DM9000: Fix delays used by EEPROM read and write
[deliverable/linux.git] / drivers / net / dm9000.c
1 /*
2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16 *
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
20 */
21
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/ethtool.h>
32 #include <linux/dm9000.h>
33 #include <linux/delay.h>
34 #include <linux/platform_device.h>
35 #include <linux/irq.h>
36
37 #include <asm/delay.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40
41 #include "dm9000.h"
42
43 /* Board/System/Debug information/definition ---------------- */
44
45 #define DM9000_PHY 0x40 /* PHY address 0x01 */
46
47 #define CARDNAME "dm9000"
48 #define PFX CARDNAME ": "
49 #define DRV_VERSION "1.30"
50
51 #ifdef CONFIG_BLACKFIN
52 #define readsb insb
53 #define readsw insw
54 #define readsl insl
55 #define writesb outsb
56 #define writesw outsw
57 #define writesl outsl
58 #define DEFAULT_TRIGGER IRQF_TRIGGER_HIGH
59 #else
60 #define DEFAULT_TRIGGER (0)
61 #endif
62
63 /*
64 * Transmit timeout, default 5 seconds.
65 */
66 static int watchdog = 5000;
67 module_param(watchdog, int, 0400);
68 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
69
70 /* DM9000 register address locking.
71 *
72 * The DM9000 uses an address register to control where data written
73 * to the data register goes. This means that the address register
74 * must be preserved over interrupts or similar calls.
75 *
76 * During interrupt and other critical calls, a spinlock is used to
77 * protect the system, but the calls themselves save the address
78 * in the address register in case they are interrupting another
79 * access to the device.
80 *
81 * For general accesses a lock is provided so that calls which are
82 * allowed to sleep are serialised so that the address register does
83 * not need to be saved. This lock also serves to serialise access
84 * to the EEPROM and PHY access registers which are shared between
85 * these two devices.
86 */
87
88 /* Structure/enum declaration ------------------------------- */
89 typedef struct board_info {
90
91 void __iomem *io_addr; /* Register I/O base address */
92 void __iomem *io_data; /* Data I/O address */
93 u16 irq; /* IRQ */
94
95 u16 tx_pkt_cnt;
96 u16 queue_pkt_len;
97 u16 queue_start_addr;
98 u16 dbug_cnt;
99 u8 io_mode; /* 0:word, 2:byte */
100 u8 phy_addr;
101 unsigned int flags;
102 unsigned int in_suspend :1;
103
104 int debug_level;
105
106 void (*inblk)(void __iomem *port, void *data, int length);
107 void (*outblk)(void __iomem *port, void *data, int length);
108 void (*dumpblk)(void __iomem *port, int length);
109
110 struct device *dev; /* parent device */
111
112 struct resource *addr_res; /* resources found */
113 struct resource *data_res;
114 struct resource *addr_req; /* resources requested */
115 struct resource *data_req;
116 struct resource *irq_res;
117
118 struct mutex addr_lock; /* phy and eeprom access lock */
119
120 spinlock_t lock;
121
122 struct mii_if_info mii;
123 u32 msg_enable;
124 } board_info_t;
125
126 /* debug code */
127
128 #define dm9000_dbg(db, lev, msg...) do { \
129 if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
130 (lev) < db->debug_level) { \
131 dev_dbg(db->dev, msg); \
132 } \
133 } while (0)
134
135 static inline board_info_t *to_dm9000_board(struct net_device *dev)
136 {
137 return dev->priv;
138 }
139
140 /* function declaration ------------------------------------- */
141 static int dm9000_probe(struct platform_device *);
142 static int dm9000_open(struct net_device *);
143 static int dm9000_start_xmit(struct sk_buff *, struct net_device *);
144 static int dm9000_stop(struct net_device *);
145
146 static void dm9000_init_dm9000(struct net_device *);
147
148 static irqreturn_t dm9000_interrupt(int, void *);
149
150 static int dm9000_phy_read(struct net_device *dev, int phyaddr_unsused, int reg);
151 static void dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg,
152 int value);
153
154 static void dm9000_read_eeprom(board_info_t *, int addr, u8 *to);
155 static void dm9000_write_eeprom(board_info_t *, int addr, u8 *dp);
156 static void dm9000_rx(struct net_device *);
157 static void dm9000_hash_table(struct net_device *);
158
159 /* DM9000 network board routine ---------------------------- */
160
161 static void
162 dm9000_reset(board_info_t * db)
163 {
164 dev_dbg(db->dev, "resetting device\n");
165
