md/raid5: correctly update sync_completed when we reach max_resync
[deliverable/linux.git] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
42
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
51
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
55
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
58
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x10000;
61
62 static inline int offload_activated(struct t3cdev *tdev)
63 {
64 const struct adapter *adapter = tdev2adap(tdev);
65
66 return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
67 }
68
69 /**
70 * cxgb3_register_client - register an offload client
71 * @client: the client
72 *
73 * Add the client to the client list,
74 * and call backs the client for each activated offload device
75 */
76 void cxgb3_register_client(struct cxgb3_client *client)
77 {
78 struct t3cdev *tdev;
79
80 mutex_lock(&cxgb3_db_lock);
81 list_add_tail(&client->client_list, &client_list);
82
83 if (client->add) {
84 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85 if (offload_activated(tdev))
86 client->add(tdev);
87 }
88 }
89 mutex_unlock(&cxgb3_db_lock);
90 }
91
92 EXPORT_SYMBOL(cxgb3_register_client);
93
94 /**
95 * cxgb3_unregister_client - unregister an offload client
96 * @client: the client
97 *
98 * Remove the client to the client list,
99 * and call backs the client for each activated offload device.
100 */
101 void cxgb3_unregister_client(struct cxgb3_client *client)
102 {
103 struct t3cdev *tdev;
104
105 mutex_lock(&cxgb3_db_lock);
106 list_del(&client->client_list);
107
108 if (client->remove) {
109 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110 if (offload_activated(tdev))
111 client->remove(tdev);
112 }
113 }
114 mutex_unlock(&cxgb3_db_lock);
115 }
116
117 EXPORT_SYMBOL(cxgb3_unregister_client);
118
119 /**
120 * cxgb3_add_clients - activate registered clients for an offload device
121 * @tdev: the offload device
122 *
123 * Call backs all registered clients once a offload device is activated
124 */
125 void cxgb3_add_clients(struct t3cdev *tdev)
126 {
127 struct cxgb3_client *client;
128
129 mutex_lock(&cxgb3_db_lock);
130 list_for_each_entry(client, &client_list, client_list) {
131 if (client->add)
132 client->add(tdev);
133 }
134 mutex_unlock(&cxgb3_db_lock);
135 }
136
137 /**
138 * cxgb3_remove_clients - deactivates registered clients
139 * for an offload device
140 * @tdev: the offload device
141 *
142 * Call backs all registered clients once a offload device is deactivated
143 */
144 void cxgb3_remove_clients(struct t3cdev *tdev)
145 {
146 struct cxgb3_client *client;
147
148 mutex_lock(&cxgb3_db_lock);
149 list_for_each_entry(client, &client_list, client_list) {
150 if (client->remove)
151 client->remove(tdev);
152 }
153 mutex_unlock(&cxgb3_db_lock);
154 }
155
156 void cxgb3_err_notify(struct t3cdev *tdev, u32 status, u32 error)
157 {
158 struct cxgb3_client *client;
159
160 mutex_lock(&cxgb3_db_lock);
161 list_for_each_entry(client, &client_list, client_list) {
162 if (client->err_handler)
163 client->err_handler(tdev, status, error);
164 }
165 mutex_unlock(&cxgb3_db_lock);
166 }
167
168 static struct net_device *get_iff_from_mac(struct adapter *adapter,
169 const unsigned char *mac,
170 unsigned int vlan)
171 {
172 int i;
173
174 for_each_port(adapter, i) {
175 struct vlan_group *grp;
176 struct net_device *dev = adapter->port[i];
177 const struct port_info *p = netdev_priv(dev);
178
179 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
180 if (vlan && vlan != VLAN_VID_MASK) {
181 grp = p->vlan_grp;
182 dev = NULL;
183 if (grp)
184 dev = vlan_group_get_device(grp, vlan);
185 } else
186 while (dev->master)
187 dev = dev->master;
188 return dev;
189 }
190 }
191 return NULL;
192 }
193
194 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
195 void *data)
196 {
197 int i;
198 int ret = 0;
199 unsigned int val = 0;
200 struct ulp_iscsi_info *uiip = data;
201
202 switch (req) {
203 case ULP_ISCSI_GET_PARAMS:
204 uiip->pdev = adapter->pdev;
205 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
206 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
207 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
208
209 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
210 for (i = 0; i < 4; i++, val >>= 8)
211 uiip->pgsz_factor[i] = val & 0xFF;
212
213 val = t3_read_reg(adapter, A_TP_PARA_REG7);
214 uiip->max_txsz =
215 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
216 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
217 /*
218 * On tx, the iscsi pdu has to be <= tx page size and has to
219 * fit into the Tx PM FIFO.
