arch/arm/mach-omap2/dma.c: Convert IS_ERR result to PTR_ERR
[deliverable/linux.git] / drivers / net / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if_vlan.h>
45 #include <linux/init.h>
46 #include <linux/log2.h>
47 #include <linux/mdio.h>
48 #include <linux/module.h>
49 #include <linux/moduleparam.h>
50 #include <linux/mutex.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/aer.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <asm/uaccess.h>
63
64 #include "cxgb4.h"
65 #include "t4_regs.h"
66 #include "t4_msg.h"
67 #include "t4fw_api.h"
68 #include "l2t.h"
69
70 #define DRV_VERSION "1.3.0-ko"
71 #define DRV_DESC "Chelsio T4 Network Driver"
72
73 /*
74 * Max interrupt hold-off timer value in us. Queues fall back to this value
75 * under extreme memory pressure so it's largish to give the system time to
76 * recover.
77 */
78 #define MAX_SGE_TIMERVAL 200U
79
80 #ifdef CONFIG_PCI_IOV
81 /*
82 * Virtual Function provisioning constants. We need two extra Ingress Queues
83 * with Interrupt capability to serve as the VF's Firmware Event Queue and
84 * Forwarded Interrupt Queue (when using MSI mode) -- neither will have Free
85 * Lists associated with them). For each Ethernet/Control Egress Queue and
86 * for each Free List, we need an Egress Context.
87 */
88 enum {
89 VFRES_NPORTS = 1, /* # of "ports" per VF */
90 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */
91
92 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */
93 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */
94 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
95 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */
96 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */
97 VFRES_TC = 0, /* PCI-E traffic class */
98 VFRES_NEXACTF = 16, /* # of exact MPS filters */
99
100 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
101 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
102 };
103
104 /*
105 * Provide a Port Access Rights Mask for the specified PF/VF. This is very
106 * static and likely not to be useful in the long run. We really need to
107 * implement some form of persistent configuration which the firmware
108 * controls.
109 */
110 static unsigned int pfvfres_pmask(struct adapter *adapter,
111 unsigned int pf, unsigned int vf)
112 {
113 unsigned int portn, portvec;
114
115 /*
116 * Give PF's access to all of the ports.
117 */
118 if (vf == 0)
119 return FW_PFVF_CMD_PMASK_MASK;
120
121 /*
122 * For VFs, we'll assign them access to the ports based purely on the
123 * PF. We assign active ports in order, wrapping around if there are
124 * fewer active ports than PFs: e.g. active port[pf % nports].
125 * Unfortunately the adapter's port_info structs haven't been
126 * initialized yet so we have to compute this.
127 */
128 if (adapter->params.nports == 0)
129 return 0;
130
131 portn = pf % adapter->params.nports;
132 portvec = adapter->params.portvec;
133 for (;;) {
134 /*
135 * Isolate the lowest set bit in the port vector. If we're at
136 * the port number that we want, return that as the pmask.
137 * otherwise mask that bit out of the port vector and
138 * decrement our port number ...
139 */
140 unsigned int pmask = portvec ^ (portvec & (portvec-1));
141 if (portn == 0)
142 return pmask;
143 portn--;
144 portvec &= ~pmask;
145 }
146 /*NOTREACHED*/
147 }
148 #endif
149
150 enum {
151 MEMWIN0_APERTURE = 65536,
152 MEMWIN0_BASE = 0x30000,
153 MEMWIN1_APERTURE = 32768,
154 MEMWIN1_BASE = 0x28000,
155 MEMWIN2_APERTURE = 2048,
156 MEMWIN2_BASE = 0x1b800,
157 };
158
159 enum {
160 MAX_TXQ_ENTRIES = 16384,
161 MAX_CTRL_TXQ_ENTRIES = 1024,
162 MAX_RSPQ_ENTRIES = 16384,
163 MAX_RX_BUFFERS = 16384,
164 MIN_TXQ_ENTRIES = 32,
165 MIN_CTRL_TXQ_ENTRIES = 32,
166 MIN_RSPQ_ENTRIES = 128,
167 MIN_FL_ENTRIES = 16
168 };
169
170 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
171 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
172 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
173
174 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
175
176 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
177 CH_DEVICE(0xa000, 0), /* PE10K */
178 CH_DEVICE(0x4001, -1),
179 CH_DEVICE(0x4002, -1),
180 CH_DEVICE(0x4003, -1),
181 CH_DEVICE(0x4004, -1),
182 CH_DEVICE(0x4005, -1),
183 CH_DEVICE(0x4006, -1),
184 CH_DEVICE(0x4007, -1),
185 CH_DEVICE(0x4008, -1),
186 CH_DEVICE(0x4009, -1),
187 CH_DEVICE(0x400a, -1),
188 CH_DEVICE(0x4401, 4),
189 CH_DEVICE(0x4402, 4),
190 CH_DEVICE(0x4403, 4),
191 CH_DEVICE(0x4404, 4),
192 CH_DEVICE(0x4405, 4),
193 CH_DEVICE(0x4406, 4),
194 CH_DEVICE(0x4407, 4),
195 CH_DEVICE(0x4408, 4),
196 CH_DEVICE(0x4409, 4),
197 CH_DEVICE(0x440a, 4),
198 { 0, }
199 };
200
201 #define FW_FNAME "cxgb4/t4fw.bin"
202
203 MODULE_DESCRIPTION(DRV_DESC);
204 MODULE_AUTHOR("Chelsio Communications");
205 MODULE_LICENSE("Dual BSD/GPL");
206 MODULE_VERSION(DRV_VERSION);
207 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
208 MODULE_FIRMWARE(FW_FNAME);
209
210 static int dflt_msg_enable = DFLT_MSG_ENABLE;
211
212 module_param(dflt_msg_enable, int, 0644);
213 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
214
215 /*
216 * The driver uses the best interrupt scheme available on a platform in the
217 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
218 * of these schemes the driver may consider as follows:
219 *
220 * msi = 2: choose from among all three options
221 * msi = 1: only consider MSI and INTx interrupts
222 * msi = 0: force INTx interrupts
223 */
224 static int msi = 2;
225
226 module_param(msi, int, 0644);
227 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
228
229 /*
230 * Queue interrupt hold-off timer values. Queues default to the first of these
231 * upon creation.
232 */
233 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
234
235 module_param_array(intr_holdoff, uint, NULL, 0644);
236 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
237 "0..4 in microseconds");
238
239 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
240
241 module_param_array(intr_cnt, uint, NULL, 0644);
242 MODULE_PARM_DESC(intr_cnt,
243 "thresholds 1..3 for queue interrupt packet counters");
244
245 static int vf_acls;
246
247 #ifdef CONFIG_PCI_IOV
248 module_param(vf_acls, bool, 0644);
249 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
250
251 static unsigned int num_vf[4];
252
253 module_param_array(num_vf, uint, NULL, 0644);
254 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
255 #endif
256
257 static struct dentry *cxgb4_debugfs_root;
258
259 static LIST_HEAD(adapter_list);
260 static DEFINE_MUTEX(uld_mutex);
261 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
262 static const char *uld_str[] = { "RDMA", "iSCSI" };
263
264 static void link_report(struct net_device *dev)
265 {
266 if (!netif_carrier_ok(dev))
267 netdev_info(dev, "link down\n");
268 else {
269 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
270
271 const char *s = "10Mbps";
272 const struct port_info *p = netdev_priv(dev);
273
274 switch (p->link_cfg.speed) {
275 case SPEED_10000:
276 s = "10Gbps";
277 break;
278 case SPEED_1000:
279 s = "1000Mbps";
280 break;
281 case SPEED_100:
282 s = "100Mbps";
283 break;
284 }
285
286 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
287 fc[p->link_cfg.fc]);
288 }
289 }
290
291 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
292 {
293 struct net_device *dev = adapter->port[port_id];
294
295 /* Skip changes from disabled ports. */
296 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
297 if (link_stat)
298 netif_carrier_on(dev);
299 else
300 netif_carrier_off(dev);
301
302 link_report(dev);
303 }
304 }
305
306 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
307 {
308 static const char *mod_str[] = {
309 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310 };
311
312 const struct net_device *dev = adap->port[port_id];
313 const struct port_info *pi = netdev_priv(dev);
314
315 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316 netdev_info(dev, "port module unplugged\n");
317 else if (pi->mod_type < ARRAY_SIZE(mod_str))
318 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319 }
320
321 /*
322 * Configure the exact and hash address filters to handle a port's multicast
323 * and secondary unicast MAC addresses.
324 */
325 static int set_addr_filters(const struct net_device *dev, bool sleep)
326 {
327 u64 mhash = 0;
328 u64 uhash = 0;
329 bool free = true;
330 u16 filt_idx[7];
331 const u8 *addr[7];
332 int ret, naddr = 0;
333 const struct netdev_hw_addr *ha;
334 int uc_cnt = netdev_uc_count(dev);
335 int mc_cnt = netdev_mc_count(dev);
336 const struct port_info *pi = netdev_priv(dev);
337 unsigned int mb = pi->adapter->fn;
338
339 /* first do the secondary unicast addresses */
340 netdev_for_each_uc_addr(ha, dev) {
341 addr[naddr++] = ha->addr;
342 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
343 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
344 naddr, addr, filt_idx, &uhash, sleep);
345 if (ret < 0)
346 return ret;
347
348 free = false;
349 naddr = 0;
350 }
351 }
352
353 /* next set up the multicast addresses */
354 netdev_for_each_mc_addr(ha, dev) {
355 addr[naddr++] = ha->addr;
356 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
357 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
358 naddr, addr, filt_idx, &mhash, sleep);
359 if (ret < 0)
360 return ret;
361
362 free = false;
363 naddr = 0;
364 }
365 }
366
367 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
368 uhash | mhash, sleep);
369 }
370
371 /*
372 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
373 * If @mtu is -1 it is left unchanged.
374 */
375 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
376 {
377 int ret;
378 struct port_info *pi = netdev_priv(dev);
379
380 ret = set_addr_filters(dev, sleep_ok);
381 if (ret == 0)
382 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
383 (dev->flags & IFF_PROMISC) ? 1 : 0,
384 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
385 sleep_ok);
386 return ret;
387 }
388
389 /**
390 * link_start - enable a port
391 * @dev: the port to enable
392 *
393 * Performs the MAC and PHY actions needed to enable a port.
394 */
395 static int link_start(struct net_device *dev)
396 {
397 int ret;
398 struct port_info *pi = netdev_priv(dev);
399 unsigned int mb = pi->adapter->fn;
400
401 /*
402 * We do not set address filters and promiscuity here, the stack does
403 * that step explicitly.
404 */
405 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
406 !!(dev->features & NETIF_F_HW_VLAN_RX), true);
407 if (ret == 0) {
408 ret = t4_change_mac(pi->adapter, mb, pi->viid,
409 pi->xact_addr_filt, dev->dev_addr, true,
410 true);
411 if (ret >= 0) {
412 pi->xact_addr_filt = ret;
413 ret = 0;
414 }
415 }
416 if (ret == 0)
417 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
418 &pi->link_cfg);
419 if (ret == 0)
420 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
421 return ret;
422 }
423
424 /*
425 * Response queue handler for the FW event queue.
426 */
427 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
428 const struct pkt_gl *gl)
429 {
430 u8 opcode = ((const struct rss_header *)rsp)->opcode;
431
432 rsp++; /* skip RSS header */
433 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
434 const struct cpl_sge_egr_update *p = (void *)rsp;
435 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
436 struct sge_txq *txq;
437
438 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
439 txq->restarts++;
440 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
441 struct sge_eth_txq *eq;
442
443 eq = container_of(txq, struct sge_eth_txq, q);
444 netif_tx_wake_queue(eq->txq);
445 } else {
446 struct sge_ofld_txq *oq;
447
448 oq = container_of(txq, struct sge_ofld_txq, q);
449 tasklet_schedule(&oq->qresume_tsk);
450 }
451 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
452 const struct cpl_fw6_msg *p = (void *)rsp;
453
454 if (p->type == 0)
455 t4_handle_fw_rpl(q->adap, p->data);
456 } else if (opcode == CPL_L2T_WRITE_RPL) {
457 const struct cpl_l2t_write_rpl *p = (void *)rsp;
458
459 do_l2t_write_rpl(q->adap, p);
460 } else
461 dev_err(q->adap->pdev_dev,
462 "unexpected CPL %#x on FW event queue\n", opcode);
463 return 0;
464 }
465
466 /**
467 * uldrx_handler - response queue handler for ULD queues
468 * @q: the response queue that received the packet
469 * @rsp: the response queue descriptor holding the offload message
470 * @gl: the gather list of packet fragments
471 *
472 * Deliver an ingress offload packet to a ULD. All processing is done by
473 * the ULD, we just maintain statistics.
474 */
475 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
476 const struct pkt_gl *gl)
477 {
478 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
479
480 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
481 rxq->stats.nomem++;
482 return -1;
483 }
484 if (gl == NULL)
485 rxq->stats.imm++;
486 else if (gl == CXGB4_MSG_AN)
487 rxq->stats.an++;
488 else
489 rxq->stats.pkts++;
490 return 0;
491 }
492
493 static void disable_msi(struct adapter *adapter)
494 {
495 if (adapter->flags & USING_MSIX) {
496 pci_disable_msix(adapter->pdev);
497 adapter->flags &= ~USING_MSIX;
498 } else if (adapter->flags & USING_MSI) {
499 pci_disable_msi(adapter->pdev);
500 adapter->flags &= ~USING_MSI;
501 }
502 }
503
504 /*
505 * Interrupt handler for non-data events used with MSI-X.
506 */
507 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
508 {
509 struct adapter *adap = cookie;
510
511 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
512 if (v & PFSW) {
513 adap->swintr = 1;
514 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
515 }
516 t4_slow_intr_handler(adap);
517 return IRQ_HANDLED;
518 }
519
520 /*
521 * Name the MSI-X interrupts.
