net: cxgb3: convert to hw_features
[deliverable/linux.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63 MAX_TXQ_ENTRIES = 16384,
64 MAX_CTRL_TXQ_ENTRIES = 1024,
65 MAX_RSPQ_ENTRIES = 16384,
66 MAX_RX_BUFFERS = 16384,
67 MAX_RX_JUMBO_BUFFERS = 16384,
68 MIN_TXQ_ENTRIES = 4,
69 MIN_CTRL_TXQ_ENTRIES = 4,
70 MIN_RSPQ_ENTRIES = 32,
71 MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 CH_DEVICE(0x20, 0), /* PE9000 */
87 CH_DEVICE(0x21, 1), /* T302E */
88 CH_DEVICE(0x22, 2), /* T310E */
89 CH_DEVICE(0x23, 3), /* T320X */
90 CH_DEVICE(0x24, 1), /* T302X */
91 CH_DEVICE(0x25, 3), /* T320E */
92 CH_DEVICE(0x26, 2), /* T310X */
93 CH_DEVICE(0x30, 2), /* T3B10 */
94 CH_DEVICE(0x31, 3), /* T3B20 */
95 CH_DEVICE(0x32, 1), /* T3B02 */
96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 CH_DEVICE(0x36, 3), /* S320E-CR */
98 CH_DEVICE(0x37, 7), /* N320E-G2 */
99 {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114 * The driver uses the best interrupt scheme available on a platform in the
115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
116 * of these schemes the driver may consider as follows:
117 *
118 * msi = 2: choose from among all three options
119 * msi = 1: only consider MSI and pin interrupts
120 * msi = 0: force pin interrupts
121 */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128 * The driver enables offload as a default.
129 * To disable it, use ofld_disable = 1.
130 */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138 * We have work elements that we need to cancel when an interface is taken
139 * down. Normally the work elements would be executed by keventd but that
140 * can deadlock because of linkwatch. If our close method takes the rtnl
141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143 * for our work to complete. Get our own work queue to solve this.
144 */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148 * link_report - show link status and link speed/duplex
149 * @p: the port whose settings are to be reported
150 *
151 * Shows the link status, speed, and duplex of a port.
152 */
153 static void link_report(struct net_device *dev)
154 {
155 if (!netif_carrier_ok(dev))
156 printk(KERN_INFO "%s: link down\n", dev->name);
157 else {
158 const char *s = "10Mbps";
159 const struct port_info *p = netdev_priv(dev);
160
161 switch (p->link_config.speed) {
162 case SPEED_10000:
163 s = "10Gbps";
164 break;
165 case SPEED_1000:
166 s = "1000Mbps";
167 break;
168 case SPEED_100:
169 s = "100Mbps";
170 break;
171 }
172
173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175 }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 struct port_info *pi)
180 {
181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 F_ENDROPPKT);
183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 struct port_info *pi)
190 {
191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197 struct net_device *dev = adap->port[port_id];
198 struct port_info *pi = netdev_priv(dev);
199
200 if (state == netif_carrier_ok(dev))
201 return;
202
203 if (state) {
204 struct cmac *mac = &pi->mac;
205
206 netif_carrier_on(dev);
207
208 disable_tx_fifo_drain(adap, pi);
209
210 /* Clear local faults */
211 t3_xgm_intr_disable(adap, pi->port_id);
212 t3_read_reg(adap, A_XGM_INT_STATUS +
213 pi->mac.offset);
214 t3_write_reg(adap,
215 A_XGM_INT_CAUSE + pi->mac.offset,
216 F_XGM_INT);
217
218 t3_set_reg_field(adap,
219 A_XGM_INT_ENABLE +
220 pi->mac.offset,
221 F_XGM_INT, F_XGM_INT);
222 t3_xgm_intr_enable(adap, pi->port_id);
223
224 t3_mac_enable(mac, MAC_DIRECTION_TX);
225 } else {
226 netif_carrier_off(dev);
227
228 /* Flush TX FIFO */
229 enable_tx_fifo_drain(adap, pi);
230 }
231 link_report(dev);
232 }
233
234 /**
235 * t3_os_link_changed - handle link status changes
236 * @adapter: the adapter associated with the link change
237 * @port_id: the port index whose limk status has changed
238 * @link_stat: the new status of the link
239 * @speed: the new speed setting
240 * @duplex: the new duplex setting
241 * @pause: the new flow-control setting
242 *
243 * This is the OS-dependent handler for link status changes. The OS
244 * neutral handler takes care of most of the processing for these events,
245 * then calls this handler for any OS-specific processing.
246 */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 int speed, int duplex, int pause)
249 {
250 struct net_device *dev = adapter->port[port_id];
251 struct port_info *pi = netdev_priv(dev);
252 struct cmac *mac = &pi->mac;
253
254 /* Skip changes from disabled ports. */
255 if (!netif_running(dev))
256 return;
257
258 if (link_stat != netif_carrier_ok(dev)) {
259 if (link_stat) {
260 disable_tx_fifo_drain(adapter, pi);
261
262 t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264 /* Clear local faults */
265 t3_xgm_intr_disable(adapter, pi->port_id);
266 t3_read_reg(adapter, A_XGM_INT_STATUS +
267 pi->mac.offset);
268 t3_write_reg(adapter,
269 A_XGM_INT_CAUSE + pi->mac.offset,
270 F_XGM_INT);
271
272 t3_set_reg_field(adapter,
273 A_XGM_INT_ENABLE + pi->mac.offset,
274 F_XGM_INT, F_XGM_INT);
275 t3_xgm_intr_enable(adapter, pi->port_id);
276
277 netif_carrier_on(dev);
278 } else {
279 netif_carrier_off(dev);
280
281 t3_xgm_intr_disable(adapter, pi->port_id);
282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 t3_set_reg_field(adapter,
284 A_XGM_INT_ENABLE + pi->mac.offset,
285 F_XGM_INT, 0);
286
287 if (is_10G(adapter))
288 pi->phy.ops->power_down(&pi->phy, 1);
289
290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 t3_mac_disable(mac, MAC_DIRECTION_RX);
292 t3_link_start(&pi->phy, mac, &pi->link_config);
293
294 /* Flush TX FIFO */
295 enable_tx_fifo_drain(adapter, pi);
296 }
297
298 link_report(dev);
299 }
300 }
301
302 /**
303 * t3_os_phymod_changed - handle PHY module changes
304 * @phy: the PHY reporting the module change
305 * @mod_type: new module type
306 *
307 * This is the OS-dependent handler for PHY module changes. It is
308 * invoked when a PHY module is removed or inserted for any OS-specific
309 * processing.
310 */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313 static const char *mod_str[] = {
314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315 };
316
317 const struct net_device *dev = adap->port[port_id];
318 const struct port_info *pi = netdev_priv(dev);
319
320 if (pi->phy.modtype == phy_modtype_none)
321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 else
323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329 struct port_info *pi = netdev_priv(dev);
330
331 t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335 * link_start - enable a port
336 * @dev: the device to enable
337 *
338 * Performs the MAC and PHY actions needed to enable a port.
339 */
340 static void link_start(struct net_device *dev)
341 {
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
344
345 t3_mac_reset(mac);
346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 t3_mac_set_rx_mode(mac, dev);
351 t3_link_start(&pi->phy, mac, &pi->link_config);
352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357 if (adapter->flags & USING_MSIX) {
358 pci_disable_msix(adapter->pdev);
359 adapter->flags &= ~USING_MSIX;
360 } else if (adapter->flags & USING_MSI) {
361 pci_disable_msi(adapter->pdev);
362 adapter->flags &= ~USING_MSI;
363 }
364 }
365
366 /*
367 * Interrupt handler for asynchronous events used with MSI-X.
368 */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371 t3_slow_intr_handler(cookie);
372 return IRQ_HANDLED;
373 }
374
375 /*
376 * Name the MSI-X interrupts.
377 */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 adap->msix_info[0].desc[n] = 0;
384
385 for_each_port(adap, j) {
386 struct net_device *d = adap->port[j];
387 const struct port_info *pi = netdev_priv(d);
388
389 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 snprintf(adap->msix_info[msi_idx].desc, n,
391 "%s-%d", d->name, pi->first_qset + i);
392 adap->msix_info[msi_idx].desc[n] = 0;
393 }
394 }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399 int i, j, err, qidx = 0;
400
401 for_each_port(adap, i) {
402 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404 for (j = 0; j < nqsets; ++j) {
405 err = request_irq(adap->msix_info[qidx + 1].vec,
406 t3_intr_handler(adap,
407 adap->sge.qs[qidx].
408 rspq.polling), 0,
409 adap->msix_info[qidx + 1].desc,
410 &adap->sge.qs[qidx]);
411 if (err) {
412 while (--qidx >= 0)
413 free_irq(adap->msix_info[qidx + 1].vec,
414 &adap->sge.qs[qidx]);
415 return err;
416 }
417 qidx++;
418 }
419 }
420 return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425 if (adapter->flags & USING_MSIX) {
426 int i, n = 0;
427
428 free_irq(adapter->msix_info[0].vec, adapter);
429 for_each_port(adapter, i)
430 n += adap2pinfo(adapter, i)->nqsets;
431
432 for (i = 0; i < n; ++i)
433 free_irq(adapter->msix_info[i + 1].vec,
434 &adapter->sge.qs[i]);
435 } else
436 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 unsigned long n)
441 {
442 int attempts = 10;
443
444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 if (!--attempts)
446 return -ETIMEDOUT;
447 msleep(10);
448 }
449 return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454 int i;
455 struct sk_buff *skb;
456 struct cpl_set_tcb_field *greq;
457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459 t3_tp_set_offload_mode(adap, 1);
460
461 for (i = 0; i < 16; i++) {
462 struct cpl_smt_write_req *req;
463
464 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 if (!skb)
466 skb = adap->nofail_skb;
467 if (!skb)
468 goto alloc_skb_fail;
469
470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 memset(req, 0, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 req->mtu_idx = NMTUS - 1;
475 req->iff = i;
476 t3_mgmt_tx(adap, skb);
477 if (skb == adap->nofail_skb) {
478 await_mgmt_replies(adap, cnt, i + 1);
479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 if (!adap->nofail_skb)
481 goto alloc_skb_fail;
482 }
483 }
484
485 for (i = 0; i < 2048; i++) {
486 struct cpl_l2t_write_req *req;
487
488 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 if (!skb)
490 skb = adap->nofail_skb;
491 if (!skb)
492 goto alloc_skb_fail;
493
494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 memset(req, 0, sizeof(*req));
496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 req->params = htonl(V_L2T_W_IDX(i));
499 t3_mgmt_tx(adap, skb);
500 if (skb == adap->nofail_skb) {
501 await_mgmt_replies(adap, cnt, 16 + i + 1);
502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 if (!adap->nofail_skb)
504 goto alloc_skb_fail;
505 }
506 }
507
508 for (i = 0; i < 2048; i++) {
509 struct cpl_rte_write_req *req;
510
511 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 if (!skb)
513 skb = adap->nofail_skb;
514 if (!skb)
515 goto alloc_skb_fail;
516
517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 memset(req, 0, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
528 }
529 }
530
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
536
537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 memset(greq, 0, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
543
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548 }
549
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
552
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
556 }
557
558 /**
559 * setup_rss - configure RSS
560 * @adap: the adapter
561 *
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
568 */
569 static void setup_rss(struct adapter *adap)
570 {
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE];
576
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
580
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584 }
585
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593 int i, j;
594
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
597
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606 int i;
607
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
610
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
614 }
615
616 /*
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
620 */
621 adap->flags |= NAPI_INIT;
622 }
623
624 /*
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
628 */
629 static void quiesce_rx(struct adapter *adap)
630 {
631 int i;
632
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647 * setup_sge_qsets - configure SGE Tx/Rx/response queues
648 * @adap: the adapter
649 *
650 * Determines how many sets of SGE queues to use and initializes them.
651 * We support multiple queue sets per port if we have MSI-X, otherwise
652 * just one queue set per port.