220 */
221 val = min(adapter->params.tp.tx_pg_size,
222 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
223 uiip->max_txsz = min(val, uiip->max_txsz);
224
225 /* set MaxRxData to 16224 */
226 val = t3_read_reg(adapter, A_TP_PARA_REG2);
227 if ((val >> S_MAXRXDATA) != 0x3f60) {
228 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
229 val |= V_MAXRXDATA(0x3f60);
230 printk(KERN_INFO
231 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
232 adapter->name, val);
233 t3_write_reg(adapter, A_TP_PARA_REG2, val);
234 }
235
236 /*
237 * on rx, the iscsi pdu has to be < rx page size and the
238 * the max rx data length programmed in TP
239 */
240 val = min(adapter->params.tp.rx_pg_size,
241 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
242 S_MAXRXDATA) & M_MAXRXDATA);
243 uiip->max_rxsz = min(val, uiip->max_rxsz);
244 break;
245 case ULP_ISCSI_SET_PARAMS:
246 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
247 /* program the ddp page sizes */
248 for (i = 0; i < 4; i++)
249 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
250 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
251 printk(KERN_INFO
252 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
253 adapter->name, val, uiip->pgsz_factor[0],
254 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
255 uiip->pgsz_factor[3]);
256 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
257 }
258 break;
259 default:
260 ret = -EOPNOTSUPP;
261 }
262 return ret;
263 }
264
265 /* Response queue used for RDMA events. */
266 #define ASYNC_NOTIF_RSPQ 0
267
268 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
269 {
270 int ret = 0;
271
272 switch (req) {
273 case RDMA_GET_PARAMS: {
274 struct rdma_info *rdma = data;
275 struct pci_dev *pdev = adapter->pdev;
276
277 rdma->udbell_physbase = pci_resource_start(pdev, 2);
278 rdma->udbell_len = pci_resource_len(pdev, 2);
279 rdma->tpt_base =
280 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
281 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
282 rdma->pbl_base =
283 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
284 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
285 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
286 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
287 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
288 rdma->pdev = pdev;
289 break;
290 }
291 case RDMA_CQ_OP:{
292 unsigned long flags;
293 struct rdma_cq_op *rdma = data;
294
295 /* may be called in any context */
296 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
297 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
298 rdma->credits);
299 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
300 break;
301 }
302 case RDMA_GET_MEM:{
303 struct ch_mem_range *t = data;
304 struct mc7 *mem;
305
306 if ((t->addr & 7) || (t->len & 7))
307 return -EINVAL;
308 if (t->mem_id == MEM_CM)
309 mem = &adapter->cm;
310 else if (t->mem_id == MEM_PMRX)
311 mem = &adapter->pmrx;
312 else if (t->mem_id == MEM_PMTX)
313 mem = &adapter->pmtx;
314 else
315 return -EINVAL;
316
317 ret =
318 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
319 (u64 *) t->buf);
320 if (ret)
321 return ret;
322 break;
323 }
324 case RDMA_CQ_SETUP:{
325 struct rdma_cq_setup *rdma = data;
326
327 spin_lock_irq(&adapter->sge.reg_lock);
328 ret =
329 t3_sge_init_cqcntxt(adapter, rdma->id,
330 rdma->base_addr, rdma->size,
331 ASYNC_NOTIF_RSPQ,
332 rdma->ovfl_mode, rdma->credits,
333 rdma->credit_thres);
334 spin_unlock_irq(&adapter->sge.reg_lock);
335 break;
336 }
337 case RDMA_CQ_DISABLE:
338 spin_lock_irq(&adapter->sge.reg_lock);
339 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
340 spin_unlock_irq(&adapter->sge.reg_lock);
341 break;
342 case RDMA_CTRL_QP_SETUP:{
343 struct rdma_ctrlqp_setup *rdma = data;
344
345 spin_lock_irq(&adapter->sge.reg_lock);
346 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
347 SGE_CNTXT_RDMA,
348 ASYNC_NOTIF_RSPQ,
349 rdma->base_addr, rdma->size,
350 FW_RI_TID_START, 1, 0);
351 spin_unlock_irq(&adapter->sge.reg_lock);
352 break;
353 }
354 case RDMA_GET_MIB: {
355 spin_lock(&adapter->stats_lock);
356 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
357 spin_unlock(&adapter->stats_lock);
358 break;
359 }
360 default:
361 ret = -EOPNOTSUPP;
362 }
363 return ret;
364 }
365
366 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
367 {
368 struct adapter *adapter = tdev2adap(tdev);
369 struct tid_range *tid;
370 struct mtutab *mtup;
371 struct iff_mac *iffmacp;
372 struct ddp_params *ddpp;
