[TCP]: Ratelimit debugging warning.
[deliverable/linux.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49 char stat_string[ETH_GSTRING_LEN];
50 int sizeof_stat;
51 int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55 offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57 { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58 { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59 { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60 { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63 { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65 { "multicast", E1000_STAT(net_stats.multicast) },
66 { "collisions", E1000_STAT(net_stats.collisions) },
67 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69 { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71 { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73 { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74 { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75 { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78 { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80 { "tx_deferred_ok", E1000_STAT(stats.dc) },
81 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83 { "rx_long_length_errors", E1000_STAT(stats.roc) },
84 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
95 };
96 #define E1000_STATS_LEN \
97 sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99 "Register test (offline)", "Eeprom test (offline)",
100 "Interrupt test (offline)", "Loopback test (offline)",
101 "Link test (on/offline)"
102 };
103 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
104
105 static int
106 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
107 {
108 struct e1000_adapter *adapter = netdev_priv(netdev);
109 struct e1000_hw *hw = &adapter->hw;
110
111 if(hw->media_type == e1000_media_type_copper) {
112
113 ecmd->supported = (SUPPORTED_10baseT_Half |
114 SUPPORTED_10baseT_Full |
115 SUPPORTED_100baseT_Half |
116 SUPPORTED_100baseT_Full |
117 SUPPORTED_1000baseT_Full|
118 SUPPORTED_Autoneg |
119 SUPPORTED_TP);
120
121 ecmd->advertising = ADVERTISED_TP;
122
123 if(hw->autoneg == 1) {
124 ecmd->advertising |= ADVERTISED_Autoneg;
125
126 /* the e1000 autoneg seems to match ethtool nicely */
127
128 ecmd->advertising |= hw->autoneg_advertised;
129 }
130
131 ecmd->port = PORT_TP;
132 ecmd->phy_address = hw->phy_addr;
133
134 if(hw->mac_type == e1000_82543)
135 ecmd->transceiver = XCVR_EXTERNAL;
136 else
137 ecmd->transceiver = XCVR_INTERNAL;
138
139 } else {
140 ecmd->supported = (SUPPORTED_1000baseT_Full |
141 SUPPORTED_FIBRE |
142 SUPPORTED_Autoneg);
143
144 ecmd->advertising = (ADVERTISED_1000baseT_Full |
145 ADVERTISED_FIBRE |
146 ADVERTISED_Autoneg);
147
148 ecmd->port = PORT_FIBRE;
149
150 if(hw->mac_type >= e1000_82545)
151 ecmd->transceiver = XCVR_INTERNAL;
152 else
153 ecmd->transceiver = XCVR_EXTERNAL;
154 }
155
156 if(netif_carrier_ok(adapter->netdev)) {
157
158 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
159 &adapter->link_duplex);
160 ecmd->speed = adapter->link_speed;
161
162 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
163 * and HALF_DUPLEX != DUPLEX_HALF */
164
165 if(adapter->link_duplex == FULL_DUPLEX)
166 ecmd->duplex = DUPLEX_FULL;
167 else
168 ecmd->duplex = DUPLEX_HALF;
169 } else {
170 ecmd->speed = -1;
171 ecmd->duplex = -1;
172 }
173
174 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
175 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
176 return 0;
177 }
178
179 static int
180 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
181 {
182 struct e1000_adapter *adapter = netdev_priv(netdev);
183 struct e1000_hw *hw = &adapter->hw;
184
185 if(ecmd->autoneg == AUTONEG_ENABLE) {
186 hw->autoneg = 1;
187 if(hw->media_type == e1000_media_type_fiber)
188 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
189 ADVERTISED_FIBRE |
190 ADVERTISED_Autoneg;
191 else
192 hw->autoneg_advertised = ADVERTISED_10baseT_Half |
