[PATCH] PCI: make drivers use the pci shutdown callback instead of the driver core...
[deliverable/linux.git] / drivers / net / e100.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Recieve
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
118 *
119 * V. Miscellaneous
120 *
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
126 *
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
131 *
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
135 */
136
137 #include <linux/config.h>
138 #include <linux/module.h>
139 #include <linux/moduleparam.h>
140 #include <linux/kernel.h>
141 #include <linux/types.h>
142 #include <linux/slab.h>
143 #include <linux/delay.h>
144 #include <linux/init.h>
145 #include <linux/pci.h>
146 #include <linux/dma-mapping.h>
147 #include <linux/netdevice.h>
148 #include <linux/etherdevice.h>
149 #include <linux/mii.h>
150 #include <linux/if_vlan.h>
151 #include <linux/skbuff.h>
152 #include <linux/ethtool.h>
153 #include <linux/string.h>
154 #include <asm/unaligned.h>
155
156
157 #define DRV_NAME "e100"
158 #define DRV_EXT "-NAPI"
159 #define DRV_VERSION "3.4.8-k2"DRV_EXT
160 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
161 #define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation"
162 #define PFX DRV_NAME ": "
163
164 #define E100_WATCHDOG_PERIOD (2 * HZ)
165 #define E100_NAPI_WEIGHT 16
166
167 MODULE_DESCRIPTION(DRV_DESCRIPTION);
168 MODULE_AUTHOR(DRV_COPYRIGHT);
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
171
172 static int debug = 3;
173 module_param(debug, int, 0);
174 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
175 #define DPRINTK(nlevel, klevel, fmt, args...) \
176 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
177 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
178 __FUNCTION__ , ## args))
179
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static struct pci_device_id e100_id_table[] = {
184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
225 { 0, }
226 };
227 MODULE_DEVICE_TABLE(pci, e100_id_table);
228
229 enum mac {
230 mac_82557_D100_A = 0,
231 mac_82557_D100_B = 1,
232 mac_82557_D100_C = 2,
233 mac_82558_D101_A4 = 4,
234 mac_82558_D101_B0 = 5,
235 mac_82559_D101M = 8,
236 mac_82559_D101S = 9,
237 mac_82550_D102 = 12,
238 mac_82550_D102_C = 13,
239 mac_82551_E = 14,
240 mac_82551_F = 15,
241 mac_82551_10 = 16,
242 mac_unknown = 0xFF,
243 };
244
245 enum phy {
246 phy_100a = 0x000003E0,
247 phy_100c = 0x035002A8,
248 phy_82555_tx = 0x015002A8,
249 phy_nsc_tx = 0x5C002000,
250 phy_82562_et = 0x033002A8,
251 phy_82562_em = 0x032002A8,
252 phy_82562_ek = 0x031002A8,
253 phy_82562_eh = 0x017002A8,
254 phy_unknown = 0xFFFFFFFF,
255 };
256
257 /* CSR (Control/Status Registers) */
258 struct csr {
259 struct {
260 u8 status;
261 u8 stat_ack;
262 u8 cmd_lo;
263 u8 cmd_hi;
264 u32 gen_ptr;
265 } scb;
266 u32 port;
267 u16 flash_ctrl;
268 u8 eeprom_ctrl_lo;
269 u8 eeprom_ctrl_hi;
270 u32 mdi_ctrl;
271 u32 rx_dma_count;
272 };
273
274 enum scb_status {
275 rus_ready = 0x10,
276 rus_mask = 0x3C,
277 };
278
279 enum ru_state {
280 RU_SUSPENDED = 0,
281 RU_RUNNING = 1,
282 RU_UNINITIALIZED = -1,
283 };
284
285 enum scb_stat_ack {
286 stat_ack_not_ours = 0x00,
287 stat_ack_sw_gen = 0x04,
288 stat_ack_rnr = 0x10,
289 stat_ack_cu_idle = 0x20,
290 stat_ack_frame_rx = 0x40,
291 stat_ack_cu_cmd_done = 0x80,
292 stat_ack_not_present = 0xFF,
293 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
294 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
295 };
296
297 enum scb_cmd_hi {
298 irq_mask_none = 0x00,
299 irq_mask_all = 0x01,
300 irq_sw_gen = 0x02,
301 };
302
303 enum scb_cmd_lo {
304 cuc_nop = 0x00,
305 ruc_start = 0x01,
306 ruc_load_base = 0x06,
307 cuc_start = 0x10,
308 cuc_resume = 0x20,
309 cuc_dump_addr = 0x40,
310 cuc_dump_stats = 0x50,
311 cuc_load_base = 0x60,
312 cuc_dump_reset = 0x70,
313 };
314
315 enum cuc_dump {
316 cuc_dump_complete = 0x0000A005,
317 cuc_dump_reset_complete = 0x0000A007,
318 };
319
320 enum port {
321 software_reset = 0x0000,
322 selftest = 0x0001,
323 selective_reset = 0x0002,
324 };
325
326 enum eeprom_ctrl_lo {
327 eesk = 0x01,
328 eecs = 0x02,
329 eedi = 0x04,
330 eedo = 0x08,
331 };
332
333 enum mdi_ctrl {
334 mdi_write = 0x04000000,
335 mdi_read = 0x08000000,
336 mdi_ready = 0x10000000,
337 };
338
339 enum eeprom_op {
340 op_write = 0x05,
341 op_read = 0x06,
342 op_ewds = 0x10,
343 op_ewen = 0x13,
344 };
345
346 enum eeprom_offsets {
347 eeprom_cnfg_mdix = 0x03,
348 eeprom_id = 0x0A,
349 eeprom_config_asf = 0x0D,
350 eeprom_smbus_addr = 0x90,
351 };
352
353 enum eeprom_cnfg_mdix {
354 eeprom_mdix_enabled = 0x0080,
355 };
356
357 enum eeprom_id {
358 eeprom_id_wol = 0x0020,
359 };
360
361 enum eeprom_config_asf {
362 eeprom_asf = 0x8000,
363 eeprom_gcl = 0x4000,
364 };
365
366 enum cb_status {
367 cb_complete = 0x8000,
368 cb_ok = 0x2000,
369 };
370
371 enum cb_command {
372 cb_nop = 0x0000,
373 cb_iaaddr = 0x0001,
374 cb_config = 0x0002,
375 cb_multi = 0x0003,
376 cb_tx = 0x0004,
377 cb_ucode = 0x0005,
378 cb_dump = 0x0006,
379 cb_tx_sf = 0x0008,
380 cb_cid = 0x1f00,
381 cb_i = 0x2000,
382 cb_s = 0x4000,
383 cb_el = 0x8000,
384 };
385
386 struct rfd {
387 u16 status;
388 u16 command;
389 u32 link;
390 u32 rbd;
391 u16 actual_size;
392 u16 size;
393 };
394
395 struct rx {
396 struct rx *next, *prev;
397 struct sk_buff *skb;
398 dma_addr_t dma_addr;
399 };
400
401 #if defined(__BIG_ENDIAN_BITFIELD)
402 #define X(a,b) b,a
403 #else
404 #define X(a,b) a,b
405 #endif
406 struct config {
407 /*0*/ u8 X(byte_count:6, pad0:2);
408 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
409 /*2*/ u8 adaptive_ifs;
410 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
411 term_write_cache_line:1), pad3:4);
412 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
413 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
414 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
415 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
416 rx_discard_overruns:1), rx_save_bad_frames:1);
417 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
418 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
419 tx_dynamic_tbd:1);
420 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
421 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
422 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
423 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
424 loopback:2);
425 /*11*/ u8 X(linear_priority:3, pad11:5);
426 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
427 /*13*/ u8 ip_addr_lo;
428 /*14*/ u8 ip_addr_hi;
429 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
430 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
431 pad15_2:1), crs_or_cdt:1);
432 /*16*/ u8 fc_delay_lo;
433 /*17*/ u8 fc_delay_hi;
434 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
435 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
436 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
437 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
438 full_duplex_force:1), full_duplex_pin:1);
439 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
440 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
441 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
442 u8 pad_d102[9];
443 };
444
445 #define E100_MAX_MULTICAST_ADDRS 64
446 struct multi {
447 u16 count;
448 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
449 };
450
451 /* Important: keep total struct u32-aligned */
452 #define UCODE_SIZE 134
453 struct cb {
454 u16 status;
455 u16 command;
456 u32 link;
457 union {
458 u8 iaaddr[ETH_ALEN];
459 u32 ucode[UCODE_SIZE];
460 struct config config;
461 struct multi multi;
462 struct {
463 u32 tbd_array;
464 u16 tcb_byte_count;
465 u8 threshold;
466 u8 tbd_count;
467 struct {
468 u32 buf_addr;
469 u16 size;
470 u16 eol;
471 } tbd;
472 } tcb;
473 u32 dump_buffer_addr;
474 } u;
475 struct cb *next, *prev;
476 dma_addr_t dma_addr;
477 struct sk_buff *skb;
478 };
479
480 enum loopback {
481 lb_none = 0, lb_mac = 1, lb_phy = 3,
482 };
483
484 struct stats {
485 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
486 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
487 tx_multiple_collisions, tx_total_collisions;
488 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
489 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
490 rx_short_frame_errors;
491 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
492 u16 xmt_tco_frames, rcv_tco_frames;
493 u32 complete;
494 };
495
496 struct mem {
497 struct {
498 u32 signature;
499 u32 result;
500 } selftest;
501 struct stats stats;
502 u8 dump_buf[596];
503 };
504
