net: dsa: Rename DSA probe function.
[deliverable/linux.git] / drivers / net / dsa / bcm_sf2.c
1 /*
2 * Broadcom Starfighter 2 DSA switch driver
3 *
4 * Copyright (C) 2014, Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 */
11
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/platform_device.h>
17 #include <linux/of.h>
18 #include <linux/phy.h>
19 #include <linux/phy_fixed.h>
20 #include <linux/mii.h>
21 #include <linux/of.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/of_net.h>
25 #include <net/dsa.h>
26 #include <linux/ethtool.h>
27 #include <linux/if_bridge.h>
28 #include <linux/brcmphy.h>
29 #include <linux/etherdevice.h>
30 #include <net/switchdev.h>
31
32 #include "bcm_sf2.h"
33 #include "bcm_sf2_regs.h"
34
35 /* String, offset, and register size in bytes if different from 4 bytes */
36 static const struct bcm_sf2_hw_stats bcm_sf2_mib[] = {
37 { "TxOctets", 0x000, 8 },
38 { "TxDropPkts", 0x020 },
39 { "TxQPKTQ0", 0x030 },
40 { "TxBroadcastPkts", 0x040 },
41 { "TxMulticastPkts", 0x050 },
42 { "TxUnicastPKts", 0x060 },
43 { "TxCollisions", 0x070 },
44 { "TxSingleCollision", 0x080 },
45 { "TxMultipleCollision", 0x090 },
46 { "TxDeferredCollision", 0x0a0 },
47 { "TxLateCollision", 0x0b0 },
48 { "TxExcessiveCollision", 0x0c0 },
49 { "TxFrameInDisc", 0x0d0 },
50 { "TxPausePkts", 0x0e0 },
51 { "TxQPKTQ1", 0x0f0 },
52 { "TxQPKTQ2", 0x100 },
53 { "TxQPKTQ3", 0x110 },
54 { "TxQPKTQ4", 0x120 },
55 { "TxQPKTQ5", 0x130 },
56 { "RxOctets", 0x140, 8 },
57 { "RxUndersizePkts", 0x160 },
58 { "RxPausePkts", 0x170 },
59 { "RxPkts64Octets", 0x180 },
60 { "RxPkts65to127Octets", 0x190 },
61 { "RxPkts128to255Octets", 0x1a0 },
62 { "RxPkts256to511Octets", 0x1b0 },
63 { "RxPkts512to1023Octets", 0x1c0 },
64 { "RxPkts1024toMaxPktsOctets", 0x1d0 },
65 { "RxOversizePkts", 0x1e0 },
66 { "RxJabbers", 0x1f0 },
67 { "RxAlignmentErrors", 0x200 },
68 { "RxFCSErrors", 0x210 },
69 { "RxGoodOctets", 0x220, 8 },
70 { "RxDropPkts", 0x240 },
71 { "RxUnicastPkts", 0x250 },
72 { "RxMulticastPkts", 0x260 },
73 { "RxBroadcastPkts", 0x270 },
74 { "RxSAChanges", 0x280 },
75 { "RxFragments", 0x290 },
76 { "RxJumboPkt", 0x2a0 },
77 { "RxSymblErr", 0x2b0 },
78 { "InRangeErrCount", 0x2c0 },
79 { "OutRangeErrCount", 0x2d0 },
80 { "EEELpiEvent", 0x2e0 },
81 { "EEELpiDuration", 0x2f0 },
82 { "RxDiscard", 0x300, 8 },
83 { "TxQPKTQ6", 0x320 },
84 { "TxQPKTQ7", 0x330 },
85 { "TxPkts64Octets", 0x340 },
86 { "TxPkts65to127Octets", 0x350 },
87 { "TxPkts128to255Octets", 0x360 },
88 { "TxPkts256to511Ocets", 0x370 },
89 { "TxPkts512to1023Ocets", 0x380 },
90 { "TxPkts1024toMaxPktOcets", 0x390 },
91 };
92
93 #define BCM_SF2_STATS_SIZE ARRAY_SIZE(bcm_sf2_mib)
94
95 static void bcm_sf2_sw_get_strings(struct dsa_switch *ds,
96 int port, uint8_t *data)
97 {
98 unsigned int i;
99
100 for (i = 0; i < BCM_SF2_STATS_SIZE; i++)
101 memcpy(data + i * ETH_GSTRING_LEN,
102 bcm_sf2_mib[i].string, ETH_GSTRING_LEN);
103 }
104
105 static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds,
106 int port, uint64_t *data)
107 {
108 struct bcm_sf2_priv *priv = ds_to_priv(ds);
109 const struct bcm_sf2_hw_stats *s;
110 unsigned int i;
111 u64 val = 0;
112 u32 offset;
113
114 mutex_lock(&priv->stats_mutex);
115
116 /* Now fetch the per-port counters */
117 for (i = 0; i < BCM_SF2_STATS_SIZE; i++) {
118 s = &bcm_sf2_mib[i];
119
120 /* Do a latched 64-bit read if needed */
121 offset = s->reg + CORE_P_MIB_OFFSET(port);
122 if (s->sizeof_stat == 8)
123 val = core_readq(priv, offset);
124 else
125 val = core_readl(priv, offset);
126
127 data[i] = (u64)val;
128 }
129
130 mutex_unlock(&priv->stats_mutex);
131 }
132
133 static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds)
134 {
135 return BCM_SF2_STATS_SIZE;
136 }
137
138 static char *bcm_sf2_sw_drv_probe(struct device *dsa_dev,
139 struct device *host_dev,
140 int sw_addr, void **_priv)
141 {
142 struct bcm_sf2_priv *priv;
143
144 priv = devm_kzalloc(dsa_dev, sizeof(*priv), GFP_KERNEL);
145 if (!priv)
146 return NULL;
147 *_priv = priv;
148
149 return "Broadcom Starfighter 2";
150 }
151
152 static void bcm_sf2_imp_vlan_setup(struct dsa_switch *ds, int cpu_port)
153 {
154 struct bcm_sf2_priv *priv = ds_to_priv(ds);
155 unsigned int i;
156 u32 reg;
157
158 /* Enable the IMP Port to be in the same VLAN as the other ports
159 * on a per-port basis such that we only have Port i and IMP in
160 * the same VLAN.