522 */
523 static void name_msix_vecs(struct adapter *adap)
524 {
525 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
526
527 /* non-data interrupts */
528 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
529
530 /* FW events */
531 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
532 adap->port[0]->name);
533
534 /* Ethernet queues */
535 for_each_port(adap, j) {
536 struct net_device *d = adap->port[j];
537 const struct port_info *pi = netdev_priv(d);
538
539 for (i = 0; i < pi->nqsets; i++, msi_idx++)
540 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
541 d->name, i);
542 }
543
544 /* offload queues */
545 for_each_ofldrxq(&adap->sge, i)
546 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
547 adap->port[0]->name, i);
548
549 for_each_rdmarxq(&adap->sge, i)
550 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
551 adap->port[0]->name, i);
552 }
553
554 static int request_msix_queue_irqs(struct adapter *adap)
555 {
556 struct sge *s = &adap->sge;
557 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;
558
559 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
560 adap->msix_info[1].desc, &s->fw_evtq);
561 if (err)
562 return err;
563
564 for_each_ethrxq(s, ethqidx) {
565 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
566 adap->msix_info[msi].desc,
567 &s->ethrxq[ethqidx].rspq);
568 if (err)
569 goto unwind;
570 msi++;
571 }
572 for_each_ofldrxq(s, ofldqidx) {
573 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
574 adap->msix_info[msi].desc,
575 &s->ofldrxq[ofldqidx].rspq);
576 if (err)
577 goto unwind;
578 msi++;
579 }
580 for_each_rdmarxq(s, rdmaqidx) {
581 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
582 adap->msix_info[msi].desc,
583 &s->rdmarxq[rdmaqidx].rspq);
584 if (err)
585 goto unwind;
586 msi++;
587 }
588 return 0;
589
590 unwind:
591 while (--rdmaqidx >= 0)
592 free_irq(adap->msix_info[--msi].vec,
593 &s->rdmarxq[rdmaqidx].rspq);
594 while (--ofldqidx >= 0)
595 free_irq(adap->msix_info[--msi].vec,
596 &s->ofldrxq[ofldqidx].rspq);
597 while (--ethqidx >= 0)
598 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
599 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
600 return err;
601 }
602
603 static void free_msix_queue_irqs(struct adapter *adap)
604 {
605 int i, msi = 2;
606 struct sge *s = &adap->sge;
607
608 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
609 for_each_ethrxq(s, i)
610 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
611 for_each_ofldrxq(s, i)
612 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
613 for_each_rdmarxq(s, i)
614 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
615 }
616
617 /**
618 * write_rss - write the RSS table for a given port
619 * @pi: the port
620 * @queues: array of queue indices for RSS
621 *
622 * Sets up the portion of the HW RSS table for the port's VI to distribute
623 * packets to the Rx queues in @queues.
624 */
625 static int write_rss(const struct port_info *pi, const u16 *queues)
626 {
627 u16 *rss;
628 int i, err;
629 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
630
631 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
632 if (!rss)
633 return -ENOMEM;
634
635 /* map the queue indices to queue ids */
636 for (i = 0; i < pi->rss_size; i++, queues++)
637 rss[i] = q[*queues].rspq.abs_id;
638
639 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
640 pi->rss_size, rss, pi->rss_size);
641 kfree(rss);
642 return err;
643 }
644
645 /**
646 * setup_rss - configure RSS
647 * @adap: the adapter
648 *
649 * Sets up RSS for each port.
650 */
651 static int setup_rss(struct adapter *adap)
652 {
653 int i, err;
654
655 for_each_port(adap, i) {
656 const struct port_info *pi = adap2pinfo(adap, i);
657
658 err = write_rss(pi, pi->rss);
659 if (err)
660 return err;
661 }
662 return 0;
663 }
664
665 /*
666 * Return the channel of the ingress queue with the given qid.
667 */
668 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
669 {
670 qid -= p->ingr_start;
671 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
672 }
673
674 /*
675 * Wait until all NAPI handlers are descheduled.
676 */
677 static void quiesce_rx(struct adapter *adap)
678 {
679 int i;
680
681 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
682 struct sge_rspq *q = adap->sge.ingr_map[i];
683
684 if (q && q->handler)
685 napi_disable(&q->napi);
686 }
687 }
688
689 /*
690 * Enable NAPI scheduling and interrupt generation for all Rx queues.
691 */
692 static void enable_rx(struct adapter *adap)
693 {
694 int i;
695
696 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
697 struct sge_rspq *q = adap->sge.ingr_map[i];
698
699 if (!q)
700 continue;
701 if (q->handler)
702 napi_enable(&q->napi);
703 /* 0-increment GTS to start the timer and enable interrupts */
704 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
705 SEINTARM(q->intr_params) |
706 INGRESSQID(q->cntxt_id));
707 }
708 }
709
710 /**
711 * setup_sge_queues - configure SGE Tx/Rx/response queues
712 * @adap: the adapter
713 *
714 * Determines how many sets of SGE queues to use and initializes them.
715 * We support multiple queue sets per port if we have MSI-X, otherwise
716 * just one queue set per port.
717 */
718 static int setup_sge_queues(struct adapter *adap)
719 {
720 int err, msi_idx, i, j;
721 struct sge *s = &adap->sge;
722
723 bitmap_zero(s->starving_fl, MAX_EGRQ);
724 bitmap_zero(s->txq_maperr, MAX_EGRQ);
725
726 if (adap->flags & USING_MSIX)
727 msi_idx = 1; /* vector 0 is for non-queue interrupts */
728 else {
729 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
730 NULL, NULL);
731 if (err)
732 return err;
733 msi_idx = -((int)s->intrq.abs_id + 1);
734 }
735
736 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
737 msi_idx, NULL, fwevtq_handler);
738 if (err) {
739 freeout: t4_free_sge_resources(adap);
740 return err;
741 }
742
743 for_each_port(adap, i) {
744 struct net_device *dev = adap->port[i];
745 struct port_info *pi = netdev_priv(dev);
746 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
747 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
748
749 for (j = 0; j < pi->nqsets; j++, q++) {
750 if (msi_idx > 0)
751 msi_idx++;
752 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
753 msi_idx, &q->fl,
754 t4_ethrx_handler);
755 if (err)
756 goto freeout;
757 q->rspq.idx = j;
758 memset(&q->stats, 0, sizeof(q->stats));
759 }
760 for (j = 0; j < pi->nqsets; j++, t++) {
761 err = t4_sge_alloc_eth_txq(adap, t, dev,
762 netdev_get_tx_queue(dev, j),
763 s->fw_evtq.cntxt_id);
764 if (err)
765 goto freeout;
766 }
767 }
768
769 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
770 for_each_ofldrxq(s, i) {
771 struct sge_ofld_rxq *q = &s->ofldrxq[i];
772 struct net_device *dev = adap->port[i / j];
773
774 if (msi_idx > 0)
775 msi_idx++;
776 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
777 &q->fl, uldrx_handler);
778 if (err)
779 goto freeout;
780 memset(&q->stats, 0, sizeof(q->stats));
781 s->ofld_rxq[i] = q->rspq.abs_id;
782 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
783 s->fw_evtq.cntxt_id);
784 if (err)
785 goto freeout;
786 }
787
788 for_each_rdmarxq(s, i) {
789 struct sge_ofld_rxq *q = &s->rdmarxq[i];
790
791 if (msi_idx > 0)
792 msi_idx++;
793 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
794 msi_idx, &q->fl, uldrx_handler);
795 if (err)
796 goto freeout;
797 memset(&q->stats, 0, sizeof(q->stats));
798 s->rdma_rxq[i] = q->rspq.abs_id;
799 }
800
801 for_each_port(adap, i) {
802 /*
803 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
804 * have RDMA queues, and that's the right value.
805 */
806 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
807 s->fw_evtq.cntxt_id,
808 s->rdmarxq[i].rspq.cntxt_id);
809 if (err)
810 goto freeout;
811 }
812
813 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
814 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
815 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
816 return 0;
817 }
818
819 /*
820 * Returns 0 if new FW was successfully loaded, a positive errno if a load was
821 * started but failed, and a negative errno if flash load couldn't start.
822 */
823 static int upgrade_fw(struct adapter *adap)
824 {
825 int ret;
826 u32 vers;
827 const struct fw_hdr *hdr;
828 const struct firmware *fw;
829 struct device *dev = adap->pdev_dev;
830
831 ret = request_firmware(&fw, FW_FNAME, dev);
832 if (ret < 0) {
833 dev_err(dev, "unable to load firmware image " FW_FNAME
834 ", error %d\n", ret);
835 return ret;
836 }
837
838 hdr = (const struct fw_hdr *)fw->data;
839 vers = ntohl(hdr->fw_ver);
840 if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
841 ret = -EINVAL; /* wrong major version, won't do */
842 goto out;
843 }
844
845 /*
846 * If the flash FW is unusable or we found something newer, load it.
847 */
848 if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
849 vers > adap->params.fw_vers) {
850 ret = -t4_load_fw(adap, fw->data, fw->size);
851 if (!ret)
852 dev_info(dev, "firmware upgraded to version %pI4 from "
853 FW_FNAME "\n", &hdr->fw_ver);
854 }
855 out: release_firmware(fw);
856 return ret;
857 }
858
859 /*
860 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
861 * The allocated memory is cleared.
862 */
863 void *t4_alloc_mem(size_t size)
864 {
865 void *p = kzalloc(size, GFP_KERNEL);
866
867 if (!p)
868 p = vzalloc(size);
869 return p;
870 }
871
872 /*
873 * Free memory allocated through alloc_mem().
874 */
875 static void t4_free_mem(void *addr)
876 {
877 if (is_vmalloc_addr(addr))
878 vfree(addr);
879 else
880 kfree(addr);
881 }
882
883 static inline int is_offload(const struct adapter *adap)
884 {
885 return adap->params.offload;
886 }
887
888 /*
889 * Implementation of ethtool operations.
890 */
891
892 static u32 get_msglevel(struct net_device *dev)
893 {
894 return netdev2adap(dev)->msg_enable;
895 }
896
897 static void set_msglevel(struct net_device *dev, u32 val)
898 {
899 netdev2adap(dev)->msg_enable = val;
900 }
901
902 static char stats_strings[][ETH_GSTRING_LEN] = {
903 "TxOctetsOK ",
904 "TxFramesOK ",
905 "TxBroadcastFrames ",
906 "TxMulticastFrames ",
907 "TxUnicastFrames ",
908 "TxErrorFrames ",
909
910 "TxFrames64 ",
911 "TxFrames65To127 ",
912 "TxFrames128To255 ",
913 "TxFrames256To511 ",
914 "TxFrames512To1023 ",
915 "TxFrames1024To1518 ",
916 "TxFrames1519ToMax ",
917
918 "TxFramesDropped ",
919 "TxPauseFrames ",
920 "TxPPP0Frames ",
921 "TxPPP1Frames ",
922 "TxPPP2Frames ",
923 "TxPPP3Frames ",
924 "TxPPP4Frames ",
925 "TxPPP5Frames ",
926 "TxPPP6Frames ",
927 "TxPPP7Frames ",
928
929 "RxOctetsOK ",
930 "RxFramesOK ",
931 "RxBroadcastFrames ",
932 "RxMulticastFrames ",
933 "RxUnicastFrames ",
934
935 "RxFramesTooLong ",
936 "RxJabberErrors ",
937 "RxFCSErrors ",
938 "RxLengthErrors ",
939 "RxSymbolErrors ",
940 "RxRuntFrames ",
941
942 "RxFrames64 ",
943 "RxFrames65To127 ",
944 "RxFrames128To255 ",
945 "RxFrames256To511 ",
946 "RxFrames512To1023 ",
947 "RxFrames1024To1518 ",
948 "RxFrames1519ToMax ",
949
950 "RxPauseFrames ",
951 "RxPPP0Frames ",
952 "RxPPP1Frames ",
953 "RxPPP2Frames ",
954 "RxPPP3Frames ",
955 "RxPPP4Frames ",
956 "RxPPP5Frames ",
957 "RxPPP6Frames ",
958 "RxPPP7Frames ",
959
960 "RxBG0FramesDropped ",
961 "RxBG1FramesDropped ",
962 "RxBG2FramesDropped ",
963 "RxBG3FramesDropped ",
964 "RxBG0FramesTrunc ",
965 "RxBG1FramesTrunc ",
966 "RxBG2FramesTrunc ",
967 "RxBG3FramesTrunc ",
968
969 "TSO ",
970 "TxCsumOffload ",
971 "RxCsumGood ",
972 "VLANextractions ",
973 "VLANinsertions ",
974 "GROpackets ",
975 "GROmerged ",
976 };
977
978 static int get_sset_count(struct net_device *dev, int sset)
979 {
980 switch (sset) {
981 case ETH_SS_STATS:
982 return ARRAY_SIZE(stats_strings);
983 default:
984 return -EOPNOTSUPP;
985 }
986 }
987
988 #define T4_REGMAP_SIZE (160 * 1024)
989
990 static int get_regs_len(struct net_device *dev)
991 {
992 return T4_REGMAP_SIZE;
993 }
994
995 static int get_eeprom_len(struct net_device *dev)
996 {
997 return EEPROMSIZE;
998 }
999
1000 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1001 {
1002 struct adapter *adapter = netdev2adap(dev);
1003
1004 strcpy(info->driver, KBUILD_MODNAME);
1005 strcpy(info->version, DRV_VERSION);
1006 strcpy(info->bus_info, pci_name(adapter->pdev));
1007
1008 if (!adapter->params.fw_vers)
1009 strcpy(info->fw_version, "N/A");
1010 else
1011 snprintf(info->fw_version, sizeof(info->fw_version),
1012 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1013 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1014 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1015 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1016 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1017 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1018 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1019 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1020 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1021 }
1022
1023 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1024 {
1025 if (stringset == ETH_SS_STATS)
1026 memcpy(data, stats_strings, sizeof(stats_strings));
1027 }
1028
1029 /*
1030 * port stats maintained per queue of the port. They should be in the same
1031 * order as in stats_strings above.