373 struct adap_ports *ports;
374 struct ofld_page_info *rx_page_info;
375 struct tp_params *tp = &adapter->params.tp;
376 int i;
377
378 switch (req) {
379 case GET_MAX_OUTSTANDING_WR:
380 *(unsigned int *)data = FW_WR_NUM;
381 break;
382 case GET_WR_LEN:
383 *(unsigned int *)data = WR_FLITS;
384 break;
385 case GET_TX_MAX_CHUNK:
386 *(unsigned int *)data = 1 << 20; /* 1MB */
387 break;
388 case GET_TID_RANGE:
389 tid = data;
390 tid->num = t3_mc5_size(&adapter->mc5) -
391 adapter->params.mc5.nroutes -
392 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
393 tid->base = 0;
394 break;
395 case GET_STID_RANGE:
396 tid = data;
397 tid->num = adapter->params.mc5.nservers;
398 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
399 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
400 break;
401 case GET_L2T_CAPACITY:
402 *(unsigned int *)data = 2048;
403 break;
404 case GET_MTUS:
405 mtup = data;
406 mtup->size = NMTUS;
407 mtup->mtus = adapter->params.mtus;
408 break;
409 case GET_IFF_FROM_MAC:
410 iffmacp = data;
411 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
412 iffmacp->vlan_tag &
413 VLAN_VID_MASK);
414 break;
415 case GET_DDP_PARAMS:
416 ddpp = data;
417 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
418 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
419 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
420 break;
421 case GET_PORTS:
422 ports = data;
423 ports->nports = adapter->params.nports;
424 for_each_port(adapter, i)
425 ports->lldevs[i] = adapter->port[i];
426 break;
427 case ULP_ISCSI_GET_PARAMS:
428 case ULP_ISCSI_SET_PARAMS:
429 if (!offload_running(adapter))
430 return -EAGAIN;
431 return cxgb_ulp_iscsi_ctl(adapter, req, data);
432 case RDMA_GET_PARAMS:
433 case RDMA_CQ_OP:
434 case RDMA_CQ_SETUP:
435 case RDMA_CQ_DISABLE:
436 case RDMA_CTRL_QP_SETUP:
437 case RDMA_GET_MEM:
438 case RDMA_GET_MIB:
439 if (!offload_running(adapter))
440 return -EAGAIN;
441 return cxgb_rdma_ctl(adapter, req, data);
442 case GET_RX_PAGE_INFO:
443 rx_page_info = data;
444 rx_page_info->page_size = tp->rx_pg_size;
445 rx_page_info->num = tp->rx_num_pgs;
446 break;
447 case GET_ISCSI_IPV4ADDR: {
448 struct iscsi_ipv4addr *p = data;
449 struct port_info *pi = netdev_priv(p->dev);
450 p->ipv4addr = pi->iscsi_ipv4addr;
451 break;
452 }
453 case GET_EMBEDDED_INFO: {
454 struct ch_embedded_info *e = data;
455
456 spin_lock(&adapter->stats_lock);
457 t3_get_fw_version(adapter, &e->fw_vers);
458 t3_get_tp_version(adapter, &e->tp_vers);
459 spin_unlock(&adapter->stats_lock);
460 break;
461 }
462 default:
463 return -EOPNOTSUPP;
464 }
465 return 0;
466 }
467
468 /*
469 * Dummy handler for Rx offload packets in case we get an offload packet before
470 * proper processing is setup. This complains and drops the packet as it isn't
471 * normal to get offload packets at this stage.
472 */
473 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
474 int n)
475 {
476 while (n--)
477 dev_kfree_skb_any(skbs[n]);
478 return 0;
479 }
480
481 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
482 {
483 }
484
485 void cxgb3_set_dummy_ops(struct t3cdev *dev)
486 {
487 dev->recv = rx_offload_blackhole;
488 dev->neigh_update = dummy_neigh_update;
489 }
490
491 /*
492 * Free an active-open TID.
493 */
494 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
495 {
496 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
497 union active_open_entry *p = atid2entry(t, atid);
498 void *ctx = p->t3c_tid.ctx;
499
500 spin_lock_bh(&t->atid_lock);
501 p->next = t->afree;
502 t->afree = p;
503 t->atids_in_use--;
504 spin_unlock_bh(&t->atid_lock);
505
506 return ctx;
507 }
508
509 EXPORT_SYMBOL(cxgb3_free_atid);
510
511 /*
512 * Free a server TID and return it to the free pool.
513 */
514 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
515 {
516 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
517 union listen_entry *p = stid2entry(t, stid);
518
519 spin_lock_bh(&t->stid_lock);
520 p->next = t->sfree;
521 t->sfree = p;
522 t->stids_in_use--;
523 spin_unlock_bh(&t->stid_lock);
524 }
525
526 EXPORT_SYMBOL(cxgb3_free_stid);
527
528 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
529 void *ctx, unsigned int tid)
530 {
531 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
532
533 t->tid_tab[tid].client = client;
534 t->tid_tab[tid].ctx = ctx;
535 atomic_inc(&t->tids_in_use);
536 }
537
538 EXPORT_SYMBOL(cxgb3_insert_tid);
539
540 /*
541 * Populate a TID_RELEASE WR. The skb must be already propely sized.