161 */
162 for (i = 0; i < priv->hw_params.num_ports; i++) {
163 if (!((1 << i) & ds->phys_port_mask))
164 continue;
165
166 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
167 reg |= (1 << cpu_port);
168 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
169 }
170 }
171
172 static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port)
173 {
174 struct bcm_sf2_priv *priv = ds_to_priv(ds);
175 u32 reg, val;
176
177 /* Enable the port memories */
178 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
179 reg &= ~P_TXQ_PSM_VDD(port);
180 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
181
182 /* Enable Broadcast, Multicast, Unicast forwarding to IMP port */
183 reg = core_readl(priv, CORE_IMP_CTL);
184 reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN);
185 reg &= ~(RX_DIS | TX_DIS);
186 core_writel(priv, reg, CORE_IMP_CTL);
187
188 /* Enable forwarding */
189 core_writel(priv, SW_FWDG_EN, CORE_SWMODE);
190
191 /* Enable IMP port in dumb mode */
192 reg = core_readl(priv, CORE_SWITCH_CTRL);
193 reg |= MII_DUMB_FWDG_EN;
194 core_writel(priv, reg, CORE_SWITCH_CTRL);
195
196 /* Resolve which bit controls the Broadcom tag */
197 switch (port) {
198 case 8:
199 val = BRCM_HDR_EN_P8;
200 break;
201 case 7:
202 val = BRCM_HDR_EN_P7;
203 break;
204 case 5:
205 val = BRCM_HDR_EN_P5;
206 break;
207 default:
208 val = 0;
209 break;
210 }
211
212 /* Enable Broadcom tags for IMP port */
213 reg = core_readl(priv, CORE_BRCM_HDR_CTRL);
214 reg |= val;
215 core_writel(priv, reg, CORE_BRCM_HDR_CTRL);
216
217 /* Enable reception Broadcom tag for CPU TX (switch RX) to
218 * allow us to tag outgoing frames
219 */
220 reg = core_readl(priv, CORE_BRCM_HDR_RX_DIS);
221 reg &= ~(1 << port);
222 core_writel(priv, reg, CORE_BRCM_HDR_RX_DIS);
223
224 /* Enable transmission of Broadcom tags from the switch (CPU RX) to
225 * allow delivering frames to the per-port net_devices
226 */
227 reg = core_readl(priv, CORE_BRCM_HDR_TX_DIS);
228 reg &= ~(1 << port);
229 core_writel(priv, reg, CORE_BRCM_HDR_TX_DIS);
230
231 /* Force link status for IMP port */
232 reg = core_readl(priv, CORE_STS_OVERRIDE_IMP);
233 reg |= (MII_SW_OR | LINK_STS);
234 core_writel(priv, reg, CORE_STS_OVERRIDE_IMP);
235 }
236
237 static void bcm_sf2_eee_enable_set(struct dsa_switch *ds, int port, bool enable)
238 {
239 struct bcm_sf2_priv *priv = ds_to_priv(ds);
240 u32 reg;
241
242 reg = core_readl(priv, CORE_EEE_EN_CTRL);
243 if (enable)
244 reg |= 1 << port;
245 else
246 reg &= ~(1 << port);
247 core_writel(priv, reg, CORE_EEE_EN_CTRL);
248 }
249
250 static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable)
251 {
252 struct bcm_sf2_priv *priv = ds_to_priv(ds);
253 u32 reg;
254
255 reg = reg_readl(priv, REG_SPHY_CNTRL);
256 if (enable) {
257 reg |= PHY_RESET;
258 reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | CK25_DIS);
259 reg_writel(priv, reg, REG_SPHY_CNTRL);
260 udelay(21);
261 reg = reg_readl(priv, REG_SPHY_CNTRL);
262 reg &= ~PHY_RESET;
263 } else {
264 reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET;
265 reg_writel(priv, reg, REG_SPHY_CNTRL);
266 mdelay(1);
267 reg |= CK25_DIS;
268 }
269 reg_writel(priv, reg, REG_SPHY_CNTRL);
270
271 /* Use PHY-driven LED signaling */
272 if (!enable) {
273 reg = reg_readl(priv, REG_LED_CNTRL(0));
274 reg |= SPDLNK_SRC_SEL;
275 reg_writel(priv, reg, REG_LED_CNTRL(0));
276 }
277 }
278
279 static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv,
280 int port)
281 {
282 unsigned int off;
283
284 switch (port) {
285 case 7:
286 off = P7_IRQ_OFF;
287 break;
288 case 0:
289 /* Port 0 interrupts are located on the first bank */
290 intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF));
291 return;
292 default:
293 off = P_IRQ_OFF(port);
294 break;
295 }
296
297 intrl2_1_mask_clear(priv, P_IRQ_MASK(off));
298 }
299
300 static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv,
301 int port)
302 {
303 unsigned int off;
304
305 switch (port) {
306 case 7:
307 off = P7_IRQ_OFF;
308 break;
309 case 0:
310 /* Port 0 interrupts are located on the first bank */
311 intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF));
312 intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR);
313 return;
314 default:
315 off = P_IRQ_OFF(port);
316 break;
317 }
318
319 intrl2_1_mask_set(priv, P_IRQ_MASK(off));
320 intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR);
321 }
322
323 static int bcm_sf2_port_setup(struct dsa_switch *ds, int port,
324 struct phy_device *phy)
325 {
326 struct bcm_sf2_priv *priv = ds_to_priv(ds);
327 s8 cpu_port = ds->dst[ds->index].cpu_port;
328 u32 reg;
329
330 /* Clear the memory power down */
331 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
332 reg &= ~P_TXQ_PSM_VDD(port);
333 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
334
335 /* Clear the Rx and Tx disable bits and set to no spanning tree */
336 core_writel(priv, 0, CORE_G_PCTL_PORT(port));
337
338 /* Re-enable the GPHY and re-apply workarounds */
339 if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) {
340 bcm_sf2_gphy_enable_set(ds, true);
341 if (phy) {
342 /* if phy_stop() has been called before, phy
343 * will be in halted state, and phy_start()
344 * will call resume.
345 *
346 * the resume path does not configure back
347 * autoneg settings, and since we hard reset
348 * the phy manually here, we need to reset the
349 * state machine also.