1032 */
1033 struct queue_port_stats {
1034 u64 tso;
1035 u64 tx_csum;
1036 u64 rx_csum;
1037 u64 vlan_ex;
1038 u64 vlan_ins;
1039 u64 gro_pkts;
1040 u64 gro_merged;
1041 };
1042
1043 static void collect_sge_port_stats(const struct adapter *adap,
1044 const struct port_info *p, struct queue_port_stats *s)
1045 {
1046 int i;
1047 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1048 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1049
1050 memset(s, 0, sizeof(*s));
1051 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1052 s->tso += tx->tso;
1053 s->tx_csum += tx->tx_cso;
1054 s->rx_csum += rx->stats.rx_cso;
1055 s->vlan_ex += rx->stats.vlan_ex;
1056 s->vlan_ins += tx->vlan_ins;
1057 s->gro_pkts += rx->stats.lro_pkts;
1058 s->gro_merged += rx->stats.lro_merged;
1059 }
1060 }
1061
1062 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1063 u64 *data)
1064 {
1065 struct port_info *pi = netdev_priv(dev);
1066 struct adapter *adapter = pi->adapter;
1067
1068 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1069
1070 data += sizeof(struct port_stats) / sizeof(u64);
1071 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1072 }
1073
1074 /*
1075 * Return a version number to identify the type of adapter. The scheme is:
1076 * - bits 0..9: chip version
1077 * - bits 10..15: chip revision
1078 * - bits 16..23: register dump version
1079 */
1080 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1081 {
1082 return 4 | (ap->params.rev << 10) | (1 << 16);
1083 }
1084
1085 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1086 unsigned int end)
1087 {
1088 u32 *p = buf + start;
1089
1090 for ( ; start <= end; start += sizeof(u32))
1091 *p++ = t4_read_reg(ap, start);
1092 }
1093
1094 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1095 void *buf)
1096 {
1097 static const unsigned int reg_ranges[] = {
1098 0x1008, 0x1108,
1099 0x1180, 0x11b4,
1100 0x11fc, 0x123c,
1101 0x1300, 0x173c,
1102 0x1800, 0x18fc,
1103 0x3000, 0x30d8,
1104 0x30e0, 0x5924,
1105 0x5960, 0x59d4,
1106 0x5a00, 0x5af8,
1107 0x6000, 0x6098,
1108 0x6100, 0x6150,
1109 0x6200, 0x6208,
1110 0x6240, 0x6248,
1111 0x6280, 0x6338,
1112 0x6370, 0x638c,
1113 0x6400, 0x643c,
1114 0x6500, 0x6524,
1115 0x6a00, 0x6a38,
1116 0x6a60, 0x6a78,
1117 0x6b00, 0x6b84,
1118 0x6bf0, 0x6c84,
1119 0x6cf0, 0x6d84,
1120 0x6df0, 0x6e84,
1121 0x6ef0, 0x6f84,
1122 0x6ff0, 0x7084,
1123 0x70f0, 0x7184,
1124 0x71f0, 0x7284,
1125 0x72f0, 0x7384,
1126 0x73f0, 0x7450,
1127 0x7500, 0x7530,
1128 0x7600, 0x761c,
1129 0x7680, 0x76cc,
1130 0x7700, 0x7798,
1131 0x77c0, 0x77fc,
1132 0x7900, 0x79fc,
1133 0x7b00, 0x7c38,
1134 0x7d00, 0x7efc,
1135 0x8dc0, 0x8e1c,
1136 0x8e30, 0x8e78,
1137 0x8ea0, 0x8f6c,
1138 0x8fc0, 0x9074,
1139 0x90fc, 0x90fc,
1140 0x9400, 0x9458,
1141 0x9600, 0x96bc,
1142 0x9800, 0x9808,
1143 0x9820, 0x983c,
1144 0x9850, 0x9864,
1145 0x9c00, 0x9c6c,
1146 0x9c80, 0x9cec,
1147 0x9d00, 0x9d6c,
1148 0x9d80, 0x9dec,
1149 0x9e00, 0x9e6c,
1150 0x9e80, 0x9eec,
1151 0x9f00, 0x9f6c,
1152 0x9f80, 0x9fec,
1153 0xd004, 0xd03c,
1154 0xdfc0, 0xdfe0,
1155 0xe000, 0xea7c,
1156 0xf000, 0x11190,
1157 0x19040, 0x1906c,
1158 0x19078, 0x19080,
1159 0x1908c, 0x19124,
1160 0x19150, 0x191b0,
1161 0x191d0, 0x191e8,
1162 0x19238, 0x1924c,
1163 0x193f8, 0x19474,
1164 0x19490, 0x194f8,
1165 0x19800, 0x19f30,
1166 0x1a000, 0x1a06c,
1167 0x1a0b0, 0x1a120,
1168 0x1a128, 0x1a138,
1169 0x1a190, 0x1a1c4,
1170 0x1a1fc, 0x1a1fc,
1171 0x1e040, 0x1e04c,
1172 0x1e284, 0x1e28c,
1173 0x1e2c0, 0x1e2c0,
1174 0x1e2e0, 0x1e2e0,
1175 0x1e300, 0x1e384,
1176 0x1e3c0, 0x1e3c8,
1177 0x1e440, 0x1e44c,
1178 0x1e684, 0x1e68c,
1179 0x1e6c0, 0x1e6c0,
1180 0x1e6e0, 0x1e6e0,
1181 0x1e700, 0x1e784,
1182 0x1e7c0, 0x1e7c8,
1183 0x1e840, 0x1e84c,
1184 0x1ea84, 0x1ea8c,
1185 0x1eac0, 0x1eac0,
1186 0x1eae0, 0x1eae0,
1187 0x1eb00, 0x1eb84,
1188 0x1ebc0, 0x1ebc8,
1189 0x1ec40, 0x1ec4c,
1190 0x1ee84, 0x1ee8c,
1191 0x1eec0, 0x1eec0,
1192 0x1eee0, 0x1eee0,
1193 0x1ef00, 0x1ef84,
1194 0x1efc0, 0x1efc8,
1195 0x1f040, 0x1f04c,
1196 0x1f284, 0x1f28c,
1197 0x1f2c0, 0x1f2c0,
1198 0x1f2e0, 0x1f2e0,
1199 0x1f300, 0x1f384,
1200 0x1f3c0, 0x1f3c8,
1201 0x1f440, 0x1f44c,
1202 0x1f684, 0x1f68c,
1203 0x1f6c0, 0x1f6c0,
1204 0x1f6e0, 0x1f6e0,
1205 0x1f700, 0x1f784,
1206 0x1f7c0, 0x1f7c8,
1207 0x1f840, 0x1f84c,
1208 0x1fa84, 0x1fa8c,
1209 0x1fac0, 0x1fac0,
1210 0x1fae0, 0x1fae0,
1211 0x1fb00, 0x1fb84,
1212 0x1fbc0, 0x1fbc8,
1213 0x1fc40, 0x1fc4c,
1214 0x1fe84, 0x1fe8c,
1215 0x1fec0, 0x1fec0,
1216 0x1fee0, 0x1fee0,
1217 0x1ff00, 0x1ff84,
1218 0x1ffc0, 0x1ffc8,
1219 0x20000, 0x2002c,
1220 0x20100, 0x2013c,
1221 0x20190, 0x201c8,
1222 0x20200, 0x20318,
1223 0x20400, 0x20528,
1224 0x20540, 0x20614,
1225 0x21000, 0x21040,
1226 0x2104c, 0x21060,
1227 0x210c0, 0x210ec,
1228 0x21200, 0x21268,
1229 0x21270, 0x21284,
1230 0x212fc, 0x21388,
1231 0x21400, 0x21404,
1232 0x21500, 0x21518,
1233 0x2152c, 0x2153c,
1234 0x21550, 0x21554,
1235 0x21600, 0x21600,
1236 0x21608, 0x21628,
1237 0x21630, 0x2163c,
1238 0x21700, 0x2171c,
1239 0x21780, 0x2178c,
1240 0x21800, 0x21c38,
1241 0x21c80, 0x21d7c,
1242 0x21e00, 0x21e04,
1243 0x22000, 0x2202c,
1244 0x22100, 0x2213c,
1245 0x22190, 0x221c8,
1246 0x22200, 0x22318,
1247 0x22400, 0x22528,
1248 0x22540, 0x22614,
1249 0x23000, 0x23040,
1250 0x2304c, 0x23060,
1251 0x230c0, 0x230ec,
1252 0x23200, 0x23268,
1253 0x23270, 0x23284,
1254 0x232fc, 0x23388,
1255 0x23400, 0x23404,
1256 0x23500, 0x23518,
1257 0x2352c, 0x2353c,
1258 0x23550, 0x23554,
1259 0x23600, 0x23600,
1260 0x23608, 0x23628,
1261 0x23630, 0x2363c,
1262 0x23700, 0x2371c,
1263 0x23780, 0x2378c,
1264 0x23800, 0x23c38,
1265 0x23c80, 0x23d7c,
1266 0x23e00, 0x23e04,
1267 0x24000, 0x2402c,
1268 0x24100, 0x2413c,
1269 0x24190, 0x241c8,
1270 0x24200, 0x24318,
1271 0x24400, 0x24528,
1272 0x24540, 0x24614,
1273 0x25000, 0x25040,
1274 0x2504c, 0x25060,
1275 0x250c0, 0x250ec,
1276 0x25200, 0x25268,
1277 0x25270, 0x25284,
1278 0x252fc, 0x25388,
1279 0x25400, 0x25404,
1280 0x25500, 0x25518,
1281 0x2552c, 0x2553c,
1282 0x25550, 0x25554,
1283 0x25600, 0x25600,
1284 0x25608, 0x25628,
1285 0x25630, 0x2563c,
1286 0x25700, 0x2571c,
1287 0x25780, 0x2578c,
1288 0x25800, 0x25c38,
1289 0x25c80, 0x25d7c,
1290 0x25e00, 0x25e04,
1291 0x26000, 0x2602c,
1292 0x26100, 0x2613c,
1293 0x26190, 0x261c8,
1294 0x26200, 0x26318,
1295 0x26400, 0x26528,
1296 0x26540, 0x26614,
1297 0x27000, 0x27040,
1298 0x2704c, 0x27060,
1299 0x270c0, 0x270ec,
1300 0x27200, 0x27268,
1301 0x27270, 0x27284,
1302 0x272fc, 0x27388,
1303 0x27400, 0x27404,
1304 0x27500, 0x27518,
1305 0x2752c, 0x2753c,
1306 0x27550, 0x27554,
1307 0x27600, 0x27600,
1308 0x27608, 0x27628,
1309 0x27630, 0x2763c,
1310 0x27700, 0x2771c,
1311 0x27780, 0x2778c,
1312 0x27800, 0x27c38,
1313 0x27c80, 0x27d7c,
1314 0x27e00, 0x27e04
1315 };
1316
1317 int i;
1318 struct adapter *ap = netdev2adap(dev);
1319
1320 regs->version = mk_adap_vers(ap);
1321
1322 memset(buf, 0, T4_REGMAP_SIZE);
1323 for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1324 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1325 }
1326
1327 static int restart_autoneg(struct net_device *dev)
1328 {
1329 struct port_info *p = netdev_priv(dev);
1330
1331 if (!netif_running(dev))
1332 return -EAGAIN;
1333 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1334 return -EINVAL;
1335 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1336 return 0;
1337 }
1338
1339 static int identify_port(struct net_device *dev, u32 data)
1340 {
1341 struct adapter *adap = netdev2adap(dev);
1342
1343 if (data == 0)
1344 data = 2; /* default to 2 seconds */
1345
1346 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid,
1347 data * 5);
1348 }
1349
1350 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1351 {
1352 unsigned int v = 0;
1353
1354 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1355 type == FW_PORT_TYPE_BT_XAUI) {
1356 v |= SUPPORTED_TP;
1357 if (caps & FW_PORT_CAP_SPEED_100M)
1358 v |= SUPPORTED_100baseT_Full;
1359 if (caps & FW_PORT_CAP_SPEED_1G)
1360 v |= SUPPORTED_1000baseT_Full;
1361 if (caps & FW_PORT_CAP_SPEED_10G)
1362 v |= SUPPORTED_10000baseT_Full;
1363 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1364 v |= SUPPORTED_Backplane;
1365 if (caps & FW_PORT_CAP_SPEED_1G)
1366 v |= SUPPORTED_1000baseKX_Full;
1367 if (caps & FW_PORT_CAP_SPEED_10G)
1368 v |= SUPPORTED_10000baseKX4_Full;
1369 } else if (type == FW_PORT_TYPE_KR)
1370 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1371 else if (type == FW_PORT_TYPE_BP_AP)
1372 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1373 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1374 else if (type == FW_PORT_TYPE_BP4_AP)
1375 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1376 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1377 SUPPORTED_10000baseKX4_Full;
1378 else if (type == FW_PORT_TYPE_FIBER_XFI ||
1379 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1380 v |= SUPPORTED_FIBRE;
1381
1382 if (caps & FW_PORT_CAP_ANEG)
1383 v |= SUPPORTED_Autoneg;
1384 return v;
1385 }
1386
1387 static unsigned int to_fw_linkcaps(unsigned int caps)
1388 {
1389 unsigned int v = 0;
1390
1391 if (caps & ADVERTISED_100baseT_Full)
1392 v |= FW_PORT_CAP_SPEED_100M;
1393 if (caps & ADVERTISED_1000baseT_Full)
1394 v |= FW_PORT_CAP_SPEED_1G;
1395 if (caps & ADVERTISED_10000baseT_Full)
1396 v |= FW_PORT_CAP_SPEED_10G;
1397 return v;
1398 }
1399
1400 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1401 {
1402 const struct port_info *p = netdev_priv(dev);
1403
1404 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1405 p->port_type == FW_PORT_TYPE_BT_XFI ||
1406 p->port_type == FW_PORT_TYPE_BT_XAUI)
1407 cmd->port = PORT_TP;
1408 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1409 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1410 cmd->port = PORT_FIBRE;
1411 else if (p->port_type == FW_PORT_TYPE_SFP) {
1412 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1413 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1414 cmd->port = PORT_DA;
1415 else
1416 cmd->port = PORT_FIBRE;
1417 } else
1418 cmd->port = PORT_OTHER;
1419
1420 if (p->mdio_addr >= 0) {
1421 cmd->phy_address = p->mdio_addr;
1422 cmd->transceiver = XCVR_EXTERNAL;
1423 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1424 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1425 } else {
1426 cmd->phy_address = 0; /* not really, but no better option */
1427 cmd->transceiver = XCVR_INTERNAL;
1428 cmd->mdio_support = 0;
1429 }
1430
1431 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1432 cmd->advertising = from_fw_linkcaps(p->port_type,
1433 p->link_cfg.advertising);
1434 cmd->speed = netif_carrier_ok(dev) ? p->link_cfg.speed : 0;
1435 cmd->duplex = DUPLEX_FULL;
1436 cmd->autoneg = p->link_cfg.autoneg;
1437 cmd->maxtxpkt = 0;
1438 cmd->maxrxpkt = 0;
1439 return 0;
1440 }
1441
1442 static unsigned int speed_to_caps(int speed)
1443 {
1444 if (speed == SPEED_100)
1445 return FW_PORT_CAP_SPEED_100M;
1446 if (speed == SPEED_1000)
1447 return FW_PORT_CAP_SPEED_1G;
1448 if (speed == SPEED_10000)
1449 return FW_PORT_CAP_SPEED_10G;
1450 return 0;
1451 }
1452
1453 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1454 {
1455 unsigned int cap;
1456 struct port_info *p = netdev_priv(dev);
1457 struct link_config *lc = &p->link_cfg;
1458
1459 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
1460 return -EINVAL;
1461
1462 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1463 /*
1464 * PHY offers a single speed. See if that's what's
1465 * being requested.
