cxgb3: extend copyrights to 2008
[deliverable/linux.git] / drivers / net / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include "common.h"
40 #include "regs.h"
41 #include "sge_defs.h"
42 #include "t3_cpl.h"
43 #include "firmware_exports.h"
44
45 #define USE_GTS 0
46
47 #define SGE_RX_SM_BUF_SIZE 1536
48
49 #define SGE_RX_COPY_THRES 256
50 #define SGE_RX_PULL_LEN 128
51
52 /*
53 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
54 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
55 * directly.
56 */
57 #define FL0_PG_CHUNK_SIZE 2048
58 #define FL0_PG_ORDER 0
59 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
60 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
61
62 #define SGE_RX_DROP_THRES 16
63
64 /*
65 * Period of the Tx buffer reclaim timer. This timer does not need to run
66 * frequently as Tx buffers are usually reclaimed by new Tx packets.
67 */
68 #define TX_RECLAIM_PERIOD (HZ / 4)
69
70 /* WR size in bytes */
71 #define WR_LEN (WR_FLITS * 8)
72
73 /*
74 * Types of Tx queues in each queue set. Order here matters, do not change.
75 */
76 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
77
78 /* Values for sge_txq.flags */
79 enum {
80 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
81 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
82 };
83
84 struct tx_desc {
85 __be64 flit[TX_DESC_FLITS];
86 };
87
88 struct rx_desc {
89 __be32 addr_lo;
90 __be32 len_gen;
91 __be32 gen2;
92 __be32 addr_hi;
93 };
94
95 struct tx_sw_desc { /* SW state per Tx descriptor */
96 struct sk_buff *skb;
97 u8 eop; /* set if last descriptor for packet */
98 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
99 u8 fragidx; /* first page fragment associated with descriptor */
100 s8 sflit; /* start flit of first SGL entry in descriptor */
101 };
102
103 struct rx_sw_desc { /* SW state per Rx descriptor */
104 union {
105 struct sk_buff *skb;
106 struct fl_pg_chunk pg_chunk;
107 };
108 DECLARE_PCI_UNMAP_ADDR(dma_addr);
109 };
110
111 struct rsp_desc { /* response queue descriptor */
112 struct rss_header rss_hdr;
113 __be32 flags;
114 __be32 len_cq;
115 u8 imm_data[47];
116 u8 intr_gen;
117 };
118
119 /*
120 * Holds unmapping information for Tx packets that need deferred unmapping.
121 * This structure lives at skb->head and must be allocated by callers.
122 */
123 struct deferred_unmap_info {
124 struct pci_dev *pdev;
125 dma_addr_t addr[MAX_SKB_FRAGS + 1];
126 };
127
128 /*
129 * Maps a number of flits to the number of Tx descriptors that can hold them.
130 * The formula is
131 *
132 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
133 *
134 * HW allows up to 4 descriptors to be combined into a WR.
135 */
136 static u8 flit_desc_map[] = {
137 0,
138 #if SGE_NUM_GENBITS == 1
139 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
140 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
141 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
142 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
143 #elif SGE_NUM_GENBITS == 2
144 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
145 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
146 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
147 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
148 #else
149 # error "SGE_NUM_GENBITS must be 1 or 2"
150 #endif
151 };
152
153 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
154 {
155 return container_of(q, struct sge_qset, fl[qidx]);
156 }
157
158 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
159 {
160 return container_of(q, struct sge_qset, rspq);
161 }
162
163 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
164 {
165 return container_of(q, struct sge_qset, txq[qidx]);
166 }
167
168 /**
169 * refill_rspq - replenish an SGE response queue
170 * @adapter: the adapter
171 * @q: the response queue to replenish
172 * @credits: how many new responses to make available
173 *
174 * Replenishes a response queue by making the supplied number of responses
175 * available to HW.
176 */
177 static inline void refill_rspq(struct adapter *adapter,
178 const struct sge_rspq *q, unsigned int credits)
179 {
180 rmb();
181 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
182 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
183 }
184
185 /**
186 * need_skb_unmap - does the platform need unmapping of sk_buffs?
187 *
188 * Returns true if the platfrom needs sk_buff unmapping. The compiler
189 * optimizes away unecessary code if this returns true.
190 */
191 static inline int need_skb_unmap(void)
192 {
193 /*
194 * This structure is used to tell if the platfrom needs buffer
195 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
196 */
197 struct dummy {
198 DECLARE_PCI_UNMAP_ADDR(addr);
199 };
200
201 return sizeof(struct dummy) != 0;
202 }
203
204 /**
205 * unmap_skb - unmap a packet main body and its page fragments
206 * @skb: the packet
207 * @q: the Tx queue containing Tx descriptors for the packet
208 * @cidx: index of Tx descriptor
209 * @pdev: the PCI device
210 *
211 * Unmap the main body of an sk_buff and its page fragments, if any.
212 * Because of the fairly complicated structure of our SGLs and the desire
213 * to conserve space for metadata, the information necessary to unmap an
214 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
215 * descriptors (the physical addresses of the various data buffers), and
216 * the SW descriptor state (assorted indices). The send functions
217 * initialize the indices for the first packet descriptor so we can unmap
218 * the buffers held in the first Tx descriptor here, and we have enough
219 * information at this point to set the state for the next Tx descriptor.
220 *
221 * Note that it is possible to clean up the first descriptor of a packet
222 * before the send routines have written the next descriptors, but this
223 * race does not cause any problem. We just end up writing the unmapping
224 * info for the descriptor first.
225 */
226 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
227 unsigned int cidx, struct pci_dev *pdev)
228 {
229 const struct sg_ent *sgp;
230 struct tx_sw_desc *d = &q->sdesc[cidx];
231 int nfrags, frag_idx, curflit, j = d->addr_idx;
232
233 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
234 frag_idx = d->fragidx;
235
236 if (frag_idx == 0 && skb_headlen(skb)) {
237 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
238 skb_headlen(skb), PCI_DMA_TODEVICE);
239 j = 1;
240 }
241
242 curflit = d->sflit + 1 + j;
243 nfrags = skb_shinfo(skb)->nr_frags;
244
245 while (frag_idx < nfrags && curflit < WR_FLITS) {
246 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
247 skb_shinfo(skb)->frags[frag_idx].size,
248 PCI_DMA_TODEVICE);
249 j ^= 1;
250 if (j == 0) {
251 sgp++;
252 curflit++;
253 }
254 curflit++;
255 frag_idx++;
256 }
257
258 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
259 d = cidx + 1 == q->size ? q->sdesc : d + 1;
260 d->fragidx = frag_idx;
261 d->addr_idx = j;
262 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
263 }
264 }
265
266 /**
267 * free_tx_desc - reclaims Tx descriptors and their buffers
268 * @adapter: the adapter
269 * @q: the Tx queue to reclaim descriptors from
270 * @n: the number of descriptors to reclaim
271 *
272 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
273 * Tx buffers. Called with the Tx queue lock held.
274 */
275 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
276 unsigned int n)
277 {
278 struct tx_sw_desc *d;
279 struct pci_dev *pdev = adapter->pdev;
280 unsigned int cidx = q->cidx;
281
282 const int need_unmap = need_skb_unmap() &&
283 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
284
285 d = &q->sdesc[cidx];
286 while (n--) {
287 if (d->skb) { /* an SGL is present */
288 if (need_unmap)
289 unmap_skb(d->skb, q, cidx, pdev);
290 if (d->eop)
291 kfree_skb(d->skb);
292 }
293 ++d;
294 if (++cidx == q->size) {
295 cidx = 0;
296 d = q->sdesc;
297 }
298 }
299 q->cidx = cidx;
300 }
301
302 /**
303 * reclaim_completed_tx - reclaims completed Tx descriptors
304 * @adapter: the adapter
305 * @q: the Tx queue to reclaim completed descriptors from
306 *
307 * Reclaims Tx descriptors that the SGE has indicated it has processed,
308 * and frees the associated buffers if possible. Called with the Tx
309 * queue's lock held.
310 */
311 static inline void reclaim_completed_tx(struct adapter *adapter,
312 struct sge_txq *q)
313 {
314 unsigned int reclaim = q->processed - q->cleaned;
315
316 if (reclaim) {
317 free_tx_desc(adapter, q, reclaim);
318 q->cleaned += reclaim;
319 q->in_use -= reclaim;
320 }
321 }
322
323 /**
324 * should_restart_tx - are there enough resources to restart a Tx queue?
325 * @q: the Tx queue
326 *
327 * Checks if there are enough descriptors to restart a suspended Tx queue.
328 */
329 static inline int should_restart_tx(const struct sge_txq *q)
330 {
331 unsigned int r = q->processed - q->cleaned;
332
333 return q->in_use - r < (q->size >> 1);
334 }
335
336 /**
337 * free_rx_bufs - free the Rx buffers on an SGE free list
338 * @pdev: the PCI device associated with the adapter
339 * @rxq: the SGE free list to clean up
340 *
341 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
342 * this queue should be stopped before calling this function.
343 */
344 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
345 {
346 unsigned int cidx = q->cidx;
347
348 while (q->credits--) {
349 struct rx_sw_desc *d = &q->sdesc[cidx];
350
351 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
352 q->buf_size, PCI_DMA_FROMDEVICE);
353 if (q->use_pages) {
354 if (d->pg_chunk.page)
355 put_page(d->pg_chunk.page);
356 d->pg_chunk.page = NULL;
357 } else {
358 kfree_skb(d->skb);
359 d->skb = NULL;
360 }
361 if (++cidx == q->size)
362 cidx = 0;
363 }
364
365 if (q->pg_chunk.page) {
366 __free_pages(q->pg_chunk.page, q->order);
367 q->pg_chunk.page = NULL;
368 }
369 }
370
371 /**
372 * add_one_rx_buf - add a packet buffer to a free-buffer list
373 * @va: buffer start VA
374 * @len: the buffer length
375 * @d: the HW Rx descriptor to write
376 * @sd: the SW Rx descriptor to write
377 * @gen: the generation bit value
378 * @pdev: the PCI device associated with the adapter
379 *
380 * Add a buffer of the given length to the supplied HW and SW Rx
381 * descriptors.
382 */
383 static inline int add_one_rx_buf(void *va, unsigned int len,
384 struct rx_desc *d, struct rx_sw_desc *sd,
385 unsigned int gen, struct pci_dev *pdev)
386 {
387 dma_addr_t mapping;
388
389 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
390 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
391 return -ENOMEM;
392
393 pci_unmap_addr_set(sd, dma_addr, mapping);
394
395 d->addr_lo = cpu_to_be32(mapping);
396 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
397 wmb();
398 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
399 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
400 return 0;
401 }
402
403 static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp,
404 unsigned int order)
405 {
406 if (!q->pg_chunk.page) {
407 q->pg_chunk.page = alloc_pages(gfp, order);
408 if (unlikely(!q->pg_chunk.page))
409 return -ENOMEM;
410 q->pg_chunk.va = page_address(q->pg_chunk.page);
411 q->pg_chunk.offset = 0;
412 }
413 sd->pg_chunk = q->pg_chunk;
414
415 q->pg_chunk.offset += q->buf_size;
416 if (q->pg_chunk.offset == (PAGE_SIZE << order))
417 q->pg_chunk.page = NULL;
418 else {
419 q->pg_chunk.va += q->buf_size;
420 get_page(q->pg_chunk.page);
421 }
422 return 0;
423 }
424
425 /**
426 * refill_fl - refill an SGE free-buffer list
427 * @adapter: the adapter
428 * @q: the free-list to refill
429 * @n: the number of new buffers to allocate
430 * @gfp: the gfp flags for allocating new buffers
431 *
432 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
433 * allocated with the supplied gfp flags. The caller must assure that
434 * @n does not exceed the queue's capacity.
