Merge tag 'pinctrl-v4.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[deliverable/linux.git] / drivers / net / dsa / mv88e6xxx.c
1 /*
2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3 * Copyright (c) 2008 Marvell Semiconductor
4 *
5 * Copyright (c) 2015 CMC Electronics, Inc.
6 * Added support for VLAN Table Unit operations
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/if_bridge.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/phy.h>
24 #include <net/dsa.h>
25 #include <net/switchdev.h>
26 #include "mv88e6xxx.h"
27
28 static void assert_smi_lock(struct dsa_switch *ds)
29 {
30 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
31
32 if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
33 dev_err(ds->master_dev, "SMI lock not held!\n");
34 dump_stack();
35 }
36 }
37
38 /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
39 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
40 * will be directly accessible on some {device address,register address}
41 * pair. If the ADDR[4:0] pins are not strapped to zero, the switch
42 * will only respond to SMI transactions to that specific address, and
43 * an indirect addressing mechanism needs to be used to access its
44 * registers.
45 */
46 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
47 {
48 int ret;
49 int i;
50
51 for (i = 0; i < 16; i++) {
52 ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
53 if (ret < 0)
54 return ret;
55
56 if ((ret & SMI_CMD_BUSY) == 0)
57 return 0;
58 }
59
60 return -ETIMEDOUT;
61 }
62
63 static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
64 int reg)
65 {
66 int ret;
67
68 if (sw_addr == 0)
69 return mdiobus_read_nested(bus, addr, reg);
70
71 /* Wait for the bus to become free. */
72 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
73 if (ret < 0)
74 return ret;
75
76 /* Transmit the read command. */
77 ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
78 SMI_CMD_OP_22_READ | (addr << 5) | reg);
79 if (ret < 0)
80 return ret;
81
82 /* Wait for the read command to complete. */
83 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
84 if (ret < 0)
85 return ret;
86
87 /* Read the data. */
88 ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
89 if (ret < 0)
90 return ret;
91
92 return ret & 0xffff;
93 }
94
95 static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
96 {
97 struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
98 int ret;
99
100 assert_smi_lock(ds);
101
102 if (bus == NULL)
103 return -EINVAL;
104
105 ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
106 if (ret < 0)
107 return ret;
108
109 dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
110 addr, reg, ret);
111
112 return ret;
113 }
114
115 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
116 {
117 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
118 int ret;
119
120 mutex_lock(&ps->smi_mutex);
121 ret = _mv88e6xxx_reg_read(ds, addr, reg);
122 mutex_unlock(&ps->smi_mutex);
123
124 return ret;
125 }
126
127 static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
128 int reg, u16 val)
129 {
130 int ret;
131
132 if (sw_addr == 0)
133 return mdiobus_write_nested(bus, addr, reg, val);
134
135 /* Wait for the bus to become free. */
136 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
137 if (ret < 0)
138 return ret;
139
140 /* Transmit the data to write. */
141 ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
142 if (ret < 0)
143 return ret;
144
145 /* Transmit the write command. */
146 ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
147 SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
148 if (ret < 0)
149 return ret;
150
151 /* Wait for the write command to complete. */
152 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
153 if (ret < 0)
154 return ret;
155
156 return 0;
157 }
158
159 static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
160 u16 val)
161 {
162 struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
163
164 assert_smi_lock(ds);
165
166 if (bus == NULL)
167 return -EINVAL;
168
169 dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
170 addr, reg, val);
171
172 return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
173 }
174
175 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
176 {
177 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
178 int ret;
179
180 mutex_lock(&ps->smi_mutex);
181 ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
182 mutex_unlock(&ps->smi_mutex);
183
184 return ret;
185 }
186
187 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
188 {
189 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
190 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
191 REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
192
193 return 0;
194 }
195
196 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
197 {
198 int i;
199 int ret;
200
201 for (i = 0; i < 6; i++) {
202 int j;
203
204 /* Write the MAC address byte. */
205 REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
206 GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
207
208 /* Wait for the write to complete. */
209 for (j = 0; j < 16; j++) {
210 ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
211 if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
212 break;
213 }
214 if (j == 16)
215 return -ETIMEDOUT;
216 }
217
218 return 0;
219 }
220
221 static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
222 {
223 if (addr >= 0)
224 return _mv88e6xxx_reg_read(ds, addr, regnum);
225 return 0xffff;
226 }
227
228 static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
229 u16 val)
230 {
231 if (addr >= 0)
232 return _mv88e6xxx_reg_write(ds, addr, regnum, val);
233 return 0;
234 }
235
236 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
237 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
238 {
239 int ret;
240 unsigned long timeout;
241
242 ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
243 REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
244 ret & ~GLOBAL_CONTROL_PPU_ENABLE);
245
246 timeout = jiffies + 1 * HZ;
247 while (time_before(jiffies, timeout)) {
248 ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
249 usleep_range(1000, 2000);
250 if ((ret & GLOBAL_STATUS_PPU_MASK) !=
251 GLOBAL_STATUS_PPU_POLLING)
252 return 0;
253 }
254
255 return -ETIMEDOUT;
256 }
257
258 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
259 {
260 int ret;
261 unsigned long timeout;
262
263 ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
264 REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
265
266 timeout = jiffies + 1 * HZ;
267 while (time_before(jiffies, timeout)) {
268 ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
269 usleep_range(1000, 2000);
270 if ((ret & GLOBAL_STATUS_PPU_MASK) ==
271 GLOBAL_STATUS_PPU_POLLING)
272 return 0;
273 }
274
275 return -ETIMEDOUT;
276 }
277
278 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
279 {
280 struct mv88e6xxx_priv_state *ps;
281
282 ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
283 if (mutex_trylock(&ps->ppu_mutex)) {
284 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
285
286 if (mv88e6xxx_ppu_enable(ds) == 0)
287 ps->ppu_disabled = 0;
288 mutex_unlock(&ps->ppu_mutex);
289 }
290 }
291
292 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
293 {
294 struct mv88e6xxx_priv_state *ps = (void *)_ps;
295
296 schedule_work(&ps->ppu_work);
297 }
298
299 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
300 {
301 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
302 int ret;
303
304 mutex_lock(&ps->ppu_mutex);
305
306 /* If the PHY polling unit is enabled, disable it so that
307 * we can access the PHY registers. If it was already
308 * disabled, cancel the timer that is going to re-enable
309 * it.
310 */
311 if (!ps->ppu_disabled) {
312 ret = mv88e6xxx_ppu_disable(ds);
313 if (ret < 0) {
314 mutex_unlock(&ps->ppu_mutex);
315 return ret;
316 }
317 ps->ppu_disabled = 1;
318 } else {
319 del_timer(&ps->ppu_timer);
320 ret = 0;
321 }
322
323 return ret;
324 }
325
326 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
327 {
328 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
329
330 /* Schedule a timer to re-enable the PHY polling unit. */
331 mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
332 mutex_unlock(&ps->ppu_mutex);
333 }
334
335 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
336 {
337 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
338
339 mutex_init(&ps->ppu_mutex);
340 INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
341 init_timer(&ps->ppu_timer);
342 ps->ppu_timer.data = (unsigned long)ps;
343 ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
344 }
345
346 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
347 {
348 int ret;
349
350 ret = mv88e6xxx_ppu_access_get(ds);
351 if (ret >= 0) {
352 ret = mv88e6xxx_reg_read(ds, addr, regnum);
353 mv88e6xxx_ppu_access_put(ds);
354 }
355
356 return ret;
357 }
358
359 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
360 int regnum, u16 val)
361 {
362 int ret;
363
364 ret = mv88e6xxx_ppu_access_get(ds);
365 if (ret >= 0) {
366 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
367 mv88e6xxx_ppu_access_put(ds);
368 }
369
370 return ret;
371 }
372 #endif
373
374 static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
375 {
376 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
377
378 switch (ps->id) {
379 case PORT_SWITCH_ID_6031:
380 case PORT_SWITCH_ID_6061:
381 case PORT_SWITCH_ID_6035:
382 case PORT_SWITCH_ID_6065:
383 return true;
384 }
385 return false;
386 }
387
388 static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
389 {
390 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
391
392 switch (ps->id) {
393 case PORT_SWITCH_ID_6092:
394 case PORT_SWITCH_ID_6095:
395 return true;
396 }
397 return false;
398 }
399
400 static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
401 {
402 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
403
404 switch (ps->id) {
405 case PORT_SWITCH_ID_6046:
406 case PORT_SWITCH_ID_6085:
407 case PORT_SWITCH_ID_6096:
408 case PORT_SWITCH_ID_6097:
409 return true;
410 }
411 return false;
412 }
413
414 static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
415 {
416 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
417
418 switch (ps->id) {
419 case PORT_SWITCH_ID_6123:
420 case PORT_SWITCH_ID_6161:
421 case PORT_SWITCH_ID_6165:
422 return true;
423 }
424 return false;
425 }
426
427 static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
428 {
429 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
430
431 switch (ps->id) {
432 case PORT_SWITCH_ID_6121:
433 case PORT_SWITCH_ID_6122:
434 case PORT_SWITCH_ID_6152:
435 case PORT_SWITCH_ID_6155:
436 case PORT_SWITCH_ID_6182:
437 case PORT_SWITCH_ID_6185:
438 case PORT_SWITCH_ID_6108:
439 case PORT_SWITCH_ID_6131:
440 return true;
441 }
442 return false;
443 }
444
445 static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
446 {
447 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
448
449 switch (ps->id) {
450 case PORT_SWITCH_ID_6320:
451 case PORT_SWITCH_ID_6321:
452 return true;
453 }
454 return false;
455 }
456
457 static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
458 {
459 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
460
461 switch (ps->id) {
462 case PORT_SWITCH_ID_6171:
463 case PORT_SWITCH_ID_6175:
464 case PORT_SWITCH_ID_6350:
465 case PORT_SWITCH_ID_6351:
466 return true;
467 }
468 return false;
469 }
470
471 static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
472 {
473 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
474
475 switch (ps->id) {
476 case PORT_SWITCH_ID_6172:
477 case PORT_SWITCH_ID_6176:
478 case PORT_SWITCH_ID_6240:
479 case PORT_SWITCH_ID_6352:
480 return true;
481 }
482 return false;
483 }
484
485 /* We expect the switch to perform auto negotiation if there is a real
486 * phy. However, in the case of a fixed link phy, we force the port
487 * settings from the fixed link settings.