193 ADVERTISED_10baseT_Full |
194 ADVERTISED_100baseT_Half |
195 ADVERTISED_100baseT_Full |
196 ADVERTISED_1000baseT_Full|
197 ADVERTISED_Autoneg |
198 ADVERTISED_TP;
199 ecmd->advertising = hw->autoneg_advertised;
200 } else
201 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
202 return -EINVAL;
203
204 /* reset the link */
205
206 if(netif_running(adapter->netdev)) {
207 e1000_down(adapter);
208 e1000_reset(adapter);
209 e1000_up(adapter);
210 } else
211 e1000_reset(adapter);
212
213 return 0;
214 }
215
216 static void
217 e1000_get_pauseparam(struct net_device *netdev,
218 struct ethtool_pauseparam *pause)
219 {
220 struct e1000_adapter *adapter = netdev_priv(netdev);
221 struct e1000_hw *hw = &adapter->hw;
222
223 pause->autoneg =
224 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
225
226 if(hw->fc == e1000_fc_rx_pause)
227 pause->rx_pause = 1;
228 else if(hw->fc == e1000_fc_tx_pause)
229 pause->tx_pause = 1;
230 else if(hw->fc == e1000_fc_full) {
231 pause->rx_pause = 1;
232 pause->tx_pause = 1;
233 }
234 }
235
236 static int
237 e1000_set_pauseparam(struct net_device *netdev,
238 struct ethtool_pauseparam *pause)
239 {
240 struct e1000_adapter *adapter = netdev_priv(netdev);
241 struct e1000_hw *hw = &adapter->hw;
242
243 adapter->fc_autoneg = pause->autoneg;
244
245 if(pause->rx_pause && pause->tx_pause)
246 hw->fc = e1000_fc_full;
247 else if(pause->rx_pause && !pause->tx_pause)
248 hw->fc = e1000_fc_rx_pause;
249 else if(!pause->rx_pause && pause->tx_pause)
250 hw->fc = e1000_fc_tx_pause;
251 else if(!pause->rx_pause && !pause->tx_pause)
252 hw->fc = e1000_fc_none;
253
254 hw->original_fc = hw->fc;
255
256 if(adapter->fc_autoneg == AUTONEG_ENABLE) {
257 if(netif_running(adapter->netdev)) {
258 e1000_down(adapter);
259 e1000_up(adapter);
260 } else
261 e1000_reset(adapter);
262 }
263 else
264 return ((hw->media_type == e1000_media_type_fiber) ?
265 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
266
267 return 0;
268 }
269
270 static uint32_t
271 e1000_get_rx_csum(struct net_device *netdev)
272 {
273 struct e1000_adapter *adapter = netdev_priv(netdev);
274 return adapter->rx_csum;
275 }
276
277 static int
278 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
279 {
280 struct e1000_adapter *adapter = netdev_priv(netdev);
281 adapter->rx_csum = data;
282
283 if(netif_running(netdev)) {
284 e1000_down(adapter);
285 e1000_up(adapter);
286 } else
287 e1000_reset(adapter);
288 return 0;
289 }
290
291 static uint32_t
292 e1000_get_tx_csum(struct net_device *netdev)
293 {
294 return (netdev->features & NETIF_F_HW_CSUM) != 0;
295 }
296
297 static int
298 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
299 {
300 struct e1000_adapter *adapter = netdev_priv(netdev);
301
302 if(adapter->hw.mac_type < e1000_82543) {
303 if (!data)
304 return -EINVAL;
305 return 0;
306 }
307
308 if (data)
309 netdev->features |= NETIF_F_HW_CSUM;
310 else
311 netdev->features &= ~NETIF_F_HW_CSUM;
312
313 return 0;
314 }
315
316 #ifdef NETIF_F_TSO
317 static int
318 e1000_set_tso(struct net_device *netdev, uint32_t data)
319 {
320 struct e1000_adapter *adapter = netdev_priv(netdev);
321 if((adapter->hw.mac_type < e1000_82544) ||
322 (adapter->hw.mac_type == e1000_82547))
323 return data ? -EINVAL : 0;
324
325 if (data)
326 netdev->features |= NETIF_F_TSO;
327 else
328 netdev->features &= ~NETIF_F_TSO;
329 return 0;
330 }
331 #endif /* NETIF_F_TSO */
332
333 static uint32_t
334 e1000_get_msglevel(struct net_device *netdev)
335 {
336 struct e1000_adapter *adapter = netdev_priv(netdev);
337 return adapter->msg_enable;
338 }
339
340 static void
341 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
342 {
343 struct e1000_adapter *adapter = netdev_priv(netdev);
344 adapter->msg_enable = data;
345 }
346
347 static int
348 e1000_get_regs_len(struct net_device *netdev)
349 {
350 #define E1000_REGS_LEN 32