435 */
436 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
437 {
438 void *buf_start;
439 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
440 struct rx_desc *d = &q->desc[q->pidx];
441 unsigned int count = 0;
442
443 while (n--) {
444 int err;
445
446 if (q->use_pages) {
447 if (unlikely(alloc_pg_chunk(q, sd, gfp, q->order))) {
448 nomem: q->alloc_failed++;
449 break;
450 }
451 buf_start = sd->pg_chunk.va;
452 } else {
453 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
454
455 if (!skb)
456 goto nomem;
457
458 sd->skb = skb;
459 buf_start = skb->data;
460 }
461
462 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen,
463 adap->pdev);
464 if (unlikely(err)) {
465 if (!q->use_pages) {
466 kfree_skb(sd->skb);
467 sd->skb = NULL;
468 }
469 break;
470 }
471
472 d++;
473 sd++;
474 if (++q->pidx == q->size) {
475 q->pidx = 0;
476 q->gen ^= 1;
477 sd = q->sdesc;
478 d = q->desc;
479 }
480 q->credits++;
481 count++;
482 }
483 wmb();
484 if (likely(count))
485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
486
487 return count;
488 }
489
490 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
491 {
492 refill_fl(adap, fl, min(16U, fl->size - fl->credits),
493 GFP_ATOMIC | __GFP_COMP);
494 }
495
496 /**
497 * recycle_rx_buf - recycle a receive buffer
498 * @adapter: the adapter
499 * @q: the SGE free list
500 * @idx: index of buffer to recycle
501 *
502 * Recycles the specified buffer on the given free list by adding it at
503 * the next available slot on the list.
504 */
505 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
506 unsigned int idx)
507 {
508 struct rx_desc *from = &q->desc[idx];
509 struct rx_desc *to = &q->desc[q->pidx];
510
511 q->sdesc[q->pidx] = q->sdesc[idx];
512 to->addr_lo = from->addr_lo; /* already big endian */
513 to->addr_hi = from->addr_hi; /* likewise */
514 wmb();
515 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
516 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
517 q->credits++;
518
519 if (++q->pidx == q->size) {
520 q->pidx = 0;
521 q->gen ^= 1;
522 }
523 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
524 }
525
526 /**
527 * alloc_ring - allocate resources for an SGE descriptor ring
528 * @pdev: the PCI device
529 * @nelem: the number of descriptors
530 * @elem_size: the size of each descriptor
531 * @sw_size: the size of the SW state associated with each ring element
532 * @phys: the physical address of the allocated ring
533 * @metadata: address of the array holding the SW state for the ring
534 *
535 * Allocates resources for an SGE descriptor ring, such as Tx queues,
536 * free buffer lists, or response queues. Each SGE ring requires
537 * space for its HW descriptors plus, optionally, space for the SW state
538 * associated with each HW entry (the metadata). The function returns
539 * three values: the virtual address for the HW ring (the return value
540 * of the function), the physical address of the HW ring, and the address
541 * of the SW ring.
542 */
543 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
544 size_t sw_size, dma_addr_t * phys, void *metadata)
545 {
546 size_t len = nelem * elem_size;
547 void *s = NULL;
548 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
549
550 if (!p)
551 return NULL;
552 if (sw_size) {
553 s = kcalloc(nelem, sw_size, GFP_KERNEL);
554
555 if (!s) {
556 dma_free_coherent(&pdev->dev, len, p, *phys);
557 return NULL;
558 }
559 }
560 if (metadata)
561 *(void **)metadata = s;
562 memset(p, 0, len);
563 return p;
564 }
565
566 /**
567 * t3_reset_qset - reset a sge qset
568 * @q: the queue set
569 *
570 * Reset the qset structure.
571 * the NAPI structure is preserved in the event of
572 * the qset's reincarnation, for example during EEH recovery.
573 */
574 static void t3_reset_qset(struct sge_qset *q)
575 {
576 if (q->adap &&
577 !(q->adap->flags & NAPI_INIT)) {
578 memset(q, 0, sizeof(*q));
579 return;
580 }
581
582 q->adap = NULL;
583 memset(&q->rspq, 0, sizeof(q->rspq));
584 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
585 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
586 q->txq_stopped = 0;
587 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
588 kfree(q->lro_frag_tbl);
589 q->lro_nfrags = q->lro_frag_len = 0;
590 }
591
592
593 /**
594 * free_qset - free the resources of an SGE queue set
595 * @adapter: the adapter owning the queue set
596 * @q: the queue set
597 *
598 * Release the HW and SW resources associated with an SGE queue set, such
599 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
600 * queue set must be quiesced prior to calling this.
601 */
602 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
603 {
604 int i;
605 struct pci_dev *pdev = adapter->pdev;
606
607 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
608 if (q->fl[i].desc) {
609 spin_lock_irq(&adapter->sge.reg_lock);
610 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
611 spin_unlock_irq(&adapter->sge.reg_lock);
612 free_rx_bufs(pdev, &q->fl[i]);
613 kfree(q->fl[i].sdesc);
614 dma_free_coherent(&pdev->dev,
615 q->fl[i].size *
616 sizeof(struct rx_desc), q->fl[i].desc,
617 q->fl[i].phys_addr);
618 }
619
620 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
621 if (q->txq[i].desc) {
622 spin_lock_irq(&adapter->sge.reg_lock);
623 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
624 spin_unlock_irq(&adapter->sge.reg_lock);
625 if (q->txq[i].sdesc) {
626 free_tx_desc(adapter, &q->txq[i],
627 q->txq[i].in_use);
628 kfree(q->txq[i].sdesc);
629 }
630 dma_free_coherent(&pdev->dev,
631 q->txq[i].size *
632 sizeof(struct tx_desc),
633 q->txq[i].desc, q->txq[i].phys_addr);
634 __skb_queue_purge(&q->txq[i].sendq);
635 }
636
637 if (q->rspq.desc) {
638 spin_lock_irq(&adapter->sge.reg_lock);
639 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
640 spin_unlock_irq(&adapter->sge.reg_lock);
641 dma_free_coherent(&pdev->dev,
642 q->rspq.size * sizeof(struct rsp_desc),
643 q->rspq.desc, q->rspq.phys_addr);
644 }
645
646 t3_reset_qset(q);
647 }
648
649 /**
650 * init_qset_cntxt - initialize an SGE queue set context info
651 * @qs: the queue set
652 * @id: the queue set id
653 *
654 * Initializes the TIDs and context ids for the queues of a queue set.
655 */
656 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
657 {
658 qs->rspq.cntxt_id = id;
659 qs->fl[0].cntxt_id = 2 * id;
660 qs->fl[1].cntxt_id = 2 * id + 1;
661 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
662 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
663 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
664 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
665 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
666 }
667
668 /**
669 * sgl_len - calculates the size of an SGL of the given capacity
670 * @n: the number of SGL entries
671 *
672 * Calculates the number of flits needed for a scatter/gather list that
673 * can hold the given number of entries.
674 */
675 static inline unsigned int sgl_len(unsigned int n)
676 {
677 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
678 return (3 * n) / 2 + (n & 1);
679 }
680
681 /**
682 * flits_to_desc - returns the num of Tx descriptors for the given flits
683 * @n: the number of flits
684 *
685 * Calculates the number of Tx descriptors needed for the supplied number
686 * of flits.
687 */
688 static inline unsigned int flits_to_desc(unsigned int n)
689 {
690 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
691 return flit_desc_map[n];
692 }
693
694 /**
695 * get_packet - return the next ingress packet buffer from a free list
696 * @adap: the adapter that received the packet
697 * @fl: the SGE free list holding the packet
698 * @len: the packet length including any SGE padding
699 * @drop_thres: # of remaining buffers before we start dropping packets
700 *
701 * Get the next packet from a free list and complete setup of the
702 * sk_buff. If the packet is small we make a copy and recycle the
703 * original buffer, otherwise we use the original buffer itself. If a
704 * positive drop threshold is supplied packets are dropped and their
705 * buffers recycled if (a) the number of remaining buffers is under the
706 * threshold and the packet is too big to copy, or (b) the packet should
707 * be copied but there is no memory for the copy.
708 */
709 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
710 unsigned int len, unsigned int drop_thres)
711 {
712 struct sk_buff *skb = NULL;
713 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
714
715 prefetch(sd->skb->data);
716 fl->credits--;
717
718 if (len <= SGE_RX_COPY_THRES) {
719 skb = alloc_skb(len, GFP_ATOMIC);
720 if (likely(skb != NULL)) {
721 __skb_put(skb, len);
722 pci_dma_sync_single_for_cpu(adap->pdev,
723 pci_unmap_addr(sd, dma_addr), len,
724 PCI_DMA_FROMDEVICE);
725 memcpy(skb->data, sd->skb->data, len);
726 pci_dma_sync_single_for_device(adap->pdev,
727 pci_unmap_addr(sd, dma_addr), len,
728 PCI_DMA_FROMDEVICE);
729 } else if (!drop_thres)
730 goto use_orig_buf;
731 recycle:
732 recycle_rx_buf(adap, fl, fl->cidx);
733 return skb;
734 }
735
736 if (unlikely(fl->credits < drop_thres))
737 goto recycle;
738
739 use_orig_buf:
740 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
741 fl->buf_size, PCI_DMA_FROMDEVICE);
742 skb = sd->skb;
743 skb_put(skb, len);
744 __refill_fl(adap, fl);
745 return skb;
746 }
747
748 /**
749 * get_packet_pg - return the next ingress packet buffer from a free list
750 * @adap: the adapter that received the packet
751 * @fl: the SGE free list holding the packet
752 * @len: the packet length including any SGE padding
753 * @drop_thres: # of remaining buffers before we start dropping packets
754 *
755 * Get the next packet from a free list populated with page chunks.
756 * If the packet is small we make a copy and recycle the original buffer,
757 * otherwise we attach the original buffer as a page fragment to a fresh
758 * sk_buff. If a positive drop threshold is supplied packets are dropped
759 * and their buffers recycled if (a) the number of remaining buffers is
760 * under the threshold and the packet is too big to copy, or (b) there's
761 * no system memory.
762 *
763 * Note: this function is similar to @get_packet but deals with Rx buffers
764 * that are page chunks rather than sk_buffs.
765 */
766 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
767 struct sge_rspq *q, unsigned int len,
768 unsigned int drop_thres)
769 {
770 struct sk_buff *newskb, *skb;
771 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
772
773 newskb = skb = q->pg_skb;
774
775 if (!skb && (len <= SGE_RX_COPY_THRES)) {
776 newskb = alloc_skb(len, GFP_ATOMIC);
777 if (likely(newskb != NULL)) {
778 __skb_put(newskb, len);
779 pci_dma_sync_single_for_cpu(adap->pdev,
780 pci_unmap_addr(sd, dma_addr), len,
781 PCI_DMA_FROMDEVICE);
782 memcpy(newskb->data, sd->pg_chunk.va, len);
783 pci_dma_sync_single_for_device(adap->pdev,
784 pci_unmap_addr(sd, dma_addr), len,
785 PCI_DMA_FROMDEVICE);
786 } else if (!drop_thres)
787 return NULL;
788 recycle:
789 fl->credits--;
790 recycle_rx_buf(adap, fl, fl->cidx);
791 q->rx_recycle_buf++;
792 return newskb;
793 }
794
795 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
796 goto recycle;
797
798 if (!skb)
799 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
800 if (unlikely(!newskb)) {
801 if (!drop_thres)
802 return NULL;
803 goto recycle;
804 }
805
806 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
807 fl->buf_size, PCI_DMA_FROMDEVICE);
808 if (!skb) {
809 __skb_put(newskb, SGE_RX_PULL_LEN);
810 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
811 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
812 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
813 len - SGE_RX_PULL_LEN);
814 newskb->len = len;
815 newskb->data_len = len - SGE_RX_PULL_LEN;
816 } else {
817 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
818 sd->pg_chunk.page,
819 sd->pg_chunk.offset, len);
820 newskb->len += len;
821 newskb->data_len += len;
822 }
823 newskb->truesize += newskb->data_len;
824
825 fl->credits--;
826 /*
827 * We do not refill FLs here, we let the caller do it to overlap a
828 * prefetch.
829 */
830 return newskb;
831 }
832
833 /**
834 * get_imm_packet - return the next ingress packet buffer from a response
835 * @resp: the response descriptor containing the packet data
836 *
837 * Return a packet containing the immediate data of the given response.
838 */
839 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
840 {
841 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
842
843 if (skb) {
844 __skb_put(skb, IMMED_PKT_SIZE);
845 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
846 }
847 return skb;
848 }
849
850 /**
851 * calc_tx_descs - calculate the number of Tx descriptors for a packet
852 * @skb: the packet
853 *
854 * Returns the number of Tx descriptors needed for the given Ethernet
855 * packet. Ethernet packets require addition of WR and CPL headers.