653 */
654 static int setup_sge_qsets(struct adapter *adap)
655 {
656 int i, j, err, irq_idx = 0, qset_idx = 0;
657 unsigned int ntxq = SGE_TXQ_PER_SET;
658
659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 irq_idx = -1;
661
662 for_each_port(adap, i) {
663 struct net_device *dev = adap->port[i];
664 struct port_info *pi = netdev_priv(dev);
665
666 pi->qs = &adap->sge.qs[pi->first_qset];
667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 (adap->flags & USING_MSIX) ? qset_idx + 1 :
670 irq_idx,
671 &adap->params.sge.qset[qset_idx], ntxq, dev,
672 netdev_get_tx_queue(dev, j));
673 if (err) {
674 t3_free_sge_resources(adap);
675 return err;
676 }
677 }
678 }
679
680 return 0;
681 }
682
683 static ssize_t attr_show(struct device *d, char *buf,
684 ssize_t(*format) (struct net_device *, char *))
685 {
686 ssize_t len;
687
688 /* Synchronize with ioctls that may shut down the device */
689 rtnl_lock();
690 len = (*format) (to_net_dev(d), buf);
691 rtnl_unlock();
692 return len;
693 }
694
695 static ssize_t attr_store(struct device *d,
696 const char *buf, size_t len,
697 ssize_t(*set) (struct net_device *, unsigned int),
698 unsigned int min_val, unsigned int max_val)
699 {
700 char *endp;
701 ssize_t ret;
702 unsigned int val;
703
704 if (!capable(CAP_NET_ADMIN))
705 return -EPERM;
706
707 val = simple_strtoul(buf, &endp, 0);
708 if (endp == buf || val < min_val || val > max_val)
709 return -EINVAL;
710
711 rtnl_lock();
712 ret = (*set) (to_net_dev(d), val);
713 if (!ret)
714 ret = len;
715 rtnl_unlock();
716 return ret;
717 }
718
719 #define CXGB3_SHOW(name, val_expr) \
720 static ssize_t format_##name(struct net_device *dev, char *buf) \
721 { \
722 struct port_info *pi = netdev_priv(dev); \
723 struct adapter *adap = pi->adapter; \
724 return sprintf(buf, "%u\n", val_expr); \
725 } \
726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
727 char *buf) \
728 { \
729 return attr_show(d, buf, format_##name); \
730 }
731
732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
733 {
734 struct port_info *pi = netdev_priv(dev);
735 struct adapter *adap = pi->adapter;
736 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
737
738 if (adap->flags & FULL_INIT_DONE)
739 return -EBUSY;
740 if (val && adap->params.rev == 0)
741 return -EINVAL;
742 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
743 min_tids)
744 return -EINVAL;
745 adap->params.mc5.nfilters = val;
746 return 0;
747 }
748
749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
750 const char *buf, size_t len)
751 {
752 return attr_store(d, buf, len, set_nfilters, 0, ~0);
753 }
754
755 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
756 {
757 struct port_info *pi = netdev_priv(dev);
758 struct adapter *adap = pi->adapter;
759
760 if (adap->flags & FULL_INIT_DONE)
761 return -EBUSY;
762 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
763 MC5_MIN_TIDS)
764 return -EINVAL;
765 adap->params.mc5.nservers = val;
766 return 0;
767 }
768
769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
770 const char *buf, size_t len)
771 {
772 return attr_store(d, buf, len, set_nservers, 0, ~0);
773 }
774
775 #define CXGB3_ATTR_R(name, val_expr) \
776 CXGB3_SHOW(name, val_expr) \
777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
778
779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
780 CXGB3_SHOW(name, val_expr) \
781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
782
783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
786
787 static struct attribute *cxgb3_attrs[] = {
788 &dev_attr_cam_size.attr,
789 &dev_attr_nfilters.attr,
790 &dev_attr_nservers.attr,
791 NULL
792 };
793
794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
795
796 static ssize_t tm_attr_show(struct device *d,
797 char *buf, int sched)
798 {
799 struct port_info *pi = netdev_priv(to_net_dev(d));
800 struct adapter *adap = pi->adapter;
801 unsigned int v, addr, bpt, cpt;
802 ssize_t len;
803
804 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
805 rtnl_lock();
806 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
807 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
808 if (sched & 1)
809 v >>= 16;
810 bpt = (v >> 8) & 0xff;
811 cpt = v & 0xff;
812 if (!cpt)
813 len = sprintf(buf, "disabled\n");
814 else {
815 v = (adap->params.vpd.cclk * 1000) / cpt;
816 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
817 }
818 rtnl_unlock();
819 return len;
820 }
821
822 static ssize_t tm_attr_store(struct device *d,
823 const char *buf, size_t len, int sched)
824 {
825 struct port_info *pi = netdev_priv(to_net_dev(d));
826 struct adapter *adap = pi->adapter;
827 unsigned int val;
828 char *endp;
829 ssize_t ret;
830
831 if (!capable(CAP_NET_ADMIN))
832 return -EPERM;
833
834 val = simple_strtoul(buf, &endp, 0);
835 if (endp == buf || val > 10000000)
836 return -EINVAL;
837
838 rtnl_lock();
839 ret = t3_config_sched(adap, val, sched);
840 if (!ret)
841 ret = len;
842 rtnl_unlock();
843 return ret;
844 }
845
846 #define TM_ATTR(name, sched) \
847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
848 char *buf) \
849 { \
850 return tm_attr_show(d, buf, sched); \
851 } \
852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
853 const char *buf, size_t len) \
854 { \
855 return tm_attr_store(d, buf, len, sched); \
856 } \
857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
858
859 TM_ATTR(sched0, 0);
860 TM_ATTR(sched1, 1);
861 TM_ATTR(sched2, 2);
862 TM_ATTR(sched3, 3);
863 TM_ATTR(sched4, 4);
864 TM_ATTR(sched5, 5);
865 TM_ATTR(sched6, 6);
866 TM_ATTR(sched7, 7);
867
868 static struct attribute *offload_attrs[] = {
869 &dev_attr_sched0.attr,
870 &dev_attr_sched1.attr,
871 &dev_attr_sched2.attr,
872 &dev_attr_sched3.attr,
873 &dev_attr_sched4.attr,
874 &dev_attr_sched5.attr,
875 &dev_attr_sched6.attr,
876 &dev_attr_sched7.attr,
877 NULL
878 };
879
880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
881
882 /*
883 * Sends an sk_buff to an offload queue driver
884 * after dealing with any active network taps.
885 */
886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
887 {
888 int ret;
889
890 local_bh_disable();
891 ret = t3_offload_tx(tdev, skb);
892 local_bh_enable();
893 return ret;
894 }
895
896 static int write_smt_entry(struct adapter *adapter, int idx)
897 {
898 struct cpl_smt_write_req *req;
899 struct port_info *pi = netdev_priv(adapter->port[idx]);
900 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
901
902 if (!skb)
903 return -ENOMEM;
904
905 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
906 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
907 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
908 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
909 req->iff = idx;
910 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
911 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
912 skb->priority = 1;
913 offload_tx(&adapter->tdev, skb);
914 return 0;
915 }
916
917 static int init_smt(struct adapter *adapter)
918 {
919 int i;
920
921 for_each_port(adapter, i)
922 write_smt_entry(adapter, i);
923 return 0;
924 }
925
926 static void init_port_mtus(struct adapter *adapter)
927 {
928 unsigned int mtus = adapter->port[0]->mtu;
929
930 if (adapter->port[1])
931 mtus |= adapter->port[1]->mtu << 16;
932 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
933 }
934
935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
936 int hi, int port)
937 {
938 struct sk_buff *skb;
939 struct mngt_pktsched_wr *req;
940 int ret;
941
942 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
943 if (!skb)
944 skb = adap->nofail_skb;
945 if (!skb)
946 return -ENOMEM;
947
948 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
949 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
950 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
951 req->sched = sched;
952 req->idx = qidx;
953 req->min = lo;
954 req->max = hi;
955 req->binding = port;
956 ret = t3_mgmt_tx(adap, skb);
957 if (skb == adap->nofail_skb) {
958 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
959 GFP_KERNEL);
960 if (!adap->nofail_skb)
961 ret = -ENOMEM;
962 }
963
964 return ret;
965 }
966
967 static int bind_qsets(struct adapter *adap)
968 {
969 int i, j, err = 0;
970
971 for_each_port(adap, i) {
972 const struct port_info *pi = adap2pinfo(adap, i);
973
974 for (j = 0; j < pi->nqsets; ++j) {
975 int ret = send_pktsched_cmd(adap, 1,
976 pi->first_qset + j, -1,
977 -1, i);
978 if (ret)
979 err = ret;
980 }
981 }
982
983 return err;
984 }
985
986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
987 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
990 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
995 MODULE_FIRMWARE(FW_FNAME);
996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1001
1002 static inline const char *get_edc_fw_name(int edc_idx)
1003 {
1004 const char *fw_name = NULL;
1005
1006 switch (edc_idx) {
1007 case EDC_OPT_AEL2005:
1008 fw_name = AEL2005_OPT_EDC_NAME;
1009 break;
1010 case EDC_TWX_AEL2005:
1011 fw_name = AEL2005_TWX_EDC_NAME;
1012 break;
1013 case EDC_TWX_AEL2020:
1014 fw_name = AEL2020_TWX_EDC_NAME;
1015 break;
1016 }
1017 return fw_name;
1018 }
1019
1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1021 {
1022 struct adapter *adapter = phy->adapter;
1023 const struct firmware *fw;
1024 char buf[64];
1025 u32 csum;
1026 const __be32 *p;
1027 u16 *cache = phy->phy_cache;
1028 int i, ret;
1029
1030 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1031
1032 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1033 if (ret < 0) {
1034 dev_err(&adapter->pdev->dev,
1035 "could not upgrade firmware: unable to load %s\n",
1036 buf);
1037 return ret;
1038 }
1039
1040 /* check size, take checksum in account */
1041 if (fw->size > size + 4) {
1042 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1043 (unsigned int)fw->size, size + 4);
1044 ret = -EINVAL;
1045 }
1046
1047 /* compute checksum */
1048 p = (const __be32 *)fw->data;
1049 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1050 csum += ntohl(p[i]);
1051
1052 if (csum != 0xffffffff) {
1053 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1054 csum);
1055 ret = -EINVAL;
1056 }
1057
1058 for (i = 0; i < size / 4 ; i++) {
1059 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1060 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1061 }
1062
1063 release_firmware(fw);
1064
1065 return ret;
1066 }
1067
1068 static int upgrade_fw(struct adapter *adap)
1069 {
1070 int ret;
1071 const struct firmware *fw;
1072 struct device *dev = &adap->pdev->dev;
1073
1074 ret = request_firmware(&fw, FW_FNAME, dev);
1075 if (ret < 0) {
1076 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1077 FW_FNAME);
1078 return ret;
1079 }
1080 ret = t3_load_fw(adap, fw->data, fw->size);
1081 release_firmware(fw);
1082
1083 if (ret == 0)
1084 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1085 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1086 else
1087 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1088 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1089
1090 return ret;
1091 }
1092
1093 static inline char t3rev2char(struct adapter *adapter)
1094 {
1095 char rev = 0;
1096
1097 switch(adapter->params.rev) {
1098 case T3_REV_B:
1099 case T3_REV_B2:
1100 rev = 'b';
1101 break;
1102 case T3_REV_C:
1103 rev = 'c';
1104 break;
1105 }
1106 return rev;
1107 }
1108
1109 static int update_tpsram(struct adapter *adap)
1110 {
1111 const struct firmware *tpsram;
1112 char buf[64];
1113 struct device *dev = &adap->pdev->dev;
1114 int ret;
1115 char rev;
1116
1117 rev = t3rev2char(adap);
1118 if (!rev)
1119 return 0;
1120
1121 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1122
1123 ret = request_firmware(&tpsram, buf, dev);
1124 if (ret < 0) {
1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126 buf);
1127 return ret;
1128 }
1129
1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131 if (ret)
1132 goto release_tpsram;
1133
1134 ret = t3_set_proto_sram(adap, tpsram->data);
1135 if (ret == 0)
1136 dev_info(dev,
1137 "successful update of protocol engine "
1138 "to %d.%d.%d\n",
1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140 else
1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143 if (ret)
1144 dev_err(dev, "loading protocol SRAM failed\n");
1145
1146 release_tpsram:
1147 release_firmware(tpsram);
1148
1149 return ret;
1150 }
1151
1152 /**
1153 * cxgb_up - enable the adapter
1154 * @adapter: adapter being enabled
1155 *
1156 * Called when the first port is enabled, this function performs the
1157 * actions necessary to make an adapter operational, such as completing
1158 * the initialization of HW modules, and enabling interrupts.