350 */
351 phy->state = PHY_READY;
352 phy_init_hw(phy);
353 }
354 }
355
356 /* Enable MoCA port interrupts to get notified */
357 if (port == priv->moca_port)
358 bcm_sf2_port_intr_enable(priv, port);
359
360 /* Set this port, and only this one to be in the default VLAN,
361 * if member of a bridge, restore its membership prior to
362 * bringing down this port.
363 */
364 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
365 reg &= ~PORT_VLAN_CTRL_MASK;
366 reg |= (1 << port);
367 reg |= priv->port_sts[port].vlan_ctl_mask;
368 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(port));
369
370 bcm_sf2_imp_vlan_setup(ds, cpu_port);
371
372 /* If EEE was enabled, restore it */
373 if (priv->port_sts[port].eee.eee_enabled)
374 bcm_sf2_eee_enable_set(ds, port, true);
375
376 return 0;
377 }
378
379 static void bcm_sf2_port_disable(struct dsa_switch *ds, int port,
380 struct phy_device *phy)
381 {
382 struct bcm_sf2_priv *priv = ds_to_priv(ds);
383 u32 off, reg;
384
385 if (priv->wol_ports_mask & (1 << port))
386 return;
387
388 if (port == priv->moca_port)
389 bcm_sf2_port_intr_disable(priv, port);
390
391 if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1)
392 bcm_sf2_gphy_enable_set(ds, false);
393
394 if (dsa_is_cpu_port(ds, port))
395 off = CORE_IMP_CTL;
396 else
397 off = CORE_G_PCTL_PORT(port);
398
399 reg = core_readl(priv, off);
400 reg |= RX_DIS | TX_DIS;
401 core_writel(priv, reg, off);
402
403 /* Power down the port memory */
404 reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL);
405 reg |= P_TXQ_PSM_VDD(port);
406 core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL);
407 }
408
409 /* Returns 0 if EEE was not enabled, or 1 otherwise
410 */
411 static int bcm_sf2_eee_init(struct dsa_switch *ds, int port,
412 struct phy_device *phy)
413 {
414 struct bcm_sf2_priv *priv = ds_to_priv(ds);
415 struct ethtool_eee *p = &priv->port_sts[port].eee;
416 int ret;
417
418 p->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_100baseT_Full);
419
420 ret = phy_init_eee(phy, 0);
421 if (ret)
422 return 0;
423
424 bcm_sf2_eee_enable_set(ds, port, true);
425
426 return 1;
427 }
428
429 static int bcm_sf2_sw_get_eee(struct dsa_switch *ds, int port,
430 struct ethtool_eee *e)
431 {
432 struct bcm_sf2_priv *priv = ds_to_priv(ds);
433 struct ethtool_eee *p = &priv->port_sts[port].eee;
434 u32 reg;
435
436 reg = core_readl(priv, CORE_EEE_LPI_INDICATE);
437 e->eee_enabled = p->eee_enabled;
438 e->eee_active = !!(reg & (1 << port));
439
440 return 0;
441 }
442
443 static int bcm_sf2_sw_set_eee(struct dsa_switch *ds, int port,
444 struct phy_device *phydev,
445 struct ethtool_eee *e)
446 {
447 struct bcm_sf2_priv *priv = ds_to_priv(ds);
448 struct ethtool_eee *p = &priv->port_sts[port].eee;
449
450 p->eee_enabled = e->eee_enabled;
451
452 if (!p->eee_enabled) {
453 bcm_sf2_eee_enable_set(ds, port, false);
454 } else {
455 p->eee_enabled = bcm_sf2_eee_init(ds, port, phydev);
456 if (!p->eee_enabled)
457 return -EOPNOTSUPP;
458 }
459
460 return 0;
461 }
462
463 /* Fast-ageing of ARL entries for a given port, equivalent to an ARL
464 * flush for that port.
465 */
466 static int bcm_sf2_sw_fast_age_port(struct dsa_switch *ds, int port)
467 {
468 struct bcm_sf2_priv *priv = ds_to_priv(ds);
469 unsigned int timeout = 1000;
470 u32 reg;
471
472 core_writel(priv, port, CORE_FAST_AGE_PORT);
473
474 reg = core_readl(priv, CORE_FAST_AGE_CTRL);
475 reg |= EN_AGE_PORT | EN_AGE_DYNAMIC | FAST_AGE_STR_DONE;
476 core_writel(priv, reg, CORE_FAST_AGE_CTRL);
477
478 do {
479 reg = core_readl(priv, CORE_FAST_AGE_CTRL);
480 if (!(reg & FAST_AGE_STR_DONE))
481 break;
482
483 cpu_relax();
484 } while (timeout--);
485
486 if (!timeout)
487 return -ETIMEDOUT;
488
489 core_writel(priv, 0, CORE_FAST_AGE_CTRL);
490
491 return 0;
492 }
493
494 static int bcm_sf2_sw_br_join(struct dsa_switch *ds, int port,
495 struct net_device *bridge)
496 {
497 struct bcm_sf2_priv *priv = ds_to_priv(ds);
498 unsigned int i;
499 u32 reg, p_ctl;
500
501 priv->port_sts[port].bridge_dev = bridge;
502 p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
503
504 for (i = 0; i < priv->hw_params.num_ports; i++) {
505 if (priv->port_sts[i].bridge_dev != bridge)
506 continue;
507
508 /* Add this local port to the remote port VLAN control
509 * membership and update the remote port bitmask
510 */
511 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
512 reg |= 1 << port;
513 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
514 priv->port_sts[i].vlan_ctl_mask = reg;
515
516 p_ctl |= 1 << i;
517 }
518
519 /* Configure the local port VLAN control membership to include
520 * remote ports and update the local port bitmask
521 */
522 core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
523 priv->port_sts[port].vlan_ctl_mask = p_ctl;
524
525 return 0;
526 }
527
528 static void bcm_sf2_sw_br_leave(struct dsa_switch *ds, int port)
529 {
530 struct bcm_sf2_priv *priv = ds_to_priv(ds);
531 struct net_device *bridge = priv->port_sts[port].bridge_dev;
532 unsigned int i;
533 u32 reg, p_ctl;
534
535 p_ctl = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(port));
