brp = 0, brp = 0;
108 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
109 int spt_error = 1000, spt = 0, sampl_pt;
110 long rate;
111 u64 v64;
112
113 /* Use CIA recommended sample points */
114 if (bt->sample_point) {
115 sampl_pt = bt->sample_point;
116 } else {
117 if (bt->bitrate > 800000)
118 sampl_pt = 750;
119 else if (bt->bitrate > 500000)
120 sampl_pt = 800;
121 else
122 sampl_pt = 875;
123 }
124
125 /* tseg even = round down, odd = round up */
126 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128 tsegall = 1 + tseg / 2;
129 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131 /* chose brp step which is possible in system */
132 brp = (brp / btc->brp_inc) * btc->brp_inc;
133 if ((brp < btc->brp_min) || (brp > btc->brp_max))
134 continue;
135 rate = priv->clock.freq / (brp * tsegall);
136 error = bt->bitrate - rate;
137 /* tseg brp biterror */
138 if (error < 0)
139 error = -error;
140 if (error > best_error)
141 continue;
142 best_error = error;
143 if (error == 0) {
144 spt = can_update_spt(btc, sampl_pt, tseg / 2,
145 &tseg1, &tseg2);
146 error = sampl_pt - spt;
147 if (error < 0)
148 error = -error;
149 if (error > spt_error)
150 continue;
151 spt_error = error;
152 }
153 best_tseg = tseg / 2;
154 best_brp = brp;
155 if (error == 0)
156 break;
157 }
158
159 if (best_error) {
160 /* Error in one-tenth of a percent */
161 error = (best_error * 1000) / bt->bitrate;
162 if (error > CAN_CALC_MAX_ERROR) {
163 netdev_err(dev,
164 "bitrate error %ld.%ld%% too high\n",
165 error / 10, error % 10);
166 return -EDOM;
167 } else {
168 netdev_warn(dev, "bitrate error %ld.%ld%%\n",
169 error / 10, error % 10);
170 }
171 }
172
173 /* real sample point */
174 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
175 &tseg1, &tseg2);
176
177 v64 = (u64)best_brp * 1000000000UL;
178 do_div(v64, priv->clock.freq);
179 bt->tq = (u32)v64;
180 bt->prop_seg = tseg1 / 2;
181 bt->phase_seg1 = tseg1 - bt->prop_seg;
182 bt->phase_seg2 = tseg2;
183
184 /* check for sjw user settings */
185 if (!bt->sjw || !btc->sjw_max)
186 bt->sjw = 1;
187 else {
188 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
189 if (bt->sjw > btc->sjw_max)
190 bt->sjw = btc->sjw_max;
191 /* bt->sjw must not be higher than tseg2 */
192 if (tseg2 < bt->sjw)
193 bt->sjw = tseg2;
194 }
195
196 bt->brp = best_brp;
197 /* real bit-rate */
198 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
199
200 return 0;
201 }
202 #else /* !CONFIG_CAN_CALC_BITTIMING */
203 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
204 const struct can_bittiming_const *btc)
205 {
206 netdev_err(dev, "bit-timing calculation not available\n");
207 return -EINVAL;
208 }
209 #endif /* CONFIG_CAN_CALC_BITTIMING */
210
211 /*
212 * Checks the validity of the specified bit-timing parameters prop_seg,
213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
214 * prescaler value brp. You can find more information in the header
215 * file linux/can/netlink.h.