505 struct param_range {
506 u32 min;
507 u32 max;
508 u32 count;
509 };
510
511 struct params {
512 struct param_range rfds;
513 struct param_range cbs;
514 };
515
516 struct nic {
517 /* Begin: frequently used values: keep adjacent for cache effect */
518 u32 msg_enable ____cacheline_aligned;
519 struct net_device *netdev;
520 struct pci_dev *pdev;
521
522 struct rx *rxs ____cacheline_aligned;
523 struct rx *rx_to_use;
524 struct rx *rx_to_clean;
525 struct rfd blank_rfd;
526 enum ru_state ru_running;
527
528 spinlock_t cb_lock ____cacheline_aligned;
529 spinlock_t cmd_lock;
530 struct csr __iomem *csr;
531 enum scb_cmd_lo cuc_cmd;
532 unsigned int cbs_avail;
533 struct cb *cbs;
534 struct cb *cb_to_use;
535 struct cb *cb_to_send;
536 struct cb *cb_to_clean;
537 u16 tx_command;
538 /* End: frequently used values: keep adjacent for cache effect */
539
540 enum {
541 ich = (1 << 0),
542 promiscuous = (1 << 1),
543 multicast_all = (1 << 2),
544 wol_magic = (1 << 3),
545 ich_10h_workaround = (1 << 4),
546 } flags ____cacheline_aligned;
547
548 enum mac mac;
549 enum phy phy;
550 struct params params;
551 struct net_device_stats net_stats;
552 struct timer_list watchdog;
553 struct timer_list blink_timer;
554 struct mii_if_info mii;
555 struct work_struct tx_timeout_task;
556 enum loopback loopback;
557
558 struct mem *mem;
559 dma_addr_t dma_addr;
560
561 dma_addr_t cbs_dma_addr;
562 u8 adaptive_ifs;
563 u8 tx_threshold;
564 u32 tx_frames;
565 u32 tx_collisions;
566 u32 tx_deferred;
567 u32 tx_single_collisions;
568 u32 tx_multiple_collisions;
569 u32 tx_fc_pause;
570 u32 tx_tco_frames;
571
572 u32 rx_fc_pause;
573 u32 rx_fc_unsupported;
574 u32 rx_tco_frames;
575 u32 rx_over_length_errors;
576
577 u8 rev_id;
578 u16 leds;
579 u16 eeprom_wc;
580 u16 eeprom[256];
581 };
582
583 static inline void e100_write_flush(struct nic *nic)
584 {
585 /* Flush previous PCI writes through intermediate bridges
586 * by doing a benign read */
587 (void)readb(&nic->csr->scb.status);
588 }
589
590 static inline void e100_enable_irq(struct nic *nic)
591 {
592 unsigned long flags;
593
594 spin_lock_irqsave(&nic->cmd_lock, flags);
595 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
596 spin_unlock_irqrestore(&nic->cmd_lock, flags);
597 e100_write_flush(nic);
598 }
599
600 static inline void e100_disable_irq(struct nic *nic)
601 {
602 unsigned long flags;
603
604 spin_lock_irqsave(&nic->cmd_lock, flags);
605 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
606 spin_unlock_irqrestore(&nic->cmd_lock, flags);
607 e100_write_flush(nic);
608 }
609
610 static void e100_hw_reset(struct nic *nic)
611 {
612 /* Put CU and RU into idle with a selective reset to get
613 * device off of PCI bus */
614 writel(selective_reset, &nic->csr->port);
615 e100_write_flush(nic); udelay(20);
616
617 /* Now fully reset device */
618 writel(software_reset, &nic->csr->port);
619 e100_write_flush(nic); udelay(20);
620
621 /* Mask off our interrupt line - it's unmasked after reset */
622 e100_disable_irq(nic);
623 }
624
625 static int e100_self_test(struct nic *nic)
626 {
627 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
628
629 /* Passing the self-test is a pretty good indication
630 * that the device can DMA to/from host memory */
631
632 nic->mem->selftest.signature = 0;
633 nic->mem->selftest.result = 0xFFFFFFFF;
634
635 writel(selftest | dma_addr, &nic->csr->port);
636 e100_write_flush(nic);
637 /* Wait 10 msec for self-test to complete */
638 msleep(10);
639
640 /* Interrupts are enabled after self-test */
641 e100_disable_irq(nic);
642
643 /* Check results of self-test */
644 if(nic->mem->selftest.result != 0) {
645 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
646 nic->mem->selftest.result);
647 return -ETIMEDOUT;
648 }
649 if(nic->mem->selftest.signature == 0) {
650 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
651 return -ETIMEDOUT;
652 }
653
654 return 0;
655 }
656
657 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
658 {
659 u32 cmd_addr_data[3];
660 u8 ctrl;
661 int i, j;
662
663 /* Three cmds: write/erase enable, write data, write/erase disable */
664 cmd_addr_data[0] = op_ewen << (addr_len - 2);
665 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
666 cpu_to_le16(data);
667 cmd_addr_data[2] = op_ewds << (addr_len - 2);
668
669 /* Bit-bang cmds to write word to eeprom */
670 for(j = 0; j < 3; j++) {
671
672 /* Chip select */
673 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
674 e100_write_flush(nic); udelay(4);
675
676 for(i = 31; i >= 0; i--) {
677 ctrl = (cmd_addr_data[j] & (1 << i)) ?
678 eecs | eedi : eecs;
679 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
680 e100_write_flush(nic); udelay(4);
681
682 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
683 e100_write_flush(nic); udelay(4);
684 }
685 /* Wait 10 msec for cmd to complete */
686 msleep(10);
687
688 /* Chip deselect */
689 writeb(0, &nic->csr->eeprom_ctrl_lo);
690 e100_write_flush(nic); udelay(4);
691 }
692 };
693
694 /* General technique stolen from the eepro100 driver - very clever */
695 static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
696 {
697 u32 cmd_addr_data;
698 u16 data = 0;
699 u8 ctrl;
700 int i;
701
702 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
703
704 /* Chip select */
705 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
706 e100_write_flush(nic); udelay(4);
707
708 /* Bit-bang to read word from eeprom */
709 for(i = 31; i >= 0; i--) {
710 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
711 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
712 e100_write_flush(nic); udelay(4);
713
714 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
715 e100_write_flush(nic); udelay(4);
716
717 /* Eeprom drives a dummy zero to EEDO after receiving
718 * complete address. Use this to adjust addr_len. */
719 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
720 if(!(ctrl & eedo) && i > 16) {
721 *addr_len -= (i - 16);
722 i = 17;
723 }
724
725 data = (data << 1) | (ctrl & eedo ? 1 : 0);
726 }
727
728 /* Chip deselect */
729 writeb(0, &nic->csr->eeprom_ctrl_lo);
730 e100_write_flush(nic); udelay(4);
731
732 return le16_to_cpu(data);
733 };
734
735 /* Load entire EEPROM image into driver cache and validate checksum */
736 static int e100_eeprom_load(struct nic *nic)
737 {
738 u16 addr, addr_len = 8, checksum = 0;
739
740 /* Try reading with an 8-bit addr len to discover actual addr len */
741 e100_eeprom_read(nic, &addr_len, 0);
742 nic->eeprom_wc = 1 << addr_len;
743
744 for(addr = 0; addr < nic->eeprom_wc; addr++) {
745 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
746 if(addr < nic->eeprom_wc - 1)
747 checksum += cpu_to_le16(nic->eeprom[addr]);
748 }
749
750 /* The checksum, stored in the last word, is calculated such that
751 * the sum of words should be 0xBABA */
752 checksum = le16_to_cpu(0xBABA - checksum);
753 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
754 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
755 return -EAGAIN;
756 }
757
758 return 0;
759 }
760
761 /* Save (portion of) driver EEPROM cache to device and update checksum */
762 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
763 {
764 u16 addr, addr_len = 8, checksum = 0;
765
766 /* Try reading with an 8-bit addr len to discover actual addr len */
767 e100_eeprom_read(nic, &addr_len, 0);
768 nic->eeprom_wc = 1 << addr_len;
769
770 if(start + count >= nic->eeprom_wc)
771 return -EINVAL;
772
773 for(addr = start; addr < start + count; addr++)
774 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
775
776 /* The checksum, stored in the last word, is calculated such that
777 * the sum of words should be 0xBABA */
778 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
779 checksum += cpu_to_le16(nic->eeprom[addr]);
780 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
781 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
782 nic->eeprom[nic->eeprom_wc - 1]);
783
784 return 0;
785 }
786
787 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
788 static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
789 {
790 unsigned long flags;
791 unsigned int i;
792 int err = 0;
793
794 spin_lock_irqsave(&nic->cmd_lock, flags);
795
796 /* Previous command is accepted when SCB clears */
797 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
798 if(likely(!readb(&nic->csr->scb.cmd_lo)))
799 break;
800 cpu_relax();
801 if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1)))
802 udelay(5);
803 }
804 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
805 err = -EAGAIN;
806 goto err_unlock;
807 }
808
809 if(unlikely(cmd != cuc_resume))
