can: m_cam: m_can_fifo_write(): remove return from void function
[deliverable/linux.git] / drivers / net / can / m_can / m_can.c
1 /*
2 * CAN bus driver for Bosch M_CAN controller
3 *
4 * Copyright (C) 2014 Freescale Semiconductor, Inc.
5 * Dong Aisheng <b29396@freescale.com>
6 *
7 * Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 *
11 * This file is licensed under the terms of the GNU General Public
12 * License version 2. This program is licensed "as is" without any
13 * warranty of any kind, whether express or implied.
14 */
15
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26
27 #include <linux/can/dev.h>
28
29 /* napi related */
30 #define M_CAN_NAPI_WEIGHT 64
31
32 /* message ram configuration data length */
33 #define MRAM_CFG_LEN 8
34
35 /* registers definition */
36 enum m_can_reg {
37 M_CAN_CREL = 0x0,
38 M_CAN_ENDN = 0x4,
39 M_CAN_CUST = 0x8,
40 M_CAN_FBTP = 0xc,
41 M_CAN_TEST = 0x10,
42 M_CAN_RWD = 0x14,
43 M_CAN_CCCR = 0x18,
44 M_CAN_BTP = 0x1c,
45 M_CAN_TSCC = 0x20,
46 M_CAN_TSCV = 0x24,
47 M_CAN_TOCC = 0x28,
48 M_CAN_TOCV = 0x2c,
49 M_CAN_ECR = 0x40,
50 M_CAN_PSR = 0x44,
51 M_CAN_IR = 0x50,
52 M_CAN_IE = 0x54,
53 M_CAN_ILS = 0x58,
54 M_CAN_ILE = 0x5c,
55 M_CAN_GFC = 0x80,
56 M_CAN_SIDFC = 0x84,
57 M_CAN_XIDFC = 0x88,
58 M_CAN_XIDAM = 0x90,
59 M_CAN_HPMS = 0x94,
60 M_CAN_NDAT1 = 0x98,
61 M_CAN_NDAT2 = 0x9c,
62 M_CAN_RXF0C = 0xa0,
63 M_CAN_RXF0S = 0xa4,
64 M_CAN_RXF0A = 0xa8,
65 M_CAN_RXBC = 0xac,
66 M_CAN_RXF1C = 0xb0,
67 M_CAN_RXF1S = 0xb4,
68 M_CAN_RXF1A = 0xb8,
69 M_CAN_RXESC = 0xbc,
70 M_CAN_TXBC = 0xc0,
71 M_CAN_TXFQS = 0xc4,
72 M_CAN_TXESC = 0xc8,
73 M_CAN_TXBRP = 0xcc,
74 M_CAN_TXBAR = 0xd0,
75 M_CAN_TXBCR = 0xd4,
76 M_CAN_TXBTO = 0xd8,
77 M_CAN_TXBCF = 0xdc,
78 M_CAN_TXBTIE = 0xe0,
79 M_CAN_TXBCIE = 0xe4,
80 M_CAN_TXEFC = 0xf0,
81 M_CAN_TXEFS = 0xf4,
82 M_CAN_TXEFA = 0xf8,
83 };
84
85 /* m_can lec values */
86 enum m_can_lec_type {
87 LEC_NO_ERROR = 0,
88 LEC_STUFF_ERROR,
89 LEC_FORM_ERROR,
90 LEC_ACK_ERROR,
91 LEC_BIT1_ERROR,
92 LEC_BIT0_ERROR,
93 LEC_CRC_ERROR,
94 LEC_UNUSED,
95 };
96
97 enum m_can_mram_cfg {
98 MRAM_SIDF = 0,
99 MRAM_XIDF,
100 MRAM_RXF0,
101 MRAM_RXF1,
102 MRAM_RXB,
103 MRAM_TXE,
104 MRAM_TXB,
105 MRAM_CFG_NUM,
106 };
107
108 /* Fast Bit Timing & Prescaler Register (FBTP) */
109 #define FBTR_FBRP_MASK 0x1f
110 #define FBTR_FBRP_SHIFT 16
111 #define FBTR_FTSEG1_SHIFT 8
112 #define FBTR_FTSEG1_MASK (0xf << FBTR_FTSEG1_SHIFT)
113 #define FBTR_FTSEG2_SHIFT 4
114 #define FBTR_FTSEG2_MASK (0x7 << FBTR_FTSEG2_SHIFT)
115 #define FBTR_FSJW_SHIFT 0
116 #define FBTR_FSJW_MASK 0x3
117
118 /* Test Register (TEST) */
119 #define TEST_LBCK BIT(4)
120
121 /* CC Control Register(CCCR) */
122 #define CCCR_TEST BIT(7)
123 #define CCCR_CMR_MASK 0x3
124 #define CCCR_CMR_SHIFT 10
125 #define CCCR_CMR_CANFD 0x1
126 #define CCCR_CMR_CANFD_BRS 0x2
127 #define CCCR_CMR_CAN 0x3
128 #define CCCR_CME_MASK 0x3
129 #define CCCR_CME_SHIFT 8
130 #define CCCR_CME_CAN 0
131 #define CCCR_CME_CANFD 0x1
132 #define CCCR_CME_CANFD_BRS 0x2
133 #define CCCR_TEST BIT(7)
134 #define CCCR_MON BIT(5)
135 #define CCCR_CCE BIT(1)
136 #define CCCR_INIT BIT(0)
137 #define CCCR_CANFD 0x10
138
139 /* Bit Timing & Prescaler Register (BTP) */
140 #define BTR_BRP_MASK 0x3ff
141 #define BTR_BRP_SHIFT 16
142 #define BTR_TSEG1_SHIFT 8
143 #define BTR_TSEG1_MASK (0x3f << BTR_TSEG1_SHIFT)
144 #define BTR_TSEG2_SHIFT 4
145 #define BTR_TSEG2_MASK (0xf << BTR_TSEG2_SHIFT)
146 #define BTR_SJW_SHIFT 0
147 #define BTR_SJW_MASK 0xf
148
149 /* Error Counter Register(ECR) */
150 #define ECR_RP BIT(15)
151 #define ECR_REC_SHIFT 8
152 #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
153 #define ECR_TEC_SHIFT 0
154 #define ECR_TEC_MASK 0xff
155
156 /* Protocol Status Register(PSR) */
157 #define PSR_BO BIT(7)
158 #define PSR_EW BIT(6)
159 #define PSR_EP BIT(5)
160 #define PSR_LEC_MASK 0x7
161
162 /* Interrupt Register(IR) */
163 #define IR_ALL_INT 0xffffffff
164 #define IR_STE BIT(31)
165 #define IR_FOE BIT(30)