216 */
217 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
218 const struct can_bittiming_const *btc)
219 {
220 struct can_priv *priv = netdev_priv(dev);
221 int tseg1, alltseg;
222 u64 brp64;
223
224 tseg1 = bt->prop_seg + bt->phase_seg1;
225 if (!bt->sjw)
226 bt->sjw = 1;
227 if (bt->sjw > btc->sjw_max ||
228 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
229 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
230 return -ERANGE;
231
232 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
233 if (btc->brp_inc > 1)
234 do_div(brp64, btc->brp_inc);
235 brp64 += 500000000UL - 1;
236 do_div(brp64, 1000000000UL); /* the practicable BRP */
237 if (btc->brp_inc > 1)
238 brp64 *= btc->brp_inc;
239 bt->brp = (u32)brp64;
240
241 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
242 return -EINVAL;
243
244 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
245 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
246 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
247
248 return 0;
249 }
250
251 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
252 const struct can_bittiming_const *btc)
253 {
254 int err;
255
256 /* Check if the CAN device has bit-timing parameters */
257 if (!btc)
258 return -EOPNOTSUPP;
259
260 /*
261 * Depending on the given can_bittiming parameter structure the CAN
262 * timing parameters are calculated based on the provided bitrate OR
263 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
264 * provided directly which are then checked and fixed up.
265 */
266 if (!bt->tq && bt->bitrate)
267 err = can_calc_bittiming(dev, bt, btc);
268 else if (bt->tq && !bt->bitrate)
269 err = can_fixup_bittiming(dev, bt, btc);
270 else
271 err = -EINVAL;
272
273 return err;
274 }
275
276 /*
277 * Local echo of CAN messages
278 *
279 * CAN network devices *should* support a local echo functionality
280 * (see Documentation/networking/can.txt). To test the handling of CAN
281 * interfaces that do not support the local echo both driver types are
282 * implemented. In the case that the driver does not support the echo
283 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
284 * to perform the echo as a fallback solution.
285 */
286 static void can_flush_echo_skb(struct net_device *dev)
287 {
288 struct can_priv *priv = netdev_priv(dev);
289 struct net_device_stats *stats = &dev->stats;
290 int i;
291
292 for (i = 0; i < priv->echo_skb_max; i++) {
293 if (priv->echo_skb[i]) {
294 kfree_skb(priv->echo_skb[i]);
295 priv->echo_skb[i] = NULL;
296 stats->tx_dropped++;
297 stats->tx_aborted_errors++;
298 }
299 }
300 }
301
302 /*
303 * Put the skb on the stack to be looped backed locally lateron
304 *
305 * The function is typically called in the start_xmit function
306 * of the device driver. The driver must protect access to
307 * priv->echo_skb, if necessary.
308 */
309 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
310 unsigned int idx)
311 {
312 struct can_priv *priv = netdev_priv(dev);
313
314 BUG_ON(idx >= priv->echo_skb_max);
315
316 /* check flag whether this packet has to be looped back */
317 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
318 (skb->protocol != htons(ETH_P_CAN) &&
319 skb->protocol != htons(ETH_P_CANFD))) {
320 kfree_skb(skb);
321 return;
322 }
323
324 if (!priv->echo_skb[idx]) {
325
326 skb = can_create_echo_skb(skb);
327 if (!skb)
328 return;
329
330 /* make settings for echo to reduce code in irq context */
331 skb->pkt_type = PACKET_BROADCAST;
332 skb->ip_summed = CHECKSUM_UNNECESSARY;
333 skb->dev = dev;
334
335 /* save this skb for tx interrupt echo handling */
336 priv->echo_skb[idx] = skb;
337 } else {
338 /* locking problem with netif_stop_queue() ?? */
339 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
340 kfree_skb(skb);
341 }
342 }
343 EXPORT_SYMBOL_GPL(can_put_echo_skb);
344
345 /*
346 * Get the skb from the stack and loop it back locally
347 *
348 * The function is typically called when the TX done interrupt
349 * is handled in the device driver. The driver must protect
350 * access to priv->echo_skb, if necessary.
351 */
352 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
353 {
354 struct can_priv *priv = netdev_priv(dev);
355
356 BUG_ON(idx >= priv->echo_skb_max);
357
358 if (priv->echo_skb[idx]) {
359 struct sk_buff *skb = priv->echo_skb[idx];
360 struct can_frame *cf = (struct can_frame *)skb->data;
361 u8 dlc = cf->can_dlc;
362
363 netif_rx(priv->echo_skb[idx]);
364 priv->echo_skb[idx] = NULL;
365
366 return dlc;
367 }
368
369 return 0;
370 }
371 EXPORT_SYMBOL_GPL(can_get_echo_skb);
372
373 /*
374 * Remove the skb from the stack and free it.