166 /* RESET device */
167 writeb(DM9000_NCR, db->io_addr);
168 udelay(200);
169 writeb(NCR_RST, db->io_data);
170 udelay(200);
171 }
172
173 /*
174 * Read a byte from I/O port
175 */
176 static u8
177 ior(board_info_t * db, int reg)
178 {
179 writeb(reg, db->io_addr);
180 return readb(db->io_data);
181 }
182
183 /*
184 * Write a byte to I/O port
185 */
186
187 static void
188 iow(board_info_t * db, int reg, int value)
189 {
190 writeb(reg, db->io_addr);
191 writeb(value, db->io_data);
192 }
193
194 /* routines for sending block to chip */
195
196 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
197 {
198 writesb(reg, data, count);
199 }
200
201 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
202 {
203 writesw(reg, data, (count+1) >> 1);
204 }
205
206 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
207 {
208 writesl(reg, data, (count+3) >> 2);
209 }
210
211 /* input block from chip to memory */
212
213 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
214 {
215 readsb(reg, data, count);
216 }
217
218
219 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
220 {
221 readsw(reg, data, (count+1) >> 1);
222 }
223
224 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
225 {
226 readsl(reg, data, (count+3) >> 2);
227 }
228
229 /* dump block from chip to null */
230
231 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
232 {
233 int i;
234 int tmp;
235
236 for (i = 0; i < count; i++)
237 tmp = readb(reg);
238 }
239
240 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
241 {
242 int i;
243 int tmp;
244
245 count = (count + 1) >> 1;
246
247 for (i = 0; i < count; i++)
248 tmp = readw(reg);
249 }
250
251 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
252 {
253 int i;
254 int tmp;
255
256 count = (count + 3) >> 2;
257
258 for (i = 0; i < count; i++)
259 tmp = readl(reg);
260 }
261
262 /* dm9000_set_io
263 *
264 * select the specified set of io routines to use with the
265 * device
266 */
267
268 static void dm9000_set_io(struct board_info *db, int byte_width)
269 {
270 /* use the size of the data resource to work out what IO
271 * routines we want to use
272 */
273
274 switch (byte_width) {
275 case 1:
276 db->dumpblk = dm9000_dumpblk_8bit;
277 db->outblk = dm9000_outblk_8bit;
278 db->inblk = dm9000_inblk_8bit;
279 break;
280
281
282 case 3:
283 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
284 case 2:
285 db->dumpblk = dm9000_dumpblk_16bit;
286 db->outblk = dm9000_outblk_16bit;
287 db->inblk = dm9000_inblk_16bit;
288 break;
289
290 case 4:
291 default:
292 db->dumpblk = dm9000_dumpblk_32bit;
293 db->outblk = dm9000_outblk_32bit;
294 db->inblk = dm9000_inblk_32bit;
295 break;
296 }
297 }
298
299
300 /* Our watchdog timed out. Called by the networking layer */
301 static void dm9000_timeout(struct net_device *dev)
302 {
303 board_info_t *db = (board_info_t *) dev->priv;
304 u8 reg_save;
305 unsigned long flags;
306
307 /* Save previous register address */
308 reg_save = readb(db->io_addr);
309 spin_lock_irqsave(&db->lock,flags);
310
311 netif_stop_queue(dev);
312 dm9000_reset(db);
313 dm9000_init_dm9000(dev);
314 /* We can accept TX packets again */
315 dev->trans_start = jiffies;
316 netif_wake_queue(dev);
317
318 /* Restore previous register address */
319 writeb(reg_save, db->io_addr);
320 spin_unlock_irqrestore(&db->lock,flags);
321 }
322
323 #ifdef CONFIG_NET_POLL_CONTROLLER
324 /*
325 *Used by netconsole
326 */
327 static void dm9000_poll_controller(struct net_device *dev)
328 {
329 disable_irq(dev->irq);
330 dm9000_interrupt(dev->irq,dev);
331 enable_irq(dev->irq);
332 }
333 #endif
334
335 /* ethtool ops */
336
337 static void dm9000_get_drvinfo(struct net_device *dev,
338 struct ethtool_drvinfo *info)
339 {
340 board_info_t *dm = to_dm9000_board(dev);
341
342 strcpy(info->driver, CARDNAME);
343 strcpy(info->version, DRV_VERSION);
344 strcpy(info->bus_info, to_platform_device(dm->dev)->name);
345 }
346
347 static u32 dm9000_get_msglevel(struct net_device *dev)
348 {
349 board_info_t *dm = to_dm9000_board(dev);
350
351 return dm->msg_enable;
352 }
353
354 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
355 {
356 board_info_t *dm = to_dm9000_board(dev);
357
358 dm->msg_enable = value;
359 }
360
361 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
362 {
363 board_info_t *dm = to_dm9000_board(dev);
364
365 mii_ethtool_gset(&dm->mii, cmd);
366 return 0;
367 }
