hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mii.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <asm/uaccess.h>
48
49 #include "common.h"
50 #include "cxgb3_ioctl.h"
51 #include "regs.h"
52 #include "cxgb3_offload.h"
53 #include "version.h"
54
55 #include "cxgb3_ctl_defs.h"
56 #include "t3_cpl.h"
57 #include "firmware_exports.h"
58
59 enum {
60 MAX_TXQ_ENTRIES = 16384,
61 MAX_CTRL_TXQ_ENTRIES = 1024,
62 MAX_RSPQ_ENTRIES = 16384,
63 MAX_RX_BUFFERS = 16384,
64 MAX_RX_JUMBO_BUFFERS = 16384,
65 MIN_TXQ_ENTRIES = 4,
66 MIN_CTRL_TXQ_ENTRIES = 4,
67 MIN_RSPQ_ENTRIES = 32,
68 MIN_FL_ENTRIES = 32
69 };
70
71 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
72
73 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
74 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
75 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
76
77 #define EEPROM_MAGIC 0x38E2F10C
78
79 #define CH_DEVICE(devid, idx) \
80 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
81
82 static const struct pci_device_id cxgb3_pci_tbl[] = {
83 CH_DEVICE(0x20, 0), /* PE9000 */
84 CH_DEVICE(0x21, 1), /* T302E */
85 CH_DEVICE(0x22, 2), /* T310E */
86 CH_DEVICE(0x23, 3), /* T320X */
87 CH_DEVICE(0x24, 1), /* T302X */
88 CH_DEVICE(0x25, 3), /* T320E */
89 CH_DEVICE(0x26, 2), /* T310X */
90 CH_DEVICE(0x30, 2), /* T3B10 */
91 CH_DEVICE(0x31, 3), /* T3B20 */
92 CH_DEVICE(0x32, 1), /* T3B02 */
93 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
94 {0,}
95 };
96
97 MODULE_DESCRIPTION(DRV_DESC);
98 MODULE_AUTHOR("Chelsio Communications");
99 MODULE_LICENSE("Dual BSD/GPL");
100 MODULE_VERSION(DRV_VERSION);
101 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
102
103 static int dflt_msg_enable = DFLT_MSG_ENABLE;
104
105 module_param(dflt_msg_enable, int, 0644);
106 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
107
108 /*
109 * The driver uses the best interrupt scheme available on a platform in the
110 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
111 * of these schemes the driver may consider as follows:
112 *
113 * msi = 2: choose from among all three options
114 * msi = 1: only consider MSI and pin interrupts
115 * msi = 0: force pin interrupts
116 */
117 static int msi = 2;
118
119 module_param(msi, int, 0644);
120 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
121
122 /*
123 * The driver enables offload as a default.
124 * To disable it, use ofld_disable = 1.
125 */
126
127 static int ofld_disable = 0;
128
129 module_param(ofld_disable, int, 0644);
130 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
131
132 /*
133 * We have work elements that we need to cancel when an interface is taken
134 * down. Normally the work elements would be executed by keventd but that
135 * can deadlock because of linkwatch. If our close method takes the rtnl
136 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
137 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
138 * for our work to complete. Get our own work queue to solve this.
139 */
140 static struct workqueue_struct *cxgb3_wq;
141
142 /**
143 * link_report - show link status and link speed/duplex
144 * @p: the port whose settings are to be reported
145 *
146 * Shows the link status, speed, and duplex of a port.
147 */
148 static void link_report(struct net_device *dev)
149 {
150 if (!netif_carrier_ok(dev))
151 printk(KERN_INFO "%s: link down\n", dev->name);
152 else {
153 const char *s = "10Mbps";
154 const struct port_info *p = netdev_priv(dev);
155
156 switch (p->link_config.speed) {
157 case SPEED_10000:
158 s = "10Gbps";
159 break;
160 case SPEED_1000:
161 s = "1000Mbps";
162 break;
163 case SPEED_100:
164 s = "100Mbps";
165 break;
166 }
167
168 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
169 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
170 }
171 }
172
173 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
174 {
175 struct net_device *dev = adap->port[port_id];
176 struct port_info *pi = netdev_priv(dev);
177
178 if (state == netif_carrier_ok(dev))
179 return;
180
181 if (state) {
182 struct cmac *mac = &pi->mac;
183
184 netif_carrier_on(dev);
185
186 /* Clear local faults */
187 t3_xgm_intr_disable(adap, pi->port_id);
188 t3_read_reg(adap, A_XGM_INT_STATUS +
189 pi->mac.offset);
190 t3_write_reg(adap,
191 A_XGM_INT_CAUSE + pi->mac.offset,
192 F_XGM_INT);
193
194 t3_set_reg_field(adap,
195 A_XGM_INT_ENABLE +
196 pi->mac.offset,
197 F_XGM_INT, F_XGM_INT);
198 t3_xgm_intr_enable(adap, pi->port_id);
199
200 t3_mac_enable(mac, MAC_DIRECTION_TX);
201 } else
202 netif_carrier_off(dev);
203
204 link_report(dev);
205 }
206
207 /**
208 * t3_os_link_changed - handle link status changes
209 * @adapter: the adapter associated with the link change
210 * @port_id: the port index whose limk status has changed
211 * @link_stat: the new status of the link
212 * @speed: the new speed setting
213 * @duplex: the new duplex setting
214 * @pause: the new flow-control setting
215 *
216 * This is the OS-dependent handler for link status changes. The OS
217 * neutral handler takes care of most of the processing for these events,
218 * then calls this handler for any OS-specific processing.
219 */
220 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
221 int speed, int duplex, int pause)
222 {
223 struct net_device *dev = adapter->port[port_id];
224 struct port_info *pi = netdev_priv(dev);
225 struct cmac *mac = &pi->mac;
226
227 /* Skip changes from disabled ports. */
228 if (!netif_running(dev))
229 return;
230
231 if (link_stat != netif_carrier_ok(dev)) {
232 if (link_stat) {
233 t3_mac_enable(mac, MAC_DIRECTION_RX);
234
235 /* Clear local faults */
236 t3_xgm_intr_disable(adapter, pi->port_id);
237 t3_read_reg(adapter, A_XGM_INT_STATUS +
238 pi->mac.offset);
239 t3_write_reg(adapter,
240 A_XGM_INT_CAUSE + pi->mac.offset,
241 F_XGM_INT);
242
243 t3_set_reg_field(adapter,
244 A_XGM_INT_ENABLE + pi->mac.offset,
245 F_XGM_INT, F_XGM_INT);
246 t3_xgm_intr_enable(adapter, pi->port_id);
247
248 netif_carrier_on(dev);
249 } else {
250 netif_carrier_off(dev);
251
252 t3_xgm_intr_disable(adapter, pi->port_id);
253 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
254 t3_set_reg_field(adapter,
255 A_XGM_INT_ENABLE + pi->mac.offset,
256 F_XGM_INT, 0);
257
258 if (is_10G(adapter))
259 pi->phy.ops->power_down(&pi->phy, 1);
260
261 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
262 t3_mac_disable(mac, MAC_DIRECTION_RX);
263 t3_link_start(&pi->phy, mac, &pi->link_config);
264 }
265
266 link_report(dev);
267 }
268 }
269
270 /**
271 * t3_os_phymod_changed - handle PHY module changes
272 * @phy: the PHY reporting the module change
273 * @mod_type: new module type
274 *
275 * This is the OS-dependent handler for PHY module changes. It is
276 * invoked when a PHY module is removed or inserted for any OS-specific
277 * processing.
278 */
279 void t3_os_phymod_changed(struct adapter *adap, int port_id)
280 {
281 static const char *mod_str[] = {
282 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
283 };
284
285 const struct net_device *dev = adap->port[port_id];
286 const struct port_info *pi = netdev_priv(dev);
287
288 if (pi->phy.modtype == phy_modtype_none)
289 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
290 else
291 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
292 mod_str[pi->phy.modtype]);
293 }
294
295 static void cxgb_set_rxmode(struct net_device *dev)
296 {
297 struct t3_rx_mode rm;
298 struct port_info *pi = netdev_priv(dev);
299
300 init_rx_mode(&rm, dev, dev->mc_list);
301 t3_mac_set_rx_mode(&pi->mac, &rm);
302 }
303
304 /**
305 * link_start - enable a port
306 * @dev: the device to enable
307 *
308 * Performs the MAC and PHY actions needed to enable a port.
309 */
310 static void link_start(struct net_device *dev)
311 {
312 struct t3_rx_mode rm;
313 struct port_info *pi = netdev_priv(dev);
314 struct cmac *mac = &pi->mac;
315
316 init_rx_mode(&rm, dev, dev->mc_list);
317 t3_mac_reset(mac);
318 t3_mac_set_mtu(mac, dev->mtu);
319 t3_mac_set_address(mac, 0, dev->dev_addr);
320 t3_mac_set_rx_mode(mac, &rm);
321 t3_link_start(&pi->phy, mac, &pi->link_config);
322 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
323 }
324
325 static inline void cxgb_disable_msi(struct adapter *adapter)
326 {
327 if (adapter->flags & USING_MSIX) {
328 pci_disable_msix(adapter->pdev);
329 adapter->flags &= ~USING_MSIX;
330 } else if (adapter->flags & USING_MSI) {
331 pci_disable_msi(adapter->pdev);
332 adapter->flags &= ~USING_MSI;
333 }
334 }
335
336 /*
337 * Interrupt handler for asynchronous events used with MSI-X.
338 */
339 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
340 {
341 t3_slow_intr_handler(cookie);
342 return IRQ_HANDLED;
343 }
344
345 /*
346 * Name the MSI-X interrupts.
347 */
348 static void name_msix_vecs(struct adapter *adap)
349 {
350 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
351
352 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
353 adap->msix_info[0].desc[n] = 0;
354
355 for_each_port(adap, j) {
356 struct net_device *d = adap->port[j];
357 const struct port_info *pi = netdev_priv(d);
358
359 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
360 snprintf(adap->msix_info[msi_idx].desc, n,
361 "%s-%d", d->name, pi->first_qset + i);
362 adap->msix_info[msi_idx].desc[n] = 0;
363 }
364 }
365 }
366
367 static int request_msix_data_irqs(struct adapter *adap)
368 {
369 int i, j, err, qidx = 0;
370
371 for_each_port(adap, i) {
372 int nqsets = adap2pinfo(adap, i)->nqsets;
373
374 for (j = 0; j < nqsets; ++j) {
375 err = request_irq(adap->msix_info[qidx + 1].vec,
376 t3_intr_handler(adap,
377 adap->sge.qs[qidx].
378 rspq.polling), 0,
379 adap->msix_info[qidx + 1].desc,
380 &adap->sge.qs[qidx]);
381 if (err) {
382 while (--qidx >= 0)
383 free_irq(adap->msix_info[qidx + 1].vec,
384 &adap->sge.qs[qidx]);
385 return err;
386 }
387 qidx++;
388 }
389 }
390 return 0;
391 }
392
393 static void free_irq_resources(struct adapter *adapter)
394 {
395 if (adapter->flags & USING_MSIX) {
396 int i, n = 0;
397
398 free_irq(adapter->msix_info[0].vec, adapter);
399 for_each_port(adapter, i)
400 n += adap2pinfo(adapter, i)->nqsets;
401
402 for (i = 0; i < n; ++i)
403 free_irq(adapter->msix_info[i + 1].vec,
404 &adapter->sge.qs[i]);
405 } else
406 free_irq(adapter->pdev->irq, adapter);
407 }
408
409 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
410 unsigned long n)
411 {
412 int attempts = 5;
413
414 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
415 if (!--attempts)
416 return -ETIMEDOUT;
417 msleep(10);
418 }
419 return 0;
420 }
421
422 static int init_tp_parity(struct adapter *adap)
423 {
424 int i;
425 struct sk_buff *skb;
426 struct cpl_set_tcb_field *greq;
427 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
428
429 t3_tp_set_offload_mode(adap, 1);
430
431 for (i = 0; i < 16; i++) {
432 struct cpl_smt_write_req *req;
433
434 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
435 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
436 memset(req, 0, sizeof(*req));
437 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
438 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
439 req->iff = i;
440 t3_mgmt_tx(adap, skb);
441 }
442
443 for (i = 0; i < 2048; i++) {
444 struct cpl_l2t_write_req *req;
445
446 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
447 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
448 memset(req, 0, sizeof(*req));
449 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
450 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
451 req->params = htonl(V_L2T_W_IDX(i));
452 t3_mgmt_tx(adap, skb);
453 }
454
455 for (i = 0; i < 2048; i++) {
456 struct cpl_rte_write_req *req;
457
458 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
459 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
460 memset(req, 0, sizeof(*req));
461 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
462 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
463 req->l2t_idx = htonl(V_L2T_W_IDX(i));
464 t3_mgmt_tx(adap, skb);
465 }
466
467 skb = alloc_skb(sizeof(*greq), GFP_KERNEL | __GFP_NOFAIL);
468 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
469 memset(greq, 0, sizeof(*greq));
470 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
471 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
472 greq->mask = cpu_to_be64(1);
473 t3_mgmt_tx(adap, skb);
474
475 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
476 t3_tp_set_offload_mode(adap, 0);
477 return i;
478 }
479
480 /**
481 * setup_rss - configure RSS
482 * @adap: the adapter
483 *
484 * Sets up RSS to distribute packets to multiple receive queues. We
485 * configure the RSS CPU lookup table to distribute to the number of HW
486 * receive queues, and the response queue lookup table to narrow that
487 * down to the response queues actually configured for each port.