375 *
376 * The function is typically called when TX failed.
377 */
378 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
379 {
380 struct can_priv *priv = netdev_priv(dev);
381
382 BUG_ON(idx >= priv->echo_skb_max);
383
384 if (priv->echo_skb[idx]) {
385 kfree_skb(priv->echo_skb[idx]);
386 priv->echo_skb[idx] = NULL;
387 }
388 }
389 EXPORT_SYMBOL_GPL(can_free_echo_skb);
390
391 /*
392 * CAN device restart for bus-off recovery
393 */
394 static void can_restart(unsigned long data)
395 {
396 struct net_device *dev = (struct net_device *)data;
397 struct can_priv *priv = netdev_priv(dev);
398 struct net_device_stats *stats = &dev->stats;
399 struct sk_buff *skb;
400 struct can_frame *cf;
401 int err;
402
403 BUG_ON(netif_carrier_ok(dev));
404
405 /*
406 * No synchronization needed because the device is bus-off and
407 * no messages can come in or go out.
408 */
409 can_flush_echo_skb(dev);
410
411 /* send restart message upstream */
412 skb = alloc_can_err_skb(dev, &cf);
413 if (skb == NULL) {
414 err = -ENOMEM;
415 goto restart;
416 }
417 cf->can_id |= CAN_ERR_RESTARTED;
418
419 netif_rx(skb);
420
421 stats->rx_packets++;
422 stats->rx_bytes += cf->can_dlc;
423
424 restart:
425 netdev_dbg(dev, "restarted\n");
426 priv->can_stats.restarts++;
427
428 /* Now restart the device */
429 err = priv->do_set_mode(dev, CAN_MODE_START);
430
431 netif_carrier_on(dev);
432 if (err)
433 netdev_err(dev, "Error %d during restart", err);
434 }
435
436 int can_restart_now(struct net_device *dev)
437 {
438 struct can_priv *priv = netdev_priv(dev);
439
440 /*
441 * A manual restart is only permitted if automatic restart is
442 * disabled and the device is in the bus-off state
443 */
444 if (priv->restart_ms)
445 return -EINVAL;
446 if (priv->state != CAN_STATE_BUS_OFF)
447 return -EBUSY;
448
449 /* Runs as soon as possible in the timer context */
450 mod_timer(&priv->restart_timer, jiffies);
451
452 return 0;
453 }
454
455 /*
456 * CAN bus-off
457 *
458 * This functions should be called when the device goes bus-off to
459 * tell the netif layer that no more packets can be sent or received.
460 * If enabled, a timer is started to trigger bus-off recovery.
461 */
462 void can_bus_off(struct net_device *dev)
463 {
464 struct can_priv *priv = netdev_priv(dev);
465
466 netdev_dbg(dev, "bus-off\n");
467
468 netif_carrier_off(dev);
469 priv->can_stats.bus_off++;
470
471 if (priv->restart_ms)
472 mod_timer(&priv->restart_timer,
473 jiffies + (priv->restart_ms * HZ) / 1000);
474 }
475 EXPORT_SYMBOL_GPL(can_bus_off);
476
477 static void can_setup(struct net_device *dev)
478 {
479 dev->type = ARPHRD_CAN;
480 dev->mtu = CAN_MTU;
481 dev->hard_header_len = 0;
482 dev->addr_len = 0;
483 dev->tx_queue_len = 10;
484
485 /* New-style flags. */
486 dev->flags = IFF_NOARP;
487 dev->features = NETIF_F_HW_CSUM;
488 }
489
490 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
491 {
492 struct sk_buff *skb;
493
494 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
495 sizeof(struct can_frame));
496 if (unlikely(!skb))
497 return NULL;
498
499 skb->protocol = htons(ETH_P_CAN);
500 skb->pkt_type = PACKET_BROADCAST;
501 skb->ip_summed = CHECKSUM_UNNECESSARY;
502
503 can_skb_reserve(skb);
504 can_skb_prv(skb)->ifindex = dev->ifindex;
505
506 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
507 memset(*cf, 0, sizeof(struct can_frame));
508
509 return skb;
510 }
511 EXPORT_SYMBOL_GPL(alloc_can_skb);
512
513 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
514 struct canfd_frame **cfd)
515 {
516 struct sk_buff *skb;
517
518 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