1159 *
1160 * Must be called with the rtnl lock held.
1161 */
1162 static int cxgb_up(struct adapter *adap)
1163 {
1164 int err;
1165
1166 if (!(adap->flags & FULL_INIT_DONE)) {
1167 err = t3_check_fw_version(adap);
1168 if (err == -EINVAL) {
1169 err = upgrade_fw(adap);
1170 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1171 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1172 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1173 }
1174
1175 err = t3_check_tpsram_version(adap);
1176 if (err == -EINVAL) {
1177 err = update_tpsram(adap);
1178 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1179 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1180 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1181 }
1182
1183 /*
1184 * Clear interrupts now to catch errors if t3_init_hw fails.
1185 * We clear them again later as initialization may trigger
1186 * conditions that can interrupt.
1187 */
1188 t3_intr_clear(adap);
1189
1190 err = t3_init_hw(adap, 0);
1191 if (err)
1192 goto out;
1193
1194 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1195 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1196
1197 err = setup_sge_qsets(adap);
1198 if (err)
1199 goto out;
1200
1201 setup_rss(adap);
1202 if (!(adap->flags & NAPI_INIT))
1203 init_napi(adap);
1204
1205 t3_start_sge_timers(adap);
1206 adap->flags |= FULL_INIT_DONE;
1207 }
1208
1209 t3_intr_clear(adap);
1210
1211 if (adap->flags & USING_MSIX) {
1212 name_msix_vecs(adap);
1213 err = request_irq(adap->msix_info[0].vec,
1214 t3_async_intr_handler, 0,
1215 adap->msix_info[0].desc, adap);
1216 if (err)
1217 goto irq_err;
1218
1219 err = request_msix_data_irqs(adap);
1220 if (err) {
1221 free_irq(adap->msix_info[0].vec, adap);
1222 goto irq_err;
1223 }
1224 } else if ((err = request_irq(adap->pdev->irq,
1225 t3_intr_handler(adap,
1226 adap->sge.qs[0].rspq.
1227 polling),
1228 (adap->flags & USING_MSI) ?
1229 0 : IRQF_SHARED,
1230 adap->name, adap)))
1231 goto irq_err;
1232
1233 enable_all_napi(adap);
1234 t3_sge_start(adap);
1235 t3_intr_enable(adap);
1236
1237 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1238 is_offload(adap) && init_tp_parity(adap) == 0)
1239 adap->flags |= TP_PARITY_INIT;
1240
1241 if (adap->flags & TP_PARITY_INIT) {
1242 t3_write_reg(adap, A_TP_INT_CAUSE,
1243 F_CMCACHEPERR | F_ARPLUTPERR);
1244 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1245 }
1246
1247 if (!(adap->flags & QUEUES_BOUND)) {
1248 int ret = bind_qsets(adap);
1249
1250 if (ret < 0) {
1251 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1252 t3_intr_disable(adap);
1253 free_irq_resources(adap);
1254 err = ret;
1255 goto out;
1256 }
1257 adap->flags |= QUEUES_BOUND;
1258 }
1259
1260 out:
1261 return err;
1262 irq_err:
1263 CH_ERR(adap, "request_irq failed, err %d\n", err);
1264 goto out;
1265 }
1266
1267 /*
1268 * Release resources when all the ports and offloading have been stopped.
1269 */
1270 static void cxgb_down(struct adapter *adapter, int on_wq)
1271 {
1272 t3_sge_stop(adapter);
1273 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1274 t3_intr_disable(adapter);
1275 spin_unlock_irq(&adapter->work_lock);
1276
1277 free_irq_resources(adapter);
1278 quiesce_rx(adapter);
1279 t3_sge_stop(adapter);
1280 if (!on_wq)
1281 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1282 }
1283
1284 static void schedule_chk_task(struct adapter *adap)
1285 {
1286 unsigned int timeo;
1287
1288 timeo = adap->params.linkpoll_period ?
1289 (HZ * adap->params.linkpoll_period) / 10 :
1290 adap->params.stats_update_period * HZ;
1291 if (timeo)
1292 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1293 }
1294
1295 static int offload_open(struct net_device *dev)
1296 {
1297 struct port_info *pi = netdev_priv(dev);
1298 struct adapter *adapter = pi->adapter;
1299 struct t3cdev *tdev = dev2t3cdev(dev);
1300 int adap_up = adapter->open_device_map & PORT_MASK;
1301 int err;
1302
1303 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1304 return 0;
1305
1306 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1307 goto out;
1308
1309 t3_tp_set_offload_mode(adapter, 1);
1310 tdev->lldev = adapter->port[0];
1311 err = cxgb3_offload_activate(adapter);
1312 if (err)
1313 goto out;
1314
1315 init_port_mtus(adapter);
1316 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1317 adapter->params.b_wnd,
1318 adapter->params.rev == 0 ?
1319 adapter->port[0]->mtu : 0xffff);
1320 init_smt(adapter);
1321
1322 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1323 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1324
1325 /* Call back all registered clients */
1326 cxgb3_add_clients(tdev);
1327
1328 out:
1329 /* restore them in case the offload module has changed them */
1330 if (err) {
1331 t3_tp_set_offload_mode(adapter, 0);
1332 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1333 cxgb3_set_dummy_ops(tdev);
1334 }
1335 return err;
1336 }
1337
1338 static int offload_close(struct t3cdev *tdev)
1339 {
1340 struct adapter *adapter = tdev2adap(tdev);
1341 struct t3c_data *td = T3C_DATA(tdev);
1342
1343 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1344 return 0;
1345
1346 /* Call back all registered clients */
1347 cxgb3_remove_clients(tdev);
1348
1349 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1350
1351 /* Flush work scheduled while releasing TIDs */
1352 flush_work_sync(&td->tid_release_task);
1353
1354 tdev->lldev = NULL;
1355 cxgb3_set_dummy_ops(tdev);
1356 t3_tp_set_offload_mode(adapter, 0);
1357 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1358
1359 if (!adapter->open_device_map)
1360 cxgb_down(adapter, 0);
1361
1362 cxgb3_offload_deactivate(adapter);
1363 return 0;
1364 }
1365
1366 static int cxgb_open(struct net_device *dev)
1367 {
1368 struct port_info *pi = netdev_priv(dev);
1369 struct adapter *adapter = pi->adapter;
1370 int other_ports = adapter->open_device_map & PORT_MASK;
1371 int err;
1372
1373 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1374 return err;
1375
1376 set_bit(pi->port_id, &adapter->open_device_map);
1377 if (is_offload(adapter) && !ofld_disable) {
1378 err = offload_open(dev);
1379 if (err)
1380 printk(KERN_WARNING
1381 "Could not initialize offload capabilities\n");
1382 }
1383
1384 netif_set_real_num_tx_queues(dev, pi->nqsets);
1385 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1386 if (err)
1387 return err;
1388 link_start(dev);
1389 t3_port_intr_enable(adapter, pi->port_id);
1390 netif_tx_start_all_queues(dev);
1391 if (!other_ports)
1392 schedule_chk_task(adapter);
1393
1394 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1395 return 0;
1396 }
1397
1398 static int __cxgb_close(struct net_device *dev, int on_wq)
1399 {
1400 struct port_info *pi = netdev_priv(dev);
1401 struct adapter *adapter = pi->adapter;
1402
1403
1404 if (!adapter->open_device_map)
1405 return 0;
1406
1407 /* Stop link fault interrupts */
1408 t3_xgm_intr_disable(adapter, pi->port_id);
1409 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1410
1411 t3_port_intr_disable(adapter, pi->port_id);
1412 netif_tx_stop_all_queues(dev);
1413 pi->phy.ops->power_down(&pi->phy, 1);
1414 netif_carrier_off(dev);
1415 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1416
1417 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1418 clear_bit(pi->port_id, &adapter->open_device_map);
1419 spin_unlock_irq(&adapter->work_lock);
1420
1421 if (!(adapter->open_device_map & PORT_MASK))
1422 cancel_delayed_work_sync(&adapter->adap_check_task);
1423
1424 if (!adapter->open_device_map)
1425 cxgb_down(adapter, on_wq);
1426
1427 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1428 return 0;
1429 }
1430
1431 static int cxgb_close(struct net_device *dev)
1432 {
1433 return __cxgb_close(dev, 0);
1434 }
1435
1436 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1437 {
1438 struct port_info *pi = netdev_priv(dev);
1439 struct adapter *adapter = pi->adapter;
1440 struct net_device_stats *ns = &pi->netstats;
1441 const struct mac_stats *pstats;
1442
1443 spin_lock(&adapter->stats_lock);
1444 pstats = t3_mac_update_stats(&pi->mac);
1445 spin_unlock(&adapter->stats_lock);
1446
1447 ns->tx_bytes = pstats->tx_octets;
1448 ns->tx_packets = pstats->tx_frames;
1449 ns->rx_bytes = pstats->rx_octets;
1450 ns->rx_packets = pstats->rx_frames;
1451 ns->multicast = pstats->rx_mcast_frames;
1452
1453 ns->tx_errors = pstats->tx_underrun;
1454 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1455 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1456 pstats->rx_fifo_ovfl;
1457
1458 /* detailed rx_errors */
1459 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1460 ns->rx_over_errors = 0;
1461 ns->rx_crc_errors = pstats->rx_fcs_errs;
1462 ns->rx_frame_errors = pstats->rx_symbol_errs;
1463 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1464 ns->rx_missed_errors = pstats->rx_cong_drops;
1465
1466 /* detailed tx_errors */
1467 ns->tx_aborted_errors = 0;
1468 ns->tx_carrier_errors = 0;
1469 ns->tx_fifo_errors = pstats->tx_underrun;
1470 ns->tx_heartbeat_errors = 0;
1471 ns->tx_window_errors = 0;
1472 return ns;
1473 }
1474
1475 static u32 get_msglevel(struct net_device *dev)
1476 {
1477 struct port_info *pi = netdev_priv(dev);
1478 struct adapter *adapter = pi->adapter;
1479
1480 return adapter->msg_enable;
1481 }
1482