368
369 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
370 {
371 board_info_t *dm = to_dm9000_board(dev);
372
373 return mii_ethtool_sset(&dm->mii, cmd);
374 }
375
376 static int dm9000_nway_reset(struct net_device *dev)
377 {
378 board_info_t *dm = to_dm9000_board(dev);
379 return mii_nway_restart(&dm->mii);
380 }
381
382 static u32 dm9000_get_link(struct net_device *dev)
383 {
384 board_info_t *dm = to_dm9000_board(dev);
385 return mii_link_ok(&dm->mii);
386 }
387
388 #define DM_EEPROM_MAGIC (0x444D394B)
389
390 static int dm9000_get_eeprom_len(struct net_device *dev)
391 {
392 return 128;
393 }
394
395 static int dm9000_get_eeprom(struct net_device *dev,
396 struct ethtool_eeprom *ee, u8 *data)
397 {
398 board_info_t *dm = to_dm9000_board(dev);
399 int offset = ee->offset;
400 int len = ee->len;
401 int i;
402
403 /* EEPROM access is aligned to two bytes */
404
405 if ((len & 1) != 0 || (offset & 1) != 0)
406 return -EINVAL;
407
408 ee->magic = DM_EEPROM_MAGIC;
409
410 for (i = 0; i < len; i += 2)
411 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
412
413 return 0;
414 }
415
416 static int dm9000_set_eeprom(struct net_device *dev,
417 struct ethtool_eeprom *ee, u8 *data)
418 {
419 board_info_t *dm = to_dm9000_board(dev);
420 int offset = ee->offset;
421 int len = ee->len;
422 int i;
423
424 /* EEPROM access is aligned to two bytes */
425
426 if ((len & 1) != 0 || (offset & 1) != 0)
427 return -EINVAL;
428
429 if (ee->magic != DM_EEPROM_MAGIC)
430 return -EINVAL;
431
432 for (i = 0; i < len; i += 2)
433 dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
434
435 return 0;
436 }
437
438 static const struct ethtool_ops dm9000_ethtool_ops = {
439 .get_drvinfo = dm9000_get_drvinfo,
440 .get_settings = dm9000_get_settings,
441 .set_settings = dm9000_set_settings,
442 .get_msglevel = dm9000_get_msglevel,
443 .set_msglevel = dm9000_set_msglevel,
444 .nway_reset = dm9000_nway_reset,
445 .get_link = dm9000_get_link,
446 .get_eeprom_len = dm9000_get_eeprom_len,
447 .get_eeprom = dm9000_get_eeprom,
448 .set_eeprom = dm9000_set_eeprom,
449 };
450
451
452 /* dm9000_release_board
453 *
454 * release a board, and any mapped resources
455 */
456
457 static void
458 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
459 {
460 if (db->data_res == NULL) {
461 if (db->addr_res != NULL)
462 release_mem_region((unsigned long)db->io_addr, 4);
463 return;
464 }
465
466 /* unmap our resources */
467
468 iounmap(db->io_addr);
469 iounmap(db->io_data);
470
471 /* release the resources */
472
473 if (db->data_req != NULL) {
474 release_resource(db->data_req);
475 kfree(db->data_req);
476 }
477
478 if (db->addr_req != NULL) {
479 release_resource(db->addr_req);
480 kfree(db->addr_req);
481 }
482 }
483
484 #define res_size(_r) (((_r)->end - (_r)->start) + 1)
485
486 /*
487 * Search DM9000 board, allocate space and register it
488 */
489 static int
490 dm9000_probe(struct platform_device *pdev)
491 {
492 struct dm9000_plat_data *pdata = pdev->dev.platform_data;
493 struct board_info *db; /* Point a board information structure */
494 struct net_device *ndev;
495 unsigned long base;
496 int ret = 0;
497 int iosize;
498 int i;
499 u32 id_val;
500
501 /* Init network device */
502 ndev = alloc_etherdev(sizeof (struct board_info));
503 if (!ndev) {
504 dev_err(&pdev->dev, "could not allocate device.\n");
505 return -ENOMEM;
506 }
507
508 SET_NETDEV_DEV(ndev, &pdev->dev);
509
510 dev_dbg(&pdev->dev, "dm9000_probe()");
511
512 /* setup board info structure */
513 db = (struct board_info *) ndev->priv;
514 memset(db, 0, sizeof (*db));
515
516 db->dev = &pdev->dev;
517
518 spin_lock_init(&db->lock);
519 mutex_init(&db->addr_lock);
520
521 if (pdev->num_resources < 2) {
522 ret = -ENODEV;
523 goto out;
524 } else if (pdev->num_resources == 2) {
525 base = pdev->resource[0].start;
526
527 if (!request_mem_region(base, 4, ndev->name)) {
528 ret = -EBUSY;
529 goto out;
530 }
531
532 ndev->base_addr = base;
533 ndev->irq = pdev->resource[1].start;
534 db->io_addr = (void __iomem *)base;
535 db->io_data = (void __iomem *)(base + 4);
536
537 /* ensure at least we have a default set of IO routines */
538 dm9000_set_io(db, 2);
539
540 } else {
541 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
542 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
543 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
544