351 return E1000_REGS_LEN * sizeof(uint32_t);
352 }
353
354 static void
355 e1000_get_regs(struct net_device *netdev,
356 struct ethtool_regs *regs, void *p)
357 {
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359 struct e1000_hw *hw = &adapter->hw;
360 uint32_t *regs_buff = p;
361 uint16_t phy_data;
362
363 memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
364
365 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
366
367 regs_buff[0] = E1000_READ_REG(hw, CTRL);
368 regs_buff[1] = E1000_READ_REG(hw, STATUS);
369
370 regs_buff[2] = E1000_READ_REG(hw, RCTL);
371 regs_buff[3] = E1000_READ_REG(hw, RDLEN);
372 regs_buff[4] = E1000_READ_REG(hw, RDH);
373 regs_buff[5] = E1000_READ_REG(hw, RDT);
374 regs_buff[6] = E1000_READ_REG(hw, RDTR);
375
376 regs_buff[7] = E1000_READ_REG(hw, TCTL);
377 regs_buff[8] = E1000_READ_REG(hw, TDLEN);
378 regs_buff[9] = E1000_READ_REG(hw, TDH);
379 regs_buff[10] = E1000_READ_REG(hw, TDT);
380 regs_buff[11] = E1000_READ_REG(hw, TIDV);
381
382 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
383 if(hw->phy_type == e1000_phy_igp) {
384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385 IGP01E1000_PHY_AGC_A);
386 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
387 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388 regs_buff[13] = (uint32_t)phy_data; /* cable length */
389 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390 IGP01E1000_PHY_AGC_B);
391 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
392 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393 regs_buff[14] = (uint32_t)phy_data; /* cable length */
394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
395 IGP01E1000_PHY_AGC_C);
396 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
397 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398 regs_buff[15] = (uint32_t)phy_data; /* cable length */
399 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400 IGP01E1000_PHY_AGC_D);
401 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
402 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403 regs_buff[16] = (uint32_t)phy_data; /* cable length */
404 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
406 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
407 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
409 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410 IGP01E1000_PHY_PCS_INIT_REG);
411 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
412 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
414 regs_buff[20] = 0; /* polarity correction enabled (always) */
415 regs_buff[22] = 0; /* phy receive errors (unavailable) */
416 regs_buff[23] = regs_buff[18]; /* mdix mode */
417 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
418 } else {
419 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
420 regs_buff[13] = (uint32_t)phy_data; /* cable length */
421 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
422 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
423 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
424 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
425 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
426 regs_buff[18] = regs_buff[13]; /* cable polarity */
427 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
428 regs_buff[20] = regs_buff[17]; /* polarity correction */
429 /* phy receive errors */
430 regs_buff[22] = adapter->phy_stats.receive_errors;
431 regs_buff[23] = regs_buff[13]; /* mdix mode */
432 }
433 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
434 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
435 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
436 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
437 if(hw->mac_type >= e1000_82540 &&
438 hw->media_type == e1000_media_type_copper) {
439 regs_buff[26] = E1000_READ_REG(hw, MANC);
440 }
441 }
442
443 static int
444 e1000_get_eeprom_len(struct net_device *netdev)