519 sizeof(struct canfd_frame));
520 if (unlikely(!skb))
521 return NULL;
522
523 skb->protocol = htons(ETH_P_CANFD);
524 skb->pkt_type = PACKET_BROADCAST;
525 skb->ip_summed = CHECKSUM_UNNECESSARY;
526
527 can_skb_reserve(skb);
528 can_skb_prv(skb)->ifindex = dev->ifindex;
529
530 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
531 memset(*cfd, 0, sizeof(struct canfd_frame));
532
533 return skb;
534 }
535 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
536
537 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
538 {
539 struct sk_buff *skb;
540
541 skb = alloc_can_skb(dev, cf);
542 if (unlikely(!skb))
543 return NULL;
544
545 (*cf)->can_id = CAN_ERR_FLAG;
546 (*cf)->can_dlc = CAN_ERR_DLC;
547
548 return skb;
549 }
550 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
551
552 /*
553 * Allocate and setup space for the CAN network device
554 */
555 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
556 {
557 struct net_device *dev;
558 struct can_priv *priv;
559 int size;
560
561 if (echo_skb_max)
562 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
563 echo_skb_max * sizeof(struct sk_buff *);
564 else
565 size = sizeof_priv;
566
567 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
568 if (!dev)
569 return NULL;
570
571 priv = netdev_priv(dev);
572
573 if (echo_skb_max) {
574 priv->echo_skb_max = echo_skb_max;
575 priv->echo_skb = (void *)priv +
576 ALIGN(sizeof_priv, sizeof(struct sk_buff *));
577 }
578
579 priv->state = CAN_STATE_STOPPED;
580
581 init_timer(&priv->restart_timer);
582
583 return dev;
584 }
585 EXPORT_SYMBOL_GPL(alloc_candev);
586
587 /*
588 * Free space of the CAN network device
589 */
590 void free_candev(struct net_device *dev)
591 {
592 free_netdev(dev);
593 }
594 EXPORT_SYMBOL_GPL(free_candev);
595
596 /*
597 * changing MTU and control mode for CAN/CANFD devices
598 */
599 int can_change_mtu(struct net_device *dev, int new_mtu)
600 {
601 struct can_priv *priv = netdev_priv(dev);
602
603 /* Do not allow changing the MTU while running */
604 if (dev->flags & IFF_UP)
605 return -EBUSY;
606
607 /* allow change of MTU according to the CANFD ability of the device */
608 switch (new_mtu) {
609 case CAN_MTU:
610 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
611 break;
612
613 case CANFD_MTU:
614 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
615 return -EINVAL;
616
617 priv->ctrlmode |= CAN_CTRLMODE_FD;
618 break;
619
620 default:
621 return -EINVAL;
622 }
623
624 dev->mtu = new_mtu;
625 return 0;
626 }
627 EXPORT_SYMBOL_GPL(can_change_mtu);
628
629 /*
630 * Common open function when the device gets opened.
631 *
632 * This function should be called in the open function of the device
633 * driver.
634 */
635 int open_candev(struct net_device *dev)
636 {
637 struct can_priv *priv = netdev_priv(dev);
638
639 if (!priv->bittiming.bitrate) {
640 netdev_err(dev, "bit-timing not yet defined\n");
641 return -EINVAL;
642 }
643
644 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
645 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
646 (!priv->data_bittiming.bitrate ||
647 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
648 netdev_err(dev, "incorrect/missing data bit-timing\n");
649 return -EINVAL;
650 }
651
652 /* Switch carrier on if device was stopped while in bus-off state */
653 if (!netif_carrier_ok(dev))
654 netif_carrier_on(dev);
655
656 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
657
658 return 0;
659 }
660 EXPORT_SYMBOL_GPL(open_candev);
661
662 /*
663 * Common close function for cleanup before the device gets closed.