856 */
857 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
858 {
859 unsigned int flits;
860
861 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
862 return 1;
863
864 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
865 if (skb_shinfo(skb)->gso_size)
866 flits++;
867 return flits_to_desc(flits);
868 }
869
870 /**
871 * make_sgl - populate a scatter/gather list for a packet
872 * @skb: the packet
873 * @sgp: the SGL to populate
874 * @start: start address of skb main body data to include in the SGL
875 * @len: length of skb main body data to include in the SGL
876 * @pdev: the PCI device
877 *
878 * Generates a scatter/gather list for the buffers that make up a packet
879 * and returns the SGL size in 8-byte words. The caller must size the SGL
880 * appropriately.
881 */
882 static inline unsigned int make_sgl(const struct sk_buff *skb,
883 struct sg_ent *sgp, unsigned char *start,
884 unsigned int len, struct pci_dev *pdev)
885 {
886 dma_addr_t mapping;
887 unsigned int i, j = 0, nfrags;
888
889 if (len) {
890 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
891 sgp->len[0] = cpu_to_be32(len);
892 sgp->addr[0] = cpu_to_be64(mapping);
893 j = 1;
894 }
895
896 nfrags = skb_shinfo(skb)->nr_frags;
897 for (i = 0; i < nfrags; i++) {
898 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
899
900 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
901 frag->size, PCI_DMA_TODEVICE);
902 sgp->len[j] = cpu_to_be32(frag->size);
903 sgp->addr[j] = cpu_to_be64(mapping);
904 j ^= 1;
905 if (j == 0)
906 ++sgp;
907 }
908 if (j)
909 sgp->len[j] = 0;
910 return ((nfrags + (len != 0)) * 3) / 2 + j;
911 }
912
913 /**
914 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
915 * @adap: the adapter
916 * @q: the Tx queue
917 *
918 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
919 * where the HW is going to sleep just after we checked, however,
920 * then the interrupt handler will detect the outstanding TX packet
921 * and ring the doorbell for us.
922 *
923 * When GTS is disabled we unconditionally ring the doorbell.
924 */
925 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
926 {
927 #if USE_GTS
928 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
929 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
930 set_bit(TXQ_LAST_PKT_DB, &q->flags);
931 t3_write_reg(adap, A_SG_KDOORBELL,
932 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
933 }
934 #else
935 wmb(); /* write descriptors before telling HW */
936 t3_write_reg(adap, A_SG_KDOORBELL,
937 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
938 #endif
939 }
940
941 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
942 {
943 #if SGE_NUM_GENBITS == 2
944 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
945 #endif
946 }
947
948 /**
949 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
950 * @ndesc: number of Tx descriptors spanned by the SGL
951 * @skb: the packet corresponding to the WR
952 * @d: first Tx descriptor to be written
953 * @pidx: index of above descriptors
954 * @q: the SGE Tx queue
955 * @sgl: the SGL
956 * @flits: number of flits to the start of the SGL in the first descriptor
957 * @sgl_flits: the SGL size in flits
958 * @gen: the Tx descriptor generation
959 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
960 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
961 *
962 * Write a work request header and an associated SGL. If the SGL is
963 * small enough to fit into one Tx descriptor it has already been written
964 * and we just need to write the WR header. Otherwise we distribute the
965 * SGL across the number of descriptors it spans.
966 */
967 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
968 struct tx_desc *d, unsigned int pidx,
969 const struct sge_txq *q,
970 const struct sg_ent *sgl,
971 unsigned int flits, unsigned int sgl_flits,
972 unsigned int gen, __be32 wr_hi,
973 __be32 wr_lo)
974 {
975 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
976 struct tx_sw_desc *sd = &q->sdesc[pidx];
977
978 sd->skb = skb;
979 if (need_skb_unmap()) {
980 sd->fragidx = 0;
981 sd->addr_idx = 0;
982 sd->sflit = flits;
983 }
984
985 if (likely(ndesc == 1)) {
986 sd->eop = 1;
987 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
988 V_WR_SGLSFLT(flits)) | wr_hi;
989 wmb();
990 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
991 V_WR_GEN(gen)) | wr_lo;
992 wr_gen2(d, gen);
993 } else {
994 unsigned int ogen = gen;
995 const u64 *fp = (const u64 *)sgl;
996 struct work_request_hdr *wp = wrp;
997
998 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
999 V_WR_SGLSFLT(flits)) | wr_hi;
1000
1001 while (sgl_flits) {
1002 unsigned int avail = WR_FLITS - flits;
1003
1004 if (avail > sgl_flits)
1005 avail = sgl_flits;
1006 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1007 sgl_flits -= avail;
1008 ndesc--;
1009 if (!sgl_flits)
1010 break;
1011
1012 fp += avail;
1013 d++;
1014 sd->eop = 0;
1015 sd++;
1016 if (++pidx == q->size) {
1017 pidx = 0;
1018 gen ^= 1;
1019 d = q->desc;
1020 sd = q->sdesc;
1021 }
1022
1023 sd->skb = skb;
1024 wrp = (struct work_request_hdr *)d;
1025 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1026 V_WR_SGLSFLT(1)) | wr_hi;
1027 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1028 sgl_flits + 1)) |
1029 V_WR_GEN(gen)) | wr_lo;
1030 wr_gen2(d, gen);
1031 flits = 1;
1032 }
1033 sd->eop = 1;
1034 wrp->wr_hi |= htonl(F_WR_EOP);
1035 wmb();
1036 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1037 wr_gen2((struct tx_desc *)wp, ogen);
1038 WARN_ON(ndesc != 0);
1039 }
1040 }
1041
1042 /**
1043 * write_tx_pkt_wr - write a TX_PKT work request
1044 * @adap: the adapter
1045 * @skb: the packet to send
1046 * @pi: the egress interface
1047 * @pidx: index of the first Tx descriptor to write
1048 * @gen: the generation value to use
1049 * @q: the Tx queue
1050 * @ndesc: number of descriptors the packet will occupy
1051 * @compl: the value of the COMPL bit to use
1052 *
1053 * Generate a TX_PKT work request to send the supplied packet.
1054 */
1055 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1056 const struct port_info *pi,
1057 unsigned int pidx, unsigned int gen,
1058 struct sge_txq *q, unsigned int ndesc,
1059 unsigned int compl)
1060 {
1061 unsigned int flits, sgl_flits, cntrl, tso_info;
1062 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1063 struct tx_desc *d = &q->desc[pidx];
1064 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1065
1066 cpl->len = htonl(skb->len | 0x80000000);
1067 cntrl = V_TXPKT_INTF(pi->port_id);
1068
1069 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1070 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1071
1072 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1073 if (tso_info) {
1074 int eth_type;
1075 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1076
1077 d->flit[2] = 0;
1078 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1079 hdr->cntrl = htonl(cntrl);
1080 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1081 CPL_ETH_II : CPL_ETH_II_VLAN;
1082 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1083 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1084 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1085 hdr->lso_info = htonl(tso_info);
1086 flits = 3;
1087 } else {
1088 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1089 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1090 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1091 cpl->cntrl = htonl(cntrl);
1092
1093 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1094 q->sdesc[pidx].skb = NULL;
1095 if (!skb->data_len)
1096 skb_copy_from_linear_data(skb, &d->flit[2],
1097 skb->len);
1098 else
1099 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1100
1101 flits = (skb->len + 7) / 8 + 2;
1102 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1103 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1104 | F_WR_SOP | F_WR_EOP | compl);
1105 wmb();
1106 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1107 V_WR_TID(q->token));
1108 wr_gen2(d, gen);
1109 kfree_skb(skb);
1110 return;
1111 }
1112
1113 flits = 2;
1114 }
1115
1116 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1117 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1118
1119 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1120 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1121 htonl(V_WR_TID(q->token)));
1122 }
1123
1124 static inline void t3_stop_queue(struct net_device *dev, struct sge_qset *qs,
1125 struct sge_txq *q)
1126 {
1127 netif_stop_queue(dev);
1128 set_bit(TXQ_ETH, &qs->txq_stopped);
1129 q->stops++;
1130 }
1131
1132 /**
1133 * eth_xmit - add a packet to the Ethernet Tx queue
1134 * @skb: the packet
1135 * @dev: the egress net device
1136 *
1137 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1138 */
1139 int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1140 {
1141 unsigned int ndesc, pidx, credits, gen, compl;
1142 const struct port_info *pi = netdev_priv(dev);
1143 struct adapter *adap = pi->adapter;
1144 struct sge_qset *qs = pi->qs;
1145 struct sge_txq *q = &qs->txq[TXQ_ETH];
1146
1147 /*
1148 * The chip min packet length is 9 octets but play safe and reject
1149 * anything shorter than an Ethernet header.
1150 */
1151 if (unlikely(skb->len < ETH_HLEN)) {
1152 dev_kfree_skb(skb);
1153 return NETDEV_TX_OK;
1154 }
1155
1156 spin_lock(&q->lock);
1157 reclaim_completed_tx(adap, q);
1158
1159 credits = q->size - q->in_use;
1160 ndesc = calc_tx_descs(skb);
1161
1162 if (unlikely(credits < ndesc)) {
1163 t3_stop_queue(dev, qs, q);
1164 dev_err(&adap->pdev->dev,
1165 "%s: Tx ring %u full while queue awake!\n",
1166 dev->name, q->cntxt_id & 7);
1167 spin_unlock(&q->lock);
1168 return NETDEV_TX_BUSY;
1169 }
1170
1171 q->in_use += ndesc;
1172 if (unlikely(credits - ndesc < q->stop_thres)) {
1173 t3_stop_queue(dev, qs, q);
1174
1175 if (should_restart_tx(q) &&
1176 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1177 q->restarts++;
1178 netif_wake_queue(dev);
1179 }
1180 }
1181
1182 gen = q->gen;
1183 q->unacked += ndesc;
1184 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1185 q->unacked &= 7;
1186 pidx = q->pidx;
1187 q->pidx += ndesc;
1188 if (q->pidx >= q->size) {
1189 q->pidx -= q->size;
1190 q->gen ^= 1;
1191 }
1192
1193 /* update port statistics */
1194 if (skb->ip_summed == CHECKSUM_COMPLETE)
1195 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1196 if (skb_shinfo(skb)->gso_size)
1197 qs->port_stats[SGE_PSTAT_TSO]++;
1198 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1199 qs->port_stats[SGE_PSTAT_VLANINS]++;
1200
1201 dev->trans_start = jiffies;
1202 spin_unlock(&q->lock);
1203
1204 /*
1205 * We do not use Tx completion interrupts to free DMAd Tx packets.
1206 * This is good for performamce but means that we rely on new Tx
1207 * packets arriving to run the destructors of completed packets,
1208 * which open up space in their sockets' send queues. Sometimes
1209 * we do not get such new packets causing Tx to stall. A single
1210 * UDP transmitter is a good example of this situation. We have
1211 * a clean up timer that periodically reclaims completed packets
1212 * but it doesn't run often enough (nor do we want it to) to prevent
1213 * lengthy stalls. A solution to this problem is to run the
1214 * destructor early, after the packet is queued but before it's DMAd.
1215 * A cons is that we lie to socket memory accounting, but the amount
1216 * of extra memory is reasonable (limited by the number of Tx
1217 * descriptors), the packets do actually get freed quickly by new
1218 * packets almost always, and for protocols like TCP that wait for
1219 * acks to really free up the data the extra memory is even less.
1220 * On the positive side we run the destructors on the sending CPU
1221 * rather than on a potentially different completing CPU, usually a
1222 * good thing. We also run them without holding our Tx queue lock,
1223 * unlike what reclaim_completed_tx() would otherwise do.
1224 *
1225 * Run the destructor before telling the DMA engine about the packet
1226 * to make sure it doesn't complete and get freed prematurely.
1227 */
1228 if (likely(!skb_shared(skb)))
1229 skb_orphan(skb);
1230
1231 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1232 check_ring_tx_db(adap, q);
1233 return NETDEV_TX_OK;
1234 }
1235
1236 /**
1237 * write_imm - write a packet into a Tx descriptor as immediate data
1238 * @d: the Tx descriptor to write
1239 * @skb: the packet
1240 * @len: the length of packet data to write as immediate data
1241 * @gen: the generation bit value to write
1242 *
1243 * Writes a packet as immediate data into a Tx descriptor. The packet
1244 * contains a work request at its beginning. We must write the packet
1245 * carefully so the SGE doesn't read it accidentally before it's written
1246 * in its entirety.