536
537 for (i = 0; i < priv->hw_params.num_ports; i++) {
538 /* Don't touch the remaining ports */
539 if (priv->port_sts[i].bridge_dev != bridge)
540 continue;
541
542 reg = core_readl(priv, CORE_PORT_VLAN_CTL_PORT(i));
543 reg &= ~(1 << port);
544 core_writel(priv, reg, CORE_PORT_VLAN_CTL_PORT(i));
545 priv->port_sts[port].vlan_ctl_mask = reg;
546
547 /* Prevent self removal to preserve isolation */
548 if (port != i)
549 p_ctl &= ~(1 << i);
550 }
551
552 core_writel(priv, p_ctl, CORE_PORT_VLAN_CTL_PORT(port));
553 priv->port_sts[port].vlan_ctl_mask = p_ctl;
554 priv->port_sts[port].bridge_dev = NULL;
555 }
556
557 static void bcm_sf2_sw_br_set_stp_state(struct dsa_switch *ds, int port,
558 u8 state)
559 {
560 struct bcm_sf2_priv *priv = ds_to_priv(ds);
561 u8 hw_state, cur_hw_state;
562 u32 reg;
563
564 reg = core_readl(priv, CORE_G_PCTL_PORT(port));
565 cur_hw_state = reg & (G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
566
567 switch (state) {
568 case BR_STATE_DISABLED:
569 hw_state = G_MISTP_DIS_STATE;
570 break;
571 case BR_STATE_LISTENING:
572 hw_state = G_MISTP_LISTEN_STATE;
573 break;
574 case BR_STATE_LEARNING:
575 hw_state = G_MISTP_LEARN_STATE;
576 break;
577 case BR_STATE_FORWARDING:
578 hw_state = G_MISTP_FWD_STATE;
579 break;
580 case BR_STATE_BLOCKING:
581 hw_state = G_MISTP_BLOCK_STATE;
582 break;
583 default:
584 pr_err("%s: invalid STP state: %d\n", __func__, state);
585 return;
586 }
587
588 /* Fast-age ARL entries if we are moving a port from Learning or
589 * Forwarding (cur_hw_state) state to Disabled, Blocking or Listening
590 * state (hw_state)
591 */
592 if (cur_hw_state != hw_state) {
593 if (cur_hw_state >= G_MISTP_LEARN_STATE &&
594 hw_state <= G_MISTP_LISTEN_STATE) {
595 if (bcm_sf2_sw_fast_age_port(ds, port)) {
596 pr_err("%s: fast-ageing failed\n", __func__);
597 return;
598 }
599 }
600 }
601
602 reg = core_readl(priv, CORE_G_PCTL_PORT(port));
603 reg &= ~(G_MISTP_STATE_MASK << G_MISTP_STATE_SHIFT);
604 reg |= hw_state;
605 core_writel(priv, reg, CORE_G_PCTL_PORT(port));
606 }
607
608 /* Address Resolution Logic routines */
609 static int bcm_sf2_arl_op_wait(struct bcm_sf2_priv *priv)
610 {
611 unsigned int timeout = 10;
612 u32 reg;
613
614 do {
615 reg = core_readl(priv, CORE_ARLA_RWCTL);
616 if (!(reg & ARL_STRTDN))
617 return 0;
618
619 usleep_range(1000, 2000);
620 } while (timeout--);
621
622 return -ETIMEDOUT;
623 }
624
625 static int bcm_sf2_arl_rw_op(struct bcm_sf2_priv *priv, unsigned int op)
626 {
627 u32 cmd;
628
629 if (op > ARL_RW)
630 return -EINVAL;
631
632 cmd = core_readl(priv, CORE_ARLA_RWCTL);
633 cmd &= ~IVL_SVL_SELECT;
634 cmd |= ARL_STRTDN;
635 if (op)
636 cmd |= ARL_RW;
637 else
638 cmd &= ~ARL_RW;
639 core_writel(priv, cmd, CORE_ARLA_RWCTL);
640
641 return bcm_sf2_arl_op_wait(priv);
642 }
643
644 static int bcm_sf2_arl_read(struct bcm_sf2_priv *priv, u64 mac,
645 u16 vid, struct bcm_sf2_arl_entry *ent, u8 *idx,
646 bool is_valid)
647 {
648 unsigned int i;
649 int ret;
650
651 ret = bcm_sf2_arl_op_wait(priv);
652 if (ret)
653 return ret;
654
655 /* Read the 4 bins */
656 for (i = 0; i < 4; i++) {
657 u64 mac_vid;
658 u32 fwd_entry;
659
660 mac_vid = core_readq(priv, CORE_ARLA_MACVID_ENTRY(i));
661 fwd_entry = core_readl(priv, CORE_ARLA_FWD_ENTRY(i));
662 bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
663
664 if (ent->is_valid && is_valid) {
665 *idx = i;
666 return 0;
667 }
668
669 /* This is the MAC we just deleted */
670 if (!is_valid && (mac_vid & mac))
671 return 0;
672 }
673
674 return -ENOENT;
675 }
676
677 static int bcm_sf2_arl_op(struct bcm_sf2_priv *priv, int op, int port,
678 const unsigned char *addr, u16 vid, bool is_valid)
679 {
680 struct bcm_sf2_arl_entry ent;
681 u32 fwd_entry;
682 u64 mac, mac_vid = 0;
683 u8 idx = 0;
684 int ret;
685
686 /* Convert the array into a 64-bit MAC */
687 mac = bcm_sf2_mac_to_u64(addr);
688
689 /* Perform a read for the given MAC and VID */
690 core_writeq(priv, mac, CORE_ARLA_MAC);
691 core_writel(priv, vid, CORE_ARLA_VID);
692
693 /* Issue a read operation for this MAC */
694 ret = bcm_sf2_arl_rw_op(priv, 1);
695 if (ret)
696 return ret;
697
698 ret = bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
699 /* If this is a read, just finish now */
700 if (op)
701 return ret;
702
703 /* We could not find a matching MAC, so reset to a new entry */
704 if (ret) {
705 fwd_entry = 0;
706 idx = 0;
707 }
708
709 memset(&ent, 0, sizeof(ent));
710 ent.port = port;
711 ent.is_valid = is_valid;
712 ent.vid = vid;
713 ent.is_static = true;
714 memcpy(ent.mac, addr, ETH_ALEN);
715 bcm_sf2_arl_from_entry(&mac_vid, &fwd_entry, &ent);
716
717 core_writeq(priv, mac_vid, CORE_ARLA_MACVID_ENTRY(idx));
718 core_writel(priv, fwd_entry, CORE_ARLA_FWD_ENTRY(idx));
719
720 ret = bcm_sf2_arl_rw_op(priv, 0);
721 if (ret)
722 return ret;
723
724 /* Re-read the entry to check */
725 return bcm_sf2_arl_read(priv, mac, vid, &ent, &idx, is_valid);
726 }
727
728 static int bcm_sf2_sw_fdb_prepare(struct dsa_switch *ds, int port,
729 const struct switchdev_obj_port_fdb *fdb,