810 writel(dma_addr, &nic->csr->scb.gen_ptr);
811 writeb(cmd, &nic->csr->scb.cmd_lo);
812
813 err_unlock:
814 spin_unlock_irqrestore(&nic->cmd_lock, flags);
815
816 return err;
817 }
818
819 static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
820 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
821 {
822 struct cb *cb;
823 unsigned long flags;
824 int err = 0;
825
826 spin_lock_irqsave(&nic->cb_lock, flags);
827
828 if(unlikely(!nic->cbs_avail)) {
829 err = -ENOMEM;
830 goto err_unlock;
831 }
832
833 cb = nic->cb_to_use;
834 nic->cb_to_use = cb->next;
835 nic->cbs_avail--;
836 cb->skb = skb;
837
838 if(unlikely(!nic->cbs_avail))
839 err = -ENOSPC;
840
841 cb_prepare(nic, cb, skb);
842
843 /* Order is important otherwise we'll be in a race with h/w:
844 * set S-bit in current first, then clear S-bit in previous. */
845 cb->command |= cpu_to_le16(cb_s);
846 wmb();
847 cb->prev->command &= cpu_to_le16(~cb_s);
848
849 while(nic->cb_to_send != nic->cb_to_use) {
850 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
851 nic->cb_to_send->dma_addr))) {
852 /* Ok, here's where things get sticky. It's
853 * possible that we can't schedule the command
854 * because the controller is too busy, so
855 * let's just queue the command and try again
856 * when another command is scheduled. */
857 if(err == -ENOSPC) {
858 //request a reset
859 schedule_work(&nic->tx_timeout_task);
860 }
861 break;
862 } else {
863 nic->cuc_cmd = cuc_resume;
864 nic->cb_to_send = nic->cb_to_send->next;
865 }
866 }
867
868 err_unlock:
869 spin_unlock_irqrestore(&nic->cb_lock, flags);
870
871 return err;
872 }
873
874 static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
875 {
876 u32 data_out = 0;
877 unsigned int i;
878
879 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
880
881 for(i = 0; i < 100; i++) {
882 udelay(20);
883 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
884 break;
885 }
886
887 DPRINTK(HW, DEBUG,
888 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
889 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
890 return (u16)data_out;
891 }
892
893 static int mdio_read(struct net_device *netdev, int addr, int reg)
894 {
895 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
896 }
897
898 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
899 {
900 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
901 }
902
903 static void e100_get_defaults(struct nic *nic)
904 {
905 struct param_range rfds = { .min = 16, .max = 256, .count = 64 };
906 struct param_range cbs = { .min = 64, .max = 256, .count = 64 };
907
908 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
909 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
910 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
911 if(nic->mac == mac_unknown)
912 nic->mac = mac_82557_D100_A;
913
914 nic->params.rfds = rfds;
915 nic->params.cbs = cbs;
916
917 /* Quadwords to DMA into FIFO before starting frame transmit */
918 nic->tx_threshold = 0xE0;
919
920 /* no interrupt for every tx completion, delay = 256us if not 557*/
921 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
922 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
923
924 /* Template for a freshly allocated RFD */
925 nic->blank_rfd.command = cpu_to_le16(cb_el);
926 nic->blank_rfd.rbd = 0xFFFFFFFF;
927 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
928
929 /* MII setup */
930 nic->mii.phy_id_mask = 0x1F;
931 nic->mii.reg_num_mask = 0x1F;
932 nic->mii.dev = nic->netdev;
933 nic->mii.mdio_read = mdio_read;
934 nic->mii.mdio_write = mdio_write;
935 }
936
937 static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
938 {
939 struct config *config = &cb->u.config;
940 u8 *c = (u8 *)config;
941
942 cb->command = cpu_to_le16(cb_config);
943
944 memset(config, 0, sizeof(struct config));
945
946 config->byte_count = 0x16; /* bytes in this struct */
947 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
948 config->direct_rx_dma = 0x1; /* reserved */
949 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
950 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
951 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
952 config->tx_underrun_retry = 0x3; /* # of underrun retries */
953 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
954 config->pad10 = 0x6;
955 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
956 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
957 config->ifs = 0x6; /* x16 = inter frame spacing */
958 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
959 config->pad15_1 = 0x1;
960 config->pad15_2 = 0x1;
961 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
962 config->fc_delay_hi = 0x40; /* time delay for fc frame */
963 config->tx_padding = 0x1; /* 1=pad short frames */
964 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
965 config->pad18 = 0x1;
966 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
967 config->pad20_1 = 0x1F;
968 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
969 config->pad21_1 = 0x5;
970
971 config->adaptive_ifs = nic->adaptive_ifs;
972 config->loopback = nic->loopback;
973
974 if(nic->mii.force_media && nic->mii.full_duplex)
975 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
976
977 if(nic->flags & promiscuous || nic->loopback) {
978 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
979 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
980 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
981 }
982
983 if(nic->flags & multicast_all)
984 config->multicast_all = 0x1; /* 1=accept, 0=no */
985
986 /* disable WoL when up */
987 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
988 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
989
990 if(nic->mac >= mac_82558_D101_A4) {
991 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
992 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
993 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
994 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
995 if(nic->mac >= mac_82559_D101M)
996 config->tno_intr = 0x1; /* TCO stats enable */
997 else
998 config->standard_stat_counter = 0x0;
999 }
1000
1001 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1002 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
1003 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1004 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
1005 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1006 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1007 }
1008
1009 static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1010 {
1011 int i;
1012 static const u32 ucode[UCODE_SIZE] = {
1013 /* NFS packets are misinterpreted as TCO packets and
1014 * incorrectly routed to the BMC over SMBus. This
1015 * microcode patch checks the fragmented IP bit in the
1016 * NFS/UDP header to distinguish between NFS and TCO. */
1017 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF,
1018 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000,
1019 0x00906EFD, 0x00900EFD, 0x00E00EF8,
1020 };
1021
1022 if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1023 for(i = 0; i < UCODE_SIZE; i++)
1024 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1025 cb->command = cpu_to_le16(cb_ucode);
1026 } else
1027 cb->command = cpu_to_le16(cb_nop);
1028 }
1029
1030 static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1031 struct sk_buff *skb)
1032 {
1033 cb->command = cpu_to_le16(cb_iaaddr);
1034 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1035 }
1036
1037 static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1038 {
1039 cb->command = cpu_to_le16(cb_dump);
1040 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1041 offsetof(struct mem, dump_buf));
1042 }
1043
1044 #define NCONFIG_AUTO_SWITCH 0x0080
1045 #define MII_NSC_CONG MII_RESV1
1046 #define NSC_CONG_ENABLE 0x0100
1047 #define NSC_CONG_TXREADY 0x0400
1048 #define ADVERTISE_FC_SUPPORTED 0x0400
1049 static int e100_phy_init(struct nic *nic)
1050 {
1051 struct net_device *netdev = nic->netdev;
1052 u32 addr;
1053 u16 bmcr, stat, id_lo, id_hi, cong;
1054
1055 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1056 for(addr = 0; addr < 32; addr++) {
1057 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1058 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1059 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1060 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1061 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1062 break;
1063 }
1064 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1065 if(addr == 32)
1066 return -EAGAIN;
1067
1068 /* Selected the phy and isolate the rest */