445 {
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 return adapter->hw.eeprom.word_size * 2;
448 }
449
450 static int
451 e1000_get_eeprom(struct net_device *netdev,
452 struct ethtool_eeprom *eeprom, uint8_t *bytes)
453 {
454 struct e1000_adapter *adapter = netdev_priv(netdev);
455 struct e1000_hw *hw = &adapter->hw;
456 uint16_t *eeprom_buff;
457 int first_word, last_word;
458 int ret_val = 0;
459 uint16_t i;
460
461 if(eeprom->len == 0)
462 return -EINVAL;
463
464 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
465
466 first_word = eeprom->offset >> 1;
467 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469 eeprom_buff = kmalloc(sizeof(uint16_t) *
470 (last_word - first_word + 1), GFP_KERNEL);
471 if(!eeprom_buff)
472 return -ENOMEM;
473
474 if(hw->eeprom.type == e1000_eeprom_spi)
475 ret_val = e1000_read_eeprom(hw, first_word,
476 last_word - first_word + 1,
477 eeprom_buff);
478 else {
479 for (i = 0; i < last_word - first_word + 1; i++)
480 if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
481 &eeprom_buff[i])))
482 break;
483 }
484
485 /* Device's eeprom is always little-endian, word addressable */
486 for (i = 0; i < last_word - first_word + 1; i++)
487 le16_to_cpus(&eeprom_buff[i]);
488
489 memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
490 eeprom->len);
491 kfree(eeprom_buff);
492
493 return ret_val;
494 }
495
496 static int
497 e1000_set_eeprom(struct net_device *netdev,
498 struct ethtool_eeprom *eeprom, uint8_t *bytes)
499 {
500 struct e1000_adapter *adapter = netdev_priv(netdev);
501 struct e1000_hw *hw = &adapter->hw;
502 uint16_t *eeprom_buff;
503 void *ptr;
504 int max_len, first_word, last_word, ret_val = 0;
505 uint16_t i;
506
507 if(eeprom->len == 0)
508 return -EOPNOTSUPP;
509
510 if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
511 return -EFAULT;
512
513 max_len = hw->eeprom.word_size * 2;
514
515 first_word = eeprom->offset >> 1;
516 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
517 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
518 if(!eeprom_buff)
519 return -ENOMEM;
520
521 ptr = (void *)eeprom_buff;
522
523 if(eeprom->offset & 1) {
524 /* need read/modify/write of first changed EEPROM word */
525 /* only the second byte of the word is being modified */
526 ret_val = e1000_read_eeprom(hw, first_word, 1,
527 &eeprom_buff[0]);
528 ptr++;
529 }
530 if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
531 /* need read/modify/write of last changed EEPROM word */
532 /* only the first byte of the word is being modified */
533 ret_val = e1000_read_eeprom(hw, last_word, 1,
534 &eeprom_buff[last_word - first_word]);
535 }
536
537 /* Device's eeprom is always little-endian, word addressable */
538 for (i = 0; i < last_word - first_word + 1; i++)
539 le16_to_cpus(&eeprom_buff[i]);
540
541 memcpy(ptr, bytes, eeprom->len);
542
543 for (i = 0; i < last_word - first_word + 1; i++)
544 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
545
546 ret_val = e1000_write_eeprom(hw, first_word,
547 last_word - first_word + 1, eeprom_buff);
548
549 /* Update the checksum over the first part of the EEPROM if needed */
550 if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
551 e1000_update_eeprom_checksum(hw);
552
553 kfree(eeprom_buff);
554 return ret_val;
555 }
556
557 static void
558 e1000_get_drvinfo(struct net_device *netdev,
559 struct ethtool_drvinfo *drvinfo)
560 {
561 struct e1000_adapter *adapter = netdev_priv(netdev);
562
563 strncpy(drvinfo->driver, e1000_driver_name, 32);
564 strncpy(drvinfo->version, e1000_driver_version, 32);
565 strncpy(drvinfo->fw_version, "N/A", 32);
566 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
567 drvinfo->n_stats = E1000_STATS_LEN;
568 drvinfo->testinfo_len = E1000_TEST_LEN;
569 drvinfo->regdump_len = e1000_get_regs_len(netdev);
570 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
571 }
572
573 static void