488 */
489 void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
490 struct phy_device *phydev)
491 {
492 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
493 u32 reg;
494 int ret;
495
496 if (!phy_is_pseudo_fixed_link(phydev))
497 return;
498
499 mutex_lock(&ps->smi_mutex);
500
501 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
502 if (ret < 0)
503 goto out;
504
505 reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
506 PORT_PCS_CTRL_FORCE_LINK |
507 PORT_PCS_CTRL_DUPLEX_FULL |
508 PORT_PCS_CTRL_FORCE_DUPLEX |
509 PORT_PCS_CTRL_UNFORCED);
510
511 reg |= PORT_PCS_CTRL_FORCE_LINK;
512 if (phydev->link)
513 reg |= PORT_PCS_CTRL_LINK_UP;
514
515 if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
516 goto out;
517
518 switch (phydev->speed) {
519 case SPEED_1000:
520 reg |= PORT_PCS_CTRL_1000;
521 break;
522 case SPEED_100:
523 reg |= PORT_PCS_CTRL_100;
524 break;
525 case SPEED_10:
526 reg |= PORT_PCS_CTRL_10;
527 break;
528 default:
529 pr_info("Unknown speed");
530 goto out;
531 }
532
533 reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
534 if (phydev->duplex == DUPLEX_FULL)
535 reg |= PORT_PCS_CTRL_DUPLEX_FULL;
536
537 if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
538 (port >= ps->num_ports - 2)) {
539 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
540 reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
541 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
542 reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
543 if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
544 reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
545 PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
546 }
547 _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);
548
549 out:
550 mutex_unlock(&ps->smi_mutex);
551 }
552
553 static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
554 {
555 int ret;
556 int i;
557
558 for (i = 0; i < 10; i++) {
559 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
560 if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
561 return 0;
562 }
563
564 return -ETIMEDOUT;
565 }
566
567 static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
568 {
569 int ret;
570
571 if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
572 port = (port + 1) << 5;
573
574 /* Snapshot the hardware statistics counters for this port. */
575 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
576 GLOBAL_STATS_OP_CAPTURE_PORT |
577 GLOBAL_STATS_OP_HIST_RX_TX | port);
578 if (ret < 0)
579 return ret;
580
581 /* Wait for the snapshotting to complete. */
582 ret = _mv88e6xxx_stats_wait(ds);
583 if (ret < 0)
584 return ret;
585
586 return 0;
587 }
588
589 static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
590 {
591 u32 _val;
592 int ret;
593
594 *val = 0;
595
596 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
597 GLOBAL_STATS_OP_READ_CAPTURED |
598 GLOBAL_STATS_OP_HIST_RX_TX | stat);
599 if (ret < 0)
600 return;
601
602 ret = _mv88e6xxx_stats_wait(ds);
603 if (ret < 0)
604 return;
605
606 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
607 if (ret < 0)
608 return;
609
610 _val = ret << 16;
611
612 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
613 if (ret < 0)
614 return;
615
616 *val = _val | ret;
617 }
618
619 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
620 { "in_good_octets", 8, 0x00, BANK0, },
621 { "in_bad_octets", 4, 0x02, BANK0, },
622 { "in_unicast", 4, 0x04, BANK0, },
623 { "in_broadcasts", 4, 0x06, BANK0, },
624 { "in_multicasts", 4, 0x07, BANK0, },
625 { "in_pause", 4, 0x16, BANK0, },
626 { "in_undersize", 4, 0x18, BANK0, },
627 { "in_fragments", 4, 0x19, BANK0, },
628 { "in_oversize", 4, 0x1a, BANK0, },
629 { "in_jabber", 4, 0x1b, BANK0, },
630 { "in_rx_error", 4, 0x1c, BANK0, },
631 { "in_fcs_error", 4, 0x1d, BANK0, },
632 { "out_octets", 8, 0x0e, BANK0, },
633 { "out_unicast", 4, 0x10, BANK0, },
634 { "out_broadcasts", 4, 0x13, BANK0, },
635 { "out_multicasts", 4, 0x12, BANK0, },
636 { "out_pause", 4, 0x15, BANK0, },
637 { "excessive", 4, 0x11, BANK0, },
638 { "collisions", 4, 0x1e, BANK0, },
639 { "deferred", 4, 0x05, BANK0, },
640 { "single", 4, 0x14, BANK0, },
641 { "multiple", 4, 0x17, BANK0, },
642 { "out_fcs_error", 4, 0x03, BANK0, },
643 { "late", 4, 0x1f, BANK0, },
644 { "hist_64bytes", 4, 0x08, BANK0, },
645 { "hist_65_127bytes", 4, 0x09, BANK0, },
646 { "hist_128_255bytes", 4, 0x0a, BANK0, },
647 { "hist_256_511bytes", 4, 0x0b, BANK0, },
648 { "hist_512_1023bytes", 4, 0x0c, BANK0, },
649 { "hist_1024_max_bytes", 4, 0x0d, BANK0, },
650 { "sw_in_discards", 4, 0x10, PORT, },
651 { "sw_in_filtered", 2, 0x12, PORT, },
652 { "sw_out_filtered", 2, 0x13, PORT, },
653 { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
654 { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
655 { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
656 { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
657 { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
658 { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
659 { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
660 { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
661 { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
662 { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
663 { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
664 { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
665 { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
666 { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
667 { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
668 { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
669 { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
670 { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
671 { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
672 { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
673 { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
674 { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
675 { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
676 { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
677 { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
678 { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
679 };
680
681 static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
682 struct mv88e6xxx_hw_stat *stat)
683 {
684 switch (stat->type) {
685 case BANK0:
686 return true;
687 case BANK1:
688 return mv88e6xxx_6320_family(ds);
689 case PORT:
690 return mv88e6xxx_6095_family(ds) ||
691 mv88e6xxx_6185_family(ds) ||
692 mv88e6xxx_6097_family(ds) ||
693 mv88e6xxx_6165_family(ds) ||
694 mv88e6xxx_6351_family(ds) ||
695 mv88e6xxx_6352_family(ds);
696 }
697 return false;
698 }
699
700 static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
701 struct mv88e6xxx_hw_stat *s,
702 int port)
703 {
704 u32 low;
705 u32 high = 0;
706 int ret;
707 u64 value;
708
709 switch (s->type) {
710 case PORT:
711 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
712 if (ret < 0)
713 return UINT64_MAX;
714
715 low = ret;
716 if (s->sizeof_stat == 4) {
717 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
718 s->reg + 1);
719 if (ret < 0)
720 return UINT64_MAX;
721 high = ret;
722 }
723 break;
724 case BANK0:
725 case BANK1:
726 _mv88e6xxx_stats_read(ds, s->reg, &low);
727 if (s->sizeof_stat == 8)
728 _mv88e6xxx_stats_read(ds, s->reg + 1, &high);
729 }
730 value = (((u64)high) << 16) | low;
731 return value;
732 }
733
734 void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
735 {
736 struct mv88e6xxx_hw_stat *stat;
737 int i, j;
738
739 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
740 stat = &mv88e6xxx_hw_stats[i];
741 if (mv88e6xxx_has_stat(ds, stat)) {
742 memcpy(data + j * ETH_GSTRING_LEN, stat->string,
743 ETH_GSTRING_LEN);
744 j++;
745 }
746 }
747 }
748
749 int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
750 {
751 struct mv88e6xxx_hw_stat *stat;
752 int i, j;
753
754 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
755 stat = &mv88e6xxx_hw_stats[i];
756 if (mv88e6xxx_has_stat(ds, stat))
757 j++;
758 }
759 return j;
760 }
761
762 void
763 mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
764 int port, uint64_t *data)
765 {
766 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
767 struct mv88e6xxx_hw_stat *stat;
768 int ret;
769 int i, j;
770
771 mutex_lock(&ps->smi_mutex);
772
773 ret = _mv88e6xxx_stats_snapshot(ds, port);
774 if (ret < 0) {
775 mutex_unlock(&ps->smi_mutex);
776 return;
777 }
778 for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
779 stat = &mv88e6xxx_hw_stats[i];
780 if (mv88e6xxx_has_stat(ds, stat)) {
781 data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
782 j++;
783 }
784 }
785
786 mutex_unlock(&ps->smi_mutex);
787 }
788
789 int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
790 {
791 return 32 * sizeof(u16);
792 }
793
794 void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
795 struct ethtool_regs *regs, void *_p)
796 {
797 u16 *p = _p;
798 int i;
799
800 regs->version = 0;
801
802 memset(p, 0xff, 32 * sizeof(u16));
803
804 for (i = 0; i < 32; i++) {
805 int ret;
806
807 ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
808 if (ret >= 0)
809 p[i] = ret;
810 }
811 }
812
813 static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
814 u16 mask)
815 {