166 #define IR_ACKE BIT(29)
167 #define IR_BE BIT(28)
168 #define IR_CRCE BIT(27)
169 #define IR_WDI BIT(26)
170 #define IR_BO BIT(25)
171 #define IR_EW BIT(24)
172 #define IR_EP BIT(23)
173 #define IR_ELO BIT(22)
174 #define IR_BEU BIT(21)
175 #define IR_BEC BIT(20)
176 #define IR_DRX BIT(19)
177 #define IR_TOO BIT(18)
178 #define IR_MRAF BIT(17)
179 #define IR_TSW BIT(16)
180 #define IR_TEFL BIT(15)
181 #define IR_TEFF BIT(14)
182 #define IR_TEFW BIT(13)
183 #define IR_TEFN BIT(12)
184 #define IR_TFE BIT(11)
185 #define IR_TCF BIT(10)
186 #define IR_TC BIT(9)
187 #define IR_HPM BIT(8)
188 #define IR_RF1L BIT(7)
189 #define IR_RF1F BIT(6)
190 #define IR_RF1W BIT(5)
191 #define IR_RF1N BIT(4)
192 #define IR_RF0L BIT(3)
193 #define IR_RF0F BIT(2)
194 #define IR_RF0W BIT(1)
195 #define IR_RF0N BIT(0)
196 #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
197 #define IR_ERR_LEC (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
198 #define IR_ERR_BUS (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
199 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
200 IR_RF1L | IR_RF0L)
201 #define IR_ERR_ALL (IR_ERR_STATE | IR_ERR_BUS)
202
203 /* Interrupt Line Select (ILS) */
204 #define ILS_ALL_INT0 0x0
205 #define ILS_ALL_INT1 0xFFFFFFFF
206
207 /* Interrupt Line Enable (ILE) */
208 #define ILE_EINT0 BIT(0)
209 #define ILE_EINT1 BIT(1)
210
211 /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
212 #define RXFC_FWM_OFF 24
213 #define RXFC_FWM_MASK 0x7f
214 #define RXFC_FWM_1 (1 << RXFC_FWM_OFF)
215 #define RXFC_FS_OFF 16
216 #define RXFC_FS_MASK 0x7f
217
218 /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
219 #define RXFS_RFL BIT(25)
220 #define RXFS_FF BIT(24)
221 #define RXFS_FPI_OFF 16
222 #define RXFS_FPI_MASK 0x3f0000
223 #define RXFS_FGI_OFF 8
224 #define RXFS_FGI_MASK 0x3f00
225 #define RXFS_FFL_MASK 0x7f
226
227 /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
228 #define M_CAN_RXESC_8BYTES 0x0
229 #define M_CAN_RXESC_64BYTES 0x777
230
231 /* Tx Buffer Configuration(TXBC) */
232 #define TXBC_NDTB_OFF 16
233 #define TXBC_NDTB_MASK 0x3f
234
235 /* Tx Buffer Element Size Configuration(TXESC) */
236 #define TXESC_TBDS_8BYTES 0x0
237 #define TXESC_TBDS_64BYTES 0x7
238
239 /* Tx Event FIFO Con.guration (TXEFC) */
240 #define TXEFC_EFS_OFF 16
241 #define TXEFC_EFS_MASK 0x3f
242
243 /* Message RAM Configuration (in bytes) */
244 #define SIDF_ELEMENT_SIZE 4
245 #define XIDF_ELEMENT_SIZE 8
246 #define RXF0_ELEMENT_SIZE 72
247 #define RXF1_ELEMENT_SIZE 72
248 #define RXB_ELEMENT_SIZE 16
249 #define TXE_ELEMENT_SIZE 8
250 #define TXB_ELEMENT_SIZE 72
251
252 /* Message RAM Elements */
253 #define M_CAN_FIFO_ID 0x0
254 #define M_CAN_FIFO_DLC 0x4
255 #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
256
257 /* Rx Buffer Element */
258 /* R0 */
259 #define RX_BUF_ESI BIT(31)
260 #define RX_BUF_XTD BIT(30)
261 #define RX_BUF_RTR BIT(29)
262 /* R1 */
263 #define RX_BUF_ANMF BIT(31)
264 #define RX_BUF_EDL BIT(21)
265 #define RX_BUF_BRS BIT(20)
266
267 /* Tx Buffer Element */
268 /* R0 */
269 #define TX_BUF_XTD BIT(30)
270 #define TX_BUF_RTR BIT(29)
271
272 /* address offset and element number for each FIFO/Buffer in the Message RAM */
273 struct mram_cfg {
274 u16 off;
275 u8 num;
276 };
277
278 /* m_can private data structure */
279 struct m_can_priv {
280 struct can_priv can; /* must be the first member */
281 struct napi_struct napi;
282 struct net_device *dev;
283 struct device *device;
284 struct clk *hclk;
285 struct clk *cclk;
286 void __iomem *base;
287 u32 irqstatus;
288
289 /* message ram configuration */
290 void __iomem *mram_base;
291 struct mram_cfg mcfg[MRAM_CFG_NUM];
292 };
293
294 static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
295 {
296 return readl(priv->base + reg);
297 }
298
299 static inline void m_can_write(const struct m_can_priv *priv,
300 enum m_can_reg reg, u32 val)
301 {
302 writel(val, priv->base + reg);
303 }
304