574 e1000_get_ringparam(struct net_device *netdev,
575 struct ethtool_ringparam *ring)
576 {
577 struct e1000_adapter *adapter = netdev_priv(netdev);
578 e1000_mac_type mac_type = adapter->hw.mac_type;
579 struct e1000_desc_ring *txdr = &adapter->tx_ring;
580 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
581
582 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
583 E1000_MAX_82544_RXD;
584 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
585 E1000_MAX_82544_TXD;
586 ring->rx_mini_max_pending = 0;
587 ring->rx_jumbo_max_pending = 0;
588 ring->rx_pending = rxdr->count;
589 ring->tx_pending = txdr->count;
590 ring->rx_mini_pending = 0;
591 ring->rx_jumbo_pending = 0;
592 }
593
594 static int
595 e1000_set_ringparam(struct net_device *netdev,
596 struct ethtool_ringparam *ring)
597 {
598 struct e1000_adapter *adapter = netdev_priv(netdev);
599 e1000_mac_type mac_type = adapter->hw.mac_type;
600 struct e1000_desc_ring *txdr = &adapter->tx_ring;
601 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
602 struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
603 int err;
604
605 tx_old = adapter->tx_ring;
606 rx_old = adapter->rx_ring;
607
608 if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
609 return -EINVAL;
610
611 if(netif_running(adapter->netdev))
612 e1000_down(adapter);
613
614 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
615 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
616 E1000_MAX_RXD : E1000_MAX_82544_RXD));
617 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
618
619 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
620 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
621 E1000_MAX_TXD : E1000_MAX_82544_TXD));
622 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
623
624 if(netif_running(adapter->netdev)) {
625 /* Try to get new resources before deleting old */
626 if((err = e1000_setup_rx_resources(adapter)))
627 goto err_setup_rx;
628 if((err = e1000_setup_tx_resources(adapter)))
629 goto err_setup_tx;
630
631 /* save the new, restore the old in order to free it,
632 * then restore the new back again */
633
634 rx_new = adapter->rx_ring;
635 tx_new = adapter->tx_ring;
636 adapter->rx_ring = rx_old;
637 adapter->tx_ring = tx_old;
638 e1000_free_rx_resources(adapter);
639 e1000_free_tx_resources(adapter);
640 adapter->rx_ring = rx_new;
641 adapter->tx_ring = tx_new;
642 if((err = e1000_up(adapter)))
643 return err;
644 }
645
646 return 0;
647 err_setup_tx:
648 e1000_free_rx_resources(adapter);
649 err_setup_rx:
650 adapter->rx_ring = rx_old;
651 adapter->tx_ring = tx_old;
652 e1000_up(adapter);
653 return err;
654 }
655
656 #define REG_PATTERN_TEST(R, M, W) \
657 { \
658 uint32_t pat, value; \
659 uint32_t test[] = \
660 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
661 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
662 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
663 value = E1000_READ_REG(&adapter->hw, R); \
664 if(value != (test[pat] & W & M)) { \
665 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
666 "0x%08X expected 0x%08X\n", \
667 E1000_##R, value, (test[pat] & W & M)); \
668 *data = (adapter->hw.mac_type < e1000_82543) ? \
669 E1000_82542_##R : E1000_##R; \
670 return 1; \
671 } \
672 } \
673 }
674
675 #define REG_SET_AND_CHECK(R, M, W) \
676 { \
677 uint32_t value; \
678 E1000_WRITE_REG(&adapter->hw, R, W & M); \
679 value = E1000_READ_REG(&adapter->hw, R); \
680 if((W & M) != (value & M)) { \
681 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
682 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
683 *data = (adapter->hw.mac_type < e1000_82543) ? \
684 E1000_82542_##R : E1000_##R; \
685 return 1; \
686 } \
687 }
688
689 static int
690 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
691 {
692 uint32_t value, before, after;
693 uint32_t i, toggle;
694
695 /* The status register is Read Only, so a write should fail.