816 unsigned long timeout = jiffies + HZ / 10;
817
818 while (time_before(jiffies, timeout)) {
819 int ret;
820
821 ret = _mv88e6xxx_reg_read(ds, reg, offset);
822 if (ret < 0)
823 return ret;
824 if (!(ret & mask))
825 return 0;
826
827 usleep_range(1000, 2000);
828 }
829 return -ETIMEDOUT;
830 }
831
832 static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
833 {
834 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
835 int ret;
836
837 mutex_lock(&ps->smi_mutex);
838 ret = _mv88e6xxx_wait(ds, reg, offset, mask);
839 mutex_unlock(&ps->smi_mutex);
840
841 return ret;
842 }
843
844 static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
845 {
846 return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
847 GLOBAL2_SMI_OP_BUSY);
848 }
849
850 int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
851 {
852 return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
853 GLOBAL2_EEPROM_OP_LOAD);
854 }
855
856 int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
857 {
858 return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
859 GLOBAL2_EEPROM_OP_BUSY);
860 }
861
862 static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
863 {
864 return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
865 GLOBAL_ATU_OP_BUSY);
866 }
867
868 static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
869 int regnum)
870 {
871 int ret;
872
873 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
874 GLOBAL2_SMI_OP_22_READ | (addr << 5) |
875 regnum);
876 if (ret < 0)
877 return ret;
878
879 ret = _mv88e6xxx_phy_wait(ds);
880 if (ret < 0)
881 return ret;
882
883 return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
884 }
885
886 static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
887 int regnum, u16 val)
888 {
889 int ret;
890
891 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
892 if (ret < 0)
893 return ret;
894
895 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
896 GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
897 regnum);
898
899 return _mv88e6xxx_phy_wait(ds);
900 }
901
902 int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
903 {
904 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
905 int reg;
906
907 mutex_lock(&ps->smi_mutex);
908
909 reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
910 if (reg < 0)
911 goto out;
912
913 e->eee_enabled = !!(reg & 0x0200);
914 e->tx_lpi_enabled = !!(reg & 0x0100);
915
916 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
917 if (reg < 0)
918 goto out;
919
920 e->eee_active = !!(reg & PORT_STATUS_EEE);
921 reg = 0;
922
923 out:
924 mutex_unlock(&ps->smi_mutex);
925 return reg;
926 }
927
928 int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
929 struct phy_device *phydev, struct ethtool_eee *e)
930 {
931 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
932 int reg;
933 int ret;
934
935 mutex_lock(&ps->smi_mutex);
936
937 ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
938 if (ret < 0)
939 goto out;
940
941 reg = ret & ~0x0300;
942 if (e->eee_enabled)
943 reg |= 0x0200;
944 if (e->tx_lpi_enabled)
945 reg |= 0x0100;
946
947 ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
948 out:
949 mutex_unlock(&ps->smi_mutex);
950
951 return ret;
952 }
953
954 static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd)
955 {
956 int ret;
957
958 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
959 if (ret < 0)
960 return ret;
961
962 return _mv88e6xxx_atu_wait(ds);
963 }
964
965 static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
966 struct mv88e6xxx_atu_entry *entry)
967 {
968 u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
969
970 if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
971 unsigned int mask, shift;
972
973 if (entry->trunk) {
974 data |= GLOBAL_ATU_DATA_TRUNK;
975 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
976 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
977 } else {
978 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
979 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
980 }
981
982 data |= (entry->portv_trunkid << shift) & mask;
983 }
984
985 return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
986 }
987
988 static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
989 struct mv88e6xxx_atu_entry *entry,
990 bool static_too)
991 {
992 int op;
993 int err;
994
995 err = _mv88e6xxx_atu_wait(ds);
996 if (err)
997 return err;
998
999 err = _mv88e6xxx_atu_data_write(ds, entry);
1000 if (err)
1001 return err;
1002
1003 if (entry->fid) {
1004 err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID,
1005 entry->fid);
1006 if (err)
1007 return err;
1008
1009 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1010 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1011 } else {
1012 op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1013 GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1014 }
1015
1016 return _mv88e6xxx_atu_cmd(ds, op);
1017 }
1018
1019 static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
1020 {
1021 struct mv88e6xxx_atu_entry entry = {
1022 .fid = fid,
1023 .state = 0, /* EntryState bits must be 0 */
1024 };
1025
1026 return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
1027 }
1028
1029 static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
1030 int to_port, bool static_too)
1031 {
1032 struct mv88e6xxx_atu_entry entry = {
1033 .trunk = false,
1034 .fid = fid,
1035 };
1036
1037 /* EntryState bits must be 0xF */
1038 entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1039
1040 /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1041 entry.portv_trunkid = (to_port & 0x0f) << 4;
1042 entry.portv_trunkid |= from_port & 0x0f;
1043
1044 return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
1045 }
1046
1047 static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
1048 bool static_too)
1049 {
1050 /* Destination port 0xF means remove the entries */
1051 return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
1052 }
1053
1054 static const char * const mv88e6xxx_port_state_names[] = {
1055 [PORT_CONTROL_STATE_DISABLED] = "Disabled",
1056 [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1057 [PORT_CONTROL_STATE_LEARNING] = "Learning",
1058 [PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1059 };
1060
1061 static int _mv88e6xxx_port_state(struct dsa_switch *ds, int port, u8 state)
1062 {
1063 int reg, ret = 0;
1064 u8 oldstate;
1065
1066 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
1067 if (reg < 0)
1068 return reg;
1069
1070 oldstate = reg & PORT_CONTROL_STATE_MASK;
1071
1072 if (oldstate != state) {
1073 /* Flush forwarding database if we're moving a port
1074 * from Learning or Forwarding state to Disabled or
1075 * Blocking or Listening state.
1076 */
1077 if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1078 oldstate == PORT_CONTROL_STATE_FORWARDING)
1079 && (state == PORT_CONTROL_STATE_DISABLED ||
1080 state == PORT_CONTROL_STATE_BLOCKING)) {
1081 ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
1082 if (ret)
1083 return ret;
1084 }
1085
1086 reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1087 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
1088 reg);
1089 if (ret)
1090 return ret;
1091
1092 netdev_dbg(ds->ports[port], "PortState %s (was %s)\n",
1093 mv88e6xxx_port_state_names[state],
1094 mv88e6xxx_port_state_names[oldstate]);
1095 }
1096
1097 return ret;
1098 }
1099
1100 static int _mv88e6xxx_port_based_vlan_map(struct dsa_switch *ds, int port)
1101 {
1102 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1103 struct net_device *bridge = ps->ports[port].bridge_dev;
1104 const u16 mask = (1 << ps->num_ports) - 1;
1105 u16 output_ports = 0;
1106 int reg;
1107 int i;
1108
1109 /* allow CPU port or DSA link(s) to send frames to every port */
1110 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1111 output_ports = mask;
1112 } else {
1113 for (i = 0; i < ps->num_ports; ++i) {
1114 /* allow sending frames to every group member */
1115 if (bridge && ps->ports[i].bridge_dev == bridge)
1116 output_ports |= BIT(i);
1117
1118 /* allow sending frames to CPU port and DSA link(s) */
1119 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1120 output_ports |= BIT(i);
1121 }
1122 }
1123
1124 /* prevent frames from going back out of the port they came in on */
1125 output_ports &= ~BIT(port);
1126
1127 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
1128 if (reg < 0)
1129 return reg;
1130
1131 reg &= ~mask;
1132 reg |= output_ports & mask;
1133
1134 return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
1135 }
1136
1137 int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
1138 {
1139 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1140 int stp_state;
1141
1142 switch (state) {
1143 case BR_STATE_DISABLED:
1144 stp_state = PORT_CONTROL_STATE_DISABLED;
1145 break;
1146 case BR_STATE_BLOCKING:
1147 case BR_STATE_LISTENING:
1148 stp_state = PORT_CONTROL_STATE_BLOCKING;
1149 break;
1150 case BR_STATE_LEARNING:
1151 stp_state = PORT_CONTROL_STATE_LEARNING;
1152 break;
1153 case BR_STATE_FORWARDING:
1154 default:
1155 stp_state = PORT_CONTROL_STATE_FORWARDING;
1156 break;
1157 }
1158
1159 /* mv88e6xxx_port_stp_update may be called with softirqs disabled,
1160 * so we can not update the port state directly but need to schedule it.