1247 */
1248 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1249 unsigned int len, unsigned int gen)
1250 {
1251 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1252 struct work_request_hdr *to = (struct work_request_hdr *)d;
1253
1254 if (likely(!skb->data_len))
1255 memcpy(&to[1], &from[1], len - sizeof(*from));
1256 else
1257 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1258
1259 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1260 V_WR_BCNTLFLT(len & 7));
1261 wmb();
1262 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1263 V_WR_LEN((len + 7) / 8));
1264 wr_gen2(d, gen);
1265 kfree_skb(skb);
1266 }
1267
1268 /**
1269 * check_desc_avail - check descriptor availability on a send queue
1270 * @adap: the adapter
1271 * @q: the send queue
1272 * @skb: the packet needing the descriptors
1273 * @ndesc: the number of Tx descriptors needed
1274 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1275 *
1276 * Checks if the requested number of Tx descriptors is available on an
1277 * SGE send queue. If the queue is already suspended or not enough
1278 * descriptors are available the packet is queued for later transmission.
1279 * Must be called with the Tx queue locked.
1280 *
1281 * Returns 0 if enough descriptors are available, 1 if there aren't
1282 * enough descriptors and the packet has been queued, and 2 if the caller
1283 * needs to retry because there weren't enough descriptors at the
1284 * beginning of the call but some freed up in the mean time.
1285 */
1286 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1287 struct sk_buff *skb, unsigned int ndesc,
1288 unsigned int qid)
1289 {
1290 if (unlikely(!skb_queue_empty(&q->sendq))) {
1291 addq_exit:__skb_queue_tail(&q->sendq, skb);
1292 return 1;
1293 }
1294 if (unlikely(q->size - q->in_use < ndesc)) {
1295 struct sge_qset *qs = txq_to_qset(q, qid);
1296
1297 set_bit(qid, &qs->txq_stopped);
1298 smp_mb__after_clear_bit();
1299
1300 if (should_restart_tx(q) &&
1301 test_and_clear_bit(qid, &qs->txq_stopped))
1302 return 2;
1303
1304 q->stops++;
1305 goto addq_exit;
1306 }
1307 return 0;
1308 }
1309
1310 /**
1311 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1312 * @q: the SGE control Tx queue
1313 *
1314 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1315 * that send only immediate data (presently just the control queues) and
1316 * thus do not have any sk_buffs to release.
1317 */
1318 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1319 {
1320 unsigned int reclaim = q->processed - q->cleaned;
1321
1322 q->in_use -= reclaim;
1323 q->cleaned += reclaim;
1324 }
1325
1326 static inline int immediate(const struct sk_buff *skb)
1327 {
1328 return skb->len <= WR_LEN;
1329 }
1330
1331 /**
1332 * ctrl_xmit - send a packet through an SGE control Tx queue
1333 * @adap: the adapter
1334 * @q: the control queue
1335 * @skb: the packet
1336 *
1337 * Send a packet through an SGE control Tx queue. Packets sent through
1338 * a control queue must fit entirely as immediate data in a single Tx
1339 * descriptor and have no page fragments.
1340 */
1341 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1342 struct sk_buff *skb)
1343 {
1344 int ret;
1345 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1346
1347 if (unlikely(!immediate(skb))) {
1348 WARN_ON(1);
1349 dev_kfree_skb(skb);
1350 return NET_XMIT_SUCCESS;
1351 }
1352
1353 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1354 wrp->wr_lo = htonl(V_WR_TID(q->token));
1355
1356 spin_lock(&q->lock);
1357 again:reclaim_completed_tx_imm(q);
1358
1359 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1360 if (unlikely(ret)) {
1361 if (ret == 1) {
1362 spin_unlock(&q->lock);
1363 return NET_XMIT_CN;
1364 }
1365 goto again;
1366 }
1367
1368 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1369
1370 q->in_use++;
1371 if (++q->pidx >= q->size) {
1372 q->pidx = 0;
1373 q->gen ^= 1;
1374 }
1375 spin_unlock(&q->lock);
1376 wmb();
1377 t3_write_reg(adap, A_SG_KDOORBELL,
1378 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1379 return NET_XMIT_SUCCESS;
1380 }
1381
1382 /**
1383 * restart_ctrlq - restart a suspended control queue
1384 * @qs: the queue set cotaining the control queue
1385 *
1386 * Resumes transmission on a suspended Tx control queue.
1387 */
1388 static void restart_ctrlq(unsigned long data)
1389 {
1390 struct sk_buff *skb;
1391 struct sge_qset *qs = (struct sge_qset *)data;
1392 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1393
1394 spin_lock(&q->lock);
1395 again:reclaim_completed_tx_imm(q);
1396
1397 while (q->in_use < q->size &&
1398 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1399
1400 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1401
1402 if (++q->pidx >= q->size) {
1403 q->pidx = 0;
1404 q->gen ^= 1;
1405 }
1406 q->in_use++;
1407 }
1408
1409 if (!skb_queue_empty(&q->sendq)) {
1410 set_bit(TXQ_CTRL, &qs->txq_stopped);
1411 smp_mb__after_clear_bit();
1412
1413 if (should_restart_tx(q) &&
1414 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1415 goto again;
1416 q->stops++;
1417 }
1418
1419 spin_unlock(&q->lock);
1420 wmb();
1421 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1422 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1423 }
1424
1425 /*
1426 * Send a management message through control queue 0
1427 */
1428 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1429 {
1430 int ret;
1431 local_bh_disable();
1432 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1433 local_bh_enable();
1434
1435 return ret;
1436 }
1437
1438 /**
1439 * deferred_unmap_destructor - unmap a packet when it is freed
1440 * @skb: the packet
1441 *
1442 * This is the packet destructor used for Tx packets that need to remain
1443 * mapped until they are freed rather than until their Tx descriptors are
1444 * freed.
1445 */
1446 static void deferred_unmap_destructor(struct sk_buff *skb)
1447 {
1448 int i;
1449 const dma_addr_t *p;
1450 const struct skb_shared_info *si;
1451 const struct deferred_unmap_info *dui;
1452
1453 dui = (struct deferred_unmap_info *)skb->head;
1454 p = dui->addr;
1455
1456 if (skb->tail - skb->transport_header)
1457 pci_unmap_single(dui->pdev, *p++,
1458 skb->tail - skb->transport_header,
1459 PCI_DMA_TODEVICE);
1460
1461 si = skb_shinfo(skb);
1462 for (i = 0; i < si->nr_frags; i++)
1463 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1464 PCI_DMA_TODEVICE);
1465 }
1466
1467 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1468 const struct sg_ent *sgl, int sgl_flits)
1469 {
1470 dma_addr_t *p;
1471 struct deferred_unmap_info *dui;
1472
1473 dui = (struct deferred_unmap_info *)skb->head;
1474 dui->pdev = pdev;
1475 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1476 *p++ = be64_to_cpu(sgl->addr[0]);
1477 *p++ = be64_to_cpu(sgl->addr[1]);
1478 }
1479 if (sgl_flits)
1480 *p = be64_to_cpu(sgl->addr[0]);
1481 }
1482
1483 /**
1484 * write_ofld_wr - write an offload work request
1485 * @adap: the adapter
1486 * @skb: the packet to send
1487 * @q: the Tx queue
1488 * @pidx: index of the first Tx descriptor to write
1489 * @gen: the generation value to use
1490 * @ndesc: number of descriptors the packet will occupy
1491 *
1492 * Write an offload work request to send the supplied packet. The packet
1493 * data already carry the work request with most fields populated.
1494 */
1495 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1496 struct sge_txq *q, unsigned int pidx,
1497 unsigned int gen, unsigned int ndesc)
1498 {
1499 unsigned int sgl_flits, flits;
1500 struct work_request_hdr *from;
1501 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1502 struct tx_desc *d = &q->desc[pidx];
1503
1504 if (immediate(skb)) {
1505 q->sdesc[pidx].skb = NULL;
1506 write_imm(d, skb, skb->len, gen);
1507 return;
1508 }
1509
1510 /* Only TX_DATA builds SGLs */
1511
1512 from = (struct work_request_hdr *)skb->data;
1513 memcpy(&d->flit[1], &from[1],
1514 skb_transport_offset(skb) - sizeof(*from));
1515
1516 flits = skb_transport_offset(skb) / 8;
1517 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1518 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1519 skb->tail - skb->transport_header,
1520 adap->pdev);
1521 if (need_skb_unmap()) {
1522 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1523 skb->destructor = deferred_unmap_destructor;
1524 }
1525
1526 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1527 gen, from->wr_hi, from->wr_lo);
1528 }
1529
1530 /**
1531 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1532 * @skb: the packet
1533 *
1534 * Returns the number of Tx descriptors needed for the given offload
1535 * packet. These packets are already fully constructed.
1536 */
1537 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1538 {
1539 unsigned int flits, cnt;
1540
1541 if (skb->len <= WR_LEN)
1542 return 1; /* packet fits as immediate data */
1543
1544 flits = skb_transport_offset(skb) / 8; /* headers */
1545 cnt = skb_shinfo(skb)->nr_frags;
1546 if (skb->tail != skb->transport_header)
1547 cnt++;
1548 return flits_to_desc(flits + sgl_len(cnt));
1549 }
1550
1551 /**
1552 * ofld_xmit - send a packet through an offload queue
1553 * @adap: the adapter
1554 * @q: the Tx offload queue
1555 * @skb: the packet
1556 *
1557 * Send an offload packet through an SGE offload queue.
1558 */
1559 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1560 struct sk_buff *skb)
1561 {
1562 int ret;
1563 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1564
1565 spin_lock(&q->lock);
1566 again:reclaim_completed_tx(adap, q);
1567
1568 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1569 if (unlikely(ret)) {
1570 if (ret == 1) {
1571 skb->priority = ndesc; /* save for restart */
1572 spin_unlock(&q->lock);
1573 return NET_XMIT_CN;
1574 }
1575 goto again;
1576 }
1577
1578 gen = q->gen;
1579 q->in_use += ndesc;
1580 pidx = q->pidx;
1581 q->pidx += ndesc;
1582 if (q->pidx >= q->size) {
1583 q->pidx -= q->size;
1584 q->gen ^= 1;
1585 }
1586 spin_unlock(&q->lock);
1587
1588 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1589 check_ring_tx_db(adap, q);
1590 return NET_XMIT_SUCCESS;
1591 }
1592
1593 /**
1594 * restart_offloadq - restart a suspended offload queue
1595 * @qs: the queue set cotaining the offload queue
1596 *
1597 * Resumes transmission on a suspended Tx offload queue.
1598 */
1599 static void restart_offloadq(unsigned long data)
1600 {
1601 struct sk_buff *skb;
1602 struct sge_qset *qs = (struct sge_qset *)data;
1603 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1604 const struct port_info *pi = netdev_priv(qs->netdev);
1605 struct adapter *adap = pi->adapter;
1606
1607 spin_lock(&q->lock);
1608 again:reclaim_completed_tx(adap, q);
1609
1610 while ((skb = skb_peek(&q->sendq)) != NULL) {
1611 unsigned int gen, pidx;
1612 unsigned int ndesc = skb->priority;
1613
1614 if (unlikely(q->size - q->in_use < ndesc)) {
1615 set_bit(TXQ_OFLD, &qs->txq_stopped);
1616 smp_mb__after_clear_bit();
1617
1618 if (should_restart_tx(q) &&
1619 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1620 goto again;
1621 q->stops++;
1622 break;
1623 }
1624
1625 gen = q->gen;
1626 q->in_use += ndesc;
1627 pidx = q->pidx;
1628 q->pidx += ndesc;
1629 if (q->pidx >= q->size) {
1630 q->pidx -= q->size;
1631 q->gen ^= 1;
1632 }
1633 __skb_unlink(skb, &q->sendq);
1634 spin_unlock(&q->lock);
1635
1636 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1637 spin_lock(&q->lock);
1638 }
1639 spin_unlock(&q->lock);
1640
1641 #if USE_GTS
1642 set_bit(TXQ_RUNNING, &q->flags);
1643 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1644 #endif
1645 wmb();
1646 t3_write_reg(adap, A_SG_KDOORBELL,
1647 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1648 }
1649
1650 /**
1651 * queue_set - return the queue set a packet should use
1652 * @skb: the packet
1653 *
1654 * Maps a packet to the SGE queue set it should use. The desired queue
1655 * set is carried in bits 1-3 in the packet's priority.