730 struct switchdev_trans *trans)
731 {
732 /* We do not need to do anything specific here yet */
733 return 0;
734 }
735
736 static void bcm_sf2_sw_fdb_add(struct dsa_switch *ds, int port,
737 const struct switchdev_obj_port_fdb *fdb,
738 struct switchdev_trans *trans)
739 {
740 struct bcm_sf2_priv *priv = ds_to_priv(ds);
741
742 if (bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, true))
743 pr_err("%s: failed to add MAC address\n", __func__);
744 }
745
746 static int bcm_sf2_sw_fdb_del(struct dsa_switch *ds, int port,
747 const struct switchdev_obj_port_fdb *fdb)
748 {
749 struct bcm_sf2_priv *priv = ds_to_priv(ds);
750
751 return bcm_sf2_arl_op(priv, 0, port, fdb->addr, fdb->vid, false);
752 }
753
754 static int bcm_sf2_arl_search_wait(struct bcm_sf2_priv *priv)
755 {
756 unsigned timeout = 1000;
757 u32 reg;
758
759 do {
760 reg = core_readl(priv, CORE_ARLA_SRCH_CTL);
761 if (!(reg & ARLA_SRCH_STDN))
762 return 0;
763
764 if (reg & ARLA_SRCH_VLID)
765 return 0;
766
767 usleep_range(1000, 2000);
768 } while (timeout--);
769
770 return -ETIMEDOUT;
771 }
772
773 static void bcm_sf2_arl_search_rd(struct bcm_sf2_priv *priv, u8 idx,
774 struct bcm_sf2_arl_entry *ent)
775 {
776 u64 mac_vid;
777 u32 fwd_entry;
778
779 mac_vid = core_readq(priv, CORE_ARLA_SRCH_RSLT_MACVID(idx));
780 fwd_entry = core_readl(priv, CORE_ARLA_SRCH_RSLT(idx));
781 bcm_sf2_arl_to_entry(ent, mac_vid, fwd_entry);
782 }
783
784 static int bcm_sf2_sw_fdb_copy(struct net_device *dev, int port,
785 const struct bcm_sf2_arl_entry *ent,
786 struct switchdev_obj_port_fdb *fdb,
787 int (*cb)(struct switchdev_obj *obj))
788 {
789 if (!ent->is_valid)
790 return 0;
791
792 if (port != ent->port)
793 return 0;
794
795 ether_addr_copy(fdb->addr, ent->mac);
796 fdb->vid = ent->vid;
797 fdb->ndm_state = ent->is_static ? NUD_NOARP : NUD_REACHABLE;
798
799 return cb(&fdb->obj);
800 }
801
802 static int bcm_sf2_sw_fdb_dump(struct dsa_switch *ds, int port,
803 struct switchdev_obj_port_fdb *fdb,
804 int (*cb)(struct switchdev_obj *obj))
805 {
806 struct bcm_sf2_priv *priv = ds_to_priv(ds);
807 struct net_device *dev = ds->ports[port];
808 struct bcm_sf2_arl_entry results[2];
809 unsigned int count = 0;
810 int ret;
811
812 /* Start search operation */
813 core_writel(priv, ARLA_SRCH_STDN, CORE_ARLA_SRCH_CTL);
814
815 do {
816 ret = bcm_sf2_arl_search_wait(priv);
817 if (ret)
818 return ret;
819
820 /* Read both entries, then return their values back */
821 bcm_sf2_arl_search_rd(priv, 0, &results[0]);
822 ret = bcm_sf2_sw_fdb_copy(dev, port, &results[0], fdb, cb);
823 if (ret)
824 return ret;
825
826 bcm_sf2_arl_search_rd(priv, 1, &results[1]);
827 ret = bcm_sf2_sw_fdb_copy(dev, port, &results[1], fdb, cb);
828 if (ret)
829 return ret;
830
831 if (!results[0].is_valid && !results[1].is_valid)
832 break;
833
834 } while (count++ < CORE_ARLA_NUM_ENTRIES);
835
836 return 0;
837 }
838
839 static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id)
840 {
841 struct bcm_sf2_priv *priv = dev_id;
842
843 priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
844 ~priv->irq0_mask;
845 intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
846
847 return IRQ_HANDLED;
848 }
849
850 static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id)
851 {
852 struct bcm_sf2_priv *priv = dev_id;
853
854 priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
855 ~priv->irq1_mask;
856 intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
857
858 if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF))
859 priv->port_sts[7].link = 1;
860 if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF))
861 priv->port_sts[7].link = 0;
862
863 return IRQ_HANDLED;
864 }
865
866 static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv)
867 {
868 unsigned int timeout = 1000;
869 u32 reg;
870
871 reg = core_readl(priv, CORE_WATCHDOG_CTRL);
872 reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET;
873 core_writel(priv, reg, CORE_WATCHDOG_CTRL);
874
875 do {
876 reg = core_readl(priv, CORE_WATCHDOG_CTRL);
877 if (!(reg & SOFTWARE_RESET))
878 break;
879
880 usleep_range(1000, 2000);
881 } while (timeout-- > 0);
882
883 if (timeout == 0)
884 return -ETIMEDOUT;
885
886 return 0;
887 }
888
889 static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv)
890 {
891 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
892 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
893 intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
894 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
895 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
896 intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
897 }
898
899 static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv,
900 struct device_node *dn)
901 {
902 struct device_node *port;
903 const char *phy_mode_str;
904 int mode;
905 unsigned int port_num;
906 int ret;
907
908 priv->moca_port = -1;
909
910 for_each_available_child_of_node(dn, port) {
911 if (of_property_read_u32(port, "reg", &port_num))
912 continue;
913
914 /* Internal PHYs get assigned a specific 'phy-mode' property
915 * value: "internal" to help flag them before MDIO probing