1161 */
1162 ps->ports[port].state = stp_state;
1163 set_bit(port, ps->port_state_update_mask);
1164 schedule_work(&ps->bridge_work);
1165
1166 return 0;
1167 }
1168
1169 static int _mv88e6xxx_port_pvid(struct dsa_switch *ds, int port, u16 *new,
1170 u16 *old)
1171 {
1172 u16 pvid;
1173 int ret;
1174
1175 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
1176 if (ret < 0)
1177 return ret;
1178
1179 pvid = ret & PORT_DEFAULT_VLAN_MASK;
1180
1181 if (new) {
1182 ret &= ~PORT_DEFAULT_VLAN_MASK;
1183 ret |= *new & PORT_DEFAULT_VLAN_MASK;
1184
1185 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
1186 PORT_DEFAULT_VLAN, ret);
1187 if (ret < 0)
1188 return ret;
1189
1190 netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new,
1191 pvid);
1192 }
1193
1194 if (old)
1195 *old = pvid;
1196
1197 return 0;
1198 }
1199
1200 static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
1201 {
1202 return _mv88e6xxx_port_pvid(ds, port, NULL, pvid);
1203 }
1204
1205 static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
1206 {
1207 return _mv88e6xxx_port_pvid(ds, port, &pvid, NULL);
1208 }
1209
1210 static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
1211 {
1212 return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
1213 GLOBAL_VTU_OP_BUSY);
1214 }
1215
1216 static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
1217 {
1218 int ret;
1219
1220 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
1221 if (ret < 0)
1222 return ret;
1223
1224 return _mv88e6xxx_vtu_wait(ds);
1225 }
1226
1227 static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
1228 {
1229 int ret;
1230
1231 ret = _mv88e6xxx_vtu_wait(ds);
1232 if (ret < 0)
1233 return ret;
1234
1235 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
1236 }
1237
1238 static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
1239 struct mv88e6xxx_vtu_stu_entry *entry,
1240 unsigned int nibble_offset)
1241 {
1242 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1243 u16 regs[3];
1244 int i;
1245 int ret;
1246
1247 for (i = 0; i < 3; ++i) {
1248 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1249 GLOBAL_VTU_DATA_0_3 + i);
1250 if (ret < 0)
1251 return ret;
1252
1253 regs[i] = ret;
1254 }
1255
1256 for (i = 0; i < ps->num_ports; ++i) {
1257 unsigned int shift = (i % 4) * 4 + nibble_offset;
1258 u16 reg = regs[i / 4];
1259
1260 entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1261 }
1262
1263 return 0;
1264 }
1265
1266 static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
1267 struct mv88e6xxx_vtu_stu_entry *entry,
1268 unsigned int nibble_offset)
1269 {
1270 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1271 u16 regs[3] = { 0 };
1272 int i;
1273 int ret;
1274
1275 for (i = 0; i < ps->num_ports; ++i) {
1276 unsigned int shift = (i % 4) * 4 + nibble_offset;
1277 u8 data = entry->data[i];
1278
1279 regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1280 }
1281
1282 for (i = 0; i < 3; ++i) {
1283 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
1284 GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1285 if (ret < 0)
1286 return ret;
1287 }
1288
1289 return 0;
1290 }
1291
1292 static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
1293 {
1294 return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
1295 vid & GLOBAL_VTU_VID_MASK);
1296 }
1297
1298 static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
1299 struct mv88e6xxx_vtu_stu_entry *entry)
1300 {
1301 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1302 int ret;
1303
1304 ret = _mv88e6xxx_vtu_wait(ds);
1305 if (ret < 0)
1306 return ret;
1307
1308 ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
1309 if (ret < 0)
1310 return ret;
1311
1312 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
1313 if (ret < 0)
1314 return ret;
1315
1316 next.vid = ret & GLOBAL_VTU_VID_MASK;
1317 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1318
1319 if (next.valid) {
1320 ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
1321 if (ret < 0)
1322 return ret;
1323
1324 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1325 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1326 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1327 GLOBAL_VTU_FID);
1328 if (ret < 0)
1329 return ret;
1330
1331 next.fid = ret & GLOBAL_VTU_FID_MASK;
1332
1333 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1334 GLOBAL_VTU_SID);
1335 if (ret < 0)
1336 return ret;
1337
1338 next.sid = ret & GLOBAL_VTU_SID_MASK;
1339 }
1340 }
1341
1342 *entry = next;
1343 return 0;
1344 }
1345
1346 int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1347 struct switchdev_obj_port_vlan *vlan,
1348 int (*cb)(struct switchdev_obj *obj))
1349 {
1350 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1351 struct mv88e6xxx_vtu_stu_entry next;
1352 u16 pvid;
1353 int err;
1354
1355 mutex_lock(&ps->smi_mutex);
1356
1357 err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1358 if (err)
1359 goto unlock;
1360
1361 err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
1362 if (err)
1363 goto unlock;
1364
1365 do {
1366 err = _mv88e6xxx_vtu_getnext(ds, &next);
1367 if (err)
1368 break;
1369
1370 if (!next.valid)
1371 break;
1372
1373 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1374 continue;
1375
1376 /* reinit and dump this VLAN obj */
1377 vlan->vid_begin = vlan->vid_end = next.vid;
1378 vlan->flags = 0;
1379
1380 if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1381 vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1382
1383 if (next.vid == pvid)
1384 vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1385
1386 err = cb(&vlan->obj);
1387 if (err)
1388 break;
1389 } while (next.vid < GLOBAL_VTU_VID_MASK);
1390
1391 unlock:
1392 mutex_unlock(&ps->smi_mutex);
1393
1394 return err;
1395 }
1396
1397 static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
1398 struct mv88e6xxx_vtu_stu_entry *entry)
1399 {
1400 u16 reg = 0;
1401 int ret;
1402
1403 ret = _mv88e6xxx_vtu_wait(ds);
1404 if (ret < 0)
1405 return ret;
1406
1407 if (!entry->valid)
1408 goto loadpurge;
1409
1410 /* Write port member tags */
1411 ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
1412 if (ret < 0)
1413 return ret;
1414
1415 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1416 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1417 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1418 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1419 if (ret < 0)
1420 return ret;
1421
1422 reg = entry->fid & GLOBAL_VTU_FID_MASK;
1423 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
1424 if (ret < 0)
1425 return ret;
1426 }
1427
1428 reg = GLOBAL_VTU_VID_VALID;
1429 loadpurge:
1430 reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1431 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1432 if (ret < 0)
1433 return ret;
1434
1435 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
1436 }
1437
1438 static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
1439 struct mv88e6xxx_vtu_stu_entry *entry)
1440 {
1441 struct mv88e6xxx_vtu_stu_entry next = { 0 };
1442 int ret;
1443
1444 ret = _mv88e6xxx_vtu_wait(ds);
1445 if (ret < 0)
1446 return ret;
1447
1448 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
1449 sid & GLOBAL_VTU_SID_MASK);
1450 if (ret < 0)
1451 return ret;
1452
1453 ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
1454 if (ret < 0)
1455 return ret;
1456
1457 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
1458 if (ret < 0)
1459 return ret;
1460
1461 next.sid = ret & GLOBAL_VTU_SID_MASK;
1462
1463 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
1464 if (ret < 0)
1465 return ret;
1466
1467 next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1468
1469 if (next.valid) {
1470 ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
1471 if (ret < 0)
1472 return ret;
1473 }
1474
1475 *entry = next;
1476 return 0;
1477 }
1478
1479 static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
1480 struct mv88e6xxx_vtu_stu_entry *entry)
1481 {
1482 u16 reg = 0;
1483 int ret;
1484
1485 ret = _mv88e6xxx_vtu_wait(ds);
1486 if (ret < 0)
1487 return ret;
1488
1489 if (!entry->valid)
1490 goto loadpurge;
1491
1492 /* Write port states */
1493 ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
1494 if (ret < 0)
1495 return ret;
1496
1497 reg = GLOBAL_VTU_VID_VALID;
1498 loadpurge:
1499 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1500 if (ret < 0)
1501 return ret;
1502
1503 reg = entry->sid & GLOBAL_VTU_SID_MASK;
1504 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1505 if (ret < 0)
1506 return ret;
1507
1508 return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1509 }
1510
1511 static int _mv88e6xxx_port_fid(struct dsa_switch *ds, int port, u16 *new,
1512 u16 *old)
1513 {
1514 u16 fid;
1515 int ret;
1516
1517 /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1518 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
1519 if (ret < 0)
1520 return ret;
1521
1522 fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1523
1524 if (new) {
1525 ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1526 ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1527
1528 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN,
1529 ret);
1530 if (ret < 0)
1531 return ret;
1532 }
1533
1534 /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1535 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_1);
1536 if (ret < 0)
1537 return ret;
1538
1539 fid |= (ret & PORT_CONTROL_1_FID_11_4_MASK) << 4;
1540
1541 if (new) {
1542 ret &= ~PORT_CONTROL_1_FID_11_4_MASK;
1543 ret |= (*new >> 4) & PORT_CONTROL_1_FID_11_4_MASK;
1544
1545 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1,
1546 ret);
1547 if (ret < 0)
1548 return ret;
1549
1550 netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid);
1551 }
1552
1553 if (old)
1554 *old = fid;
1555
1556 return 0;
1557 }
1558
1559 static int _mv88e6xxx_port_fid_get(struct dsa_switch *ds, int port, u16 *fid)
1560 {
1561 return _mv88e6xxx_port_fid(ds, port, NULL, fid);
1562 }
1563
1564 static int _mv88e6xxx_port_fid_set(struct dsa_switch *ds, int port, u16 fid)
1565 {
1566 return _mv88e6xxx_port_fid(ds, port, &fid, NULL);
1567 }
1568
1569 static int _mv88e6xxx_fid_new(struct dsa_switch *ds, u16 *fid)
1570 {
1571 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1572 DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1573 struct mv88e6xxx_vtu_stu_entry vlan;
1574 int i, err;
1575
1576 bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1577
1578 /* Set every FID bit used by the (un)bridged ports */
1579 for (i = 0; i < ps->num_ports; ++i) {
1580 err = _mv88e6xxx_port_fid_get(ds, i, fid);
1581 if (err)
1582 return err;
1583
1584 set_bit(*fid, fid_bitmap);
1585 }
1586
1587 /* Set every FID bit used by the VLAN entries */
1588 err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK);
1589 if (err)
1590 return err;
1591
1592 do {
1593 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1594 if (err)
1595 return err;
1596
1597 if (!vlan.valid)
1598 break;
1599
1600 set_bit(vlan.fid, fid_bitmap);
1601 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
1602
1603 /* The reset value 0x000 is used to indicate that multiple address
1604 * databases are not needed. Return the next positive available.
