net: cxgb3: convert to hw_features
[deliverable/linux.git] / drivers / net / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <net/arp.h>
41 #include "common.h"
42 #include "regs.h"
43 #include "sge_defs.h"
44 #include "t3_cpl.h"
45 #include "firmware_exports.h"
46 #include "cxgb3_offload.h"
47
48 #define USE_GTS 0
49
50 #define SGE_RX_SM_BUF_SIZE 1536
51
52 #define SGE_RX_COPY_THRES 256
53 #define SGE_RX_PULL_LEN 128
54
55 #define SGE_PG_RSVD SMP_CACHE_BYTES
56 /*
57 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
58 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
59 * directly.
60 */
61 #define FL0_PG_CHUNK_SIZE 2048
62 #define FL0_PG_ORDER 0
63 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
64 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
65 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
66 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
67
68 #define SGE_RX_DROP_THRES 16
69 #define RX_RECLAIM_PERIOD (HZ/4)
70
71 /*
72 * Max number of Rx buffers we replenish at a time.
73 */
74 #define MAX_RX_REFILL 16U
75 /*
76 * Period of the Tx buffer reclaim timer. This timer does not need to run
77 * frequently as Tx buffers are usually reclaimed by new Tx packets.
78 */
79 #define TX_RECLAIM_PERIOD (HZ / 4)
80 #define TX_RECLAIM_TIMER_CHUNK 64U
81 #define TX_RECLAIM_CHUNK 16U
82
83 /* WR size in bytes */
84 #define WR_LEN (WR_FLITS * 8)
85
86 /*
87 * Types of Tx queues in each queue set. Order here matters, do not change.
88 */
89 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
90
91 /* Values for sge_txq.flags */
92 enum {
93 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
94 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
95 };
96
97 struct tx_desc {
98 __be64 flit[TX_DESC_FLITS];
99 };
100
101 struct rx_desc {
102 __be32 addr_lo;
103 __be32 len_gen;
104 __be32 gen2;
105 __be32 addr_hi;
106 };
107
108 struct tx_sw_desc { /* SW state per Tx descriptor */
109 struct sk_buff *skb;
110 u8 eop; /* set if last descriptor for packet */
111 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
112 u8 fragidx; /* first page fragment associated with descriptor */
113 s8 sflit; /* start flit of first SGL entry in descriptor */
114 };
115
116 struct rx_sw_desc { /* SW state per Rx descriptor */
117 union {
118 struct sk_buff *skb;
119 struct fl_pg_chunk pg_chunk;
120 };
121 DEFINE_DMA_UNMAP_ADDR(dma_addr);
122 };
123
124 struct rsp_desc { /* response queue descriptor */
125 struct rss_header rss_hdr;
126 __be32 flags;
127 __be32 len_cq;
128 u8 imm_data[47];
129 u8 intr_gen;
130 };
131
132 /*
133 * Holds unmapping information for Tx packets that need deferred unmapping.
134 * This structure lives at skb->head and must be allocated by callers.
135 */
136 struct deferred_unmap_info {
137 struct pci_dev *pdev;
138 dma_addr_t addr[MAX_SKB_FRAGS + 1];
139 };
140
141 /*
142 * Maps a number of flits to the number of Tx descriptors that can hold them.
143 * The formula is
144 *
145 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
146 *
147 * HW allows up to 4 descriptors to be combined into a WR.
148 */
149 static u8 flit_desc_map[] = {
150 0,
151 #if SGE_NUM_GENBITS == 1
152 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
153 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
154 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
155 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
156 #elif SGE_NUM_GENBITS == 2
157 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
158 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
159 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
160 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
161 #else
162 # error "SGE_NUM_GENBITS must be 1 or 2"
163 #endif
164 };
165
166 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
167 {
168 return container_of(q, struct sge_qset, fl[qidx]);
169 }
170
171 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
172 {
173 return container_of(q, struct sge_qset, rspq);
174 }
175
176 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
177 {
178 return container_of(q, struct sge_qset, txq[qidx]);
179 }
180
181 /**
182 * refill_rspq - replenish an SGE response queue
183 * @adapter: the adapter
184 * @q: the response queue to replenish
185 * @credits: how many new responses to make available
186 *
187 * Replenishes a response queue by making the supplied number of responses
188 * available to HW.
189 */
190 static inline void refill_rspq(struct adapter *adapter,
191 const struct sge_rspq *q, unsigned int credits)
192 {
193 rmb();
194 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
195 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
196 }
197
198 /**
199 * need_skb_unmap - does the platform need unmapping of sk_buffs?
200 *
201 * Returns true if the platform needs sk_buff unmapping. The compiler
202 * optimizes away unnecessary code if this returns true.
203 */
204 static inline int need_skb_unmap(void)
205 {
206 #ifdef CONFIG_NEED_DMA_MAP_STATE
207 return 1;
208 #else
209 return 0;
210 #endif
211 }
212
213 /**
214 * unmap_skb - unmap a packet main body and its page fragments
215 * @skb: the packet
216 * @q: the Tx queue containing Tx descriptors for the packet
217 * @cidx: index of Tx descriptor
218 * @pdev: the PCI device
219 *
220 * Unmap the main body of an sk_buff and its page fragments, if any.
221 * Because of the fairly complicated structure of our SGLs and the desire
222 * to conserve space for metadata, the information necessary to unmap an
223 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
224 * descriptors (the physical addresses of the various data buffers), and
225 * the SW descriptor state (assorted indices). The send functions
226 * initialize the indices for the first packet descriptor so we can unmap
227 * the buffers held in the first Tx descriptor here, and we have enough
228 * information at this point to set the state for the next Tx descriptor.
229 *
230 * Note that it is possible to clean up the first descriptor of a packet
231 * before the send routines have written the next descriptors, but this
232 * race does not cause any problem. We just end up writing the unmapping
233 * info for the descriptor first.
234 */
235 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
236 unsigned int cidx, struct pci_dev *pdev)
237 {
238 const struct sg_ent *sgp;
239 struct tx_sw_desc *d = &q->sdesc[cidx];
240 int nfrags, frag_idx, curflit, j = d->addr_idx;
241
242 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
243 frag_idx = d->fragidx;
244
245 if (frag_idx == 0 && skb_headlen(skb)) {
246 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
247 skb_headlen(skb), PCI_DMA_TODEVICE);
248 j = 1;
249 }
250
251 curflit = d->sflit + 1 + j;
252 nfrags = skb_shinfo(skb)->nr_frags;
253
254 while (frag_idx < nfrags && curflit < WR_FLITS) {
255 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
256 skb_shinfo(skb)->frags[frag_idx].size,
257 PCI_DMA_TODEVICE);
258 j ^= 1;
259 if (j == 0) {
260 sgp++;
261 curflit++;
262 }
263 curflit++;
264 frag_idx++;
265 }
266
267 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
268 d = cidx + 1 == q->size ? q->sdesc : d + 1;
269 d->fragidx = frag_idx;
270 d->addr_idx = j;
271 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
272 }
273 }
274
275 /**
276 * free_tx_desc - reclaims Tx descriptors and their buffers
277 * @adapter: the adapter
278 * @q: the Tx queue to reclaim descriptors from
279 * @n: the number of descriptors to reclaim
280 *
281 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
282 * Tx buffers. Called with the Tx queue lock held.
283 */
284 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
285 unsigned int n)
286 {
287 struct tx_sw_desc *d;
288 struct pci_dev *pdev = adapter->pdev;
289 unsigned int cidx = q->cidx;
290
291 const int need_unmap = need_skb_unmap() &&
292 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
293
294 d = &q->sdesc[cidx];
295 while (n--) {
296 if (d->skb) { /* an SGL is present */
297 if (need_unmap)
298 unmap_skb(d->skb, q, cidx, pdev);
299 if (d->eop) {
300 kfree_skb(d->skb);
301 d->skb = NULL;
302 }
303 }
304 ++d;
305 if (++cidx == q->size) {
306 cidx = 0;
307 d = q->sdesc;
308 }
309 }
310 q->cidx = cidx;
311 }
312
313 /**
314 * reclaim_completed_tx - reclaims completed Tx descriptors
315 * @adapter: the adapter
316 * @q: the Tx queue to reclaim completed descriptors from
317 * @chunk: maximum number of descriptors to reclaim
318 *
319 * Reclaims Tx descriptors that the SGE has indicated it has processed,
320 * and frees the associated buffers if possible. Called with the Tx
321 * queue's lock held.
322 */
323 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
324 struct sge_txq *q,
325 unsigned int chunk)
326 {
327 unsigned int reclaim = q->processed - q->cleaned;
328
329 reclaim = min(chunk, reclaim);
330 if (reclaim) {
331 free_tx_desc(adapter, q, reclaim);
332 q->cleaned += reclaim;
333 q->in_use -= reclaim;
334 }
335 return q->processed - q->cleaned;
336 }
337
338 /**
339 * should_restart_tx - are there enough resources to restart a Tx queue?
340 * @q: the Tx queue
341 *
342 * Checks if there are enough descriptors to restart a suspended Tx queue.
343 */
344 static inline int should_restart_tx(const struct sge_txq *q)
345 {
346 unsigned int r = q->processed - q->cleaned;
347
348 return q->in_use - r < (q->size >> 1);
349 }
350
351 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
352 struct rx_sw_desc *d)
353 {
354 if (q->use_pages && d->pg_chunk.page) {
355 (*d->pg_chunk.p_cnt)--;
356 if (!*d->pg_chunk.p_cnt)
357 pci_unmap_page(pdev,
358 d->pg_chunk.mapping,
359 q->alloc_size, PCI_DMA_FROMDEVICE);
360
361 put_page(d->pg_chunk.page);
362 d->pg_chunk.page = NULL;
363 } else {
364 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
365 q->buf_size, PCI_DMA_FROMDEVICE);
366 kfree_skb(d->skb);
367 d->skb = NULL;
368 }
369 }
370
371 /**
372 * free_rx_bufs - free the Rx buffers on an SGE free list
373 * @pdev: the PCI device associated with the adapter
374 * @rxq: the SGE free list to clean up
375 *
376 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
377 * this queue should be stopped before calling this function.
378 */
379 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
380 {
381 unsigned int cidx = q->cidx;
382
383 while (q->credits--) {
384 struct rx_sw_desc *d = &q->sdesc[cidx];
385
386
387 clear_rx_desc(pdev, q, d);
388 if (++cidx == q->size)
389 cidx = 0;
390 }
391
392 if (q->pg_chunk.page) {
393 __free_pages(q->pg_chunk.page, q->order);
394 q->pg_chunk.page = NULL;
395 }
396 }
397
398 /**
399 * add_one_rx_buf - add a packet buffer to a free-buffer list
400 * @va: buffer start VA
401 * @len: the buffer length
402 * @d: the HW Rx descriptor to write
403 * @sd: the SW Rx descriptor to write
404 * @gen: the generation bit value
405 * @pdev: the PCI device associated with the adapter
406 *
407 * Add a buffer of the given length to the supplied HW and SW Rx
408 * descriptors.
409 */
410 static inline int add_one_rx_buf(void *va, unsigned int len,
411 struct rx_desc *d, struct rx_sw_desc *sd,
412 unsigned int gen, struct pci_dev *pdev)
413 {
414 dma_addr_t mapping;
415
416 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
417 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
418 return -ENOMEM;
419
420 dma_unmap_addr_set(sd, dma_addr, mapping);
421
422 d->addr_lo = cpu_to_be32(mapping);
423 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
424 wmb();
425 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
426 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
427 return 0;
428 }
429
430 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
431 unsigned int gen)
432 {
433 d->addr_lo = cpu_to_be32(mapping);
434 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
435 wmb();
436 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
437 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
438 return 0;
439 }
440
441 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
442 struct rx_sw_desc *sd, gfp_t gfp,
443 unsigned int order)
444 {
445 if (!q->pg_chunk.page) {
446 dma_addr_t mapping;
447
448 q->pg_chunk.page = alloc_pages(gfp, order);
449 if (unlikely(!q->pg_chunk.page))
450 return -ENOMEM;
451 q->pg_chunk.va = page_address(q->pg_chunk.page);
452 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
453 SGE_PG_RSVD;
454 q->pg_chunk.offset = 0;
455 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
456 0, q->alloc_size, PCI_DMA_FROMDEVICE);
457 q->pg_chunk.mapping = mapping;
458 }
459 sd->pg_chunk = q->pg_chunk;
460
461 prefetch(sd->pg_chunk.p_cnt);
462
463 q->pg_chunk.offset += q->buf_size;
464 if (q->pg_chunk.offset == (PAGE_SIZE << order))
465 q->pg_chunk.page = NULL;
466 else {
467 q->pg_chunk.va += q->buf_size;
468 get_page(q->pg_chunk.page);
469 }
470
471 if (sd->pg_chunk.offset == 0)
472 *sd->pg_chunk.p_cnt = 1;
473 else
474 *sd->pg_chunk.p_cnt += 1;
475
476 return 0;
477 }
478
479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= q->credits / 4) {
482 q->pend_cred = 0;
483 wmb();
484 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
485 }
486 }
487
488 /**
489 * refill_fl - refill an SGE free-buffer list
490 * @adapter: the adapter
491 * @q: the free-list to refill
492 * @n: the number of new buffers to allocate
493 * @gfp: the gfp flags for allocating new buffers
494 *
495 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
496 * allocated with the supplied gfp flags. The caller must assure that
497 * @n does not exceed the queue's capacity.