545 if (db->addr_res == NULL || db->data_res == NULL ||
546 db->irq_res == NULL) {
547 dev_err(db->dev, "insufficient resources\n");
548 ret = -ENOENT;
549 goto out;
550 }
551
552 i = res_size(db->addr_res);
553 db->addr_req = request_mem_region(db->addr_res->start, i,
554 pdev->name);
555
556 if (db->addr_req == NULL) {
557 dev_err(db->dev, "cannot claim address reg area\n");
558 ret = -EIO;
559 goto out;
560 }
561
562 db->io_addr = ioremap(db->addr_res->start, i);
563
564 if (db->io_addr == NULL) {
565 dev_err(db->dev, "failed to ioremap address reg\n");
566 ret = -EINVAL;
567 goto out;
568 }
569
570 iosize = res_size(db->data_res);
571 db->data_req = request_mem_region(db->data_res->start, iosize,
572 pdev->name);
573
574 if (db->data_req == NULL) {
575 dev_err(db->dev, "cannot claim data reg area\n");
576 ret = -EIO;
577 goto out;
578 }
579
580 db->io_data = ioremap(db->data_res->start, iosize);
581
582 if (db->io_data == NULL) {
583 dev_err(db->dev,"failed to ioremap data reg\n");
584 ret = -EINVAL;
585 goto out;
586 }
587
588 /* fill in parameters for net-dev structure */
589
590 ndev->base_addr = (unsigned long)db->io_addr;
591 ndev->irq = db->irq_res->start;
592
593 /* ensure at least we have a default set of IO routines */
594 dm9000_set_io(db, iosize);
595 }
596
597 /* check to see if anything is being over-ridden */
598 if (pdata != NULL) {
599 /* check to see if the driver wants to over-ride the
600 * default IO width */
601
602 if (pdata->flags & DM9000_PLATF_8BITONLY)
603 dm9000_set_io(db, 1);
604
605 if (pdata->flags & DM9000_PLATF_16BITONLY)
606 dm9000_set_io(db, 2);
607
608 if (pdata->flags & DM9000_PLATF_32BITONLY)
609 dm9000_set_io(db, 4);
610
611 /* check to see if there are any IO routine
612 * over-rides */
613
614 if (pdata->inblk != NULL)
615 db->inblk = pdata->inblk;
616
617 if (pdata->outblk != NULL)
618 db->outblk = pdata->outblk;
619
620 if (pdata->dumpblk != NULL)
621 db->dumpblk = pdata->dumpblk;
622
623 db->flags = pdata->flags;
624 }
625
626 dm9000_reset(db);
627
628 /* try two times, DM9000 sometimes gets the first read wrong */
629 for (i = 0; i < 2; i++) {
630 id_val = ior(db, DM9000_VIDL);
631 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
632 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
633 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
634
635 if (id_val == DM9000_ID)
636 break;
637 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
638 }
639
640 if (id_val != DM9000_ID) {
641 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
642 ret = -ENODEV;
643 goto out;
644 }
645
646 /* from this point we assume that we have found a DM9000 */
647
648 /* driver system function */
649 ether_setup(ndev);
650
651 ndev->open = &dm9000_open;
652 ndev->hard_start_xmit = &dm9000_start_xmit;
653 ndev->tx_timeout = &dm9000_timeout;
654 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
655 ndev->stop = &dm9000_stop;
656 ndev->set_multicast_list = &dm9000_hash_table;
657 ndev->ethtool_ops = &dm9000_ethtool_ops;
658
659 #ifdef CONFIG_NET_POLL_CONTROLLER
660 ndev->poll_controller = &dm9000_poll_controller;
661 #endif
662
663 db->msg_enable = NETIF_MSG_LINK;
664 db->mii.phy_id_mask = 0x1f;
665 db->mii.reg_num_mask = 0x1f;
666 db->mii.force_media = 0;
667 db->mii.full_duplex = 0;
668 db->mii.dev = ndev;
669 db->mii.mdio_read = dm9000_phy_read;
670 db->mii.mdio_write = dm9000_phy_write;
671
672 /* try reading the node address from the attached EEPROM */
673 for (i = 0; i < 6; i += 2)
674 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
675
676 if (!is_valid_ether_addr(ndev->dev_addr)) {
677 /* try reading from mac */
678
679 for (i = 0; i < 6; i++)
680 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
681 }
682
683 if (!is_valid_ether_addr(ndev->dev_addr))
684 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
685 "set using ifconfig\n", ndev->name);
686
687 platform_set_drvdata(pdev, ndev);
688 ret = register_netdev(ndev);
689
690 if (ret == 0) {
691 DECLARE_MAC_BUF(mac);
692 printk("%s: dm9000 at %p,%p IRQ %d MAC: %s\n",
693 ndev->name, db->io_addr, db->io_data, ndev->irq,
694 print_mac(mac, ndev->dev_addr));
695 }
696 return 0;
697
698 out:
699 dev_err(db->dev, "not found (%d).\n", ret);
700
701 dm9000_release_board(pdev, db);
702 free_netdev(ndev);
703
704 return ret;
705 }
706
707 /*
708 * Open the interface.
709 * The interface is opened whenever "ifconfig" actives it.