1605 */
1606 *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1607 if (unlikely(*fid == MV88E6XXX_N_FID))
1608 return -ENOSPC;
1609
1610 /* Clear the database */
1611 return _mv88e6xxx_atu_flush(ds, *fid, true);
1612 }
1613
1614 static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid,
1615 struct mv88e6xxx_vtu_stu_entry *entry)
1616 {
1617 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1618 struct mv88e6xxx_vtu_stu_entry vlan = {
1619 .valid = true,
1620 .vid = vid,
1621 };
1622 int i, err;
1623
1624 err = _mv88e6xxx_fid_new(ds, &vlan.fid);
1625 if (err)
1626 return err;
1627
1628 /* exclude all ports except the CPU and DSA ports */
1629 for (i = 0; i < ps->num_ports; ++i)
1630 vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1631 ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1632 : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1633
1634 if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
1635 mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
1636 struct mv88e6xxx_vtu_stu_entry vstp;
1637
1638 /* Adding a VTU entry requires a valid STU entry. As VSTP is not
1639 * implemented, only one STU entry is needed to cover all VTU
1640 * entries. Thus, validate the SID 0.
1641 */
1642 vlan.sid = 0;
1643 err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
1644 if (err)
1645 return err;
1646
1647 if (vstp.sid != vlan.sid || !vstp.valid) {
1648 memset(&vstp, 0, sizeof(vstp));
1649 vstp.valid = true;
1650 vstp.sid = vlan.sid;
1651
1652 err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
1653 if (err)
1654 return err;
1655 }
1656 }
1657
1658 *entry = vlan;
1659 return 0;
1660 }
1661
1662 static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid,
1663 struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1664 {
1665 int err;
1666
1667 if (!vid)
1668 return -EINVAL;
1669
1670 err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
1671 if (err)
1672 return err;
1673
1674 err = _mv88e6xxx_vtu_getnext(ds, entry);
1675 if (err)
1676 return err;
1677
1678 if (entry->vid != vid || !entry->valid) {
1679 if (!creat)
1680 return -EOPNOTSUPP;
1681 /* -ENOENT would've been more appropriate, but switchdev expects
1682 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1683 */
1684
1685 err = _mv88e6xxx_vtu_new(ds, vid, entry);
1686 }
1687
1688 return err;
1689 }
1690
1691 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1692 u16 vid_begin, u16 vid_end)
1693 {
1694 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1695 struct mv88e6xxx_vtu_stu_entry vlan;
1696 int i, err;
1697
1698 if (!vid_begin)
1699 return -EOPNOTSUPP;
1700
1701 mutex_lock(&ps->smi_mutex);
1702
1703 err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1);
1704 if (err)
1705 goto unlock;
1706
1707 do {
1708 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
1709 if (err)
1710 goto unlock;
1711
1712 if (!vlan.valid)
1713 break;
1714
1715 if (vlan.vid > vid_end)
1716 break;
1717
1718 for (i = 0; i < ps->num_ports; ++i) {
1719 if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1720 continue;
1721
1722 if (vlan.data[i] ==
1723 GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1724 continue;
1725
1726 if (ps->ports[i].bridge_dev ==
1727 ps->ports[port].bridge_dev)
1728 break; /* same bridge, check next VLAN */
1729
1730 netdev_warn(ds->ports[port],
1731 "hardware VLAN %d already used by %s\n",
1732 vlan.vid,
1733 netdev_name(ps->ports[i].bridge_dev));
1734 err = -EOPNOTSUPP;
1735 goto unlock;
1736 }
1737 } while (vlan.vid < vid_end);
1738
1739 unlock:
1740 mutex_unlock(&ps->smi_mutex);
1741
1742 return err;
1743 }
1744
1745 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1746 [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1747 [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1748 [PORT_CONTROL_2_8021Q_CHECK] = "Check",
1749 [PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1750 };
1751
1752 int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1753 bool vlan_filtering)
1754 {
1755 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1756 u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1757 PORT_CONTROL_2_8021Q_DISABLED;
1758 int ret;
1759
1760 mutex_lock(&ps->smi_mutex);
1761
1762 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_2);
1763 if (ret < 0)
1764 goto unlock;
1765
1766 old = ret & PORT_CONTROL_2_8021Q_MASK;
1767
1768 if (new != old) {
1769 ret &= ~PORT_CONTROL_2_8021Q_MASK;
1770 ret |= new & PORT_CONTROL_2_8021Q_MASK;
1771
1772 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2,
1773 ret);
1774 if (ret < 0)
1775 goto unlock;
1776
1777 netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n",
1778 mv88e6xxx_port_8021q_mode_names[new],
1779 mv88e6xxx_port_8021q_mode_names[old]);
1780 }
1781
1782 ret = 0;
1783 unlock:
1784 mutex_unlock(&ps->smi_mutex);
1785
1786 return ret;
1787 }
1788
1789 int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1790 const struct switchdev_obj_port_vlan *vlan,
1791 struct switchdev_trans *trans)
1792 {
1793 int err;
1794
1795 /* If the requested port doesn't belong to the same bridge as the VLAN
1796 * members, do not support it (yet) and fallback to software VLAN.
1797 */
1798 err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1799 vlan->vid_end);
1800 if (err)
1801 return err;
1802
1803 /* We don't need any dynamic resource from the kernel (yet),
1804 * so skip the prepare phase.
1805 */
1806 return 0;
1807 }
1808
1809 static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
1810 bool untagged)
1811 {
1812 struct mv88e6xxx_vtu_stu_entry vlan;
1813 int err;
1814
1815 err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true);
1816 if (err)
1817 return err;
1818
1819 vlan.data[port] = untagged ?
1820 GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1821 GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1822
1823 return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1824 }
1825
1826 int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1827 const struct switchdev_obj_port_vlan *vlan,
1828 struct switchdev_trans *trans)
1829 {
1830 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1831 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1832 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1833 u16 vid;
1834 int err = 0;
1835
1836 mutex_lock(&ps->smi_mutex);
1837
1838 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1839 err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
1840 if (err)
1841 goto unlock;
1842 }
1843
1844 /* no PVID with ranges, otherwise it's a bug */
1845 if (pvid)
1846 err = _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end);
1847 unlock:
1848 mutex_unlock(&ps->smi_mutex);
1849
1850 return err;
1851 }
1852
1853 static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
1854 {
1855 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1856 struct mv88e6xxx_vtu_stu_entry vlan;
1857 int i, err;
1858
1859 err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1860 if (err)
1861 return err;
1862
1863 /* Tell switchdev if this VLAN is handled in software */
1864 if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1865 return -EOPNOTSUPP;
1866
1867 vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1868
1869 /* keep the VLAN unless all ports are excluded */
1870 vlan.valid = false;
1871 for (i = 0; i < ps->num_ports; ++i) {
1872 if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1873 continue;
1874
1875 if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1876 vlan.valid = true;
1877 break;
1878 }
1879 }
1880
1881 err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
1882 if (err)
1883 return err;
1884
1885 return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
1886 }
1887
1888 int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
1889 const struct switchdev_obj_port_vlan *vlan)
1890 {
1891 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
1892 u16 pvid, vid;
1893 int err = 0;
1894
1895 mutex_lock(&ps->smi_mutex);
1896
1897 err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
1898 if (err)
1899 goto unlock;
1900
1901 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1902 err = _mv88e6xxx_port_vlan_del(ds, port, vid);
1903 if (err)
1904 goto unlock;
1905
1906 if (vid == pvid) {
1907 err = _mv88e6xxx_port_pvid_set(ds, port, 0);
1908 if (err)
1909 goto unlock;
1910 }
1911 }
1912
1913 unlock:
1914 mutex_unlock(&ps->smi_mutex);
1915
1916 return err;
1917 }
1918
1919 static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
1920 const unsigned char *addr)
1921 {
1922 int i, ret;
1923
1924 for (i = 0; i < 3; i++) {
1925 ret = _mv88e6xxx_reg_write(
1926 ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
1927 (addr[i * 2] << 8) | addr[i * 2 + 1]);
1928 if (ret < 0)
1929 return ret;
1930 }
1931
1932 return 0;
1933 }
1934
1935 static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
1936 {
1937 int i, ret;
1938
1939 for (i = 0; i < 3; i++) {
1940 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
1941 GLOBAL_ATU_MAC_01 + i);
1942 if (ret < 0)
1943 return ret;
1944 addr[i * 2] = ret >> 8;
1945 addr[i * 2 + 1] = ret & 0xff;
1946 }
1947
1948 return 0;
1949 }
1950
1951 static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
1952 struct mv88e6xxx_atu_entry *entry)
1953 {
1954 int ret;
1955
1956 ret = _mv88e6xxx_atu_wait(ds);
1957 if (ret < 0)
1958 return ret;
1959
1960 ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
1961 if (ret < 0)
1962 return ret;
1963
1964 ret = _mv88e6xxx_atu_data_write(ds, entry);
1965 if (ret < 0)
1966 return ret;
1967
1968 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid);
1969 if (ret < 0)
1970 return ret;
1971
1972 return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB);
1973 }
1974
1975 static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
1976 const unsigned char *addr, u16 vid,
1977 u8 state)
1978 {
1979 struct mv88e6xxx_atu_entry entry = { 0 };
1980 struct mv88e6xxx_vtu_stu_entry vlan;
1981 int err;
1982
1983 /* Null VLAN ID corresponds to the port private database */
1984 if (vid == 0)
1985 err = _mv88e6xxx_port_fid_get(ds, port, &vlan.fid);
1986 else
1987 err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false);
1988 if (err)
1989 return err;
1990
1991 entry.fid = vlan.fid;
1992 entry.state = state;
1993 ether_addr_copy(entry.mac, addr);
1994 if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1995 entry.trunk = false;
1996 entry.portv_trunkid = BIT(port);
1997 }
1998
1999 return _mv88e6xxx_atu_load(ds, &entry);
2000 }
2001
2002 int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2003 const struct switchdev_obj_port_fdb *fdb,
2004 struct switchdev_trans *trans)
2005 {
2006 /* We don't need any dynamic resource from the kernel (yet),
2007 * so skip the prepare phase.