916 * has completed, since they might be turned off at that
917 * time
918 */
919 mode = of_get_phy_mode(port);
920 if (mode < 0) {
921 ret = of_property_read_string(port, "phy-mode",
922 &phy_mode_str);
923 if (ret < 0)
924 continue;
925
926 if (!strcasecmp(phy_mode_str, "internal"))
927 priv->int_phy_mask |= 1 << port_num;
928 }
929
930 if (mode == PHY_INTERFACE_MODE_MOCA)
931 priv->moca_port = port_num;
932 }
933 }
934
935 static int bcm_sf2_sw_setup(struct dsa_switch *ds)
936 {
937 const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME;
938 struct bcm_sf2_priv *priv = ds_to_priv(ds);
939 struct device_node *dn;
940 void __iomem **base;
941 unsigned int port;
942 unsigned int i;
943 u32 reg, rev;
944 int ret;
945
946 spin_lock_init(&priv->indir_lock);
947 mutex_init(&priv->stats_mutex);
948
949 /* All the interesting properties are at the parent device_node
950 * level
951 */
952 dn = ds->pd->of_node->parent;
953 bcm_sf2_identify_ports(priv, ds->pd->of_node);
954
955 priv->irq0 = irq_of_parse_and_map(dn, 0);
956 priv->irq1 = irq_of_parse_and_map(dn, 1);
957
958 base = &priv->core;
959 for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
960 *base = of_iomap(dn, i);
961 if (*base == NULL) {
962 pr_err("unable to find register: %s\n", reg_names[i]);
963 ret = -ENOMEM;
964 goto out_unmap;
965 }
966 base++;
967 }
968
969 ret = bcm_sf2_sw_rst(priv);
970 if (ret) {
971 pr_err("unable to software reset switch: %d\n", ret);
972 goto out_unmap;
973 }
974
975 /* Disable all interrupts and request them */
976 bcm_sf2_intr_disable(priv);
977
978 ret = request_irq(priv->irq0, bcm_sf2_switch_0_isr, 0,
979 "switch_0", priv);
980 if (ret < 0) {
981 pr_err("failed to request switch_0 IRQ\n");
982 goto out_unmap;
983 }
984
985 ret = request_irq(priv->irq1, bcm_sf2_switch_1_isr, 0,
986 "switch_1", priv);
987 if (ret < 0) {
988 pr_err("failed to request switch_1 IRQ\n");
989 goto out_free_irq0;
990 }
991
992 /* Reset the MIB counters */
993 reg = core_readl(priv, CORE_GMNCFGCFG);
994 reg |= RST_MIB_CNT;
995 core_writel(priv, reg, CORE_GMNCFGCFG);
996 reg &= ~RST_MIB_CNT;
997 core_writel(priv, reg, CORE_GMNCFGCFG);
998
999 /* Get the maximum number of ports for this switch */
1000 priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1;
1001 if (priv->hw_params.num_ports > DSA_MAX_PORTS)
1002 priv->hw_params.num_ports = DSA_MAX_PORTS;
1003
1004 /* Assume a single GPHY setup if we can't read that property */
1005 if (of_property_read_u32(dn, "brcm,num-gphy",
1006 &priv->hw_params.num_gphy))
1007 priv->hw_params.num_gphy = 1;
1008
1009 /* Enable all valid ports and disable those unused */
1010 for (port = 0; port < priv->hw_params.num_ports; port++) {
1011 /* IMP port receives special treatment */
1012 if ((1 << port) & ds->phys_port_mask)
1013 bcm_sf2_port_setup(ds, port, NULL);
1014 else if (dsa_is_cpu_port(ds, port))
1015 bcm_sf2_imp_setup(ds, port);
1016 else
1017 bcm_sf2_port_disable(ds, port, NULL);
1018 }
1019
1020 /* Include the pseudo-PHY address and the broadcast PHY address to
1021 * divert reads towards our workaround. This is only required for
1022 * 7445D0, since 7445E0 disconnects the internal switch pseudo-PHY such
1023 * that we can use the regular SWITCH_MDIO master controller instead.
1024 *
1025 * By default, DSA initializes ds->phys_mii_mask to ds->phys_port_mask
1026 * to have a 1:1 mapping between Port address and PHY address in order
1027 * to utilize the slave_mii_bus instance to read from Port PHYs. This is
1028 * not what we want here, so we initialize phys_mii_mask 0 to always
1029 * utilize the "master" MDIO bus backed by the "mdio-unimac" driver.
1030 */
1031 if (of_machine_is_compatible("brcm,bcm7445d0"))
1032 ds->phys_mii_mask |= ((1 << BRCM_PSEUDO_PHY_ADDR) | (1 << 0));
1033 else
1034 ds->phys_mii_mask = 0;
1035
1036 rev = reg_readl(priv, REG_SWITCH_REVISION);
1037 priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) &
1038 SWITCH_TOP_REV_MASK;
1039 priv->hw_params.core_rev = (rev & SF2_REV_MASK);
1040
1041 rev = reg_readl(priv, REG_PHY_REVISION);
1042 priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK;
1043
1044 pr_info("Starfighter 2 top: %x.%02x, core: %x.%02x base: 0x%p, IRQs: %d, %d\n",
1045 priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff,
1046 priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff,
1047 priv->core, priv->irq0, priv->irq1);
1048
1049 return 0;
1050
1051 out_free_irq0:
1052 free_irq(priv->irq0, priv);
1053 out_unmap:
1054 base = &priv->core;
1055 for (i = 0; i < BCM_SF2_REGS_NUM; i++) {
1056 if (*base)
1057 iounmap(*base);
1058 base++;
1059 }
1060 return ret;
1061 }
1062
1063 static int bcm_sf2_sw_set_addr(struct dsa_switch *ds, u8 *addr)
1064 {
1065 return 0;
1066 }
1067
1068 static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port)
1069 {
1070 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1071
1072 /* The BCM7xxx PHY driver expects to find the integrated PHY revision
1073 * in bits 15:8 and the patch level in bits 7:0 which is exactly what
1074 * the REG_PHY_REVISION register layout is.