1466 */
1467 if (cmd->autoneg == AUTONEG_DISABLE &&
1468 (lc->supported & speed_to_caps(cmd->speed)))
1469 return 0;
1470 return -EINVAL;
1471 }
1472
1473 if (cmd->autoneg == AUTONEG_DISABLE) {
1474 cap = speed_to_caps(cmd->speed);
1475
1476 if (!(lc->supported & cap) || cmd->speed == SPEED_1000 ||
1477 cmd->speed == SPEED_10000)
1478 return -EINVAL;
1479 lc->requested_speed = cap;
1480 lc->advertising = 0;
1481 } else {
1482 cap = to_fw_linkcaps(cmd->advertising);
1483 if (!(lc->supported & cap))
1484 return -EINVAL;
1485 lc->requested_speed = 0;
1486 lc->advertising = cap | FW_PORT_CAP_ANEG;
1487 }
1488 lc->autoneg = cmd->autoneg;
1489
1490 if (netif_running(dev))
1491 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1492 lc);
1493 return 0;
1494 }
1495
1496 static void get_pauseparam(struct net_device *dev,
1497 struct ethtool_pauseparam *epause)
1498 {
1499 struct port_info *p = netdev_priv(dev);
1500
1501 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1502 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1503 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1504 }
1505
1506 static int set_pauseparam(struct net_device *dev,
1507 struct ethtool_pauseparam *epause)
1508 {
1509 struct port_info *p = netdev_priv(dev);
1510 struct link_config *lc = &p->link_cfg;
1511
1512 if (epause->autoneg == AUTONEG_DISABLE)
1513 lc->requested_fc = 0;
1514 else if (lc->supported & FW_PORT_CAP_ANEG)
1515 lc->requested_fc = PAUSE_AUTONEG;
1516 else
1517 return -EINVAL;
1518
1519 if (epause->rx_pause)
1520 lc->requested_fc |= PAUSE_RX;
1521 if (epause->tx_pause)
1522 lc->requested_fc |= PAUSE_TX;
1523 if (netif_running(dev))
1524 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1525 lc);
1526 return 0;
1527 }
1528
1529 static u32 get_rx_csum(struct net_device *dev)
1530 {
1531 struct port_info *p = netdev_priv(dev);
1532
1533 return p->rx_offload & RX_CSO;
1534 }
1535
1536 static int set_rx_csum(struct net_device *dev, u32 data)
1537 {
1538 struct port_info *p = netdev_priv(dev);
1539
1540 if (data)
1541 p->rx_offload |= RX_CSO;
1542 else
1543 p->rx_offload &= ~RX_CSO;
1544 return 0;
1545 }
1546
1547 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1548 {
1549 const struct port_info *pi = netdev_priv(dev);
1550 const struct sge *s = &pi->adapter->sge;
1551
1552 e->rx_max_pending = MAX_RX_BUFFERS;
1553 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1554 e->rx_jumbo_max_pending = 0;
1555 e->tx_max_pending = MAX_TXQ_ENTRIES;
1556
1557 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1558 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1559 e->rx_jumbo_pending = 0;
1560 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1561 }
1562
1563 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1564 {
1565 int i;
1566 const struct port_info *pi = netdev_priv(dev);
1567 struct adapter *adapter = pi->adapter;
1568 struct sge *s = &adapter->sge;
1569
1570 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1571 e->tx_pending > MAX_TXQ_ENTRIES ||
1572 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1573 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1574 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1575 return -EINVAL;
1576
1577 if (adapter->flags & FULL_INIT_DONE)
1578 return -EBUSY;
1579
1580 for (i = 0; i < pi->nqsets; ++i) {
1581 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1582 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1583 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1584 }
1585 return 0;
1586 }
1587
1588 static int closest_timer(const struct sge *s, int time)
1589 {
1590 int i, delta, match = 0, min_delta = INT_MAX;
1591
1592 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1593 delta = time - s->timer_val[i];
1594 if (delta < 0)
1595 delta = -delta;
1596 if (delta < min_delta) {
1597 min_delta = delta;
1598 match = i;
1599 }
1600 }
1601 return match;
1602 }
1603
1604 static int closest_thres(const struct sge *s, int thres)
1605 {
1606 int i, delta, match = 0, min_delta = INT_MAX;
1607
1608 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1609 delta = thres - s->counter_val[i];
1610 if (delta < 0)
1611 delta = -delta;
1612 if (delta < min_delta) {
1613 min_delta = delta;
1614 match = i;
1615 }
1616 }
1617 return match;
1618 }
1619
1620 /*
1621 * Return a queue's interrupt hold-off time in us. 0 means no timer.
1622 */
1623 static unsigned int qtimer_val(const struct adapter *adap,
1624 const struct sge_rspq *q)
1625 {
1626 unsigned int idx = q->intr_params >> 1;
1627
1628 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1629 }
1630
1631 /**
1632 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1633 * @adap: the adapter
1634 * @q: the Rx queue
1635 * @us: the hold-off time in us, or 0 to disable timer
1636 * @cnt: the hold-off packet count, or 0 to disable counter
1637 *
1638 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1639 * one of the two needs to be enabled for the queue to generate interrupts.
1640 */
1641 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1642 unsigned int us, unsigned int cnt)
1643 {
1644 if ((us | cnt) == 0)
1645 cnt = 1;
1646
1647 if (cnt) {
1648 int err;
1649 u32 v, new_idx;
1650
1651 new_idx = closest_thres(&adap->sge, cnt);
1652 if (q->desc && q->pktcnt_idx != new_idx) {
1653 /* the queue has already been created, update it */
1654 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1655 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1656 FW_PARAMS_PARAM_YZ(q->cntxt_id);
1657 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1658 &new_idx);
1659 if (err)
1660 return err;
1661 }
1662 q->pktcnt_idx = new_idx;
1663 }
1664
1665 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1666 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1667 return 0;
1668 }
1669
1670 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1671 {
1672 const struct port_info *pi = netdev_priv(dev);
1673 struct adapter *adap = pi->adapter;
1674
1675 return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1676 c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
1677 }
1678
1679 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1680 {
1681 const struct port_info *pi = netdev_priv(dev);
1682 const struct adapter *adap = pi->adapter;
1683 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1684
1685 c->rx_coalesce_usecs = qtimer_val(adap, rq);
1686 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
1687 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1688 return 0;
1689 }
1690
1691 /**
1692 * eeprom_ptov - translate a physical EEPROM address to virtual
1693 * @phys_addr: the physical EEPROM address
1694 * @fn: the PCI function number
1695 * @sz: size of function-specific area
1696 *
1697 * Translate a physical EEPROM address to virtual. The first 1K is
1698 * accessed through virtual addresses starting at 31K, the rest is
1699 * accessed through virtual addresses starting at 0.
1700 *
1701 * The mapping is as follows:
1702 * [0..1K) -> [31K..32K)
1703 * [1K..1K+A) -> [31K-A..31K)
1704 * [1K+A..ES) -> [0..ES-A-1K)
1705 *
1706 * where A = @fn * @sz, and ES = EEPROM size.
1707 */
1708 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
1709 {
1710 fn *= sz;
1711 if (phys_addr < 1024)
1712 return phys_addr + (31 << 10);
1713 if (phys_addr < 1024 + fn)
1714 return 31744 - fn + phys_addr - 1024;
1715 if (phys_addr < EEPROMSIZE)
1716 return phys_addr - 1024 - fn;
1717 return -EINVAL;
1718 }
1719
1720 /*
1721 * The next two routines implement eeprom read/write from physical addresses.
1722 */
1723 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1724 {
1725 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1726
1727 if (vaddr >= 0)
1728 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1729 return vaddr < 0 ? vaddr : 0;
1730 }
1731
1732 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1733 {
1734 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1735
1736 if (vaddr >= 0)
1737 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1738 return vaddr < 0 ? vaddr : 0;
1739 }
1740
1741 #define EEPROM_MAGIC 0x38E2F10C
1742
1743 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1744 u8 *data)
1745 {
1746 int i, err = 0;
1747 struct adapter *adapter = netdev2adap(dev);
1748
1749 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1750 if (!buf)
1751 return -ENOMEM;
1752
1753 e->magic = EEPROM_MAGIC;
1754 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1755 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1756
1757 if (!err)
1758 memcpy(data, buf + e->offset, e->len);
1759 kfree(buf);
1760 return err;
1761 }
1762
1763 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1764 u8 *data)
1765 {
1766 u8 *buf;
1767 int err = 0;
1768 u32 aligned_offset, aligned_len, *p;
1769 struct adapter *adapter = netdev2adap(dev);
1770
1771 if (eeprom->magic != EEPROM_MAGIC)
1772 return -EINVAL;
1773
1774 aligned_offset = eeprom->offset & ~3;
1775 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1776
1777 if (adapter->fn > 0) {
1778 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
1779
1780 if (aligned_offset < start ||
1781 aligned_offset + aligned_len > start + EEPROMPFSIZE)
1782 return -EPERM;
1783 }
1784
1785 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1786 /*
1787 * RMW possibly needed for first or last words.
1788 */
1789 buf = kmalloc(aligned_len, GFP_KERNEL);
1790 if (!buf)
1791 return -ENOMEM;
1792 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1793 if (!err && aligned_len > 4)
1794 err = eeprom_rd_phys(adapter,
1795 aligned_offset + aligned_len - 4,
1796 (u32 *)&buf[aligned_len - 4]);
1797 if (err)
1798 goto out;
1799 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1800 } else
1801 buf = data;
1802
1803 err = t4_seeprom_wp(adapter, false);
1804 if (err)
1805 goto out;
1806
1807 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1808 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1809 aligned_offset += 4;
1810 }
1811
1812 if (!err)
1813 err = t4_seeprom_wp(adapter, true);
1814 out:
1815 if (buf != data)
1816 kfree(buf);
1817 return err;
1818 }
1819
1820 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1821 {
1822 int ret;
1823 const struct firmware *fw;
1824 struct adapter *adap = netdev2adap(netdev);
1825
1826 ef->data[sizeof(ef->data) - 1] = '\0';
1827 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1828 if (ret < 0)
1829 return ret;
1830
1831 ret = t4_load_fw(adap, fw->data, fw->size);
1832 release_firmware(fw);
1833 if (!ret)
1834 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
1835 return ret;
1836 }
1837
1838 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
1839 #define BCAST_CRC 0xa0ccc1a6
1840
1841 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1842 {
1843 wol->supported = WAKE_BCAST | WAKE_MAGIC;
1844 wol->wolopts = netdev2adap(dev)->wol;
1845 memset(&wol->sopass, 0, sizeof(wol->sopass));
1846 }
1847
1848 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1849 {
1850 int err = 0;
1851 struct port_info *pi = netdev_priv(dev);
1852
1853 if (wol->wolopts & ~WOL_SUPPORTED)
1854 return -EINVAL;
1855 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
1856 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
1857 if (wol->wolopts & WAKE_BCAST) {
1858 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
1859 ~0ULL, 0, false);
1860 if (!err)
1861 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
1862 ~6ULL, ~0ULL, BCAST_CRC, true);
1863 } else
1864 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
1865 return err;
1866 }
1867
1868 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1869
1870 static int set_tso(struct net_device *dev, u32 value)
1871 {
1872 if (value)
1873 dev->features |= TSO_FLAGS;
1874 else
1875 dev->features &= ~TSO_FLAGS;
1876 return 0;
1877 }
1878
1879 static int set_flags(struct net_device *dev, u32 flags)
1880 {
1881 int err;
1882 unsigned long old_feat = dev->features;
1883
1884 err = ethtool_op_set_flags(dev, flags, ETH_FLAG_RXHASH |
1885 ETH_FLAG_RXVLAN | ETH_FLAG_TXVLAN);
1886 if (err)
1887 return err;
1888
1889 if ((old_feat ^ dev->features) & NETIF_F_HW_VLAN_RX) {
1890 const struct port_info *pi = netdev_priv(dev);
1891
1892 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1893 -1, -1, -1, !!(flags & ETH_FLAG_RXVLAN),
1894 true);
1895 if (err)
1896 dev->features = old_feat;
1897 }
1898 return err;
1899 }
1900
1901 static int get_rss_table(struct net_device *dev, struct ethtool_rxfh_indir *p)
1902 {
1903 const struct port_info *pi = netdev_priv(dev);
1904 unsigned int n = min_t(unsigned int, p->size, pi->rss_size);
1905
1906 p->size = pi->rss_size;
1907 while (n--)
1908 p->ring_index[n] = pi->rss[n];
1909 return 0;
1910 }
1911
1912 static int set_rss_table(struct net_device *dev,
1913 const struct ethtool_rxfh_indir *p)
1914 {
1915 unsigned int i;
1916 struct port_info *pi = netdev_priv(dev);
1917
1918 if (p->size != pi->rss_size)
1919 return -EINVAL;
1920 for (i = 0; i < p->size; i++)
1921 if (p->ring_index[i] >= pi->nqsets)
1922 return -EINVAL;
1923 for (i = 0; i < p->size; i++)
1924 pi->rss[i] = p->ring_index[i];
1925 if (pi->adapter->flags & FULL_INIT_DONE)
1926 return write_rss(pi, pi->rss);
1927 return 0;
1928 }
1929
1930 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1931 void *rules)
1932 {
1933 const struct port_info *pi = netdev_priv(dev);
1934
1935 switch (info->cmd) {
1936 case ETHTOOL_GRXFH: {
1937 unsigned int v = pi->rss_mode;
1938
1939 info->data = 0;
1940 switch (info->flow_type) {
1941 case TCP_V4_FLOW:
1942 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
1943 info->data = RXH_IP_SRC | RXH_IP_DST |
1944 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1945 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1946 info->data = RXH_IP_SRC | RXH_IP_DST;
1947 break;
1948 case UDP_V4_FLOW:
1949 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
1950 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1951 info->data = RXH_IP_SRC | RXH_IP_DST |
1952 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1953 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1954 info->data = RXH_IP_SRC | RXH_IP_DST;
1955 break;
1956 case SCTP_V4_FLOW:
1957 case AH_ESP_V4_FLOW:
1958 case IPV4_FLOW:
1959 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1960 info->data = RXH_IP_SRC | RXH_IP_DST;
1961 break;
1962 case TCP_V6_FLOW:
1963 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
1964 info->data = RXH_IP_SRC | RXH_IP_DST |
1965 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1966 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1967 info->data = RXH_IP_SRC | RXH_IP_DST;
1968 break;
1969 case UDP_V6_FLOW:
1970 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
1971 (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1972 info->data = RXH_IP_SRC | RXH_IP_DST |
1973 RXH_L4_B_0_1 | RXH_L4_B_2_3;
1974 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1975 info->data = RXH_IP_SRC | RXH_IP_DST;
1976 break;
1977 case SCTP_V6_FLOW:
1978 case AH_ESP_V6_FLOW:
1979 case IPV6_FLOW:
1980 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1981 info->data = RXH_IP_SRC | RXH_IP_DST;
1982 break;
1983 }
1984 return 0;
1985 }
1986 case ETHTOOL_GRXRINGS:
1987 info->data = pi->nqsets;
1988 return 0;
1989 }
1990 return -EOPNOTSUPP;
1991 }
1992
1993 static struct ethtool_ops cxgb_ethtool_ops = {
1994 .get_settings = get_settings,
1995 .set_settings = set_settings,
1996 .get_drvinfo = get_drvinfo,
1997 .get_msglevel = get_msglevel,
1998 .set_msglevel = set_msglevel,
1999 .get_ringparam = get_sge_param,
2000 .set_ringparam = set_sge_param,
2001 .get_coalesce = get_coalesce,
2002 .set_coalesce = set_coalesce,
2003 .get_eeprom_len = get_eeprom_len,
2004 .get_eeprom = get_eeprom,
2005 .set_eeprom = set_eeprom,
2006 .get_pauseparam = get_pauseparam,
2007 .set_pauseparam = set_pauseparam,
2008 .get_rx_csum = get_rx_csum,
2009 .set_rx_csum = set_rx_csum,
2010 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
2011 .set_sg = ethtool_op_set_sg,
2012 .get_link = ethtool_op_get_link,
2013 .get_strings = get_strings,
2014 .phys_id = identify_port,
2015 .nway_reset = restart_autoneg,
2016 .get_sset_count = get_sset_count,
2017 .get_ethtool_stats = get_stats,
2018 .get_regs_len = get_regs_len,
2019 .get_regs = get_regs,
2020 .get_wol = get_wol,
2021 .set_wol = set_wol,
2022 .set_tso = set_tso,
2023 .set_flags = set_flags,
2024 .get_rxnfc = get_rxnfc,
2025 .get_rxfh_indir = get_rss_table,
2026 .set_rxfh_indir = set_rss_table,
2027 .flash_device = set_flash,
2028 };
2029
2030 /*
2031 * debugfs support
2032 */
2033
2034 static int mem_open(struct inode *inode, struct file *file)
2035 {
2036 file->private_data = inode->i_private;
2037 return 0;
2038 }
2039
2040 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2041 loff_t *ppos)
2042 {
2043 loff_t pos = *ppos;
2044 loff_t avail = file->f_path.dentry->d_inode->i_size;
2045 unsigned int mem = (uintptr_t)file->private_data & 3;
2046 struct adapter *adap = file->private_data - mem;
2047
2048 if (pos < 0)
2049 return -EINVAL;
2050 if (pos >= avail)
2051 return 0;
2052 if (count > avail - pos)
2053 count = avail - pos;
2054
2055 while (count) {
2056 size_t len;
2057 int ret, ofst;
2058 __be32 data[16];
2059
2060 if (mem == MEM_MC)
2061 ret = t4_mc_read(adap, pos, data, NULL);
2062 else
2063 ret = t4_edc_read(adap, mem, pos, data, NULL);
2064 if (ret)
2065 return ret;
2066
2067 ofst = pos % sizeof(data);
2068 len = min(count, sizeof(data) - ofst);
2069 if (copy_to_user(buf, (u8 *)data + ofst, len))
2070 return -EFAULT;
2071
2072 buf += len;
2073 pos += len;
2074 count -= len;
2075 }
2076 count = pos - *ppos;
2077 *ppos = pos;
2078 return count;
2079 }
2080
2081 static const struct file_operations mem_debugfs_fops = {
2082 .owner = THIS_MODULE,
2083 .open = mem_open,
2084 .read = mem_read,
2085 .llseek = default_llseek,
2086 };
2087
2088 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
2089 unsigned int idx, unsigned int size_mb)
2090 {
2091 struct dentry *de;
2092
2093 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2094 (void *)adap + idx, &mem_debugfs_fops);
2095 if (de && de->d_inode)
2096 de->d_inode->i_size = size_mb << 20;
2097 }
2098
2099 static int __devinit setup_debugfs(struct adapter *adap)
2100 {
2101 int i;
2102
2103 if (IS_ERR_OR_NULL(adap->debugfs_root))
2104 return -1;
2105
2106 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2107 if (i & EDRAM0_ENABLE)
2108 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2109 if (i & EDRAM1_ENABLE)
2110 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2111 if (i & EXT_MEM_ENABLE)
2112 add_debugfs_mem(adap, "mc", MEM_MC,
2113 EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2114 if (adap->l2t)
2115 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2116 &t4_l2t_fops);
2117 return 0;
2118 }
2119
2120 /*
2121 * upper-layer driver support
2122 */
2123
2124 /*
2125 * Allocate an active-open TID and set it to the supplied value.