498 */
499 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
500 {
501 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
502 struct rx_desc *d = &q->desc[q->pidx];
503 unsigned int count = 0;
504
505 while (n--) {
506 dma_addr_t mapping;
507 int err;
508
509 if (q->use_pages) {
510 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
511 q->order))) {
512 nomem: q->alloc_failed++;
513 break;
514 }
515 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
516 dma_unmap_addr_set(sd, dma_addr, mapping);
517
518 add_one_rx_chunk(mapping, d, q->gen);
519 pci_dma_sync_single_for_device(adap->pdev, mapping,
520 q->buf_size - SGE_PG_RSVD,
521 PCI_DMA_FROMDEVICE);
522 } else {
523 void *buf_start;
524
525 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
526 if (!skb)
527 goto nomem;
528
529 sd->skb = skb;
530 buf_start = skb->data;
531 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
532 q->gen, adap->pdev);
533 if (unlikely(err)) {
534 clear_rx_desc(adap->pdev, q, sd);
535 break;
536 }
537 }
538
539 d++;
540 sd++;
541 if (++q->pidx == q->size) {
542 q->pidx = 0;
543 q->gen ^= 1;
544 sd = q->sdesc;
545 d = q->desc;
546 }
547 count++;
548 }
549
550 q->credits += count;
551 q->pend_cred += count;
552 ring_fl_db(adap, q);
553
554 return count;
555 }
556
557 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
558 {
559 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
560 GFP_ATOMIC | __GFP_COMP);
561 }
562
563 /**
564 * recycle_rx_buf - recycle a receive buffer
565 * @adapter: the adapter
566 * @q: the SGE free list
567 * @idx: index of buffer to recycle
568 *
569 * Recycles the specified buffer on the given free list by adding it at
570 * the next available slot on the list.
571 */
572 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
573 unsigned int idx)
574 {
575 struct rx_desc *from = &q->desc[idx];
576 struct rx_desc *to = &q->desc[q->pidx];
577
578 q->sdesc[q->pidx] = q->sdesc[idx];
579 to->addr_lo = from->addr_lo; /* already big endian */
580 to->addr_hi = from->addr_hi; /* likewise */
581 wmb();
582 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
583 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
584
585 if (++q->pidx == q->size) {
586 q->pidx = 0;
587 q->gen ^= 1;
588 }
589
590 q->credits++;
591 q->pend_cred++;
592 ring_fl_db(adap, q);
593 }
594
595 /**
596 * alloc_ring - allocate resources for an SGE descriptor ring
597 * @pdev: the PCI device
598 * @nelem: the number of descriptors
599 * @elem_size: the size of each descriptor
600 * @sw_size: the size of the SW state associated with each ring element
601 * @phys: the physical address of the allocated ring
602 * @metadata: address of the array holding the SW state for the ring
603 *
604 * Allocates resources for an SGE descriptor ring, such as Tx queues,
605 * free buffer lists, or response queues. Each SGE ring requires
606 * space for its HW descriptors plus, optionally, space for the SW state
607 * associated with each HW entry (the metadata). The function returns
608 * three values: the virtual address for the HW ring (the return value
609 * of the function), the physical address of the HW ring, and the address
610 * of the SW ring.
611 */
612 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
613 size_t sw_size, dma_addr_t * phys, void *metadata)
614 {
615 size_t len = nelem * elem_size;
616 void *s = NULL;
617 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
618
619 if (!p)
620 return NULL;
621 if (sw_size && metadata) {
622 s = kcalloc(nelem, sw_size, GFP_KERNEL);
623
624 if (!s) {
625 dma_free_coherent(&pdev->dev, len, p, *phys);
626 return NULL;
627 }
628 *(void **)metadata = s;
629 }
630 memset(p, 0, len);
631 return p;
632 }
633
634 /**
635 * t3_reset_qset - reset a sge qset
636 * @q: the queue set
637 *
638 * Reset the qset structure.
639 * the NAPI structure is preserved in the event of
640 * the qset's reincarnation, for example during EEH recovery.
641 */
642 static void t3_reset_qset(struct sge_qset *q)
643 {
644 if (q->adap &&
645 !(q->adap->flags & NAPI_INIT)) {
646 memset(q, 0, sizeof(*q));
647 return;
648 }
649
650 q->adap = NULL;
651 memset(&q->rspq, 0, sizeof(q->rspq));
652 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
653 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
654 q->txq_stopped = 0;
655 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
656 q->rx_reclaim_timer.function = NULL;
657 q->nomem = 0;
658 napi_free_frags(&q->napi);
659 }
660
661
662 /**
663 * free_qset - free the resources of an SGE queue set
664 * @adapter: the adapter owning the queue set
665 * @q: the queue set
666 *
667 * Release the HW and SW resources associated with an SGE queue set, such
668 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
669 * queue set must be quiesced prior to calling this.
670 */
671 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
672 {
673 int i;
674 struct pci_dev *pdev = adapter->pdev;
675
676 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
677 if (q->fl[i].desc) {
678 spin_lock_irq(&adapter->sge.reg_lock);
679 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
680 spin_unlock_irq(&adapter->sge.reg_lock);
681 free_rx_bufs(pdev, &q->fl[i]);
682 kfree(q->fl[i].sdesc);
683 dma_free_coherent(&pdev->dev,
684 q->fl[i].size *
685 sizeof(struct rx_desc), q->fl[i].desc,
686 q->fl[i].phys_addr);
687 }
688
689 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
690 if (q->txq[i].desc) {
691 spin_lock_irq(&adapter->sge.reg_lock);
692 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
693 spin_unlock_irq(&adapter->sge.reg_lock);
694 if (q->txq[i].sdesc) {
695 free_tx_desc(adapter, &q->txq[i],
696 q->txq[i].in_use);
697 kfree(q->txq[i].sdesc);
698 }
699 dma_free_coherent(&pdev->dev,
700 q->txq[i].size *
701 sizeof(struct tx_desc),
702 q->txq[i].desc, q->txq[i].phys_addr);
703 __skb_queue_purge(&q->txq[i].sendq);
704 }
705
706 if (q->rspq.desc) {
707 spin_lock_irq(&adapter->sge.reg_lock);
708 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
709 spin_unlock_irq(&adapter->sge.reg_lock);
710 dma_free_coherent(&pdev->dev,
711 q->rspq.size * sizeof(struct rsp_desc),
712 q->rspq.desc, q->rspq.phys_addr);
713 }
714
715 t3_reset_qset(q);
716 }
717
718 /**
719 * init_qset_cntxt - initialize an SGE queue set context info
720 * @qs: the queue set
721 * @id: the queue set id
722 *
723 * Initializes the TIDs and context ids for the queues of a queue set.
724 */
725 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
726 {
727 qs->rspq.cntxt_id = id;
728 qs->fl[0].cntxt_id = 2 * id;
729 qs->fl[1].cntxt_id = 2 * id + 1;
730 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
731 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
732 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
733 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
734 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
735 }
736
737 /**
738 * sgl_len - calculates the size of an SGL of the given capacity
739 * @n: the number of SGL entries
740 *
741 * Calculates the number of flits needed for a scatter/gather list that
742 * can hold the given number of entries.
743 */
744 static inline unsigned int sgl_len(unsigned int n)
745 {
746 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
747 return (3 * n) / 2 + (n & 1);
748 }
749
750 /**
751 * flits_to_desc - returns the num of Tx descriptors for the given flits
752 * @n: the number of flits
753 *
754 * Calculates the number of Tx descriptors needed for the supplied number
755 * of flits.
756 */
757 static inline unsigned int flits_to_desc(unsigned int n)
758 {
759 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
760 return flit_desc_map[n];
761 }
762
763 /**
764 * get_packet - return the next ingress packet buffer from a free list
765 * @adap: the adapter that received the packet
766 * @fl: the SGE free list holding the packet
767 * @len: the packet length including any SGE padding
768 * @drop_thres: # of remaining buffers before we start dropping packets
769 *
770 * Get the next packet from a free list and complete setup of the
771 * sk_buff. If the packet is small we make a copy and recycle the
772 * original buffer, otherwise we use the original buffer itself. If a
773 * positive drop threshold is supplied packets are dropped and their
774 * buffers recycled if (a) the number of remaining buffers is under the
775 * threshold and the packet is too big to copy, or (b) the packet should
776 * be copied but there is no memory for the copy.
777 */
778 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
779 unsigned int len, unsigned int drop_thres)
780 {
781 struct sk_buff *skb = NULL;
782 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
783
784 prefetch(sd->skb->data);
785 fl->credits--;
786
787 if (len <= SGE_RX_COPY_THRES) {
788 skb = alloc_skb(len, GFP_ATOMIC);
789 if (likely(skb != NULL)) {
790 __skb_put(skb, len);
791 pci_dma_sync_single_for_cpu(adap->pdev,
792 dma_unmap_addr(sd, dma_addr), len,
793 PCI_DMA_FROMDEVICE);
794 memcpy(skb->data, sd->skb->data, len);
795 pci_dma_sync_single_for_device(adap->pdev,
796 dma_unmap_addr(sd, dma_addr), len,
797 PCI_DMA_FROMDEVICE);
798 } else if (!drop_thres)
799 goto use_orig_buf;
800 recycle:
801 recycle_rx_buf(adap, fl, fl->cidx);
802 return skb;
803 }
804
805 if (unlikely(fl->credits < drop_thres) &&
806 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
807 GFP_ATOMIC | __GFP_COMP) == 0)
808 goto recycle;
809
810 use_orig_buf:
811 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
812 fl->buf_size, PCI_DMA_FROMDEVICE);
813 skb = sd->skb;
814 skb_put(skb, len);
815 __refill_fl(adap, fl);
816 return skb;
817 }
818
819 /**
820 * get_packet_pg - return the next ingress packet buffer from a free list
821 * @adap: the adapter that received the packet
822 * @fl: the SGE free list holding the packet
823 * @len: the packet length including any SGE padding
824 * @drop_thres: # of remaining buffers before we start dropping packets
825 *
826 * Get the next packet from a free list populated with page chunks.
827 * If the packet is small we make a copy and recycle the original buffer,
828 * otherwise we attach the original buffer as a page fragment to a fresh
829 * sk_buff. If a positive drop threshold is supplied packets are dropped
830 * and their buffers recycled if (a) the number of remaining buffers is
831 * under the threshold and the packet is too big to copy, or (b) there's
832 * no system memory.
833 *
834 * Note: this function is similar to @get_packet but deals with Rx buffers
835 * that are page chunks rather than sk_buffs.
836 */
837 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
838 struct sge_rspq *q, unsigned int len,
839 unsigned int drop_thres)
840 {
841 struct sk_buff *newskb, *skb;
842 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
843
844 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
845
846 newskb = skb = q->pg_skb;
847 if (!skb && (len <= SGE_RX_COPY_THRES)) {
848 newskb = alloc_skb(len, GFP_ATOMIC);
849 if (likely(newskb != NULL)) {
850 __skb_put(newskb, len);
851 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
852 PCI_DMA_FROMDEVICE);
853 memcpy(newskb->data, sd->pg_chunk.va, len);
854 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
855 len,
856 PCI_DMA_FROMDEVICE);
857 } else if (!drop_thres)
858 return NULL;
859 recycle:
860 fl->credits--;
861 recycle_rx_buf(adap, fl, fl->cidx);
862 q->rx_recycle_buf++;
863 return newskb;
864 }
865
866 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
867 goto recycle;
868
869 prefetch(sd->pg_chunk.p_cnt);
870
871 if (!skb)
872 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
873
874 if (unlikely(!newskb)) {
875 if (!drop_thres)
876 return NULL;
877 goto recycle;
878 }
879
880 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
881 PCI_DMA_FROMDEVICE);
882 (*sd->pg_chunk.p_cnt)--;
883 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
884 pci_unmap_page(adap->pdev,
885 sd->pg_chunk.mapping,
886 fl->alloc_size,
887 PCI_DMA_FROMDEVICE);
888 if (!skb) {
889 __skb_put(newskb, SGE_RX_PULL_LEN);
890 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
891 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
892 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
893 len - SGE_RX_PULL_LEN);
894 newskb->len = len;
895 newskb->data_len = len - SGE_RX_PULL_LEN;
896 newskb->truesize += newskb->data_len;
897 } else {
898 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
899 sd->pg_chunk.page,
900 sd->pg_chunk.offset, len);
901 newskb->len += len;
902 newskb->data_len += len;
903 newskb->truesize += len;
904 }
905
906 fl->credits--;
907 /*
908 * We do not refill FLs here, we let the caller do it to overlap a
909 * prefetch.