664 *
665 * This function should be called in the close function of the device
666 * driver.
667 */
668 void close_candev(struct net_device *dev)
669 {
670 struct can_priv *priv = netdev_priv(dev);
671
672 del_timer_sync(&priv->restart_timer);
673 can_flush_echo_skb(dev);
674 }
675 EXPORT_SYMBOL_GPL(close_candev);
676
677 /*
678 * CAN netlink interface
679 */
680 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
681 [IFLA_CAN_STATE] = { .type = NLA_U32 },
682 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
683 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
684 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
685 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
686 [IFLA_CAN_BITTIMING_CONST]
687 = { .len = sizeof(struct can_bittiming_const) },
688 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
689 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
690 [IFLA_CAN_DATA_BITTIMING]
691 = { .len = sizeof(struct can_bittiming) },
692 [IFLA_CAN_DATA_BITTIMING_CONST]
693 = { .len = sizeof(struct can_bittiming_const) },
694 };
695
696 static int can_changelink(struct net_device *dev,
697 struct nlattr *tb[], struct nlattr *data[])
698 {
699 struct can_priv *priv = netdev_priv(dev);
700 int err;
701
702 /* We need synchronization with dev->stop() */
703 ASSERT_RTNL();
704
705 if (data[IFLA_CAN_BITTIMING]) {
706 struct can_bittiming bt;
707
708 /* Do not allow changing bittiming while running */
709 if (dev->flags & IFF_UP)
710 return -EBUSY;
711 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
712 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
713 if (err)
714 return err;
715 memcpy(&priv->bittiming, &bt, sizeof(bt));
716
717 if (priv->do_set_bittiming) {
718 /* Finally, set the bit-timing registers */
719 err = priv->do_set_bittiming(dev);
720 if (err)
721 return err;
722 }
723 }
724
725 if (data[IFLA_CAN_CTRLMODE]) {
726 struct can_ctrlmode *cm;
727
728 /* Do not allow changing controller mode while running */
729 if (dev->flags & IFF_UP)
730 return -EBUSY;
731 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
732 if (cm->flags & ~priv->ctrlmode_supported)
733 return -EOPNOTSUPP;
734 priv->ctrlmode &= ~cm->mask;
735 priv->ctrlmode |= cm->flags;
736
737 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
738 if (priv->ctrlmode & CAN_CTRLMODE_FD)
739 dev->mtu = CANFD_MTU;
740 else
741 dev->mtu = CAN_MTU;
742 }
743
744 if (data[IFLA_CAN_RESTART_MS]) {
745 /* Do not allow changing restart delay while running */
746 if (dev->flags & IFF_UP)
747 return -EBUSY;
748 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
749 }
750
751 if (data[IFLA_CAN_RESTART]) {
752 /* Do not allow a restart while not running */
753 if (!(dev->flags & IFF_UP))
754 return -EINVAL;
755 err = can_restart_now(dev);
756 if (err)
757 return err;
758 }
759
760 if (data[IFLA_CAN_DATA_BITTIMING]) {
761 struct can_bittiming dbt;
762
763 /* Do not allow changing bittiming while running */
764 if (dev->flags & IFF_UP)
765 return -EBUSY;
766 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
767 sizeof(dbt));
768 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
769 if (err)
770 return err;
771 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
772
773 if (priv->do_set_data_bittiming) {
774 /* Finally, set the bit-timing registers */
775 err = priv->do_set_data_bittiming(dev);
776 if (err)
777 return err;
778 }
779 }
780
781 return 0;
782 }
783
784 static size_t can_get_size(const struct net_device *dev)
785 {
786 struct can_priv *priv = netdev_priv(dev);
787 size_t size = 0;
788
789 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
790 size += nla_total_size(sizeof(struct can_bittiming));
791 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
792 size += nla_total_size(sizeof(struct can_bittiming_const));
793 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
794 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
795 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