2126 */
2127 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2128 {
2129 int atid = -1;
2130
2131 spin_lock_bh(&t->atid_lock);
2132 if (t->afree) {
2133 union aopen_entry *p = t->afree;
2134
2135 atid = p - t->atid_tab;
2136 t->afree = p->next;
2137 p->data = data;
2138 t->atids_in_use++;
2139 }
2140 spin_unlock_bh(&t->atid_lock);
2141 return atid;
2142 }
2143 EXPORT_SYMBOL(cxgb4_alloc_atid);
2144
2145 /*
2146 * Release an active-open TID.
2147 */
2148 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2149 {
2150 union aopen_entry *p = &t->atid_tab[atid];
2151
2152 spin_lock_bh(&t->atid_lock);
2153 p->next = t->afree;
2154 t->afree = p;
2155 t->atids_in_use--;
2156 spin_unlock_bh(&t->atid_lock);
2157 }
2158 EXPORT_SYMBOL(cxgb4_free_atid);
2159
2160 /*
2161 * Allocate a server TID and set it to the supplied value.
2162 */
2163 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2164 {
2165 int stid;
2166
2167 spin_lock_bh(&t->stid_lock);
2168 if (family == PF_INET) {
2169 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2170 if (stid < t->nstids)
2171 __set_bit(stid, t->stid_bmap);
2172 else
2173 stid = -1;
2174 } else {
2175 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2176 if (stid < 0)
2177 stid = -1;
2178 }
2179 if (stid >= 0) {
2180 t->stid_tab[stid].data = data;
2181 stid += t->stid_base;
2182 t->stids_in_use++;
2183 }
2184 spin_unlock_bh(&t->stid_lock);
2185 return stid;
2186 }
2187 EXPORT_SYMBOL(cxgb4_alloc_stid);
2188
2189 /*
2190 * Release a server TID.
2191 */
2192 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
2193 {
2194 stid -= t->stid_base;
2195 spin_lock_bh(&t->stid_lock);
2196 if (family == PF_INET)
2197 __clear_bit(stid, t->stid_bmap);
2198 else
2199 bitmap_release_region(t->stid_bmap, stid, 2);
2200 t->stid_tab[stid].data = NULL;
2201 t->stids_in_use--;
2202 spin_unlock_bh(&t->stid_lock);
2203 }
2204 EXPORT_SYMBOL(cxgb4_free_stid);
2205
2206 /*
2207 * Populate a TID_RELEASE WR. Caller must properly size the skb.
2208 */
2209 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
2210 unsigned int tid)
2211 {
2212 struct cpl_tid_release *req;
2213
2214 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
2215 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
2216 INIT_TP_WR(req, tid);
2217 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
2218 }
2219
2220 /*
2221 * Queue a TID release request and if necessary schedule a work queue to
2222 * process it.
2223 */
2224 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
2225 unsigned int tid)
2226 {
2227 void **p = &t->tid_tab[tid];
2228 struct adapter *adap = container_of(t, struct adapter, tids);
2229
2230 spin_lock_bh(&adap->tid_release_lock);
2231 *p = adap->tid_release_head;
2232 /* Low 2 bits encode the Tx channel number */
2233 adap->tid_release_head = (void **)((uintptr_t)p | chan);
2234 if (!adap->tid_release_task_busy) {
2235 adap->tid_release_task_busy = true;
2236 schedule_work(&adap->tid_release_task);
2237 }
2238 spin_unlock_bh(&adap->tid_release_lock);
2239 }
2240
2241 /*
2242 * Process the list of pending TID release requests.
2243 */
2244 static void process_tid_release_list(struct work_struct *work)
2245 {
2246 struct sk_buff *skb;
2247 struct adapter *adap;
2248
2249 adap = container_of(work, struct adapter, tid_release_task);
2250
2251 spin_lock_bh(&adap->tid_release_lock);
2252 while (adap->tid_release_head) {
2253 void **p = adap->tid_release_head;
2254 unsigned int chan = (uintptr_t)p & 3;
2255 p = (void *)p - chan;
2256
2257 adap->tid_release_head = *p;
2258 *p = NULL;
2259 spin_unlock_bh(&adap->tid_release_lock);
2260
2261 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
2262 GFP_KERNEL)))
2263 schedule_timeout_uninterruptible(1);
2264
2265 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2266 t4_ofld_send(adap, skb);
2267 spin_lock_bh(&adap->tid_release_lock);
2268 }
2269 adap->tid_release_task_busy = false;
2270 spin_unlock_bh(&adap->tid_release_lock);
2271 }
2272
2273 /*
2274 * Release a TID and inform HW. If we are unable to allocate the release
2275 * message we defer to a work queue.
2276 */
2277 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2278 {
2279 void *old;
2280 struct sk_buff *skb;
2281 struct adapter *adap = container_of(t, struct adapter, tids);
2282
2283 old = t->tid_tab[tid];
2284 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2285 if (likely(skb)) {
2286 t->tid_tab[tid] = NULL;
2287 mk_tid_release(skb, chan, tid);
2288 t4_ofld_send(adap, skb);
2289 } else
2290 cxgb4_queue_tid_release(t, chan, tid);
2291 if (old)
2292 atomic_dec(&t->tids_in_use);
2293 }
2294 EXPORT_SYMBOL(cxgb4_remove_tid);
2295
2296 /*
2297 * Allocate and initialize the TID tables. Returns 0 on success.
2298 */
2299 static int tid_init(struct tid_info *t)
2300 {
2301 size_t size;
2302 unsigned int natids = t->natids;
2303
2304 size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
2305 t->nstids * sizeof(*t->stid_tab) +
2306 BITS_TO_LONGS(t->nstids) * sizeof(long);
2307 t->tid_tab = t4_alloc_mem(size);
2308 if (!t->tid_tab)
2309 return -ENOMEM;
2310
2311 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2312 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2313 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
2314 spin_lock_init(&t->stid_lock);
2315 spin_lock_init(&t->atid_lock);
2316
2317 t->stids_in_use = 0;
2318 t->afree = NULL;
2319 t->atids_in_use = 0;
2320 atomic_set(&t->tids_in_use, 0);
2321
2322 /* Setup the free list for atid_tab and clear the stid bitmap. */
2323 if (natids) {
2324 while (--natids)
2325 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2326 t->afree = t->atid_tab;
2327 }
2328 bitmap_zero(t->stid_bmap, t->nstids);
2329 return 0;
2330 }
2331
2332 /**
2333 * cxgb4_create_server - create an IP server
2334 * @dev: the device
2335 * @stid: the server TID
2336 * @sip: local IP address to bind server to
2337 * @sport: the server's TCP port
2338 * @queue: queue to direct messages from this server to
2339 *
2340 * Create an IP server for the given port and address.
2341 * Returns <0 on error and one of the %NET_XMIT_* values on success.
2342 */
2343 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2344 __be32 sip, __be16 sport, unsigned int queue)
2345 {
2346 unsigned int chan;
2347 struct sk_buff *skb;
2348 struct adapter *adap;
2349 struct cpl_pass_open_req *req;
2350
2351 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2352 if (!skb)
2353 return -ENOMEM;
2354
2355 adap = netdev2adap(dev);
2356 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2357 INIT_TP_WR(req, 0);
2358 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2359 req->local_port = sport;
2360 req->peer_port = htons(0);
2361 req->local_ip = sip;
2362 req->peer_ip = htonl(0);
2363 chan = rxq_to_chan(&adap->sge, queue);
2364 req->opt0 = cpu_to_be64(TX_CHAN(chan));
2365 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2366 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2367 return t4_mgmt_tx(adap, skb);
2368 }
2369 EXPORT_SYMBOL(cxgb4_create_server);
2370
2371 /**
2372 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2373 * @mtus: the HW MTU table
2374 * @mtu: the target MTU
2375 * @idx: index of selected entry in the MTU table
2376 *
2377 * Returns the index and the value in the HW MTU table that is closest to
2378 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2379 * table, in which case that smallest available value is selected.
2380 */
2381 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2382 unsigned int *idx)
2383 {
2384 unsigned int i = 0;
2385
2386 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2387 ++i;
2388 if (idx)
2389 *idx = i;
2390 return mtus[i];
2391 }
2392 EXPORT_SYMBOL(cxgb4_best_mtu);
2393
2394 /**
2395 * cxgb4_port_chan - get the HW channel of a port
2396 * @dev: the net device for the port
2397 *
2398 * Return the HW Tx channel of the given port.
2399 */
2400 unsigned int cxgb4_port_chan(const struct net_device *dev)
2401 {
2402 return netdev2pinfo(dev)->tx_chan;
2403 }
2404 EXPORT_SYMBOL(cxgb4_port_chan);
2405
2406 /**
2407 * cxgb4_port_viid - get the VI id of a port
2408 * @dev: the net device for the port
2409 *
2410 * Return the VI id of the given port.
2411 */
2412 unsigned int cxgb4_port_viid(const struct net_device *dev)
2413 {
2414 return netdev2pinfo(dev)->viid;
2415 }
2416 EXPORT_SYMBOL(cxgb4_port_viid);
2417
2418 /**
2419 * cxgb4_port_idx - get the index of a port
2420 * @dev: the net device for the port
2421 *
2422 * Return the index of the given port.