488 * We always configure the RSS mapping for two ports since the mapping
489 * table has plenty of entries.
490 */
491 static void setup_rss(struct adapter *adap)
492 {
493 int i;
494 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
495 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
496 u8 cpus[SGE_QSETS + 1];
497 u16 rspq_map[RSS_TABLE_SIZE];
498
499 for (i = 0; i < SGE_QSETS; ++i)
500 cpus[i] = i;
501 cpus[SGE_QSETS] = 0xff; /* terminator */
502
503 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
504 rspq_map[i] = i % nq0;
505 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
506 }
507
508 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
509 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
510 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
511 }
512
513 static void init_napi(struct adapter *adap)
514 {
515 int i;
516
517 for (i = 0; i < SGE_QSETS; i++) {
518 struct sge_qset *qs = &adap->sge.qs[i];
519
520 if (qs->adap)
521 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
522 64);
523 }
524
525 /*
526 * netif_napi_add() can be called only once per napi_struct because it
527 * adds each new napi_struct to a list. Be careful not to call it a
528 * second time, e.g., during EEH recovery, by making a note of it.
529 */
530 adap->flags |= NAPI_INIT;
531 }
532
533 /*
534 * Wait until all NAPI handlers are descheduled. This includes the handlers of
535 * both netdevices representing interfaces and the dummy ones for the extra
536 * queues.
537 */
538 static void quiesce_rx(struct adapter *adap)
539 {
540 int i;
541
542 for (i = 0; i < SGE_QSETS; i++)
543 if (adap->sge.qs[i].adap)
544 napi_disable(&adap->sge.qs[i].napi);
545 }
546
547 static void enable_all_napi(struct adapter *adap)
548 {
549 int i;
550 for (i = 0; i < SGE_QSETS; i++)
551 if (adap->sge.qs[i].adap)
552 napi_enable(&adap->sge.qs[i].napi);
553 }
554
555 /**
556 * set_qset_lro - Turn a queue set's LRO capability on and off
557 * @dev: the device the qset is attached to
558 * @qset_idx: the queue set index
559 * @val: the LRO switch
560 *
561 * Sets LRO on or off for a particular queue set.
562 * the device's features flag is updated to reflect the LRO
563 * capability when all queues belonging to the device are
564 * in the same state.
565 */
566 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
567 {
568 struct port_info *pi = netdev_priv(dev);
569 struct adapter *adapter = pi->adapter;
570
571 adapter->params.sge.qset[qset_idx].lro = !!val;
572 adapter->sge.qs[qset_idx].lro_enabled = !!val;
573 }
574
575 /**
576 * setup_sge_qsets - configure SGE Tx/Rx/response queues
577 * @adap: the adapter
578 *
579 * Determines how many sets of SGE queues to use and initializes them.
580 * We support multiple queue sets per port if we have MSI-X, otherwise
581 * just one queue set per port.
582 */
583 static int setup_sge_qsets(struct adapter *adap)
584 {
585 int i, j, err, irq_idx = 0, qset_idx = 0;
586 unsigned int ntxq = SGE_TXQ_PER_SET;
587
588 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
589 irq_idx = -1;
590
591 for_each_port(adap, i) {
592 struct net_device *dev = adap->port[i];
593 struct port_info *pi = netdev_priv(dev);
594
595 pi->qs = &adap->sge.qs[pi->first_qset];
596 for (j = pi->first_qset; j < pi->first_qset + pi->nqsets;
597 ++j, ++qset_idx) {
598 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
599 err = t3_sge_alloc_qset(adap, qset_idx, 1,
600 (adap->flags & USING_MSIX) ? qset_idx + 1 :
601 irq_idx,
602 &adap->params.sge.qset[qset_idx], ntxq, dev,
603 netdev_get_tx_queue(dev, j));
604 if (err) {
605 t3_free_sge_resources(adap);
606 return err;
607 }
608 }
609 }
610
611 return 0;
612 }
613
614 static ssize_t attr_show(struct device *d, char *buf,
615 ssize_t(*format) (struct net_device *, char *))
616 {
617 ssize_t len;
618
619 /* Synchronize with ioctls that may shut down the device */
620 rtnl_lock();
621 len = (*format) (to_net_dev(d), buf);
622 rtnl_unlock();
623 return len;
624 }
625
626 static ssize_t attr_store(struct device *d,
627 const char *buf, size_t len,
628 ssize_t(*set) (struct net_device *, unsigned int),
629 unsigned int min_val, unsigned int max_val)
630 {
631 char *endp;
632 ssize_t ret;
633 unsigned int val;
634
635 if (!capable(CAP_NET_ADMIN))
636 return -EPERM;
637
638 val = simple_strtoul(buf, &endp, 0);
639 if (endp == buf || val < min_val || val > max_val)
640 return -EINVAL;
641
642 rtnl_lock();
643 ret = (*set) (to_net_dev(d), val);
644 if (!ret)
645 ret = len;
646 rtnl_unlock();
647 return ret;
648 }
649
650 #define CXGB3_SHOW(name, val_expr) \
651 static ssize_t format_##name(struct net_device *dev, char *buf) \
652 { \
653 struct port_info *pi = netdev_priv(dev); \
654 struct adapter *adap = pi->adapter; \
655 return sprintf(buf, "%u\n", val_expr); \
656 } \
657 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
658 char *buf) \
659 { \
660 return attr_show(d, buf, format_##name); \
661 }
662
663 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
664 {
665 struct port_info *pi = netdev_priv(dev);
666 struct adapter *adap = pi->adapter;
667 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
668
669 if (adap->flags & FULL_INIT_DONE)
670 return -EBUSY;
671 if (val && adap->params.rev == 0)
672 return -EINVAL;
673 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
674 min_tids)
675 return -EINVAL;
676 adap->params.mc5.nfilters = val;
677 return 0;
678 }
679
680 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
681 const char *buf, size_t len)
682 {
683 return attr_store(d, buf, len, set_nfilters, 0, ~0);
684 }
685
686 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
687 {
688 struct port_info *pi = netdev_priv(dev);
689 struct adapter *adap = pi->adapter;
690
691 if (adap->flags & FULL_INIT_DONE)
692 return -EBUSY;
693 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
694 MC5_MIN_TIDS)
695 return -EINVAL;
696 adap->params.mc5.nservers = val;
697 return 0;
698 }
699
700 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
701 const char *buf, size_t len)
702 {
703 return attr_store(d, buf, len, set_nservers, 0, ~0);
704 }
705
706 #define CXGB3_ATTR_R(name, val_expr) \
707 CXGB3_SHOW(name, val_expr) \
708 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
709
710 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
711 CXGB3_SHOW(name, val_expr) \
712 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
713
714 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
715 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
716 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
717
718 static struct attribute *cxgb3_attrs[] = {
719 &dev_attr_cam_size.attr,
720 &dev_attr_nfilters.attr,
721 &dev_attr_nservers.attr,
722 NULL
723 };
724
725 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
726
727 static ssize_t tm_attr_show(struct device *d,
728 char *buf, int sched)
729 {
730 struct port_info *pi = netdev_priv(to_net_dev(d));
731 struct adapter *adap = pi->adapter;
732 unsigned int v, addr, bpt, cpt;
733 ssize_t len;
734
735 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
736 rtnl_lock();
737 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
738 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
739 if (sched & 1)
740 v >>= 16;
741 bpt = (v >> 8) & 0xff;
742 cpt = v & 0xff;
743 if (!cpt)
744 len = sprintf(buf, "disabled\n");
745 else {
746 v = (adap->params.vpd.cclk * 1000) / cpt;
747 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
748 }
749 rtnl_unlock();
750 return len;
751 }
752
753 static ssize_t tm_attr_store(struct device *d,
754 const char *buf, size_t len, int sched)
755 {
756 struct port_info *pi = netdev_priv(to_net_dev(d));
757 struct adapter *adap = pi->adapter;
758 unsigned int val;
759 char *endp;
760 ssize_t ret;
761
762 if (!capable(CAP_NET_ADMIN))
763 return -EPERM;
764
765 val = simple_strtoul(buf, &endp, 0);
766 if (endp == buf || val > 10000000)
767 return -EINVAL;
768
769 rtnl_lock();
770 ret = t3_config_sched(adap, val, sched);
771 if (!ret)
772 ret = len;
773 rtnl_unlock();
774 return ret;
775 }
776
777 #define TM_ATTR(name, sched) \
778 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
779 char *buf) \
780 { \
781 return tm_attr_show(d, buf, sched); \
782 } \
783 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
784 const char *buf, size_t len) \
785 { \
786 return tm_attr_store(d, buf, len, sched); \
787 } \
788 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
789
790 TM_ATTR(sched0, 0);
791 TM_ATTR(sched1, 1);
792 TM_ATTR(sched2, 2);
793 TM_ATTR(sched3, 3);
794 TM_ATTR(sched4, 4);
795 TM_ATTR(sched5, 5);
796 TM_ATTR(sched6, 6);
797 TM_ATTR(sched7, 7);
798
799 static struct attribute *offload_attrs[] = {
800 &dev_attr_sched0.attr,
801 &dev_attr_sched1.attr,
802 &dev_attr_sched2.attr,
803 &dev_attr_sched3.attr,
804 &dev_attr_sched4.attr,
805 &dev_attr_sched5.attr,
806 &dev_attr_sched6.attr,
807 &dev_attr_sched7.attr,
808 NULL
809 };
810
811 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
812
813 /*
814 * Sends an sk_buff to an offload queue driver
815 * after dealing with any active network taps.