2008 */
2009 return 0;
2010 }
2011
2012 int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2013 const struct switchdev_obj_port_fdb *fdb,
2014 struct switchdev_trans *trans)
2015 {
2016 int state = is_multicast_ether_addr(fdb->addr) ?
2017 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2018 GLOBAL_ATU_DATA_STATE_UC_STATIC;
2019 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2020 int ret;
2021
2022 mutex_lock(&ps->smi_mutex);
2023 ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
2024 mutex_unlock(&ps->smi_mutex);
2025
2026 return ret;
2027 }
2028
2029 int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2030 const struct switchdev_obj_port_fdb *fdb)
2031 {
2032 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2033 int ret;
2034
2035 mutex_lock(&ps->smi_mutex);
2036 ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
2037 GLOBAL_ATU_DATA_STATE_UNUSED);
2038 mutex_unlock(&ps->smi_mutex);
2039
2040 return ret;
2041 }
2042
2043 static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
2044 struct mv88e6xxx_atu_entry *entry)
2045 {
2046 struct mv88e6xxx_atu_entry next = { 0 };
2047 int ret;
2048
2049 next.fid = fid;
2050
2051 ret = _mv88e6xxx_atu_wait(ds);
2052 if (ret < 0)
2053 return ret;
2054
2055 ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
2056 if (ret < 0)
2057 return ret;
2058
2059 ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB);
2060 if (ret < 0)
2061 return ret;
2062
2063 ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
2064 if (ret < 0)
2065 return ret;
2066
2067 ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
2068 if (ret < 0)
2069 return ret;
2070
2071 next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2072 if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2073 unsigned int mask, shift;
2074
2075 if (ret & GLOBAL_ATU_DATA_TRUNK) {
2076 next.trunk = true;
2077 mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2078 shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2079 } else {
2080 next.trunk = false;
2081 mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2082 shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2083 }
2084
2085 next.portv_trunkid = (ret & mask) >> shift;
2086 }
2087
2088 *entry = next;
2089 return 0;
2090 }
2091
2092 static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid,
2093 int port,
2094 struct switchdev_obj_port_fdb *fdb,
2095 int (*cb)(struct switchdev_obj *obj))
2096 {
2097 struct mv88e6xxx_atu_entry addr = {
2098 .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2099 };
2100 int err;
2101
2102 err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
2103 if (err)
2104 return err;
2105
2106 do {
2107 err = _mv88e6xxx_atu_getnext(ds, fid, &addr);
2108 if (err)
2109 break;
2110
2111 if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2112 break;
2113
2114 if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
2115 bool is_static = addr.state ==
2116 (is_multicast_ether_addr(addr.mac) ?
2117 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2118 GLOBAL_ATU_DATA_STATE_UC_STATIC);
2119
2120 fdb->vid = vid;
2121 ether_addr_copy(fdb->addr, addr.mac);
2122 fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
2123
2124 err = cb(&fdb->obj);
2125 if (err)
2126 break;
2127 }
2128 } while (!is_broadcast_ether_addr(addr.mac));
2129
2130 return err;
2131 }
2132
2133 int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2134 struct switchdev_obj_port_fdb *fdb,
2135 int (*cb)(struct switchdev_obj *obj))
2136 {
2137 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2138 struct mv88e6xxx_vtu_stu_entry vlan = {
2139 .vid = GLOBAL_VTU_VID_MASK, /* all ones */
2140 };
2141 u16 fid;
2142 int err;
2143
2144 mutex_lock(&ps->smi_mutex);
2145
2146 /* Dump port's default Filtering Information Database (VLAN ID 0) */
2147 err = _mv88e6xxx_port_fid_get(ds, port, &fid);
2148 if (err)
2149 goto unlock;
2150
2151 err = _mv88e6xxx_port_fdb_dump_one(ds, fid, 0, port, fdb, cb);
2152 if (err)
2153 goto unlock;
2154
2155 /* Dump VLANs' Filtering Information Databases */
2156 err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
2157 if (err)
2158 goto unlock;
2159
2160 do {
2161 err = _mv88e6xxx_vtu_getnext(ds, &vlan);
2162 if (err)
2163 break;
2164
2165 if (!vlan.valid)
2166 break;
2167
2168 err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port,
2169 fdb, cb);
2170 if (err)
2171 break;
2172 } while (vlan.vid < GLOBAL_VTU_VID_MASK);
2173
2174 unlock:
2175 mutex_unlock(&ps->smi_mutex);
2176
2177 return err;
2178 }
2179
2180 int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2181 struct net_device *bridge)
2182 {
2183 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2184 u16 fid;
2185 int i, err;
2186
2187 mutex_lock(&ps->smi_mutex);
2188
2189 /* Get or create the bridge FID and assign it to the port */
2190 for (i = 0; i < ps->num_ports; ++i)
2191 if (ps->ports[i].bridge_dev == bridge)
2192 break;
2193
2194 if (i < ps->num_ports)
2195 err = _mv88e6xxx_port_fid_get(ds, i, &fid);
2196 else
2197 err = _mv88e6xxx_fid_new(ds, &fid);
2198 if (err)
2199 goto unlock;
2200
2201 err = _mv88e6xxx_port_fid_set(ds, port, fid);
2202 if (err)
2203 goto unlock;
2204
2205 /* Assign the bridge and remap each port's VLANTable */
2206 ps->ports[port].bridge_dev = bridge;
2207
2208 for (i = 0; i < ps->num_ports; ++i) {
2209 if (ps->ports[i].bridge_dev == bridge) {
2210 err = _mv88e6xxx_port_based_vlan_map(ds, i);
2211 if (err)
2212 break;
2213 }
2214 }
2215
2216 unlock:
2217 mutex_unlock(&ps->smi_mutex);
2218
2219 return err;
2220 }
2221
2222 void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2223 {
2224 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2225 struct net_device *bridge = ps->ports[port].bridge_dev;
2226 u16 fid;
2227 int i;
2228
2229 mutex_lock(&ps->smi_mutex);
2230
2231 /* Give the port a fresh Filtering Information Database */
2232 if (_mv88e6xxx_fid_new(ds, &fid) ||
2233 _mv88e6xxx_port_fid_set(ds, port, fid))
2234 netdev_warn(ds->ports[port], "failed to assign a new FID\n");
2235
2236 /* Unassign the bridge and remap each port's VLANTable */
2237 ps->ports[port].bridge_dev = NULL;
2238
2239 for (i = 0; i < ps->num_ports; ++i)
2240 if (i == port || ps->ports[i].bridge_dev == bridge)
2241 if (_mv88e6xxx_port_based_vlan_map(ds, i))
2242 netdev_warn(ds->ports[i], "failed to remap\n");
2243
2244 mutex_unlock(&ps->smi_mutex);
2245 }
2246
2247 static void mv88e6xxx_bridge_work(struct work_struct *work)
2248 {
2249 struct mv88e6xxx_priv_state *ps;
2250 struct dsa_switch *ds;
2251 int port;
2252
2253 ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
2254 ds = ((struct dsa_switch *)ps) - 1;
2255
2256 mutex_lock(&ps->smi_mutex);
2257
2258 for (port = 0; port < ps->num_ports; ++port)
2259 if (test_and_clear_bit(port, ps->port_state_update_mask) &&
2260 _mv88e6xxx_port_state(ds, port, ps->ports[port].state))
2261 netdev_warn(ds->ports[port], "failed to update state to %s\n",
2262 mv88e6xxx_port_state_names[ps->ports[port].state]);
2263
2264 mutex_unlock(&ps->smi_mutex);
2265 }
2266
2267 static int _mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
2268 int reg, int val)
2269 {
2270 int ret;
2271
2272 ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2273 if (ret < 0)
2274 goto restore_page_0;
2275
2276 ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
2277 restore_page_0:
2278 _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2279
2280 return ret;
2281 }
2282
2283 static int _mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page,
2284 int reg)
2285 {
2286 int ret;
2287
2288 ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
2289 if (ret < 0)
2290 goto restore_page_0;
2291
2292 ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
2293 restore_page_0:
2294 _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
2295
2296 return ret;
2297 }
2298
2299 static int mv88e6xxx_power_on_serdes(struct dsa_switch *ds)
2300 {
2301 int ret;
2302
2303 ret = _mv88e6xxx_phy_page_read(ds, REG_FIBER_SERDES, PAGE_FIBER_SERDES,
2304 MII_BMCR);
2305 if (ret < 0)
2306 return ret;
2307
2308 if (ret & BMCR_PDOWN) {
2309 ret &= ~BMCR_PDOWN;
2310 ret = _mv88e6xxx_phy_page_write(ds, REG_FIBER_SERDES,
2311 PAGE_FIBER_SERDES, MII_BMCR,
2312 ret);
2313 }
2314
2315 return ret;
2316 }
2317
2318 static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
2319 {
2320 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2321 int ret;
2322 u16 reg;
2323
2324 mutex_lock(&ps->smi_mutex);
2325
2326 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2327 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2328 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2329 mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
2330 /* MAC Forcing register: don't force link, speed,
2331 * duplex or flow control state to any particular
2332 * values on physical ports, but force the CPU port
2333 * and all DSA ports to their maximum bandwidth and
2334 * full duplex.