1069 for(addr = 0; addr < 32; addr++) {
1070 if(addr != nic->mii.phy_id) {
1071 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1072 } else {
1073 bmcr = mdio_read(netdev, addr, MII_BMCR);
1074 mdio_write(netdev, addr, MII_BMCR,
1075 bmcr & ~BMCR_ISOLATE);
1076 }
1077 }
1078
1079 /* Get phy ID */
1080 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1081 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1082 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1083 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1084
1085 /* Handle National tx phys */
1086 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1087 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1088 /* Disable congestion control */
1089 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1090 cong |= NSC_CONG_TXREADY;
1091 cong &= ~NSC_CONG_ENABLE;
1092 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1093 }
1094
1095 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1096 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1097 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)))
1098 /* enable/disable MDI/MDI-X auto-switching */
1099 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1100 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1101
1102 return 0;
1103 }
1104
1105 static int e100_hw_init(struct nic *nic)
1106 {
1107 int err;
1108
1109 e100_hw_reset(nic);
1110
1111 DPRINTK(HW, ERR, "e100_hw_init\n");
1112 if(!in_interrupt() && (err = e100_self_test(nic)))
1113 return err;
1114
1115 if((err = e100_phy_init(nic)))
1116 return err;
1117 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1118 return err;
1119 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1120 return err;
1121 if((err = e100_exec_cb(nic, NULL, e100_load_ucode)))
1122 return err;
1123 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1124 return err;
1125 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1126 return err;
1127 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1128 nic->dma_addr + offsetof(struct mem, stats))))
1129 return err;
1130 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1131 return err;
1132
1133 e100_disable_irq(nic);
1134
1135 return 0;
1136 }
1137
1138 static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1139 {
1140 struct net_device *netdev = nic->netdev;
1141 struct dev_mc_list *list = netdev->mc_list;
1142 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1143
1144 cb->command = cpu_to_le16(cb_multi);
1145 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1146 for(i = 0; list && i < count; i++, list = list->next)
1147 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1148 ETH_ALEN);
1149 }
1150
1151 static void e100_set_multicast_list(struct net_device *netdev)
1152 {
1153 struct nic *nic = netdev_priv(netdev);
1154
1155 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1156 netdev->mc_count, netdev->flags);
1157
1158 if(netdev->flags & IFF_PROMISC)
1159 nic->flags |= promiscuous;
1160 else
1161 nic->flags &= ~promiscuous;
1162
1163 if(netdev->flags & IFF_ALLMULTI ||
1164 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1165 nic->flags |= multicast_all;
1166 else
1167 nic->flags &= ~multicast_all;
1168
1169 e100_exec_cb(nic, NULL, e100_configure);
1170 e100_exec_cb(nic, NULL, e100_multi);
1171 }
1172
1173 static void e100_update_stats(struct nic *nic)
1174 {
1175 struct net_device_stats *ns = &nic->net_stats;
1176 struct stats *s = &nic->mem->stats;
1177 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1178 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1179 &s->complete;
1180
1181 /* Device's stats reporting may take several microseconds to
1182 * complete, so where always waiting for results of the
1183 * previous command. */
1184
1185 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1186 *complete = 0;
1187 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1188 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1189 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1190 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1191 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1192 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1193 ns->collisions += nic->tx_collisions;
1194 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1195 le32_to_cpu(s->tx_lost_crs);
1196 ns->rx_dropped += le32_to_cpu(s->rx_resource_errors);
1197 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1198 nic->rx_over_length_errors;
1199 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1200 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1201 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1202 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1203 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1204 le32_to_cpu(s->rx_alignment_errors) +
1205 le32_to_cpu(s->rx_short_frame_errors) +
1206 le32_to_cpu(s->rx_cdt_errors);
1207 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1208 nic->tx_single_collisions +=
1209 le32_to_cpu(s->tx_single_collisions);
1210 nic->tx_multiple_collisions +=
1211 le32_to_cpu(s->tx_multiple_collisions);
1212 if(nic->mac >= mac_82558_D101_A4) {
1213 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1214 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1215 nic->rx_fc_unsupported +=
1216 le32_to_cpu(s->fc_rcv_unsupported);
1217 if(nic->mac >= mac_82559_D101M) {
1218 nic->tx_tco_frames +=
1219 le16_to_cpu(s->xmt_tco_frames);
1220 nic->rx_tco_frames +=
1221 le16_to_cpu(s->rcv_tco_frames);
1222 }
1223 }
1224 }
1225
1226
1227 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1228 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
1229 }
1230
1231 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1232 {
1233 /* Adjust inter-frame-spacing (IFS) between two transmits if
1234 * we're getting collisions on a half-duplex connection. */
1235
1236 if(duplex == DUPLEX_HALF) {
1237 u32 prev = nic->adaptive_ifs;
1238 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1239
1240 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1241 (nic->tx_frames > min_frames)) {
1242 if(nic->adaptive_ifs < 60)
1243 nic->adaptive_ifs += 5;
1244 } else if (nic->tx_frames < min_frames) {
1245 if(nic->adaptive_ifs >= 5)
1246 nic->adaptive_ifs -= 5;
1247 }
1248 if(nic->adaptive_ifs != prev)
1249 e100_exec_cb(nic, NULL, e100_configure);
1250 }
1251 }
1252
1253 static void e100_watchdog(unsigned long data)
1254 {
1255 struct nic *nic = (struct nic *)data;
1256 struct ethtool_cmd cmd;
1257
1258 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1259
1260 /* mii library handles link maintenance tasks */
1261
1262 mii_ethtool_gset(&nic->mii, &cmd);
1263
1264 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1265 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1266 cmd.speed == SPEED_100 ? "100" : "10",
1267 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1268 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1269 DPRINTK(LINK, INFO, "link down\n");
1270 }
1271
1272 mii_check_link(&nic->mii);
1273
1274 /* Software generated interrupt to recover from (rare) Rx
1275 * allocation failure.
1276 * Unfortunately have to use a spinlock to not re-enable interrupts
1277 * accidentally, due to hardware that shares a register between the
1278 * interrupt mask bit and the SW Interrupt generation bit */
1279 spin_lock_irq(&nic->cmd_lock);
1280 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1281 spin_unlock_irq(&nic->cmd_lock);
1282 e100_write_flush(nic);
1283
1284 e100_update_stats(nic);
1285 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1286
1287 if(nic->mac <= mac_82557_D100_C)
1288 /* Issue a multicast command to workaround a 557 lock up */
1289 e100_set_multicast_list(nic->netdev);
1290
1291 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1292 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1293 nic->flags |= ich_10h_workaround;
1294 else
1295 nic->flags &= ~ich_10h_workaround;
1296
1297 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1298 }
1299
1300 static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1301 struct sk_buff *skb)
1302 {
1303 cb->command = nic->tx_command;
1304 /* interrupt every 16 packets regardless of delay */
1305 if((nic->cbs_avail & ~15) == nic->cbs_avail) cb->command |= cb_i;
1306 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1307 cb->u.tcb.tcb_byte_count = 0;
1308 cb->u.tcb.threshold = nic->tx_threshold;
1309 cb->u.tcb.tbd_count = 1;
1310 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1311 skb->data, skb->len, PCI_DMA_TODEVICE));
1312 // check for mapping failure?