542 */
543 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
544 {
545 struct cpl_tid_release *req;
546
547 skb->priority = CPL_PRIORITY_SETUP;
548 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
549 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
550 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
551 }
552
553 static void t3_process_tid_release_list(struct work_struct *work)
554 {
555 struct t3c_data *td = container_of(work, struct t3c_data,
556 tid_release_task);
557 struct sk_buff *skb;
558 struct t3cdev *tdev = td->dev;
559
560
561 spin_lock_bh(&td->tid_release_lock);
562 while (td->tid_release_list) {
563 struct t3c_tid_entry *p = td->tid_release_list;
564
565 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
566 spin_unlock_bh(&td->tid_release_lock);
567
568 skb = alloc_skb(sizeof(struct cpl_tid_release),
569 GFP_KERNEL | __GFP_NOFAIL);
570 mk_tid_release(skb, p - td->tid_maps.tid_tab);
571 cxgb3_ofld_send(tdev, skb);
572 p->ctx = NULL;
573 spin_lock_bh(&td->tid_release_lock);
574 }
575 spin_unlock_bh(&td->tid_release_lock);
576 }
577
578 /* use ctx as a next pointer in the tid release list */
579 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
580 {
581 struct t3c_data *td = T3C_DATA(tdev);
582 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
583
584 spin_lock_bh(&td->tid_release_lock);
585 p->ctx = (void *)td->tid_release_list;
586 p->client = NULL;
587 td->tid_release_list = p;
588 if (!p->ctx)
589 schedule_work(&td->tid_release_task);
590 spin_unlock_bh(&td->tid_release_lock);
591 }
592
593 EXPORT_SYMBOL(cxgb3_queue_tid_release);
594
595 /*
596 * Remove a tid from the TID table. A client may defer processing its last
597 * CPL message if it is locked at the time it arrives, and while the message
598 * sits in the client's backlog the TID may be reused for another connection.
599 * To handle this we atomically switch the TID association if it still points
600 * to the original client context.
601 */
602 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
603 {
604 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
605
606 BUG_ON(tid >= t->ntids);
607 if (tdev->type == T3A)
608 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
609 else {
610 struct sk_buff *skb;
611
612 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
613 if (likely(skb)) {
614 mk_tid_release(skb, tid);
615 cxgb3_ofld_send(tdev, skb);
616 t->tid_tab[tid].ctx = NULL;
617 } else
618 cxgb3_queue_tid_release(tdev, tid);
619 }
620 atomic_dec(&t->tids_in_use);
621 }
622
623 EXPORT_SYMBOL(cxgb3_remove_tid);
624
625 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
626 void *ctx)
627 {
628 int atid = -1;
629 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
630
631 spin_lock_bh(&t->atid_lock);
632 if (t->afree &&
633 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
634 t->ntids) {
635 union active_open_entry *p = t->afree;
636
637 atid = (p - t->atid_tab) + t->atid_base;
638 t->afree = p->next;
639 p->t3c_tid.ctx = ctx;
640 p->t3c_tid.client = client;
641 t->atids_in_use++;
642 }
643 spin_unlock_bh(&t->atid_lock);
644 return atid;
645 }
646
647 EXPORT_SYMBOL(cxgb3_alloc_atid);
648
649 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
650 void *ctx)
651 {
652 int stid = -1;
653 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
654
655 spin_lock_bh(&t->stid_lock);
656 if (t->sfree) {
657 union listen_entry *p = t->sfree;
658
659 stid = (p - t->stid_tab) + t->stid_base;
660 t->sfree = p->next;
661 p->t3c_tid.ctx = ctx;
662 p->t3c_tid.client = client;
663 t->stids_in_use++;
664 }
665 spin_unlock_bh(&t->stid_lock);
666 return stid;
667 }
668
669 EXPORT_SYMBOL(cxgb3_alloc_stid);
670
671 /* Get the t3cdev associated with a net_device */
672 struct t3cdev *dev2t3cdev(struct net_device *dev)
673 {
674 const struct port_info *pi = netdev_priv(dev);
675
676 return (struct t3cdev *)pi->adapter;
677 }
678
679 EXPORT_SYMBOL(dev2t3cdev);
680
681 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
682 {
683 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
684
685 if (rpl->status != CPL_ERR_NONE)
686 printk(KERN_ERR
687 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
688 rpl->status, GET_TID(rpl));
689
690 return CPL_RET_BUF_DONE;
691 }
692
693 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
694 {
695 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
696
697 if (rpl->status != CPL_ERR_NONE)
698 printk(KERN_ERR
699 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
700 rpl->status, GET_TID(rpl));
701
702 return CPL_RET_BUF_DONE;
703 }
704
705 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
706 {
707 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
708
709 if (rpl->status != CPL_ERR_NONE)
710 printk(KERN_ERR
711 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
712 rpl->status, GET_TID(rpl));
713
714 return CPL_RET_BUF_DONE;
715 }
716
717 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
718 {
719 struct cpl_act_open_rpl *rpl = cplhdr(skb);
720 unsigned int atid = G_TID(ntohl(rpl->atid));
721 struct t3c_tid_entry *t3c_tid;
722
723 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
724 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
725 t3c_tid->client->handlers &&
726 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
727 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
728 t3c_tid->
729 ctx);
730 } else {
731 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
732 dev->name, CPL_ACT_OPEN_RPL);
733 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
734 }
735 }
736