910 */
911 return newskb;
912 }
913
914 /**
915 * get_imm_packet - return the next ingress packet buffer from a response
916 * @resp: the response descriptor containing the packet data
917 *
918 * Return a packet containing the immediate data of the given response.
919 */
920 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
921 {
922 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
923
924 if (skb) {
925 __skb_put(skb, IMMED_PKT_SIZE);
926 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
927 }
928 return skb;
929 }
930
931 /**
932 * calc_tx_descs - calculate the number of Tx descriptors for a packet
933 * @skb: the packet
934 *
935 * Returns the number of Tx descriptors needed for the given Ethernet
936 * packet. Ethernet packets require addition of WR and CPL headers.
937 */
938 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
939 {
940 unsigned int flits;
941
942 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
943 return 1;
944
945 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
946 if (skb_shinfo(skb)->gso_size)
947 flits++;
948 return flits_to_desc(flits);
949 }
950
951 /**
952 * make_sgl - populate a scatter/gather list for a packet
953 * @skb: the packet
954 * @sgp: the SGL to populate
955 * @start: start address of skb main body data to include in the SGL
956 * @len: length of skb main body data to include in the SGL
957 * @pdev: the PCI device
958 *
959 * Generates a scatter/gather list for the buffers that make up a packet
960 * and returns the SGL size in 8-byte words. The caller must size the SGL
961 * appropriately.
962 */
963 static inline unsigned int make_sgl(const struct sk_buff *skb,
964 struct sg_ent *sgp, unsigned char *start,
965 unsigned int len, struct pci_dev *pdev)
966 {
967 dma_addr_t mapping;
968 unsigned int i, j = 0, nfrags;
969
970 if (len) {
971 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
972 sgp->len[0] = cpu_to_be32(len);
973 sgp->addr[0] = cpu_to_be64(mapping);
974 j = 1;
975 }
976
977 nfrags = skb_shinfo(skb)->nr_frags;
978 for (i = 0; i < nfrags; i++) {
979 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
980
981 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
982 frag->size, PCI_DMA_TODEVICE);
983 sgp->len[j] = cpu_to_be32(frag->size);
984 sgp->addr[j] = cpu_to_be64(mapping);
985 j ^= 1;
986 if (j == 0)
987 ++sgp;
988 }
989 if (j)
990 sgp->len[j] = 0;
991 return ((nfrags + (len != 0)) * 3) / 2 + j;
992 }
993
994 /**
995 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
996 * @adap: the adapter
997 * @q: the Tx queue
998 *
999 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1000 * where the HW is going to sleep just after we checked, however,
1001 * then the interrupt handler will detect the outstanding TX packet
1002 * and ring the doorbell for us.
1003 *
1004 * When GTS is disabled we unconditionally ring the doorbell.
1005 */
1006 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1007 {
1008 #if USE_GTS
1009 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1010 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1011 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1012 t3_write_reg(adap, A_SG_KDOORBELL,
1013 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1014 }
1015 #else
1016 wmb(); /* write descriptors before telling HW */
1017 t3_write_reg(adap, A_SG_KDOORBELL,
1018 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1019 #endif
1020 }
1021
1022 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1023 {
1024 #if SGE_NUM_GENBITS == 2
1025 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1026 #endif
1027 }
1028
1029 /**
1030 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1031 * @ndesc: number of Tx descriptors spanned by the SGL
1032 * @skb: the packet corresponding to the WR
1033 * @d: first Tx descriptor to be written
1034 * @pidx: index of above descriptors
1035 * @q: the SGE Tx queue
1036 * @sgl: the SGL
1037 * @flits: number of flits to the start of the SGL in the first descriptor
1038 * @sgl_flits: the SGL size in flits
1039 * @gen: the Tx descriptor generation
1040 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1041 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1042 *
1043 * Write a work request header and an associated SGL. If the SGL is
1044 * small enough to fit into one Tx descriptor it has already been written
1045 * and we just need to write the WR header. Otherwise we distribute the
1046 * SGL across the number of descriptors it spans.
1047 */
1048 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1049 struct tx_desc *d, unsigned int pidx,
1050 const struct sge_txq *q,
1051 const struct sg_ent *sgl,
1052 unsigned int flits, unsigned int sgl_flits,
1053 unsigned int gen, __be32 wr_hi,
1054 __be32 wr_lo)
1055 {
1056 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1057 struct tx_sw_desc *sd = &q->sdesc[pidx];
1058
1059 sd->skb = skb;
1060 if (need_skb_unmap()) {
1061 sd->fragidx = 0;
1062 sd->addr_idx = 0;
1063 sd->sflit = flits;
1064 }
1065
1066 if (likely(ndesc == 1)) {
1067 sd->eop = 1;
1068 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1069 V_WR_SGLSFLT(flits)) | wr_hi;
1070 wmb();
1071 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1072 V_WR_GEN(gen)) | wr_lo;
1073 wr_gen2(d, gen);
1074 } else {
1075 unsigned int ogen = gen;
1076 const u64 *fp = (const u64 *)sgl;
1077 struct work_request_hdr *wp = wrp;
1078
1079 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1080 V_WR_SGLSFLT(flits)) | wr_hi;
1081
1082 while (sgl_flits) {
1083 unsigned int avail = WR_FLITS - flits;
1084
1085 if (avail > sgl_flits)
1086 avail = sgl_flits;
1087 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1088 sgl_flits -= avail;
1089 ndesc--;
1090 if (!sgl_flits)
1091 break;
1092
1093 fp += avail;
1094 d++;
1095 sd->eop = 0;
1096 sd++;
1097 if (++pidx == q->size) {
1098 pidx = 0;
1099 gen ^= 1;
1100 d = q->desc;
1101 sd = q->sdesc;
1102 }
1103
1104 sd->skb = skb;
1105 wrp = (struct work_request_hdr *)d;
1106 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1107 V_WR_SGLSFLT(1)) | wr_hi;
1108 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1109 sgl_flits + 1)) |
1110 V_WR_GEN(gen)) | wr_lo;
1111 wr_gen2(d, gen);
1112 flits = 1;
1113 }
1114 sd->eop = 1;
1115 wrp->wr_hi |= htonl(F_WR_EOP);
1116 wmb();
1117 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1118 wr_gen2((struct tx_desc *)wp, ogen);
1119 WARN_ON(ndesc != 0);
1120 }
1121 }
1122
1123 /**
1124 * write_tx_pkt_wr - write a TX_PKT work request
1125 * @adap: the adapter
1126 * @skb: the packet to send
1127 * @pi: the egress interface
1128 * @pidx: index of the first Tx descriptor to write
1129 * @gen: the generation value to use
1130 * @q: the Tx queue
1131 * @ndesc: number of descriptors the packet will occupy
1132 * @compl: the value of the COMPL bit to use
1133 *
1134 * Generate a TX_PKT work request to send the supplied packet.
1135 */
1136 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1137 const struct port_info *pi,
1138 unsigned int pidx, unsigned int gen,
1139 struct sge_txq *q, unsigned int ndesc,
1140 unsigned int compl)
1141 {
1142 unsigned int flits, sgl_flits, cntrl, tso_info;
1143 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1144 struct tx_desc *d = &q->desc[pidx];
1145 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1146
1147 cpl->len = htonl(skb->len);
1148 cntrl = V_TXPKT_INTF(pi->port_id);
1149
1150 if (vlan_tx_tag_present(skb))
1151 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1152
1153 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1154 if (tso_info) {
1155 int eth_type;
1156 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1157
1158 d->flit[2] = 0;
1159 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1160 hdr->cntrl = htonl(cntrl);
1161 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1162 CPL_ETH_II : CPL_ETH_II_VLAN;
1163 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1164 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1165 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1166 hdr->lso_info = htonl(tso_info);
1167 flits = 3;
1168 } else {
1169 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1170 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1171 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1172 cpl->cntrl = htonl(cntrl);
1173
1174 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1175 q->sdesc[pidx].skb = NULL;
1176 if (!skb->data_len)
1177 skb_copy_from_linear_data(skb, &d->flit[2],
1178 skb->len);
1179 else
1180 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1181
1182 flits = (skb->len + 7) / 8 + 2;
1183 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1184 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1185 | F_WR_SOP | F_WR_EOP | compl);
1186 wmb();
1187 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1188 V_WR_TID(q->token));
1189 wr_gen2(d, gen);
1190 kfree_skb(skb);
1191 return;
1192 }
1193
1194 flits = 2;
1195 }
1196
1197 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1198 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1199
1200 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1201 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1202 htonl(V_WR_TID(q->token)));
1203 }
1204
1205 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1206 struct sge_qset *qs, struct sge_txq *q)
1207 {
1208 netif_tx_stop_queue(txq);
1209 set_bit(TXQ_ETH, &qs->txq_stopped);
1210 q->stops++;
1211 }
1212
1213 /**
1214 * eth_xmit - add a packet to the Ethernet Tx queue
1215 * @skb: the packet
1216 * @dev: the egress net device
1217 *
1218 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1219 */
1220 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1221 {
1222 int qidx;
1223 unsigned int ndesc, pidx, credits, gen, compl;
1224 const struct port_info *pi = netdev_priv(dev);
1225 struct adapter *adap = pi->adapter;
1226 struct netdev_queue *txq;
1227 struct sge_qset *qs;
1228 struct sge_txq *q;
1229
1230 /*
1231 * The chip min packet length is 9 octets but play safe and reject
1232 * anything shorter than an Ethernet header.
1233 */
1234 if (unlikely(skb->len < ETH_HLEN)) {
1235 dev_kfree_skb(skb);
1236 return NETDEV_TX_OK;
1237 }
1238
1239 qidx = skb_get_queue_mapping(skb);
1240 qs = &pi->qs[qidx];
1241 q = &qs->txq[TXQ_ETH];
1242 txq = netdev_get_tx_queue(dev, qidx);
1243
1244 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1245
1246 credits = q->size - q->in_use;
1247 ndesc = calc_tx_descs(skb);
1248
1249 if (unlikely(credits < ndesc)) {
1250 t3_stop_tx_queue(txq, qs, q);
1251 dev_err(&adap->pdev->dev,
1252 "%s: Tx ring %u full while queue awake!\n",
1253 dev->name, q->cntxt_id & 7);
1254 return NETDEV_TX_BUSY;
1255 }
1256
1257 q->in_use += ndesc;
1258 if (unlikely(credits - ndesc < q->stop_thres)) {
1259 t3_stop_tx_queue(txq, qs, q);
1260
1261 if (should_restart_tx(q) &&
1262 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1263 q->restarts++;
1264 netif_tx_start_queue(txq);
1265 }
1266 }
1267
1268 gen = q->gen;
1269 q->unacked += ndesc;
1270 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1271 q->unacked &= 7;
1272 pidx = q->pidx;
1273 q->pidx += ndesc;
1274 if (q->pidx >= q->size) {
1275 q->pidx -= q->size;
1276 q->gen ^= 1;
1277 }
1278
1279 /* update port statistics */
1280 if (skb->ip_summed == CHECKSUM_COMPLETE)
1281 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1282 if (skb_shinfo(skb)->gso_size)
1283 qs->port_stats[SGE_PSTAT_TSO]++;
1284 if (vlan_tx_tag_present(skb))
1285 qs->port_stats[SGE_PSTAT_VLANINS]++;
1286
1287 /*
1288 * We do not use Tx completion interrupts to free DMAd Tx packets.