1313 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1314 }
1315
1316 static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1317 {
1318 struct nic *nic = netdev_priv(netdev);
1319 int err;
1320
1321 if(nic->flags & ich_10h_workaround) {
1322 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1323 Issue a NOP command followed by a 1us delay before
1324 issuing the Tx command. */
1325 if(e100_exec_cmd(nic, cuc_nop, 0))
1326 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
1327 udelay(1);
1328 }
1329
1330 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1331
1332 switch(err) {
1333 case -ENOSPC:
1334 /* We queued the skb, but now we're out of space. */
1335 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1336 netif_stop_queue(netdev);
1337 break;
1338 case -ENOMEM:
1339 /* This is a hard error - log it. */
1340 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1341 netif_stop_queue(netdev);
1342 return 1;
1343 }
1344
1345 netdev->trans_start = jiffies;
1346 return 0;
1347 }
1348
1349 static inline int e100_tx_clean(struct nic *nic)
1350 {
1351 struct cb *cb;
1352 int tx_cleaned = 0;
1353
1354 spin_lock(&nic->cb_lock);
1355
1356 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1357 nic->cb_to_clean->status);
1358
1359 /* Clean CBs marked complete */
1360 for(cb = nic->cb_to_clean;
1361 cb->status & cpu_to_le16(cb_complete);
1362 cb = nic->cb_to_clean = cb->next) {
1363 if(likely(cb->skb != NULL)) {
1364 nic->net_stats.tx_packets++;
1365 nic->net_stats.tx_bytes += cb->skb->len;
1366
1367 pci_unmap_single(nic->pdev,
1368 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1369 le16_to_cpu(cb->u.tcb.tbd.size),
1370 PCI_DMA_TODEVICE);
1371 dev_kfree_skb_any(cb->skb);
1372 cb->skb = NULL;
1373 tx_cleaned = 1;
1374 }
1375 cb->status = 0;
1376 nic->cbs_avail++;
1377 }
1378
1379 spin_unlock(&nic->cb_lock);
1380
1381 /* Recover from running out of Tx resources in xmit_frame */
1382 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1383 netif_wake_queue(nic->netdev);
1384
1385 return tx_cleaned;
1386 }
1387
1388 static void e100_clean_cbs(struct nic *nic)
1389 {
1390 if(nic->cbs) {
1391 while(nic->cbs_avail != nic->params.cbs.count) {
1392 struct cb *cb = nic->cb_to_clean;
1393 if(cb->skb) {
1394 pci_unmap_single(nic->pdev,
1395 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1396 le16_to_cpu(cb->u.tcb.tbd.size),
1397 PCI_DMA_TODEVICE);
1398 dev_kfree_skb(cb->skb);
1399 }
1400 nic->cb_to_clean = nic->cb_to_clean->next;
1401 nic->cbs_avail++;
1402 }
1403 pci_free_consistent(nic->pdev,
1404 sizeof(struct cb) * nic->params.cbs.count,
1405 nic->cbs, nic->cbs_dma_addr);
1406 nic->cbs = NULL;
1407 nic->cbs_avail = 0;
1408 }
1409 nic->cuc_cmd = cuc_start;
1410 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1411 nic->cbs;
1412 }
1413
1414 static int e100_alloc_cbs(struct nic *nic)
1415 {
1416 struct cb *cb;
1417 unsigned int i, count = nic->params.cbs.count;
1418
1419 nic->cuc_cmd = cuc_start;
1420 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1421 nic->cbs_avail = 0;
1422
1423 nic->cbs = pci_alloc_consistent(nic->pdev,
1424 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1425 if(!nic->cbs)
1426 return -ENOMEM;
1427
1428 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1429 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1430 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1431
1432 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1433 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1434 ((i+1) % count) * sizeof(struct cb));
1435 cb->skb = NULL;
1436 }
1437
1438 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1439 nic->cbs_avail = count;
1440
1441 return 0;
1442 }
1443
1444 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1445 {
1446 if(!nic->rxs) return;
1447 if(RU_SUSPENDED != nic->ru_running) return;
1448
1449 /* handle init time starts */
1450 if(!rx) rx = nic->rxs;
1451
1452 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1453 if(rx->skb) {
1454 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1455 nic->ru_running = RU_RUNNING;
1456 }
1457 }
1458
1459 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1460 static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1461 {
1462 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
1463 return -ENOMEM;
1464
1465 /* Align, init, and map the RFD. */
1466 rx->skb->dev = nic->netdev;
1467 skb_reserve(rx->skb, NET_IP_ALIGN);
1468 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1469 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1470 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1471
1472 if(pci_dma_mapping_error(rx->dma_addr)) {
1473 dev_kfree_skb_any(rx->skb);
1474 rx->skb = 0;
1475 rx->dma_addr = 0;
1476 return -ENOMEM;
1477 }
1478
1479 /* Link the RFD to end of RFA by linking previous RFD to
1480 * this one, and clearing EL bit of previous. */
1481 if(rx->prev->skb) {
1482 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1483 put_unaligned(cpu_to_le32(rx->dma_addr),
1484 (u32 *)&prev_rfd->link);
1485 wmb();
1486 prev_rfd->command &= ~cpu_to_le16(cb_el);
1487 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1488 sizeof(struct rfd), PCI_DMA_TODEVICE);
1489 }
1490
1491 return 0;
1492 }
1493
1494 static inline int e100_rx_indicate(struct nic *nic, struct rx *rx,
1495 unsigned int *work_done, unsigned int work_to_do)
1496 {
1497 struct sk_buff *skb = rx->skb;
1498 struct rfd *rfd = (struct rfd *)skb->data;
1499 u16 rfd_status, actual_size;
1500
1501 if(unlikely(work_done && *work_done >= work_to_do))
1502 return -EAGAIN;
1503
1504 /* Need to sync before taking a peek at cb_complete bit */
1505 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1506 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1507 rfd_status = le16_to_cpu(rfd->status);
1508
1509 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1510
1511 /* If data isn't ready, nothing to indicate */
1512 if(unlikely(!(rfd_status & cb_complete)))
1513 return -ENODATA;
1514
1515 /* Get actual data size */
1516 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1517 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1518 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1519
1520 /* Get data */
1521 pci_unmap_single(nic->pdev, rx->dma_addr,
1522 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1523
1524 /* this allows for a fast restart without re-enabling interrupts */
1525 if(le16_to_cpu(rfd->command) & cb_el)
1526 nic->ru_running = RU_SUSPENDED;
1527
1528 /* Pull off the RFD and put the actual data (minus eth hdr) */
1529 skb_reserve(skb, sizeof(struct rfd));
1530 skb_put(skb, actual_size);
1531 skb->protocol = eth_type_trans(skb, nic->netdev);
1532
1533 if(unlikely(!(rfd_status & cb_ok))) {
1534 /* Don't indicate if hardware indicates errors */
1535 nic->net_stats.rx_dropped++;
1536 dev_kfree_skb_any(skb);
1537 } else if(actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) {
1538 /* Don't indicate oversized frames */
1539 nic->rx_over_length_errors++;
1540 nic->net_stats.rx_dropped++;
1541 dev_kfree_skb_any(skb);
1542 } else {
1543 nic->net_stats.rx_packets++;
1544 nic->net_stats.rx_bytes += actual_size;
1545 nic->netdev->last_rx = jiffies;
1546 netif_receive_skb(skb);
1547 if(work_done)
1548 (*work_done)++;
1549 }
1550
1551 rx->skb = NULL;
1552
1553 return 0;
1554 }
1555
1556 static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1557 unsigned int work_to_do)
1558 {
1559 struct rx *rx;
1560 int restart_required = 0;
1561 struct rx *rx_to_start = NULL;
1562
1563 /* are we already rnr? then pay attention!!! this ensures that
1564 * the state machine progression never allows a start with a
1565 * partially cleaned list, avoiding a race between hardware
1566 * and rx_to_clean when in NAPI mode */
1567 if(RU_SUSPENDED == nic->ru_running)
1568 restart_required = 1;
1569
1570 /* Indicate newly arrived packets */
1571 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
1572 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1573 if(-EAGAIN == err) {
1574 /* hit quota so have more work to do, restart once
1575 * cleanup is complete */
1576 restart_required = 0;
1577 break;
1578 } else if(-ENODATA == err)
1579 break; /* No more to clean */
1580 }
1581
1582 /* save our starting point as the place we'll restart the receiver */
1583 if(restart_required)
1584 rx_to_start = nic->rx_to_clean;
1585
1586 /* Alloc new skbs to refill list */
1587 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1588 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1589 break; /* Better luck next time (see watchdog) */
1590 }
1591
1592 if(restart_required) {
1593 // ack the rnr?