737 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
738 {
739 union opcode_tid *p = cplhdr(skb);
740 unsigned int stid = G_TID(ntohl(p->opcode_tid));
741 struct t3c_tid_entry *t3c_tid;
742
743 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
744 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
745 t3c_tid->client->handlers[p->opcode]) {
746 return t3c_tid->client->handlers[p->opcode] (dev, skb,
747 t3c_tid->ctx);
748 } else {
749 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
750 dev->name, p->opcode);
751 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
752 }
753 }
754
755 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
756 {
757 union opcode_tid *p = cplhdr(skb);
758 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
759 struct t3c_tid_entry *t3c_tid;
760
761 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
762 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
763 t3c_tid->client->handlers[p->opcode]) {
764 return t3c_tid->client->handlers[p->opcode]
765 (dev, skb, t3c_tid->ctx);
766 } else {
767 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
768 dev->name, p->opcode);
769 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
770 }
771 }
772
773 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
774 {
775 struct cpl_pass_accept_req *req = cplhdr(skb);
776 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
777 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
778 struct t3c_tid_entry *t3c_tid;
779 unsigned int tid = GET_TID(req);
780
781 if (unlikely(tid >= t->ntids)) {
782 printk("%s: passive open TID %u too large\n",
783 dev->name, tid);
784 t3_fatal_err(tdev2adap(dev));
785 return CPL_RET_BUF_DONE;
786 }
787
788 t3c_tid = lookup_stid(t, stid);
789 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
790 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
791 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
792 (dev, skb, t3c_tid->ctx);
793 } else {
794 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
795 dev->name, CPL_PASS_ACCEPT_REQ);
796 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
797 }
798 }
799
800 /*
801 * Returns an sk_buff for a reply CPL message of size len. If the input
802 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
803 * is allocated. The input skb must be of size at least len. Note that this
804 * operation does not destroy the original skb data even if it decides to reuse
805 * the buffer.
806 */
807 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
808 gfp_t gfp)
809 {
810 if (likely(!skb_cloned(skb))) {
811 BUG_ON(skb->len < len);
812 __skb_trim(skb, len);
813 skb_get(skb);
814 } else {
815 skb = alloc_skb(len, gfp);
816 if (skb)
817 __skb_put(skb, len);
818 }
819 return skb;
820 }
821
822 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
823 {
824 union opcode_tid *p = cplhdr(skb);
825 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
826 struct t3c_tid_entry *t3c_tid;
827
828 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
829 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
830 t3c_tid->client->handlers[p->opcode]) {
831 return t3c_tid->client->handlers[p->opcode]
832 (dev, skb, t3c_tid->ctx);
833 } else {
834 struct cpl_abort_req_rss *req = cplhdr(skb);
835 struct cpl_abort_rpl *rpl;
836 struct sk_buff *reply_skb;
837 unsigned int tid = GET_TID(req);
838 u8 cmd = req->status;
839
840 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
841 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
842 goto out;
843
844 reply_skb = cxgb3_get_cpl_reply_skb(skb,
845 sizeof(struct
846 cpl_abort_rpl),
847 GFP_ATOMIC);
848
849 if (!reply_skb) {
850 printk("do_abort_req_rss: couldn't get skb!\n");
851 goto out;
852 }
853 reply_skb->priority = CPL_PRIORITY_DATA;
854 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
855 rpl = cplhdr(reply_skb);
856 rpl->wr.wr_hi =
857 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
858 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
859 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
860 rpl->cmd = cmd;
861 cxgb3_ofld_send(dev, reply_skb);
862 out:
863 return CPL_RET_BUF_DONE;
864 }
865 }
866
867 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
868 {
869 struct cpl_act_establish *req = cplhdr(skb);
870 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
871 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
872 struct t3c_tid_entry *t3c_tid;
873 unsigned int tid = GET_TID(req);
874
875 if (unlikely(tid >= t->ntids)) {
876 printk("%s: active establish TID %u too large\n",
877 dev->name, tid);
878 t3_fatal_err(tdev2adap(dev));
879 return CPL_RET_BUF_DONE;
880 }
881
882 t3c_tid = lookup_atid(t, atid);
883 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
884 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
885 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
886 (dev, skb, t3c_tid->ctx);
887 } else {
888 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
889 dev->name, CPL_ACT_ESTABLISH);
890 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
891 }
892 }
893
894 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
895 {
896 struct cpl_trace_pkt *p = cplhdr(skb);
897
898 skb->protocol = htons(0xffff);
899 skb->dev = dev->lldev;
900 skb_pull(skb, sizeof(*p));
901 skb_reset_mac_header(skb);
902 netif_receive_skb(skb);
903 return 0;
904 }
905
906 /*
907 * That skb would better have come from process_responses() where we abuse
908 * ->priority and ->csum to carry our data. NB: if we get to per-arch
909 * ->csum, the things might get really interesting here.