816 */
817 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
818 {
819 int ret;
820
821 local_bh_disable();
822 ret = t3_offload_tx(tdev, skb);
823 local_bh_enable();
824 return ret;
825 }
826
827 static int write_smt_entry(struct adapter *adapter, int idx)
828 {
829 struct cpl_smt_write_req *req;
830 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
831
832 if (!skb)
833 return -ENOMEM;
834
835 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
836 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
837 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
838 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
839 req->iff = idx;
840 memset(req->src_mac1, 0, sizeof(req->src_mac1));
841 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
842 skb->priority = 1;
843 offload_tx(&adapter->tdev, skb);
844 return 0;
845 }
846
847 static int init_smt(struct adapter *adapter)
848 {
849 int i;
850
851 for_each_port(adapter, i)
852 write_smt_entry(adapter, i);
853 return 0;
854 }
855
856 static void init_port_mtus(struct adapter *adapter)
857 {
858 unsigned int mtus = adapter->port[0]->mtu;
859
860 if (adapter->port[1])
861 mtus |= adapter->port[1]->mtu << 16;
862 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
863 }
864
865 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
866 int hi, int port)
867 {
868 struct sk_buff *skb;
869 struct mngt_pktsched_wr *req;
870 int ret;
871
872 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
873 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
874 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
875 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
876 req->sched = sched;
877 req->idx = qidx;
878 req->min = lo;
879 req->max = hi;
880 req->binding = port;
881 ret = t3_mgmt_tx(adap, skb);
882
883 return ret;
884 }
885
886 static int bind_qsets(struct adapter *adap)
887 {
888 int i, j, err = 0;
889
890 for_each_port(adap, i) {
891 const struct port_info *pi = adap2pinfo(adap, i);
892
893 for (j = 0; j < pi->nqsets; ++j) {
894 int ret = send_pktsched_cmd(adap, 1,
895 pi->first_qset + j, -1,
896 -1, i);
897 if (ret)
898 err = ret;
899 }
900 }
901
902 return err;
903 }
904
905 #define FW_FNAME "cxgb3/t3fw-%d.%d.%d.bin"
906 #define TPSRAM_NAME "cxgb3/t3%c_psram-%d.%d.%d.bin"
907
908 static int upgrade_fw(struct adapter *adap)
909 {
910 int ret;
911 char buf[64];
912 const struct firmware *fw;
913 struct device *dev = &adap->pdev->dev;
914
915 snprintf(buf, sizeof(buf), FW_FNAME, FW_VERSION_MAJOR,
916 FW_VERSION_MINOR, FW_VERSION_MICRO);
917 ret = request_firmware(&fw, buf, dev);
918 if (ret < 0) {
919 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
920 buf);
921 return ret;
922 }
923 ret = t3_load_fw(adap, fw->data, fw->size);
924 release_firmware(fw);
925
926 if (ret == 0)
927 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
928 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
929 else
930 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
931 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
932
933 return ret;
934 }
935
936 static inline char t3rev2char(struct adapter *adapter)
937 {
938 char rev = 0;
939
940 switch(adapter->params.rev) {
941 case T3_REV_B:
942 case T3_REV_B2:
943 rev = 'b';
944 break;
945 case T3_REV_C:
946 rev = 'c';
947 break;
948 }
949 return rev;
950 }
951
952 static int update_tpsram(struct adapter *adap)
953 {
954 const struct firmware *tpsram;
955 char buf[64];
956 struct device *dev = &adap->pdev->dev;
957 int ret;
958 char rev;
959
960 rev = t3rev2char(adap);
961 if (!rev)
962 return 0;
963
964 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev,
965 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
966
967 ret = request_firmware(&tpsram, buf, dev);
968 if (ret < 0) {
969 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
970 buf);
971 return ret;
972 }
973
974 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
975 if (ret)
976 goto release_tpsram;
977
978 ret = t3_set_proto_sram(adap, tpsram->data);
979 if (ret == 0)
980 dev_info(dev,
981 "successful update of protocol engine "
982 "to %d.%d.%d\n",
983 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
984 else
985 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
986 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
987 if (ret)
988 dev_err(dev, "loading protocol SRAM failed\n");
989
990 release_tpsram:
991 release_firmware(tpsram);
992
993 return ret;
994 }
995
996 /**
997 * cxgb_up - enable the adapter
998 * @adapter: adapter being enabled
999 *
1000 * Called when the first port is enabled, this function performs the
1001 * actions necessary to make an adapter operational, such as completing
1002 * the initialization of HW modules, and enabling interrupts.
1003 *
1004 * Must be called with the rtnl lock held.
1005 */
1006 static int cxgb_up(struct adapter *adap)
1007 {
1008 int err;
1009
1010 if (!(adap->flags & FULL_INIT_DONE)) {
1011 err = t3_check_fw_version(adap);
1012 if (err == -EINVAL) {
1013 err = upgrade_fw(adap);
1014 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1015 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1016 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1017 }
1018
1019 err = t3_check_tpsram_version(adap);
1020 if (err == -EINVAL) {
1021 err = update_tpsram(adap);
1022 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1023 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1024 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1025 }
1026
1027 /*
1028 * Clear interrupts now to catch errors if t3_init_hw fails.
1029 * We clear them again later as initialization may trigger
1030 * conditions that can interrupt.
1031 */
1032 t3_intr_clear(adap);
1033
1034 err = t3_init_hw(adap, 0);
1035 if (err)
1036 goto out;
1037
1038 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1039 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1040
1041 err = setup_sge_qsets(adap);
1042 if (err)
1043 goto out;
1044
1045 setup_rss(adap);
1046 if (!(adap->flags & NAPI_INIT))
1047 init_napi(adap);
1048
1049 t3_start_sge_timers(adap);
1050 adap->flags |= FULL_INIT_DONE;
1051 }
1052
1053 t3_intr_clear(adap);
1054
1055 if (adap->flags & USING_MSIX) {
1056 name_msix_vecs(adap);
1057 err = request_irq(adap->msix_info[0].vec,
1058 t3_async_intr_handler, 0,
1059 adap->msix_info[0].desc, adap);
1060 if (err)
1061 goto irq_err;
1062
1063 err = request_msix_data_irqs(adap);
1064 if (err) {
1065 free_irq(adap->msix_info[0].vec, adap);
1066 goto irq_err;
1067 }
1068 } else if ((err = request_irq(adap->pdev->irq,
1069 t3_intr_handler(adap,
1070 adap->sge.qs[0].rspq.
1071 polling),
1072 (adap->flags & USING_MSI) ?
1073 0 : IRQF_SHARED,
1074 adap->name, adap)))
1075 goto irq_err;
1076
1077 enable_all_napi(adap);
1078 t3_sge_start(adap);
1079 t3_intr_enable(adap);
1080
1081 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1082 is_offload(adap) && init_tp_parity(adap) == 0)
1083 adap->flags |= TP_PARITY_INIT;
1084
1085 if (adap->flags & TP_PARITY_INIT) {
1086 t3_write_reg(adap, A_TP_INT_CAUSE,
1087 F_CMCACHEPERR | F_ARPLUTPERR);
1088 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1089 }
1090
1091 if (!(adap->flags & QUEUES_BOUND)) {
1092 err = bind_qsets(adap);
1093 if (err) {
1094 CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1095 t3_intr_disable(adap);
1096 free_irq_resources(adap);
1097 goto out;
1098 }
1099 adap->flags |= QUEUES_BOUND;
1100 }
1101
1102 out:
1103 return err;
1104 irq_err:
1105 CH_ERR(adap, "request_irq failed, err %d\n", err);
1106 goto out;
1107 }
1108
1109 /*
1110 * Release resources when all the ports and offloading have been stopped.
1111 */
1112 static void cxgb_down(struct adapter *adapter)
1113 {
1114 t3_sge_stop(adapter);
1115 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1116 t3_intr_disable(adapter);
1117 spin_unlock_irq(&adapter->work_lock);
1118
1119 free_irq_resources(adapter);
1120 quiesce_rx(adapter);
1121 flush_workqueue(cxgb3_wq); /* wait for external IRQ handler */
1122 }
1123
1124 static void schedule_chk_task(struct adapter *adap)
1125 {
1126 unsigned int timeo;
1127
1128 timeo = adap->params.linkpoll_period ?
1129 (HZ * adap->params.linkpoll_period) / 10 :
1130 adap->params.stats_update_period * HZ;
1131 if (timeo)
1132 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1133 }
1134
1135 static int offload_open(struct net_device *dev)
1136 {
1137 struct port_info *pi = netdev_priv(dev);
1138 struct adapter *adapter = pi->adapter;
1139 struct t3cdev *tdev = dev2t3cdev(dev);
1140 int adap_up = adapter->open_device_map & PORT_MASK;
1141 int err;
1142
1143 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1144 return 0;
1145
1146 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1147 goto out;
1148
1149 t3_tp_set_offload_mode(adapter, 1);
1150 tdev->lldev = adapter->port[0];
1151 err = cxgb3_offload_activate(adapter);
1152 if (err)
1153 goto out;
1154
1155 init_port_mtus(adapter);
1156 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1157 adapter->params.b_wnd,
1158 adapter->params.rev == 0 ?
1159 adapter->port[0]->mtu : 0xffff);
1160 init_smt(adapter);
1161
1162 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1163 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1164
1165 /* Call back all registered clients */
1166 cxgb3_add_clients(tdev);
1167
1168 out:
1169 /* restore them in case the offload module has changed them */
1170 if (err) {
1171 t3_tp_set_offload_mode(adapter, 0);
1172 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1173 cxgb3_set_dummy_ops(tdev);
1174 }
1175 return err;
1176 }
1177
1178 static int offload_close(struct t3cdev *tdev)
1179 {
1180 struct adapter *adapter = tdev2adap(tdev);
1181
1182 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1183 return 0;
1184
1185 /* Call back all registered clients */
1186 cxgb3_remove_clients(tdev);
1187
1188 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1189
1190 /* Flush work scheduled while releasing TIDs */
1191 flush_scheduled_work();
1192
1193 tdev->lldev = NULL;
1194 cxgb3_set_dummy_ops(tdev);
1195 t3_tp_set_offload_mode(adapter, 0);
1196 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1197
1198 if (!adapter->open_device_map)
1199 cxgb_down(adapter);
1200
1201 cxgb3_offload_deactivate(adapter);
1202 return 0;
1203 }
1204
1205 static int cxgb_open(struct net_device *dev)
1206 {
1207 struct port_info *pi = netdev_priv(dev);
1208 struct adapter *adapter = pi->adapter;
1209 int other_ports = adapter->open_device_map & PORT_MASK;
1210 int err;
1211
1212 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1213 return err;
1214
1215 set_bit(pi->port_id, &adapter->open_device_map);
1216 if (is_offload(adapter) && !ofld_disable) {
1217 err = offload_open(dev);
1218 if (err)
1219 printk(KERN_WARNING
1220 "Could not initialize offload capabilities\n");
1221 }
1222
1223 dev->real_num_tx_queues = pi->nqsets;
1224 link_start(dev);
1225 t3_port_intr_enable(adapter, pi->port_id);
1226 netif_tx_start_all_queues(dev);
1227 if (!other_ports)
1228 schedule_chk_task(adapter);
1229
1230 return 0;
1231 }
1232
1233 static int cxgb_close(struct net_device *dev)
1234 {
1235 struct port_info *pi = netdev_priv(dev);
1236 struct adapter *adapter = pi->adapter;
1237
1238
1239 if (!adapter->open_device_map)
1240 return 0;
1241
1242 /* Stop link fault interrupts */
1243 t3_xgm_intr_disable(adapter, pi->port_id);
1244 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1245