1594 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1595 e100_start_receiver(nic, rx_to_start);
1596 if(work_done)
1597 (*work_done)++;
1598 }
1599 }
1600
1601 static void e100_rx_clean_list(struct nic *nic)
1602 {
1603 struct rx *rx;
1604 unsigned int i, count = nic->params.rfds.count;
1605
1606 nic->ru_running = RU_UNINITIALIZED;
1607
1608 if(nic->rxs) {
1609 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1610 if(rx->skb) {
1611 pci_unmap_single(nic->pdev, rx->dma_addr,
1612 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1613 dev_kfree_skb(rx->skb);
1614 }
1615 }
1616 kfree(nic->rxs);
1617 nic->rxs = NULL;
1618 }
1619
1620 nic->rx_to_use = nic->rx_to_clean = NULL;
1621 }
1622
1623 static int e100_rx_alloc_list(struct nic *nic)
1624 {
1625 struct rx *rx;
1626 unsigned int i, count = nic->params.rfds.count;
1627
1628 nic->rx_to_use = nic->rx_to_clean = NULL;
1629 nic->ru_running = RU_UNINITIALIZED;
1630
1631 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1632 return -ENOMEM;
1633 memset(nic->rxs, 0, sizeof(struct rx) * count);
1634
1635 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1636 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1637 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1638 if(e100_rx_alloc_skb(nic, rx)) {
1639 e100_rx_clean_list(nic);
1640 return -ENOMEM;
1641 }
1642 }
1643
1644 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
1645 nic->ru_running = RU_SUSPENDED;
1646
1647 return 0;
1648 }
1649
1650 static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1651 {
1652 struct net_device *netdev = dev_id;
1653 struct nic *nic = netdev_priv(netdev);
1654 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1655
1656 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1657
1658 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1659 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1660 return IRQ_NONE;
1661
1662 /* Ack interrupt(s) */
1663 writeb(stat_ack, &nic->csr->scb.stat_ack);
1664
1665 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1666 if(stat_ack & stat_ack_rnr)
1667 nic->ru_running = RU_SUSPENDED;
1668
1669 e100_disable_irq(nic);
1670 netif_rx_schedule(netdev);
1671
1672 return IRQ_HANDLED;
1673 }
1674
1675 static int e100_poll(struct net_device *netdev, int *budget)
1676 {
1677 struct nic *nic = netdev_priv(netdev);
1678 unsigned int work_to_do = min(netdev->quota, *budget);
1679 unsigned int work_done = 0;
1680 int tx_cleaned;
1681
1682 e100_rx_clean(nic, &work_done, work_to_do);
1683 tx_cleaned = e100_tx_clean(nic);
1684
1685 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1686 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1687 netif_rx_complete(netdev);
1688 e100_enable_irq(nic);
1689 return 0;
1690 }
1691
1692 *budget -= work_done;
1693 netdev->quota -= work_done;
1694
1695 return 1;
1696 }
1697
1698 #ifdef CONFIG_NET_POLL_CONTROLLER
1699 static void e100_netpoll(struct net_device *netdev)
1700 {
1701 struct nic *nic = netdev_priv(netdev);
1702 e100_disable_irq(nic);
1703 e100_intr(nic->pdev->irq, netdev, NULL);
1704 e100_tx_clean(nic);
1705 e100_enable_irq(nic);
1706 }
1707 #endif
1708
1709 static struct net_device_stats *e100_get_stats(struct net_device *netdev)
1710 {
1711 struct nic *nic = netdev_priv(netdev);
1712 return &nic->net_stats;
1713 }
1714
1715 static int e100_set_mac_address(struct net_device *netdev, void *p)
1716 {
1717 struct nic *nic = netdev_priv(netdev);
1718 struct sockaddr *addr = p;
1719
1720 if (!is_valid_ether_addr(addr->sa_data))
1721 return -EADDRNOTAVAIL;
1722
1723 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1724 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1725
1726 return 0;
1727 }
1728
1729 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1730 {
1731 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1732 return -EINVAL;
1733 netdev->mtu = new_mtu;
1734 return 0;
1735 }
1736
1737 #ifdef CONFIG_PM
1738 static int e100_asf(struct nic *nic)
1739 {
1740 /* ASF can be enabled from eeprom */
1741 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1742 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
1743 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
1744 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
1745 }
1746 #endif
1747
1748 static int e100_up(struct nic *nic)
1749 {
1750 int err;
1751
1752 if((err = e100_rx_alloc_list(nic)))
1753 return err;
1754 if((err = e100_alloc_cbs(nic)))
1755 goto err_rx_clean_list;
1756 if((err = e100_hw_init(nic)))
1757 goto err_clean_cbs;
1758 e100_set_multicast_list(nic->netdev);
1759 e100_start_receiver(nic, 0);
1760 mod_timer(&nic->watchdog, jiffies);
1761 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
1762 nic->netdev->name, nic->netdev)))
1763 goto err_no_irq;
1764 netif_wake_queue(nic->netdev);
1765 netif_poll_enable(nic->netdev);
1766 /* enable ints _after_ enabling poll, preventing a race between
1767 * disable ints+schedule */
1768 e100_enable_irq(nic);
1769 return 0;
1770
1771 err_no_irq:
1772 del_timer_sync(&nic->watchdog);
1773 err_clean_cbs:
1774 e100_clean_cbs(nic);
1775 err_rx_clean_list:
1776 e100_rx_clean_list(nic);
1777 return err;
1778 }
1779
1780 static void e100_down(struct nic *nic)
1781 {
1782 /* wait here for poll to complete */
1783 netif_poll_disable(nic->netdev);
1784 netif_stop_queue(nic->netdev);
1785 e100_hw_reset(nic);
1786 free_irq(nic->pdev->irq, nic->netdev);
1787 del_timer_sync(&nic->watchdog);
1788 netif_carrier_off(nic->netdev);
1789 e100_clean_cbs(nic);
1790 e100_rx_clean_list(nic);
1791 }
1792
1793 static void e100_tx_timeout(struct net_device *netdev)
1794 {
1795 struct nic *nic = netdev_priv(netdev);
1796
1797 /* Reset outside of interrupt context, to avoid request_irq
1798 * in interrupt context */
1799 schedule_work(&nic->tx_timeout_task);
1800 }
1801
1802 static void e100_tx_timeout_task(struct net_device *netdev)
1803 {
1804 struct nic *nic = netdev_priv(netdev);
1805
1806 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
1807 readb(&nic->csr->scb.status));
1808 e100_down(netdev_priv(netdev));
1809 e100_up(netdev_priv(netdev));
1810 }
1811
1812 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
1813 {
1814 int err;
1815 struct sk_buff *skb;
1816
1817 /* Use driver resources to perform internal MAC or PHY
1818 * loopback test. A single packet is prepared and transmitted
1819 * in loopback mode, and the test passes if the received
1820 * packet compares byte-for-byte to the transmitted packet. */
1821
1822 if((err = e100_rx_alloc_list(nic)))
1823 return err;
1824 if((err = e100_alloc_cbs(nic)))
1825 goto err_clean_rx;
1826
1827 /* ICH PHY loopback is broken so do MAC loopback instead */
1828 if(nic->flags & ich && loopback_mode == lb_phy)
1829 loopback_mode = lb_mac;
1830
1831 nic->loopback = loopback_mode;
1832 if((err = e100_hw_init(nic)))
1833 goto err_loopback_none;
1834
1835 if(loopback_mode == lb_phy)
1836 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
1837 BMCR_LOOPBACK);
1838
1839 e100_start_receiver(nic, 0);
1840
1841 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
1842 err = -ENOMEM;
1843 goto err_loopback_none;
1844 }
1845 skb_put(skb, ETH_DATA_LEN);
1846 memset(skb->data, 0xFF, ETH_DATA_LEN);
1847 e100_xmit_frame(skb, nic->netdev);
1848
1849 msleep(10);
1850
1851 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
1852 skb->data, ETH_DATA_LEN))
1853 err = -EAGAIN;
1854
1855 err_loopback_none:
1856 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
1857 nic->loopback = lb_none;
1858 e100_hw_init(nic);
1859 e100_clean_cbs(nic);
1860 err_clean_rx:
1861 e100_rx_clean_list(nic);
1862 return err;
1863 }
1864
1865 #define MII_LED_CONTROL 0x1B
1866 static void e100_blink_led(unsigned long data)
1867 {
1868 struct nic *nic = (struct nic *)data;
1869 enum led_state {
1870 led_on = 0x01,
1871 led_off = 0x04,
1872 led_on_559 = 0x05,
1873 led_on_557 = 0x07,
1874 };
1875
1876 nic->leds = (nic->leds & led_on) ? led_off :
1877 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
1878 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
1879 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
1880 }
1881
1882 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1883 {
1884 struct nic *nic = netdev_priv(netdev);
1885 return mii_ethtool_gset(&nic->mii, cmd);
1886 }
1887
1888 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1889 {
1890 struct nic *nic = netdev_priv(netdev);
1891 int err;
1892
1893 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
1894 err = mii_ethtool_sset(&nic->mii, cmd);
1895 e100_exec_cb(nic, NULL, e100_configure);
1896
1897 return err;
1898 }
1899
1900 static void e100_get_drvinfo(struct net_device *netdev,
1901 struct ethtool_drvinfo *info)