2423 */
2424 unsigned int cxgb4_port_idx(const struct net_device *dev)
2425 {
2426 return netdev2pinfo(dev)->port_id;
2427 }
2428 EXPORT_SYMBOL(cxgb4_port_idx);
2429
2430 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2431 struct tp_tcp_stats *v6)
2432 {
2433 struct adapter *adap = pci_get_drvdata(pdev);
2434
2435 spin_lock(&adap->stats_lock);
2436 t4_tp_get_tcp_stats(adap, v4, v6);
2437 spin_unlock(&adap->stats_lock);
2438 }
2439 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2440
2441 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2442 const unsigned int *pgsz_order)
2443 {
2444 struct adapter *adap = netdev2adap(dev);
2445
2446 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2447 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2448 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2449 HPZ3(pgsz_order[3]));
2450 }
2451 EXPORT_SYMBOL(cxgb4_iscsi_init);
2452
2453 static struct pci_driver cxgb4_driver;
2454
2455 static void check_neigh_update(struct neighbour *neigh)
2456 {
2457 const struct device *parent;
2458 const struct net_device *netdev = neigh->dev;
2459
2460 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2461 netdev = vlan_dev_real_dev(netdev);
2462 parent = netdev->dev.parent;
2463 if (parent && parent->driver == &cxgb4_driver.driver)
2464 t4_l2t_update(dev_get_drvdata(parent), neigh);
2465 }
2466
2467 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2468 void *data)
2469 {
2470 switch (event) {
2471 case NETEVENT_NEIGH_UPDATE:
2472 check_neigh_update(data);
2473 break;
2474 case NETEVENT_PMTU_UPDATE:
2475 case NETEVENT_REDIRECT:
2476 default:
2477 break;
2478 }
2479 return 0;
2480 }
2481
2482 static bool netevent_registered;
2483 static struct notifier_block cxgb4_netevent_nb = {
2484 .notifier_call = netevent_cb
2485 };
2486
2487 static void uld_attach(struct adapter *adap, unsigned int uld)
2488 {
2489 void *handle;
2490 struct cxgb4_lld_info lli;
2491
2492 lli.pdev = adap->pdev;
2493 lli.l2t = adap->l2t;
2494 lli.tids = &adap->tids;
2495 lli.ports = adap->port;
2496 lli.vr = &adap->vres;
2497 lli.mtus = adap->params.mtus;
2498 if (uld == CXGB4_ULD_RDMA) {
2499 lli.rxq_ids = adap->sge.rdma_rxq;
2500 lli.nrxq = adap->sge.rdmaqs;
2501 } else if (uld == CXGB4_ULD_ISCSI) {
2502 lli.rxq_ids = adap->sge.ofld_rxq;
2503 lli.nrxq = adap->sge.ofldqsets;
2504 }
2505 lli.ntxq = adap->sge.ofldqsets;
2506 lli.nchan = adap->params.nports;
2507 lli.nports = adap->params.nports;
2508 lli.wr_cred = adap->params.ofldq_wr_cred;
2509 lli.adapter_type = adap->params.rev;
2510 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
2511 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2512 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
2513 (adap->fn * 4));
2514 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2515 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
2516 (adap->fn * 4));
2517 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
2518 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
2519 lli.fw_vers = adap->params.fw_vers;
2520
2521 handle = ulds[uld].add(&lli);
2522 if (IS_ERR(handle)) {
2523 dev_warn(adap->pdev_dev,
2524 "could not attach to the %s driver, error %ld\n",
2525 uld_str[uld], PTR_ERR(handle));
2526 return;
2527 }
2528
2529 adap->uld_handle[uld] = handle;
2530
2531 if (!netevent_registered) {
2532 register_netevent_notifier(&cxgb4_netevent_nb);
2533 netevent_registered = true;
2534 }
2535
2536 if (adap->flags & FULL_INIT_DONE)
2537 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2538 }
2539
2540 static void attach_ulds(struct adapter *adap)
2541 {
2542 unsigned int i;
2543
2544 mutex_lock(&uld_mutex);
2545 list_add_tail(&adap->list_node, &adapter_list);
2546 for (i = 0; i < CXGB4_ULD_MAX; i++)
2547 if (ulds[i].add)
2548 uld_attach(adap, i);
2549 mutex_unlock(&uld_mutex);
2550 }
2551
2552 static void detach_ulds(struct adapter *adap)
2553 {
2554 unsigned int i;
2555
2556 mutex_lock(&uld_mutex);
2557 list_del(&adap->list_node);
2558 for (i = 0; i < CXGB4_ULD_MAX; i++)
2559 if (adap->uld_handle[i]) {
2560 ulds[i].state_change(adap->uld_handle[i],
2561 CXGB4_STATE_DETACH);
2562 adap->uld_handle[i] = NULL;
2563 }
2564 if (netevent_registered && list_empty(&adapter_list)) {
2565 unregister_netevent_notifier(&cxgb4_netevent_nb);
2566 netevent_registered = false;
2567 }
2568 mutex_unlock(&uld_mutex);
2569 }
2570
2571 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2572 {
2573 unsigned int i;
2574
2575 mutex_lock(&uld_mutex);
2576 for (i = 0; i < CXGB4_ULD_MAX; i++)
2577 if (adap->uld_handle[i])
2578 ulds[i].state_change(adap->uld_handle[i], new_state);
2579 mutex_unlock(&uld_mutex);
2580 }
2581
2582 /**
2583 * cxgb4_register_uld - register an upper-layer driver
2584 * @type: the ULD type
2585 * @p: the ULD methods
2586 *
2587 * Registers an upper-layer driver with this driver and notifies the ULD
2588 * about any presently available devices that support its type. Returns
2589 * %-EBUSY if a ULD of the same type is already registered.
2590 */
2591 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2592 {
2593 int ret = 0;
2594 struct adapter *adap;
2595
2596 if (type >= CXGB4_ULD_MAX)
2597 return -EINVAL;
2598 mutex_lock(&uld_mutex);
2599 if (ulds[type].add) {
2600 ret = -EBUSY;
2601 goto out;
2602 }
2603 ulds[type] = *p;
2604 list_for_each_entry(adap, &adapter_list, list_node)
2605 uld_attach(adap, type);
2606 out: mutex_unlock(&uld_mutex);
2607 return ret;
2608 }
2609 EXPORT_SYMBOL(cxgb4_register_uld);
2610
2611 /**
2612 * cxgb4_unregister_uld - unregister an upper-layer driver
2613 * @type: the ULD type
2614 *
2615 * Unregisters an existing upper-layer driver.
2616 */
2617 int cxgb4_unregister_uld(enum cxgb4_uld type)
2618 {
2619 struct adapter *adap;
2620
2621 if (type >= CXGB4_ULD_MAX)
2622 return -EINVAL;
2623 mutex_lock(&uld_mutex);
2624 list_for_each_entry(adap, &adapter_list, list_node)
2625 adap->uld_handle[type] = NULL;
2626 ulds[type].add = NULL;
2627 mutex_unlock(&uld_mutex);
2628 return 0;
2629 }
2630 EXPORT_SYMBOL(cxgb4_unregister_uld);
2631
2632 /**
2633 * cxgb_up - enable the adapter
2634 * @adap: adapter being enabled
2635 *
2636 * Called when the first port is enabled, this function performs the
2637 * actions necessary to make an adapter operational, such as completing
2638 * the initialization of HW modules, and enabling interrupts.
2639 *
2640 * Must be called with the rtnl lock held.
2641 */
2642 static int cxgb_up(struct adapter *adap)
2643 {
2644 int err;
2645
2646 err = setup_sge_queues(adap);
2647 if (err)
2648 goto out;
2649 err = setup_rss(adap);
2650 if (err)
2651 goto freeq;
2652
2653 if (adap->flags & USING_MSIX) {
2654 name_msix_vecs(adap);
2655 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656 adap->msix_info[0].desc, adap);
2657 if (err)
2658 goto irq_err;
2659
2660 err = request_msix_queue_irqs(adap);
2661 if (err) {
2662 free_irq(adap->msix_info[0].vec, adap);
2663 goto irq_err;
2664 }
2665 } else {
2666 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668 adap->port[0]->name, adap);
2669 if (err)
2670 goto irq_err;
2671 }
2672 enable_rx(adap);
2673 t4_sge_start(adap);
2674 t4_intr_enable(adap);
2675 adap->flags |= FULL_INIT_DONE;
2676 notify_ulds(adap, CXGB4_STATE_UP);
2677 out:
2678 return err;
2679 irq_err:
2680 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2681 freeq:
2682 t4_free_sge_resources(adap);
2683 goto out;
2684 }
2685
2686 static void cxgb_down(struct adapter *adapter)
2687 {
2688 t4_intr_disable(adapter);
2689 cancel_work_sync(&adapter->tid_release_task);
2690 adapter->tid_release_task_busy = false;
2691 adapter->tid_release_head = NULL;
2692
2693 if (adapter->flags & USING_MSIX) {
2694 free_msix_queue_irqs(adapter);
2695 free_irq(adapter->msix_info[0].vec, adapter);
2696 } else
2697 free_irq(adapter->pdev->irq, adapter);
2698 quiesce_rx(adapter);
2699 t4_sge_stop(adapter);
2700 t4_free_sge_resources(adapter);
2701 adapter->flags &= ~FULL_INIT_DONE;
2702 }
2703
2704 /*
2705 * net_device operations
2706 */
2707 static int cxgb_open(struct net_device *dev)
2708 {
2709 int err;
2710 struct port_info *pi = netdev_priv(dev);
2711 struct adapter *adapter = pi->adapter;
2712
2713 if (!(adapter->flags & FULL_INIT_DONE)) {
2714 err = cxgb_up(adapter);
2715 if (err < 0)
2716 return err;
2717 }
2718
2719 err = link_start(dev);
2720 if (!err)
2721 netif_tx_start_all_queues(dev);
2722 return err;
2723 }
2724
2725 static int cxgb_close(struct net_device *dev)
2726 {
2727 struct port_info *pi = netdev_priv(dev);
2728 struct adapter *adapter = pi->adapter;
2729
2730 netif_tx_stop_all_queues(dev);
2731 netif_carrier_off(dev);
2732 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2733 }
2734
2735 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2736 struct rtnl_link_stats64 *ns)
2737 {
2738 struct port_stats stats;
2739 struct port_info *p = netdev_priv(dev);
2740 struct adapter *adapter = p->adapter;
2741
2742 spin_lock(&adapter->stats_lock);
2743 t4_get_port_stats(adapter, p->tx_chan, &stats);
2744 spin_unlock(&adapter->stats_lock);
2745
2746 ns->tx_bytes = stats.tx_octets;
2747 ns->tx_packets = stats.tx_frames;
2748 ns->rx_bytes = stats.rx_octets;
2749 ns->rx_packets = stats.rx_frames;
2750 ns->multicast = stats.rx_mcast_frames;
2751
2752 /* detailed rx_errors */
2753 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2754 stats.rx_runt;
2755 ns->rx_over_errors = 0;
2756 ns->rx_crc_errors = stats.rx_fcs_err;
2757 ns->rx_frame_errors = stats.rx_symbol_err;
2758 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2759 stats.rx_ovflow2 + stats.rx_ovflow3 +
2760 stats.rx_trunc0 + stats.rx_trunc1 +
2761 stats.rx_trunc2 + stats.rx_trunc3;
2762 ns->rx_missed_errors = 0;
2763
2764 /* detailed tx_errors */
2765 ns->tx_aborted_errors = 0;
2766 ns->tx_carrier_errors = 0;
2767 ns->tx_fifo_errors = 0;
2768 ns->tx_heartbeat_errors = 0;
2769 ns->tx_window_errors = 0;
2770
2771 ns->tx_errors = stats.tx_error_frames;
2772 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2773 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2774 return ns;
2775 }
2776
2777 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2778 {
2779 unsigned int mbox;
2780 int ret = 0, prtad, devad;
2781 struct port_info *pi = netdev_priv(dev);
2782 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2783
2784 switch (cmd) {
2785 case SIOCGMIIPHY:
2786 if (pi->mdio_addr < 0)
2787 return -EOPNOTSUPP;
2788 data->phy_id = pi->mdio_addr;
2789 break;
2790 case SIOCGMIIREG:
2791 case SIOCSMIIREG:
2792 if (mdio_phy_id_is_c45(data->phy_id)) {
2793 prtad = mdio_phy_id_prtad(data->phy_id);
2794 devad = mdio_phy_id_devad(data->phy_id);
2795 } else if (data->phy_id < 32) {
2796 prtad = data->phy_id;
2797 devad = 0;
2798 data->reg_num &= 0x1f;
2799 } else
2800 return -EINVAL;
2801
2802 mbox = pi->adapter->fn;
2803 if (cmd == SIOCGMIIREG)
2804 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2805 data->reg_num, &data->val_out);
2806 else
2807 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2808 data->reg_num, data->val_in);
2809 break;
2810 default:
2811 return -EOPNOTSUPP;
2812 }
2813 return ret;
2814 }
2815
2816 static void cxgb_set_rxmode(struct net_device *dev)
2817 {
2818 /* unfortunately we can't return errors to the stack */
2819 set_rxmode(dev, -1, false);
2820 }
2821
2822 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2823 {
2824 int ret;
2825 struct port_info *pi = netdev_priv(dev);
2826
2827 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2828 return -EINVAL;
2829 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2830 -1, -1, -1, true);
2831 if (!ret)
2832 dev->mtu = new_mtu;
2833 return ret;
2834 }
2835
2836 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2837 {
2838 int ret;
2839 struct sockaddr *addr = p;
2840 struct port_info *pi = netdev_priv(dev);
2841
2842 if (!is_valid_ether_addr(addr->sa_data))
2843 return -EINVAL;
2844
2845 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2846 pi->xact_addr_filt, addr->sa_data, true, true);
2847 if (ret < 0)
2848 return ret;
2849
2850 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2851 pi->xact_addr_filt = ret;
2852 return 0;
2853 }
2854
2855 #ifdef CONFIG_NET_POLL_CONTROLLER
2856 static void cxgb_netpoll(struct net_device *dev)
2857 {
2858 struct port_info *pi = netdev_priv(dev);
2859 struct adapter *adap = pi->adapter;
2860
2861 if (adap->flags & USING_MSIX) {
2862 int i;
2863 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2864
2865 for (i = pi->nqsets; i; i--, rx++)
2866 t4_sge_intr_msix(0, &rx->rspq);
2867 } else
2868 t4_intr_handler(adap)(0, adap);
2869 }
2870 #endif
2871
2872 static const struct net_device_ops cxgb4_netdev_ops = {
2873 .ndo_open = cxgb_open,
2874 .ndo_stop = cxgb_close,
2875 .ndo_start_xmit = t4_eth_xmit,
2876 .ndo_get_stats64 = cxgb_get_stats,
2877 .ndo_set_rx_mode = cxgb_set_rxmode,
2878 .ndo_set_mac_address = cxgb_set_mac_addr,
2879 .ndo_validate_addr = eth_validate_addr,
2880 .ndo_do_ioctl = cxgb_ioctl,
2881 .ndo_change_mtu = cxgb_change_mtu,
2882 #ifdef CONFIG_NET_POLL_CONTROLLER
2883 .ndo_poll_controller = cxgb_netpoll,
2884 #endif
2885 };
2886
2887 void t4_fatal_err(struct adapter *adap)
2888 {
2889 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
2890 t4_intr_disable(adap);
2891 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2892 }
2893
2894 static void setup_memwin(struct adapter *adap)
2895 {
2896 u32 bar0;
2897
2898 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */
2899 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
2900 (bar0 + MEMWIN0_BASE) | BIR(0) |
2901 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
2902 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
2903 (bar0 + MEMWIN1_BASE) | BIR(0) |