1246 t3_port_intr_disable(adapter, pi->port_id);
1247 netif_tx_stop_all_queues(dev);
1248 pi->phy.ops->power_down(&pi->phy, 1);
1249 netif_carrier_off(dev);
1250 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1251
1252 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1253 clear_bit(pi->port_id, &adapter->open_device_map);
1254 spin_unlock_irq(&adapter->work_lock);
1255
1256 if (!(adapter->open_device_map & PORT_MASK))
1257 cancel_delayed_work_sync(&adapter->adap_check_task);
1258
1259 if (!adapter->open_device_map)
1260 cxgb_down(adapter);
1261
1262 return 0;
1263 }
1264
1265 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1266 {
1267 struct port_info *pi = netdev_priv(dev);
1268 struct adapter *adapter = pi->adapter;
1269 struct net_device_stats *ns = &pi->netstats;
1270 const struct mac_stats *pstats;
1271
1272 spin_lock(&adapter->stats_lock);
1273 pstats = t3_mac_update_stats(&pi->mac);
1274 spin_unlock(&adapter->stats_lock);
1275
1276 ns->tx_bytes = pstats->tx_octets;
1277 ns->tx_packets = pstats->tx_frames;
1278 ns->rx_bytes = pstats->rx_octets;
1279 ns->rx_packets = pstats->rx_frames;
1280 ns->multicast = pstats->rx_mcast_frames;
1281
1282 ns->tx_errors = pstats->tx_underrun;
1283 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1284 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1285 pstats->rx_fifo_ovfl;
1286
1287 /* detailed rx_errors */
1288 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1289 ns->rx_over_errors = 0;
1290 ns->rx_crc_errors = pstats->rx_fcs_errs;
1291 ns->rx_frame_errors = pstats->rx_symbol_errs;
1292 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1293 ns->rx_missed_errors = pstats->rx_cong_drops;
1294
1295 /* detailed tx_errors */
1296 ns->tx_aborted_errors = 0;
1297 ns->tx_carrier_errors = 0;
1298 ns->tx_fifo_errors = pstats->tx_underrun;
1299 ns->tx_heartbeat_errors = 0;
1300 ns->tx_window_errors = 0;
1301 return ns;
1302 }
1303
1304 static u32 get_msglevel(struct net_device *dev)
1305 {
1306 struct port_info *pi = netdev_priv(dev);
1307 struct adapter *adapter = pi->adapter;
1308
1309 return adapter->msg_enable;
1310 }
1311
1312 static void set_msglevel(struct net_device *dev, u32 val)
1313 {
1314 struct port_info *pi = netdev_priv(dev);
1315 struct adapter *adapter = pi->adapter;
1316
1317 adapter->msg_enable = val;
1318 }
1319
1320 static char stats_strings[][ETH_GSTRING_LEN] = {
1321 "TxOctetsOK ",
1322 "TxFramesOK ",
1323 "TxMulticastFramesOK",
1324 "TxBroadcastFramesOK",
1325 "TxPauseFrames ",
1326 "TxUnderrun ",
1327 "TxExtUnderrun ",
1328
1329 "TxFrames64 ",
1330 "TxFrames65To127 ",
1331 "TxFrames128To255 ",
1332 "TxFrames256To511 ",
1333 "TxFrames512To1023 ",
1334 "TxFrames1024To1518 ",
1335 "TxFrames1519ToMax ",
1336
1337 "RxOctetsOK ",
1338 "RxFramesOK ",
1339 "RxMulticastFramesOK",
1340 "RxBroadcastFramesOK",
1341 "RxPauseFrames ",
1342 "RxFCSErrors ",
1343 "RxSymbolErrors ",
1344 "RxShortErrors ",
1345 "RxJabberErrors ",
1346 "RxLengthErrors ",
1347 "RxFIFOoverflow ",
1348
1349 "RxFrames64 ",
1350 "RxFrames65To127 ",
1351 "RxFrames128To255 ",
1352 "RxFrames256To511 ",
1353 "RxFrames512To1023 ",
1354 "RxFrames1024To1518 ",
1355 "RxFrames1519ToMax ",
1356
1357 "PhyFIFOErrors ",
1358 "TSO ",
1359 "VLANextractions ",
1360 "VLANinsertions ",
1361 "TxCsumOffload ",
1362 "RxCsumGood ",
1363 "LroAggregated ",
1364 "LroFlushed ",
1365 "LroNoDesc ",
1366 "RxDrops ",
1367
1368 "CheckTXEnToggled ",
1369 "CheckResets ",
1370
1371 "LinkFaults ",
1372 };
1373
1374 static int get_sset_count(struct net_device *dev, int sset)
1375 {
1376 switch (sset) {
1377 case ETH_SS_STATS:
1378 return ARRAY_SIZE(stats_strings);
1379 default:
1380 return -EOPNOTSUPP;
1381 }
1382 }
1383
1384 #define T3_REGMAP_SIZE (3 * 1024)
1385
1386 static int get_regs_len(struct net_device *dev)
1387 {
1388 return T3_REGMAP_SIZE;
1389 }
1390
1391 static int get_eeprom_len(struct net_device *dev)
1392 {
1393 return EEPROMSIZE;
1394 }
1395
1396 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1397 {
1398 struct port_info *pi = netdev_priv(dev);
1399 struct adapter *adapter = pi->adapter;
1400 u32 fw_vers = 0;
1401 u32 tp_vers = 0;
1402
1403 spin_lock(&adapter->stats_lock);
1404 t3_get_fw_version(adapter, &fw_vers);
1405 t3_get_tp_version(adapter, &tp_vers);
1406 spin_unlock(&adapter->stats_lock);
1407
1408 strcpy(info->driver, DRV_NAME);
1409 strcpy(info->version, DRV_VERSION);
1410 strcpy(info->bus_info, pci_name(adapter->pdev));
1411 if (!fw_vers)
1412 strcpy(info->fw_version, "N/A");
1413 else {
1414 snprintf(info->fw_version, sizeof(info->fw_version),
1415 "%s %u.%u.%u TP %u.%u.%u",
1416 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1417 G_FW_VERSION_MAJOR(fw_vers),
1418 G_FW_VERSION_MINOR(fw_vers),
1419 G_FW_VERSION_MICRO(fw_vers),
1420 G_TP_VERSION_MAJOR(tp_vers),
1421 G_TP_VERSION_MINOR(tp_vers),
1422 G_TP_VERSION_MICRO(tp_vers));
1423 }
1424 }
1425
1426 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1427 {
1428 if (stringset == ETH_SS_STATS)
1429 memcpy(data, stats_strings, sizeof(stats_strings));
1430 }
1431
1432 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1433 struct port_info *p, int idx)
1434 {
1435 int i;
1436 unsigned long tot = 0;
1437
1438 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1439 tot += adapter->sge.qs[i].port_stats[idx];
1440 return tot;
1441 }
1442
1443 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1444 u64 *data)
1445 {
1446 struct port_info *pi = netdev_priv(dev);
1447 struct adapter *adapter = pi->adapter;
1448 const struct mac_stats *s;
1449
1450 spin_lock(&adapter->stats_lock);
1451 s = t3_mac_update_stats(&pi->mac);
1452 spin_unlock(&adapter->stats_lock);
1453
1454 *data++ = s->tx_octets;
1455 *data++ = s->tx_frames;
1456 *data++ = s->tx_mcast_frames;
1457 *data++ = s->tx_bcast_frames;
1458 *data++ = s->tx_pause;
1459 *data++ = s->tx_underrun;
1460 *data++ = s->tx_fifo_urun;
1461
1462 *data++ = s->tx_frames_64;
1463 *data++ = s->tx_frames_65_127;
1464 *data++ = s->tx_frames_128_255;
1465 *data++ = s->tx_frames_256_511;
1466 *data++ = s->tx_frames_512_1023;
1467 *data++ = s->tx_frames_1024_1518;
1468 *data++ = s->tx_frames_1519_max;
1469
1470 *data++ = s->rx_octets;
1471 *data++ = s->rx_frames;
1472 *data++ = s->rx_mcast_frames;
1473 *data++ = s->rx_bcast_frames;
1474 *data++ = s->rx_pause;
1475 *data++ = s->rx_fcs_errs;
1476 *data++ = s->rx_symbol_errs;
1477 *data++ = s->rx_short;
1478 *data++ = s->rx_jabber;
1479 *data++ = s->rx_too_long;
1480 *data++ = s->rx_fifo_ovfl;
1481
1482 *data++ = s->rx_frames_64;
1483 *data++ = s->rx_frames_65_127;
1484 *data++ = s->rx_frames_128_255;
1485 *data++ = s->rx_frames_256_511;
1486 *data++ = s->rx_frames_512_1023;
1487 *data++ = s->rx_frames_1024_1518;
1488 *data++ = s->rx_frames_1519_max;
1489
1490 *data++ = pi->phy.fifo_errors;
1491
1492 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1493 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1494 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1495 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1496 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1497 *data++ = 0;
1498 *data++ = 0;
1499 *data++ = 0;
1500 *data++ = s->rx_cong_drops;
1501
1502 *data++ = s->num_toggled;
1503 *data++ = s->num_resets;
1504
1505 *data++ = s->link_faults;
1506 }
1507
1508 static inline void reg_block_dump(struct adapter *ap, void *buf,
1509 unsigned int start, unsigned int end)
1510 {
1511 u32 *p = buf + start;
1512
1513 for (; start <= end; start += sizeof(u32))
1514 *p++ = t3_read_reg(ap, start);
1515 }
1516
1517 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1518 void *buf)
1519 {
1520 struct port_info *pi = netdev_priv(dev);
1521 struct adapter *ap = pi->adapter;
1522
1523 /*
1524 * Version scheme:
1525 * bits 0..9: chip version
1526 * bits 10..15: chip revision
1527 * bit 31: set for PCIe cards
1528 */
1529 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1530
1531 /*
1532 * We skip the MAC statistics registers because they are clear-on-read.
1533 * Also reading multi-register stats would need to synchronize with the
1534 * periodic mac stats accumulation. Hard to justify the complexity.
1535 */
1536 memset(buf, 0, T3_REGMAP_SIZE);
1537 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1538 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1539 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1540 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1541 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1542 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1543 XGM_REG(A_XGM_SERDES_STAT3, 1));
1544 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1545 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1546 }
1547
1548 static int restart_autoneg(struct net_device *dev)
1549 {
1550 struct port_info *p = netdev_priv(dev);
1551
1552 if (!netif_running(dev))
1553 return -EAGAIN;
1554 if (p->link_config.autoneg != AUTONEG_ENABLE)
1555 return -EINVAL;
1556 p->phy.ops->autoneg_restart(&p->phy);
1557 return 0;
1558 }
1559
1560 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1561 {
1562 struct port_info *pi = netdev_priv(dev);
1563 struct adapter *adapter = pi->adapter;
1564 int i;
1565
1566 if (data == 0)
1567 data = 2;
1568
1569 for (i = 0; i < data * 2; i++) {
1570 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1571 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1572 if (msleep_interruptible(500))
1573 break;
1574 }
1575 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1576 F_GPIO0_OUT_VAL);
1577 return 0;
1578 }
1579
1580 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1581 {
1582 struct port_info *p = netdev_priv(dev);
1583
1584 cmd->supported = p->link_config.supported;
1585 cmd->advertising = p->link_config.advertising;
1586
1587 if (netif_carrier_ok(dev)) {
1588 cmd->speed = p->link_config.speed;
1589 cmd->duplex = p->link_config.duplex;
1590 } else {
1591 cmd->speed = -1;
1592 cmd->duplex = -1;
1593 }
1594
1595 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1596 cmd->phy_address = p->phy.addr;
1597 cmd->transceiver = XCVR_EXTERNAL;
1598 cmd->autoneg = p->link_config.autoneg;
1599 cmd->maxtxpkt = 0;
1600 cmd->maxrxpkt = 0;
1601 return 0;
1602 }
1603
1604 static int speed_duplex_to_caps(int speed, int duplex)
1605 {
1606 int cap = 0;
1607
1608 switch (speed) {
1609 case SPEED_10:
1610 if (duplex == DUPLEX_FULL)
1611 cap = SUPPORTED_10baseT_Full;
1612 else
1613 cap = SUPPORTED_10baseT_Half;
1614 break;
1615 case SPEED_100:
1616 if (duplex == DUPLEX_FULL)
1617 cap = SUPPORTED_100baseT_Full;
1618 else
1619 cap = SUPPORTED_100baseT_Half;
1620 break;
1621 case SPEED_1000:
1622 if (duplex == DUPLEX_FULL)
1623 cap = SUPPORTED_1000baseT_Full;
1624 else
1625 cap = SUPPORTED_1000baseT_Half;
1626 break;
1627 case SPEED_10000:
1628 if (duplex == DUPLEX_FULL)
1629 cap = SUPPORTED_10000baseT_Full;
1630 }
1631 return cap;
1632 }
1633
1634 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1635 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1636 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1637 ADVERTISED_10000baseT_Full)
1638
1639 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1640 {
1641 struct port_info *p = netdev_priv(dev);
1642 struct link_config *lc = &p->link_config;
1643
1644 if (!(lc->supported & SUPPORTED_Autoneg)) {
1645 /*
1646 * PHY offers a single speed/duplex. See if that's what's
1647 * being requested.