1289 * This is good for performance but means that we rely on new Tx
1290 * packets arriving to run the destructors of completed packets,
1291 * which open up space in their sockets' send queues. Sometimes
1292 * we do not get such new packets causing Tx to stall. A single
1293 * UDP transmitter is a good example of this situation. We have
1294 * a clean up timer that periodically reclaims completed packets
1295 * but it doesn't run often enough (nor do we want it to) to prevent
1296 * lengthy stalls. A solution to this problem is to run the
1297 * destructor early, after the packet is queued but before it's DMAd.
1298 * A cons is that we lie to socket memory accounting, but the amount
1299 * of extra memory is reasonable (limited by the number of Tx
1300 * descriptors), the packets do actually get freed quickly by new
1301 * packets almost always, and for protocols like TCP that wait for
1302 * acks to really free up the data the extra memory is even less.
1303 * On the positive side we run the destructors on the sending CPU
1304 * rather than on a potentially different completing CPU, usually a
1305 * good thing. We also run them without holding our Tx queue lock,
1306 * unlike what reclaim_completed_tx() would otherwise do.
1307 *
1308 * Run the destructor before telling the DMA engine about the packet
1309 * to make sure it doesn't complete and get freed prematurely.
1310 */
1311 if (likely(!skb_shared(skb)))
1312 skb_orphan(skb);
1313
1314 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1315 check_ring_tx_db(adap, q);
1316 return NETDEV_TX_OK;
1317 }
1318
1319 /**
1320 * write_imm - write a packet into a Tx descriptor as immediate data
1321 * @d: the Tx descriptor to write
1322 * @skb: the packet
1323 * @len: the length of packet data to write as immediate data
1324 * @gen: the generation bit value to write
1325 *
1326 * Writes a packet as immediate data into a Tx descriptor. The packet
1327 * contains a work request at its beginning. We must write the packet
1328 * carefully so the SGE doesn't read it accidentally before it's written
1329 * in its entirety.
1330 */
1331 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1332 unsigned int len, unsigned int gen)
1333 {
1334 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1335 struct work_request_hdr *to = (struct work_request_hdr *)d;
1336
1337 if (likely(!skb->data_len))
1338 memcpy(&to[1], &from[1], len - sizeof(*from));
1339 else
1340 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1341
1342 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1343 V_WR_BCNTLFLT(len & 7));
1344 wmb();
1345 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1346 V_WR_LEN((len + 7) / 8));
1347 wr_gen2(d, gen);
1348 kfree_skb(skb);
1349 }
1350
1351 /**
1352 * check_desc_avail - check descriptor availability on a send queue
1353 * @adap: the adapter
1354 * @q: the send queue
1355 * @skb: the packet needing the descriptors
1356 * @ndesc: the number of Tx descriptors needed
1357 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1358 *
1359 * Checks if the requested number of Tx descriptors is available on an
1360 * SGE send queue. If the queue is already suspended or not enough
1361 * descriptors are available the packet is queued for later transmission.
1362 * Must be called with the Tx queue locked.
1363 *
1364 * Returns 0 if enough descriptors are available, 1 if there aren't
1365 * enough descriptors and the packet has been queued, and 2 if the caller
1366 * needs to retry because there weren't enough descriptors at the
1367 * beginning of the call but some freed up in the mean time.
1368 */
1369 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1370 struct sk_buff *skb, unsigned int ndesc,
1371 unsigned int qid)
1372 {
1373 if (unlikely(!skb_queue_empty(&q->sendq))) {
1374 addq_exit:__skb_queue_tail(&q->sendq, skb);
1375 return 1;
1376 }
1377 if (unlikely(q->size - q->in_use < ndesc)) {
1378 struct sge_qset *qs = txq_to_qset(q, qid);
1379
1380 set_bit(qid, &qs->txq_stopped);
1381 smp_mb__after_clear_bit();
1382
1383 if (should_restart_tx(q) &&
1384 test_and_clear_bit(qid, &qs->txq_stopped))
1385 return 2;
1386
1387 q->stops++;
1388 goto addq_exit;
1389 }
1390 return 0;
1391 }
1392
1393 /**
1394 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1395 * @q: the SGE control Tx queue
1396 *
1397 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1398 * that send only immediate data (presently just the control queues) and
1399 * thus do not have any sk_buffs to release.
1400 */
1401 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1402 {
1403 unsigned int reclaim = q->processed - q->cleaned;
1404
1405 q->in_use -= reclaim;
1406 q->cleaned += reclaim;
1407 }
1408
1409 static inline int immediate(const struct sk_buff *skb)
1410 {
1411 return skb->len <= WR_LEN;
1412 }
1413
1414 /**
1415 * ctrl_xmit - send a packet through an SGE control Tx queue
1416 * @adap: the adapter
1417 * @q: the control queue
1418 * @skb: the packet
1419 *
1420 * Send a packet through an SGE control Tx queue. Packets sent through
1421 * a control queue must fit entirely as immediate data in a single Tx
1422 * descriptor and have no page fragments.
1423 */
1424 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1425 struct sk_buff *skb)
1426 {
1427 int ret;
1428 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1429
1430 if (unlikely(!immediate(skb))) {
1431 WARN_ON(1);
1432 dev_kfree_skb(skb);
1433 return NET_XMIT_SUCCESS;
1434 }
1435
1436 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1437 wrp->wr_lo = htonl(V_WR_TID(q->token));
1438
1439 spin_lock(&q->lock);
1440 again:reclaim_completed_tx_imm(q);
1441
1442 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1443 if (unlikely(ret)) {
1444 if (ret == 1) {
1445 spin_unlock(&q->lock);
1446 return NET_XMIT_CN;
1447 }
1448 goto again;
1449 }
1450
1451 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1452
1453 q->in_use++;
1454 if (++q->pidx >= q->size) {
1455 q->pidx = 0;
1456 q->gen ^= 1;
1457 }
1458 spin_unlock(&q->lock);
1459 wmb();
1460 t3_write_reg(adap, A_SG_KDOORBELL,
1461 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1462 return NET_XMIT_SUCCESS;
1463 }
1464
1465 /**
1466 * restart_ctrlq - restart a suspended control queue
1467 * @qs: the queue set cotaining the control queue
1468 *
1469 * Resumes transmission on a suspended Tx control queue.
1470 */
1471 static void restart_ctrlq(unsigned long data)
1472 {
1473 struct sk_buff *skb;
1474 struct sge_qset *qs = (struct sge_qset *)data;
1475 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1476
1477 spin_lock(&q->lock);
1478 again:reclaim_completed_tx_imm(q);
1479
1480 while (q->in_use < q->size &&
1481 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1482
1483 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1484
1485 if (++q->pidx >= q->size) {
1486 q->pidx = 0;
1487 q->gen ^= 1;
1488 }
1489 q->in_use++;
1490 }
1491
1492 if (!skb_queue_empty(&q->sendq)) {
1493 set_bit(TXQ_CTRL, &qs->txq_stopped);
1494 smp_mb__after_clear_bit();
1495
1496 if (should_restart_tx(q) &&
1497 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1498 goto again;
1499 q->stops++;
1500 }
1501
1502 spin_unlock(&q->lock);
1503 wmb();
1504 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1505 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1506 }
1507
1508 /*
1509 * Send a management message through control queue 0
1510 */
1511 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1512 {
1513 int ret;
1514 local_bh_disable();
1515 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1516 local_bh_enable();
1517
1518 return ret;
1519 }
1520
1521 /**
1522 * deferred_unmap_destructor - unmap a packet when it is freed
1523 * @skb: the packet
1524 *
1525 * This is the packet destructor used for Tx packets that need to remain
1526 * mapped until they are freed rather than until their Tx descriptors are
1527 * freed.
1528 */
1529 static void deferred_unmap_destructor(struct sk_buff *skb)
1530 {
1531 int i;
1532 const dma_addr_t *p;
1533 const struct skb_shared_info *si;
1534 const struct deferred_unmap_info *dui;
1535
1536 dui = (struct deferred_unmap_info *)skb->head;
1537 p = dui->addr;
1538
1539 if (skb->tail - skb->transport_header)
1540 pci_unmap_single(dui->pdev, *p++,
1541 skb->tail - skb->transport_header,
1542 PCI_DMA_TODEVICE);
1543
1544 si = skb_shinfo(skb);
1545 for (i = 0; i < si->nr_frags; i++)
1546 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1547 PCI_DMA_TODEVICE);
1548 }
1549
1550 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1551 const struct sg_ent *sgl, int sgl_flits)
1552 {
1553 dma_addr_t *p;
1554 struct deferred_unmap_info *dui;
1555
1556 dui = (struct deferred_unmap_info *)skb->head;
1557 dui->pdev = pdev;
1558 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1559 *p++ = be64_to_cpu(sgl->addr[0]);
1560 *p++ = be64_to_cpu(sgl->addr[1]);
1561 }
1562 if (sgl_flits)
1563 *p = be64_to_cpu(sgl->addr[0]);
1564 }
1565
1566 /**
1567 * write_ofld_wr - write an offload work request
1568 * @adap: the adapter
1569 * @skb: the packet to send
1570 * @q: the Tx queue
1571 * @pidx: index of the first Tx descriptor to write
1572 * @gen: the generation value to use
1573 * @ndesc: number of descriptors the packet will occupy
1574 *
1575 * Write an offload work request to send the supplied packet. The packet
1576 * data already carry the work request with most fields populated.
1577 */
1578 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1579 struct sge_txq *q, unsigned int pidx,
1580 unsigned int gen, unsigned int ndesc)
1581 {
1582 unsigned int sgl_flits, flits;
1583 struct work_request_hdr *from;
1584 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1585 struct tx_desc *d = &q->desc[pidx];
1586
1587 if (immediate(skb)) {
1588 q->sdesc[pidx].skb = NULL;
1589 write_imm(d, skb, skb->len, gen);
1590 return;
1591 }
1592
1593 /* Only TX_DATA builds SGLs */
1594
1595 from = (struct work_request_hdr *)skb->data;
1596 memcpy(&d->flit[1], &from[1],
1597 skb_transport_offset(skb) - sizeof(*from));
1598
1599 flits = skb_transport_offset(skb) / 8;
1600 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1601 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1602 skb->tail - skb->transport_header,
1603 adap->pdev);
1604 if (need_skb_unmap()) {
1605 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1606 skb->destructor = deferred_unmap_destructor;
1607 }
1608
1609 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1610 gen, from->wr_hi, from->wr_lo);
1611 }
1612
1613 /**
1614 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1615 * @skb: the packet
1616 *
1617 * Returns the number of Tx descriptors needed for the given offload
1618 * packet. These packets are already fully constructed.
1619 */
1620 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1621 {
1622 unsigned int flits, cnt;
1623
1624 if (skb->len <= WR_LEN)
1625 return 1; /* packet fits as immediate data */
1626
1627 flits = skb_transport_offset(skb) / 8; /* headers */
1628 cnt = skb_shinfo(skb)->nr_frags;
1629 if (skb->tail != skb->transport_header)
1630 cnt++;
1631 return flits_to_desc(flits + sgl_len(cnt));
1632 }
1633
1634 /**
1635 * ofld_xmit - send a packet through an offload queue
1636 * @adap: the adapter
1637 * @q: the Tx offload queue
1638 * @skb: the packet
1639 *
1640 * Send an offload packet through an SGE offload queue.
1641 */
1642 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1643 struct sk_buff *skb)
1644 {
1645 int ret;
1646 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1647
1648 spin_lock(&q->lock);
1649 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1650
1651 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1652 if (unlikely(ret)) {
1653 if (ret == 1) {
1654 skb->priority = ndesc; /* save for restart */
1655 spin_unlock(&q->lock);
1656 return NET_XMIT_CN;
1657 }
1658 goto again;
1659 }
1660
1661 gen = q->gen;
1662 q->in_use += ndesc;
1663 pidx = q->pidx;
1664 q->pidx += ndesc;
1665 if (q->pidx >= q->size) {
1666 q->pidx -= q->size;
1667 q->gen ^= 1;
1668 }
1669 spin_unlock(&q->lock);
1670
1671 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1672 check_ring_tx_db(adap, q);
1673 return NET_XMIT_SUCCESS;
1674 }
1675
1676 /**
1677 * restart_offloadq - restart a suspended offload queue
1678 * @qs: the queue set cotaining the offload queue
1679 *
1680 * Resumes transmission on a suspended Tx offload queue.