2904 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
2905 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
2906 (bar0 + MEMWIN2_BASE) | BIR(0) |
2907 WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2908 if (adap->vres.ocq.size) {
2909 unsigned int start, sz_kb;
2910
2911 start = pci_resource_start(adap->pdev, 2) +
2912 OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2913 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2914 t4_write_reg(adap,
2915 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
2916 start | BIR(1) | WINDOW(ilog2(sz_kb)));
2917 t4_write_reg(adap,
2918 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
2919 adap->vres.ocq.start);
2920 t4_read_reg(adap,
2921 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
2922 }
2923 }
2924
2925 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2926 {
2927 u32 v;
2928 int ret;
2929
2930 /* get device capabilities */
2931 memset(c, 0, sizeof(*c));
2932 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2933 FW_CMD_REQUEST | FW_CMD_READ);
2934 c->retval_len16 = htonl(FW_LEN16(*c));
2935 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
2936 if (ret < 0)
2937 return ret;
2938
2939 /* select capabilities we'll be using */
2940 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
2941 if (!vf_acls)
2942 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
2943 else
2944 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
2945 } else if (vf_acls) {
2946 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
2947 return ret;
2948 }
2949 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2950 FW_CMD_REQUEST | FW_CMD_WRITE);
2951 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
2952 if (ret < 0)
2953 return ret;
2954
2955 ret = t4_config_glbl_rss(adap, adap->fn,
2956 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2957 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
2958 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
2959 if (ret < 0)
2960 return ret;
2961
2962 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
2963 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2964 if (ret < 0)
2965 return ret;
2966
2967 t4_sge_init(adap);
2968
2969 /* tweak some settings */
2970 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
2971 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
2972 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
2973 v = t4_read_reg(adap, TP_PIO_DATA);
2974 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2975
2976 /* get basic stuff going */
2977 return t4_early_init(adap, adap->fn);
2978 }
2979
2980 /*
2981 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
2982 */
2983 #define MAX_ATIDS 8192U
2984
2985 /*
2986 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2987 */
2988 static int adap_init0(struct adapter *adap)
2989 {
2990 int ret;
2991 u32 v, port_vec;
2992 enum dev_state state;
2993 u32 params[7], val[7];
2994 struct fw_caps_config_cmd c;
2995
2996 ret = t4_check_fw_version(adap);
2997 if (ret == -EINVAL || ret > 0) {
2998 if (upgrade_fw(adap) >= 0) /* recache FW version */
2999 ret = t4_check_fw_version(adap);
3000 }
3001 if (ret < 0)
3002 return ret;
3003
3004 /* contact FW, request master */
3005 ret = t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, &state);
3006 if (ret < 0) {
3007 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3008 ret);
3009 return ret;
3010 }
3011
3012 /* reset device */
3013 ret = t4_fw_reset(adap, adap->fn, PIORSTMODE | PIORST);
3014 if (ret < 0)
3015 goto bye;
3016
3017 for (v = 0; v < SGE_NTIMERS - 1; v++)
3018 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
3019 adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
3020 adap->sge.counter_val[0] = 1;
3021 for (v = 1; v < SGE_NCOUNTERS; v++)
3022 adap->sge.counter_val[v] = min(intr_cnt[v - 1],
3023 THRESHOLD_3_MASK);
3024 #define FW_PARAM_DEV(param) \
3025 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3026 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3027
3028 params[0] = FW_PARAM_DEV(CCLK);
3029 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 1, params, val);
3030 if (ret < 0)
3031 goto bye;
3032 adap->params.vpd.cclk = val[0];
3033
3034 ret = adap_init1(adap, &c);
3035 if (ret < 0)
3036 goto bye;
3037
3038 #define FW_PARAM_PFVF(param) \
3039 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3040 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
3041 FW_PARAMS_PARAM_Y(adap->fn))
3042
3043 params[0] = FW_PARAM_DEV(PORTVEC);
3044 params[1] = FW_PARAM_PFVF(L2T_START);
3045 params[2] = FW_PARAM_PFVF(L2T_END);
3046 params[3] = FW_PARAM_PFVF(FILTER_START);
3047 params[4] = FW_PARAM_PFVF(FILTER_END);
3048 params[5] = FW_PARAM_PFVF(IQFLINT_START);
3049 params[6] = FW_PARAM_PFVF(EQ_START);
3050 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 7, params, val);
3051 if (ret < 0)
3052 goto bye;
3053 port_vec = val[0];
3054 adap->tids.ftid_base = val[3];
3055 adap->tids.nftids = val[4] - val[3] + 1;
3056 adap->sge.ingr_start = val[5];
3057 adap->sge.egr_start = val[6];
3058
3059 if (c.ofldcaps) {
3060 /* query offload-related parameters */
3061 params[0] = FW_PARAM_DEV(NTID);
3062 params[1] = FW_PARAM_PFVF(SERVER_START);
3063 params[2] = FW_PARAM_PFVF(SERVER_END);
3064 params[3] = FW_PARAM_PFVF(TDDP_START);
3065 params[4] = FW_PARAM_PFVF(TDDP_END);
3066 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3067 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3068 val);
3069 if (ret < 0)
3070 goto bye;
3071 adap->tids.ntids = val[0];
3072 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3073 adap->tids.stid_base = val[1];
3074 adap->tids.nstids = val[2] - val[1] + 1;
3075 adap->vres.ddp.start = val[3];
3076 adap->vres.ddp.size = val[4] - val[3] + 1;
3077 adap->params.ofldq_wr_cred = val[5];
3078 adap->params.offload = 1;
3079 }
3080 if (c.rdmacaps) {
3081 params[0] = FW_PARAM_PFVF(STAG_START);
3082 params[1] = FW_PARAM_PFVF(STAG_END);
3083 params[2] = FW_PARAM_PFVF(RQ_START);
3084 params[3] = FW_PARAM_PFVF(RQ_END);
3085 params[4] = FW_PARAM_PFVF(PBL_START);
3086 params[5] = FW_PARAM_PFVF(PBL_END);
3087 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3088 val);
3089 if (ret < 0)
3090 goto bye;
3091 adap->vres.stag.start = val[0];
3092 adap->vres.stag.size = val[1] - val[0] + 1;
3093 adap->vres.rq.start = val[2];
3094 adap->vres.rq.size = val[3] - val[2] + 1;
3095 adap->vres.pbl.start = val[4];
3096 adap->vres.pbl.size = val[5] - val[4] + 1;
3097
3098 params[0] = FW_PARAM_PFVF(SQRQ_START);
3099 params[1] = FW_PARAM_PFVF(SQRQ_END);
3100 params[2] = FW_PARAM_PFVF(CQ_START);
3101 params[3] = FW_PARAM_PFVF(CQ_END);
3102 params[4] = FW_PARAM_PFVF(OCQ_START);
3103 params[5] = FW_PARAM_PFVF(OCQ_END);
3104 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3105 val);
3106 if (ret < 0)
3107 goto bye;
3108 adap->vres.qp.start = val[0];
3109 adap->vres.qp.size = val[1] - val[0] + 1;
3110 adap->vres.cq.start = val[2];
3111 adap->vres.cq.size = val[3] - val[2] + 1;
3112 adap->vres.ocq.start = val[4];
3113 adap->vres.ocq.size = val[5] - val[4] + 1;
3114 }
3115 if (c.iscsicaps) {
3116 params[0] = FW_PARAM_PFVF(ISCSI_START);
3117 params[1] = FW_PARAM_PFVF(ISCSI_END);
3118 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 2, params,
3119 val);
3120 if (ret < 0)
3121 goto bye;
3122 adap->vres.iscsi.start = val[0];
3123 adap->vres.iscsi.size = val[1] - val[0] + 1;
3124 }
3125 #undef FW_PARAM_PFVF
3126 #undef FW_PARAM_DEV
3127
3128 adap->params.nports = hweight32(port_vec);
3129 adap->params.portvec = port_vec;
3130 adap->flags |= FW_OK;
3131
3132 /* These are finalized by FW initialization, load their values now */
3133 v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
3134 adap->params.tp.tre = TIMERRESOLUTION_GET(v);
3135 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3136 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3137 adap->params.b_wnd);
3138
3139 #ifdef CONFIG_PCI_IOV
3140 /*
3141 * Provision resource limits for Virtual Functions. We currently
3142 * grant them all the same static resource limits except for the Port
3143 * Access Rights Mask which we're assigning based on the PF. All of
3144 * the static provisioning stuff for both the PF and VF really needs
3145 * to be managed in a persistent manner for each device which the
3146 * firmware controls.
3147 */
3148 {
3149 int pf, vf;
3150
3151 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
3152 if (num_vf[pf] <= 0)
3153 continue;
3154
3155 /* VF numbering starts at 1! */
3156 for (vf = 1; vf <= num_vf[pf]; vf++) {
3157 ret = t4_cfg_pfvf(adap, adap->fn, pf, vf,
3158 VFRES_NEQ, VFRES_NETHCTRL,
3159 VFRES_NIQFLINT, VFRES_NIQ,
3160 VFRES_TC, VFRES_NVI,
3161 FW_PFVF_CMD_CMASK_MASK,
3162 pfvfres_pmask(adap, pf, vf),
3163 VFRES_NEXACTF,
3164 VFRES_R_CAPS, VFRES_WX_CAPS);
3165 if (ret < 0)
3166 dev_warn(adap->pdev_dev, "failed to "
3167 "provision pf/vf=%d/%d; "
3168 "err=%d\n", pf, vf, ret);
3169 }
3170 }
3171 }
3172 #endif
3173
3174 setup_memwin(adap);
3175 return 0;
3176
3177 /*
3178 * If a command timed out or failed with EIO FW does not operate within
3179 * its spec or something catastrophic happened to HW/FW, stop issuing
3180 * commands.
3181 */
3182 bye: if (ret != -ETIMEDOUT && ret != -EIO)
3183 t4_fw_bye(adap, adap->fn);
3184 return ret;
3185 }
3186
3187 /* EEH callbacks */
3188
3189 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3190 pci_channel_state_t state)
3191 {
3192 int i;
3193 struct adapter *adap = pci_get_drvdata(pdev);
3194
3195 if (!adap)
3196 goto out;
3197
3198 rtnl_lock();
3199 adap->flags &= ~FW_OK;
3200 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3201 for_each_port(adap, i) {
3202 struct net_device *dev = adap->port[i];
3203
3204 netif_device_detach(dev);
3205 netif_carrier_off(dev);
3206 }
3207 if (adap->flags & FULL_INIT_DONE)
3208 cxgb_down(adap);
3209 rtnl_unlock();
3210 pci_disable_device(pdev);
3211 out: return state == pci_channel_io_perm_failure ?
3212 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3213 }
3214
3215 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3216 {
3217 int i, ret;
3218 struct fw_caps_config_cmd c;
3219 struct adapter *adap = pci_get_drvdata(pdev);
3220
3221 if (!adap) {
3222 pci_restore_state(pdev);
3223 pci_save_state(pdev);
3224 return PCI_ERS_RESULT_RECOVERED;
3225 }
3226
3227 if (pci_enable_device(pdev)) {
3228 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
3229 return PCI_ERS_RESULT_DISCONNECT;
3230 }
3231
3232 pci_set_master(pdev);
3233 pci_restore_state(pdev);
3234 pci_save_state(pdev);
3235 pci_cleanup_aer_uncorrect_error_status(pdev);
3236
3237 if (t4_wait_dev_ready(adap) < 0)
3238 return PCI_ERS_RESULT_DISCONNECT;
3239 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
3240 return PCI_ERS_RESULT_DISCONNECT;
3241 adap->flags |= FW_OK;
3242 if (adap_init1(adap, &c))
3243 return PCI_ERS_RESULT_DISCONNECT;
3244
3245 for_each_port(adap, i) {
3246 struct port_info *p = adap2pinfo(adap, i);
3247
3248 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
3249 NULL, NULL);
3250 if (ret < 0)
3251 return PCI_ERS_RESULT_DISCONNECT;
3252 p->viid = ret;
3253 p->xact_addr_filt = -1;
3254 }
3255
3256 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3257 adap->params.b_wnd);
3258 setup_memwin(adap);
3259 if (cxgb_up(adap))
3260 return PCI_ERS_RESULT_DISCONNECT;
3261 return PCI_ERS_RESULT_RECOVERED;
3262 }
3263
3264 static void eeh_resume(struct pci_dev *pdev)
3265 {
3266 int i;
3267 struct adapter *adap = pci_get_drvdata(pdev);
3268
3269 if (!adap)
3270 return;
3271
3272 rtnl_lock();
3273 for_each_port(adap, i) {
3274 struct net_device *dev = adap->port[i];
3275
3276 if (netif_running(dev)) {
3277 link_start(dev);
3278 cxgb_set_rxmode(dev);
3279 }
3280 netif_device_attach(dev);
3281 }
3282 rtnl_unlock();
3283 }
3284
3285 static struct pci_error_handlers cxgb4_eeh = {
3286 .error_detected = eeh_err_detected,
3287 .slot_reset = eeh_slot_reset,
3288 .resume = eeh_resume,
3289 };
3290
3291 static inline bool is_10g_port(const struct link_config *lc)
3292 {
3293 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
3294 }
3295
3296 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
3297 unsigned int size, unsigned int iqe_size)
3298 {
3299 q->intr_params = QINTR_TIMER_IDX(timer_idx) |
3300 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
3301 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
3302 q->iqe_len = iqe_size;
3303 q->size = size;
3304 }
3305
3306 /*
3307 * Perform default configuration of DMA queues depending on the number and type
3308 * of ports we found and the number of available CPUs. Most settings can be
3309 * modified by the admin prior to actual use.
3310 */
3311 static void __devinit cfg_queues(struct adapter *adap)
3312 {
3313 struct sge *s = &adap->sge;
3314 int i, q10g = 0, n10g = 0, qidx = 0;
3315
3316 for_each_port(adap, i)
3317 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
3318
3319 /*
3320 * We default to 1 queue per non-10G port and up to # of cores queues
3321 * per 10G port.
3322 */
3323 if (n10g)
3324 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
3325 if (q10g > num_online_cpus())
3326 q10g = num_online_cpus();
3327
3328 for_each_port(adap, i) {
3329 struct port_info *pi = adap2pinfo(adap, i);
3330
3331 pi->first_qset = qidx;
3332 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
3333 qidx += pi->nqsets;
3334 }
3335
3336 s->ethqsets = qidx;
3337 s->max_ethqsets = qidx; /* MSI-X may lower it later */
3338
3339 if (is_offload(adap)) {
3340 /*
3341 * For offload we use 1 queue/channel if all ports are up to 1G,
3342 * otherwise we divide all available queues amongst the channels
3343 * capped by the number of available cores.