1648 */
1649 if (cmd->autoneg == AUTONEG_DISABLE) {
1650 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1651 if (lc->supported & cap)
1652 return 0;
1653 }
1654 return -EINVAL;
1655 }
1656
1657 if (cmd->autoneg == AUTONEG_DISABLE) {
1658 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1659
1660 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1661 return -EINVAL;
1662 lc->requested_speed = cmd->speed;
1663 lc->requested_duplex = cmd->duplex;
1664 lc->advertising = 0;
1665 } else {
1666 cmd->advertising &= ADVERTISED_MASK;
1667 cmd->advertising &= lc->supported;
1668 if (!cmd->advertising)
1669 return -EINVAL;
1670 lc->requested_speed = SPEED_INVALID;
1671 lc->requested_duplex = DUPLEX_INVALID;
1672 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1673 }
1674 lc->autoneg = cmd->autoneg;
1675 if (netif_running(dev))
1676 t3_link_start(&p->phy, &p->mac, lc);
1677 return 0;
1678 }
1679
1680 static void get_pauseparam(struct net_device *dev,
1681 struct ethtool_pauseparam *epause)
1682 {
1683 struct port_info *p = netdev_priv(dev);
1684
1685 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1686 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1687 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1688 }
1689
1690 static int set_pauseparam(struct net_device *dev,
1691 struct ethtool_pauseparam *epause)
1692 {
1693 struct port_info *p = netdev_priv(dev);
1694 struct link_config *lc = &p->link_config;
1695
1696 if (epause->autoneg == AUTONEG_DISABLE)
1697 lc->requested_fc = 0;
1698 else if (lc->supported & SUPPORTED_Autoneg)
1699 lc->requested_fc = PAUSE_AUTONEG;
1700 else
1701 return -EINVAL;
1702
1703 if (epause->rx_pause)
1704 lc->requested_fc |= PAUSE_RX;
1705 if (epause->tx_pause)
1706 lc->requested_fc |= PAUSE_TX;
1707 if (lc->autoneg == AUTONEG_ENABLE) {
1708 if (netif_running(dev))
1709 t3_link_start(&p->phy, &p->mac, lc);
1710 } else {
1711 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1712 if (netif_running(dev))
1713 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1714 }
1715 return 0;
1716 }
1717
1718 static u32 get_rx_csum(struct net_device *dev)
1719 {
1720 struct port_info *p = netdev_priv(dev);
1721
1722 return p->rx_offload & T3_RX_CSUM;
1723 }
1724
1725 static int set_rx_csum(struct net_device *dev, u32 data)
1726 {
1727 struct port_info *p = netdev_priv(dev);
1728
1729 if (data) {
1730 p->rx_offload |= T3_RX_CSUM;
1731 } else {
1732 int i;
1733
1734 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1735 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1736 set_qset_lro(dev, i, 0);
1737 }
1738 return 0;
1739 }
1740
1741 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1742 {
1743 struct port_info *pi = netdev_priv(dev);
1744 struct adapter *adapter = pi->adapter;
1745 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1746
1747 e->rx_max_pending = MAX_RX_BUFFERS;
1748 e->rx_mini_max_pending = 0;
1749 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1750 e->tx_max_pending = MAX_TXQ_ENTRIES;
1751
1752 e->rx_pending = q->fl_size;
1753 e->rx_mini_pending = q->rspq_size;
1754 e->rx_jumbo_pending = q->jumbo_size;
1755 e->tx_pending = q->txq_size[0];
1756 }
1757
1758 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1759 {
1760 struct port_info *pi = netdev_priv(dev);
1761 struct adapter *adapter = pi->adapter;
1762 struct qset_params *q;
1763 int i;
1764
1765 if (e->rx_pending > MAX_RX_BUFFERS ||
1766 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1767 e->tx_pending > MAX_TXQ_ENTRIES ||
1768 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1769 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1770 e->rx_pending < MIN_FL_ENTRIES ||
1771 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1772 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1773 return -EINVAL;
1774
1775 if (adapter->flags & FULL_INIT_DONE)
1776 return -EBUSY;
1777
1778 q = &adapter->params.sge.qset[pi->first_qset];
1779 for (i = 0; i < pi->nqsets; ++i, ++q) {
1780 q->rspq_size = e->rx_mini_pending;
1781 q->fl_size = e->rx_pending;
1782 q->jumbo_size = e->rx_jumbo_pending;
1783 q->txq_size[0] = e->tx_pending;
1784 q->txq_size[1] = e->tx_pending;
1785 q->txq_size[2] = e->tx_pending;
1786 }
1787 return 0;
1788 }
1789
1790 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1791 {
1792 struct port_info *pi = netdev_priv(dev);
1793 struct adapter *adapter = pi->adapter;
1794 struct qset_params *qsp = &adapter->params.sge.qset[0];
1795 struct sge_qset *qs = &adapter->sge.qs[0];
1796
1797 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1798 return -EINVAL;
1799
1800 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1801 t3_update_qset_coalesce(qs, qsp);
1802 return 0;
1803 }
1804
1805 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1806 {
1807 struct port_info *pi = netdev_priv(dev);
1808 struct adapter *adapter = pi->adapter;
1809 struct qset_params *q = adapter->params.sge.qset;
1810
1811 c->rx_coalesce_usecs = q->coalesce_usecs;
1812 return 0;
1813 }
1814
1815 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1816 u8 * data)
1817 {
1818 struct port_info *pi = netdev_priv(dev);
1819 struct adapter *adapter = pi->adapter;
1820 int i, err = 0;
1821
1822 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1823 if (!buf)
1824 return -ENOMEM;
1825
1826 e->magic = EEPROM_MAGIC;
1827 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1828 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1829
1830 if (!err)
1831 memcpy(data, buf + e->offset, e->len);
1832 kfree(buf);
1833 return err;
1834 }
1835
1836 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1837 u8 * data)
1838 {
1839 struct port_info *pi = netdev_priv(dev);
1840 struct adapter *adapter = pi->adapter;
1841 u32 aligned_offset, aligned_len;
1842 __le32 *p;
1843 u8 *buf;
1844 int err;
1845
1846 if (eeprom->magic != EEPROM_MAGIC)
1847 return -EINVAL;
1848
1849 aligned_offset = eeprom->offset & ~3;
1850 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1851
1852 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1853 buf = kmalloc(aligned_len, GFP_KERNEL);
1854 if (!buf)
1855 return -ENOMEM;
1856 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
1857 if (!err && aligned_len > 4)
1858 err = t3_seeprom_read(adapter,
1859 aligned_offset + aligned_len - 4,
1860 (__le32 *) & buf[aligned_len - 4]);
1861 if (err)
1862 goto out;
1863 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1864 } else
1865 buf = data;
1866
1867 err = t3_seeprom_wp(adapter, 0);
1868 if (err)
1869 goto out;
1870
1871 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
1872 err = t3_seeprom_write(adapter, aligned_offset, *p);
1873 aligned_offset += 4;
1874 }
1875
1876 if (!err)
1877 err = t3_seeprom_wp(adapter, 1);
1878 out:
1879 if (buf != data)
1880 kfree(buf);
1881 return err;
1882 }
1883
1884 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1885 {
1886 wol->supported = 0;
1887 wol->wolopts = 0;
1888 memset(&wol->sopass, 0, sizeof(wol->sopass));
1889 }
1890
1891 static const struct ethtool_ops cxgb_ethtool_ops = {
1892 .get_settings = get_settings,
1893 .set_settings = set_settings,
1894 .get_drvinfo = get_drvinfo,
1895 .get_msglevel = get_msglevel,
1896 .set_msglevel = set_msglevel,
1897 .get_ringparam = get_sge_param,
1898 .set_ringparam = set_sge_param,
1899 .get_coalesce = get_coalesce,
1900 .set_coalesce = set_coalesce,
1901 .get_eeprom_len = get_eeprom_len,
1902 .get_eeprom = get_eeprom,
1903 .set_eeprom = set_eeprom,
1904 .get_pauseparam = get_pauseparam,
1905 .set_pauseparam = set_pauseparam,
1906 .get_rx_csum = get_rx_csum,
1907 .set_rx_csum = set_rx_csum,
1908 .set_tx_csum = ethtool_op_set_tx_csum,
1909 .set_sg = ethtool_op_set_sg,
1910 .get_link = ethtool_op_get_link,
1911 .get_strings = get_strings,
1912 .phys_id = cxgb3_phys_id,
1913 .nway_reset = restart_autoneg,
1914 .get_sset_count = get_sset_count,
1915 .get_ethtool_stats = get_stats,
1916 .get_regs_len = get_regs_len,
1917 .get_regs = get_regs,
1918 .get_wol = get_wol,
1919 .set_tso = ethtool_op_set_tso,
1920 };
1921
1922 static int in_range(int val, int lo, int hi)
1923 {
1924 return val < 0 || (val <= hi && val >= lo);
1925 }
1926
1927 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
1928 {
1929 struct port_info *pi = netdev_priv(dev);
1930 struct adapter *adapter = pi->adapter;
1931 u32 cmd;
1932 int ret;
1933
1934 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
1935 return -EFAULT;
1936
1937 switch (cmd) {
1938 case CHELSIO_SET_QSET_PARAMS:{
1939 int i;
1940 struct qset_params *q;
1941 struct ch_qset_params t;
1942 int q1 = pi->first_qset;
1943 int nqsets = pi->nqsets;
1944
1945 if (!capable(CAP_NET_ADMIN))
1946 return -EPERM;
1947 if (copy_from_user(&t, useraddr, sizeof(t)))
1948 return -EFAULT;
1949 if (t.qset_idx >= SGE_QSETS)
1950 return -EINVAL;
1951 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
1952 !in_range(t.cong_thres, 0, 255) ||
1953 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
1954 MAX_TXQ_ENTRIES) ||
1955 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
1956 MAX_TXQ_ENTRIES) ||
1957 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
1958 MAX_CTRL_TXQ_ENTRIES) ||
1959 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
1960 MAX_RX_BUFFERS)
1961 || !in_range(t.fl_size[1], MIN_FL_ENTRIES,
1962 MAX_RX_JUMBO_BUFFERS)
1963 || !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
1964 MAX_RSPQ_ENTRIES))
1965 return -EINVAL;
1966
1967 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
1968 for_each_port(adapter, i) {
1969 pi = adap2pinfo(adapter, i);
1970 if (t.qset_idx >= pi->first_qset &&
1971 t.qset_idx < pi->first_qset + pi->nqsets &&
1972 !(pi->rx_offload & T3_RX_CSUM))
1973 return -EINVAL;
1974 }
1975
1976 if ((adapter->flags & FULL_INIT_DONE) &&
1977 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
1978 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
1979 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
1980 t.polling >= 0 || t.cong_thres >= 0))
1981 return -EBUSY;
1982
1983 /* Allow setting of any available qset when offload enabled */
1984 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
1985 q1 = 0;
1986 for_each_port(adapter, i) {
1987 pi = adap2pinfo(adapter, i);
1988 nqsets += pi->first_qset + pi->nqsets;
1989 }
1990 }
1991
1992 if (t.qset_idx < q1)
1993 return -EINVAL;
1994 if (t.qset_idx > q1 + nqsets - 1)
1995 return -EINVAL;
1996
1997 q = &adapter->params.sge.qset[t.qset_idx];
1998
1999 if (t.rspq_size >= 0)
2000 q->rspq_size = t.rspq_size;
2001 if (t.fl_size[0] >= 0)
2002 q->fl_size = t.fl_size[0];
2003 if (t.fl_size[1] >= 0)
2004 q->jumbo_size = t.fl_size[1];
2005 if (t.txq_size[0] >= 0)
2006 q->txq_size[0] = t.txq_size[0];
2007 if (t.txq_size[1] >= 0)
2008 q->txq_size[1] = t.txq_size[1];
2009 if (t.txq_size[2] >= 0)
2010 q->txq_size[2] = t.txq_size[2];
2011 if (t.cong_thres >= 0)
2012 q->cong_thres = t.cong_thres;
2013 if (t.intr_lat >= 0) {
2014 struct sge_qset *qs =
2015 &adapter->sge.qs[t.qset_idx];
2016
2017 q->coalesce_usecs = t.intr_lat;
2018 t3_update_qset_coalesce(qs, q);
2019 }
2020 if (t.polling >= 0) {
2021 if (adapter->flags & USING_MSIX)
2022 q->polling = t.polling;
2023 else {
2024 /* No polling with INTx for T3A */
2025 if (adapter->params.rev == 0 &&
2026 !(adapter->flags & USING_MSI))
2027 t.polling = 0;
2028
2029 for (i = 0; i < SGE_QSETS; i++) {
2030 q = &adapter->params.sge.