305 static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
306 u32 fgi, unsigned int offset)
307 {
308 return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
309 fgi * RXF0_ELEMENT_SIZE + offset);
310 }
311
312 static inline void m_can_fifo_write(const struct m_can_priv *priv,
313 u32 fpi, unsigned int offset, u32 val)
314 {
315 writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
316 fpi * TXB_ELEMENT_SIZE + offset);
317 }
318
319 static inline void m_can_config_endisable(const struct m_can_priv *priv,
320 bool enable)
321 {
322 u32 cccr = m_can_read(priv, M_CAN_CCCR);
323 u32 timeout = 10;
324 u32 val = 0;
325
326 if (enable) {
327 /* enable m_can configuration */
328 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
329 udelay(5);
330 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
331 m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
332 } else {
333 m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
334 }
335
336 /* there's a delay for module initialization */
337 if (enable)
338 val = CCCR_INIT | CCCR_CCE;
339
340 while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
341 if (timeout == 0) {
342 netdev_warn(priv->dev, "Failed to init module\n");
343 return;
344 }
345 timeout--;
346 udelay(1);
347 }
348 }
349
350 static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
351 {
352 m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
353 }
354
355 static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
356 {
357 m_can_write(priv, M_CAN_ILE, 0x0);
358 }
359
360 static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
361 {
362 struct net_device_stats *stats = &dev->stats;
363 struct m_can_priv *priv = netdev_priv(dev);
364 struct canfd_frame *cf;
365 struct sk_buff *skb;
366 u32 id, fgi, dlc;
367 int i;
368
369 /* calculate the fifo get index for where to read data */
370 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
371 dlc = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
372 if (dlc & RX_BUF_EDL)
373 skb = alloc_canfd_skb(dev, &cf);
374 else
375 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
376 if (!skb) {
377 stats->rx_dropped++;
378 return;
379 }
380
381 if (dlc & RX_BUF_EDL)
382 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
383 else
384 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
385
386 id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
387 if (id & RX_BUF_XTD)
388 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
389 else
390 cf->can_id = (id >> 18) & CAN_SFF_MASK;
391
392 if (id & RX_BUF_ESI) {
393 cf->flags |= CANFD_ESI;
394 netdev_dbg(dev, "ESI Error\n");
395 }
396
397 if (!(dlc & RX_BUF_EDL) && (id & RX_BUF_RTR)) {
398 cf->can_id |= CAN_RTR_FLAG;
399 } else {
400 if (dlc & RX_BUF_BRS)
401 cf->flags |= CANFD_BRS;
402
403 for (i = 0; i < cf->len; i += 4)
404 *(u32 *)(cf->data + i) =
405 m_can_fifo_read(priv, fgi,
406 M_CAN_FIFO_DATA(i / 4));
407 }
408
409 /* acknowledge rx fifo 0 */
410 m_can_write(priv, M_CAN_RXF0A, fgi);
411
412 stats->rx_packets++;
413 stats->rx_bytes += cf->len;
414
415 netif_receive_skb(skb);
416 }
417
418 static int m_can_do_rx_poll(struct net_device *dev, int quota)
419 {
420 struct m_can_priv *priv = netdev_priv(dev);
421 u32 pkts = 0;
422 u32 rxfs;
423
424 rxfs = m_can_read(priv, M_CAN_RXF0S);
425 if (!(rxfs & RXFS_FFL_MASK)) {
426 netdev_dbg(dev, "no messages in fifo0\n");
427 return 0;
428 }
429
430 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
431 if (rxfs & RXFS_RFL)
432 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
433
434 m_can_read_fifo(dev, rxfs);
435
436 quota--;
437 pkts++;
438 rxfs = m_can_read(priv, M_CAN_RXF0S);
439 }
440
441 if (pkts)
442 can_led_event(dev, CAN_LED_EVENT_RX);
443
444 return pkts;
445 }
446
447 static int m_can_handle_lost_msg(struct net_device *dev)
448 {
449 struct net_device_stats *stats = &dev->stats;
450 struct sk_buff *skb;
451 struct can_frame *frame;
452
453 netdev_err(dev, "msg lost in rxf0\n");
454
455 stats->rx_errors++;
456 stats->rx_over_errors++;