710 */
711 static int
712 dm9000_open(struct net_device *dev)
713 {
714 board_info_t *db = (board_info_t *) dev->priv;
715 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
716
717 if (netif_msg_ifup(db))
718 dev_dbg(db->dev, "enabling %s\n", dev->name);
719
720 /* If there is no IRQ type specified, default to something that
721 * may work, and tell the user that this is a problem */
722
723 if (irqflags == IRQF_TRIGGER_NONE) {
724 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
725 irqflags = DEFAULT_TRIGGER;
726 }
727
728 irqflags |= IRQF_SHARED;
729
730 if (request_irq(dev->irq, &dm9000_interrupt, irqflags, dev->name, dev))
731 return -EAGAIN;
732
733 /* Initialize DM9000 board */
734 dm9000_reset(db);
735 dm9000_init_dm9000(dev);
736
737 /* Init driver variable */
738 db->dbug_cnt = 0;
739
740 mii_check_media(&db->mii, netif_msg_link(db), 1);
741 netif_start_queue(dev);
742
743 return 0;
744 }
745
746 /*
747 * Initilize dm9000 board
748 */
749 static void
750 dm9000_init_dm9000(struct net_device *dev)
751 {
752 board_info_t *db = (board_info_t *) dev->priv;
753
754 dm9000_dbg(db, 1, "entering %s\n", __func__);
755
756 /* I/O mode */
757 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
758
759 /* GPIO0 on pre-activate PHY */
760 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
761 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
762 iow(db, DM9000_GPR, 0); /* Enable PHY */
763
764 if (db->flags & DM9000_PLATF_EXT_PHY)
765 iow(db, DM9000_NCR, NCR_EXT_PHY);
766
767 /* Program operating register */
768 iow(db, DM9000_TCR, 0); /* TX Polling clear */
769 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
770 iow(db, DM9000_FCR, 0xff); /* Flow Control */
771 iow(db, DM9000_SMCR, 0); /* Special Mode */
772 /* clear TX status */
773 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
774 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
775
776 /* Set address filter table */
777 dm9000_hash_table(dev);
778
779 /* Activate DM9000 */
780 iow(db, DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN);
781 /* Enable TX/RX interrupt mask */
782 iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
783
784 /* Init Driver variable */
785 db->tx_pkt_cnt = 0;
786 db->queue_pkt_len = 0;
787 dev->trans_start = 0;
788 }
789
790 /*
791 * Hardware start transmission.
792 * Send a packet to media from the upper layer.
793 */
794 static int
795 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
796 {
797 unsigned long flags;
798 board_info_t *db = (board_info_t *) dev->priv;
799
800 dm9000_dbg(db, 3, "%s:\n", __func__);
801
802 if (db->tx_pkt_cnt > 1)
803 return 1;
804
805 spin_lock_irqsave(&db->lock, flags);
806
807 /* Move data to DM9000 TX RAM */
808 writeb(DM9000_MWCMD, db->io_addr);
809
810 (db->outblk)(db->io_data, skb->data, skb->len);
811 dev->stats.tx_bytes += skb->len;
812
813 db->tx_pkt_cnt++;
814 /* TX control: First packet immediately send, second packet queue */
815 if (db->tx_pkt_cnt == 1) {
816 /* Set TX length to DM9000 */
817 iow(db, DM9000_TXPLL, skb->len & 0xff);
818 iow(db, DM9000_TXPLH, (skb->len >> 8) & 0xff);
819
820 /* Issue TX polling command */
821 iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
822
823 dev->trans_start = jiffies; /* save the time stamp */
824 } else {
825 /* Second packet */
826 db->queue_pkt_len = skb->len;
827 netif_stop_queue(dev);
828 }
829
830 spin_unlock_irqrestore(&db->lock, flags);
831
832 /* free this SKB */
833 dev_kfree_skb(skb);
834
835 return 0;
836 }
837
838 static void
839 dm9000_shutdown(struct net_device *dev)
840 {
841 board_info_t *db = (board_info_t *) dev->priv;
842
843 /* RESET device */
844 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
845 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
846 iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
847 iow(db, DM9000_RCR, 0x00); /* Disable RX */
848 }
849
850 /*
851 * Stop the interface.
852 * The interface is stopped when it is brought.
853 */
854 static int
855 dm9000_stop(struct net_device *ndev)
856 {
857 board_info_t *db = (board_info_t *) ndev->priv;
858
859 if (netif_msg_ifdown(db))
860 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
861
862 netif_stop_queue(ndev);
863 netif_carrier_off(ndev);
864
865 /* free interrupt */
866 free_irq(ndev->irq, ndev);
867
868 dm9000_shutdown(ndev);
869
870 return 0;
871 }
872
873 /*
874 * DM9000 interrupt handler
875 * receive the packet to upper layer, free the transmitted packet
876 */
877
878 static void
879 dm9000_tx_done(struct net_device *dev, board_info_t * db)
880 {
881 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
882
883 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
884 /* One packet sent complete */
885 db->tx_pkt_cnt--;
886 dev->stats.tx_packets++;
887
888 if (netif_msg_tx_done(db))