1656 */
1657 static inline int queue_set(const struct sk_buff *skb)
1658 {
1659 return skb->priority >> 1;
1660 }
1661
1662 /**
1663 * is_ctrl_pkt - return whether an offload packet is a control packet
1664 * @skb: the packet
1665 *
1666 * Determines whether an offload packet should use an OFLD or a CTRL
1667 * Tx queue. This is indicated by bit 0 in the packet's priority.
1668 */
1669 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1670 {
1671 return skb->priority & 1;
1672 }
1673
1674 /**
1675 * t3_offload_tx - send an offload packet
1676 * @tdev: the offload device to send to
1677 * @skb: the packet
1678 *
1679 * Sends an offload packet. We use the packet priority to select the
1680 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1681 * should be sent as regular or control, bits 1-3 select the queue set.
1682 */
1683 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1684 {
1685 struct adapter *adap = tdev2adap(tdev);
1686 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1687
1688 if (unlikely(is_ctrl_pkt(skb)))
1689 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1690
1691 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1692 }
1693
1694 /**
1695 * offload_enqueue - add an offload packet to an SGE offload receive queue
1696 * @q: the SGE response queue
1697 * @skb: the packet
1698 *
1699 * Add a new offload packet to an SGE response queue's offload packet
1700 * queue. If the packet is the first on the queue it schedules the RX
1701 * softirq to process the queue.
1702 */
1703 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1704 {
1705 int was_empty = skb_queue_empty(&q->rx_queue);
1706
1707 __skb_queue_tail(&q->rx_queue, skb);
1708
1709 if (was_empty) {
1710 struct sge_qset *qs = rspq_to_qset(q);
1711
1712 napi_schedule(&qs->napi);
1713 }
1714 }
1715
1716 /**
1717 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1718 * @tdev: the offload device that will be receiving the packets
1719 * @q: the SGE response queue that assembled the bundle
1720 * @skbs: the partial bundle
1721 * @n: the number of packets in the bundle
1722 *
1723 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1724 */
1725 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1726 struct sge_rspq *q,
1727 struct sk_buff *skbs[], int n)
1728 {
1729 if (n) {
1730 q->offload_bundles++;
1731 tdev->recv(tdev, skbs, n);
1732 }
1733 }
1734
1735 /**
1736 * ofld_poll - NAPI handler for offload packets in interrupt mode
1737 * @dev: the network device doing the polling
1738 * @budget: polling budget
1739 *
1740 * The NAPI handler for offload packets when a response queue is serviced
1741 * by the hard interrupt handler, i.e., when it's operating in non-polling
1742 * mode. Creates small packet batches and sends them through the offload
1743 * receive handler. Batches need to be of modest size as we do prefetches
1744 * on the packets in each.
1745 */
1746 static int ofld_poll(struct napi_struct *napi, int budget)
1747 {
1748 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1749 struct sge_rspq *q = &qs->rspq;
1750 struct adapter *adapter = qs->adap;
1751 int work_done = 0;
1752
1753 while (work_done < budget) {
1754 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1755 struct sk_buff_head queue;
1756 int ngathered;
1757
1758 spin_lock_irq(&q->lock);
1759 __skb_queue_head_init(&queue);
1760 skb_queue_splice_init(&q->rx_queue, &queue);
1761 if (skb_queue_empty(&queue)) {
1762 napi_complete(napi);
1763 spin_unlock_irq(&q->lock);
1764 return work_done;
1765 }
1766 spin_unlock_irq(&q->lock);
1767
1768 ngathered = 0;
1769 skb_queue_walk_safe(&queue, skb, tmp) {
1770 if (work_done >= budget)
1771 break;
1772 work_done++;
1773
1774 __skb_unlink(skb, &queue);
1775 prefetch(skb->data);
1776 skbs[ngathered] = skb;
1777 if (++ngathered == RX_BUNDLE_SIZE) {
1778 q->offload_bundles++;
1779 adapter->tdev.recv(&adapter->tdev, skbs,
1780 ngathered);
1781 ngathered = 0;
1782 }
1783 }
1784 if (!skb_queue_empty(&queue)) {
1785 /* splice remaining packets back onto Rx queue */
1786 spin_lock_irq(&q->lock);
1787 skb_queue_splice(&queue, &q->rx_queue);
1788 spin_unlock_irq(&q->lock);
1789 }
1790 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1791 }
1792
1793 return work_done;
1794 }
1795
1796 /**
1797 * rx_offload - process a received offload packet
1798 * @tdev: the offload device receiving the packet
1799 * @rq: the response queue that received the packet
1800 * @skb: the packet
1801 * @rx_gather: a gather list of packets if we are building a bundle
1802 * @gather_idx: index of the next available slot in the bundle
1803 *
1804 * Process an ingress offload pakcet and add it to the offload ingress
1805 * queue. Returns the index of the next available slot in the bundle.
1806 */
1807 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1808 struct sk_buff *skb, struct sk_buff *rx_gather[],
1809 unsigned int gather_idx)
1810 {
1811 skb_reset_mac_header(skb);
1812 skb_reset_network_header(skb);
1813 skb_reset_transport_header(skb);
1814
1815 if (rq->polling) {
1816 rx_gather[gather_idx++] = skb;
1817 if (gather_idx == RX_BUNDLE_SIZE) {
1818 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1819 gather_idx = 0;
1820 rq->offload_bundles++;
1821 }
1822 } else
1823 offload_enqueue(rq, skb);
1824
1825 return gather_idx;
1826 }
1827
1828 /**
1829 * restart_tx - check whether to restart suspended Tx queues
1830 * @qs: the queue set to resume
1831 *
1832 * Restarts suspended Tx queues of an SGE queue set if they have enough
1833 * free resources to resume operation.
1834 */
1835 static void restart_tx(struct sge_qset *qs)
1836 {
1837 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1838 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1839 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1840 qs->txq[TXQ_ETH].restarts++;
1841 if (netif_running(qs->netdev))
1842 netif_wake_queue(qs->netdev);
1843 }
1844
1845 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1846 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1847 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1848 qs->txq[TXQ_OFLD].restarts++;
1849 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1850 }
1851 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1852 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1853 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1854 qs->txq[TXQ_CTRL].restarts++;
1855 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1856 }
1857 }
1858
1859 /**
1860 * rx_eth - process an ingress ethernet packet
1861 * @adap: the adapter
1862 * @rq: the response queue that received the packet
1863 * @skb: the packet
1864 * @pad: amount of padding at the start of the buffer
1865 *
1866 * Process an ingress ethernet pakcet and deliver it to the stack.
1867 * The padding is 2 if the packet was delivered in an Rx buffer and 0
1868 * if it was immediate data in a response.
1869 */
1870 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1871 struct sk_buff *skb, int pad, int lro)
1872 {
1873 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1874 struct sge_qset *qs = rspq_to_qset(rq);
1875 struct port_info *pi;
1876
1877 skb_pull(skb, sizeof(*p) + pad);
1878 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
1879 skb->dev->last_rx = jiffies;
1880 pi = netdev_priv(skb->dev);
1881 if (pi->rx_csum_offload && p->csum_valid && p->csum == htons(0xffff) &&
1882 !p->fragment) {
1883 rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1884 skb->ip_summed = CHECKSUM_UNNECESSARY;
1885 } else
1886 skb->ip_summed = CHECKSUM_NONE;
1887
1888 if (unlikely(p->vlan_valid)) {
1889 struct vlan_group *grp = pi->vlan_grp;
1890
1891 qs->port_stats[SGE_PSTAT_VLANEX]++;
1892 if (likely(grp))
1893 if (lro)
1894 lro_vlan_hwaccel_receive_skb(&qs->lro_mgr, skb,
1895 grp,
1896 ntohs(p->vlan),
1897 p);
1898 else
1899 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1900 rq->polling);
1901 else
1902 dev_kfree_skb_any(skb);
1903 } else if (rq->polling) {
1904 if (lro)
1905 lro_receive_skb(&qs->lro_mgr, skb, p);
1906 else
1907 netif_receive_skb(skb);
1908 } else
1909 netif_rx(skb);
1910 }
1911
1912 static inline int is_eth_tcp(u32 rss)
1913 {
1914 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
1915 }
1916
1917 /**
1918 * lro_frame_ok - check if an ingress packet is eligible for LRO
1919 * @p: the CPL header of the packet
1920 *
1921 * Returns true if a received packet is eligible for LRO.
1922 * The following conditions must be true:
1923 * - packet is TCP/IP Ethernet II (checked elsewhere)
1924 * - not an IP fragment
1925 * - no IP options
1926 * - TCP/IP checksums are correct
1927 * - the packet is for this host
1928 */
1929 static inline int lro_frame_ok(const struct cpl_rx_pkt *p)
1930 {
1931 const struct ethhdr *eh = (struct ethhdr *)(p + 1);
1932 const struct iphdr *ih = (struct iphdr *)(eh + 1);
1933
1934 return (*((u8 *)p + 1) & 0x90) == 0x10 && p->csum == htons(0xffff) &&
1935 eh->h_proto == htons(ETH_P_IP) && ih->ihl == (sizeof(*ih) >> 2);
1936 }
1937
1938 static int t3_get_lro_header(void **eh, void **iph, void **tcph,
1939 u64 *hdr_flags, void *priv)
1940 {
1941 const struct cpl_rx_pkt *cpl = priv;
1942
1943 if (!lro_frame_ok(cpl))
1944 return -1;
1945
1946 *eh = (struct ethhdr *)(cpl + 1);
1947 *iph = (struct iphdr *)((struct ethhdr *)*eh + 1);
1948 *tcph = (struct tcphdr *)((struct iphdr *)*iph + 1);
1949
1950 *hdr_flags = LRO_IPV4 | LRO_TCP;
1951 return 0;
1952 }
1953
1954 static int t3_get_skb_header(struct sk_buff *skb,
1955 void **iph, void **tcph, u64 *hdr_flags,
1956 void *priv)
1957 {
1958 void *eh;
1959
1960 return t3_get_lro_header(&eh, iph, tcph, hdr_flags, priv);
1961 }
1962
1963 static int t3_get_frag_header(struct skb_frag_struct *frag, void **eh,
1964 void **iph, void **tcph, u64 *hdr_flags,
1965 void *priv)
1966 {
1967 return t3_get_lro_header(eh, iph, tcph, hdr_flags, priv);
1968 }
1969
1970 /**
1971 * lro_add_page - add a page chunk to an LRO session
1972 * @adap: the adapter
1973 * @qs: the associated queue set
1974 * @fl: the free list containing the page chunk to add
1975 * @len: packet length
1976 * @complete: Indicates the last fragment of a frame
1977 *
1978 * Add a received packet contained in a page chunk to an existing LRO
1979 * session.