2031 qset[i];
2032 q->polling = t.polling;
2033 }
2034 }
2035 }
2036 if (t.lro >= 0)
2037 set_qset_lro(dev, t.qset_idx, t.lro);
2038
2039 break;
2040 }
2041 case CHELSIO_GET_QSET_PARAMS:{
2042 struct qset_params *q;
2043 struct ch_qset_params t;
2044 int q1 = pi->first_qset;
2045 int nqsets = pi->nqsets;
2046 int i;
2047
2048 if (copy_from_user(&t, useraddr, sizeof(t)))
2049 return -EFAULT;
2050
2051 /* Display qsets for all ports when offload enabled */
2052 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2053 q1 = 0;
2054 for_each_port(adapter, i) {
2055 pi = adap2pinfo(adapter, i);
2056 nqsets = pi->first_qset + pi->nqsets;
2057 }
2058 }
2059
2060 if (t.qset_idx >= nqsets)
2061 return -EINVAL;
2062
2063 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2064 t.rspq_size = q->rspq_size;
2065 t.txq_size[0] = q->txq_size[0];
2066 t.txq_size[1] = q->txq_size[1];
2067 t.txq_size[2] = q->txq_size[2];
2068 t.fl_size[0] = q->fl_size;
2069 t.fl_size[1] = q->jumbo_size;
2070 t.polling = q->polling;
2071 t.lro = q->lro;
2072 t.intr_lat = q->coalesce_usecs;
2073 t.cong_thres = q->cong_thres;
2074 t.qnum = q1;
2075
2076 if (adapter->flags & USING_MSIX)
2077 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2078 else
2079 t.vector = adapter->pdev->irq;
2080
2081 if (copy_to_user(useraddr, &t, sizeof(t)))
2082 return -EFAULT;
2083 break;
2084 }
2085 case CHELSIO_SET_QSET_NUM:{
2086 struct ch_reg edata;
2087 unsigned int i, first_qset = 0, other_qsets = 0;
2088
2089 if (!capable(CAP_NET_ADMIN))
2090 return -EPERM;
2091 if (adapter->flags & FULL_INIT_DONE)
2092 return -EBUSY;
2093 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2094 return -EFAULT;
2095 if (edata.val < 1 ||
2096 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2097 return -EINVAL;
2098
2099 for_each_port(adapter, i)
2100 if (adapter->port[i] && adapter->port[i] != dev)
2101 other_qsets += adap2pinfo(adapter, i)->nqsets;
2102
2103 if (edata.val + other_qsets > SGE_QSETS)
2104 return -EINVAL;
2105
2106 pi->nqsets = edata.val;
2107
2108 for_each_port(adapter, i)
2109 if (adapter->port[i]) {
2110 pi = adap2pinfo(adapter, i);
2111 pi->first_qset = first_qset;
2112 first_qset += pi->nqsets;
2113 }
2114 break;
2115 }
2116 case CHELSIO_GET_QSET_NUM:{
2117 struct ch_reg edata;
2118
2119 edata.cmd = CHELSIO_GET_QSET_NUM;
2120 edata.val = pi->nqsets;
2121 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2122 return -EFAULT;
2123 break;
2124 }
2125 case CHELSIO_LOAD_FW:{
2126 u8 *fw_data;
2127 struct ch_mem_range t;
2128
2129 if (!capable(CAP_SYS_RAWIO))
2130 return -EPERM;
2131 if (copy_from_user(&t, useraddr, sizeof(t)))
2132 return -EFAULT;
2133 /* Check t.len sanity ? */
2134 fw_data = kmalloc(t.len, GFP_KERNEL);
2135 if (!fw_data)
2136 return -ENOMEM;
2137
2138 if (copy_from_user
2139 (fw_data, useraddr + sizeof(t), t.len)) {
2140 kfree(fw_data);
2141 return -EFAULT;
2142 }
2143
2144 ret = t3_load_fw(adapter, fw_data, t.len);
2145 kfree(fw_data);
2146 if (ret)
2147 return ret;
2148 break;
2149 }
2150 case CHELSIO_SETMTUTAB:{
2151 struct ch_mtus m;
2152 int i;
2153
2154 if (!is_offload(adapter))
2155 return -EOPNOTSUPP;
2156 if (!capable(CAP_NET_ADMIN))
2157 return -EPERM;
2158 if (offload_running(adapter))
2159 return -EBUSY;
2160 if (copy_from_user(&m, useraddr, sizeof(m)))
2161 return -EFAULT;
2162 if (m.nmtus != NMTUS)
2163 return -EINVAL;
2164 if (m.mtus[0] < 81) /* accommodate SACK */
2165 return -EINVAL;
2166
2167 /* MTUs must be in ascending order */
2168 for (i = 1; i < NMTUS; ++i)
2169 if (m.mtus[i] < m.mtus[i - 1])
2170 return -EINVAL;
2171
2172 memcpy(adapter->params.mtus, m.mtus,
2173 sizeof(adapter->params.mtus));
2174 break;
2175 }
2176 case CHELSIO_GET_PM:{
2177 struct tp_params *p = &adapter->params.tp;
2178 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2179
2180 if (!is_offload(adapter))
2181 return -EOPNOTSUPP;
2182 m.tx_pg_sz = p->tx_pg_size;
2183 m.tx_num_pg = p->tx_num_pgs;
2184 m.rx_pg_sz = p->rx_pg_size;
2185 m.rx_num_pg = p->rx_num_pgs;
2186 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2187 if (copy_to_user(useraddr, &m, sizeof(m)))
2188 return -EFAULT;
2189 break;
2190 }
2191 case CHELSIO_SET_PM:{
2192 struct ch_pm m;
2193 struct tp_params *p = &adapter->params.tp;
2194
2195 if (!is_offload(adapter))
2196 return -EOPNOTSUPP;
2197 if (!capable(CAP_NET_ADMIN))
2198 return -EPERM;
2199 if (adapter->flags & FULL_INIT_DONE)
2200 return -EBUSY;
2201 if (copy_from_user(&m, useraddr, sizeof(m)))
2202 return -EFAULT;
2203 if (!is_power_of_2(m.rx_pg_sz) ||
2204 !is_power_of_2(m.tx_pg_sz))
2205 return -EINVAL; /* not power of 2 */
2206 if (!(m.rx_pg_sz & 0x14000))
2207 return -EINVAL; /* not 16KB or 64KB */
2208 if (!(m.tx_pg_sz & 0x1554000))
2209 return -EINVAL;
2210 if (m.tx_num_pg == -1)
2211 m.tx_num_pg = p->tx_num_pgs;
2212 if (m.rx_num_pg == -1)
2213 m.rx_num_pg = p->rx_num_pgs;
2214 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2215 return -EINVAL;
2216 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2217 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2218 return -EINVAL;
2219 p->rx_pg_size = m.rx_pg_sz;
2220 p->tx_pg_size = m.tx_pg_sz;
2221 p->rx_num_pgs = m.rx_num_pg;
2222 p->tx_num_pgs = m.tx_num_pg;
2223 break;
2224 }
2225 case CHELSIO_GET_MEM:{
2226 struct ch_mem_range t;
2227 struct mc7 *mem;
2228 u64 buf[32];
2229
2230 if (!is_offload(adapter))
2231 return -EOPNOTSUPP;
2232 if (!(adapter->flags & FULL_INIT_DONE))
2233 return -EIO; /* need the memory controllers */
2234 if (copy_from_user(&t, useraddr, sizeof(t)))
2235 return -EFAULT;
2236 if ((t.addr & 7) || (t.len & 7))
2237 return -EINVAL;
2238 if (t.mem_id == MEM_CM)
2239 mem = &adapter->cm;
2240 else if (t.mem_id == MEM_PMRX)
2241 mem = &adapter->pmrx;
2242 else if (t.mem_id == MEM_PMTX)
2243 mem = &adapter->pmtx;
2244 else
2245 return -EINVAL;
2246
2247 /*
2248 * Version scheme:
2249 * bits 0..9: chip version
2250 * bits 10..15: chip revision
2251 */
2252 t.version = 3 | (adapter->params.rev << 10);
2253 if (copy_to_user(useraddr, &t, sizeof(t)))
2254 return -EFAULT;
2255
2256 /*
2257 * Read 256 bytes at a time as len can be large and we don't
2258 * want to use huge intermediate buffers.
2259 */
2260 useraddr += sizeof(t); /* advance to start of buffer */
2261 while (t.len) {
2262 unsigned int chunk =
2263 min_t(unsigned int, t.len, sizeof(buf));
2264
2265 ret =
2266 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2267 buf);
2268 if (ret)
2269 return ret;
2270 if (copy_to_user(useraddr, buf, chunk))
2271 return -EFAULT;
2272 useraddr += chunk;
2273 t.addr += chunk;
2274 t.len -= chunk;
2275 }
2276 break;
2277 }
2278 case CHELSIO_SET_TRACE_FILTER:{
2279 struct ch_trace t;
2280 const struct trace_params *tp;
2281
2282 if (!capable(CAP_NET_ADMIN))
2283 return -EPERM;
2284 if (!offload_running(adapter))
2285 return -EAGAIN;
2286 if (copy_from_user(&t, useraddr, sizeof(t)))
2287 return -EFAULT;
2288
2289 tp = (const struct trace_params *)&t.sip;
2290 if (t.config_tx)
2291 t3_config_trace_filter(adapter, tp, 0,
2292 t.invert_match,
2293 t.trace_tx);
2294 if (t.config_rx)
2295 t3_config_trace_filter(adapter, tp, 1,
2296 t.invert_match,
2297 t.trace_rx);
2298 break;
2299 }
2300 default:
2301 return -EOPNOTSUPP;
2302 }
2303 return 0;
2304 }
2305
2306 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2307 {
2308 struct mii_ioctl_data *data = if_mii(req);
2309 struct port_info *pi = netdev_priv(dev);
2310 struct adapter *adapter = pi->adapter;
2311 int ret, mmd;
2312
2313 switch (cmd) {
2314 case SIOCGMIIPHY:
2315 data->phy_id = pi->phy.addr;
2316 /* FALLTHRU */
2317 case SIOCGMIIREG:{
2318 u32 val;
2319 struct cphy *phy = &pi->phy;
2320
2321 if (!phy->mdio_read)
2322 return -EOPNOTSUPP;
2323 if (is_10G(adapter)) {
2324 mmd = data->phy_id >> 8;
2325 if (!mmd)
2326 mmd = MDIO_DEV_PCS;
2327 else if (mmd > MDIO_DEV_VEND2)
2328 return -EINVAL;
2329
2330 ret =
2331 phy->mdio_read(adapter, data->phy_id & 0x1f,
2332 mmd, data->reg_num, &val);
2333 } else
2334 ret =
2335 phy->mdio_read(adapter, data->phy_id & 0x1f,
2336 0, data->reg_num & 0x1f,
2337 &val);
2338 if (!ret)
2339 data->val_out = val;
2340 break;
2341 }
2342 case SIOCSMIIREG:{
2343 struct cphy *phy = &pi->phy;
2344
2345 if (!capable(CAP_NET_ADMIN))
2346 return -EPERM;
2347 if (!phy->mdio_write)
2348 return -EOPNOTSUPP;
2349 if (is_10G(adapter)) {
2350 mmd = data->phy_id >> 8;
2351 if (!mmd)
2352 mmd = MDIO_DEV_PCS;
2353 else if (mmd > MDIO_DEV_VEND2)
2354 return -EINVAL;
2355
2356 ret =
2357 phy->mdio_write(adapter,
2358 data->phy_id & 0x1f, mmd,
2359 data->reg_num,
2360 data->val_in);
2361 } else
2362 ret =
2363 phy->mdio_write(adapter,
2364 data->phy_id & 0x1f, 0,
2365 data->reg_num & 0x1f,
2366 data->val_in);
2367 break;
2368 }
2369 case SIOCCHIOCTL:
2370 return cxgb_extension_ioctl(dev, req->ifr_data);
2371 default:
2372 return -EOPNOTSUPP;
2373 }
2374 return ret;
2375 }
2376
2377 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2378 {
2379 struct port_info *pi = netdev_priv(dev);
2380 struct adapter *adapter = pi->adapter;
2381 int ret;
2382
2383 if (new_mtu < 81) /* accommodate SACK */
2384 return -EINVAL;
2385 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2386 return ret;
2387 dev->mtu = new_mtu;
2388 init_port_mtus(adapter);
2389 if (adapter->params.rev == 0 && offload_running(adapter))
2390 t3_load_mtus(adapter, adapter->params.mtus,
2391 adapter->params.a_wnd, adapter->params.b_wnd,
2392 adapter->port[0]->mtu);
2393 return 0;
2394 }
2395
2396 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2397 {
2398 struct port_info *pi = netdev_priv(dev);
2399 struct adapter *adapter = pi->adapter;
2400 struct sockaddr *addr = p;
2401
2402 if (!is_valid_ether_addr(addr->sa_data))
2403 return -EINVAL;
2404
2405 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2406 t3_mac_set_address(&pi->mac, 0, dev->dev_addr);
2407 if (offload_running(adapter))
2408 write_smt_entry(adapter, pi->port_id);
2409 return 0;
2410 }
2411
2412 /**
2413 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2414 * @adap: the adapter
2415 * @p: the port
2416 *
2417 * Ensures that current Rx processing on any of the queues associated with
2418 * the given port completes before returning. We do this by acquiring and
2419 * releasing the locks of the response queues associated with the port.
2420 */
2421 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2422 {
2423 int i;
2424
2425 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2426 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2427
2428 spin_lock_irq(&q->lock);
2429 spin_unlock_irq(&q->lock);
2430 }
2431 }
2432
2433 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2434 {
2435 struct port_info *pi = netdev_priv(dev);
2436 struct adapter *adapter = pi->adapter;
2437
2438 pi->vlan_grp = grp;
2439 if (adapter->params.rev > 0)
2440 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2441 else {
2442 /* single control for all ports */
2443 unsigned int i, have_vlans = 0;
2444 for_each_port(adapter, i)
2445 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2446
2447 t3_set_vlan_accel(adapter, 1, have_vlans);
2448 }
2449 t3_synchronize_rx(adapter, pi);
2450 }
2451
2452 #ifdef CONFIG_NET_POLL_CONTROLLER
2453 static void cxgb_netpoll(struct net_device *dev)
2454 {
2455 struct port_info *pi = netdev_priv(dev);
2456 struct adapter *adapter = pi->adapter;
2457 int qidx;
2458
2459 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2460 struct sge_qset *qs = &adapter->sge.qs[qidx];
2461 void *source;
2462
2463 if (adapter->flags & USING_MSIX)
2464 source = qs;
2465 else
2466 source = adapter;
2467
2468 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2469 }
2470 }
2471 #endif
2472
2473 /*
2474 * Periodic accumulation of MAC statistics.