889 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
890
891 /* Queue packet check & send */
892 if (db->tx_pkt_cnt > 0) {
893 iow(db, DM9000_TXPLL, db->queue_pkt_len & 0xff);
894 iow(db, DM9000_TXPLH, (db->queue_pkt_len >> 8) & 0xff);
895 iow(db, DM9000_TCR, TCR_TXREQ);
896 dev->trans_start = jiffies;
897 }
898 netif_wake_queue(dev);
899 }
900 }
901
902 static irqreturn_t
903 dm9000_interrupt(int irq, void *dev_id)
904 {
905 struct net_device *dev = dev_id;
906 board_info_t *db = (board_info_t *) dev->priv;
907 int int_status;
908 u8 reg_save;
909
910 dm9000_dbg(db, 3, "entering %s\n", __func__);
911
912 /* A real interrupt coming */
913
914 spin_lock(&db->lock);
915
916 /* Save previous register address */
917 reg_save = readb(db->io_addr);
918
919 /* Disable all interrupts */
920 iow(db, DM9000_IMR, IMR_PAR);
921
922 /* Got DM9000 interrupt status */
923 int_status = ior(db, DM9000_ISR); /* Got ISR */
924 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
925
926 if (netif_msg_intr(db))
927 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
928
929 /* Received the coming packet */
930 if (int_status & ISR_PRS)
931 dm9000_rx(dev);
932
933 /* Trnasmit Interrupt check */
934 if (int_status & ISR_PTS)
935 dm9000_tx_done(dev, db);
936
937 /* Re-enable interrupt mask */
938 iow(db, DM9000_IMR, IMR_PAR | IMR_PTM | IMR_PRM);
939
940 /* Restore previous register address */
941 writeb(reg_save, db->io_addr);
942
943 spin_unlock(&db->lock);
944
945 return IRQ_HANDLED;
946 }
947
948 struct dm9000_rxhdr {
949 u8 RxPktReady;
950 u8 RxStatus;
951 u16 RxLen;
952 } __attribute__((__packed__));
953
954 /*
955 * Received a packet and pass to upper layer
956 */
957 static void
958 dm9000_rx(struct net_device *dev)
959 {
960 board_info_t *db = (board_info_t *) dev->priv;
961 struct dm9000_rxhdr rxhdr;
962 struct sk_buff *skb;
963 u8 rxbyte, *rdptr;
964 bool GoodPacket;
965 int RxLen;
966
967 /* Check packet ready or not */
968 do {
969 ior(db, DM9000_MRCMDX); /* Dummy read */
970
971 /* Get most updated data */
972 rxbyte = readb(db->io_data);
973
974 /* Status check: this byte must be 0 or 1 */
975 if (rxbyte > DM9000_PKT_RDY) {
976 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
977 iow(db, DM9000_RCR, 0x00); /* Stop Device */
978 iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
979 return;
980 }
981
982 if (rxbyte != DM9000_PKT_RDY)
983 return;
984
985 /* A packet ready now & Get status/length */
986 GoodPacket = true;
987 writeb(DM9000_MRCMD, db->io_addr);
988
989 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
990
991 RxLen = le16_to_cpu(rxhdr.RxLen);
992
993 if (netif_msg_rx_status(db))
994 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
995 rxhdr.RxStatus, RxLen);
996
997 /* Packet Status check */
998 if (RxLen < 0x40) {
999 GoodPacket = false;
1000 if (netif_msg_rx_err(db))
1001 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1002 }
1003
1004 if (RxLen > DM9000_PKT_MAX) {
1005 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1006 }
1007
1008 if (rxhdr.RxStatus & 0xbf) {
1009 GoodPacket = false;
1010 if (rxhdr.RxStatus & 0x01) {
1011 if (netif_msg_rx_err(db))
1012 dev_dbg(db->dev, "fifo error\n");
1013 dev->stats.rx_fifo_errors++;
1014 }
1015 if (rxhdr.RxStatus & 0x02) {
1016 if (netif_msg_rx_err(db))
1017 dev_dbg(db->dev, "crc error\n");
1018 dev->stats.rx_crc_errors++;
1019 }
1020 if (rxhdr.RxStatus & 0x80) {
1021 if (netif_msg_rx_err(db))
1022 dev_dbg(db->dev, "length error\n");
1023 dev->stats.rx_length_errors++;
1024 }
1025 }
1026
1027 /* Move data from DM9000 */
1028 if (GoodPacket
1029 && ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
1030 skb_reserve(skb, 2);
1031 rdptr = (u8 *) skb_put(skb, RxLen - 4);
1032
1033 /* Read received packet from RX SRAM */
1034
1035 (db->inblk)(db->io_data, rdptr, RxLen);
1036 dev->stats.rx_bytes += RxLen;
1037
1038 /* Pass to upper layer */
1039 skb->protocol = eth_type_trans(skb, dev);
1040 netif_rx(skb);
1041 dev->stats.rx_packets++;
1042
1043 } else {
1044 /* need to dump the packet's data */
1045
1046 (db->dumpblk)(db->io_data, RxLen);
1047 }
1048 } while (rxbyte == DM9000_PKT_RDY);
1049 }
1050
1051 static unsigned int
1052 dm9000_read_locked(board_info_t *db, int reg)
1053 {
1054 unsigned long flags;
1055 unsigned int ret;
1056
1057 spin_lock_irqsave(&db->lock, flags);
1058 ret = ior(db, reg);
1059 spin_unlock_irqrestore(&db->lock, flags);
1060
1061 return ret;
1062 }
1063
1064 static int dm9000_wait_eeprom(board_info_t *db)
1065 {
1066 unsigned int status;
1067 int timeout = 8; /* wait max 8msec */
1068
1069 /* The DM9000 data sheets say we should be able to
1070 * poll the ERRE bit in EPCR to wait for the EEPROM
1071 * operation. From testing several chips, this bit
1072 * does not seem to work.