2335 */
2336 reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
2337 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2338 reg &= ~PORT_PCS_CTRL_UNFORCED;
2339 reg |= PORT_PCS_CTRL_FORCE_LINK |
2340 PORT_PCS_CTRL_LINK_UP |
2341 PORT_PCS_CTRL_DUPLEX_FULL |
2342 PORT_PCS_CTRL_FORCE_DUPLEX;
2343 if (mv88e6xxx_6065_family(ds))
2344 reg |= PORT_PCS_CTRL_100;
2345 else
2346 reg |= PORT_PCS_CTRL_1000;
2347 } else {
2348 reg |= PORT_PCS_CTRL_UNFORCED;
2349 }
2350
2351 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2352 PORT_PCS_CTRL, reg);
2353 if (ret)
2354 goto abort;
2355 }
2356
2357 /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2358 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2359 * tunneling, determine priority by looking at 802.1p and IP
2360 * priority fields (IP prio has precedence), and set STP state
2361 * to Forwarding.
2362 *
2363 * If this is the CPU link, use DSA or EDSA tagging depending
2364 * on which tagging mode was configured.
2365 *
2366 * If this is a link to another switch, use DSA tagging mode.
2367 *
2368 * If this is the upstream port for this switch, enable
2369 * forwarding of unknown unicasts and multicasts.
2370 */
2371 reg = 0;
2372 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2373 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2374 mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2375 mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
2376 reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2377 PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2378 PORT_CONTROL_STATE_FORWARDING;
2379 if (dsa_is_cpu_port(ds, port)) {
2380 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
2381 reg |= PORT_CONTROL_DSA_TAG;
2382 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2383 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2384 mv88e6xxx_6320_family(ds)) {
2385 if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
2386 reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
2387 else
2388 reg |= PORT_CONTROL_FRAME_MODE_DSA;
2389 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2390 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2391 }
2392
2393 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2394 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2395 mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
2396 mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
2397 if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
2398 reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2399 }
2400 }
2401 if (dsa_is_dsa_port(ds, port)) {
2402 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
2403 reg |= PORT_CONTROL_DSA_TAG;
2404 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2405 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2406 mv88e6xxx_6320_family(ds)) {
2407 reg |= PORT_CONTROL_FRAME_MODE_DSA;
2408 }
2409
2410 if (port == dsa_upstream_port(ds))
2411 reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2412 PORT_CONTROL_FORWARD_UNKNOWN_MC;
2413 }
2414 if (reg) {
2415 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2416 PORT_CONTROL, reg);
2417 if (ret)
2418 goto abort;
2419 }
2420
2421 /* If this port is connected to a SerDes, make sure the SerDes is not
2422 * powered down.
2423 */
2424 if (mv88e6xxx_6352_family(ds)) {
2425 ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
2426 if (ret < 0)
2427 goto abort;
2428 ret &= PORT_STATUS_CMODE_MASK;
2429 if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
2430 (ret == PORT_STATUS_CMODE_1000BASE_X) ||
2431 (ret == PORT_STATUS_CMODE_SGMII)) {
2432 ret = mv88e6xxx_power_on_serdes(ds);
2433 if (ret < 0)
2434 goto abort;
2435 }
2436 }
2437
2438 /* Port Control 2: don't force a good FCS, set the maximum frame size to
2439 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2440 * untagged frames on this port, do a destination address lookup on all
2441 * received packets as usual, disable ARP mirroring and don't send a
2442 * copy of all transmitted/received frames on this port to the CPU.
2443 */
2444 reg = 0;
2445 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2446 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2447 mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
2448 reg = PORT_CONTROL_2_MAP_DA;
2449
2450 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2451 mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
2452 reg |= PORT_CONTROL_2_JUMBO_10240;
2453
2454 if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
2455 /* Set the upstream port this port should use */
2456 reg |= dsa_upstream_port(ds);
2457 /* enable forwarding of unknown multicast addresses to
2458 * the upstream port
2459 */
2460 if (port == dsa_upstream_port(ds))
2461 reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2462 }
2463
2464 reg |= PORT_CONTROL_2_8021Q_DISABLED;
2465
2466 if (reg) {
2467 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2468 PORT_CONTROL_2, reg);
2469 if (ret)
2470 goto abort;
2471 }
2472
2473 /* Port Association Vector: when learning source addresses
2474 * of packets, add the address to the address database using
2475 * a port bitmap that has only the bit for this port set and
2476 * the other bits clear.
2477 */
2478 reg = 1 << port;
2479 /* Disable learning for DSA and CPU ports */
2480 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
2481 reg = PORT_ASSOC_VECTOR_LOCKED_PORT;
2482
2483 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
2484 if (ret)
2485 goto abort;
2486
2487 /* Egress rate control 2: disable egress rate control. */
2488 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
2489 0x0000);
2490 if (ret)
2491 goto abort;
2492
2493 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2494 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2495 mv88e6xxx_6320_family(ds)) {
2496 /* Do not limit the period of time that this port can
2497 * be paused for by the remote end or the period of
2498 * time that this port can pause the remote end.
2499 */
2500 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2501 PORT_PAUSE_CTRL, 0x0000);
2502 if (ret)
2503 goto abort;
2504
2505 /* Port ATU control: disable limiting the number of
2506 * address database entries that this port is allowed
2507 * to use.
2508 */
2509 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2510 PORT_ATU_CONTROL, 0x0000);
2511 /* Priority Override: disable DA, SA and VTU priority
2512 * override.
2513 */
2514 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2515 PORT_PRI_OVERRIDE, 0x0000);
2516 if (ret)
2517 goto abort;
2518
2519 /* Port Ethertype: use the Ethertype DSA Ethertype
2520 * value.
2521 */
2522 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2523 PORT_ETH_TYPE, ETH_P_EDSA);
2524 if (ret)
2525 goto abort;
2526 /* Tag Remap: use an identity 802.1p prio -> switch
2527 * prio mapping.
2528 */
2529 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2530 PORT_TAG_REGMAP_0123, 0x3210);
2531 if (ret)
2532 goto abort;
2533
2534 /* Tag Remap 2: use an identity 802.1p prio -> switch
2535 * prio mapping.
2536 */
2537 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2538 PORT_TAG_REGMAP_4567, 0x7654);
2539 if (ret)
2540 goto abort;
2541 }
2542
2543 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2544 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2545 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2546 mv88e6xxx_6320_family(ds)) {
2547 /* Rate Control: disable ingress rate limiting. */
2548 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
2549 PORT_RATE_CONTROL, 0x0001);
2550 if (ret)
2551 goto abort;
2552 }
2553
2554 /* Port Control 1: disable trunking, disable sending
2555 * learning messages to this port.
2556 */
2557 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
2558 if (ret)
2559 goto abort;
2560
2561 /* Port based VLAN map: give each port its own address
2562 * database, and allow bidirectional communication between the
2563 * CPU and DSA port(s), and the other ports.
2564 */
2565 ret = _mv88e6xxx_port_fid_set(ds, port, port + 1);
2566 if (ret)
2567 goto abort;
2568
2569 ret = _mv88e6xxx_port_based_vlan_map(ds, port);
2570 if (ret)
2571 goto abort;
2572
2573 /* Default VLAN ID and priority: don't set a default VLAN
2574 * ID, and set the default packet priority to zero.
2575 */
2576 ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
2577 0x0000);
2578 abort:
2579 mutex_unlock(&ps->smi_mutex);
2580 return ret;
2581 }
2582
2583 int mv88e6xxx_setup_ports(struct dsa_switch *ds)
2584 {
2585 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2586 int ret;
2587 int i;
2588
2589 for (i = 0; i < ps->num_ports; i++) {
2590 ret = mv88e6xxx_setup_port(ds, i);
2591 if (ret < 0)
2592 return ret;
2593 }
2594 return 0;
2595 }
2596
2597 int mv88e6xxx_setup_common(struct dsa_switch *ds)
2598 {
2599 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2600
2601 mutex_init(&ps->smi_mutex);
2602
2603 ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
2604
2605 INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
2606
2607 return 0;
2608 }
2609
2610 int mv88e6xxx_setup_global(struct dsa_switch *ds)
2611 {
2612 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2613 int ret;
2614 int i;
2615
2616 /* Set the default address aging time to 5 minutes, and
2617 * enable address learn messages to be sent to all message
2618 * ports.
2619 */
2620 REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
2621 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
2622
2623 /* Configure the IP ToS mapping registers. */
2624 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2625 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2626 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2627 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2628 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2629 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2630 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2631 REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2632
2633 /* Configure the IEEE 802.1p priority mapping register. */
2634 REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2635
2636 /* Send all frames with destination addresses matching
2637 * 01:80:c2:00:00:0x to the CPU port.
2638 */
2639 REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
2640
2641 /* Ignore removed tag data on doubly tagged packets, disable
2642 * flow control messages, force flow control priority to the
2643 * highest, and send all special multicast frames to the CPU
2644 * port at the highest priority.
2645 */
2646 REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
2647 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
2648 GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
2649
2650 /* Program the DSA routing table. */
2651 for (i = 0; i < 32; i++) {
2652 int nexthop = 0x1f;
2653
2654 if (ds->pd->rtable &&
2655 i != ds->index && i < ds->dst->pd->nr_chips)
2656 nexthop = ds->pd->rtable[i] & 0x1f;
2657
2658 REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
2659 GLOBAL2_DEVICE_MAPPING_UPDATE |
2660 (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
2661 nexthop);
2662 }
2663
2664 /* Clear all trunk masks. */
2665 for (i = 0; i < 8; i++)
2666 REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
2667 0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
2668 ((1 << ps->num_ports) - 1));
2669
2670 /* Clear all trunk mappings. */
2671 for (i = 0; i < 16; i++)
2672 REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
2673 GLOBAL2_TRUNK_MAPPING_UPDATE |
2674 (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
2675
2676 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2677 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2678 mv88e6xxx_6320_family(ds)) {
2679 /* Send all frames with destination addresses matching
2680 * 01:80:c2:00:00:2x to the CPU port.