2475 */
2476 static void mac_stats_update(struct adapter *adapter)
2477 {
2478 int i;
2479
2480 for_each_port(adapter, i) {
2481 struct net_device *dev = adapter->port[i];
2482 struct port_info *p = netdev_priv(dev);
2483
2484 if (netif_running(dev)) {
2485 spin_lock(&adapter->stats_lock);
2486 t3_mac_update_stats(&p->mac);
2487 spin_unlock(&adapter->stats_lock);
2488 }
2489 }
2490 }
2491
2492 static void check_link_status(struct adapter *adapter)
2493 {
2494 int i;
2495
2496 for_each_port(adapter, i) {
2497 struct net_device *dev = adapter->port[i];
2498 struct port_info *p = netdev_priv(dev);
2499 int link_fault;
2500
2501 spin_lock_irq(&adapter->work_lock);
2502 link_fault = p->link_fault;
2503 spin_unlock_irq(&adapter->work_lock);
2504
2505 if (link_fault) {
2506 t3_link_fault(adapter, i);
2507 continue;
2508 }
2509
2510 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2511 t3_xgm_intr_disable(adapter, i);
2512 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2513
2514 t3_link_changed(adapter, i);
2515 t3_xgm_intr_enable(adapter, i);
2516 }
2517 }
2518 }
2519
2520 static void check_t3b2_mac(struct adapter *adapter)
2521 {
2522 int i;
2523
2524 if (!rtnl_trylock()) /* synchronize with ifdown */
2525 return;
2526
2527 for_each_port(adapter, i) {
2528 struct net_device *dev = adapter->port[i];
2529 struct port_info *p = netdev_priv(dev);
2530 int status;
2531
2532 if (!netif_running(dev))
2533 continue;
2534
2535 status = 0;
2536 if (netif_running(dev) && netif_carrier_ok(dev))
2537 status = t3b2_mac_watchdog_task(&p->mac);
2538 if (status == 1)
2539 p->mac.stats.num_toggled++;
2540 else if (status == 2) {
2541 struct cmac *mac = &p->mac;
2542
2543 t3_mac_set_mtu(mac, dev->mtu);
2544 t3_mac_set_address(mac, 0, dev->dev_addr);
2545 cxgb_set_rxmode(dev);
2546 t3_link_start(&p->phy, mac, &p->link_config);
2547 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2548 t3_port_intr_enable(adapter, p->port_id);
2549 p->mac.stats.num_resets++;
2550 }
2551 }
2552 rtnl_unlock();
2553 }
2554
2555
2556 static void t3_adap_check_task(struct work_struct *work)
2557 {
2558 struct adapter *adapter = container_of(work, struct adapter,
2559 adap_check_task.work);
2560 const struct adapter_params *p = &adapter->params;
2561 int port;
2562 unsigned int v, status, reset;
2563
2564 adapter->check_task_cnt++;
2565
2566 check_link_status(adapter);
2567
2568 /* Accumulate MAC stats if needed */
2569 if (!p->linkpoll_period ||
2570 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2571 p->stats_update_period) {
2572 mac_stats_update(adapter);
2573 adapter->check_task_cnt = 0;
2574 }
2575
2576 if (p->rev == T3_REV_B2)
2577 check_t3b2_mac(adapter);
2578
2579 /*
2580 * Scan the XGMAC's to check for various conditions which we want to
2581 * monitor in a periodic polling manner rather than via an interrupt
2582 * condition. This is used for conditions which would otherwise flood
2583 * the system with interrupts and we only really need to know that the
2584 * conditions are "happening" ... For each condition we count the
2585 * detection of the condition and reset it for the next polling loop.
2586 */
2587 for_each_port(adapter, port) {
2588 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2589 u32 cause;
2590
2591 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2592 reset = 0;
2593 if (cause & F_RXFIFO_OVERFLOW) {
2594 mac->stats.rx_fifo_ovfl++;
2595 reset |= F_RXFIFO_OVERFLOW;
2596 }
2597
2598 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2599 }
2600
2601 /*
2602 * We do the same as above for FL_EMPTY interrupts.
2603 */
2604 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2605 reset = 0;
2606
2607 if (status & F_FLEMPTY) {
2608 struct sge_qset *qs = &adapter->sge.qs[0];
2609 int i = 0;
2610
2611 reset |= F_FLEMPTY;
2612
2613 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2614 0xffff;
2615
2616 while (v) {
2617 qs->fl[i].empty += (v & 1);
2618 if (i)
2619 qs++;
2620 i ^= 1;
2621 v >>= 1;
2622 }
2623 }
2624
2625 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2626
2627 /* Schedule the next check update if any port is active. */
2628 spin_lock_irq(&adapter->work_lock);
2629 if (adapter->open_device_map & PORT_MASK)
2630 schedule_chk_task(adapter);
2631 spin_unlock_irq(&adapter->work_lock);
2632 }
2633
2634 /*
2635 * Processes external (PHY) interrupts in process context.
2636 */
2637 static void ext_intr_task(struct work_struct *work)
2638 {
2639 struct adapter *adapter = container_of(work, struct adapter,
2640 ext_intr_handler_task);
2641 int i;
2642
2643 /* Disable link fault interrupts */
2644 for_each_port(adapter, i) {
2645 struct net_device *dev = adapter->port[i];
2646 struct port_info *p = netdev_priv(dev);
2647
2648 t3_xgm_intr_disable(adapter, i);
2649 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2650 }
2651
2652 /* Re-enable link fault interrupts */
2653 t3_phy_intr_handler(adapter);
2654
2655 for_each_port(adapter, i)
2656 t3_xgm_intr_enable(adapter, i);
2657
2658 /* Now reenable external interrupts */
2659 spin_lock_irq(&adapter->work_lock);
2660 if (adapter->slow_intr_mask) {
2661 adapter->slow_intr_mask |= F_T3DBG;
2662 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2663 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2664 adapter->slow_intr_mask);
2665 }
2666 spin_unlock_irq(&adapter->work_lock);
2667 }
2668
2669 /*
2670 * Interrupt-context handler for external (PHY) interrupts.
2671 */
2672 void t3_os_ext_intr_handler(struct adapter *adapter)
2673 {
2674 /*
2675 * Schedule a task to handle external interrupts as they may be slow
2676 * and we use a mutex to protect MDIO registers. We disable PHY
2677 * interrupts in the meantime and let the task reenable them when
2678 * it's done.
2679 */
2680 spin_lock(&adapter->work_lock);
2681 if (adapter->slow_intr_mask) {
2682 adapter->slow_intr_mask &= ~F_T3DBG;
2683 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2684 adapter->slow_intr_mask);
2685 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2686 }
2687 spin_unlock(&adapter->work_lock);
2688 }
2689
2690 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2691 {
2692 struct net_device *netdev = adapter->port[port_id];
2693 struct port_info *pi = netdev_priv(netdev);
2694
2695 spin_lock(&adapter->work_lock);
2696 pi->link_fault = 1;
2697 spin_unlock(&adapter->work_lock);
2698 }
2699
2700 static int t3_adapter_error(struct adapter *adapter, int reset)
2701 {
2702 int i, ret = 0;
2703
2704 if (is_offload(adapter) &&
2705 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2706 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2707 offload_close(&adapter->tdev);
2708 }
2709
2710 /* Stop all ports */
2711 for_each_port(adapter, i) {
2712 struct net_device *netdev = adapter->port[i];
2713
2714 if (netif_running(netdev))
2715 cxgb_close(netdev);
2716 }
2717
2718 /* Stop SGE timers */
2719 t3_stop_sge_timers(adapter);
2720
2721 adapter->flags &= ~FULL_INIT_DONE;
2722
2723 if (reset)
2724 ret = t3_reset_adapter(adapter);
2725
2726 pci_disable_device(adapter->pdev);
2727
2728 return ret;
2729 }
2730
2731 static int t3_reenable_adapter(struct adapter *adapter)
2732 {
2733 if (pci_enable_device(adapter->pdev)) {
2734 dev_err(&adapter->pdev->dev,
2735 "Cannot re-enable PCI device after reset.\n");
2736 goto err;
2737 }
2738 pci_set_master(adapter->pdev);
2739 pci_restore_state(adapter->pdev);
2740
2741 /* Free sge resources */
2742 t3_free_sge_resources(adapter);
2743
2744 if (t3_replay_prep_adapter(adapter))
2745 goto err;
2746
2747 return 0;
2748 err:
2749 return -1;
2750 }
2751
2752 static void t3_resume_ports(struct adapter *adapter)
2753 {
2754 int i;
2755
2756 /* Restart the ports */
2757 for_each_port(adapter, i) {
2758 struct net_device *netdev = adapter->port[i];
2759
2760 if (netif_running(netdev)) {
2761 if (cxgb_open(netdev)) {
2762 dev_err(&adapter->pdev->dev,
2763 "can't bring device back up"
2764 " after reset\n");
2765 continue;
2766 }
2767 }
2768 }
2769
2770 if (is_offload(adapter) && !ofld_disable)
2771 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2772 }
2773
2774 /*
2775 * processes a fatal error.
2776 * Bring the ports down, reset the chip, bring the ports back up.
2777 */
2778 static void fatal_error_task(struct work_struct *work)
2779 {
2780 struct adapter *adapter = container_of(work, struct adapter,
2781 fatal_error_handler_task);
2782 int err = 0;
2783
2784 rtnl_lock();
2785 err = t3_adapter_error(adapter, 1);
2786 if (!err)
2787 err = t3_reenable_adapter(adapter);
2788 if (!err)
2789 t3_resume_ports(adapter);
2790
2791 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2792 rtnl_unlock();
2793 }
2794
2795 void t3_fatal_err(struct adapter *adapter)
2796 {
2797 unsigned int fw_status[4];
2798
2799 if (adapter->flags & FULL_INIT_DONE) {
2800 t3_sge_stop(adapter);
2801 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2802 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2803 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2804 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2805
2806 spin_lock(&adapter->work_lock);
2807 t3_intr_disable(adapter);
2808 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2809 spin_unlock(&adapter->work_lock);
2810 }
2811 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2812 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2813 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2814 fw_status[0], fw_status[1],
2815 fw_status[2], fw_status[3]);
2816 }
2817
2818 /**
2819 * t3_io_error_detected - called when PCI error is detected
2820 * @pdev: Pointer to PCI device
2821 * @state: The current pci connection state
2822 *
2823 * This function is called after a PCI bus error affecting
2824 * this device has been detected.
2825 */
2826 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2827 pci_channel_state_t state)
2828 {
2829 struct adapter *adapter = pci_get_drvdata(pdev);
2830 int ret;
2831
2832 if (state == pci_channel_io_perm_failure)
2833 return PCI_ERS_RESULT_DISCONNECT;
2834
2835 ret = t3_adapter_error(adapter, 0);
2836
2837 /* Request a slot reset. */
2838 return PCI_ERS_RESULT_NEED_RESET;
2839 }
2840
2841 /**
2842 * t3_io_slot_reset - called after the pci bus has been reset.
2843 * @pdev: Pointer to PCI device
2844 *
2845 * Restart the card from scratch, as if from a cold-boot.
2846 */
2847 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2848 {
2849 struct adapter *adapter = pci_get_drvdata(pdev);
2850
2851 if (!t3_reenable_adapter(adapter))
2852 return PCI_ERS_RESULT_RECOVERED;
2853
2854 return PCI_ERS_RESULT_DISCONNECT;
2855 }
2856
2857 /**
2858 * t3_io_resume - called when traffic can start flowing again.
2859 * @pdev: Pointer to PCI device
2860 *
2861 * This callback is called when the error recovery driver tells us that
2862 * its OK to resume normal operation.