457
458 skb = alloc_can_err_skb(dev, &frame);
459 if (unlikely(!skb))
460 return 0;
461
462 frame->can_id |= CAN_ERR_CRTL;
463 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
464
465 netif_receive_skb(skb);
466
467 return 1;
468 }
469
470 static int m_can_handle_lec_err(struct net_device *dev,
471 enum m_can_lec_type lec_type)
472 {
473 struct m_can_priv *priv = netdev_priv(dev);
474 struct net_device_stats *stats = &dev->stats;
475 struct can_frame *cf;
476 struct sk_buff *skb;
477
478 priv->can.can_stats.bus_error++;
479 stats->rx_errors++;
480
481 /* propagate the error condition to the CAN stack */
482 skb = alloc_can_err_skb(dev, &cf);
483 if (unlikely(!skb))
484 return 0;
485
486 /* check for 'last error code' which tells us the
487 * type of the last error to occur on the CAN bus
488 */
489 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
490 cf->data[2] |= CAN_ERR_PROT_UNSPEC;
491
492 switch (lec_type) {
493 case LEC_STUFF_ERROR:
494 netdev_dbg(dev, "stuff error\n");
495 cf->data[2] |= CAN_ERR_PROT_STUFF;
496 break;
497 case LEC_FORM_ERROR:
498 netdev_dbg(dev, "form error\n");
499 cf->data[2] |= CAN_ERR_PROT_FORM;
500 break;
501 case LEC_ACK_ERROR:
502 netdev_dbg(dev, "ack error\n");
503 cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
504 CAN_ERR_PROT_LOC_ACK_DEL);
505 break;
506 case LEC_BIT1_ERROR:
507 netdev_dbg(dev, "bit1 error\n");
508 cf->data[2] |= CAN_ERR_PROT_BIT1;
509 break;
510 case LEC_BIT0_ERROR:
511 netdev_dbg(dev, "bit0 error\n");
512 cf->data[2] |= CAN_ERR_PROT_BIT0;
513 break;
514 case LEC_CRC_ERROR:
515 netdev_dbg(dev, "CRC error\n");
516 cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
517 CAN_ERR_PROT_LOC_CRC_DEL);
518 break;
519 default:
520 break;
521 }
522
523 stats->rx_packets++;
524 stats->rx_bytes += cf->can_dlc;
525 netif_receive_skb(skb);
526
527 return 1;
528 }
529
530 static int __m_can_get_berr_counter(const struct net_device *dev,
531 struct can_berr_counter *bec)
532 {
533 struct m_can_priv *priv = netdev_priv(dev);
534 unsigned int ecr;
535
536 ecr = m_can_read(priv, M_CAN_ECR);
537 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
538 bec->txerr = ecr & ECR_TEC_MASK;
539
540 return 0;
541 }
542
543 static int m_can_get_berr_counter(const struct net_device *dev,
544 struct can_berr_counter *bec)
545 {
546 struct m_can_priv *priv = netdev_priv(dev);
547 int err;
548
549 err = clk_prepare_enable(priv->hclk);
550 if (err)
551 return err;
552
553 err = clk_prepare_enable(priv->cclk);
554 if (err) {
555 clk_disable_unprepare(priv->hclk);
556 return err;
557 }
558
559 __m_can_get_berr_counter(dev, bec);
560
561 clk_disable_unprepare(priv->cclk);
562 clk_disable_unprepare(priv->hclk);
563
564 return 0;
565 }
566
567 static int m_can_handle_state_change(struct net_device *dev,
568 enum can_state new_state)
569 {
570 struct m_can_priv *priv = netdev_priv(dev);
571 struct net_device_stats *stats = &dev->stats;
572 struct can_frame *cf;
573 struct sk_buff *skb;
574 struct can_berr_counter bec;
575 unsigned int ecr;
576
577 switch (new_state) {
578 case CAN_STATE_ERROR_ACTIVE:
579 /* error warning state */
580 priv->can.can_stats.error_warning++;
581 priv->can.state = CAN_STATE_ERROR_WARNING;
582 break;
583 case CAN_STATE_ERROR_PASSIVE:
584 /* error passive state */
585 priv->can.can_stats.error_passive++;
586 priv->can.state = CAN_STATE_ERROR_PASSIVE;
587 break;
588 case CAN_STATE_BUS_OFF:
589 /* bus-off state */
590 priv->can.state = CAN_STATE_BUS_OFF;
591 m_can_disable_all_interrupts(priv);
592 priv->can.can_stats.bus_off++;
593 can_bus_off(dev);
594 break;
595 default:
596 break;
597 }
598
599 /* propagate the error condition to the CAN stack */
600 skb = alloc_can_err_skb(dev, &cf);
601 if (unlikely(!skb))
602 return 0;
603
604 __m_can_get_berr_counter(dev, &bec);
605
606 switch (new_state) {
607 case CAN_STATE_ERROR_ACTIVE:
608 /* error warning state */
609 cf->can_id |= CAN_ERR_CRTL;
610 cf->data[1] = (bec.txerr > bec.rxerr) ?