1902 {
1903 struct nic *nic = netdev_priv(netdev);
1904 strcpy(info->driver, DRV_NAME);
1905 strcpy(info->version, DRV_VERSION);
1906 strcpy(info->fw_version, "N/A");
1907 strcpy(info->bus_info, pci_name(nic->pdev));
1908 }
1909
1910 static int e100_get_regs_len(struct net_device *netdev)
1911 {
1912 struct nic *nic = netdev_priv(netdev);
1913 #define E100_PHY_REGS 0x1C
1914 #define E100_REGS_LEN 1 + E100_PHY_REGS + \
1915 sizeof(nic->mem->dump_buf) / sizeof(u32)
1916 return E100_REGS_LEN * sizeof(u32);
1917 }
1918
1919 static void e100_get_regs(struct net_device *netdev,
1920 struct ethtool_regs *regs, void *p)
1921 {
1922 struct nic *nic = netdev_priv(netdev);
1923 u32 *buff = p;
1924 int i;
1925
1926 regs->version = (1 << 24) | nic->rev_id;
1927 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
1928 readb(&nic->csr->scb.cmd_lo) << 16 |
1929 readw(&nic->csr->scb.status);
1930 for(i = E100_PHY_REGS; i >= 0; i--)
1931 buff[1 + E100_PHY_REGS - i] =
1932 mdio_read(netdev, nic->mii.phy_id, i);
1933 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
1934 e100_exec_cb(nic, NULL, e100_dump);
1935 msleep(10);
1936 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
1937 sizeof(nic->mem->dump_buf));
1938 }
1939
1940 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1941 {
1942 struct nic *nic = netdev_priv(netdev);
1943 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
1944 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
1945 }
1946
1947 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1948 {
1949 struct nic *nic = netdev_priv(netdev);
1950
1951 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
1952 return -EOPNOTSUPP;
1953
1954 if(wol->wolopts)
1955 nic->flags |= wol_magic;
1956 else
1957 nic->flags &= ~wol_magic;
1958
1959 e100_exec_cb(nic, NULL, e100_configure);
1960
1961 return 0;
1962 }
1963
1964 static u32 e100_get_msglevel(struct net_device *netdev)
1965 {
1966 struct nic *nic = netdev_priv(netdev);
1967 return nic->msg_enable;
1968 }
1969
1970 static void e100_set_msglevel(struct net_device *netdev, u32 value)
1971 {
1972 struct nic *nic = netdev_priv(netdev);
1973 nic->msg_enable = value;
1974 }
1975
1976 static int e100_nway_reset(struct net_device *netdev)
1977 {
1978 struct nic *nic = netdev_priv(netdev);
1979 return mii_nway_restart(&nic->mii);
1980 }
1981
1982 static u32 e100_get_link(struct net_device *netdev)
1983 {
1984 struct nic *nic = netdev_priv(netdev);
1985 return mii_link_ok(&nic->mii);
1986 }
1987
1988 static int e100_get_eeprom_len(struct net_device *netdev)
1989 {
1990 struct nic *nic = netdev_priv(netdev);
1991 return nic->eeprom_wc << 1;
1992 }
1993
1994 #define E100_EEPROM_MAGIC 0x1234
1995 static int e100_get_eeprom(struct net_device *netdev,
1996 struct ethtool_eeprom *eeprom, u8 *bytes)
1997 {
1998 struct nic *nic = netdev_priv(netdev);
1999
2000 eeprom->magic = E100_EEPROM_MAGIC;
2001 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2002
2003 return 0;
2004 }
2005
2006 static int e100_set_eeprom(struct net_device *netdev,
2007 struct ethtool_eeprom *eeprom, u8 *bytes)
2008 {
2009 struct nic *nic = netdev_priv(netdev);
2010
2011 if(eeprom->magic != E100_EEPROM_MAGIC)
2012 return -EINVAL;
2013
2014 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2015
2016 return e100_eeprom_save(nic, eeprom->offset >> 1,
2017 (eeprom->len >> 1) + 1);
2018 }
2019
2020 static void e100_get_ringparam(struct net_device *netdev,
2021 struct ethtool_ringparam *ring)
2022 {
2023 struct nic *nic = netdev_priv(netdev);
2024 struct param_range *rfds = &nic->params.rfds;
2025 struct param_range *cbs = &nic->params.cbs;
2026
2027 ring->rx_max_pending = rfds->max;
2028 ring->tx_max_pending = cbs->max;
2029 ring->rx_mini_max_pending = 0;
2030 ring->rx_jumbo_max_pending = 0;
2031 ring->rx_pending = rfds->count;
2032 ring->tx_pending = cbs->count;
2033 ring->rx_mini_pending = 0;
2034 ring->rx_jumbo_pending = 0;
2035 }
2036
2037 static int e100_set_ringparam(struct net_device *netdev,
2038 struct ethtool_ringparam *ring)
2039 {
2040 struct nic *nic = netdev_priv(netdev);
2041 struct param_range *rfds = &nic->params.rfds;
2042 struct param_range *cbs = &nic->params.cbs;
2043
2044 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2045 return -EINVAL;
2046
2047 if(netif_running(netdev))
2048 e100_down(nic);
2049 rfds->count = max(ring->rx_pending, rfds->min);
2050 rfds->count = min(rfds->count, rfds->max);
2051 cbs->count = max(ring->tx_pending, cbs->min);
2052 cbs->count = min(cbs->count, cbs->max);
2053 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2054 rfds->count, cbs->count);
2055 if(netif_running(netdev))
2056 e100_up(nic);
2057
2058 return 0;
2059 }
2060
2061 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2062 "Link test (on/offline)",
2063 "Eeprom test (on/offline)",
2064 "Self test (offline)",
2065 "Mac loopback (offline)",
2066 "Phy loopback (offline)",
2067 };
2068 #define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2069
2070 static int e100_diag_test_count(struct net_device *netdev)
2071 {
2072 return E100_TEST_LEN;
2073 }
2074
2075 static void e100_diag_test(struct net_device *netdev,
2076 struct ethtool_test *test, u64 *data)
2077 {
2078 struct ethtool_cmd cmd;
2079 struct nic *nic = netdev_priv(netdev);
2080 int i, err;
2081
2082 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2083 data[0] = !mii_link_ok(&nic->mii);
2084 data[1] = e100_eeprom_load(nic);
2085 if(test->flags & ETH_TEST_FL_OFFLINE) {
2086
2087 /* save speed, duplex & autoneg settings */
2088 err = mii_ethtool_gset(&nic->mii, &cmd);
2089
2090 if(netif_running(netdev))
2091 e100_down(nic);
2092 data[2] = e100_self_test(nic);
2093 data[3] = e100_loopback_test(nic, lb_mac);
2094 data[4] = e100_loopback_test(nic, lb_phy);
2095
2096 /* restore speed, duplex & autoneg settings */
2097 err = mii_ethtool_sset(&nic->mii, &cmd);
2098
2099 if(netif_running(netdev))
2100 e100_up(nic);
2101 }
2102 for(i = 0; i < E100_TEST_LEN; i++)
2103 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2104 }
2105
2106 static int e100_phys_id(struct net_device *netdev, u32 data)
2107 {
2108 struct nic *nic = netdev_priv(netdev);
2109
2110 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2111 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2112 mod_timer(&nic->blink_timer, jiffies);
2113 msleep_interruptible(data * 1000);
2114 del_timer_sync(&nic->blink_timer);
2115 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2116
2117 return 0;
2118 }
2119
2120 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2121 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2122 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2123 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2124 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2125 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2126 "tx_heartbeat_errors", "tx_window_errors",
2127 /* device-specific stats */
2128 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2129 "tx_flow_control_pause", "rx_flow_control_pause",
2130 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2131 };
2132 #define E100_NET_STATS_LEN 21
2133 #define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2134
2135 static int e100_get_stats_count(struct net_device *netdev)
2136 {
2137 return E100_STATS_LEN;
2138 }
2139
2140 static void e100_get_ethtool_stats(struct net_device *netdev,
2141 struct ethtool_stats *stats, u64 *data)
2142 {
2143 struct nic *nic = netdev_priv(netdev);
2144 int i;
2145
2146 for(i = 0; i < E100_NET_STATS_LEN; i++)
2147 data[i] = ((unsigned long *)&nic->net_stats)[i];
2148
2149 data[i++] = nic->tx_deferred;
2150 data[i++] = nic->tx_single_collisions;
2151 data[i++] = nic->tx_multiple_collisions;
2152 data[i++] = nic->tx_fc_pause;
2153 data[i++] = nic->rx_fc_pause;
2154 data[i++] = nic->rx_fc_unsupported;
2155 data[i++] = nic->tx_tco_frames;
2156 data[i++] = nic->rx_tco_frames;
2157 }
2158
2159 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2160 {
2161 switch(stringset) {
2162 case ETH_SS_TEST:
2163 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2164 break;
2165 case ETH_SS_STATS:
2166 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2167 break;
2168 }
2169 }
2170
2171 static struct ethtool_ops e100_ethtool_ops = {
2172 .get_settings = e100_get_settings,
2173 .set_settings = e100_set_settings,
2174 .get_drvinfo = e100_get_drvinfo,
2175 .get_regs_len = e100_get_regs_len,
2176 .get_regs = e100_get_regs,
2177 .get_wol = e100_get_wol,
2178 .set_wol = e100_set_wol,
2179 .get_msglevel = e100_get_msglevel,
2180 .set_msglevel = e100_set_msglevel,
2181 .nway_reset = e100_nway_reset,
2182 .get_link = e100_get_link,