1483 static void set_msglevel(struct net_device *dev, u32 val)
1484 {
1485 struct port_info *pi = netdev_priv(dev);
1486 struct adapter *adapter = pi->adapter;
1487
1488 adapter->msg_enable = val;
1489 }
1490
1491 static char stats_strings[][ETH_GSTRING_LEN] = {
1492 "TxOctetsOK ",
1493 "TxFramesOK ",
1494 "TxMulticastFramesOK",
1495 "TxBroadcastFramesOK",
1496 "TxPauseFrames ",
1497 "TxUnderrun ",
1498 "TxExtUnderrun ",
1499
1500 "TxFrames64 ",
1501 "TxFrames65To127 ",
1502 "TxFrames128To255 ",
1503 "TxFrames256To511 ",
1504 "TxFrames512To1023 ",
1505 "TxFrames1024To1518 ",
1506 "TxFrames1519ToMax ",
1507
1508 "RxOctetsOK ",
1509 "RxFramesOK ",
1510 "RxMulticastFramesOK",
1511 "RxBroadcastFramesOK",
1512 "RxPauseFrames ",
1513 "RxFCSErrors ",
1514 "RxSymbolErrors ",
1515 "RxShortErrors ",
1516 "RxJabberErrors ",
1517 "RxLengthErrors ",
1518 "RxFIFOoverflow ",
1519
1520 "RxFrames64 ",
1521 "RxFrames65To127 ",
1522 "RxFrames128To255 ",
1523 "RxFrames256To511 ",
1524 "RxFrames512To1023 ",
1525 "RxFrames1024To1518 ",
1526 "RxFrames1519ToMax ",
1527
1528 "PhyFIFOErrors ",
1529 "TSO ",
1530 "VLANextractions ",
1531 "VLANinsertions ",
1532 "TxCsumOffload ",
1533 "RxCsumGood ",
1534 "LroAggregated ",
1535 "LroFlushed ",
1536 "LroNoDesc ",
1537 "RxDrops ",
1538
1539 "CheckTXEnToggled ",
1540 "CheckResets ",
1541
1542 "LinkFaults ",
1543 };
1544
1545 static int get_sset_count(struct net_device *dev, int sset)
1546 {
1547 switch (sset) {
1548 case ETH_SS_STATS:
1549 return ARRAY_SIZE(stats_strings);
1550 default:
1551 return -EOPNOTSUPP;
1552 }
1553 }
1554
1555 #define T3_REGMAP_SIZE (3 * 1024)
1556
1557 static int get_regs_len(struct net_device *dev)
1558 {
1559 return T3_REGMAP_SIZE;
1560 }
1561
1562 static int get_eeprom_len(struct net_device *dev)
1563 {
1564 return EEPROMSIZE;
1565 }
1566
1567 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1568 {
1569 struct port_info *pi = netdev_priv(dev);
1570 struct adapter *adapter = pi->adapter;
1571 u32 fw_vers = 0;
1572 u32 tp_vers = 0;
1573
1574 spin_lock(&adapter->stats_lock);
1575 t3_get_fw_version(adapter, &fw_vers);
1576 t3_get_tp_version(adapter, &tp_vers);
1577 spin_unlock(&adapter->stats_lock);
1578
1579 strcpy(info->driver, DRV_NAME);
1580 strcpy(info->version, DRV_VERSION);
1581 strcpy(info->bus_info, pci_name(adapter->pdev));
1582 if (!fw_vers)
1583 strcpy(info->fw_version, "N/A");
1584 else {
1585 snprintf(info->fw_version, sizeof(info->fw_version),
1586 "%s %u.%u.%u TP %u.%u.%u",
1587 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1588 G_FW_VERSION_MAJOR(fw_vers),
1589 G_FW_VERSION_MINOR(fw_vers),
1590 G_FW_VERSION_MICRO(fw_vers),
1591 G_TP_VERSION_MAJOR(tp_vers),
1592 G_TP_VERSION_MINOR(tp_vers),
1593 G_TP_VERSION_MICRO(tp_vers));
1594 }
1595 }
1596
1597 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1598 {
1599 if (stringset == ETH_SS_STATS)
1600 memcpy(data, stats_strings, sizeof(stats_strings));
1601 }
1602
1603 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1604 struct port_info *p, int idx)
1605 {
1606 int i;
1607 unsigned long tot = 0;
1608
1609 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1610 tot += adapter->sge.qs[i].port_stats[idx];
1611 return tot;
1612 }
1613
1614 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1615 u64 *data)
1616 {
1617 struct port_info *pi = netdev_priv(dev);
1618 struct adapter *adapter = pi->adapter;
1619 const struct mac_stats *s;
1620
1621 spin_lock(&adapter->stats_lock);
1622 s = t3_mac_update_stats(&pi->mac);
1623 spin_unlock(&adapter->stats_lock);
1624
1625 *data++ = s->tx_octets;
1626 *data++ = s->tx_frames;
1627 *data++ = s->tx_mcast_frames;
1628 *data++ = s->tx_bcast_frames;
1629 *data++ = s->tx_pause;
1630 *data++ = s->tx_underrun;
1631 *data++ = s->tx_fifo_urun;
1632
1633 *data++ = s->tx_frames_64;
1634 *data++ = s->tx_frames_65_127;
1635 *data++ = s->tx_frames_128_255;
1636 *data++ = s->tx_frames_256_511;
1637 *data++ = s->tx_frames_512_1023;
1638 *data++ = s->tx_frames_1024_1518;
1639 *data++ = s->tx_frames_1519_max;
1640
1641 *data++ = s->rx_octets;
1642 *data++ = s->rx_frames;
1643 *data++ = s->rx_mcast_frames;
1644 *data++ = s->rx_bcast_frames;
1645 *data++ = s->rx_pause;
1646 *data++ = s->rx_fcs_errs;
1647 *data++ = s->rx_symbol_errs;
1648 *data++ = s->rx_short;
1649 *data++ = s->rx_jabber;
1650 *data++ = s->rx_too_long;
1651 *data++ = s->rx_fifo_ovfl;
1652
1653 *data++ = s->rx_frames_64;
1654 *data++ = s->rx_frames_65_127;
1655 *data++ = s->rx_frames_128_255;
1656 *data++ = s->rx_frames_256_511;
1657 *data++ = s->rx_frames_512_1023;
1658 *data++ = s->rx_frames_1024_1518;
1659 *data++ = s->rx_frames_1519_max;
1660
1661 *data++ = pi->phy.fifo_errors;
1662
1663 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1664 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1665 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1666 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1667 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1668 *data++ = 0;
1669 *data++ = 0;
1670 *data++ = 0;
1671 *data++ = s->rx_cong_drops;
1672
1673 *data++ = s->num_toggled;
1674 *data++ = s->num_resets;
1675
1676 *data++ = s->link_faults;
1677 }
1678
1679 static inline void reg_block_dump(struct adapter *ap, void *buf,
1680 unsigned int start, unsigned int end)
1681 {
1682 u32 *p = buf + start;
1683
1684 for (; start <= end; start += sizeof(u32))
1685 *p++ = t3_read_reg(ap, start);
1686 }
1687
1688 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1689 void *buf)
1690 {
1691 struct port_info *pi = netdev_priv(dev);
1692 struct adapter *ap = pi->adapter;
1693
1694 /*
1695 * Version scheme:
1696 * bits 0..9: chip version
1697 * bits 10..15: chip revision
1698 * bit 31: set for PCIe cards
1699 */
1700 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1701
1702 /*
1703 * We skip the MAC statistics registers because they are clear-on-read.
1704 * Also reading multi-register stats would need to synchronize with the
1705 * periodic mac stats accumulation. Hard to justify the complexity.
1706 */
1707 memset(buf, 0, T3_REGMAP_SIZE);
1708 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1709 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1710 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1711 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1712 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1713 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1714 XGM_REG(A_XGM_SERDES_STAT3, 1));
1715 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1716 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1717 }
1718
1719 static int restart_autoneg(struct net_device *dev)
1720 {
1721 struct port_info *p = netdev_priv(dev);
1722
1723 if (!netif_running(dev))
1724 return -EAGAIN;
1725 if (p->link_config.autoneg != AUTONEG_ENABLE)
1726 return -EINVAL;
1727 p->phy.ops->autoneg_restart(&p->phy);
1728 return 0;
1729 }
1730
1731 static int set_phys_id(struct net_device *dev,
1732 enum ethtool_phys_id_state state)
1733 {
1734 struct port_info *pi = netdev_priv(dev);
1735 struct adapter *adapter = pi->adapter;
1736
1737 switch (state) {
1738 case ETHTOOL_ID_ACTIVE:
1739 return 1; /* cycle on/off once per second */
1740
1741 case ETHTOOL_ID_OFF:
1742 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1743 break;
1744
1745 case ETHTOOL_ID_ON:
1746 case ETHTOOL_ID_INACTIVE:
1747 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1748 F_GPIO0_OUT_VAL);
1749 }
1750
1751 return 0;
1752 }
1753
1754 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1755 {
1756 struct port_info *p = netdev_priv(dev);
1757
1758 cmd->supported = p->link_config.supported;
1759 cmd->advertising = p->link_config.advertising;
1760
1761 if (netif_carrier_ok(dev)) {
1762 cmd->speed = p->link_config.speed;
1763 cmd->duplex = p->link_config.duplex;
1764 } else {
1765 cmd->speed = -1;
1766 cmd->duplex = -1;
1767 }
1768
1769 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1770 cmd->phy_address = p->phy.mdio.prtad;
1771 cmd->transceiver = XCVR_EXTERNAL;
1772 cmd->autoneg = p->link_config.autoneg;
1773 cmd->maxtxpkt = 0;
1774 cmd->maxrxpkt = 0;
1775 return 0;
1776 }
1777
1778 static int speed_duplex_to_caps(int speed, int duplex)
1779 {
1780 int cap = 0;
1781
1782 switch (speed) {
1783 case SPEED_10:
1784 if (duplex == DUPLEX_FULL)
1785 cap = SUPPORTED_10baseT_Full;
1786 else
1787 cap = SUPPORTED_10baseT_Half;
1788 break;
1789 case SPEED_100:
1790 if (duplex == DUPLEX_FULL)
1791 cap = SUPPORTED_100baseT_Full;
1792 else
1793 cap = SUPPORTED_100baseT_Half;
1794 break;
1795 case SPEED_1000:
1796 if (duplex == DUPLEX_FULL)
1797 cap = SUPPORTED_1000baseT_Full;
1798 else
1799 cap = SUPPORTED_1000baseT_Half;
1800 break;
1801 case SPEED_10000:
1802 if (duplex == DUPLEX_FULL)
1803 cap = SUPPORTED_10000baseT_Full;
1804 }
1805 return cap;
1806 }
1807
1808 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1809 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1810 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1811 ADVERTISED_10000baseT_Full)
1812
1813 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1814 {
1815 struct port_info *p = netdev_priv(dev);
1816 struct link_config *lc = &p->link_config;
1817
1818 if (!(lc->supported & SUPPORTED_Autoneg)) {
1819 /*
1820 * PHY offers a single speed/duplex. See if that's what's
1821 * being requested.