1075 */
1076
1077 return priv->hw_params.gphy_rev;
1078 }
1079
1080 static int bcm_sf2_sw_indir_rw(struct dsa_switch *ds, int op, int addr,
1081 int regnum, u16 val)
1082 {
1083 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1084 int ret = 0;
1085 u32 reg;
1086
1087 reg = reg_readl(priv, REG_SWITCH_CNTRL);
1088 reg |= MDIO_MASTER_SEL;
1089 reg_writel(priv, reg, REG_SWITCH_CNTRL);
1090
1091 /* Page << 8 | offset */
1092 reg = 0x70;
1093 reg <<= 2;
1094 core_writel(priv, addr, reg);
1095
1096 /* Page << 8 | offset */
1097 reg = 0x80 << 8 | regnum << 1;
1098 reg <<= 2;
1099
1100 if (op)
1101 ret = core_readl(priv, reg);
1102 else
1103 core_writel(priv, val, reg);
1104
1105 reg = reg_readl(priv, REG_SWITCH_CNTRL);
1106 reg &= ~MDIO_MASTER_SEL;
1107 reg_writel(priv, reg, REG_SWITCH_CNTRL);
1108
1109 return ret & 0xffff;
1110 }
1111
1112 static int bcm_sf2_sw_phy_read(struct dsa_switch *ds, int addr, int regnum)
1113 {
1114 /* Intercept reads from the MDIO broadcast address or Broadcom
1115 * pseudo-PHY address
1116 */
1117 switch (addr) {
1118 case 0:
1119 case BRCM_PSEUDO_PHY_ADDR:
1120 return bcm_sf2_sw_indir_rw(ds, 1, addr, regnum, 0);
1121 default:
1122 return 0xffff;
1123 }
1124 }
1125
1126 static int bcm_sf2_sw_phy_write(struct dsa_switch *ds, int addr, int regnum,
1127 u16 val)
1128 {
1129 /* Intercept writes to the MDIO broadcast address or Broadcom
1130 * pseudo-PHY address
1131 */
1132 switch (addr) {
1133 case 0:
1134 case BRCM_PSEUDO_PHY_ADDR:
1135 bcm_sf2_sw_indir_rw(ds, 0, addr, regnum, val);
1136 break;
1137 }
1138
1139 return 0;
1140 }
1141
1142 static void bcm_sf2_sw_adjust_link(struct dsa_switch *ds, int port,
1143 struct phy_device *phydev)
1144 {
1145 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1146 u32 id_mode_dis = 0, port_mode;
1147 const char *str = NULL;
1148 u32 reg;
1149
1150 switch (phydev->interface) {
1151 case PHY_INTERFACE_MODE_RGMII:
1152 str = "RGMII (no delay)";
1153 id_mode_dis = 1;
1154 case PHY_INTERFACE_MODE_RGMII_TXID:
1155 if (!str)
1156 str = "RGMII (TX delay)";
1157 port_mode = EXT_GPHY;
1158 break;
1159 case PHY_INTERFACE_MODE_MII:
1160 str = "MII";
1161 port_mode = EXT_EPHY;
1162 break;
1163 case PHY_INTERFACE_MODE_REVMII:
1164 str = "Reverse MII";
1165 port_mode = EXT_REVMII;
1166 break;
1167 default:
1168 /* All other PHYs: internal and MoCA */
1169 goto force_link;
1170 }
1171
1172 /* If the link is down, just disable the interface to conserve power */
1173 if (!phydev->link) {
1174 reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
1175 reg &= ~RGMII_MODE_EN;
1176 reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
1177 goto force_link;
1178 }
1179
1180 /* Clear id_mode_dis bit, and the existing port mode, but
1181 * make sure we enable the RGMII block for data to pass
1182 */
1183 reg = reg_readl(priv, REG_RGMII_CNTRL_P(port));
1184 reg &= ~ID_MODE_DIS;
1185 reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT);
1186 reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN);
1187
1188 reg |= port_mode | RGMII_MODE_EN;
1189 if (id_mode_dis)
1190 reg |= ID_MODE_DIS;
1191
1192 if (phydev->pause) {
1193 if (phydev->asym_pause)
1194 reg |= TX_PAUSE_EN;
1195 reg |= RX_PAUSE_EN;
1196 }
1197
1198 reg_writel(priv, reg, REG_RGMII_CNTRL_P(port));
1199
1200 pr_info("Port %d configured for %s\n", port, str);
1201
1202 force_link:
1203 /* Force link settings detected from the PHY */
1204 reg = SW_OVERRIDE;
1205 switch (phydev->speed) {
1206 case SPEED_1000:
1207 reg |= SPDSTS_1000 << SPEED_SHIFT;
1208 break;
1209 case SPEED_100:
1210 reg |= SPDSTS_100 << SPEED_SHIFT;
1211 break;
1212 }
1213
1214 if (phydev->link)
1215 reg |= LINK_STS;
1216 if (phydev->duplex == DUPLEX_FULL)
1217 reg |= DUPLX_MODE;
1218
1219 core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1220 }
1221
1222 static void bcm_sf2_sw_fixed_link_update(struct dsa_switch *ds, int port,
1223 struct fixed_phy_status *status)
1224 {
1225 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1226 u32 duplex, pause;
1227 u32 reg;
1228
1229 duplex = core_readl(priv, CORE_DUPSTS);
1230 pause = core_readl(priv, CORE_PAUSESTS);
1231
1232 status->link = 0;
1233
1234 /* MoCA port is special as we do not get link status from CORE_LNKSTS,
1235 * which means that we need to force the link at the port override
1236 * level to get the data to flow. We do use what the interrupt handler
1237 * did determine before.
1238 *
1239 * For the other ports, we just force the link status, since this is
1240 * a fixed PHY device.
1241 */
1242 if (port == priv->moca_port) {
1243 status->link = priv->port_sts[port].link;
1244 /* For MoCA interfaces, also force a link down notification
1245 * since some version of the user-space daemon (mocad) use
1246 * cmd->autoneg to force the link, which messes up the PHY
1247 * state machine and make it go in PHY_FORCING state instead.