1681 */
1682 static void restart_offloadq(unsigned long data)
1683 {
1684 struct sk_buff *skb;
1685 struct sge_qset *qs = (struct sge_qset *)data;
1686 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1687 const struct port_info *pi = netdev_priv(qs->netdev);
1688 struct adapter *adap = pi->adapter;
1689
1690 spin_lock(&q->lock);
1691 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1692
1693 while ((skb = skb_peek(&q->sendq)) != NULL) {
1694 unsigned int gen, pidx;
1695 unsigned int ndesc = skb->priority;
1696
1697 if (unlikely(q->size - q->in_use < ndesc)) {
1698 set_bit(TXQ_OFLD, &qs->txq_stopped);
1699 smp_mb__after_clear_bit();
1700
1701 if (should_restart_tx(q) &&
1702 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1703 goto again;
1704 q->stops++;
1705 break;
1706 }
1707
1708 gen = q->gen;
1709 q->in_use += ndesc;
1710 pidx = q->pidx;
1711 q->pidx += ndesc;
1712 if (q->pidx >= q->size) {
1713 q->pidx -= q->size;
1714 q->gen ^= 1;
1715 }
1716 __skb_unlink(skb, &q->sendq);
1717 spin_unlock(&q->lock);
1718
1719 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1720 spin_lock(&q->lock);
1721 }
1722 spin_unlock(&q->lock);
1723
1724 #if USE_GTS
1725 set_bit(TXQ_RUNNING, &q->flags);
1726 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1727 #endif
1728 wmb();
1729 t3_write_reg(adap, A_SG_KDOORBELL,
1730 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1731 }
1732
1733 /**
1734 * queue_set - return the queue set a packet should use
1735 * @skb: the packet
1736 *
1737 * Maps a packet to the SGE queue set it should use. The desired queue
1738 * set is carried in bits 1-3 in the packet's priority.
1739 */
1740 static inline int queue_set(const struct sk_buff *skb)
1741 {
1742 return skb->priority >> 1;
1743 }
1744
1745 /**
1746 * is_ctrl_pkt - return whether an offload packet is a control packet
1747 * @skb: the packet
1748 *
1749 * Determines whether an offload packet should use an OFLD or a CTRL
1750 * Tx queue. This is indicated by bit 0 in the packet's priority.
1751 */
1752 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1753 {
1754 return skb->priority & 1;
1755 }
1756
1757 /**
1758 * t3_offload_tx - send an offload packet
1759 * @tdev: the offload device to send to
1760 * @skb: the packet
1761 *
1762 * Sends an offload packet. We use the packet priority to select the
1763 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1764 * should be sent as regular or control, bits 1-3 select the queue set.
1765 */
1766 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1767 {
1768 struct adapter *adap = tdev2adap(tdev);
1769 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1770
1771 if (unlikely(is_ctrl_pkt(skb)))
1772 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1773
1774 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1775 }
1776
1777 /**
1778 * offload_enqueue - add an offload packet to an SGE offload receive queue
1779 * @q: the SGE response queue
1780 * @skb: the packet
1781 *
1782 * Add a new offload packet to an SGE response queue's offload packet
1783 * queue. If the packet is the first on the queue it schedules the RX
1784 * softirq to process the queue.
1785 */
1786 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1787 {
1788 int was_empty = skb_queue_empty(&q->rx_queue);
1789
1790 __skb_queue_tail(&q->rx_queue, skb);
1791
1792 if (was_empty) {
1793 struct sge_qset *qs = rspq_to_qset(q);
1794
1795 napi_schedule(&qs->napi);
1796 }
1797 }
1798
1799 /**
1800 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1801 * @tdev: the offload device that will be receiving the packets
1802 * @q: the SGE response queue that assembled the bundle
1803 * @skbs: the partial bundle
1804 * @n: the number of packets in the bundle
1805 *
1806 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1807 */
1808 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1809 struct sge_rspq *q,
1810 struct sk_buff *skbs[], int n)
1811 {
1812 if (n) {
1813 q->offload_bundles++;
1814 tdev->recv(tdev, skbs, n);
1815 }
1816 }
1817
1818 /**
1819 * ofld_poll - NAPI handler for offload packets in interrupt mode
1820 * @dev: the network device doing the polling
1821 * @budget: polling budget
1822 *
1823 * The NAPI handler for offload packets when a response queue is serviced
1824 * by the hard interrupt handler, i.e., when it's operating in non-polling
1825 * mode. Creates small packet batches and sends them through the offload
1826 * receive handler. Batches need to be of modest size as we do prefetches
1827 * on the packets in each.
1828 */
1829 static int ofld_poll(struct napi_struct *napi, int budget)
1830 {
1831 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1832 struct sge_rspq *q = &qs->rspq;
1833 struct adapter *adapter = qs->adap;
1834 int work_done = 0;
1835
1836 while (work_done < budget) {
1837 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1838 struct sk_buff_head queue;
1839 int ngathered;
1840
1841 spin_lock_irq(&q->lock);
1842 __skb_queue_head_init(&queue);
1843 skb_queue_splice_init(&q->rx_queue, &queue);
1844 if (skb_queue_empty(&queue)) {
1845 napi_complete(napi);
1846 spin_unlock_irq(&q->lock);
1847 return work_done;
1848 }
1849 spin_unlock_irq(&q->lock);
1850
1851 ngathered = 0;
1852 skb_queue_walk_safe(&queue, skb, tmp) {
1853 if (work_done >= budget)
1854 break;
1855 work_done++;
1856
1857 __skb_unlink(skb, &queue);
1858 prefetch(skb->data);
1859 skbs[ngathered] = skb;
1860 if (++ngathered == RX_BUNDLE_SIZE) {
1861 q->offload_bundles++;
1862 adapter->tdev.recv(&adapter->tdev, skbs,
1863 ngathered);
1864 ngathered = 0;
1865 }
1866 }
1867 if (!skb_queue_empty(&queue)) {
1868 /* splice remaining packets back onto Rx queue */
1869 spin_lock_irq(&q->lock);
1870 skb_queue_splice(&queue, &q->rx_queue);
1871 spin_unlock_irq(&q->lock);
1872 }
1873 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1874 }
1875
1876 return work_done;
1877 }
1878
1879 /**
1880 * rx_offload - process a received offload packet
1881 * @tdev: the offload device receiving the packet
1882 * @rq: the response queue that received the packet
1883 * @skb: the packet
1884 * @rx_gather: a gather list of packets if we are building a bundle
1885 * @gather_idx: index of the next available slot in the bundle
1886 *
1887 * Process an ingress offload pakcet and add it to the offload ingress
1888 * queue. Returns the index of the next available slot in the bundle.
1889 */
1890 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1891 struct sk_buff *skb, struct sk_buff *rx_gather[],
1892 unsigned int gather_idx)
1893 {
1894 skb_reset_mac_header(skb);
1895 skb_reset_network_header(skb);
1896 skb_reset_transport_header(skb);
1897
1898 if (rq->polling) {
1899 rx_gather[gather_idx++] = skb;
1900 if (gather_idx == RX_BUNDLE_SIZE) {
1901 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1902 gather_idx = 0;
1903 rq->offload_bundles++;
1904 }
1905 } else
1906 offload_enqueue(rq, skb);
1907
1908 return gather_idx;
1909 }
1910
1911 /**
1912 * restart_tx - check whether to restart suspended Tx queues
1913 * @qs: the queue set to resume
1914 *
1915 * Restarts suspended Tx queues of an SGE queue set if they have enough
1916 * free resources to resume operation.
1917 */
1918 static void restart_tx(struct sge_qset *qs)
1919 {
1920 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1921 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1922 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1923 qs->txq[TXQ_ETH].restarts++;
1924 if (netif_running(qs->netdev))
1925 netif_tx_wake_queue(qs->tx_q);
1926 }
1927
1928 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1929 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1930 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1931 qs->txq[TXQ_OFLD].restarts++;
1932 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1933 }
1934 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1935 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1936 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1937 qs->txq[TXQ_CTRL].restarts++;
1938 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1939 }
1940 }
1941
1942 /**
1943 * cxgb3_arp_process - process an ARP request probing a private IP address
1944 * @adapter: the adapter
1945 * @skb: the skbuff containing the ARP request
1946 *
1947 * Check if the ARP request is probing the private IP address
1948 * dedicated to iSCSI, generate an ARP reply if so.
1949 */
1950 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1951 {
1952 struct net_device *dev = skb->dev;
1953 struct arphdr *arp;
1954 unsigned char *arp_ptr;
1955 unsigned char *sha;
1956 __be32 sip, tip;
1957
1958 if (!dev)
1959 return;
1960
1961 skb_reset_network_header(skb);
1962 arp = arp_hdr(skb);
1963
1964 if (arp->ar_op != htons(ARPOP_REQUEST))
1965 return;
1966
1967 arp_ptr = (unsigned char *)(arp + 1);
1968 sha = arp_ptr;
1969 arp_ptr += dev->addr_len;
1970 memcpy(&sip, arp_ptr, sizeof(sip));
1971 arp_ptr += sizeof(sip);
1972 arp_ptr += dev->addr_len;
1973 memcpy(&tip, arp_ptr, sizeof(tip));
1974
1975 if (tip != pi->iscsi_ipv4addr)
1976 return;
1977
1978 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1979 pi->iscsic.mac_addr, sha);
1980
1981 }
1982
1983 static inline int is_arp(struct sk_buff *skb)
1984 {
1985 return skb->protocol == htons(ETH_P_ARP);
1986 }
1987
1988 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1989 struct sk_buff *skb)
1990 {
1991 if (is_arp(skb)) {
1992 cxgb3_arp_process(pi, skb);
1993 return;
1994 }
1995
1996 if (pi->iscsic.recv)
1997 pi->iscsic.recv(pi, skb);
1998
1999 }
2000
2001 /**
2002 * rx_eth - process an ingress ethernet packet
2003 * @adap: the adapter
2004 * @rq: the response queue that received the packet
2005 * @skb: the packet
2006 * @pad: amount of padding at the start of the buffer
2007 *
2008 * Process an ingress ethernet pakcet and deliver it to the stack.
2009 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2010 * if it was immediate data in a response.
2011 */
2012 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2013 struct sk_buff *skb, int pad, int lro)
2014 {
2015 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2016 struct sge_qset *qs = rspq_to_qset(rq);
2017 struct port_info *pi;
2018
2019 skb_pull(skb, sizeof(*p) + pad);
2020 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2021 pi = netdev_priv(skb->dev);
2022 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2023 p->csum == htons(0xffff) && !p->fragment) {
2024 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2025 skb->ip_summed = CHECKSUM_UNNECESSARY;
2026 } else
2027 skb_checksum_none_assert(skb);
2028 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2029
2030 if (unlikely(p->vlan_valid)) {
2031 struct vlan_group *grp = pi->vlan_grp;
2032
2033 qs->port_stats[SGE_PSTAT_VLANEX]++;
2034 if (likely(grp))
2035 if (lro)
2036 vlan_gro_receive(&qs->napi, grp,
2037 ntohs(p->vlan), skb);
2038 else {
2039 if (unlikely(pi->iscsic.flags)) {
2040 unsigned short vtag = ntohs(p->vlan) &
2041 VLAN_VID_MASK;
2042 skb->dev = vlan_group_get_device(grp,
2043 vtag);
2044 cxgb3_process_iscsi_prov_pack(pi, skb);
2045 }
2046 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2047 rq->polling);
2048 }
2049 else
2050 dev_kfree_skb_any(skb);
2051 } else if (rq->polling) {
2052 if (lro)
2053 napi_gro_receive(&qs->napi, skb);
2054 else {
2055 if (unlikely(pi->iscsic.flags))
2056 cxgb3_process_iscsi_prov_pack(pi, skb);
2057 netif_receive_skb(skb);
2058 }
2059 } else
2060 netif_rx(skb);
2061 }
2062
2063 static inline int is_eth_tcp(u32 rss)
2064 {
2065 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2066 }
2067
2068 /**
2069 * lro_add_page - add a page chunk to an LRO session
2070 * @adap: the adapter
2071 * @qs: the associated queue set
2072 * @fl: the free list containing the page chunk to add
2073 * @len: packet length
2074 * @complete: Indicates the last fragment of a frame
2075 *
2076 * Add a received packet contained in a page chunk to an existing LRO
2077 * session.