910 */
911
912 static inline u32 get_hwtid(struct sk_buff *skb)
913 {
914 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
915 }
916
917 static inline u32 get_opcode(struct sk_buff *skb)
918 {
919 return G_OPCODE(ntohl((__force __be32)skb->csum));
920 }
921
922 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
923 {
924 unsigned int hwtid = get_hwtid(skb);
925 unsigned int opcode = get_opcode(skb);
926 struct t3c_tid_entry *t3c_tid;
927
928 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
929 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
930 t3c_tid->client->handlers[opcode]) {
931 return t3c_tid->client->handlers[opcode] (dev, skb,
932 t3c_tid->ctx);
933 } else {
934 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
935 dev->name, opcode);
936 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
937 }
938 }
939
940 static int nb_callback(struct notifier_block *self, unsigned long event,
941 void *ctx)
942 {
943 switch (event) {
944 case (NETEVENT_NEIGH_UPDATE):{
945 cxgb_neigh_update((struct neighbour *)ctx);
946 break;
947 }
948 case (NETEVENT_PMTU_UPDATE):
949 break;
950 case (NETEVENT_REDIRECT):{
951 struct netevent_redirect *nr = ctx;
952 cxgb_redirect(nr->old, nr->new);
953 cxgb_neigh_update(nr->new->neighbour);
954 break;
955 }
956 default:
957 break;
958 }
959 return 0;
960 }
961
962 static struct notifier_block nb = {
963 .notifier_call = nb_callback
964 };
965
966 /*
967 * Process a received packet with an unknown/unexpected CPL opcode.
968 */
969 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
970 {
971 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
972 *skb->data);
973 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
974 }
975
976 /*
977 * Handlers for each CPL opcode
978 */
979 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
980
981 /*
982 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
983 * to unregister an existing handler.
984 */
985 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
986 {
987 if (opcode < NUM_CPL_CMDS)
988 cpl_handlers[opcode] = h ? h : do_bad_cpl;
989 else
990 printk(KERN_ERR "T3C: handler registration for "
991 "opcode %x failed\n", opcode);
992 }
993
994 EXPORT_SYMBOL(t3_register_cpl_handler);
995
996 /*
997 * T3CDEV's receive method.
998 */
999 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1000 {
1001 while (n--) {
1002 struct sk_buff *skb = *skbs++;
1003 unsigned int opcode = get_opcode(skb);
1004 int ret = cpl_handlers[opcode] (dev, skb);
1005
1006 #if VALIDATE_TID
1007 if (ret & CPL_RET_UNKNOWN_TID) {
1008 union opcode_tid *p = cplhdr(skb);
1009
1010 printk(KERN_ERR "%s: CPL message (opcode %u) had "
1011 "unknown TID %u\n", dev->name, opcode,
1012 G_TID(ntohl(p->opcode_tid)));
1013 }
1014 #endif
1015 if (ret & CPL_RET_BUF_DONE)
1016 kfree_skb(skb);
1017 }
1018 return 0;
1019 }
1020
1021 /*
1022 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1023 */
1024 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1025 {
1026 int r;
1027
1028 local_bh_disable();
1029 r = dev->send(dev, skb);
1030 local_bh_enable();
1031 return r;
1032 }
1033
1034 EXPORT_SYMBOL(cxgb3_ofld_send);
1035
1036 static int is_offloading(struct net_device *dev)
1037 {
1038 struct adapter *adapter;
1039 int i;
1040
1041 read_lock_bh(&adapter_list_lock);
1042 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1043 for_each_port(adapter, i) {
1044 if (dev == adapter->port[i]) {
1045 read_unlock_bh(&adapter_list_lock);
1046 return 1;
1047 }
1048 }
1049 }
1050 read_unlock_bh(&adapter_list_lock);
1051 return 0;
1052 }
1053
1054 void cxgb_neigh_update(struct neighbour *neigh)
1055 {
1056 struct net_device *dev = neigh->dev;
1057
1058 if (dev && (is_offloading(dev))) {