1980 */
1981 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
1982 struct sge_fl *fl, int len, int complete)
1983 {
1984 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1985 struct cpl_rx_pkt *cpl;
1986 struct skb_frag_struct *rx_frag = qs->lro_frag_tbl;
1987 int nr_frags = qs->lro_nfrags, frag_len = qs->lro_frag_len;
1988 int offset = 0;
1989
1990 if (!nr_frags) {
1991 offset = 2 + sizeof(struct cpl_rx_pkt);
1992 qs->lro_va = cpl = sd->pg_chunk.va + 2;
1993 }
1994
1995 fl->credits--;
1996
1997 len -= offset;
1998 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
1999 fl->buf_size, PCI_DMA_FROMDEVICE);
2000
2001 rx_frag += nr_frags;
2002 rx_frag->page = sd->pg_chunk.page;
2003 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2004 rx_frag->size = len;
2005 frag_len += len;
2006 qs->lro_nfrags++;
2007 qs->lro_frag_len = frag_len;
2008
2009 if (!complete)
2010 return;
2011
2012 qs->lro_nfrags = qs->lro_frag_len = 0;
2013 cpl = qs->lro_va;
2014
2015 if (unlikely(cpl->vlan_valid)) {
2016 struct net_device *dev = qs->netdev;
2017 struct port_info *pi = netdev_priv(dev);
2018 struct vlan_group *grp = pi->vlan_grp;
2019
2020 if (likely(grp != NULL)) {
2021 lro_vlan_hwaccel_receive_frags(&qs->lro_mgr,
2022 qs->lro_frag_tbl,
2023 frag_len, frag_len,
2024 grp, ntohs(cpl->vlan),
2025 cpl, 0);
2026 return;
2027 }
2028 }
2029 lro_receive_frags(&qs->lro_mgr, qs->lro_frag_tbl,
2030 frag_len, frag_len, cpl, 0);
2031 }
2032
2033 /**
2034 * init_lro_mgr - initialize a LRO manager object
2035 * @lro_mgr: the LRO manager object
2036 */
2037 static void init_lro_mgr(struct sge_qset *qs, struct net_lro_mgr *lro_mgr)
2038 {
2039 lro_mgr->dev = qs->netdev;
2040 lro_mgr->features = LRO_F_NAPI;
2041 lro_mgr->ip_summed = CHECKSUM_UNNECESSARY;
2042 lro_mgr->ip_summed_aggr = CHECKSUM_UNNECESSARY;
2043 lro_mgr->max_desc = T3_MAX_LRO_SES;
2044 lro_mgr->lro_arr = qs->lro_desc;
2045 lro_mgr->get_frag_header = t3_get_frag_header;
2046 lro_mgr->get_skb_header = t3_get_skb_header;
2047 lro_mgr->max_aggr = T3_MAX_LRO_MAX_PKTS;
2048 if (lro_mgr->max_aggr > MAX_SKB_FRAGS)
2049 lro_mgr->max_aggr = MAX_SKB_FRAGS;
2050 }
2051
2052 /**
2053 * handle_rsp_cntrl_info - handles control information in a response
2054 * @qs: the queue set corresponding to the response
2055 * @flags: the response control flags
2056 *
2057 * Handles the control information of an SGE response, such as GTS
2058 * indications and completion credits for the queue set's Tx queues.
2059 * HW coalesces credits, we don't do any extra SW coalescing.
2060 */
2061 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2062 {
2063 unsigned int credits;
2064
2065 #if USE_GTS
2066 if (flags & F_RSPD_TXQ0_GTS)
2067 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2068 #endif
2069
2070 credits = G_RSPD_TXQ0_CR(flags);
2071 if (credits)
2072 qs->txq[TXQ_ETH].processed += credits;
2073
2074 credits = G_RSPD_TXQ2_CR(flags);
2075 if (credits)
2076 qs->txq[TXQ_CTRL].processed += credits;
2077
2078 # if USE_GTS
2079 if (flags & F_RSPD_TXQ1_GTS)
2080 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2081 # endif
2082 credits = G_RSPD_TXQ1_CR(flags);
2083 if (credits)
2084 qs->txq[TXQ_OFLD].processed += credits;
2085 }
2086
2087 /**
2088 * check_ring_db - check if we need to ring any doorbells
2089 * @adapter: the adapter
2090 * @qs: the queue set whose Tx queues are to be examined
2091 * @sleeping: indicates which Tx queue sent GTS
2092 *
2093 * Checks if some of a queue set's Tx queues need to ring their doorbells
2094 * to resume transmission after idling while they still have unprocessed
2095 * descriptors.
2096 */
2097 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2098 unsigned int sleeping)
2099 {
2100 if (sleeping & F_RSPD_TXQ0_GTS) {
2101 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2102
2103 if (txq->cleaned + txq->in_use != txq->processed &&
2104 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2105 set_bit(TXQ_RUNNING, &txq->flags);
2106 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2107 V_EGRCNTX(txq->cntxt_id));
2108 }
2109 }
2110
2111 if (sleeping & F_RSPD_TXQ1_GTS) {
2112 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2113
2114 if (txq->cleaned + txq->in_use != txq->processed &&
2115 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2116 set_bit(TXQ_RUNNING, &txq->flags);
2117 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2118 V_EGRCNTX(txq->cntxt_id));
2119 }
2120 }
2121 }
2122
2123 /**
2124 * is_new_response - check if a response is newly written
2125 * @r: the response descriptor
2126 * @q: the response queue
2127 *
2128 * Returns true if a response descriptor contains a yet unprocessed
2129 * response.
2130 */
2131 static inline int is_new_response(const struct rsp_desc *r,
2132 const struct sge_rspq *q)
2133 {
2134 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2135 }
2136
2137 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2138 {
2139 q->pg_skb = NULL;
2140 q->rx_recycle_buf = 0;
2141 }
2142
2143 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2144 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2145 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2146 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2147 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2148
2149 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2150 #define NOMEM_INTR_DELAY 2500
2151
2152 /**
2153 * process_responses - process responses from an SGE response queue
2154 * @adap: the adapter
2155 * @qs: the queue set to which the response queue belongs
2156 * @budget: how many responses can be processed in this round
2157 *
2158 * Process responses from an SGE response queue up to the supplied budget.
2159 * Responses include received packets as well as credits and other events
2160 * for the queues that belong to the response queue's queue set.
2161 * A negative budget is effectively unlimited.
2162 *
2163 * Additionally choose the interrupt holdoff time for the next interrupt
2164 * on this queue. If the system is under memory shortage use a fairly
2165 * long delay to help recovery.
2166 */
2167 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2168 int budget)
2169 {
2170 struct sge_rspq *q = &qs->rspq;
2171 struct rsp_desc *r = &q->desc[q->cidx];
2172 int budget_left = budget;
2173 unsigned int sleeping = 0;
2174 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2175 int ngathered = 0;
2176
2177 q->next_holdoff = q->holdoff_tmr;
2178
2179 while (likely(budget_left && is_new_response(r, q))) {
2180 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2181 struct sk_buff *skb = NULL;
2182 u32 len, flags = ntohl(r->flags);
2183 __be32 rss_hi = *(const __be32 *)r,
2184 rss_lo = r->rss_hdr.rss_hash_val;
2185
2186 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2187
2188 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2189 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2190 if (!skb)
2191 goto no_mem;
2192
2193 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2194 skb->data[0] = CPL_ASYNC_NOTIF;
2195 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2196 q->async_notif++;
2197 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2198 skb = get_imm_packet(r);
2199 if (unlikely(!skb)) {
2200 no_mem:
2201 q->next_holdoff = NOMEM_INTR_DELAY;
2202 q->nomem++;
2203 /* consume one credit since we tried */
2204 budget_left--;
2205 break;
2206 }
2207 q->imm_data++;
2208 ethpad = 0;
2209 } else if ((len = ntohl(r->len_cq)) != 0) {
2210 struct sge_fl *fl;
2211
2212 if (eth)
2213 lro = qs->lro_enabled && is_eth_tcp(rss_hi);
2214
2215 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2216 if (fl->use_pages) {
2217 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2218
2219 prefetch(addr);
2220 #if L1_CACHE_BYTES < 128
2221 prefetch(addr + L1_CACHE_BYTES);
2222 #endif
2223 __refill_fl(adap, fl);
2224 if (lro > 0) {
2225 lro_add_page(adap, qs, fl,
2226 G_RSPD_LEN(len),
2227 flags & F_RSPD_EOP);
2228 goto next_fl;
2229 }
2230
2231 skb = get_packet_pg(adap, fl, q,
2232 G_RSPD_LEN(len),
2233 eth ?
2234 SGE_RX_DROP_THRES : 0);
2235 q->pg_skb = skb;
2236 } else
2237 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2238 eth ? SGE_RX_DROP_THRES : 0);
2239 if (unlikely(!skb)) {
2240 if (!eth)
2241 goto no_mem;
2242 q->rx_drops++;
2243 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2244 __skb_pull(skb, 2);
2245 next_fl:
2246 if (++fl->cidx == fl->size)
2247 fl->cidx = 0;
2248 } else
2249 q->pure_rsps++;
2250
2251 if (flags & RSPD_CTRL_MASK) {
2252 sleeping |= flags & RSPD_GTS_MASK;
2253 handle_rsp_cntrl_info(qs, flags);
2254 }
2255
2256 r++;
2257 if (unlikely(++q->cidx == q->size)) {
2258 q->cidx = 0;
2259 q->gen ^= 1;
2260 r = q->desc;
2261 }
2262 prefetch(r);
2263
2264 if (++q->credits >= (q->size / 4)) {
2265 refill_rspq(adap, q, q->credits);
2266 q->credits = 0;
2267 }
2268
2269 packet_complete = flags &
2270 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2271 F_RSPD_ASYNC_NOTIF);
2272
2273 if (skb != NULL && packet_complete) {
2274 if (eth)
2275 rx_eth(adap, q, skb, ethpad, lro);
2276 else {
2277 q->offload_pkts++;
2278 /* Preserve the RSS info in csum & priority */
2279 skb->csum = rss_hi;
2280 skb->priority = rss_lo;
2281 ngathered = rx_offload(&adap->tdev, q, skb,
2282 offload_skbs,
2283 ngathered);
2284 }
2285
2286 if (flags & F_RSPD_EOP)
2287 clear_rspq_bufstate(q);
2288 }
2289 --budget_left;
2290 }
2291
2292 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2293 lro_flush_all(&qs->lro_mgr);
2294 qs->port_stats[SGE_PSTAT_LRO_AGGR] = qs->lro_mgr.stats.aggregated;
2295 qs->port_stats[SGE_PSTAT_LRO_FLUSHED] = qs->lro_mgr.stats.flushed;
2296 qs->port_stats[SGE_PSTAT_LRO_NO_DESC] = qs->lro_mgr.stats.no_desc;
2297
2298 if (sleeping)
2299 check_ring_db(adap, qs, sleeping);
2300
2301 smp_mb(); /* commit Tx queue .processed updates */
2302 if (unlikely(qs->txq_stopped != 0))
2303 restart_tx(qs);
2304
2305 budget -= budget_left;
2306 return budget;
2307 }
2308
2309 static inline int is_pure_response(const struct rsp_desc *r)
2310 {
2311 u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2312
2313 return (n | r->len_cq) == 0;
2314 }
2315
2316 /**
2317 * napi_rx_handler - the NAPI handler for Rx processing
2318 * @napi: the napi instance
2319 * @budget: how many packets we can process in this round
2320 *
2321 * Handler for new data events when using NAPI.
2322 */
2323 static int napi_rx_handler(struct napi_struct *napi, int budget)
2324 {
2325 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2326 struct adapter *adap = qs->adap;
2327 int work_done = process_responses(adap, qs, budget);
2328
2329 if (likely(work_done < budget)) {
2330 napi_complete(napi);
2331
2332 /*
2333 * Because we don't atomically flush the following
2334 * write it is possible that in very rare cases it can
2335 * reach the device in a way that races with a new
2336 * response being written plus an error interrupt
2337 * causing the NAPI interrupt handler below to return
2338 * unhandled status to the OS. To protect against
2339 * this would require flushing the write and doing
2340 * both the write and the flush with interrupts off.
2341 * Way too expensive and unjustifiable given the
2342 * rarity of the race.
2343 *
2344 * The race cannot happen at all with MSI-X.
2345 */
2346 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2347 V_NEWTIMER(qs->rspq.next_holdoff) |
2348 V_NEWINDEX(qs->rspq.cidx));
2349 }
2350 return work_done;
2351 }
2352
2353 /*
2354 * Returns true if the device is already scheduled for polling.
2355 */
2356 static inline int napi_is_scheduled(struct napi_struct *napi)
2357 {
2358 return test_bit(NAPI_STATE_SCHED, &napi->state);
2359 }
2360
2361 /**
2362 * process_pure_responses - process pure responses from a response queue
2363 * @adap: the adapter
2364 * @qs: the queue set owning the response queue
2365 * @r: the first pure response to process
2366 *
2367 * A simpler version of process_responses() that handles only pure (i.e.,
2368 * non data-carrying) responses. Such respones are too light-weight to
2369 * justify calling a softirq under NAPI, so we handle them specially in
2370 * the interrupt handler. The function is called with a pointer to a
2371 * response, which the caller must ensure is a valid pure response.