2078 */
2079 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2080 struct sge_fl *fl, int len, int complete)
2081 {
2082 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2083 struct port_info *pi = netdev_priv(qs->netdev);
2084 struct sk_buff *skb = NULL;
2085 struct cpl_rx_pkt *cpl;
2086 struct skb_frag_struct *rx_frag;
2087 int nr_frags;
2088 int offset = 0;
2089
2090 if (!qs->nomem) {
2091 skb = napi_get_frags(&qs->napi);
2092 qs->nomem = !skb;
2093 }
2094
2095 fl->credits--;
2096
2097 pci_dma_sync_single_for_cpu(adap->pdev,
2098 dma_unmap_addr(sd, dma_addr),
2099 fl->buf_size - SGE_PG_RSVD,
2100 PCI_DMA_FROMDEVICE);
2101
2102 (*sd->pg_chunk.p_cnt)--;
2103 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2104 pci_unmap_page(adap->pdev,
2105 sd->pg_chunk.mapping,
2106 fl->alloc_size,
2107 PCI_DMA_FROMDEVICE);
2108
2109 if (!skb) {
2110 put_page(sd->pg_chunk.page);
2111 if (complete)
2112 qs->nomem = 0;
2113 return;
2114 }
2115
2116 rx_frag = skb_shinfo(skb)->frags;
2117 nr_frags = skb_shinfo(skb)->nr_frags;
2118
2119 if (!nr_frags) {
2120 offset = 2 + sizeof(struct cpl_rx_pkt);
2121 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2122
2123 if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2124 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2125 skb->ip_summed = CHECKSUM_UNNECESSARY;
2126 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2127 } else
2128 skb->ip_summed = CHECKSUM_NONE;
2129 } else
2130 cpl = qs->lro_va;
2131
2132 len -= offset;
2133
2134 rx_frag += nr_frags;
2135 rx_frag->page = sd->pg_chunk.page;
2136 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2137 rx_frag->size = len;
2138
2139 skb->len += len;
2140 skb->data_len += len;
2141 skb->truesize += len;
2142 skb_shinfo(skb)->nr_frags++;
2143
2144 if (!complete)
2145 return;
2146
2147 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2148
2149 if (unlikely(cpl->vlan_valid)) {
2150 struct vlan_group *grp = pi->vlan_grp;
2151
2152 if (likely(grp != NULL)) {
2153 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan));
2154 return;
2155 }
2156 }
2157 napi_gro_frags(&qs->napi);
2158 }
2159
2160 /**
2161 * handle_rsp_cntrl_info - handles control information in a response
2162 * @qs: the queue set corresponding to the response
2163 * @flags: the response control flags
2164 *
2165 * Handles the control information of an SGE response, such as GTS
2166 * indications and completion credits for the queue set's Tx queues.
2167 * HW coalesces credits, we don't do any extra SW coalescing.
2168 */
2169 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2170 {
2171 unsigned int credits;
2172
2173 #if USE_GTS
2174 if (flags & F_RSPD_TXQ0_GTS)
2175 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2176 #endif
2177
2178 credits = G_RSPD_TXQ0_CR(flags);
2179 if (credits)
2180 qs->txq[TXQ_ETH].processed += credits;
2181
2182 credits = G_RSPD_TXQ2_CR(flags);
2183 if (credits)
2184 qs->txq[TXQ_CTRL].processed += credits;
2185
2186 # if USE_GTS
2187 if (flags & F_RSPD_TXQ1_GTS)
2188 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2189 # endif
2190 credits = G_RSPD_TXQ1_CR(flags);
2191 if (credits)
2192 qs->txq[TXQ_OFLD].processed += credits;
2193 }
2194
2195 /**
2196 * check_ring_db - check if we need to ring any doorbells
2197 * @adapter: the adapter
2198 * @qs: the queue set whose Tx queues are to be examined
2199 * @sleeping: indicates which Tx queue sent GTS
2200 *
2201 * Checks if some of a queue set's Tx queues need to ring their doorbells
2202 * to resume transmission after idling while they still have unprocessed
2203 * descriptors.
2204 */
2205 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2206 unsigned int sleeping)
2207 {
2208 if (sleeping & F_RSPD_TXQ0_GTS) {
2209 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2210
2211 if (txq->cleaned + txq->in_use != txq->processed &&
2212 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2213 set_bit(TXQ_RUNNING, &txq->flags);
2214 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2215 V_EGRCNTX(txq->cntxt_id));
2216 }
2217 }
2218
2219 if (sleeping & F_RSPD_TXQ1_GTS) {
2220 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2221
2222 if (txq->cleaned + txq->in_use != txq->processed &&
2223 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2224 set_bit(TXQ_RUNNING, &txq->flags);
2225 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2226 V_EGRCNTX(txq->cntxt_id));
2227 }
2228 }
2229 }
2230
2231 /**
2232 * is_new_response - check if a response is newly written
2233 * @r: the response descriptor
2234 * @q: the response queue
2235 *
2236 * Returns true if a response descriptor contains a yet unprocessed
2237 * response.
2238 */
2239 static inline int is_new_response(const struct rsp_desc *r,
2240 const struct sge_rspq *q)
2241 {
2242 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2243 }
2244
2245 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2246 {
2247 q->pg_skb = NULL;
2248 q->rx_recycle_buf = 0;
2249 }
2250
2251 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2252 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2253 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2254 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2255 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2256
2257 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2258 #define NOMEM_INTR_DELAY 2500
2259
2260 /**
2261 * process_responses - process responses from an SGE response queue
2262 * @adap: the adapter
2263 * @qs: the queue set to which the response queue belongs
2264 * @budget: how many responses can be processed in this round
2265 *
2266 * Process responses from an SGE response queue up to the supplied budget.
2267 * Responses include received packets as well as credits and other events
2268 * for the queues that belong to the response queue's queue set.
2269 * A negative budget is effectively unlimited.
2270 *
2271 * Additionally choose the interrupt holdoff time for the next interrupt
2272 * on this queue. If the system is under memory shortage use a fairly
2273 * long delay to help recovery.
2274 */
2275 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2276 int budget)
2277 {
2278 struct sge_rspq *q = &qs->rspq;
2279 struct rsp_desc *r = &q->desc[q->cidx];
2280 int budget_left = budget;
2281 unsigned int sleeping = 0;
2282 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2283 int ngathered = 0;
2284
2285 q->next_holdoff = q->holdoff_tmr;
2286
2287 while (likely(budget_left && is_new_response(r, q))) {
2288 int packet_complete, eth, ethpad = 2;
2289 int lro = !!(qs->netdev->features & NETIF_F_GRO);
2290 struct sk_buff *skb = NULL;
2291 u32 len, flags;
2292 __be32 rss_hi, rss_lo;
2293
2294 rmb();
2295 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2296 rss_hi = *(const __be32 *)r;
2297 rss_lo = r->rss_hdr.rss_hash_val;
2298 flags = ntohl(r->flags);
2299
2300 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2301 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2302 if (!skb)
2303 goto no_mem;
2304
2305 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2306 skb->data[0] = CPL_ASYNC_NOTIF;
2307 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2308 q->async_notif++;
2309 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2310 skb = get_imm_packet(r);
2311 if (unlikely(!skb)) {
2312 no_mem:
2313 q->next_holdoff = NOMEM_INTR_DELAY;
2314 q->nomem++;
2315 /* consume one credit since we tried */
2316 budget_left--;
2317 break;
2318 }
2319 q->imm_data++;
2320 ethpad = 0;
2321 } else if ((len = ntohl(r->len_cq)) != 0) {
2322 struct sge_fl *fl;
2323
2324 lro &= eth && is_eth_tcp(rss_hi);
2325
2326 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2327 if (fl->use_pages) {
2328 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2329
2330 prefetch(addr);
2331 #if L1_CACHE_BYTES < 128
2332 prefetch(addr + L1_CACHE_BYTES);
2333 #endif
2334 __refill_fl(adap, fl);
2335 if (lro > 0) {
2336 lro_add_page(adap, qs, fl,
2337 G_RSPD_LEN(len),
2338 flags & F_RSPD_EOP);
2339 goto next_fl;
2340 }
2341
2342 skb = get_packet_pg(adap, fl, q,
2343 G_RSPD_LEN(len),
2344 eth ?
2345 SGE_RX_DROP_THRES : 0);
2346 q->pg_skb = skb;
2347 } else
2348 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2349 eth ? SGE_RX_DROP_THRES : 0);
2350 if (unlikely(!skb)) {
2351 if (!eth)
2352 goto no_mem;
2353 q->rx_drops++;
2354 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2355 __skb_pull(skb, 2);
2356 next_fl:
2357 if (++fl->cidx == fl->size)
2358 fl->cidx = 0;
2359 } else
2360 q->pure_rsps++;
2361
2362 if (flags & RSPD_CTRL_MASK) {
2363 sleeping |= flags & RSPD_GTS_MASK;
2364 handle_rsp_cntrl_info(qs, flags);
2365 }
2366
2367 r++;
2368 if (unlikely(++q->cidx == q->size)) {
2369 q->cidx = 0;
2370 q->gen ^= 1;
2371 r = q->desc;
2372 }
2373 prefetch(r);
2374
2375 if (++q->credits >= (q->size / 4)) {
2376 refill_rspq(adap, q, q->credits);
2377 q->credits = 0;
2378 }
2379
2380 packet_complete = flags &
2381 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2382 F_RSPD_ASYNC_NOTIF);
2383
2384 if (skb != NULL && packet_complete) {
2385 if (eth)
2386 rx_eth(adap, q, skb, ethpad, lro);
2387 else {
2388 q->offload_pkts++;
2389 /* Preserve the RSS info in csum & priority */
2390 skb->csum = rss_hi;
2391 skb->priority = rss_lo;
2392 ngathered = rx_offload(&adap->tdev, q, skb,
2393 offload_skbs,
2394 ngathered);
2395 }
2396
2397 if (flags & F_RSPD_EOP)
2398 clear_rspq_bufstate(q);
2399 }
2400 --budget_left;
2401 }
2402
2403 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2404
2405 if (sleeping)
2406 check_ring_db(adap, qs, sleeping);
2407
2408 smp_mb(); /* commit Tx queue .processed updates */
2409 if (unlikely(qs->txq_stopped != 0))
2410 restart_tx(qs);
2411
2412 budget -= budget_left;
2413 return budget;
2414 }
2415
2416 static inline int is_pure_response(const struct rsp_desc *r)
2417 {
2418 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2419
2420 return (n | r->len_cq) == 0;
2421 }
2422
2423 /**
2424 * napi_rx_handler - the NAPI handler for Rx processing
2425 * @napi: the napi instance
2426 * @budget: how many packets we can process in this round
2427 *
2428 * Handler for new data events when using NAPI.
2429 */
2430 static int napi_rx_handler(struct napi_struct *napi, int budget)
2431 {
2432 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2433 struct adapter *adap = qs->adap;
2434 int work_done = process_responses(adap, qs, budget);
2435
2436 if (likely(work_done < budget)) {
2437 napi_complete(napi);
2438
2439 /*
2440 * Because we don't atomically flush the following
2441 * write it is possible that in very rare cases it can
2442 * reach the device in a way that races with a new
2443 * response being written plus an error interrupt
2444 * causing the NAPI interrupt handler below to return
2445 * unhandled status to the OS. To protect against
2446 * this would require flushing the write and doing
2447 * both the write and the flush with interrupts off.
2448 * Way too expensive and unjustifiable given the
2449 * rarity of the race.
2450 *
2451 * The race cannot happen at all with MSI-X.
2452 */
2453 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2454 V_NEWTIMER(qs->rspq.next_holdoff) |
2455 V_NEWINDEX(qs->rspq.cidx));
2456 }
2457 return work_done;
2458 }
2459
2460 /*
2461 * Returns true if the device is already scheduled for polling.
2462 */
2463 static inline int napi_is_scheduled(struct napi_struct *napi)
2464 {
2465 return test_bit(NAPI_STATE_SCHED, &napi->state);
2466 }
2467
2468 /**
2469 * process_pure_responses - process pure responses from a response queue
2470 * @adap: the adapter
2471 * @qs: the queue set owning the response queue
2472 * @r: the first pure response to process
2473 *
2474 * A simpler version of process_responses() that handles only pure (i.e.,
2475 * non data-carrying) responses. Such respones are too light-weight to
2476 * justify calling a softirq under NAPI, so we handle them specially in
2477 * the interrupt handler. The function is called with a pointer to a
2478 * response, which the caller must ensure is a valid pure response.