1059 struct t3cdev *tdev = dev2t3cdev(dev);
1060
1061 BUG_ON(!tdev);
1062 t3_l2t_update(tdev, neigh);
1063 }
1064 }
1065
1066 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1067 {
1068 struct sk_buff *skb;
1069 struct cpl_set_tcb_field *req;
1070
1071 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1072 if (!skb) {
1073 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1074 return;
1075 }
1076 skb->priority = CPL_PRIORITY_CONTROL;
1077 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1078 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1079 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1080 req->reply = 0;
1081 req->cpu_idx = 0;
1082 req->word = htons(W_TCB_L2T_IX);
1083 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1084 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1085 tdev->send(tdev, skb);
1086 }
1087
1088 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1089 {
1090 struct net_device *olddev, *newdev;
1091 struct tid_info *ti;
1092 struct t3cdev *tdev;
1093 u32 tid;
1094 int update_tcb;
1095 struct l2t_entry *e;
1096 struct t3c_tid_entry *te;
1097
1098 olddev = old->neighbour->dev;
1099 newdev = new->neighbour->dev;
1100 if (!is_offloading(olddev))
1101 return;
1102 if (!is_offloading(newdev)) {
1103 printk(KERN_WARNING "%s: Redirect to non-offload "
1104 "device ignored.\n", __func__);
1105 return;
1106 }
1107 tdev = dev2t3cdev(olddev);
1108 BUG_ON(!tdev);
1109 if (tdev != dev2t3cdev(newdev)) {
1110 printk(KERN_WARNING "%s: Redirect to different "
1111 "offload device ignored.\n", __func__);
1112 return;
1113 }
1114
1115 /* Add new L2T entry */
1116 e = t3_l2t_get(tdev, new->neighbour, newdev);
1117 if (!e) {
1118 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1119 __func__);
1120 return;
1121 }
1122
1123 /* Walk tid table and notify clients of dst change. */
1124 ti = &(T3C_DATA(tdev))->tid_maps;
1125 for (tid = 0; tid < ti->ntids; tid++) {
1126 te = lookup_tid(ti, tid);
1127 BUG_ON(!te);
1128 if (te && te->ctx && te->client && te->client->redirect) {
1129 update_tcb = te->client->redirect(te->ctx, old, new, e);
1130 if (update_tcb) {
1131 l2t_hold(L2DATA(tdev), e);
1132 set_l2t_ix(tdev, tid, e);
1133 }
1134 }
1135 }
1136 l2t_release(L2DATA(tdev), e);
1137 }
1138
1139 /*
1140 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1141 * The allocated memory is cleared.
1142 */
1143 void *cxgb_alloc_mem(unsigned long size)
1144 {
1145 void *p = kmalloc(size, GFP_KERNEL);
1146
1147 if (!p)
1148 p = vmalloc(size);
1149 if (p)
1150 memset(p, 0, size);
1151 return p;
1152 }
1153
1154 /*
1155 * Free memory allocated through t3_alloc_mem().
1156 */
1157 void cxgb_free_mem(void *addr)
1158 {
1159 if (is_vmalloc_addr(addr))
1160 vfree(addr);
1161 else
1162 kfree(addr);
1163 }
1164
1165 /*
1166 * Allocate and initialize the TID tables. Returns 0 on success.
1167 */
1168 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1169 unsigned int natids, unsigned int nstids,
1170 unsigned int atid_base, unsigned int stid_base)
1171 {
1172 unsigned long size = ntids * sizeof(*t->tid_tab) +
1173 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1174
1175 t->tid_tab = cxgb_alloc_mem(size);
1176 if (!t->tid_tab)
1177 return -ENOMEM;
1178
1179 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1180 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1181 t->ntids = ntids;
1182 t->nstids = nstids;
1183 t->stid_base = stid_base;
1184 t->sfree = NULL;
1185 t->natids = natids;
1186 t->atid_base = atid_base;
1187 t->afree = NULL;
1188 t->stids_in_use = t->atids_in_use = 0;
1189 atomic_set(&t->tids_in_use, 0);
1190 spin_lock_init(&t->stid_lock);
1191 spin_lock_init(&t->atid_lock);
1192
1193 /*
1194 * Setup the free lists for stid_tab and atid_tab.