2372 *
2373 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2374 */
2375 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2376 struct rsp_desc *r)
2377 {
2378 struct sge_rspq *q = &qs->rspq;
2379 unsigned int sleeping = 0;
2380
2381 do {
2382 u32 flags = ntohl(r->flags);
2383
2384 r++;
2385 if (unlikely(++q->cidx == q->size)) {
2386 q->cidx = 0;
2387 q->gen ^= 1;
2388 r = q->desc;
2389 }
2390 prefetch(r);
2391
2392 if (flags & RSPD_CTRL_MASK) {
2393 sleeping |= flags & RSPD_GTS_MASK;
2394 handle_rsp_cntrl_info(qs, flags);
2395 }
2396
2397 q->pure_rsps++;
2398 if (++q->credits >= (q->size / 4)) {
2399 refill_rspq(adap, q, q->credits);
2400 q->credits = 0;
2401 }
2402 } while (is_new_response(r, q) && is_pure_response(r));
2403
2404 if (sleeping)
2405 check_ring_db(adap, qs, sleeping);
2406
2407 smp_mb(); /* commit Tx queue .processed updates */
2408 if (unlikely(qs->txq_stopped != 0))
2409 restart_tx(qs);
2410
2411 return is_new_response(r, q);
2412 }
2413
2414 /**
2415 * handle_responses - decide what to do with new responses in NAPI mode
2416 * @adap: the adapter
2417 * @q: the response queue
2418 *
2419 * This is used by the NAPI interrupt handlers to decide what to do with
2420 * new SGE responses. If there are no new responses it returns -1. If
2421 * there are new responses and they are pure (i.e., non-data carrying)
2422 * it handles them straight in hard interrupt context as they are very
2423 * cheap and don't deliver any packets. Finally, if there are any data
2424 * signaling responses it schedules the NAPI handler. Returns 1 if it
2425 * schedules NAPI, 0 if all new responses were pure.
2426 *
2427 * The caller must ascertain NAPI is not already running.
2428 */
2429 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2430 {
2431 struct sge_qset *qs = rspq_to_qset(q);
2432 struct rsp_desc *r = &q->desc[q->cidx];
2433
2434 if (!is_new_response(r, q))
2435 return -1;
2436 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2437 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2438 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2439 return 0;
2440 }
2441 napi_schedule(&qs->napi);
2442 return 1;
2443 }
2444
2445 /*
2446 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2447 * (i.e., response queue serviced in hard interrupt).
2448 */
2449 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2450 {
2451 struct sge_qset *qs = cookie;
2452 struct adapter *adap = qs->adap;
2453 struct sge_rspq *q = &qs->rspq;
2454
2455 spin_lock(&q->lock);
2456 if (process_responses(adap, qs, -1) == 0)
2457 q->unhandled_irqs++;
2458 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2459 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2460 spin_unlock(&q->lock);
2461 return IRQ_HANDLED;
2462 }
2463
2464 /*
2465 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2466 * (i.e., response queue serviced by NAPI polling).
2467 */
2468 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2469 {
2470 struct sge_qset *qs = cookie;
2471 struct sge_rspq *q = &qs->rspq;
2472
2473 spin_lock(&q->lock);
2474
2475 if (handle_responses(qs->adap, q) < 0)
2476 q->unhandled_irqs++;
2477 spin_unlock(&q->lock);
2478 return IRQ_HANDLED;
2479 }
2480
2481 /*
2482 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2483 * SGE response queues as well as error and other async events as they all use
2484 * the same MSI vector. We use one SGE response queue per port in this mode
2485 * and protect all response queues with queue 0's lock.
2486 */
2487 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2488 {
2489 int new_packets = 0;
2490 struct adapter *adap = cookie;
2491 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2492
2493 spin_lock(&q->lock);
2494
2495 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2496 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2497 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2498 new_packets = 1;
2499 }
2500
2501 if (adap->params.nports == 2 &&
2502 process_responses(adap, &adap->sge.qs[1], -1)) {
2503 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2504
2505 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2506 V_NEWTIMER(q1->next_holdoff) |
2507 V_NEWINDEX(q1->cidx));
2508 new_packets = 1;
2509 }
2510
2511 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2512 q->unhandled_irqs++;
2513
2514 spin_unlock(&q->lock);
2515 return IRQ_HANDLED;
2516 }
2517
2518 static int rspq_check_napi(struct sge_qset *qs)
2519 {
2520 struct sge_rspq *q = &qs->rspq;
2521
2522 if (!napi_is_scheduled(&qs->napi) &&
2523 is_new_response(&q->desc[q->cidx], q)) {
2524 napi_schedule(&qs->napi);
2525 return 1;
2526 }
2527 return 0;
2528 }
2529
2530 /*
2531 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2532 * by NAPI polling). Handles data events from SGE response queues as well as
2533 * error and other async events as they all use the same MSI vector. We use
2534 * one SGE response queue per port in this mode and protect all response
2535 * queues with queue 0's lock.
2536 */
2537 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2538 {
2539 int new_packets;
2540 struct adapter *adap = cookie;
2541 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2542
2543 spin_lock(&q->lock);
2544
2545 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2546 if (adap->params.nports == 2)
2547 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2548 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2549 q->unhandled_irqs++;
2550
2551 spin_unlock(&q->lock);
2552 return IRQ_HANDLED;
2553 }
2554
2555 /*
2556 * A helper function that processes responses and issues GTS.
2557 */
2558 static inline int process_responses_gts(struct adapter *adap,
2559 struct sge_rspq *rq)
2560 {
2561 int work;
2562
2563 work = process_responses(adap, rspq_to_qset(rq), -1);
2564 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2565 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2566 return work;
2567 }
2568
2569 /*
2570 * The legacy INTx interrupt handler. This needs to handle data events from
2571 * SGE response queues as well as error and other async events as they all use
2572 * the same interrupt pin. We use one SGE response queue per port in this mode
2573 * and protect all response queues with queue 0's lock.
2574 */
2575 static irqreturn_t t3_intr(int irq, void *cookie)
2576 {
2577 int work_done, w0, w1;
2578 struct adapter *adap = cookie;
2579 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2580 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2581
2582 spin_lock(&q0->lock);
2583
2584 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2585 w1 = adap->params.nports == 2 &&
2586 is_new_response(&q1->desc[q1->cidx], q1);
2587
2588 if (likely(w0 | w1)) {
2589 t3_write_reg(adap, A_PL_CLI, 0);
2590 t3_read_reg(adap, A_PL_CLI); /* flush */
2591
2592 if (likely(w0))
2593 process_responses_gts(adap, q0);
2594
2595 if (w1)
2596 process_responses_gts(adap, q1);
2597
2598 work_done = w0 | w1;
2599 } else
2600 work_done = t3_slow_intr_handler(adap);
2601
2602 spin_unlock(&q0->lock);
2603 return IRQ_RETVAL(work_done != 0);
2604 }
2605
2606 /*
2607 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2608 * Handles data events from SGE response queues as well as error and other
2609 * async events as they all use the same interrupt pin. We use one SGE
2610 * response queue per port in this mode and protect all response queues with
2611 * queue 0's lock.
2612 */
2613 static irqreturn_t t3b_intr(int irq, void *cookie)
2614 {
2615 u32 map;
2616 struct adapter *adap = cookie;
2617 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2618
2619 t3_write_reg(adap, A_PL_CLI, 0);
2620 map = t3_read_reg(adap, A_SG_DATA_INTR);
2621
2622 if (unlikely(!map)) /* shared interrupt, most likely */
2623 return IRQ_NONE;
2624
2625 spin_lock(&q0->lock);
2626
2627 if (unlikely(map & F_ERRINTR))
2628 t3_slow_intr_handler(adap);
2629
2630 if (likely(map & 1))
2631 process_responses_gts(adap, q0);
2632
2633 if (map & 2)
2634 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2635
2636 spin_unlock(&q0->lock);
2637 return IRQ_HANDLED;
2638 }
2639
2640 /*
2641 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2642 * Handles data events from SGE response queues as well as error and other
2643 * async events as they all use the same interrupt pin. We use one SGE
2644 * response queue per port in this mode and protect all response queues with
2645 * queue 0's lock.
2646 */
2647 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2648 {
2649 u32 map;
2650 struct adapter *adap = cookie;
2651 struct sge_qset *qs0 = &adap->sge.qs[0];
2652 struct sge_rspq *q0 = &qs0->rspq;
2653
2654 t3_write_reg(adap, A_PL_CLI, 0);
2655 map = t3_read_reg(adap, A_SG_DATA_INTR);
2656
2657 if (unlikely(!map)) /* shared interrupt, most likely */
2658 return IRQ_NONE;
2659
2660 spin_lock(&q0->lock);
2661
2662 if (unlikely(map & F_ERRINTR))
2663 t3_slow_intr_handler(adap);
2664
2665 if (likely(map & 1))
2666 napi_schedule(&qs0->napi);
2667
2668 if (map & 2)
2669 napi_schedule(&adap->sge.qs[1].napi);
2670
2671 spin_unlock(&q0->lock);
2672 return IRQ_HANDLED;
2673 }
2674
2675 /**
2676 * t3_intr_handler - select the top-level interrupt handler
2677 * @adap: the adapter
2678 * @polling: whether using NAPI to service response queues
2679 *
2680 * Selects the top-level interrupt handler based on the type of interrupts
2681 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2682 * response queues.
2683 */
2684 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2685 {
2686 if (adap->flags & USING_MSIX)
2687 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2688 if (adap->flags & USING_MSI)
2689 return polling ? t3_intr_msi_napi : t3_intr_msi;
2690 if (adap->params.rev > 0)
2691 return polling ? t3b_intr_napi : t3b_intr;
2692 return t3_intr;
2693 }
2694
2695 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2696 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2697 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2698 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2699 F_HIRCQPARITYERROR)
2700 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2701 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2702 F_RSPQDISABLED)
2703
2704 /**
2705 * t3_sge_err_intr_handler - SGE async event interrupt handler
2706 * @adapter: the adapter
2707 *
2708 * Interrupt handler for SGE asynchronous (non-data) events.
2709 */
2710 void t3_sge_err_intr_handler(struct adapter *adapter)
2711 {
2712 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2713
2714 if (status & SGE_PARERR)
2715 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2716 status & SGE_PARERR);
2717 if (status & SGE_FRAMINGERR)
2718 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2719 status & SGE_FRAMINGERR);
2720
2721 if (status & F_RSPQCREDITOVERFOW)
2722 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2723
2724 if (status & F_RSPQDISABLED) {
2725 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2726
2727 CH_ALERT(adapter,
2728 "packet delivered to disabled response queue "
2729 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2730 }
2731
2732 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2733 CH_ALERT(adapter, "SGE dropped %s priority doorbell\n",
2734 status & F_HIPIODRBDROPERR ? "high" : "lo");
2735
2736 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2737 if (status & SGE_FATALERR)
2738 t3_fatal_err(adapter);
2739 }
2740
2741 /**
2742 * sge_timer_cb - perform periodic maintenance of an SGE qset
2743 * @data: the SGE queue set to maintain
2744 *
2745 * Runs periodically from a timer to perform maintenance of an SGE queue
2746 * set. It performs two tasks:
2747 *
2748 * a) Cleans up any completed Tx descriptors that may still be pending.
2749 * Normal descriptor cleanup happens when new packets are added to a Tx
2750 * queue so this timer is relatively infrequent and does any cleanup only
2751 * if the Tx queue has not seen any new packets in a while. We make a
2752 * best effort attempt to reclaim descriptors, in that we don't wait
2753 * around if we cannot get a queue's lock (which most likely is because
2754 * someone else is queueing new packets and so will also handle the clean
2755 * up). Since control queues use immediate data exclusively we don't
2756 * bother cleaning them up here.
2757 *
2758 * b) Replenishes Rx queues that have run out due to memory shortage.
2759 * Normally new Rx buffers are added when existing ones are consumed but
2760 * when out of memory a queue can become empty. We try to add only a few
2761 * buffers here, the queue will be replenished fully as these new buffers
2762 * are used up if memory shortage has subsided.