1822 */
1823 if (cmd->autoneg == AUTONEG_DISABLE) {
1824 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1825 if (lc->supported & cap)
1826 return 0;
1827 }
1828 return -EINVAL;
1829 }
1830
1831 if (cmd->autoneg == AUTONEG_DISABLE) {
1832 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1833
1834 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1835 return -EINVAL;
1836 lc->requested_speed = cmd->speed;
1837 lc->requested_duplex = cmd->duplex;
1838 lc->advertising = 0;
1839 } else {
1840 cmd->advertising &= ADVERTISED_MASK;
1841 cmd->advertising &= lc->supported;
1842 if (!cmd->advertising)
1843 return -EINVAL;
1844 lc->requested_speed = SPEED_INVALID;
1845 lc->requested_duplex = DUPLEX_INVALID;
1846 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1847 }
1848 lc->autoneg = cmd->autoneg;
1849 if (netif_running(dev))
1850 t3_link_start(&p->phy, &p->mac, lc);
1851 return 0;
1852 }
1853
1854 static void get_pauseparam(struct net_device *dev,
1855 struct ethtool_pauseparam *epause)
1856 {
1857 struct port_info *p = netdev_priv(dev);
1858
1859 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1860 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1861 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1862 }
1863
1864 static int set_pauseparam(struct net_device *dev,
1865 struct ethtool_pauseparam *epause)
1866 {
1867 struct port_info *p = netdev_priv(dev);
1868 struct link_config *lc = &p->link_config;
1869
1870 if (epause->autoneg == AUTONEG_DISABLE)
1871 lc->requested_fc = 0;
1872 else if (lc->supported & SUPPORTED_Autoneg)
1873 lc->requested_fc = PAUSE_AUTONEG;
1874 else
1875 return -EINVAL;
1876
1877 if (epause->rx_pause)
1878 lc->requested_fc |= PAUSE_RX;
1879 if (epause->tx_pause)
1880 lc->requested_fc |= PAUSE_TX;
1881 if (lc->autoneg == AUTONEG_ENABLE) {
1882 if (netif_running(dev))
1883 t3_link_start(&p->phy, &p->mac, lc);
1884 } else {
1885 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1886 if (netif_running(dev))
1887 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1888 }
1889 return 0;
1890 }
1891
1892 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1893 {
1894 struct port_info *pi = netdev_priv(dev);
1895 struct adapter *adapter = pi->adapter;
1896 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1897
1898 e->rx_max_pending = MAX_RX_BUFFERS;
1899 e->rx_mini_max_pending = 0;
1900 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1901 e->tx_max_pending = MAX_TXQ_ENTRIES;
1902
1903 e->rx_pending = q->fl_size;
1904 e->rx_mini_pending = q->rspq_size;
1905 e->rx_jumbo_pending = q->jumbo_size;
1906 e->tx_pending = q->txq_size[0];
1907 }
1908
1909 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1910 {
1911 struct port_info *pi = netdev_priv(dev);
1912 struct adapter *adapter = pi->adapter;
1913 struct qset_params *q;
1914 int i;
1915
1916 if (e->rx_pending > MAX_RX_BUFFERS ||
1917 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1918 e->tx_pending > MAX_TXQ_ENTRIES ||
1919 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1920 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1921 e->rx_pending < MIN_FL_ENTRIES ||
1922 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1923 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1924 return -EINVAL;
1925
1926 if (adapter->flags & FULL_INIT_DONE)
1927 return -EBUSY;
1928
1929 q = &adapter->params.sge.qset[pi->first_qset];
1930 for (i = 0; i < pi->nqsets; ++i, ++q) {
1931 q->rspq_size = e->rx_mini_pending;
1932 q->fl_size = e->rx_pending;
1933 q->jumbo_size = e->rx_jumbo_pending;
1934 q->txq_size[0] = e->tx_pending;
1935 q->txq_size[1] = e->tx_pending;
1936 q->txq_size[2] = e->tx_pending;
1937 }
1938 return 0;
1939 }
1940
1941 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1942 {
1943 struct port_info *pi = netdev_priv(dev);
1944 struct adapter *adapter = pi->adapter;
1945 struct qset_params *qsp;
1946 struct sge_qset *qs;
1947 int i;
1948
1949 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1950 return -EINVAL;
1951
1952 for (i = 0; i < pi->nqsets; i++) {
1953 qsp = &adapter->params.sge.qset[i];
1954 qs = &adapter->sge.qs[i];
1955 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1956 t3_update_qset_coalesce(qs, qsp);
1957 }
1958
1959 return 0;
1960 }
1961
1962 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1963 {
1964 struct port_info *pi = netdev_priv(dev);
1965 struct adapter *adapter = pi->adapter;
1966 struct qset_params *q = adapter->params.sge.qset;
1967
1968 c->rx_coalesce_usecs = q->coalesce_usecs;
1969 return 0;
1970 }
1971
1972 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1973 u8 * data)
1974 {
1975 struct port_info *pi = netdev_priv(dev);
1976 struct adapter *adapter = pi->adapter;
1977 int i, err = 0;
1978
1979 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1980 if (!buf)
1981 return -ENOMEM;
1982
1983 e->magic = EEPROM_MAGIC;
1984 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1985 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1986
1987 if (!err)
1988 memcpy(data, buf + e->offset, e->len);
1989 kfree(buf);
1990 return err;
1991 }
1992
1993 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1994 u8 * data)
1995 {
1996 struct port_info *pi = netdev_priv(dev);
1997 struct adapter *adapter = pi->adapter;
1998 u32 aligned_offset, aligned_len;
1999 __le32 *p;
2000 u8 *buf;
2001 int err;
2002
2003 if (eeprom->magic != EEPROM_MAGIC)
2004 return -EINVAL;
2005
2006 aligned_offset = eeprom->offset & ~3;
2007 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2008
2009 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2010 buf = kmalloc(aligned_len, GFP_KERNEL);
2011 if (!buf)
2012 return -ENOMEM;
2013 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2014 if (!err && aligned_len > 4)
2015 err = t3_seeprom_read(adapter,
2016 aligned_offset + aligned_len - 4,
2017 (__le32 *) & buf[aligned_len - 4]);
2018 if (err)
2019 goto out;
2020 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2021 } else
2022 buf = data;
2023
2024 err = t3_seeprom_wp(adapter, 0);
2025 if (err)
2026 goto out;
2027
2028 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2029 err = t3_seeprom_write(adapter, aligned_offset, *p);
2030 aligned_offset += 4;
2031 }
2032
2033 if (!err)
2034 err = t3_seeprom_wp(adapter, 1);
2035 out:
2036 if (buf != data)
2037 kfree(buf);
2038 return err;
2039 }
2040
2041 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2042 {
2043 wol->supported = 0;
2044 wol->wolopts = 0;
2045 memset(&wol->sopass, 0, sizeof(wol->sopass));
2046 }
2047
2048 static const struct ethtool_ops cxgb_ethtool_ops = {
2049 .get_settings = get_settings,
2050 .set_settings = set_settings,
2051 .get_drvinfo = get_drvinfo,
2052 .get_msglevel = get_msglevel,
2053 .set_msglevel = set_msglevel,
2054 .get_ringparam = get_sge_param,
2055 .set_ringparam = set_sge_param,
2056 .get_coalesce = get_coalesce,
2057 .set_coalesce = set_coalesce,
2058 .get_eeprom_len = get_eeprom_len,
2059 .get_eeprom = get_eeprom,
2060 .set_eeprom = set_eeprom,
2061 .get_pauseparam = get_pauseparam,
2062 .set_pauseparam = set_pauseparam,
2063 .get_link = ethtool_op_get_link,
2064 .get_strings = get_strings,
2065 .set_phys_id = set_phys_id,
2066 .nway_reset = restart_autoneg,
2067 .get_sset_count = get_sset_count,
2068 .get_ethtool_stats = get_stats,
2069 .get_regs_len = get_regs_len,
2070 .get_regs = get_regs,
2071 .get_wol = get_wol,
2072 };
2073
2074 static int in_range(int val, int lo, int hi)
2075 {
2076 return val < 0 || (val <= hi && val >= lo);
2077 }
2078
2079 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2080 {
2081 struct port_info *pi = netdev_priv(dev);
2082 struct adapter *adapter = pi->adapter;
2083 u32 cmd;
2084 int ret;
2085
2086 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2087 return -EFAULT;
2088
2089 switch (cmd) {
2090 case CHELSIO_SET_QSET_PARAMS:{
2091 int i;
2092 struct qset_params *q;
2093 struct ch_qset_params t;
2094 int q1 = pi->first_qset;
2095 int nqsets = pi->nqsets;
2096
2097 if (!capable(CAP_NET_ADMIN))
2098 return -EPERM;
2099 if (copy_from_user(&t, useraddr, sizeof(t)))
2100 return -EFAULT;
2101 if (t.qset_idx >= SGE_QSETS)
2102 return -EINVAL;
2103 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2104 !in_range(t.cong_thres, 0, 255) ||
2105 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2106 MAX_TXQ_ENTRIES) ||
2107 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2108 MAX_TXQ_ENTRIES) ||
2109 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2110 MAX_CTRL_TXQ_ENTRIES) ||
2111 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2112 MAX_RX_BUFFERS) ||
2113 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2114 MAX_RX_JUMBO_BUFFERS) ||
2115 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2116 MAX_RSPQ_ENTRIES))
2117 return -EINVAL;
2118
2119 if ((adapter->flags & FULL_INIT_DONE) &&
2120 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2121 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2122 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2123 t.polling >= 0 || t.cong_thres >= 0))
2124 return -EBUSY;
2125
2126 /* Allow setting of any available qset when offload enabled */
2127 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2128 q1 = 0;
2129 for_each_port(adapter, i) {
2130 pi = adap2pinfo(adapter, i);
2131 nqsets += pi->first_qset + pi->nqsets;
2132 }
2133 }
2134
2135 if (t.qset_idx < q1)
2136 return -EINVAL;
2137 if (t.qset_idx > q1 + nqsets - 1)
2138 return -EINVAL;
2139
2140 q = &adapter->params.sge.qset[t.qset_idx];
2141
2142 if (t.rspq_size >= 0)
2143 q->rspq_size = t.rspq_size;
2144 if (t.fl_size[0] >= 0)
2145 q->fl_size = t.fl_size[0];
2146 if (t.fl_size[1] >= 0)
2147 q->jumbo_size = t.fl_size[1];
2148 if (t.txq_size[0] >= 0)
2149 q->txq_size[0] = t.txq_size[0];
2150 if (t.txq_size[1] >= 0)
2151 q->txq_size[1] = t.txq_size[1];
2152 if (t.txq_size[2] >= 0)
2153 q->txq_size[2] = t.txq_size[2];
2154 if (t.cong_thres >= 0)
2155 q->cong_thres = t.cong_thres;
2156 if (t.intr_lat >= 0) {
2157 struct sge_qset *qs =
2158 &adapter->sge.qs[t.qset_idx];
2159
2160 q->coalesce_usecs = t.intr_lat;
2161 t3_update_qset_coalesce(qs, q);
2162 }
2163 if (t.polling >= 0) {
2164 if (adapter->flags & USING_MSIX)
2165 q->polling = t.polling;
2166 else {
2167 /* No polling with INTx for T3A */
2168 if (adapter->params.rev == 0 &&
2169 !(adapter->flags & USING_MSI))
2170 t.polling = 0;
2171
2172 for (i = 0; i < SGE_QSETS; i++) {
2173 q = &adapter->params.sge.