1248 */
1249 if (!status->link)
1250 netif_carrier_off(ds->ports[port]);
1251 status->duplex = 1;
1252 } else {
1253 status->link = 1;
1254 status->duplex = !!(duplex & (1 << port));
1255 }
1256
1257 reg = core_readl(priv, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1258 reg |= SW_OVERRIDE;
1259 if (status->link)
1260 reg |= LINK_STS;
1261 else
1262 reg &= ~LINK_STS;
1263 core_writel(priv, reg, CORE_STS_OVERRIDE_GMIIP_PORT(port));
1264
1265 if ((pause & (1 << port)) &&
1266 (pause & (1 << (port + PAUSESTS_TX_PAUSE_SHIFT)))) {
1267 status->asym_pause = 1;
1268 status->pause = 1;
1269 }
1270
1271 if (pause & (1 << port))
1272 status->pause = 1;
1273 }
1274
1275 static int bcm_sf2_sw_suspend(struct dsa_switch *ds)
1276 {
1277 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1278 unsigned int port;
1279
1280 bcm_sf2_intr_disable(priv);
1281
1282 /* Disable all ports physically present including the IMP
1283 * port, the other ones have already been disabled during
1284 * bcm_sf2_sw_setup
1285 */
1286 for (port = 0; port < DSA_MAX_PORTS; port++) {
1287 if ((1 << port) & ds->phys_port_mask ||
1288 dsa_is_cpu_port(ds, port))
1289 bcm_sf2_port_disable(ds, port, NULL);
1290 }
1291
1292 return 0;
1293 }
1294
1295 static int bcm_sf2_sw_resume(struct dsa_switch *ds)
1296 {
1297 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1298 unsigned int port;
1299 int ret;
1300
1301 ret = bcm_sf2_sw_rst(priv);
1302 if (ret) {
1303 pr_err("%s: failed to software reset switch\n", __func__);
1304 return ret;
1305 }
1306
1307 if (priv->hw_params.num_gphy == 1)
1308 bcm_sf2_gphy_enable_set(ds, true);
1309
1310 for (port = 0; port < DSA_MAX_PORTS; port++) {
1311 if ((1 << port) & ds->phys_port_mask)
1312 bcm_sf2_port_setup(ds, port, NULL);
1313 else if (dsa_is_cpu_port(ds, port))
1314 bcm_sf2_imp_setup(ds, port);
1315 }
1316
1317 return 0;
1318 }
1319
1320 static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port,
1321 struct ethtool_wolinfo *wol)
1322 {
1323 struct net_device *p = ds->dst[ds->index].master_netdev;
1324 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1325 struct ethtool_wolinfo pwol;
1326
1327 /* Get the parent device WoL settings */
1328 p->ethtool_ops->get_wol(p, &pwol);
1329
1330 /* Advertise the parent device supported settings */
1331 wol->supported = pwol.supported;
1332 memset(&wol->sopass, 0, sizeof(wol->sopass));
1333
1334 if (pwol.wolopts & WAKE_MAGICSECURE)
1335 memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass));
1336
1337 if (priv->wol_ports_mask & (1 << port))
1338 wol->wolopts = pwol.wolopts;
1339 else
1340 wol->wolopts = 0;
1341 }
1342
1343 static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port,
1344 struct ethtool_wolinfo *wol)
1345 {
1346 struct net_device *p = ds->dst[ds->index].master_netdev;
1347 struct bcm_sf2_priv *priv = ds_to_priv(ds);
1348 s8 cpu_port = ds->dst[ds->index].cpu_port;
1349 struct ethtool_wolinfo pwol;
1350
1351 p->ethtool_ops->get_wol(p, &pwol);
1352 if (wol->wolopts & ~pwol.supported)
1353 return -EINVAL;
1354
1355 if (wol->wolopts)
1356 priv->wol_ports_mask |= (1 << port);
1357 else
1358 priv->wol_ports_mask &= ~(1 << port);
1359
1360 /* If we have at least one port enabled, make sure the CPU port
1361 * is also enabled. If the CPU port is the last one enabled, we disable
1362 * it since this configuration does not make sense.
1363 */
1364 if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port))
1365 priv->wol_ports_mask |= (1 << cpu_port);
1366 else
1367 priv->wol_ports_mask &= ~(1 << cpu_port);
1368
1369 return p->ethtool_ops->set_wol(p, wol);
1370 }
1371
1372 static struct dsa_switch_driver bcm_sf2_switch_driver = {
1373 .tag_protocol = DSA_TAG_PROTO_BRCM,
1374 .probe = bcm_sf2_sw_drv_probe,
1375 .setup = bcm_sf2_sw_setup,
1376 .set_addr = bcm_sf2_sw_set_addr,
1377 .get_phy_flags = bcm_sf2_sw_get_phy_flags,
1378 .phy_read = bcm_sf2_sw_phy_read,
1379 .phy_write = bcm_sf2_sw_phy_write,
1380 .get_strings = bcm_sf2_sw_get_strings,
1381 .get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats,
1382 .get_sset_count = bcm_sf2_sw_get_sset_count,
1383 .adjust_link = bcm_sf2_sw_adjust_link,
1384 .fixed_link_update = bcm_sf2_sw_fixed_link_update,
1385 .suspend = bcm_sf2_sw_suspend,
1386 .resume = bcm_sf2_sw_resume,
1387 .get_wol = bcm_sf2_sw_get_wol,
1388 .set_wol = bcm_sf2_sw_set_wol,
1389 .port_enable = bcm_sf2_port_setup,
1390 .port_disable = bcm_sf2_port_disable,
1391 .get_eee = bcm_sf2_sw_get_eee,
1392 .set_eee = bcm_sf2_sw_set_eee,
1393 .port_bridge_join = bcm_sf2_sw_br_join,
1394 .port_bridge_leave = bcm_sf2_sw_br_leave,
1395 .port_stp_state_set = bcm_sf2_sw_br_set_stp_state,
1396 .port_fdb_prepare = bcm_sf2_sw_fdb_prepare,
1397 .port_fdb_add = bcm_sf2_sw_fdb_add,
1398 .port_fdb_del = bcm_sf2_sw_fdb_del,
1399 .port_fdb_dump = bcm_sf2_sw_fdb_dump,
1400 };
1401
1402 static int __init bcm_sf2_init(void)
1403 {
1404 register_switch_driver(&bcm_sf2_switch_driver);
1405
1406 return 0;
1407 }
1408 module_init(bcm_sf2_init);
1409
1410 static void __exit bcm_sf2_exit(void)
1411 {
1412 unregister_switch_driver(&bcm_sf2_switch_driver);
1413 }
1414 module_exit(bcm_sf2_exit);
1415
1416 MODULE_AUTHOR("Broadcom Corporation");
1417 MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip");
1418 MODULE_LICENSE("GPL");
1419 MODULE_ALIAS("platform:brcm-sf2");
This page took 0.193189 seconds and 5 git commands to generate.