1073 *
1074 * We attempt to use the bit, but fall back to the
1075 * timeout (which is why we do not return an error
1076 * on expiry) to say that the EEPROM operation has
1077 * completed.
1078 */
1079
1080 while (1) {
1081 status = dm9000_read_locked(db, DM9000_EPCR);
1082
1083 if ((status & EPCR_ERRE) == 0)
1084 break;
1085
1086 if (timeout-- < 0) {
1087 dev_dbg(db->dev, "timeout waiting EEPROM\n");
1088 break;
1089 }
1090 }
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * Read a word data from EEPROM
1097 */
1098 static void
1099 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
1100 {
1101 unsigned long flags;
1102
1103 mutex_lock(&db->addr_lock);
1104
1105 spin_lock_irqsave(&db->lock, flags);
1106
1107 iow(db, DM9000_EPAR, offset);
1108 iow(db, DM9000_EPCR, EPCR_ERPRR);
1109
1110 spin_unlock_irqrestore(&db->lock, flags);
1111
1112 dm9000_wait_eeprom(db);
1113
1114 /* delay for at-least 150uS */
1115 msleep(1);
1116
1117 spin_lock_irqsave(&db->lock, flags);
1118
1119 iow(db, DM9000_EPCR, 0x0);
1120
1121 to[0] = ior(db, DM9000_EPDRL);
1122 to[1] = ior(db, DM9000_EPDRH);
1123
1124 spin_unlock_irqrestore(&db->lock, flags);
1125
1126 mutex_unlock(&db->addr_lock);
1127 }
1128
1129 /*
1130 * Write a word data to SROM
1131 */
1132 static void
1133 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
1134 {
1135 unsigned long flags;
1136
1137 mutex_lock(&db->addr_lock);
1138
1139 spin_lock_irqsave(&db->lock, flags);
1140 iow(db, DM9000_EPAR, offset);
1141 iow(db, DM9000_EPDRH, data[1]);
1142 iow(db, DM9000_EPDRL, data[0]);
1143 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
1144 spin_unlock_irqrestore(&db->lock, flags);
1145
1146 dm9000_wait_eeprom(db);
1147
1148 mdelay(1); /* wait at least 150uS to clear */
1149
1150 spin_lock_irqsave(&db->lock, flags);
1151 iow(db, DM9000_EPCR, 0);
1152 spin_unlock_irqrestore(&db->lock, flags);
1153
1154 mutex_unlock(&db->addr_lock);
1155 }
1156
1157 /*
1158 * Calculate the CRC valude of the Rx packet
1159 * flag = 1 : return the reverse CRC (for the received packet CRC)
1160 * 0 : return the normal CRC (for Hash Table index)
1161 */
1162
1163 static unsigned long
1164 cal_CRC(unsigned char *Data, unsigned int Len, u8 flag)
1165 {
1166
1167 u32 crc = ether_crc_le(Len, Data);
1168
1169 if (flag)
1170 return ~crc;
1171
1172 return crc;
1173 }
1174
1175 /*
1176 * Set DM9000 multicast address
1177 */
1178 static void
1179 dm9000_hash_table(struct net_device *dev)
1180 {
1181 board_info_t *db = (board_info_t *) dev->priv;
1182 struct dev_mc_list *mcptr = dev->mc_list;
1183 int mc_cnt = dev->mc_count;
1184 u32 hash_val;
1185 u16 i, oft, hash_table[4];
1186 unsigned long flags;
1187
1188 dm9000_dbg(db, 1, "entering %s\n", __func__);
1189
1190 spin_lock_irqsave(&db->lock,flags);
1191
1192 for (i = 0, oft = 0x10; i < 6; i++, oft++)
1193 iow(db, oft, dev->dev_addr[i]);
1194
1195 /* Clear Hash Table */
1196 for (i = 0; i < 4; i++)
1197 hash_table[i] = 0x0;
1198
1199 /* broadcast address */
1200 hash_table[3] = 0x8000;
1201
1202 /* the multicast address in Hash Table : 64 bits */
1203 for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
1204 hash_val = cal_CRC((char *) mcptr->dmi_addr, 6, 0) & 0x3f;
1205 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
1206 }
1207
1208 /* Write the hash table to MAC MD table */
1209 for (i = 0, oft = 0x16; i < 4; i++) {
1210 iow(db, oft++, hash_table[i] & 0xff);
1211 iow(db, oft++, (hash_table[i] >> 8) & 0xff);
1212 }
1213
1214 spin_unlock_irqrestore(&db->lock,flags);
1215 }
1216
1217
1218 /*
1219 * Sleep, either by using msleep() or if we are suspending, then
1220 * use mdelay() to sleep.