2681 */
2682 REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);
2683
2684 /* Initialise cross-chip port VLAN table to reset
2685 * defaults.
2686 */
2687 REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);
2688
2689 /* Clear the priority override table. */
2690 for (i = 0; i < 16; i++)
2691 REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
2692 0x8000 | (i << 8));
2693 }
2694
2695 if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
2696 mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
2697 mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
2698 mv88e6xxx_6320_family(ds)) {
2699 /* Disable ingress rate limiting by resetting all
2700 * ingress rate limit registers to their initial
2701 * state.
2702 */
2703 for (i = 0; i < ps->num_ports; i++)
2704 REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
2705 0x9000 | (i << 8));
2706 }
2707
2708 /* Clear the statistics counters for all ports */
2709 REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);
2710
2711 /* Wait for the flush to complete. */
2712 mutex_lock(&ps->smi_mutex);
2713 ret = _mv88e6xxx_stats_wait(ds);
2714 if (ret < 0)
2715 goto unlock;
2716
2717 /* Clear all ATU entries */
2718 ret = _mv88e6xxx_atu_flush(ds, 0, true);
2719 if (ret < 0)
2720 goto unlock;
2721
2722 /* Clear all the VTU and STU entries */
2723 ret = _mv88e6xxx_vtu_stu_flush(ds);
2724 unlock:
2725 mutex_unlock(&ps->smi_mutex);
2726
2727 return ret;
2728 }
2729
2730 int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
2731 {
2732 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2733 u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2734 struct gpio_desc *gpiod = ds->pd->reset;
2735 unsigned long timeout;
2736 int ret;
2737 int i;
2738
2739 /* Set all ports to the disabled state. */
2740 for (i = 0; i < ps->num_ports; i++) {
2741 ret = REG_READ(REG_PORT(i), PORT_CONTROL);
2742 REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
2743 }
2744
2745 /* Wait for transmit queues to drain. */
2746 usleep_range(2000, 4000);
2747
2748 /* If there is a gpio connected to the reset pin, toggle it */
2749 if (gpiod) {
2750 gpiod_set_value_cansleep(gpiod, 1);
2751 usleep_range(10000, 20000);
2752 gpiod_set_value_cansleep(gpiod, 0);
2753 usleep_range(10000, 20000);
2754 }
2755
2756 /* Reset the switch. Keep the PPU active if requested. The PPU
2757 * needs to be active to support indirect phy register access
2758 * through global registers 0x18 and 0x19.
2759 */
2760 if (ppu_active)
2761 REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
2762 else
2763 REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
2764
2765 /* Wait up to one second for reset to complete. */
2766 timeout = jiffies + 1 * HZ;
2767 while (time_before(jiffies, timeout)) {
2768 ret = REG_READ(REG_GLOBAL, 0x00);
2769 if ((ret & is_reset) == is_reset)
2770 break;
2771 usleep_range(1000, 2000);
2772 }
2773 if (time_after(jiffies, timeout))
2774 return -ETIMEDOUT;
2775
2776 return 0;
2777 }
2778
2779 int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
2780 {
2781 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2782 int ret;
2783
2784 mutex_lock(&ps->smi_mutex);
2785 ret = _mv88e6xxx_phy_page_read(ds, port, page, reg);
2786 mutex_unlock(&ps->smi_mutex);
2787
2788 return ret;
2789 }
2790
2791 int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
2792 int reg, int val)
2793 {
2794 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2795 int ret;
2796
2797 mutex_lock(&ps->smi_mutex);
2798 ret = _mv88e6xxx_phy_page_write(ds, port, page, reg, val);
2799 mutex_unlock(&ps->smi_mutex);
2800
2801 return ret;
2802 }
2803
2804 static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
2805 {
2806 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2807
2808 if (port >= 0 && port < ps->num_ports)
2809 return port;
2810 return -EINVAL;
2811 }
2812
2813 int
2814 mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
2815 {
2816 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2817 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2818 int ret;
2819
2820 if (addr < 0)
2821 return addr;
2822
2823 mutex_lock(&ps->smi_mutex);
2824 ret = _mv88e6xxx_phy_read(ds, addr, regnum);
2825 mutex_unlock(&ps->smi_mutex);
2826 return ret;
2827 }
2828
2829 int
2830 mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2831 {
2832 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2833 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2834 int ret;
2835
2836 if (addr < 0)
2837 return addr;
2838
2839 mutex_lock(&ps->smi_mutex);
2840 ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
2841 mutex_unlock(&ps->smi_mutex);
2842 return ret;
2843 }
2844
2845 int
2846 mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
2847 {
2848 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2849 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2850 int ret;
2851
2852 if (addr < 0)
2853 return addr;
2854
2855 mutex_lock(&ps->smi_mutex);
2856 ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
2857 mutex_unlock(&ps->smi_mutex);
2858 return ret;
2859 }
2860
2861 int
2862 mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
2863 u16 val)
2864 {
2865 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2866 int addr = mv88e6xxx_port_to_phy_addr(ds, port);
2867 int ret;
2868
2869 if (addr < 0)
2870 return addr;
2871
2872 mutex_lock(&ps->smi_mutex);
2873 ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
2874 mutex_unlock(&ps->smi_mutex);
2875 return ret;
2876 }
2877
2878 #ifdef CONFIG_NET_DSA_HWMON
2879
2880 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
2881 {
2882 struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
2883 int ret;
2884 int val;
2885
2886 *temp = 0;
2887
2888 mutex_lock(&ps->smi_mutex);
2889
2890 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
2891 if (ret < 0)
2892 goto error;
2893
2894 /* Enable temperature sensor */
2895 ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
2896 if (ret < 0)
2897 goto error;
2898
2899 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
2900 if (ret < 0)
2901 goto error;
2902
2903 /* Wait for temperature to stabilize */
2904 usleep_range(10000, 12000);
2905
2906 val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
2907 if (val < 0) {
2908 ret = val;
2909 goto error;
2910 }
2911
2912 /* Disable temperature sensor */
2913 ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
2914 if (ret < 0)
2915 goto error;
2916
2917 *temp = ((val & 0x1f) - 5) * 5;
2918
2919 error:
2920 _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
2921 mutex_unlock(&ps->smi_mutex);
2922 return ret;
2923 }
2924
2925 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
2926 {
2927 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2928 int ret;
2929
2930 *temp = 0;
2931
2932 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
2933 if (ret < 0)
2934 return ret;
2935
2936 *temp = (ret & 0xff) - 25;
2937
2938 return 0;
2939 }
2940
2941 int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
2942 {
2943 if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
2944 return mv88e63xx_get_temp(ds, temp);
2945
2946 return mv88e61xx_get_temp(ds, temp);
2947 }
2948
2949 int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
2950 {
2951 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2952 int ret;
2953
2954 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2955 return -EOPNOTSUPP;
2956
2957 *temp = 0;
2958
2959 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2960 if (ret < 0)
2961 return ret;
2962
2963 *temp = (((ret >> 8) & 0x1f) * 5) - 25;
2964
2965 return 0;
2966 }
2967
2968 int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
2969 {
2970 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2971 int ret;
2972
2973 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2974 return -EOPNOTSUPP;
2975
2976 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2977 if (ret < 0)
2978 return ret;
2979 temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
2980 return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
2981 (ret & 0xe0ff) | (temp << 8));
2982 }
2983
2984 int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
2985 {
2986 int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
2987 int ret;
2988
2989 if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
2990 return -EOPNOTSUPP;
2991
2992 *alarm = false;
2993
2994 ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
2995 if (ret < 0)
2996 return ret;
2997
2998 *alarm = !!(ret & 0x40);
2999
3000 return 0;
3001 }
3002 #endif /* CONFIG_NET_DSA_HWMON */
3003
3004 char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
3005 const struct mv88e6xxx_switch_id *table,
3006 unsigned int num)
3007 {
3008 struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
3009 int i, ret;
3010
3011 if (!bus)
3012 return NULL;
3013
3014 ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
3015 if (ret < 0)
3016 return NULL;
3017
3018 /* Look up the exact switch ID */
3019 for (i = 0; i < num; ++i)
3020 if (table[i].id == ret)
3021 return table[i].name;
3022
3023 /* Look up only the product number */
3024 for (i = 0; i < num; ++i) {
3025 if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
3026 dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
3027 ret & PORT_SWITCH_ID_REV_MASK,
3028 ret & PORT_SWITCH_ID_PROD_NUM_MASK);
3029 return table[i].name;
3030 }
3031 }
3032
3033 return NULL;
3034 }
3035
3036 static int __init mv88e6xxx_init(void)
3037 {
3038 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
3039 register_switch_driver(&mv88e6131_switch_driver);
3040 #endif
3041 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
3042 register_switch_driver(&mv88e6123_switch_driver);
3043 #endif
3044 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
3045 register_switch_driver(&mv88e6352_switch_driver);
3046 #endif
3047 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
3048 register_switch_driver(&mv88e6171_switch_driver);
3049 #endif
3050 return 0;
3051 }
3052 module_init(mv88e6xxx_init);
3053
3054 static void __exit mv88e6xxx_cleanup(void)
3055 {
3056 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
3057 unregister_switch_driver(&mv88e6171_switch_driver);
3058 #endif
3059 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
3060 unregister_switch_driver(&mv88e6352_switch_driver);
3061 #endif
3062 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
3063 unregister_switch_driver(&mv88e6123_switch_driver);
3064 #endif
3065 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
3066 unregister_switch_driver(&mv88e6131_switch_driver);
3067 #endif
3068 }
3069 module_exit(mv88e6xxx_cleanup);
3070
3071 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
3072 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
3073 MODULE_LICENSE("GPL");
This page took 0.090874 seconds and 6 git commands to generate.