2479 *
2480 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2481 */
2482 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2483 struct rsp_desc *r)
2484 {
2485 struct sge_rspq *q = &qs->rspq;
2486 unsigned int sleeping = 0;
2487
2488 do {
2489 u32 flags = ntohl(r->flags);
2490
2491 r++;
2492 if (unlikely(++q->cidx == q->size)) {
2493 q->cidx = 0;
2494 q->gen ^= 1;
2495 r = q->desc;
2496 }
2497 prefetch(r);
2498
2499 if (flags & RSPD_CTRL_MASK) {
2500 sleeping |= flags & RSPD_GTS_MASK;
2501 handle_rsp_cntrl_info(qs, flags);
2502 }
2503
2504 q->pure_rsps++;
2505 if (++q->credits >= (q->size / 4)) {
2506 refill_rspq(adap, q, q->credits);
2507 q->credits = 0;
2508 }
2509 if (!is_new_response(r, q))
2510 break;
2511 rmb();
2512 } while (is_pure_response(r));
2513
2514 if (sleeping)
2515 check_ring_db(adap, qs, sleeping);
2516
2517 smp_mb(); /* commit Tx queue .processed updates */
2518 if (unlikely(qs->txq_stopped != 0))
2519 restart_tx(qs);
2520
2521 return is_new_response(r, q);
2522 }
2523
2524 /**
2525 * handle_responses - decide what to do with new responses in NAPI mode
2526 * @adap: the adapter
2527 * @q: the response queue
2528 *
2529 * This is used by the NAPI interrupt handlers to decide what to do with
2530 * new SGE responses. If there are no new responses it returns -1. If
2531 * there are new responses and they are pure (i.e., non-data carrying)
2532 * it handles them straight in hard interrupt context as they are very
2533 * cheap and don't deliver any packets. Finally, if there are any data
2534 * signaling responses it schedules the NAPI handler. Returns 1 if it
2535 * schedules NAPI, 0 if all new responses were pure.
2536 *
2537 * The caller must ascertain NAPI is not already running.
2538 */
2539 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2540 {
2541 struct sge_qset *qs = rspq_to_qset(q);
2542 struct rsp_desc *r = &q->desc[q->cidx];
2543
2544 if (!is_new_response(r, q))
2545 return -1;
2546 rmb();
2547 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2548 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2549 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2550 return 0;
2551 }
2552 napi_schedule(&qs->napi);
2553 return 1;
2554 }
2555
2556 /*
2557 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2558 * (i.e., response queue serviced in hard interrupt).
2559 */
2560 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2561 {
2562 struct sge_qset *qs = cookie;
2563 struct adapter *adap = qs->adap;
2564 struct sge_rspq *q = &qs->rspq;
2565
2566 spin_lock(&q->lock);
2567 if (process_responses(adap, qs, -1) == 0)
2568 q->unhandled_irqs++;
2569 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2570 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2571 spin_unlock(&q->lock);
2572 return IRQ_HANDLED;
2573 }
2574
2575 /*
2576 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2577 * (i.e., response queue serviced by NAPI polling).
2578 */
2579 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2580 {
2581 struct sge_qset *qs = cookie;
2582 struct sge_rspq *q = &qs->rspq;
2583
2584 spin_lock(&q->lock);
2585
2586 if (handle_responses(qs->adap, q) < 0)
2587 q->unhandled_irqs++;
2588 spin_unlock(&q->lock);
2589 return IRQ_HANDLED;
2590 }
2591
2592 /*
2593 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2594 * SGE response queues as well as error and other async events as they all use
2595 * the same MSI vector. We use one SGE response queue per port in this mode
2596 * and protect all response queues with queue 0's lock.
2597 */
2598 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2599 {
2600 int new_packets = 0;
2601 struct adapter *adap = cookie;
2602 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2603
2604 spin_lock(&q->lock);
2605
2606 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2607 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2608 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2609 new_packets = 1;
2610 }
2611
2612 if (adap->params.nports == 2 &&
2613 process_responses(adap, &adap->sge.qs[1], -1)) {
2614 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2615
2616 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2617 V_NEWTIMER(q1->next_holdoff) |
2618 V_NEWINDEX(q1->cidx));
2619 new_packets = 1;
2620 }
2621
2622 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2623 q->unhandled_irqs++;
2624
2625 spin_unlock(&q->lock);
2626 return IRQ_HANDLED;
2627 }
2628
2629 static int rspq_check_napi(struct sge_qset *qs)
2630 {
2631 struct sge_rspq *q = &qs->rspq;
2632
2633 if (!napi_is_scheduled(&qs->napi) &&
2634 is_new_response(&q->desc[q->cidx], q)) {
2635 napi_schedule(&qs->napi);
2636 return 1;
2637 }
2638 return 0;
2639 }
2640
2641 /*
2642 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2643 * by NAPI polling). Handles data events from SGE response queues as well as
2644 * error and other async events as they all use the same MSI vector. We use
2645 * one SGE response queue per port in this mode and protect all response
2646 * queues with queue 0's lock.
2647 */
2648 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2649 {
2650 int new_packets;
2651 struct adapter *adap = cookie;
2652 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2653
2654 spin_lock(&q->lock);
2655
2656 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2657 if (adap->params.nports == 2)
2658 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2659 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2660 q->unhandled_irqs++;
2661
2662 spin_unlock(&q->lock);
2663 return IRQ_HANDLED;
2664 }
2665
2666 /*
2667 * A helper function that processes responses and issues GTS.
2668 */
2669 static inline int process_responses_gts(struct adapter *adap,
2670 struct sge_rspq *rq)
2671 {
2672 int work;
2673
2674 work = process_responses(adap, rspq_to_qset(rq), -1);
2675 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2676 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2677 return work;
2678 }
2679
2680 /*
2681 * The legacy INTx interrupt handler. This needs to handle data events from
2682 * SGE response queues as well as error and other async events as they all use
2683 * the same interrupt pin. We use one SGE response queue per port in this mode
2684 * and protect all response queues with queue 0's lock.
2685 */
2686 static irqreturn_t t3_intr(int irq, void *cookie)
2687 {
2688 int work_done, w0, w1;
2689 struct adapter *adap = cookie;
2690 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2691 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2692
2693 spin_lock(&q0->lock);
2694
2695 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2696 w1 = adap->params.nports == 2 &&
2697 is_new_response(&q1->desc[q1->cidx], q1);
2698
2699 if (likely(w0 | w1)) {
2700 t3_write_reg(adap, A_PL_CLI, 0);
2701 t3_read_reg(adap, A_PL_CLI); /* flush */
2702
2703 if (likely(w0))
2704 process_responses_gts(adap, q0);
2705
2706 if (w1)
2707 process_responses_gts(adap, q1);
2708
2709 work_done = w0 | w1;
2710 } else
2711 work_done = t3_slow_intr_handler(adap);
2712
2713 spin_unlock(&q0->lock);
2714 return IRQ_RETVAL(work_done != 0);
2715 }
2716
2717 /*
2718 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2719 * Handles data events from SGE response queues as well as error and other
2720 * async events as they all use the same interrupt pin. We use one SGE
2721 * response queue per port in this mode and protect all response queues with
2722 * queue 0's lock.
2723 */
2724 static irqreturn_t t3b_intr(int irq, void *cookie)
2725 {
2726 u32 map;
2727 struct adapter *adap = cookie;
2728 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2729
2730 t3_write_reg(adap, A_PL_CLI, 0);
2731 map = t3_read_reg(adap, A_SG_DATA_INTR);
2732
2733 if (unlikely(!map)) /* shared interrupt, most likely */
2734 return IRQ_NONE;
2735
2736 spin_lock(&q0->lock);
2737
2738 if (unlikely(map & F_ERRINTR))
2739 t3_slow_intr_handler(adap);
2740
2741 if (likely(map & 1))
2742 process_responses_gts(adap, q0);
2743
2744 if (map & 2)
2745 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2746
2747 spin_unlock(&q0->lock);
2748 return IRQ_HANDLED;
2749 }
2750
2751 /*
2752 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2753 * Handles data events from SGE response queues as well as error and other
2754 * async events as they all use the same interrupt pin. We use one SGE
2755 * response queue per port in this mode and protect all response queues with
2756 * queue 0's lock.
2757 */
2758 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2759 {
2760 u32 map;
2761 struct adapter *adap = cookie;
2762 struct sge_qset *qs0 = &adap->sge.qs[0];
2763 struct sge_rspq *q0 = &qs0->rspq;
2764
2765 t3_write_reg(adap, A_PL_CLI, 0);
2766 map = t3_read_reg(adap, A_SG_DATA_INTR);
2767
2768 if (unlikely(!map)) /* shared interrupt, most likely */
2769 return IRQ_NONE;
2770
2771 spin_lock(&q0->lock);
2772
2773 if (unlikely(map & F_ERRINTR))
2774 t3_slow_intr_handler(adap);
2775
2776 if (likely(map & 1))
2777 napi_schedule(&qs0->napi);
2778
2779 if (map & 2)
2780 napi_schedule(&adap->sge.qs[1].napi);
2781
2782 spin_unlock(&q0->lock);
2783 return IRQ_HANDLED;
2784 }
2785
2786 /**
2787 * t3_intr_handler - select the top-level interrupt handler
2788 * @adap: the adapter
2789 * @polling: whether using NAPI to service response queues
2790 *
2791 * Selects the top-level interrupt handler based on the type of interrupts
2792 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2793 * response queues.
2794 */
2795 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2796 {
2797 if (adap->flags & USING_MSIX)
2798 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2799 if (adap->flags & USING_MSI)
2800 return polling ? t3_intr_msi_napi : t3_intr_msi;
2801 if (adap->params.rev > 0)
2802 return polling ? t3b_intr_napi : t3b_intr;
2803 return t3_intr;
2804 }
2805
2806 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2807 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2808 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2809 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2810 F_HIRCQPARITYERROR)
2811 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2812 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2813 F_RSPQDISABLED)
2814
2815 /**
2816 * t3_sge_err_intr_handler - SGE async event interrupt handler
2817 * @adapter: the adapter
2818 *
2819 * Interrupt handler for SGE asynchronous (non-data) events.
2820 */
2821 void t3_sge_err_intr_handler(struct adapter *adapter)
2822 {
2823 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2824 ~F_FLEMPTY;
2825
2826 if (status & SGE_PARERR)
2827 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2828 status & SGE_PARERR);
2829 if (status & SGE_FRAMINGERR)
2830 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2831 status & SGE_FRAMINGERR);
2832
2833 if (status & F_RSPQCREDITOVERFOW)
2834 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2835
2836 if (status & F_RSPQDISABLED) {
2837 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2838
2839 CH_ALERT(adapter,
2840 "packet delivered to disabled response queue "
2841 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2842 }
2843
2844 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2845 queue_work(cxgb3_wq, &adapter->db_drop_task);
2846
2847 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2848 queue_work(cxgb3_wq, &adapter->db_full_task);
2849
2850 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2851 queue_work(cxgb3_wq, &adapter->db_empty_task);
2852
2853 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2854 if (status & SGE_FATALERR)
2855 t3_fatal_err(adapter);
2856 }
2857
2858 /**
2859 * sge_timer_tx - perform periodic maintenance of an SGE qset
2860 * @data: the SGE queue set to maintain
2861 *
2862 * Runs periodically from a timer to perform maintenance of an SGE queue
2863 * set. It performs two tasks:
2864 *
2865 * Cleans up any completed Tx descriptors that may still be pending.
2866 * Normal descriptor cleanup happens when new packets are added to a Tx
2867 * queue so this timer is relatively infrequent and does any cleanup only
2868 * if the Tx queue has not seen any new packets in a while. We make a
2869 * best effort attempt to reclaim descriptors, in that we don't wait
2870 * around if we cannot get a queue's lock (which most likely is because
2871 * someone else is queueing new packets and so will also handle the clean
2872 * up). Since control queues use immediate data exclusively we don't
2873 * bother cleaning them up here.
2874 *
2875 */
2876 static void sge_timer_tx(unsigned long data)
2877 {
2878 struct sge_qset *qs = (struct sge_qset *)data;
2879 struct port_info *pi = netdev_priv(qs->netdev);
2880 struct adapter *adap = pi->adapter;
2881 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2882 unsigned long next_period;
2883
2884 if (__netif_tx_trylock(qs->tx_q)) {
2885 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2886 TX_RECLAIM_TIMER_CHUNK);
2887 __netif_tx_unlock(qs->tx_q);
2888 }
2889
2890 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2891 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2892 TX_RECLAIM_TIMER_CHUNK);
2893 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2894 }
2895
2896 next_period = TX_RECLAIM_PERIOD >>
2897 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2898 TX_RECLAIM_TIMER_CHUNK);
2899 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2900 }
2901
2902 /*
2903 * sge_timer_rx - perform periodic maintenance of an SGE qset
2904 * @data: the SGE queue set to maintain
2905 *
2906 * a) Replenishes Rx queues that have run out due to memory shortage.