2174 qset[i];
2175 q->polling = t.polling;
2176 }
2177 }
2178 }
2179
2180 if (t.lro >= 0) {
2181 if (t.lro)
2182 dev->wanted_features |= NETIF_F_GRO;
2183 else
2184 dev->wanted_features &= ~NETIF_F_GRO;
2185 netdev_update_features(dev);
2186 }
2187
2188 break;
2189 }
2190 case CHELSIO_GET_QSET_PARAMS:{
2191 struct qset_params *q;
2192 struct ch_qset_params t;
2193 int q1 = pi->first_qset;
2194 int nqsets = pi->nqsets;
2195 int i;
2196
2197 if (copy_from_user(&t, useraddr, sizeof(t)))
2198 return -EFAULT;
2199
2200 /* Display qsets for all ports when offload enabled */
2201 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2202 q1 = 0;
2203 for_each_port(adapter, i) {
2204 pi = adap2pinfo(adapter, i);
2205 nqsets = pi->first_qset + pi->nqsets;
2206 }
2207 }
2208
2209 if (t.qset_idx >= nqsets)
2210 return -EINVAL;
2211
2212 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2213 t.rspq_size = q->rspq_size;
2214 t.txq_size[0] = q->txq_size[0];
2215 t.txq_size[1] = q->txq_size[1];
2216 t.txq_size[2] = q->txq_size[2];
2217 t.fl_size[0] = q->fl_size;
2218 t.fl_size[1] = q->jumbo_size;
2219 t.polling = q->polling;
2220 t.lro = !!(dev->features & NETIF_F_GRO);
2221 t.intr_lat = q->coalesce_usecs;
2222 t.cong_thres = q->cong_thres;
2223 t.qnum = q1;
2224
2225 if (adapter->flags & USING_MSIX)
2226 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2227 else
2228 t.vector = adapter->pdev->irq;
2229
2230 if (copy_to_user(useraddr, &t, sizeof(t)))
2231 return -EFAULT;
2232 break;
2233 }
2234 case CHELSIO_SET_QSET_NUM:{
2235 struct ch_reg edata;
2236 unsigned int i, first_qset = 0, other_qsets = 0;
2237
2238 if (!capable(CAP_NET_ADMIN))
2239 return -EPERM;
2240 if (adapter->flags & FULL_INIT_DONE)
2241 return -EBUSY;
2242 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2243 return -EFAULT;
2244 if (edata.val < 1 ||
2245 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2246 return -EINVAL;
2247
2248 for_each_port(adapter, i)
2249 if (adapter->port[i] && adapter->port[i] != dev)
2250 other_qsets += adap2pinfo(adapter, i)->nqsets;
2251
2252 if (edata.val + other_qsets > SGE_QSETS)
2253 return -EINVAL;
2254
2255 pi->nqsets = edata.val;
2256
2257 for_each_port(adapter, i)
2258 if (adapter->port[i]) {
2259 pi = adap2pinfo(adapter, i);
2260 pi->first_qset = first_qset;
2261 first_qset += pi->nqsets;
2262 }
2263 break;
2264 }
2265 case CHELSIO_GET_QSET_NUM:{
2266 struct ch_reg edata;
2267
2268 memset(&edata, 0, sizeof(struct ch_reg));
2269
2270 edata.cmd = CHELSIO_GET_QSET_NUM;
2271 edata.val = pi->nqsets;
2272 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2273 return -EFAULT;
2274 break;
2275 }
2276 case CHELSIO_LOAD_FW:{
2277 u8 *fw_data;
2278 struct ch_mem_range t;
2279
2280 if (!capable(CAP_SYS_RAWIO))
2281 return -EPERM;
2282 if (copy_from_user(&t, useraddr, sizeof(t)))
2283 return -EFAULT;
2284 /* Check t.len sanity ? */
2285 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2286 if (IS_ERR(fw_data))
2287 return PTR_ERR(fw_data);
2288
2289 ret = t3_load_fw(adapter, fw_data, t.len);
2290 kfree(fw_data);
2291 if (ret)
2292 return ret;
2293 break;
2294 }
2295 case CHELSIO_SETMTUTAB:{
2296 struct ch_mtus m;
2297 int i;
2298
2299 if (!is_offload(adapter))
2300 return -EOPNOTSUPP;
2301 if (!capable(CAP_NET_ADMIN))
2302 return -EPERM;
2303 if (offload_running(adapter))
2304 return -EBUSY;
2305 if (copy_from_user(&m, useraddr, sizeof(m)))
2306 return -EFAULT;
2307 if (m.nmtus != NMTUS)
2308 return -EINVAL;
2309 if (m.mtus[0] < 81) /* accommodate SACK */
2310 return -EINVAL;
2311
2312 /* MTUs must be in ascending order */
2313 for (i = 1; i < NMTUS; ++i)
2314 if (m.mtus[i] < m.mtus[i - 1])
2315 return -EINVAL;
2316
2317 memcpy(adapter->params.mtus, m.mtus,
2318 sizeof(adapter->params.mtus));
2319 break;
2320 }
2321 case CHELSIO_GET_PM:{
2322 struct tp_params *p = &adapter->params.tp;
2323 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2324
2325 if (!is_offload(adapter))
2326 return -EOPNOTSUPP;
2327 m.tx_pg_sz = p->tx_pg_size;
2328 m.tx_num_pg = p->tx_num_pgs;
2329 m.rx_pg_sz = p->rx_pg_size;
2330 m.rx_num_pg = p->rx_num_pgs;
2331 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2332 if (copy_to_user(useraddr, &m, sizeof(m)))
2333 return -EFAULT;
2334 break;
2335 }
2336 case CHELSIO_SET_PM:{
2337 struct ch_pm m;
2338 struct tp_params *p = &adapter->params.tp;
2339
2340 if (!is_offload(adapter))
2341 return -EOPNOTSUPP;
2342 if (!capable(CAP_NET_ADMIN))
2343 return -EPERM;
2344 if (adapter->flags & FULL_INIT_DONE)
2345 return -EBUSY;
2346 if (copy_from_user(&m, useraddr, sizeof(m)))
2347 return -EFAULT;
2348 if (!is_power_of_2(m.rx_pg_sz) ||
2349 !is_power_of_2(m.tx_pg_sz))
2350 return -EINVAL; /* not power of 2 */
2351 if (!(m.rx_pg_sz & 0x14000))
2352 return -EINVAL; /* not 16KB or 64KB */
2353 if (!(m.tx_pg_sz & 0x1554000))
2354 return -EINVAL;
2355 if (m.tx_num_pg == -1)
2356 m.tx_num_pg = p->tx_num_pgs;
2357 if (m.rx_num_pg == -1)
2358 m.rx_num_pg = p->rx_num_pgs;
2359 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2360 return -EINVAL;
2361 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2362 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2363 return -EINVAL;
2364 p->rx_pg_size = m.rx_pg_sz;
2365 p->tx_pg_size = m.tx_pg_sz;
2366 p->rx_num_pgs = m.rx_num_pg;
2367 p->tx_num_pgs = m.tx_num_pg;
2368 break;
2369 }
2370 case CHELSIO_GET_MEM:{
2371 struct ch_mem_range t;
2372 struct mc7 *mem;
2373 u64 buf[32];
2374
2375 if (!is_offload(adapter))
2376 return -EOPNOTSUPP;
2377 if (!(adapter->flags & FULL_INIT_DONE))
2378 return -EIO; /* need the memory controllers */
2379 if (copy_from_user(&t, useraddr, sizeof(t)))
2380 return -EFAULT;
2381 if ((t.addr & 7) || (t.len & 7))
2382 return -EINVAL;
2383 if (t.mem_id == MEM_CM)
2384 mem = &adapter->cm;
2385 else if (t.mem_id == MEM_PMRX)
2386 mem = &adapter->pmrx;
2387 else if (t.mem_id == MEM_PMTX)
2388 mem = &adapter->pmtx;
2389 else
2390 return -EINVAL;
2391
2392 /*
2393 * Version scheme:
2394 * bits 0..9: chip version
2395 * bits 10..15: chip revision
2396 */
2397 t.version = 3 | (adapter->params.rev << 10);
2398 if (copy_to_user(useraddr, &t, sizeof(t)))
2399 return -EFAULT;
2400
2401 /*
2402 * Read 256 bytes at a time as len can be large and we don't
2403 * want to use huge intermediate buffers.
2404 */
2405 useraddr += sizeof(t); /* advance to start of buffer */
2406 while (t.len) {
2407 unsigned int chunk =
2408 min_t(unsigned int, t.len, sizeof(buf));
2409
2410 ret =
2411 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2412 buf);
2413 if (ret)
2414 return ret;
2415 if (copy_to_user(useraddr, buf, chunk))
2416 return -EFAULT;
2417 useraddr += chunk;
2418 t.addr += chunk;
2419 t.len -= chunk;
2420 }
2421 break;
2422 }
2423 case CHELSIO_SET_TRACE_FILTER:{
2424 struct ch_trace t;
2425 const struct trace_params *tp;
2426
2427 if (!capable(CAP_NET_ADMIN))
2428 return -EPERM;
2429 if (!offload_running(adapter))
2430 return -EAGAIN;
2431 if (copy_from_user(&t, useraddr, sizeof(t)))
2432 return -EFAULT;
2433
2434 tp = (const struct trace_params *)&t.sip;
2435 if (t.config_tx)
2436 t3_config_trace_filter(adapter, tp, 0,
2437 t.invert_match,
2438 t.trace_tx);
2439 if (t.config_rx)
2440 t3_config_trace_filter(adapter, tp, 1,
2441 t.invert_match,
2442 t.trace_rx);
2443 break;
2444 }
2445 default:
2446 return -EOPNOTSUPP;
2447 }
2448 return 0;
2449 }
2450
2451 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2452 {
2453 struct mii_ioctl_data *data = if_mii(req);
2454 struct port_info *pi = netdev_priv(dev);
2455 struct adapter *adapter = pi->adapter;
2456
2457 switch (cmd) {
2458 case SIOCGMIIREG:
2459 case SIOCSMIIREG:
2460 /* Convert phy_id from older PRTAD/DEVAD format */
2461 if (is_10G(adapter) &&
2462 !mdio_phy_id_is_c45(data->phy_id) &&
2463 (data->phy_id & 0x1f00) &&
2464 !(data->phy_id & 0xe0e0))
2465 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2466 data->phy_id & 0x1f);
2467 /* FALLTHRU */
2468 case SIOCGMIIPHY:
2469 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2470 case SIOCCHIOCTL:
2471 return cxgb_extension_ioctl(dev, req->ifr_data);
2472 default:
2473 return -EOPNOTSUPP;
2474 }
2475 }
2476
2477 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2478 {
2479 struct port_info *pi = netdev_priv(dev);
2480 struct adapter *adapter = pi->adapter;
2481 int ret;
2482
2483 if (new_mtu < 81) /* accommodate SACK */
2484 return -EINVAL;
2485 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2486 return ret;
2487 dev->mtu = new_mtu;
2488 init_port_mtus(adapter);
2489 if (adapter->params.rev == 0 && offload_running(adapter))
2490 t3_load_mtus(adapter, adapter->params.mtus,
2491 adapter->params.a_wnd, adapter->params.b_wnd,
2492 adapter->port[0]->mtu);
2493 return 0;
2494 }
2495
2496 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2497 {
2498 struct port_info *pi = netdev_priv(dev);
2499 struct adapter *adapter = pi->adapter;
2500 struct sockaddr *addr = p;
2501
2502 if (!is_valid_ether_addr(addr->sa_data))
2503 return -EINVAL;
2504
2505 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2506 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2507 if (offload_running(adapter))
2508 write_smt_entry(adapter, pi->port_id);
2509 return 0;
2510 }
2511
2512 /**
2513 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2514 * @adap: the adapter
2515 * @p: the port
2516 *
2517 * Ensures that current Rx processing on any of the queues associated with
2518 * the given port completes before returning. We do this by acquiring and
2519 * releasing the locks of the response queues associated with the port.
2520 */
2521 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2522 {
2523 int i;
2524
2525 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2526 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2527
2528 spin_lock_irq(&q->lock);
2529 spin_unlock_irq(&q->lock);
2530 }
2531 }
2532
2533 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2534 {
2535 struct port_info *pi = netdev_priv(dev);
2536 struct adapter *adapter = pi->adapter;
2537
2538 pi->vlan_grp = grp;
2539 if (adapter->params.rev > 0)
2540 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2541 else {
2542 /* single control for all ports */
2543 unsigned int i, have_vlans = 0;
2544 for_each_port(adapter, i)
2545 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2546
2547 t3_set_vlan_accel(adapter, 1, have_vlans);
2548 }
2549 t3_synchronize_rx(adapter, pi);
2550 }
2551
2552 #ifdef CONFIG_NET_POLL_CONTROLLER
2553 static void cxgb_netpoll(struct net_device *dev)
2554 {
2555 struct port_info *pi = netdev_priv(dev);
2556 struct adapter *adapter = pi->adapter;
2557 int qidx;
2558
2559 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2560 struct sge_qset *qs = &adapter->sge.qs[qidx];
2561 void *source;
2562
2563 if (adapter->flags & USING_MSIX)
2564 source = qs;
2565 else
2566 source = adapter;
2567
2568 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2569 }
2570 }
2571 #endif
2572
2573 /*
2574 * Periodic accumulation of MAC statistics.