1221 */
1222 static void dm9000_msleep(board_info_t *db, unsigned int ms)
1223 {
1224 if (db->in_suspend)
1225 mdelay(ms);
1226 else
1227 msleep(ms);
1228 }
1229
1230 /*
1231 * Read a word from phyxcer
1232 */
1233 static int
1234 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1235 {
1236 board_info_t *db = (board_info_t *) dev->priv;
1237 unsigned long flags;
1238 unsigned int reg_save;
1239 int ret;
1240
1241 mutex_lock(&db->addr_lock);
1242
1243 spin_lock_irqsave(&db->lock,flags);
1244
1245 /* Save previous register address */
1246 reg_save = readb(db->io_addr);
1247
1248 /* Fill the phyxcer register into REG_0C */
1249 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1250
1251 iow(db, DM9000_EPCR, 0xc); /* Issue phyxcer read command */
1252
1253 writeb(reg_save, db->io_addr);
1254 spin_unlock_irqrestore(&db->lock,flags);
1255
1256 dm9000_msleep(db, 1); /* Wait read complete */
1257
1258 spin_lock_irqsave(&db->lock,flags);
1259 reg_save = readb(db->io_addr);
1260
1261 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
1262
1263 /* The read data keeps on REG_0D & REG_0E */
1264 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1265
1266 /* restore the previous address */
1267 writeb(reg_save, db->io_addr);
1268 spin_unlock_irqrestore(&db->lock,flags);
1269
1270 mutex_unlock(&db->addr_lock);
1271 return ret;
1272 }
1273
1274 /*
1275 * Write a word to phyxcer
1276 */
1277 static void
1278 dm9000_phy_write(struct net_device *dev, int phyaddr_unused, int reg, int value)
1279 {
1280 board_info_t *db = (board_info_t *) dev->priv;
1281 unsigned long flags;
1282 unsigned long reg_save;
1283
1284 mutex_lock(&db->addr_lock);
1285
1286 spin_lock_irqsave(&db->lock,flags);
1287
1288 /* Save previous register address */
1289 reg_save = readb(db->io_addr);
1290
1291 /* Fill the phyxcer register into REG_0C */
1292 iow(db, DM9000_EPAR, DM9000_PHY | reg);
1293
1294 /* Fill the written data into REG_0D & REG_0E */
1295 iow(db, DM9000_EPDRL, (value & 0xff));
1296 iow(db, DM9000_EPDRH, ((value >> 8) & 0xff));
1297
1298 iow(db, DM9000_EPCR, 0xa); /* Issue phyxcer write command */
1299
1300 writeb(reg_save, db->io_addr);
1301 spin_unlock_irqrestore(&db->lock, flags);
1302
1303 dm9000_msleep(db, 1); /* Wait write complete */
1304
1305 spin_lock_irqsave(&db->lock,flags);
1306 reg_save = readb(db->io_addr);
1307
1308 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
1309
1310 /* restore the previous address */
1311 writeb(reg_save, db->io_addr);
1312
1313 spin_unlock_irqrestore(&db->lock, flags);
1314 mutex_unlock(&db->addr_lock);
1315 }
1316
1317 static int
1318 dm9000_drv_suspend(struct platform_device *dev, pm_message_t state)
1319 {
1320 struct net_device *ndev = platform_get_drvdata(dev);
1321 board_info_t *db;
1322
1323 if (ndev) {
1324 db = (board_info_t *) ndev->priv;
1325 db->in_suspend = 1;
1326
1327 if (netif_running(ndev)) {
1328 netif_device_detach(ndev);
1329 dm9000_shutdown(ndev);
1330 }
1331 }
1332 return 0;
1333 }
1334
1335 static int
1336 dm9000_drv_resume(struct platform_device *dev)
1337 {
1338 struct net_device *ndev = platform_get_drvdata(dev);
1339 board_info_t *db = (board_info_t *) ndev->priv;
1340
1341 if (ndev) {
1342
1343 if (netif_running(ndev)) {
1344 dm9000_reset(db);
1345 dm9000_init_dm9000(ndev);
1346
1347 netif_device_attach(ndev);
1348 }
1349
1350 db->in_suspend = 0;
1351 }
1352 return 0;
1353 }
1354
1355 static int
1356 dm9000_drv_remove(struct platform_device *pdev)
1357 {
1358 struct net_device *ndev = platform_get_drvdata(pdev);
1359
1360 platform_set_drvdata(pdev, NULL);
1361
1362 unregister_netdev(ndev);
1363 dm9000_release_board(pdev, (board_info_t *) ndev->priv);
1364 free_netdev(ndev); /* free device structure */
1365
1366 dev_dbg(&pdev->dev, "released and freed device\n");
1367 return 0;
1368 }
1369
1370 static struct platform_driver dm9000_driver = {
1371 .driver = {
1372 .name = "dm9000",
1373 .owner = THIS_MODULE,
1374 },
1375 .probe = dm9000_probe,
1376 .remove = dm9000_drv_remove,
1377 .suspend = dm9000_drv_suspend,
1378 .resume = dm9000_drv_resume,
1379 };
1380
1381 static int __init
1382 dm9000_init(void)
1383 {
1384 printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1385
1386 return platform_driver_register(&dm9000_driver); /* search board and register */
1387 }
1388
1389 static void __exit
1390 dm9000_cleanup(void)
1391 {
1392 platform_driver_unregister(&dm9000_driver);
1393 }
1394
1395 module_init(dm9000_init);
1396 module_exit(dm9000_cleanup);
1397
1398 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1399 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1400 MODULE_LICENSE("GPL");
This page took 0.057199 seconds and 6 git commands to generate.