611 CAN_ERR_CRTL_TX_WARNING :
612 CAN_ERR_CRTL_RX_WARNING;
613 cf->data[6] = bec.txerr;
614 cf->data[7] = bec.rxerr;
615 break;
616 case CAN_STATE_ERROR_PASSIVE:
617 /* error passive state */
618 cf->can_id |= CAN_ERR_CRTL;
619 ecr = m_can_read(priv, M_CAN_ECR);
620 if (ecr & ECR_RP)
621 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
622 if (bec.txerr > 127)
623 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
624 cf->data[6] = bec.txerr;
625 cf->data[7] = bec.rxerr;
626 break;
627 case CAN_STATE_BUS_OFF:
628 /* bus-off state */
629 cf->can_id |= CAN_ERR_BUSOFF;
630 break;
631 default:
632 break;
633 }
634
635 stats->rx_packets++;
636 stats->rx_bytes += cf->can_dlc;
637 netif_receive_skb(skb);
638
639 return 1;
640 }
641
642 static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
643 {
644 struct m_can_priv *priv = netdev_priv(dev);
645 int work_done = 0;
646
647 if ((psr & PSR_EW) &&
648 (priv->can.state != CAN_STATE_ERROR_WARNING)) {
649 netdev_dbg(dev, "entered error warning state\n");
650 work_done += m_can_handle_state_change(dev,
651 CAN_STATE_ERROR_WARNING);
652 }
653
654 if ((psr & PSR_EP) &&
655 (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
656 netdev_dbg(dev, "entered error passive state\n");
657 work_done += m_can_handle_state_change(dev,
658 CAN_STATE_ERROR_PASSIVE);
659 }
660
661 if ((psr & PSR_BO) &&
662 (priv->can.state != CAN_STATE_BUS_OFF)) {
663 netdev_dbg(dev, "entered error bus off state\n");
664 work_done += m_can_handle_state_change(dev,
665 CAN_STATE_BUS_OFF);
666 }
667
668 return work_done;
669 }
670
671 static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
672 {
673 if (irqstatus & IR_WDI)
674 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
675 if (irqstatus & IR_ELO)
676 netdev_err(dev, "Error Logging Overflow\n");
677 if (irqstatus & IR_BEU)
678 netdev_err(dev, "Bit Error Uncorrected\n");
679 if (irqstatus & IR_BEC)
680 netdev_err(dev, "Bit Error Corrected\n");
681 if (irqstatus & IR_TOO)
682 netdev_err(dev, "Timeout reached\n");
683 if (irqstatus & IR_MRAF)
684 netdev_err(dev, "Message RAM access failure occurred\n");
685 }
686
687 static inline bool is_lec_err(u32 psr)
688 {
689 psr &= LEC_UNUSED;
690
691 return psr && (psr != LEC_UNUSED);
692 }
693
694 static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
695 u32 psr)
696 {
697 struct m_can_priv *priv = netdev_priv(dev);
698 int work_done = 0;
699
700 if (irqstatus & IR_RF0L)
701 work_done += m_can_handle_lost_msg(dev);
702
703 /* handle lec errors on the bus */
704 if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
705 is_lec_err(psr))
706 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
707
708 /* other unproccessed error interrupts */
709 m_can_handle_other_err(dev, irqstatus);
710
711 return work_done;
712 }
713
714 static int m_can_poll(struct napi_struct *napi, int quota)
715 {
716 struct net_device *dev = napi->dev;
717 struct m_can_priv *priv = netdev_priv(dev);
718 int work_done = 0;
719 u32 irqstatus, psr;
720
721 irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
722 if (!irqstatus)
723 goto end;
724
725 psr = m_can_read(priv, M_CAN_PSR);
726 if (irqstatus & IR_ERR_STATE)
727 work_done += m_can_handle_state_errors(dev, psr);
728
729 if (irqstatus & IR_ERR_BUS)
730 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
731
732 if (irqstatus & IR_RF0N)
733 work_done += m_can_do_rx_poll(dev, (quota - work_done));
734
735 if (work_done < quota) {
736 napi_complete(napi);
737 m_can_enable_all_interrupts(priv);
738 }
739
740 end:
741 return work_done;
742 }
743
744 static irqreturn_t m_can_isr(int irq, void *dev_id)
745 {
746 struct net_device *dev = (struct net_device *)dev_id;
747 struct m_can_priv *priv = netdev_priv(dev);
748 struct net_device_stats *stats = &dev->stats;
749 u32 ir;
750
751 ir = m_can_read(priv, M_CAN_IR);
752 if (!ir)
753 return IRQ_NONE;
754
755 /* ACK all irqs */
756 if (ir & IR_ALL_INT)
757 m_can_write(priv, M_CAN_IR, ir);
758
759 /* schedule NAPI in case of
760 * - rx IRQ
761 * - state change IRQ
762 * - bus error IRQ and bus error reporting
763 */
764 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
765 priv->irqstatus = ir;
766 m_can_disable_all_interrupts(priv);
767 napi_schedule(&priv->napi);
768 }
769
770 /* transmission complete interrupt */
771 if (ir & IR_TC) {
772 stats->tx_bytes += can_get_echo_skb(dev, 0);
773 stats->tx_packets++;
774 can_led_event(dev, CAN_LED_EVENT_TX);
775 netif_wake_queue(dev);
776 }
777
778 return IRQ_HANDLED;
779 }
780
781 static const struct can_bittiming_const m_can_bittiming_const = {
782 .name = KBUILD_MODNAME,
783 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
784 .tseg1_max = 64,
785 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
786 .tseg2_max = 16,
787 .sjw_max = 16,
788 .brp_min = 1,
789 .brp_max = 1024,
790 .brp_inc = 1,
791 };
792
793 static const struct can_bittiming_const m_can_data_bittiming_const = {
794 .name = KBUILD_MODNAME,
795 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
796 .tseg1_max = 16,
797 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
798 .tseg2_max = 8,