3344 */
3345 if (n10g) {
3346 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
3347 num_online_cpus());
3348 s->ofldqsets = roundup(i, adap->params.nports);
3349 } else
3350 s->ofldqsets = adap->params.nports;
3351 /* For RDMA one Rx queue per channel suffices */
3352 s->rdmaqs = adap->params.nports;
3353 }
3354
3355 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
3356 struct sge_eth_rxq *r = &s->ethrxq[i];
3357
3358 init_rspq(&r->rspq, 0, 0, 1024, 64);
3359 r->fl.size = 72;
3360 }
3361
3362 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
3363 s->ethtxq[i].q.size = 1024;
3364
3365 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
3366 s->ctrlq[i].q.size = 512;
3367
3368 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
3369 s->ofldtxq[i].q.size = 1024;
3370
3371 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
3372 struct sge_ofld_rxq *r = &s->ofldrxq[i];
3373
3374 init_rspq(&r->rspq, 0, 0, 1024, 64);
3375 r->rspq.uld = CXGB4_ULD_ISCSI;
3376 r->fl.size = 72;
3377 }
3378
3379 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
3380 struct sge_ofld_rxq *r = &s->rdmarxq[i];
3381
3382 init_rspq(&r->rspq, 0, 0, 511, 64);
3383 r->rspq.uld = CXGB4_ULD_RDMA;
3384 r->fl.size = 72;
3385 }
3386
3387 init_rspq(&s->fw_evtq, 6, 0, 512, 64);
3388 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
3389 }
3390
3391 /*
3392 * Reduce the number of Ethernet queues across all ports to at most n.
3393 * n provides at least one queue per port.
3394 */
3395 static void __devinit reduce_ethqs(struct adapter *adap, int n)
3396 {
3397 int i;
3398 struct port_info *pi;
3399
3400 while (n < adap->sge.ethqsets)
3401 for_each_port(adap, i) {
3402 pi = adap2pinfo(adap, i);
3403 if (pi->nqsets > 1) {
3404 pi->nqsets--;
3405 adap->sge.ethqsets--;
3406 if (adap->sge.ethqsets <= n)
3407 break;
3408 }
3409 }
3410
3411 n = 0;
3412 for_each_port(adap, i) {
3413 pi = adap2pinfo(adap, i);
3414 pi->first_qset = n;
3415 n += pi->nqsets;
3416 }
3417 }
3418
3419 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
3420 #define EXTRA_VECS 2
3421
3422 static int __devinit enable_msix(struct adapter *adap)
3423 {
3424 int ofld_need = 0;
3425 int i, err, want, need;
3426 struct sge *s = &adap->sge;
3427 unsigned int nchan = adap->params.nports;
3428 struct msix_entry entries[MAX_INGQ + 1];
3429
3430 for (i = 0; i < ARRAY_SIZE(entries); ++i)
3431 entries[i].entry = i;
3432
3433 want = s->max_ethqsets + EXTRA_VECS;
3434 if (is_offload(adap)) {
3435 want += s->rdmaqs + s->ofldqsets;
3436 /* need nchan for each possible ULD */
3437 ofld_need = 2 * nchan;
3438 }
3439 need = adap->params.nports + EXTRA_VECS + ofld_need;
3440
3441 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
3442 want = err;
3443
3444 if (!err) {
3445 /*
3446 * Distribute available vectors to the various queue groups.
3447 * Every group gets its minimum requirement and NIC gets top
3448 * priority for leftovers.
3449 */
3450 i = want - EXTRA_VECS - ofld_need;
3451 if (i < s->max_ethqsets) {
3452 s->max_ethqsets = i;
3453 if (i < s->ethqsets)
3454 reduce_ethqs(adap, i);
3455 }
3456 if (is_offload(adap)) {
3457 i = want - EXTRA_VECS - s->max_ethqsets;
3458 i -= ofld_need - nchan;
3459 s->ofldqsets = (i / nchan) * nchan; /* round down */
3460 }
3461 for (i = 0; i < want; ++i)
3462 adap->msix_info[i].vec = entries[i].vector;
3463 } else if (err > 0)
3464 dev_info(adap->pdev_dev,
3465 "only %d MSI-X vectors left, not using MSI-X\n", err);
3466 return err;
3467 }
3468
3469 #undef EXTRA_VECS
3470
3471 static int __devinit init_rss(struct adapter *adap)
3472 {
3473 unsigned int i, j;
3474
3475 for_each_port(adap, i) {
3476 struct port_info *pi = adap2pinfo(adap, i);
3477
3478 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
3479 if (!pi->rss)
3480 return -ENOMEM;
3481 for (j = 0; j < pi->rss_size; j++)
3482 pi->rss[j] = j % pi->nqsets;
3483 }
3484 return 0;
3485 }
3486
3487 static void __devinit print_port_info(const struct net_device *dev)
3488 {
3489 static const char *base[] = {
3490 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
3491 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4"
3492 };
3493
3494 char buf[80];
3495 char *bufp = buf;
3496 const char *spd = "";
3497 const struct port_info *pi = netdev_priv(dev);
3498 const struct adapter *adap = pi->adapter;
3499
3500 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
3501 spd = " 2.5 GT/s";
3502 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
3503 spd = " 5 GT/s";
3504
3505 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
3506 bufp += sprintf(bufp, "100/");
3507 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
3508 bufp += sprintf(bufp, "1000/");
3509 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
3510 bufp += sprintf(bufp, "10G/");
3511 if (bufp != buf)
3512 --bufp;
3513 sprintf(bufp, "BASE-%s", base[pi->port_type]);
3514
3515 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
3516 adap->params.vpd.id, adap->params.rev, buf,
3517 is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
3518 (adap->flags & USING_MSIX) ? " MSI-X" :
3519 (adap->flags & USING_MSI) ? " MSI" : "");
3520 netdev_info(dev, "S/N: %s, E/C: %s\n",
3521 adap->params.vpd.sn, adap->params.vpd.ec);
3522 }
3523
3524 static void __devinit enable_pcie_relaxed_ordering(struct pci_dev *dev)
3525 {
3526 u16 v;
3527 int pos;
3528
3529 pos = pci_pcie_cap(dev);
3530 if (pos > 0) {
3531 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &v);
3532 v |= PCI_EXP_DEVCTL_RELAX_EN;
3533 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, v);
3534 }
3535 }
3536
3537 /*
3538 * Free the following resources:
3539 * - memory used for tables
3540 * - MSI/MSI-X
3541 * - net devices
3542 * - resources FW is holding for us
3543 */
3544 static void free_some_resources(struct adapter *adapter)
3545 {
3546 unsigned int i;
3547
3548 t4_free_mem(adapter->l2t);
3549 t4_free_mem(adapter->tids.tid_tab);
3550 disable_msi(adapter);
3551
3552 for_each_port(adapter, i)
3553 if (adapter->port[i]) {
3554 kfree(adap2pinfo(adapter, i)->rss);
3555 free_netdev(adapter->port[i]);
3556 }
3557 if (adapter->flags & FW_OK)
3558 t4_fw_bye(adapter, adapter->fn);
3559 }
3560
3561 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3562 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3563
3564 static int __devinit init_one(struct pci_dev *pdev,
3565 const struct pci_device_id *ent)
3566 {
3567 int func, i, err;
3568 struct port_info *pi;
3569 unsigned int highdma = 0;
3570 struct adapter *adapter = NULL;
3571
3572 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3573
3574 err = pci_request_regions(pdev, KBUILD_MODNAME);
3575 if (err) {
3576 /* Just info, some other driver may have claimed the device. */
3577 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3578 return err;
3579 }
3580
3581 /* We control everything through one PF */
3582 func = PCI_FUNC(pdev->devfn);
3583 if (func != ent->driver_data) {
3584 pci_save_state(pdev); /* to restore SR-IOV later */
3585 goto sriov;
3586 }
3587
3588 err = pci_enable_device(pdev);
3589 if (err) {
3590 dev_err(&pdev->dev, "cannot enable PCI device\n");
3591 goto out_release_regions;
3592 }
3593
3594 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3595 highdma = NETIF_F_HIGHDMA;
3596 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3597 if (err) {
3598 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3599 "coherent allocations\n");
3600 goto out_disable_device;
3601 }
3602 } else {
3603 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3604 if (err) {
3605 dev_err(&pdev->dev, "no usable DMA configuration\n");
3606 goto out_disable_device;
3607 }
3608 }
3609
3610 pci_enable_pcie_error_reporting(pdev);
3611 enable_pcie_relaxed_ordering(pdev);
3612 pci_set_master(pdev);
3613 pci_save_state(pdev);
3614
3615 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3616 if (!adapter) {
3617 err = -ENOMEM;
3618 goto out_disable_device;
3619 }
3620
3621 adapter->regs = pci_ioremap_bar(pdev, 0);
3622 if (!adapter->regs) {
3623 dev_err(&pdev->dev, "cannot map device registers\n");
3624 err = -ENOMEM;
3625 goto out_free_adapter;
3626 }
3627
3628 adapter->pdev = pdev;
3629 adapter->pdev_dev = &pdev->dev;
3630 adapter->fn = func;
3631 adapter->msg_enable = dflt_msg_enable;
3632 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
3633
3634 spin_lock_init(&adapter->stats_lock);
3635 spin_lock_init(&adapter->tid_release_lock);
3636
3637 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
3638
3639 err = t4_prep_adapter(adapter);
3640 if (err)
3641 goto out_unmap_bar;
3642 err = adap_init0(adapter);
3643 if (err)
3644 goto out_unmap_bar;
3645
3646 for_each_port(adapter, i) {
3647 struct net_device *netdev;
3648
3649 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3650 MAX_ETH_QSETS);
3651 if (!netdev) {
3652 err = -ENOMEM;
3653 goto out_free_dev;
3654 }
3655
3656 SET_NETDEV_DEV(netdev, &pdev->dev);
3657
3658 adapter->port[i] = netdev;
3659 pi = netdev_priv(netdev);
3660 pi->adapter = adapter;
3661 pi->xact_addr_filt = -1;
3662 pi->rx_offload = RX_CSO;
3663 pi->port_id = i;
3664 netif_carrier_off(netdev);
3665 netdev->irq = pdev->irq;
3666
3667 netdev->features |= NETIF_F_SG | TSO_FLAGS;
3668 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3669 netdev->features |= NETIF_F_GRO | NETIF_F_RXHASH | highdma;
3670 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3671 netdev->vlan_features = netdev->features & VLAN_FEAT;
3672
3673 netdev->netdev_ops = &cxgb4_netdev_ops;
3674 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3675 }
3676
3677 pci_set_drvdata(pdev, adapter);
3678
3679 if (adapter->flags & FW_OK) {
3680 err = t4_port_init(adapter, func, func, 0);
3681 if (err)
3682 goto out_free_dev;
3683 }
3684
3685 /*
3686 * Configure queues and allocate tables now, they can be needed as
3687 * soon as the first register_netdev completes.
3688 */
3689 cfg_queues(adapter);
3690
3691 adapter->l2t = t4_init_l2t();
3692 if (!adapter->l2t) {
3693 /* We tolerate a lack of L2T, giving up some functionality */
3694 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
3695 adapter->params.offload = 0;
3696 }
3697
3698 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
3699 dev_warn(&pdev->dev, "could not allocate TID table, "
3700 "continuing\n");
3701 adapter->params.offload = 0;
3702 }
3703
3704 /* See what interrupts we'll be using */
3705 if (msi > 1 && enable_msix(adapter) == 0)
3706 adapter->flags |= USING_MSIX;
3707 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3708 adapter->flags |= USING_MSI;
3709
3710 err = init_rss(adapter);
3711 if (err)
3712 goto out_free_dev;
3713
3714 /*
3715 * The card is now ready to go. If any errors occur during device
3716 * registration we do not fail the whole card but rather proceed only
3717 * with the ports we manage to register successfully. However we must
3718 * register at least one net device.
3719 */
3720 for_each_port(adapter, i) {
3721 pi = adap2pinfo(adapter, i);
3722 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
3723 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
3724
3725 err = register_netdev(adapter->port[i]);
3726 if (err)
3727 break;
3728 adapter->chan_map[pi->tx_chan] = i;
3729 print_port_info(adapter->port[i]);
3730 }
3731 if (i == 0) {
3732 dev_err(&pdev->dev, "could not register any net devices\n");
3733 goto out_free_dev;
3734 }
3735 if (err) {
3736 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
3737 err = 0;
3738 };
3739
3740 if (cxgb4_debugfs_root) {
3741 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
3742 cxgb4_debugfs_root);
3743 setup_debugfs(adapter);
3744 }
3745
3746 if (is_offload(adapter))
3747 attach_ulds(adapter);
3748
3749 sriov:
3750 #ifdef CONFIG_PCI_IOV
3751 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
3752 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
3753 dev_info(&pdev->dev,
3754 "instantiated %u virtual functions\n",
3755 num_vf[func]);
3756 #endif
3757 return 0;
3758
3759 out_free_dev:
3760 free_some_resources(adapter);
3761 out_unmap_bar:
3762 iounmap(adapter->regs);
3763 out_free_adapter:
3764 kfree(adapter);
3765 out_disable_device:
3766 pci_disable_pcie_error_reporting(pdev);
3767 pci_disable_device(pdev);
3768 out_release_regions:
3769 pci_release_regions(pdev);
3770 pci_set_drvdata(pdev, NULL);
3771 return err;
3772 }
3773
3774 static void __devexit remove_one(struct pci_dev *pdev)
3775 {
3776 struct adapter *adapter = pci_get_drvdata(pdev);
3777
3778 pci_disable_sriov(pdev);
3779
3780 if (adapter) {
3781 int i;
3782
3783 if (is_offload(adapter))
3784 detach_ulds(adapter);
3785
3786 for_each_port(adapter, i)
3787 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
3788 unregister_netdev(adapter->port[i]);
3789
3790 if (adapter->debugfs_root)
3791 debugfs_remove_recursive(adapter->debugfs_root);
3792
3793 if (adapter->flags & FULL_INIT_DONE)
3794 cxgb_down(adapter);
3795
3796 free_some_resources(adapter);
3797 iounmap(adapter->regs);
3798 kfree(adapter);
3799 pci_disable_pcie_error_reporting(pdev);
3800 pci_disable_device(pdev);
3801 pci_release_regions(pdev);
3802 pci_set_drvdata(pdev, NULL);
3803 } else
3804 pci_release_regions(pdev);
3805 }
3806
3807 static struct pci_driver cxgb4_driver = {
3808 .name = KBUILD_MODNAME,
3809 .id_table = cxgb4_pci_tbl,
3810 .probe = init_one,
3811 .remove = __devexit_p(remove_one),
3812 .err_handler = &cxgb4_eeh,
3813 };
3814
3815 static int __init cxgb4_init_module(void)
3816 {
3817 int ret;
3818
3819 /* Debugfs support is optional, just warn if this fails */
3820 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3821 if (!cxgb4_debugfs_root)
3822 pr_warning("could not create debugfs entry, continuing\n");
3823
3824 ret = pci_register_driver(&cxgb4_driver);
3825 if (ret < 0)
3826 debugfs_remove(cxgb4_debugfs_root);
3827 return ret;
3828 }
3829
3830 static void __exit cxgb4_cleanup_module(void)
3831 {
3832 pci_unregister_driver(&cxgb4_driver);
3833 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
3834 }
3835
3836 module_init(cxgb4_init_module);
3837 module_exit(cxgb4_cleanup_module);
This page took 0.165157 seconds and 5 git commands to generate.