2575 */
2576 static void mac_stats_update(struct adapter *adapter)
2577 {
2578 int i;
2579
2580 for_each_port(adapter, i) {
2581 struct net_device *dev = adapter->port[i];
2582 struct port_info *p = netdev_priv(dev);
2583
2584 if (netif_running(dev)) {
2585 spin_lock(&adapter->stats_lock);
2586 t3_mac_update_stats(&p->mac);
2587 spin_unlock(&adapter->stats_lock);
2588 }
2589 }
2590 }
2591
2592 static void check_link_status(struct adapter *adapter)
2593 {
2594 int i;
2595
2596 for_each_port(adapter, i) {
2597 struct net_device *dev = adapter->port[i];
2598 struct port_info *p = netdev_priv(dev);
2599 int link_fault;
2600
2601 spin_lock_irq(&adapter->work_lock);
2602 link_fault = p->link_fault;
2603 spin_unlock_irq(&adapter->work_lock);
2604
2605 if (link_fault) {
2606 t3_link_fault(adapter, i);
2607 continue;
2608 }
2609
2610 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2611 t3_xgm_intr_disable(adapter, i);
2612 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2613
2614 t3_link_changed(adapter, i);
2615 t3_xgm_intr_enable(adapter, i);
2616 }
2617 }
2618 }
2619
2620 static void check_t3b2_mac(struct adapter *adapter)
2621 {
2622 int i;
2623
2624 if (!rtnl_trylock()) /* synchronize with ifdown */
2625 return;
2626
2627 for_each_port(adapter, i) {
2628 struct net_device *dev = adapter->port[i];
2629 struct port_info *p = netdev_priv(dev);
2630 int status;
2631
2632 if (!netif_running(dev))
2633 continue;
2634
2635 status = 0;
2636 if (netif_running(dev) && netif_carrier_ok(dev))
2637 status = t3b2_mac_watchdog_task(&p->mac);
2638 if (status == 1)
2639 p->mac.stats.num_toggled++;
2640 else if (status == 2) {
2641 struct cmac *mac = &p->mac;
2642
2643 t3_mac_set_mtu(mac, dev->mtu);
2644 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2645 cxgb_set_rxmode(dev);
2646 t3_link_start(&p->phy, mac, &p->link_config);
2647 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2648 t3_port_intr_enable(adapter, p->port_id);
2649 p->mac.stats.num_resets++;
2650 }
2651 }
2652 rtnl_unlock();
2653 }
2654
2655
2656 static void t3_adap_check_task(struct work_struct *work)
2657 {
2658 struct adapter *adapter = container_of(work, struct adapter,
2659 adap_check_task.work);
2660 const struct adapter_params *p = &adapter->params;
2661 int port;
2662 unsigned int v, status, reset;
2663
2664 adapter->check_task_cnt++;
2665
2666 check_link_status(adapter);
2667
2668 /* Accumulate MAC stats if needed */
2669 if (!p->linkpoll_period ||
2670 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2671 p->stats_update_period) {
2672 mac_stats_update(adapter);
2673 adapter->check_task_cnt = 0;
2674 }
2675
2676 if (p->rev == T3_REV_B2)
2677 check_t3b2_mac(adapter);
2678
2679 /*
2680 * Scan the XGMAC's to check for various conditions which we want to
2681 * monitor in a periodic polling manner rather than via an interrupt
2682 * condition. This is used for conditions which would otherwise flood
2683 * the system with interrupts and we only really need to know that the
2684 * conditions are "happening" ... For each condition we count the
2685 * detection of the condition and reset it for the next polling loop.
2686 */
2687 for_each_port(adapter, port) {
2688 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2689 u32 cause;
2690
2691 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2692 reset = 0;
2693 if (cause & F_RXFIFO_OVERFLOW) {
2694 mac->stats.rx_fifo_ovfl++;
2695 reset |= F_RXFIFO_OVERFLOW;
2696 }
2697
2698 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2699 }
2700
2701 /*
2702 * We do the same as above for FL_EMPTY interrupts.
2703 */
2704 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2705 reset = 0;
2706
2707 if (status & F_FLEMPTY) {
2708 struct sge_qset *qs = &adapter->sge.qs[0];
2709 int i = 0;
2710
2711 reset |= F_FLEMPTY;
2712
2713 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2714 0xffff;
2715
2716 while (v) {
2717 qs->fl[i].empty += (v & 1);
2718 if (i)
2719 qs++;
2720 i ^= 1;
2721 v >>= 1;
2722 }
2723 }
2724
2725 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2726
2727 /* Schedule the next check update if any port is active. */
2728 spin_lock_irq(&adapter->work_lock);
2729 if (adapter->open_device_map & PORT_MASK)
2730 schedule_chk_task(adapter);
2731 spin_unlock_irq(&adapter->work_lock);
2732 }
2733
2734 static void db_full_task(struct work_struct *work)
2735 {
2736 struct adapter *adapter = container_of(work, struct adapter,
2737 db_full_task);
2738
2739 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2740 }
2741
2742 static void db_empty_task(struct work_struct *work)
2743 {
2744 struct adapter *adapter = container_of(work, struct adapter,
2745 db_empty_task);
2746
2747 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2748 }
2749
2750 static void db_drop_task(struct work_struct *work)
2751 {
2752 struct adapter *adapter = container_of(work, struct adapter,
2753 db_drop_task);
2754 unsigned long delay = 1000;
2755 unsigned short r;
2756
2757 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2758
2759 /*
2760 * Sleep a while before ringing the driver qset dbs.
2761 * The delay is between 1000-2023 usecs.
2762 */
2763 get_random_bytes(&r, 2);
2764 delay += r & 1023;
2765 set_current_state(TASK_UNINTERRUPTIBLE);
2766 schedule_timeout(usecs_to_jiffies(delay));
2767 ring_dbs(adapter);
2768 }
2769
2770 /*
2771 * Processes external (PHY) interrupts in process context.
2772 */
2773 static void ext_intr_task(struct work_struct *work)
2774 {
2775 struct adapter *adapter = container_of(work, struct adapter,
2776 ext_intr_handler_task);
2777 int i;
2778
2779 /* Disable link fault interrupts */
2780 for_each_port(adapter, i) {
2781 struct net_device *dev = adapter->port[i];
2782 struct port_info *p = netdev_priv(dev);
2783
2784 t3_xgm_intr_disable(adapter, i);
2785 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2786 }
2787
2788 /* Re-enable link fault interrupts */
2789 t3_phy_intr_handler(adapter);
2790
2791 for_each_port(adapter, i)
2792 t3_xgm_intr_enable(adapter, i);
2793
2794 /* Now reenable external interrupts */
2795 spin_lock_irq(&adapter->work_lock);
2796 if (adapter->slow_intr_mask) {
2797 adapter->slow_intr_mask |= F_T3DBG;
2798 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2799 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2800 adapter->slow_intr_mask);
2801 }
2802 spin_unlock_irq(&adapter->work_lock);
2803 }
2804
2805 /*
2806 * Interrupt-context handler for external (PHY) interrupts.
2807 */
2808 void t3_os_ext_intr_handler(struct adapter *adapter)
2809 {
2810 /*
2811 * Schedule a task to handle external interrupts as they may be slow
2812 * and we use a mutex to protect MDIO registers. We disable PHY
2813 * interrupts in the meantime and let the task reenable them when
2814 * it's done.
2815 */
2816 spin_lock(&adapter->work_lock);
2817 if (adapter->slow_intr_mask) {
2818 adapter->slow_intr_mask &= ~F_T3DBG;
2819 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2820 adapter->slow_intr_mask);
2821 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2822 }
2823 spin_unlock(&adapter->work_lock);
2824 }
2825
2826 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2827 {
2828 struct net_device *netdev = adapter->port[port_id];
2829 struct port_info *pi = netdev_priv(netdev);
2830
2831 spin_lock(&adapter->work_lock);
2832 pi->link_fault = 1;
2833 spin_unlock(&adapter->work_lock);
2834 }
2835
2836 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2837 {
2838 int i, ret = 0;
2839
2840 if (is_offload(adapter) &&
2841 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2842 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2843 offload_close(&adapter->tdev);
2844 }
2845
2846 /* Stop all ports */
2847 for_each_port(adapter, i) {
2848 struct net_device *netdev = adapter->port[i];
2849
2850 if (netif_running(netdev))
2851 __cxgb_close(netdev, on_wq);
2852 }
2853
2854 /* Stop SGE timers */
2855 t3_stop_sge_timers(adapter);
2856
2857 adapter->flags &= ~FULL_INIT_DONE;
2858
2859 if (reset)
2860 ret = t3_reset_adapter(adapter);
2861
2862 pci_disable_device(adapter->pdev);
2863
2864 return ret;
2865 }
2866
2867 static int t3_reenable_adapter(struct adapter *adapter)
2868 {
2869 if (pci_enable_device(adapter->pdev)) {
2870 dev_err(&adapter->pdev->dev,
2871 "Cannot re-enable PCI device after reset.\n");
2872 goto err;
2873 }
2874 pci_set_master(adapter->pdev);
2875 pci_restore_state(adapter->pdev);
2876 pci_save_state(adapter->pdev);
2877
2878 /* Free sge resources */
2879 t3_free_sge_resources(adapter);
2880
2881 if (t3_replay_prep_adapter(adapter))
2882 goto err;
2883
2884 return 0;
2885 err:
2886 return -1;
2887 }
2888
2889 static void t3_resume_ports(struct adapter *adapter)
2890 {
2891 int i;
2892
2893 /* Restart the ports */
2894 for_each_port(adapter, i) {
2895 struct net_device *netdev = adapter->port[i];
2896
2897 if (netif_running(netdev)) {
2898 if (cxgb_open(netdev)) {
2899 dev_err(&adapter->pdev->dev,
2900 "can't bring device back up"
2901 " after reset\n");
2902 continue;
2903 }
2904 }
2905 }
2906
2907 if (is_offload(adapter) && !ofld_disable)
2908 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2909 }
2910
2911 /*
2912 * processes a fatal error.
2913 * Bring the ports down, reset the chip, bring the ports back up.
2914 */
2915 static void fatal_error_task(struct work_struct *work)
2916 {
2917 struct adapter *adapter = container_of(work, struct adapter,
2918 fatal_error_handler_task);
2919 int err = 0;
2920
2921 rtnl_lock();
2922 err = t3_adapter_error(adapter, 1, 1);
2923 if (!err)
2924 err = t3_reenable_adapter(adapter);
2925 if (!err)
2926 t3_resume_ports(adapter);
2927
2928 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2929 rtnl_unlock();
2930 }
2931
2932 void t3_fatal_err(struct adapter *adapter)
2933 {
2934 unsigned int fw_status[4];
2935
2936 if (adapter->flags & FULL_INIT_DONE) {
2937 t3_sge_stop(adapter);
2938 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2939 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2940 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2941 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2942
2943 spin_lock(&adapter->work_lock);
2944 t3_intr_disable(adapter);
2945 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2946 spin_unlock(&adapter->work_lock);
2947 }
2948 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2949 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2950 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2951 fw_status[0], fw_status[1],
2952 fw_status[2], fw_status[3]);
2953 }
2954
2955 /**
2956 * t3_io_error_detected - called when PCI error is detected
2957 * @pdev: Pointer to PCI device
2958 * @state: The current pci connection state
2959 *
2960 * This function is called after a PCI bus error affecting
2961 * this device has been detected.
2962 */
2963 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2964 pci_channel_state_t state)
2965 {
2966 struct adapter *adapter = pci_get_drvdata(pdev);
2967
2968 if (state == pci_channel_io_perm_failure)
2969 return PCI_ERS_RESULT_DISCONNECT;
2970
2971 t3_adapter_error(adapter, 0, 0);
2972
2973 /* Request a slot reset. */
2974 return PCI_ERS_RESULT_NEED_RESET;
2975 }
2976
2977 /**
2978 * t3_io_slot_reset - called after the pci bus has been reset.
2979 * @pdev: Pointer to PCI device
2980 *
2981 * Restart the card from scratch, as if from a cold-boot.
2982 */
2983 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2984 {
2985 struct adapter *adapter = pci_get_drvdata(pdev);
2986
2987 if (!t3_reenable_adapter(adapter))
2988 return PCI_ERS_RESULT_RECOVERED;
2989
2990 return PCI_ERS_RESULT_DISCONNECT;
2991 }
2992
2993 /**
2994 * t3_io_resume - called when traffic can start flowing again.
2995 * @pdev: Pointer to PCI device
2996 *
2997 * This callback is called when the error recovery driver tells us that
2998 * its OK to resume normal operation.
2999 */
3000 static void t3_io_resume(struct pci_dev *pdev)
3001 {
3002 struct adapter *adapter = pci_get_drvdata(pdev);
3003
3004 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3005 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3006
3007 t3_resume_ports(adapter);
3008 }
3009
3010 static struct pci_error_handlers t3_err_handler = {
3011 .error_detected = t3_io_error_detected,
3012 .slot_reset = t3_io_slot_reset,
3013 .resume = t3_io_resume,
3014 };
3015
3016 /*
3017 * Set the number of qsets based on the number of CPUs and the number of ports,
3018 * not to exceed the number of available qsets, assuming there are enough qsets
3019 * per port in HW.