799 .sjw_max = 4,
800 .brp_min = 1,
801 .brp_max = 32,
802 .brp_inc = 1,
803 };
804
805 static int m_can_set_bittiming(struct net_device *dev)
806 {
807 struct m_can_priv *priv = netdev_priv(dev);
808 const struct can_bittiming *bt = &priv->can.bittiming;
809 const struct can_bittiming *dbt = &priv->can.data_bittiming;
810 u16 brp, sjw, tseg1, tseg2;
811 u32 reg_btp;
812
813 brp = bt->brp - 1;
814 sjw = bt->sjw - 1;
815 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
816 tseg2 = bt->phase_seg2 - 1;
817 reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
818 (tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
819 m_can_write(priv, M_CAN_BTP, reg_btp);
820
821 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
822 brp = dbt->brp - 1;
823 sjw = dbt->sjw - 1;
824 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
825 tseg2 = dbt->phase_seg2 - 1;
826 reg_btp = (brp << FBTR_FBRP_SHIFT) | (sjw << FBTR_FSJW_SHIFT) |
827 (tseg1 << FBTR_FTSEG1_SHIFT) |
828 (tseg2 << FBTR_FTSEG2_SHIFT);
829 m_can_write(priv, M_CAN_FBTP, reg_btp);
830 }
831
832 return 0;
833 }
834
835 /* Configure M_CAN chip:
836 * - set rx buffer/fifo element size
837 * - configure rx fifo
838 * - accept non-matching frame into fifo 0
839 * - configure tx buffer
840 * - configure mode
841 * - setup bittiming
842 */
843 static void m_can_chip_config(struct net_device *dev)
844 {
845 struct m_can_priv *priv = netdev_priv(dev);
846 u32 cccr, test;
847
848 m_can_config_endisable(priv, true);
849
850 /* RX Buffer/FIFO Element Size 64 bytes data field */
851 m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
852
853 /* Accept Non-matching Frames Into FIFO 0 */
854 m_can_write(priv, M_CAN_GFC, 0x0);
855
856 /* only support one Tx Buffer currently */
857 m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
858 priv->mcfg[MRAM_TXB].off);
859
860 /* support 64 bytes payload */
861 m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_64BYTES);
862
863 m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
864 priv->mcfg[MRAM_TXE].off);
865
866 /* rx fifo configuration, blocking mode, fifo size 1 */
867 m_can_write(priv, M_CAN_RXF0C,
868 (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
869 RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
870
871 m_can_write(priv, M_CAN_RXF1C,
872 (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
873 RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
874
875 cccr = m_can_read(priv, M_CAN_CCCR);
876 cccr &= ~(CCCR_TEST | CCCR_MON | (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
877 (CCCR_CME_MASK << CCCR_CME_SHIFT));
878 test = m_can_read(priv, M_CAN_TEST);
879 test &= ~TEST_LBCK;
880
881 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
882 cccr |= CCCR_MON;
883
884 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
885 cccr |= CCCR_TEST;
886 test |= TEST_LBCK;
887 }
888
889 if (priv->can.ctrlmode & CAN_CTRLMODE_FD)
890 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
891
892 m_can_write(priv, M_CAN_CCCR, cccr);
893 m_can_write(priv, M_CAN_TEST, test);
894
895 /* enable interrupts */
896 m_can_write(priv, M_CAN_IR, IR_ALL_INT);
897 if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
898 m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
899 else
900 m_can_write(priv, M_CAN_IE, IR_ALL_INT);
901
902 /* route all interrupts to INT0 */
903 m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
904
905 /* set bittiming params */
906 m_can_set_bittiming(dev);
907
908 m_can_config_endisable(priv, false);
909 }
910
911 static void m_can_start(struct net_device *dev)
912 {
913 struct m_can_priv *priv = netdev_priv(dev);
914
915 /* basic m_can configuration */
916 m_can_chip_config(dev);
917
918 priv->can.state = CAN_STATE_ERROR_ACTIVE;
919
920 m_can_enable_all_interrupts(priv);
921 }
922
923 static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
924 {
925 switch (mode) {
926 case CAN_MODE_START:
927 m_can_start(dev);
928 netif_wake_queue(dev);
929 break;
930 default:
931 return -EOPNOTSUPP;
932 }
933
934 return 0;
935 }
936
937 static void free_m_can_dev(struct net_device *dev)
938 {
939 free_candev(dev);
940 }
941
942 static struct net_device *alloc_m_can_dev(void)
943 {
944 struct net_device *dev;
945 struct m_can_priv *priv;
946
947 dev = alloc_candev(sizeof(*priv), 1);
948 if (!dev)
949 return NULL;
950
951 priv = netdev_priv(dev);
952 netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
953
954 priv->dev = dev;
955 priv->can.bittiming_const = &m_can_bittiming_const;
956 priv->can.data_bittiming_const = &m_can_data_bittiming_const;
957 priv->can.do_set_mode = m_can_set_mode;
958 priv->can.do_get_berr_counter = m_can_get_berr_counter;
959
960 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.1 */
961 priv->can.ctrlmode = CAN_CTRLMODE_FD_NON_ISO;
962
963 /* CAN_CTRLMODE_FD_NON_ISO can not be changed with M_CAN IP v3.0.1 */
964 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
965 CAN_CTRLMODE_LISTENONLY |
966 CAN_CTRLMODE_BERR_REPORTING |
967 CAN_CTRLMODE_FD;
968
969 return dev;
970 }
971
972 static int m_can_open(struct net_device *dev)