2763 */
2764 static void sge_timer_cb(unsigned long data)
2765 {
2766 spinlock_t *lock;
2767 struct sge_qset *qs = (struct sge_qset *)data;
2768 struct adapter *adap = qs->adap;
2769
2770 if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2771 reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2772 spin_unlock(&qs->txq[TXQ_ETH].lock);
2773 }
2774 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2775 reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2776 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2777 }
2778 lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2779 &adap->sge.qs[0].rspq.lock;
2780 if (spin_trylock_irq(lock)) {
2781 if (!napi_is_scheduled(&qs->napi)) {
2782 u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2783
2784 if (qs->fl[0].credits < qs->fl[0].size)
2785 __refill_fl(adap, &qs->fl[0]);
2786 if (qs->fl[1].credits < qs->fl[1].size)
2787 __refill_fl(adap, &qs->fl[1]);
2788
2789 if (status & (1 << qs->rspq.cntxt_id)) {
2790 qs->rspq.starved++;
2791 if (qs->rspq.credits) {
2792 refill_rspq(adap, &qs->rspq, 1);
2793 qs->rspq.credits--;
2794 qs->rspq.restarted++;
2795 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2796 1 << qs->rspq.cntxt_id);
2797 }
2798 }
2799 }
2800 spin_unlock_irq(lock);
2801 }
2802 mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2803 }
2804
2805 /**
2806 * t3_update_qset_coalesce - update coalescing settings for a queue set
2807 * @qs: the SGE queue set
2808 * @p: new queue set parameters
2809 *
2810 * Update the coalescing settings for an SGE queue set. Nothing is done
2811 * if the queue set is not initialized yet.
2812 */
2813 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2814 {
2815 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2816 qs->rspq.polling = p->polling;
2817 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2818 }
2819
2820 /**
2821 * t3_sge_alloc_qset - initialize an SGE queue set
2822 * @adapter: the adapter
2823 * @id: the queue set id
2824 * @nports: how many Ethernet ports will be using this queue set
2825 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2826 * @p: configuration parameters for this queue set
2827 * @ntxq: number of Tx queues for the queue set
2828 * @netdev: net device associated with this queue set
2829 *
2830 * Allocate resources and initialize an SGE queue set. A queue set
2831 * comprises a response queue, two Rx free-buffer queues, and up to 3
2832 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2833 * queue, offload queue, and control queue.
2834 */
2835 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2836 int irq_vec_idx, const struct qset_params *p,
2837 int ntxq, struct net_device *dev)
2838 {
2839 int i, avail, ret = -ENOMEM;
2840 struct sge_qset *q = &adapter->sge.qs[id];
2841 struct net_lro_mgr *lro_mgr = &q->lro_mgr;
2842
2843 init_qset_cntxt(q, id);
2844 setup_timer(&q->tx_reclaim_timer, sge_timer_cb, (unsigned long)q);
2845
2846 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2847 sizeof(struct rx_desc),
2848 sizeof(struct rx_sw_desc),
2849 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2850 if (!q->fl[0].desc)
2851 goto err;
2852
2853 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2854 sizeof(struct rx_desc),
2855 sizeof(struct rx_sw_desc),
2856 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2857 if (!q->fl[1].desc)
2858 goto err;
2859
2860 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2861 sizeof(struct rsp_desc), 0,
2862 &q->rspq.phys_addr, NULL);
2863 if (!q->rspq.desc)
2864 goto err;
2865
2866 for (i = 0; i < ntxq; ++i) {
2867 /*
2868 * The control queue always uses immediate data so does not
2869 * need to keep track of any sk_buffs.
2870 */
2871 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2872
2873 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2874 sizeof(struct tx_desc), sz,
2875 &q->txq[i].phys_addr,
2876 &q->txq[i].sdesc);
2877 if (!q->txq[i].desc)
2878 goto err;
2879
2880 q->txq[i].gen = 1;
2881 q->txq[i].size = p->txq_size[i];
2882 spin_lock_init(&q->txq[i].lock);
2883 skb_queue_head_init(&q->txq[i].sendq);
2884 }
2885
2886 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2887 (unsigned long)q);
2888 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2889 (unsigned long)q);
2890
2891 q->fl[0].gen = q->fl[1].gen = 1;
2892 q->fl[0].size = p->fl_size;
2893 q->fl[1].size = p->jumbo_size;
2894
2895 q->rspq.gen = 1;
2896 q->rspq.size = p->rspq_size;
2897 spin_lock_init(&q->rspq.lock);
2898 skb_queue_head_init(&q->rspq.rx_queue);
2899
2900 q->txq[TXQ_ETH].stop_thres = nports *
2901 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2902
2903 #if FL0_PG_CHUNK_SIZE > 0
2904 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
2905 #else
2906 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
2907 #endif
2908 #if FL1_PG_CHUNK_SIZE > 0
2909 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
2910 #else
2911 q->fl[1].buf_size = is_offload(adapter) ?
2912 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
2913 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
2914 #endif
2915
2916 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
2917 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
2918 q->fl[0].order = FL0_PG_ORDER;
2919 q->fl[1].order = FL1_PG_ORDER;
2920
2921 q->lro_frag_tbl = kcalloc(MAX_FRAME_SIZE / FL1_PG_CHUNK_SIZE + 1,
2922 sizeof(struct skb_frag_struct),
2923 GFP_KERNEL);
2924 q->lro_nfrags = q->lro_frag_len = 0;
2925 spin_lock_irq(&adapter->sge.reg_lock);
2926
2927 /* FL threshold comparison uses < */
2928 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2929 q->rspq.phys_addr, q->rspq.size,
2930 q->fl[0].buf_size, 1, 0);
2931 if (ret)
2932 goto err_unlock;
2933
2934 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2935 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2936 q->fl[i].phys_addr, q->fl[i].size,
2937 q->fl[i].buf_size, p->cong_thres, 1,
2938 0);
2939 if (ret)
2940 goto err_unlock;
2941 }
2942
2943 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2944 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2945 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2946 1, 0);
2947 if (ret)
2948 goto err_unlock;
2949
2950 if (ntxq > 1) {
2951 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2952 USE_GTS, SGE_CNTXT_OFLD, id,
2953 q->txq[TXQ_OFLD].phys_addr,
2954 q->txq[TXQ_OFLD].size, 0, 1, 0);
2955 if (ret)
2956 goto err_unlock;
2957 }
2958
2959 if (ntxq > 2) {
2960 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2961 SGE_CNTXT_CTRL, id,
2962 q->txq[TXQ_CTRL].phys_addr,
2963 q->txq[TXQ_CTRL].size,
2964 q->txq[TXQ_CTRL].token, 1, 0);
2965 if (ret)
2966 goto err_unlock;
2967 }
2968
2969 spin_unlock_irq(&adapter->sge.reg_lock);
2970
2971 q->adap = adapter;
2972 q->netdev = dev;
2973 t3_update_qset_coalesce(q, p);
2974
2975 init_lro_mgr(q, lro_mgr);
2976
2977 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
2978 GFP_KERNEL | __GFP_COMP);
2979 if (!avail) {
2980 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
2981 goto err;
2982 }
2983 if (avail < q->fl[0].size)
2984 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
2985 avail);
2986
2987 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
2988 GFP_KERNEL | __GFP_COMP);
2989 if (avail < q->fl[1].size)
2990 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
2991 avail);
2992 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2993
2994 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2995 V_NEWTIMER(q->rspq.holdoff_tmr));
2996
2997 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2998 return 0;
2999
3000 err_unlock:
3001 spin_unlock_irq(&adapter->sge.reg_lock);
3002 err:
3003 t3_free_qset(adapter, q);
3004 return ret;
3005 }
3006
3007 /**
3008 * t3_stop_sge_timers - stop SGE timer call backs
3009 * @adap: the adapter
3010 *
3011 * Stops each SGE queue set's timer call back
3012 */
3013 void t3_stop_sge_timers(struct adapter *adap)
3014 {
3015 int i;
3016
3017 for (i = 0; i < SGE_QSETS; ++i) {
3018 struct sge_qset *q = &adap->sge.qs[i];
3019
3020 if (q->tx_reclaim_timer.function)
3021 del_timer_sync(&q->tx_reclaim_timer);
3022 }
3023 }
3024
3025 /**
3026 * t3_free_sge_resources - free SGE resources
3027 * @adap: the adapter
3028 *
3029 * Frees resources used by the SGE queue sets.
3030 */
3031 void t3_free_sge_resources(struct adapter *adap)
3032 {
3033 int i;
3034
3035 for (i = 0; i < SGE_QSETS; ++i)
3036 t3_free_qset(adap, &adap->sge.qs[i]);
3037 }
3038
3039 /**
3040 * t3_sge_start - enable SGE
3041 * @adap: the adapter
3042 *
3043 * Enables the SGE for DMAs. This is the last step in starting packet
3044 * transfers.
3045 */
3046 void t3_sge_start(struct adapter *adap)
3047 {
3048 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3049 }
3050
3051 /**
3052 * t3_sge_stop - disable SGE operation
3053 * @adap: the adapter
3054 *
3055 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3056 * from error interrupts) or from normal process context. In the latter
3057 * case it also disables any pending queue restart tasklets. Note that
3058 * if it is called in interrupt context it cannot disable the restart
3059 * tasklets as it cannot wait, however the tasklets will have no effect
3060 * since the doorbells are disabled and the driver will call this again
3061 * later from process context, at which time the tasklets will be stopped
3062 * if they are still running.
3063 */
3064 void t3_sge_stop(struct adapter *adap)
3065 {
3066 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3067 if (!in_interrupt()) {
3068 int i;
3069
3070 for (i = 0; i < SGE_QSETS; ++i) {
3071 struct sge_qset *qs = &adap->sge.qs[i];
3072
3073 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3074 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3075 }
3076 }
3077 }
3078
3079 /**
3080 * t3_sge_init - initialize SGE
3081 * @adap: the adapter
3082 * @p: the SGE parameters
3083 *
3084 * Performs SGE initialization needed every time after a chip reset.
3085 * We do not initialize any of the queue sets here, instead the driver
3086 * top-level must request those individually. We also do not enable DMA
3087 * here, that should be done after the queues have been set up.
3088 */
3089 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3090 {
3091 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3092
3093 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3094 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3095 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3096 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3097 #if SGE_NUM_GENBITS == 1
3098 ctrl |= F_EGRGENCTRL;
3099 #endif
3100 if (adap->params.rev > 0) {
3101 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3102 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3103 }
3104 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3105 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3106 V_LORCQDRBTHRSH(512));
3107 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3108 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3109 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3110 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3111 adap->params.rev < T3_REV_C ? 1000 : 500);
3112 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3113 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3114 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3115 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3116 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3117 }
3118
3119 /**
3120 * t3_sge_prep - one-time SGE initialization
3121 * @adap: the associated adapter
3122 * @p: SGE parameters
3123 *
3124 * Performs one-time initialization of SGE SW state. Includes determining
3125 * defaults for the assorted SGE parameters, which admins can change until
3126 * they are used to initialize the SGE.
3127 */
3128 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3129 {
3130 int i;
3131
3132 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3133 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3134
3135 for (i = 0; i < SGE_QSETS; ++i) {
3136 struct qset_params *q = p->qset + i;
3137
3138 q->polling = adap->params.rev > 0;
3139 q->coalesce_usecs = 5;
3140 q->rspq_size = 1024;
3141 q->fl_size = 1024;
3142 q->jumbo_size = 512;
3143 q->txq_size[TXQ_ETH] = 1024;
3144 q->txq_size[TXQ_OFLD] = 1024;
3145 q->txq_size[TXQ_CTRL] = 256;
3146 q->cong_thres = 0;
3147 }
3148
3149 spin_lock_init(&adap->sge.reg_lock);
3150 }
3151
3152 /**
3153 * t3_get_desc - dump an SGE descriptor for debugging purposes
3154 * @qs: the queue set
3155 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3156 * @idx: the descriptor index in the queue
3157 * @data: where to dump the descriptor contents
3158 *
3159 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3160 * size of the descriptor.
3161 */
3162 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3163 unsigned char *data)
3164 {
3165 if (qnum >= 6)
3166 return -EINVAL;
3167
3168 if (qnum < 3) {
3169 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3170 return -EINVAL;
3171 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3172 return sizeof(struct tx_desc);
3173 }
3174
3175 if (qnum == 3) {
3176 if (!qs->rspq.desc || idx >= qs->rspq.size)
3177 return -EINVAL;
3178 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3179 return sizeof(struct rsp_desc);
3180 }
3181
3182 qnum -= 4;
3183 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3184 return -EINVAL;
3185 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3186 return sizeof(struct rx_desc);
3187 }
This page took 0.099131 seconds and 5 git commands to generate.