2863 */
2864 static void t3_io_resume(struct pci_dev *pdev)
2865 {
2866 struct adapter *adapter = pci_get_drvdata(pdev);
2867
2868 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
2869 t3_read_reg(adapter, A_PCIE_PEX_ERR));
2870
2871 t3_resume_ports(adapter);
2872 }
2873
2874 static struct pci_error_handlers t3_err_handler = {
2875 .error_detected = t3_io_error_detected,
2876 .slot_reset = t3_io_slot_reset,
2877 .resume = t3_io_resume,
2878 };
2879
2880 /*
2881 * Set the number of qsets based on the number of CPUs and the number of ports,
2882 * not to exceed the number of available qsets, assuming there are enough qsets
2883 * per port in HW.
2884 */
2885 static void set_nqsets(struct adapter *adap)
2886 {
2887 int i, j = 0;
2888 int num_cpus = num_online_cpus();
2889 int hwports = adap->params.nports;
2890 int nqsets = adap->msix_nvectors - 1;
2891
2892 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
2893 if (hwports == 2 &&
2894 (hwports * nqsets > SGE_QSETS ||
2895 num_cpus >= nqsets / hwports))
2896 nqsets /= hwports;
2897 if (nqsets > num_cpus)
2898 nqsets = num_cpus;
2899 if (nqsets < 1 || hwports == 4)
2900 nqsets = 1;
2901 } else
2902 nqsets = 1;
2903
2904 for_each_port(adap, i) {
2905 struct port_info *pi = adap2pinfo(adap, i);
2906
2907 pi->first_qset = j;
2908 pi->nqsets = nqsets;
2909 j = pi->first_qset + nqsets;
2910
2911 dev_info(&adap->pdev->dev,
2912 "Port %d using %d queue sets.\n", i, nqsets);
2913 }
2914 }
2915
2916 static int __devinit cxgb_enable_msix(struct adapter *adap)
2917 {
2918 struct msix_entry entries[SGE_QSETS + 1];
2919 int vectors;
2920 int i, err;
2921
2922 vectors = ARRAY_SIZE(entries);
2923 for (i = 0; i < vectors; ++i)
2924 entries[i].entry = i;
2925
2926 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
2927 vectors = err;
2928
2929 if (err < 0)
2930 pci_disable_msix(adap->pdev);
2931
2932 if (!err && vectors < (adap->params.nports + 1)) {
2933 pci_disable_msix(adap->pdev);
2934 err = -1;
2935 }
2936
2937 if (!err) {
2938 for (i = 0; i < vectors; ++i)
2939 adap->msix_info[i].vec = entries[i].vector;
2940 adap->msix_nvectors = vectors;
2941 }
2942
2943 return err;
2944 }
2945
2946 static void __devinit print_port_info(struct adapter *adap,
2947 const struct adapter_info *ai)
2948 {
2949 static const char *pci_variant[] = {
2950 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
2951 };
2952
2953 int i;
2954 char buf[80];
2955
2956 if (is_pcie(adap))
2957 snprintf(buf, sizeof(buf), "%s x%d",
2958 pci_variant[adap->params.pci.variant],
2959 adap->params.pci.width);
2960 else
2961 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
2962 pci_variant[adap->params.pci.variant],
2963 adap->params.pci.speed, adap->params.pci.width);
2964
2965 for_each_port(adap, i) {
2966 struct net_device *dev = adap->port[i];
2967 const struct port_info *pi = netdev_priv(dev);
2968
2969 if (!test_bit(i, &adap->registered_device_map))
2970 continue;
2971 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
2972 dev->name, ai->desc, pi->phy.desc,
2973 is_offload(adap) ? "R" : "", adap->params.rev, buf,
2974 (adap->flags & USING_MSIX) ? " MSI-X" :
2975 (adap->flags & USING_MSI) ? " MSI" : "");
2976 if (adap->name == dev->name && adap->params.vpd.mclk)
2977 printk(KERN_INFO
2978 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
2979 adap->name, t3_mc7_size(&adap->cm) >> 20,
2980 t3_mc7_size(&adap->pmtx) >> 20,
2981 t3_mc7_size(&adap->pmrx) >> 20,
2982 adap->params.vpd.sn);
2983 }
2984 }
2985
2986 static const struct net_device_ops cxgb_netdev_ops = {
2987 .ndo_open = cxgb_open,
2988 .ndo_stop = cxgb_close,
2989 .ndo_start_xmit = t3_eth_xmit,
2990 .ndo_get_stats = cxgb_get_stats,
2991 .ndo_validate_addr = eth_validate_addr,
2992 .ndo_set_multicast_list = cxgb_set_rxmode,
2993 .ndo_do_ioctl = cxgb_ioctl,
2994 .ndo_change_mtu = cxgb_change_mtu,
2995 .ndo_set_mac_address = cxgb_set_mac_addr,
2996 .ndo_vlan_rx_register = vlan_rx_register,
2997 #ifdef CONFIG_NET_POLL_CONTROLLER
2998 .ndo_poll_controller = cxgb_netpoll,
2999 #endif
3000 };
3001
3002 static int __devinit init_one(struct pci_dev *pdev,
3003 const struct pci_device_id *ent)
3004 {
3005 static int version_printed;
3006
3007 int i, err, pci_using_dac = 0;
3008 resource_size_t mmio_start, mmio_len;
3009 const struct adapter_info *ai;
3010 struct adapter *adapter = NULL;
3011 struct port_info *pi;
3012
3013 if (!version_printed) {
3014 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3015 ++version_printed;
3016 }
3017
3018 if (!cxgb3_wq) {
3019 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3020 if (!cxgb3_wq) {
3021 printk(KERN_ERR DRV_NAME
3022 ": cannot initialize work queue\n");
3023 return -ENOMEM;
3024 }
3025 }
3026
3027 err = pci_request_regions(pdev, DRV_NAME);
3028 if (err) {
3029 /* Just info, some other driver may have claimed the device. */
3030 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3031 return err;
3032 }
3033
3034 err = pci_enable_device(pdev);
3035 if (err) {
3036 dev_err(&pdev->dev, "cannot enable PCI device\n");
3037 goto out_release_regions;
3038 }
3039
3040 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3041 pci_using_dac = 1;
3042 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3043 if (err) {
3044 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3045 "coherent allocations\n");
3046 goto out_disable_device;
3047 }
3048 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3049 dev_err(&pdev->dev, "no usable DMA configuration\n");
3050 goto out_disable_device;
3051 }
3052
3053 pci_set_master(pdev);
3054 pci_save_state(pdev);
3055
3056 mmio_start = pci_resource_start(pdev, 0);
3057 mmio_len = pci_resource_len(pdev, 0);
3058 ai = t3_get_adapter_info(ent->driver_data);
3059
3060 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3061 if (!adapter) {
3062 err = -ENOMEM;
3063 goto out_disable_device;
3064 }
3065
3066 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3067 if (!adapter->regs) {
3068 dev_err(&pdev->dev, "cannot map device registers\n");
3069 err = -ENOMEM;
3070 goto out_free_adapter;
3071 }
3072
3073 adapter->pdev = pdev;
3074 adapter->name = pci_name(pdev);
3075 adapter->msg_enable = dflt_msg_enable;
3076 adapter->mmio_len = mmio_len;
3077
3078 mutex_init(&adapter->mdio_lock);
3079 spin_lock_init(&adapter->work_lock);
3080 spin_lock_init(&adapter->stats_lock);
3081
3082 INIT_LIST_HEAD(&adapter->adapter_list);
3083 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3084 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3085 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3086
3087 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3088 struct net_device *netdev;
3089
3090 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3091 if (!netdev) {
3092 err = -ENOMEM;
3093 goto out_free_dev;
3094 }
3095
3096 SET_NETDEV_DEV(netdev, &pdev->dev);
3097
3098 adapter->port[i] = netdev;
3099 pi = netdev_priv(netdev);
3100 pi->adapter = adapter;
3101 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3102 pi->port_id = i;
3103 netif_carrier_off(netdev);
3104 netif_tx_stop_all_queues(netdev);
3105 netdev->irq = pdev->irq;
3106 netdev->mem_start = mmio_start;
3107 netdev->mem_end = mmio_start + mmio_len - 1;
3108 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3109 netdev->features |= NETIF_F_LLTX;
3110 netdev->features |= NETIF_F_GRO;
3111 if (pci_using_dac)
3112 netdev->features |= NETIF_F_HIGHDMA;
3113
3114 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3115 netdev->netdev_ops = &cxgb_netdev_ops;
3116 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3117 }
3118
3119 pci_set_drvdata(pdev, adapter);
3120 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3121 err = -ENODEV;
3122 goto out_free_dev;
3123 }
3124
3125 /*
3126 * The card is now ready to go. If any errors occur during device
3127 * registration we do not fail the whole card but rather proceed only
3128 * with the ports we manage to register successfully. However we must
3129 * register at least one net device.
3130 */
3131 for_each_port(adapter, i) {
3132 err = register_netdev(adapter->port[i]);
3133 if (err)
3134 dev_warn(&pdev->dev,
3135 "cannot register net device %s, skipping\n",
3136 adapter->port[i]->name);
3137 else {
3138 /*
3139 * Change the name we use for messages to the name of
3140 * the first successfully registered interface.
3141 */
3142 if (!adapter->registered_device_map)
3143 adapter->name = adapter->port[i]->name;
3144
3145 __set_bit(i, &adapter->registered_device_map);
3146 }
3147 }
3148 if (!adapter->registered_device_map) {
3149 dev_err(&pdev->dev, "could not register any net devices\n");
3150 goto out_free_dev;
3151 }
3152
3153 /* Driver's ready. Reflect it on LEDs */
3154 t3_led_ready(adapter);
3155
3156 if (is_offload(adapter)) {
3157 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3158 cxgb3_adapter_ofld(adapter);
3159 }
3160
3161 /* See what interrupts we'll be using */
3162 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3163 adapter->flags |= USING_MSIX;
3164 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3165 adapter->flags |= USING_MSI;
3166
3167 set_nqsets(adapter);
3168
3169 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3170 &cxgb3_attr_group);
3171
3172 print_port_info(adapter, ai);
3173 return 0;
3174
3175 out_free_dev:
3176 iounmap(adapter->regs);
3177 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3178 if (adapter->port[i])
3179 free_netdev(adapter->port[i]);
3180
3181 out_free_adapter:
3182 kfree(adapter);
3183
3184 out_disable_device:
3185 pci_disable_device(pdev);
3186 out_release_regions:
3187 pci_release_regions(pdev);
3188 pci_set_drvdata(pdev, NULL);
3189 return err;
3190 }
3191
3192 static void __devexit remove_one(struct pci_dev *pdev)
3193 {
3194 struct adapter *adapter = pci_get_drvdata(pdev);
3195
3196 if (adapter) {
3197 int i;
3198
3199 t3_sge_stop(adapter);
3200 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3201 &cxgb3_attr_group);
3202
3203 if (is_offload(adapter)) {
3204 cxgb3_adapter_unofld(adapter);
3205 if (test_bit(OFFLOAD_DEVMAP_BIT,
3206 &adapter->open_device_map))
3207 offload_close(&adapter->tdev);
3208 }
3209
3210 for_each_port(adapter, i)
3211 if (test_bit(i, &adapter->registered_device_map))
3212 unregister_netdev(adapter->port[i]);
3213
3214 t3_stop_sge_timers(adapter);
3215 t3_free_sge_resources(adapter);
3216 cxgb_disable_msi(adapter);
3217
3218 for_each_port(adapter, i)
3219 if (adapter->port[i])
3220 free_netdev(adapter->port[i]);
3221
3222 iounmap(adapter->regs);
3223 kfree(adapter);
3224 pci_release_regions(pdev);
3225 pci_disable_device(pdev);
3226 pci_set_drvdata(pdev, NULL);
3227 }
3228 }
3229
3230 static struct pci_driver driver = {
3231 .name = DRV_NAME,
3232 .id_table = cxgb3_pci_tbl,
3233 .probe = init_one,
3234 .remove = __devexit_p(remove_one),
3235 .err_handler = &t3_err_handler,
3236 };
3237
3238 static int __init cxgb3_init_module(void)
3239 {
3240 int ret;
3241
3242 cxgb3_offload_init();
3243
3244 ret = pci_register_driver(&driver);
3245 return ret;
3246 }
3247
3248 static void __exit cxgb3_cleanup_module(void)
3249 {
3250 pci_unregister_driver(&driver);
3251 if (cxgb3_wq)
3252 destroy_workqueue(cxgb3_wq);
3253 }
3254
3255 module_init(cxgb3_init_module);
3256 module_exit(cxgb3_cleanup_module);
This page took 0.102186 seconds and 5 git commands to generate.