1195 */
1196 if (nstids) {
1197 while (--nstids)
1198 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1199 t->sfree = t->stid_tab;
1200 }
1201 if (natids) {
1202 while (--natids)
1203 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1204 t->afree = t->atid_tab;
1205 }
1206 return 0;
1207 }
1208
1209 static void free_tid_maps(struct tid_info *t)
1210 {
1211 cxgb_free_mem(t->tid_tab);
1212 }
1213
1214 static inline void add_adapter(struct adapter *adap)
1215 {
1216 write_lock_bh(&adapter_list_lock);
1217 list_add_tail(&adap->adapter_list, &adapter_list);
1218 write_unlock_bh(&adapter_list_lock);
1219 }
1220
1221 static inline void remove_adapter(struct adapter *adap)
1222 {
1223 write_lock_bh(&adapter_list_lock);
1224 list_del(&adap->adapter_list);
1225 write_unlock_bh(&adapter_list_lock);
1226 }
1227
1228 int cxgb3_offload_activate(struct adapter *adapter)
1229 {
1230 struct t3cdev *dev = &adapter->tdev;
1231 int natids, err;
1232 struct t3c_data *t;
1233 struct tid_range stid_range, tid_range;
1234 struct mtutab mtutab;
1235 unsigned int l2t_capacity;
1236
1237 t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1238 if (!t)
1239 return -ENOMEM;
1240
1241 err = -EOPNOTSUPP;
1242 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1243 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1244 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1245 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1246 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1247 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1248 goto out_free;
1249
1250 err = -ENOMEM;
1251 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1252 if (!L2DATA(dev))
1253 goto out_free;
1254
1255 natids = min(tid_range.num / 2, MAX_ATIDS);
1256 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1257 stid_range.num, ATID_BASE, stid_range.base);
1258 if (err)
1259 goto out_free_l2t;
1260
1261 t->mtus = mtutab.mtus;
1262 t->nmtus = mtutab.size;
1263
1264 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1265 spin_lock_init(&t->tid_release_lock);
1266 INIT_LIST_HEAD(&t->list_node);
1267 t->dev = dev;
1268
1269 T3C_DATA(dev) = t;
1270 dev->recv = process_rx;
1271 dev->neigh_update = t3_l2t_update;
1272
1273 /* Register netevent handler once */
1274 if (list_empty(&adapter_list))
1275 register_netevent_notifier(&nb);
1276
1277 add_adapter(adapter);
1278 return 0;
1279
1280 out_free_l2t:
1281 t3_free_l2t(L2DATA(dev));
1282 L2DATA(dev) = NULL;
1283 out_free:
1284 kfree(t);
1285 return err;
1286 }
1287
1288 void cxgb3_offload_deactivate(struct adapter *adapter)
1289 {
1290 struct t3cdev *tdev = &adapter->tdev;
1291 struct t3c_data *t = T3C_DATA(tdev);
1292
1293 remove_adapter(adapter);
1294 if (list_empty(&adapter_list))
1295 unregister_netevent_notifier(&nb);
1296
1297 free_tid_maps(&t->tid_maps);
1298 T3C_DATA(tdev) = NULL;
1299 t3_free_l2t(L2DATA(tdev));
1300 L2DATA(tdev) = NULL;
1301 kfree(t);
1302 }
1303
1304 static inline void register_tdev(struct t3cdev *tdev)
1305 {
1306 static int unit;
1307
1308 mutex_lock(&cxgb3_db_lock);
1309 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1310 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1311 mutex_unlock(&cxgb3_db_lock);
1312 }
1313
1314 static inline void unregister_tdev(struct t3cdev *tdev)
1315 {
1316 mutex_lock(&cxgb3_db_lock);
1317 list_del(&tdev->ofld_dev_list);
1318 mutex_unlock(&cxgb3_db_lock);
1319 }
1320
1321 static inline int adap2type(struct adapter *adapter)
1322 {
1323 int type = 0;
1324
1325 switch (adapter->params.rev) {
1326 case T3_REV_A:
1327 type = T3A;
1328 break;
1329 case T3_REV_B:
1330 case T3_REV_B2:
1331 type = T3B;
1332 break;
1333 case T3_REV_C:
1334 type = T3C;
1335 break;
1336 }
1337 return type;
1338 }
1339
1340 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1341 {
1342 struct t3cdev *tdev = &adapter->tdev;
1343
1344 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1345
1346 cxgb3_set_dummy_ops(tdev);
1347 tdev->send = t3_offload_tx;
1348 tdev->ctl = cxgb_offload_ctl;
1349 tdev->type = adap2type(adapter);
1350
1351 register_tdev(tdev);
1352 }
1353
1354 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1355 {
1356 struct t3cdev *tdev = &adapter->tdev;
1357
1358 tdev->recv = NULL;
1359 tdev->neigh_update = NULL;
1360
1361 unregister_tdev(tdev);
1362 }
1363
1364 void __init cxgb3_offload_init(void)
1365 {
1366 int i;
1367
1368 for (i = 0; i < NUM_CPL_CMDS; ++i)
1369 cpl_handlers[i] = do_bad_cpl;
1370
1371 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1372 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1373 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1374 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1375 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1376 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1377 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1378 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1379 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1380 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1381 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1382 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1383 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1384 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1385 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1386 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1387 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1388 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1389 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1390 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1391 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1392 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1393 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1394 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1395 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1396 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1397 }
This page took 0.062315 seconds and 5 git commands to generate.