796 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
797 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
798 size += nla_total_size(sizeof(struct can_berr_counter));
799 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
800 size += nla_total_size(sizeof(struct can_bittiming));
801 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
802 size += nla_total_size(sizeof(struct can_bittiming_const));
803
804 return size;
805 }
806
807 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
808 {
809 struct can_priv *priv = netdev_priv(dev);
810 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
811 struct can_berr_counter bec;
812 enum can_state state = priv->state;
813
814 if (priv->do_get_state)
815 priv->do_get_state(dev, &state);
816
817 if ((priv->bittiming.bitrate &&
818 nla_put(skb, IFLA_CAN_BITTIMING,
819 sizeof(priv->bittiming), &priv->bittiming)) ||
820
821 (priv->bittiming_const &&
822 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
823 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
824
825 nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
826 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
827 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
828 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
829
830 (priv->do_get_berr_counter &&
831 !priv->do_get_berr_counter(dev, &bec) &&
832 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
833
834 (priv->data_bittiming.bitrate &&
835 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
836 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
837
838 (priv->data_bittiming_const &&
839 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
840 sizeof(*priv->data_bittiming_const),
841 priv->data_bittiming_const)))
842 return -EMSGSIZE;
843
844 return 0;
845 }
846
847 static size_t can_get_xstats_size(const struct net_device *dev)
848 {
849 return sizeof(struct can_device_stats);
850 }
851
852 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
853 {
854 struct can_priv *priv = netdev_priv(dev);
855
856 if (nla_put(skb, IFLA_INFO_XSTATS,
857 sizeof(priv->can_stats), &priv->can_stats))
858 goto nla_put_failure;
859 return 0;
860
861 nla_put_failure:
862 return -EMSGSIZE;
863 }
864
865 static int can_newlink(struct net *src_net, struct net_device *dev,
866 struct nlattr *tb[], struct nlattr *data[])
867 {
868 return -EOPNOTSUPP;
869 }
870
871 static struct rtnl_link_ops can_link_ops __read_mostly = {
872 .kind = "can",
873 .maxtype = IFLA_CAN_MAX,
874 .policy = can_policy,
875 .setup = can_setup,
876 .newlink = can_newlink,
877 .changelink = can_changelink,
878 .get_size = can_get_size,
879 .fill_info = can_fill_info,
880 .get_xstats_size = can_get_xstats_size,
881 .fill_xstats = can_fill_xstats,
882 };
883
884 /*
885 * Register the CAN network device
886 */
887 int register_candev(struct net_device *dev)
888 {
889 dev->rtnl_link_ops = &can_link_ops;
890 return register_netdev(dev);
891 }
892 EXPORT_SYMBOL_GPL(register_candev);
893
894 /*
895 * Unregister the CAN network device
896 */
897 void unregister_candev(struct net_device *dev)
898 {
899 unregister_netdev(dev);
900 }
901 EXPORT_SYMBOL_GPL(unregister_candev);
902
903 /*
904 * Test if a network device is a candev based device
905 * and return the can_priv* if so.
906 */
907 struct can_priv *safe_candev_priv(struct net_device *dev)
908 {
909 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
910 return NULL;
911
912 return netdev_priv(dev);
913 }
914 EXPORT_SYMBOL_GPL(safe_candev_priv);
915
916 static __init int can_dev_init(void)
917 {
918 int err;
919
920 can_led_notifier_init();
921
922 err = rtnl_link_register(&can_link_ops);
923 if (!err)
924 printk(KERN_INFO MOD_DESC "\n");
925
926 return err;
927 }
928 module_init(can_dev_init);
929
930 static __exit void can_dev_exit(void)
931 {
932 rtnl_link_unregister(&can_link_ops);
933
934 can_led_notifier_exit();
935 }
936 module_exit(can_dev_exit);
937
938 MODULE_ALIAS_RTNL_LINK("can");
This page took 0.051472 seconds and 5 git commands to generate.