2907 * Normally new Rx buffers are added when existing ones are consumed but
2908 * when out of memory a queue can become empty. We try to add only a few
2909 * buffers here, the queue will be replenished fully as these new buffers
2910 * are used up if memory shortage has subsided.
2911 *
2912 * b) Return coalesced response queue credits in case a response queue is
2913 * starved.
2914 *
2915 */
2916 static void sge_timer_rx(unsigned long data)
2917 {
2918 spinlock_t *lock;
2919 struct sge_qset *qs = (struct sge_qset *)data;
2920 struct port_info *pi = netdev_priv(qs->netdev);
2921 struct adapter *adap = pi->adapter;
2922 u32 status;
2923
2924 lock = adap->params.rev > 0 ?
2925 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2926
2927 if (!spin_trylock_irq(lock))
2928 goto out;
2929
2930 if (napi_is_scheduled(&qs->napi))
2931 goto unlock;
2932
2933 if (adap->params.rev < 4) {
2934 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2935
2936 if (status & (1 << qs->rspq.cntxt_id)) {
2937 qs->rspq.starved++;
2938 if (qs->rspq.credits) {
2939 qs->rspq.credits--;
2940 refill_rspq(adap, &qs->rspq, 1);
2941 qs->rspq.restarted++;
2942 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2943 1 << qs->rspq.cntxt_id);
2944 }
2945 }
2946 }
2947
2948 if (qs->fl[0].credits < qs->fl[0].size)
2949 __refill_fl(adap, &qs->fl[0]);
2950 if (qs->fl[1].credits < qs->fl[1].size)
2951 __refill_fl(adap, &qs->fl[1]);
2952
2953 unlock:
2954 spin_unlock_irq(lock);
2955 out:
2956 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2957 }
2958
2959 /**
2960 * t3_update_qset_coalesce - update coalescing settings for a queue set
2961 * @qs: the SGE queue set
2962 * @p: new queue set parameters
2963 *
2964 * Update the coalescing settings for an SGE queue set. Nothing is done
2965 * if the queue set is not initialized yet.
2966 */
2967 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2968 {
2969 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2970 qs->rspq.polling = p->polling;
2971 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2972 }
2973
2974 /**
2975 * t3_sge_alloc_qset - initialize an SGE queue set
2976 * @adapter: the adapter
2977 * @id: the queue set id
2978 * @nports: how many Ethernet ports will be using this queue set
2979 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2980 * @p: configuration parameters for this queue set
2981 * @ntxq: number of Tx queues for the queue set
2982 * @netdev: net device associated with this queue set
2983 * @netdevq: net device TX queue associated with this queue set
2984 *
2985 * Allocate resources and initialize an SGE queue set. A queue set
2986 * comprises a response queue, two Rx free-buffer queues, and up to 3
2987 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2988 * queue, offload queue, and control queue.
2989 */
2990 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2991 int irq_vec_idx, const struct qset_params *p,
2992 int ntxq, struct net_device *dev,
2993 struct netdev_queue *netdevq)
2994 {
2995 int i, avail, ret = -ENOMEM;
2996 struct sge_qset *q = &adapter->sge.qs[id];
2997
2998 init_qset_cntxt(q, id);
2999 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
3000 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
3001
3002 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3003 sizeof(struct rx_desc),
3004 sizeof(struct rx_sw_desc),
3005 &q->fl[0].phys_addr, &q->fl[0].sdesc);
3006 if (!q->fl[0].desc)
3007 goto err;
3008
3009 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3010 sizeof(struct rx_desc),
3011 sizeof(struct rx_sw_desc),
3012 &q->fl[1].phys_addr, &q->fl[1].sdesc);
3013 if (!q->fl[1].desc)
3014 goto err;
3015
3016 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3017 sizeof(struct rsp_desc), 0,
3018 &q->rspq.phys_addr, NULL);
3019 if (!q->rspq.desc)
3020 goto err;
3021
3022 for (i = 0; i < ntxq; ++i) {
3023 /*
3024 * The control queue always uses immediate data so does not
3025 * need to keep track of any sk_buffs.
3026 */
3027 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3028
3029 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3030 sizeof(struct tx_desc), sz,
3031 &q->txq[i].phys_addr,
3032 &q->txq[i].sdesc);
3033 if (!q->txq[i].desc)
3034 goto err;
3035
3036 q->txq[i].gen = 1;
3037 q->txq[i].size = p->txq_size[i];
3038 spin_lock_init(&q->txq[i].lock);
3039 skb_queue_head_init(&q->txq[i].sendq);
3040 }
3041
3042 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3043 (unsigned long)q);
3044 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3045 (unsigned long)q);
3046
3047 q->fl[0].gen = q->fl[1].gen = 1;
3048 q->fl[0].size = p->fl_size;
3049 q->fl[1].size = p->jumbo_size;
3050
3051 q->rspq.gen = 1;
3052 q->rspq.size = p->rspq_size;
3053 spin_lock_init(&q->rspq.lock);
3054 skb_queue_head_init(&q->rspq.rx_queue);
3055
3056 q->txq[TXQ_ETH].stop_thres = nports *
3057 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3058
3059 #if FL0_PG_CHUNK_SIZE > 0
3060 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3061 #else
3062 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3063 #endif
3064 #if FL1_PG_CHUNK_SIZE > 0
3065 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3066 #else
3067 q->fl[1].buf_size = is_offload(adapter) ?
3068 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3069 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3070 #endif
3071
3072 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3073 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3074 q->fl[0].order = FL0_PG_ORDER;
3075 q->fl[1].order = FL1_PG_ORDER;
3076 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3077 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3078
3079 spin_lock_irq(&adapter->sge.reg_lock);
3080
3081 /* FL threshold comparison uses < */
3082 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3083 q->rspq.phys_addr, q->rspq.size,
3084 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3085 if (ret)
3086 goto err_unlock;
3087
3088 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3089 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3090 q->fl[i].phys_addr, q->fl[i].size,
3091 q->fl[i].buf_size - SGE_PG_RSVD,
3092 p->cong_thres, 1, 0);
3093 if (ret)
3094 goto err_unlock;
3095 }
3096
3097 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3098 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3099 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3100 1, 0);
3101 if (ret)
3102 goto err_unlock;
3103
3104 if (ntxq > 1) {
3105 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3106 USE_GTS, SGE_CNTXT_OFLD, id,
3107 q->txq[TXQ_OFLD].phys_addr,
3108 q->txq[TXQ_OFLD].size, 0, 1, 0);
3109 if (ret)
3110 goto err_unlock;
3111 }
3112
3113 if (ntxq > 2) {
3114 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3115 SGE_CNTXT_CTRL, id,
3116 q->txq[TXQ_CTRL].phys_addr,
3117 q->txq[TXQ_CTRL].size,
3118 q->txq[TXQ_CTRL].token, 1, 0);
3119 if (ret)
3120 goto err_unlock;
3121 }
3122
3123 spin_unlock_irq(&adapter->sge.reg_lock);
3124
3125 q->adap = adapter;
3126 q->netdev = dev;
3127 q->tx_q = netdevq;
3128 t3_update_qset_coalesce(q, p);
3129
3130 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3131 GFP_KERNEL | __GFP_COMP);
3132 if (!avail) {
3133 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3134 goto err;
3135 }
3136 if (avail < q->fl[0].size)
3137 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3138 avail);
3139
3140 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3141 GFP_KERNEL | __GFP_COMP);
3142 if (avail < q->fl[1].size)
3143 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3144 avail);
3145 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3146
3147 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3148 V_NEWTIMER(q->rspq.holdoff_tmr));
3149
3150 return 0;
3151
3152 err_unlock:
3153 spin_unlock_irq(&adapter->sge.reg_lock);
3154 err:
3155 t3_free_qset(adapter, q);
3156 return ret;
3157 }
3158
3159 /**
3160 * t3_start_sge_timers - start SGE timer call backs
3161 * @adap: the adapter
3162 *
3163 * Starts each SGE queue set's timer call back
3164 */
3165 void t3_start_sge_timers(struct adapter *adap)
3166 {
3167 int i;
3168
3169 for (i = 0; i < SGE_QSETS; ++i) {
3170 struct sge_qset *q = &adap->sge.qs[i];
3171
3172 if (q->tx_reclaim_timer.function)
3173 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3174
3175 if (q->rx_reclaim_timer.function)
3176 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3177 }
3178 }
3179
3180 /**
3181 * t3_stop_sge_timers - stop SGE timer call backs
3182 * @adap: the adapter
3183 *
3184 * Stops each SGE queue set's timer call back
3185 */
3186 void t3_stop_sge_timers(struct adapter *adap)
3187 {
3188 int i;
3189
3190 for (i = 0; i < SGE_QSETS; ++i) {
3191 struct sge_qset *q = &adap->sge.qs[i];
3192
3193 if (q->tx_reclaim_timer.function)
3194 del_timer_sync(&q->tx_reclaim_timer);
3195 if (q->rx_reclaim_timer.function)
3196 del_timer_sync(&q->rx_reclaim_timer);
3197 }
3198 }
3199
3200 /**
3201 * t3_free_sge_resources - free SGE resources
3202 * @adap: the adapter
3203 *
3204 * Frees resources used by the SGE queue sets.
3205 */
3206 void t3_free_sge_resources(struct adapter *adap)
3207 {
3208 int i;
3209
3210 for (i = 0; i < SGE_QSETS; ++i)
3211 t3_free_qset(adap, &adap->sge.qs[i]);
3212 }
3213
3214 /**
3215 * t3_sge_start - enable SGE
3216 * @adap: the adapter
3217 *
3218 * Enables the SGE for DMAs. This is the last step in starting packet
3219 * transfers.
3220 */
3221 void t3_sge_start(struct adapter *adap)
3222 {
3223 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3224 }
3225
3226 /**
3227 * t3_sge_stop - disable SGE operation
3228 * @adap: the adapter
3229 *
3230 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3231 * from error interrupts) or from normal process context. In the latter
3232 * case it also disables any pending queue restart tasklets. Note that
3233 * if it is called in interrupt context it cannot disable the restart
3234 * tasklets as it cannot wait, however the tasklets will have no effect
3235 * since the doorbells are disabled and the driver will call this again
3236 * later from process context, at which time the tasklets will be stopped
3237 * if they are still running.
3238 */
3239 void t3_sge_stop(struct adapter *adap)
3240 {
3241 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3242 if (!in_interrupt()) {
3243 int i;
3244
3245 for (i = 0; i < SGE_QSETS; ++i) {
3246 struct sge_qset *qs = &adap->sge.qs[i];
3247
3248 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3249 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3250 }
3251 }
3252 }
3253
3254 /**
3255 * t3_sge_init - initialize SGE
3256 * @adap: the adapter
3257 * @p: the SGE parameters
3258 *
3259 * Performs SGE initialization needed every time after a chip reset.
3260 * We do not initialize any of the queue sets here, instead the driver
3261 * top-level must request those individually. We also do not enable DMA
3262 * here, that should be done after the queues have been set up.
3263 */
3264 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3265 {
3266 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3267
3268 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3269 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3270 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3271 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3272 #if SGE_NUM_GENBITS == 1
3273 ctrl |= F_EGRGENCTRL;
3274 #endif
3275 if (adap->params.rev > 0) {
3276 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3277 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3278 }
3279 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3280 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3281 V_LORCQDRBTHRSH(512));
3282 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3283 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3284 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3285 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3286 adap->params.rev < T3_REV_C ? 1000 : 500);
3287 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3288 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3289 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3290 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3291 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3292 }
3293
3294 /**
3295 * t3_sge_prep - one-time SGE initialization
3296 * @adap: the associated adapter
3297 * @p: SGE parameters
3298 *
3299 * Performs one-time initialization of SGE SW state. Includes determining
3300 * defaults for the assorted SGE parameters, which admins can change until
3301 * they are used to initialize the SGE.
3302 */
3303 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3304 {
3305 int i;
3306
3307 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3309
3310 for (i = 0; i < SGE_QSETS; ++i) {
3311 struct qset_params *q = p->qset + i;
3312
3313 q->polling = adap->params.rev > 0;
3314 q->coalesce_usecs = 5;
3315 q->rspq_size = 1024;
3316 q->fl_size = 1024;
3317 q->jumbo_size = 512;
3318 q->txq_size[TXQ_ETH] = 1024;
3319 q->txq_size[TXQ_OFLD] = 1024;
3320 q->txq_size[TXQ_CTRL] = 256;
3321 q->cong_thres = 0;
3322 }
3323
3324 spin_lock_init(&adap->sge.reg_lock);
3325 }
This page took 0.147404 seconds and 5 git commands to generate.