3020 */
3021 static void set_nqsets(struct adapter *adap)
3022 {
3023 int i, j = 0;
3024 int num_cpus = num_online_cpus();
3025 int hwports = adap->params.nports;
3026 int nqsets = adap->msix_nvectors - 1;
3027
3028 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3029 if (hwports == 2 &&
3030 (hwports * nqsets > SGE_QSETS ||
3031 num_cpus >= nqsets / hwports))
3032 nqsets /= hwports;
3033 if (nqsets > num_cpus)
3034 nqsets = num_cpus;
3035 if (nqsets < 1 || hwports == 4)
3036 nqsets = 1;
3037 } else
3038 nqsets = 1;
3039
3040 for_each_port(adap, i) {
3041 struct port_info *pi = adap2pinfo(adap, i);
3042
3043 pi->first_qset = j;
3044 pi->nqsets = nqsets;
3045 j = pi->first_qset + nqsets;
3046
3047 dev_info(&adap->pdev->dev,
3048 "Port %d using %d queue sets.\n", i, nqsets);
3049 }
3050 }
3051
3052 static int __devinit cxgb_enable_msix(struct adapter *adap)
3053 {
3054 struct msix_entry entries[SGE_QSETS + 1];
3055 int vectors;
3056 int i, err;
3057
3058 vectors = ARRAY_SIZE(entries);
3059 for (i = 0; i < vectors; ++i)
3060 entries[i].entry = i;
3061
3062 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3063 vectors = err;
3064
3065 if (err < 0)
3066 pci_disable_msix(adap->pdev);
3067
3068 if (!err && vectors < (adap->params.nports + 1)) {
3069 pci_disable_msix(adap->pdev);
3070 err = -1;
3071 }
3072
3073 if (!err) {
3074 for (i = 0; i < vectors; ++i)
3075 adap->msix_info[i].vec = entries[i].vector;
3076 adap->msix_nvectors = vectors;
3077 }
3078
3079 return err;
3080 }
3081
3082 static void __devinit print_port_info(struct adapter *adap,
3083 const struct adapter_info *ai)
3084 {
3085 static const char *pci_variant[] = {
3086 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3087 };
3088
3089 int i;
3090 char buf[80];
3091
3092 if (is_pcie(adap))
3093 snprintf(buf, sizeof(buf), "%s x%d",
3094 pci_variant[adap->params.pci.variant],
3095 adap->params.pci.width);
3096 else
3097 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3098 pci_variant[adap->params.pci.variant],
3099 adap->params.pci.speed, adap->params.pci.width);
3100
3101 for_each_port(adap, i) {
3102 struct net_device *dev = adap->port[i];
3103 const struct port_info *pi = netdev_priv(dev);
3104
3105 if (!test_bit(i, &adap->registered_device_map))
3106 continue;
3107 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3108 dev->name, ai->desc, pi->phy.desc,
3109 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3110 (adap->flags & USING_MSIX) ? " MSI-X" :
3111 (adap->flags & USING_MSI) ? " MSI" : "");
3112 if (adap->name == dev->name && adap->params.vpd.mclk)
3113 printk(KERN_INFO
3114 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3115 adap->name, t3_mc7_size(&adap->cm) >> 20,
3116 t3_mc7_size(&adap->pmtx) >> 20,
3117 t3_mc7_size(&adap->pmrx) >> 20,
3118 adap->params.vpd.sn);
3119 }
3120 }
3121
3122 static const struct net_device_ops cxgb_netdev_ops = {
3123 .ndo_open = cxgb_open,
3124 .ndo_stop = cxgb_close,
3125 .ndo_start_xmit = t3_eth_xmit,
3126 .ndo_get_stats = cxgb_get_stats,
3127 .ndo_validate_addr = eth_validate_addr,
3128 .ndo_set_multicast_list = cxgb_set_rxmode,
3129 .ndo_do_ioctl = cxgb_ioctl,
3130 .ndo_change_mtu = cxgb_change_mtu,
3131 .ndo_set_mac_address = cxgb_set_mac_addr,
3132 .ndo_vlan_rx_register = vlan_rx_register,
3133 #ifdef CONFIG_NET_POLL_CONTROLLER
3134 .ndo_poll_controller = cxgb_netpoll,
3135 #endif
3136 };
3137
3138 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3139 {
3140 struct port_info *pi = netdev_priv(dev);
3141
3142 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3143 pi->iscsic.mac_addr[3] |= 0x80;
3144 }
3145
3146 static int __devinit init_one(struct pci_dev *pdev,
3147 const struct pci_device_id *ent)
3148 {
3149 static int version_printed;
3150
3151 int i, err, pci_using_dac = 0;
3152 resource_size_t mmio_start, mmio_len;
3153 const struct adapter_info *ai;
3154 struct adapter *adapter = NULL;
3155 struct port_info *pi;
3156
3157 if (!version_printed) {
3158 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3159 ++version_printed;
3160 }
3161
3162 if (!cxgb3_wq) {
3163 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3164 if (!cxgb3_wq) {
3165 printk(KERN_ERR DRV_NAME
3166 ": cannot initialize work queue\n");
3167 return -ENOMEM;
3168 }
3169 }
3170
3171 err = pci_enable_device(pdev);
3172 if (err) {
3173 dev_err(&pdev->dev, "cannot enable PCI device\n");
3174 goto out;
3175 }
3176
3177 err = pci_request_regions(pdev, DRV_NAME);
3178 if (err) {
3179 /* Just info, some other driver may have claimed the device. */
3180 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3181 goto out_disable_device;
3182 }
3183
3184 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3185 pci_using_dac = 1;
3186 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3187 if (err) {
3188 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3189 "coherent allocations\n");
3190 goto out_release_regions;
3191 }
3192 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3193 dev_err(&pdev->dev, "no usable DMA configuration\n");
3194 goto out_release_regions;
3195 }
3196
3197 pci_set_master(pdev);
3198 pci_save_state(pdev);
3199
3200 mmio_start = pci_resource_start(pdev, 0);
3201 mmio_len = pci_resource_len(pdev, 0);
3202 ai = t3_get_adapter_info(ent->driver_data);
3203
3204 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3205 if (!adapter) {
3206 err = -ENOMEM;
3207 goto out_release_regions;
3208 }
3209
3210 adapter->nofail_skb =
3211 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3212 if (!adapter->nofail_skb) {
3213 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3214 err = -ENOMEM;
3215 goto out_free_adapter;
3216 }
3217
3218 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3219 if (!adapter->regs) {
3220 dev_err(&pdev->dev, "cannot map device registers\n");
3221 err = -ENOMEM;
3222 goto out_free_adapter;
3223 }
3224
3225 adapter->pdev = pdev;
3226 adapter->name = pci_name(pdev);
3227 adapter->msg_enable = dflt_msg_enable;
3228 adapter->mmio_len = mmio_len;
3229
3230 mutex_init(&adapter->mdio_lock);
3231 spin_lock_init(&adapter->work_lock);
3232 spin_lock_init(&adapter->stats_lock);
3233
3234 INIT_LIST_HEAD(&adapter->adapter_list);
3235 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3236 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3237
3238 INIT_WORK(&adapter->db_full_task, db_full_task);
3239 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3240 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3241
3242 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3243
3244 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3245 struct net_device *netdev;
3246
3247 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3248 if (!netdev) {
3249 err = -ENOMEM;
3250 goto out_free_dev;
3251 }
3252
3253 SET_NETDEV_DEV(netdev, &pdev->dev);
3254
3255 adapter->port[i] = netdev;
3256 pi = netdev_priv(netdev);
3257 pi->adapter = adapter;
3258 pi->port_id = i;
3259 netif_carrier_off(netdev);
3260 netdev->irq = pdev->irq;
3261 netdev->mem_start = mmio_start;
3262 netdev->mem_end = mmio_start + mmio_len - 1;
3263 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3264 NETIF_F_TSO | NETIF_F_RXCSUM;
3265 netdev->features |= netdev->hw_features |
3266 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3267 if (pci_using_dac)
3268 netdev->features |= NETIF_F_HIGHDMA;
3269
3270 netdev->netdev_ops = &cxgb_netdev_ops;
3271 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3272 }
3273
3274 pci_set_drvdata(pdev, adapter);
3275 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3276 err = -ENODEV;
3277 goto out_free_dev;
3278 }
3279
3280 /*
3281 * The card is now ready to go. If any errors occur during device
3282 * registration we do not fail the whole card but rather proceed only
3283 * with the ports we manage to register successfully. However we must
3284 * register at least one net device.
3285 */
3286 for_each_port(adapter, i) {
3287 err = register_netdev(adapter->port[i]);
3288 if (err)
3289 dev_warn(&pdev->dev,
3290 "cannot register net device %s, skipping\n",
3291 adapter->port[i]->name);
3292 else {
3293 /*
3294 * Change the name we use for messages to the name of
3295 * the first successfully registered interface.
3296 */
3297 if (!adapter->registered_device_map)
3298 adapter->name = adapter->port[i]->name;
3299
3300 __set_bit(i, &adapter->registered_device_map);
3301 }
3302 }
3303 if (!adapter->registered_device_map) {
3304 dev_err(&pdev->dev, "could not register any net devices\n");
3305 goto out_free_dev;
3306 }
3307
3308 for_each_port(adapter, i)
3309 cxgb3_init_iscsi_mac(adapter->port[i]);
3310
3311 /* Driver's ready. Reflect it on LEDs */
3312 t3_led_ready(adapter);
3313
3314 if (is_offload(adapter)) {
3315 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3316 cxgb3_adapter_ofld(adapter);
3317 }
3318
3319 /* See what interrupts we'll be using */
3320 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3321 adapter->flags |= USING_MSIX;
3322 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3323 adapter->flags |= USING_MSI;
3324
3325 set_nqsets(adapter);
3326
3327 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3328 &cxgb3_attr_group);
3329
3330 print_port_info(adapter, ai);
3331 return 0;
3332
3333 out_free_dev:
3334 iounmap(adapter->regs);
3335 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3336 if (adapter->port[i])
3337 free_netdev(adapter->port[i]);
3338
3339 out_free_adapter:
3340 kfree(adapter);
3341
3342 out_release_regions:
3343 pci_release_regions(pdev);
3344 out_disable_device:
3345 pci_disable_device(pdev);
3346 pci_set_drvdata(pdev, NULL);
3347 out:
3348 return err;
3349 }
3350
3351 static void __devexit remove_one(struct pci_dev *pdev)
3352 {
3353 struct adapter *adapter = pci_get_drvdata(pdev);
3354
3355 if (adapter) {
3356 int i;
3357
3358 t3_sge_stop(adapter);
3359 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3360 &cxgb3_attr_group);
3361
3362 if (is_offload(adapter)) {
3363 cxgb3_adapter_unofld(adapter);
3364 if (test_bit(OFFLOAD_DEVMAP_BIT,
3365 &adapter->open_device_map))
3366 offload_close(&adapter->tdev);
3367 }
3368
3369 for_each_port(adapter, i)
3370 if (test_bit(i, &adapter->registered_device_map))
3371 unregister_netdev(adapter->port[i]);
3372
3373 t3_stop_sge_timers(adapter);
3374 t3_free_sge_resources(adapter);
3375 cxgb_disable_msi(adapter);
3376
3377 for_each_port(adapter, i)
3378 if (adapter->port[i])
3379 free_netdev(adapter->port[i]);
3380
3381 iounmap(adapter->regs);
3382 if (adapter->nofail_skb)
3383 kfree_skb(adapter->nofail_skb);
3384 kfree(adapter);
3385 pci_release_regions(pdev);
3386 pci_disable_device(pdev);
3387 pci_set_drvdata(pdev, NULL);
3388 }
3389 }
3390
3391 static struct pci_driver driver = {
3392 .name = DRV_NAME,
3393 .id_table = cxgb3_pci_tbl,
3394 .probe = init_one,
3395 .remove = __devexit_p(remove_one),
3396 .err_handler = &t3_err_handler,
3397 };
3398
3399 static int __init cxgb3_init_module(void)
3400 {
3401 int ret;
3402
3403 cxgb3_offload_init();
3404
3405 ret = pci_register_driver(&driver);
3406 return ret;
3407 }
3408
3409 static void __exit cxgb3_cleanup_module(void)
3410 {
3411 pci_unregister_driver(&driver);
3412 if (cxgb3_wq)
3413 destroy_workqueue(cxgb3_wq);
3414 }
3415
3416 module_init(cxgb3_init_module);
3417 module_exit(cxgb3_cleanup_module);
This page took 0.173379 seconds and 5 git commands to generate.