973 {
974 struct m_can_priv *priv = netdev_priv(dev);
975 int err;
976
977 err = clk_prepare_enable(priv->hclk);
978 if (err)
979 return err;
980
981 err = clk_prepare_enable(priv->cclk);
982 if (err)
983 goto exit_disable_hclk;
984
985 /* open the can device */
986 err = open_candev(dev);
987 if (err) {
988 netdev_err(dev, "failed to open can device\n");
989 goto exit_disable_cclk;
990 }
991
992 /* register interrupt handler */
993 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
994 dev);
995 if (err < 0) {
996 netdev_err(dev, "failed to request interrupt\n");
997 goto exit_irq_fail;
998 }
999
1000 /* start the m_can controller */
1001 m_can_start(dev);
1002
1003 can_led_event(dev, CAN_LED_EVENT_OPEN);
1004 napi_enable(&priv->napi);
1005 netif_start_queue(dev);
1006
1007 return 0;
1008
1009 exit_irq_fail:
1010 close_candev(dev);
1011 exit_disable_cclk:
1012 clk_disable_unprepare(priv->cclk);
1013 exit_disable_hclk:
1014 clk_disable_unprepare(priv->hclk);
1015 return err;
1016 }
1017
1018 static void m_can_stop(struct net_device *dev)
1019 {
1020 struct m_can_priv *priv = netdev_priv(dev);
1021
1022 /* disable all interrupts */
1023 m_can_disable_all_interrupts(priv);
1024
1025 clk_disable_unprepare(priv->hclk);
1026 clk_disable_unprepare(priv->cclk);
1027
1028 /* set the state as STOPPED */
1029 priv->can.state = CAN_STATE_STOPPED;
1030 }
1031
1032 static int m_can_close(struct net_device *dev)
1033 {
1034 struct m_can_priv *priv = netdev_priv(dev);
1035
1036 netif_stop_queue(dev);
1037 napi_disable(&priv->napi);
1038 m_can_stop(dev);
1039 free_irq(dev->irq, dev);
1040 close_candev(dev);
1041 can_led_event(dev, CAN_LED_EVENT_STOP);
1042
1043 return 0;
1044 }
1045
1046 static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1047 struct net_device *dev)
1048 {
1049 struct m_can_priv *priv = netdev_priv(dev);
1050 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1051 u32 id, cccr;
1052 int i;
1053
1054 if (can_dropped_invalid_skb(dev, skb))
1055 return NETDEV_TX_OK;
1056
1057 netif_stop_queue(dev);
1058
1059 if (cf->can_id & CAN_EFF_FLAG) {
1060 id = cf->can_id & CAN_EFF_MASK;
1061 id |= TX_BUF_XTD;
1062 } else {
1063 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1064 }
1065
1066 if (cf->can_id & CAN_RTR_FLAG)
1067 id |= TX_BUF_RTR;
1068
1069 /* message ram configuration */
1070 m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
1071 m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, can_len2dlc(cf->len) << 16);
1072
1073 for (i = 0; i < cf->len; i += 4)
1074 m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(i / 4),
1075 *(u32 *)(cf->data + i));
1076
1077 can_put_echo_skb(skb, dev, 0);
1078
1079 if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
1080 cccr = m_can_read(priv, M_CAN_CCCR);
1081 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1082 if (can_is_canfd_skb(skb)) {
1083 if (cf->flags & CANFD_BRS)
1084 cccr |= CCCR_CMR_CANFD_BRS << CCCR_CMR_SHIFT;
1085 else
1086 cccr |= CCCR_CMR_CANFD << CCCR_CMR_SHIFT;
1087 } else {
1088 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1089 }
1090 m_can_write(priv, M_CAN_CCCR, cccr);
1091 }
1092
1093 /* enable first TX buffer to start transfer */
1094 m_can_write(priv, M_CAN_TXBTIE, 0x1);
1095 m_can_write(priv, M_CAN_TXBAR, 0x1);
1096
1097 return NETDEV_TX_OK;
1098 }
1099
1100 static const struct net_device_ops m_can_netdev_ops = {
1101 .ndo_open = m_can_open,
1102 .ndo_stop = m_can_close,
1103 .ndo_start_xmit = m_can_start_xmit,
1104 .ndo_change_mtu = can_change_mtu,
1105 };
1106
1107 static int register_m_can_dev(struct net_device *dev)
1108 {
1109 dev->flags |= IFF_ECHO; /* we support local echo */
1110 dev->netdev_ops = &m_can_netdev_ops;
1111
1112 return register_candev(dev);
1113 }
1114
1115 static int m_can_of_parse_mram(struct platform_device *pdev,
1116 struct m_can_priv *priv)
1117 {
1118 struct device_node *np = pdev->dev.of_node;
1119 struct resource *res;
1120 void __iomem *addr;
1121 u32 out_val[MRAM_CFG_LEN];
1122 int i, start, end, ret;
1123
1124 /* message ram could be shared */
1125 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
1126 if (!res)
1127 return -ENODEV;
1128
1129 addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1130 if (!addr)
1131 return -ENOMEM;
1132
1133 /* get message ram configuration */
1134 ret = of_property_read_u32_array(np, "bosch,mram-cfg",
1135 out_val, sizeof(out_val) / 4);
1136 if (ret) {
1137 dev_err(&pdev->dev, "can not get message ram configuration\n");
1138 return -ENODEV;
1139 }
1140
1141 priv->mram_base = addr;
1142 priv->mcfg[MRAM_SIDF].off = out_val[0];
1143 priv->mcfg[MRAM_SIDF].num = out_val[1];
1144 priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
1145 priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1146 priv->mcfg[MRAM_XIDF].num = out_val[2];
1147 priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
1148 priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1149 priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
1150 priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