2183 .get_eeprom_len = e100_get_eeprom_len,
2184 .get_eeprom = e100_get_eeprom,
2185 .set_eeprom = e100_set_eeprom,
2186 .get_ringparam = e100_get_ringparam,
2187 .set_ringparam = e100_set_ringparam,
2188 .self_test_count = e100_diag_test_count,
2189 .self_test = e100_diag_test,
2190 .get_strings = e100_get_strings,
2191 .phys_id = e100_phys_id,
2192 .get_stats_count = e100_get_stats_count,
2193 .get_ethtool_stats = e100_get_ethtool_stats,
2194 };
2195
2196 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2197 {
2198 struct nic *nic = netdev_priv(netdev);
2199
2200 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2201 }
2202
2203 static int e100_alloc(struct nic *nic)
2204 {
2205 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2206 &nic->dma_addr);
2207 return nic->mem ? 0 : -ENOMEM;
2208 }
2209
2210 static void e100_free(struct nic *nic)
2211 {
2212 if(nic->mem) {
2213 pci_free_consistent(nic->pdev, sizeof(struct mem),
2214 nic->mem, nic->dma_addr);
2215 nic->mem = NULL;
2216 }
2217 }
2218
2219 static int e100_open(struct net_device *netdev)
2220 {
2221 struct nic *nic = netdev_priv(netdev);
2222 int err = 0;
2223
2224 netif_carrier_off(netdev);
2225 if((err = e100_up(nic)))
2226 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2227 return err;
2228 }
2229
2230 static int e100_close(struct net_device *netdev)
2231 {
2232 e100_down(netdev_priv(netdev));
2233 return 0;
2234 }
2235
2236 static int __devinit e100_probe(struct pci_dev *pdev,
2237 const struct pci_device_id *ent)
2238 {
2239 struct net_device *netdev;
2240 struct nic *nic;
2241 int err;
2242
2243 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2244 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2245 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2246 return -ENOMEM;
2247 }
2248
2249 netdev->open = e100_open;
2250 netdev->stop = e100_close;
2251 netdev->hard_start_xmit = e100_xmit_frame;
2252 netdev->get_stats = e100_get_stats;
2253 netdev->set_multicast_list = e100_set_multicast_list;
2254 netdev->set_mac_address = e100_set_mac_address;
2255 netdev->change_mtu = e100_change_mtu;
2256 netdev->do_ioctl = e100_do_ioctl;
2257 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2258 netdev->tx_timeout = e100_tx_timeout;
2259 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2260 netdev->poll = e100_poll;
2261 netdev->weight = E100_NAPI_WEIGHT;
2262 #ifdef CONFIG_NET_POLL_CONTROLLER
2263 netdev->poll_controller = e100_netpoll;
2264 #endif
2265 strcpy(netdev->name, pci_name(pdev));
2266
2267 nic = netdev_priv(netdev);
2268 nic->netdev = netdev;
2269 nic->pdev = pdev;
2270 nic->msg_enable = (1 << debug) - 1;
2271 pci_set_drvdata(pdev, netdev);
2272
2273 if((err = pci_enable_device(pdev))) {
2274 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2275 goto err_out_free_dev;
2276 }
2277
2278 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2279 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2280 "base address, aborting.\n");
2281 err = -ENODEV;
2282 goto err_out_disable_pdev;
2283 }
2284
2285 if((err = pci_request_regions(pdev, DRV_NAME))) {
2286 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2287 goto err_out_disable_pdev;
2288 }
2289
2290 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
2291 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2292 goto err_out_free_res;
2293 }
2294
2295 SET_MODULE_OWNER(netdev);
2296 SET_NETDEV_DEV(netdev, &pdev->dev);
2297
2298 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2299 if(!nic->csr) {
2300 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2301 err = -ENOMEM;
2302 goto err_out_free_res;
2303 }
2304
2305 if(ent->driver_data)
2306 nic->flags |= ich;
2307 else
2308 nic->flags &= ~ich;
2309
2310 e100_get_defaults(nic);
2311
2312 /* locks must be initialized before calling hw_reset */
2313 spin_lock_init(&nic->cb_lock);
2314 spin_lock_init(&nic->cmd_lock);
2315
2316 /* Reset the device before pci_set_master() in case device is in some
2317 * funky state and has an interrupt pending - hint: we don't have the
2318 * interrupt handler registered yet. */
2319 e100_hw_reset(nic);
2320
2321 pci_set_master(pdev);
2322
2323 init_timer(&nic->watchdog);
2324 nic->watchdog.function = e100_watchdog;
2325 nic->watchdog.data = (unsigned long)nic;
2326 init_timer(&nic->blink_timer);
2327 nic->blink_timer.function = e100_blink_led;
2328 nic->blink_timer.data = (unsigned long)nic;
2329
2330 INIT_WORK(&nic->tx_timeout_task,
2331 (void (*)(void *))e100_tx_timeout_task, netdev);
2332
2333 if((err = e100_alloc(nic))) {
2334 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2335 goto err_out_iounmap;
2336 }
2337
2338 e100_phy_init(nic);
2339
2340 if((err = e100_eeprom_load(nic)))
2341 goto err_out_free;
2342
2343 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2344 if(!is_valid_ether_addr(netdev->dev_addr)) {
2345 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2346 "EEPROM, aborting.\n");
2347 err = -EAGAIN;
2348 goto err_out_free;
2349 }
2350
2351 /* Wol magic packet can be enabled from eeprom */
2352 if((nic->mac >= mac_82558_D101_A4) &&
2353 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2354 nic->flags |= wol_magic;
2355
2356 /* ack any pending wake events, disable PME */
2357 pci_enable_wake(pdev, 0, 0);
2358
2359 strcpy(netdev->name, "eth%d");
2360 if((err = register_netdev(netdev))) {
2361 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2362 goto err_out_free;
2363 }
2364
2365 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
2366 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2367 pci_resource_start(pdev, 0), pdev->irq,
2368 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2369 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2370
2371 return 0;
2372
2373 err_out_free:
2374 e100_free(nic);
2375 err_out_iounmap:
2376 iounmap(nic->csr);
2377 err_out_free_res:
2378 pci_release_regions(pdev);
2379 err_out_disable_pdev:
2380 pci_disable_device(pdev);
2381 err_out_free_dev:
2382 pci_set_drvdata(pdev, NULL);
2383 free_netdev(netdev);
2384 return err;
2385 }
2386
2387 static void __devexit e100_remove(struct pci_dev *pdev)
2388 {
2389 struct net_device *netdev = pci_get_drvdata(pdev);
2390
2391 if(netdev) {
2392 struct nic *nic = netdev_priv(netdev);
2393 unregister_netdev(netdev);
2394 e100_free(nic);
2395 iounmap(nic->csr);
2396 free_netdev(netdev);
2397 pci_release_regions(pdev);
2398 pci_disable_device(pdev);
2399 pci_set_drvdata(pdev, NULL);
2400 }
2401 }
2402
2403 #ifdef CONFIG_PM
2404 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2405 {
2406 struct net_device *netdev = pci_get_drvdata(pdev);
2407 struct nic *nic = netdev_priv(netdev);
2408
2409 if(netif_running(netdev))
2410 e100_down(nic);
2411 e100_hw_reset(nic);
2412 netif_device_detach(netdev);
2413
2414 pci_save_state(pdev);
2415 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic)));
2416 pci_disable_device(pdev);
2417 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2418
2419 return 0;
2420 }
2421
2422 static int e100_resume(struct pci_dev *pdev)
2423 {
2424 struct net_device *netdev = pci_get_drvdata(pdev);
2425 struct nic *nic = netdev_priv(netdev);
2426
2427 pci_set_power_state(pdev, PCI_D0);
2428 pci_restore_state(pdev);
2429 /* ack any pending wake events, disable PME */
2430 pci_enable_wake(pdev, 0, 0);
2431 if(e100_hw_init(nic))
2432 DPRINTK(HW, ERR, "e100_hw_init failed\n");
2433
2434 netif_device_attach(netdev);
2435 if(netif_running(netdev))
2436 e100_up(nic);
2437
2438 return 0;
2439 }
2440 #endif
2441
2442
2443 static void e100_shutdown(struct pci_dev *pdev)
2444 {
2445 struct net_device *netdev = pci_get_drvdata(pdev);
2446 struct nic *nic = netdev_priv(netdev);
2447
2448 #ifdef CONFIG_PM
2449 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
2450 #else
2451 pci_enable_wake(pdev, 0, nic->flags & (wol_magic));
2452 #endif
2453 }
2454
2455
2456 static struct pci_driver e100_driver = {
2457 .name = DRV_NAME,
2458 .id_table = e100_id_table,
2459 .probe = e100_probe,
2460 .remove = __devexit_p(e100_remove),
2461 #ifdef CONFIG_PM
2462 .suspend = e100_suspend,
2463 .resume = e100_resume,
2464 #endif
2465 .shutdown = e100_shutdown,
2466 };
2467
2468 static int __init e100_init_module(void)
2469 {
2470 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2471 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2472 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2473 }
2474 return pci_module_init(&e100_driver);
2475 }
2476
2477 static void __exit e100_cleanup_module(void)
2478 {
2479 pci_unregister_driver(&e100_driver);
2480 }
2481
2482 module_init(e100_init_module);
2483 module_exit(e100_cleanup_module);
This page took 0.08315 seconds and 5 git commands to generate.