1151 priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1152 priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
1153 priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
1154 priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1155 priv->mcfg[MRAM_RXB].num = out_val[5];
1156 priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
1157 priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1158 priv->mcfg[MRAM_TXE].num = out_val[6];
1159 priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
1160 priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1161 priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
1162
1163 dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1164 priv->mram_base,
1165 priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
1166 priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
1167 priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
1168 priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
1169 priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
1170 priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
1171 priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
1172
1173 /* initialize the entire Message RAM in use to avoid possible
1174 * ECC/parity checksum errors when reading an uninitialized buffer
1175 */
1176 start = priv->mcfg[MRAM_SIDF].off;
1177 end = priv->mcfg[MRAM_TXB].off +
1178 priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1179 for (i = start; i < end; i += 4)
1180 writel(0x0, priv->mram_base + i);
1181
1182 return 0;
1183 }
1184
1185 static int m_can_plat_probe(struct platform_device *pdev)
1186 {
1187 struct net_device *dev;
1188 struct m_can_priv *priv;
1189 struct resource *res;
1190 void __iomem *addr;
1191 struct clk *hclk, *cclk;
1192 int irq, ret;
1193
1194 hclk = devm_clk_get(&pdev->dev, "hclk");
1195 cclk = devm_clk_get(&pdev->dev, "cclk");
1196 if (IS_ERR(hclk) || IS_ERR(cclk)) {
1197 dev_err(&pdev->dev, "no clock find\n");
1198 return -ENODEV;
1199 }
1200
1201 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
1202 addr = devm_ioremap_resource(&pdev->dev, res);
1203 irq = platform_get_irq_byname(pdev, "int0");
1204 if (IS_ERR(addr) || irq < 0)
1205 return -EINVAL;
1206
1207 /* allocate the m_can device */
1208 dev = alloc_m_can_dev();
1209 if (!dev)
1210 return -ENOMEM;
1211
1212 priv = netdev_priv(dev);
1213 dev->irq = irq;
1214 priv->base = addr;
1215 priv->device = &pdev->dev;
1216 priv->hclk = hclk;
1217 priv->cclk = cclk;
1218 priv->can.clock.freq = clk_get_rate(cclk);
1219
1220 ret = m_can_of_parse_mram(pdev, priv);
1221 if (ret)
1222 goto failed_free_dev;
1223
1224 platform_set_drvdata(pdev, dev);
1225 SET_NETDEV_DEV(dev, &pdev->dev);
1226
1227 ret = register_m_can_dev(dev);
1228 if (ret) {
1229 dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
1230 KBUILD_MODNAME, ret);
1231 goto failed_free_dev;
1232 }
1233
1234 devm_can_led_init(dev);
1235
1236 dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
1237 KBUILD_MODNAME, priv->base, dev->irq);
1238
1239 return 0;
1240
1241 failed_free_dev:
1242 free_m_can_dev(dev);
1243 return ret;
1244 }
1245
1246 static __maybe_unused int m_can_suspend(struct device *dev)
1247 {
1248 struct net_device *ndev = dev_get_drvdata(dev);
1249 struct m_can_priv *priv = netdev_priv(ndev);
1250
1251 if (netif_running(ndev)) {
1252 netif_stop_queue(ndev);
1253 netif_device_detach(ndev);
1254 }
1255
1256 /* TODO: enter low power */
1257
1258 priv->can.state = CAN_STATE_SLEEPING;
1259
1260 return 0;
1261 }
1262
1263 static __maybe_unused int m_can_resume(struct device *dev)
1264 {
1265 struct net_device *ndev = dev_get_drvdata(dev);
1266 struct m_can_priv *priv = netdev_priv(ndev);
1267
1268 /* TODO: exit low power */
1269
1270 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1271
1272 if (netif_running(ndev)) {
1273 netif_device_attach(ndev);
1274 netif_start_queue(ndev);
1275 }
1276
1277 return 0;
1278 }
1279
1280 static void unregister_m_can_dev(struct net_device *dev)
1281 {
1282 unregister_candev(dev);
1283 }
1284
1285 static int m_can_plat_remove(struct platform_device *pdev)
1286 {
1287 struct net_device *dev = platform_get_drvdata(pdev);
1288
1289 unregister_m_can_dev(dev);
1290 platform_set_drvdata(pdev, NULL);
1291
1292 free_m_can_dev(dev);
1293
1294 return 0;
1295 }
1296
1297 static const struct dev_pm_ops m_can_pmops = {
1298 SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
1299 };
1300
1301 static const struct of_device_id m_can_of_table[] = {
1302 { .compatible = "bosch,m_can", .data = NULL },
1303 { /* sentinel */ },
1304 };
1305 MODULE_DEVICE_TABLE(of, m_can_of_table);
1306
1307 static struct platform_driver m_can_plat_driver = {
1308 .driver = {
1309 .name = KBUILD_MODNAME,
1310 .of_match_table = m_can_of_table,
1311 .pm = &m_can_pmops,
1312 },
1313 .probe = m_can_plat_probe,
1314 .remove = m_can_plat_remove,
1315 };
1316
1317 module_platform_driver(m_can_plat_driver);
1318
1319 MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1320 MODULE_LICENSE("GPL v2");
1321 MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
This page took 0.091285 seconds and 5 git commands to generate.