696 * Some bits that get toggled are ignored.
697 */
698 switch (adapter->hw.mac_type) {
699 case e1000_82573:
700 toggle = 0x7FFFF033;
701 break;
702 default:
703 toggle = 0xFFFFF833;
704 break;
705 }
706
707 before = E1000_READ_REG(&adapter->hw, STATUS);
708 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
709 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
710 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
711 if(value != after) {
712 DPRINTK(DRV, ERR, "failed STATUS register test got: "
713 "0x%08X expected: 0x%08X\n", after, value);
714 *data = 1;
715 return 1;
716 }
717 /* restore previous status */
718 E1000_WRITE_REG(&adapter->hw, STATUS, before);
719
720 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
721 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
722 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
723 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
724 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
725 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
726 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
727 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
728 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
729 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
730 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
731 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
732 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
733 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
734
735 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
736 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
737 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
738
739 if(adapter->hw.mac_type >= e1000_82543) {
740
741 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
742 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
743 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
744 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
745 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
746
747 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
748 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
749 0xFFFFFFFF);
750 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
751 0xFFFFFFFF);
752 }
753
754 } else {
755
756 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
757 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
758 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
759 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
760
761 }
762
763 for(i = 0; i < E1000_MC_TBL_SIZE; i++)
764 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
765
766 *data = 0;
767 return 0;
768 }
769
770 static int
771 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
772 {
773 uint16_t temp;
774 uint16_t checksum = 0;
775 uint16_t i;
776
777 *data = 0;
778 /* Read and add up the contents of the EEPROM */
779 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
780 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
781 *data = 1;
782 break;
783 }
784 checksum += temp;
785 }
786
787 /* If Checksum is not Correct return error else test passed */
788 if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
789 *data = 2;
790
791 return *data;
792 }
793
794 static irqreturn_t
795 e1000_test_intr(int irq,
796 void *data,
797 struct pt_regs *regs)
798 {
799 struct net_device *netdev = (struct net_device *) data;
800 struct e1000_adapter *adapter = netdev_priv(netdev);
801
802 adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
803
804 return IRQ_HANDLED;
805 }
806
807 static int
808 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
809 {
810 struct net_device *netdev = adapter->netdev;
811 uint32_t mask, i=0, shared_int = TRUE;
812 uint32_t irq = adapter->pdev->irq;
813
814 *data = 0;
815
816 /* Hook up test interrupt handler just for this test */
817 if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
818 shared_int = FALSE;
819 } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
820 netdev->name, netdev)){
821 *data = 1;
822 return -1;
823 }
824
825 /* Disable all the interrupts */
826 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
827 msec_delay(10);
828
829 /* Test each interrupt */
830 for(; i < 10; i++) {
831
832 /* Interrupt to test */
833 mask = 1 << i;
834
835 if(!shared_int) {
836 /* Disable the interrupt to be reported in
837 * the cause register and then force the same
838 * interrupt and see if one gets posted. If
839 * an interrupt was posted to the bus, the
840 * test failed.
841 */
842 adapter->test_icr = 0;
843 E1000_WRITE_REG(&adapter->hw, IMC, mask);
844 E1000_WRITE_REG(&adapter->hw, ICS, mask);
845 msec_delay(10);
846
847 if(adapter->test_icr & mask) {
848 *data = 3;
849 break;
850 }
851 }
852
853 /* Enable the interrupt to be reported in
854 * the cause register and then force the same
855 * interrupt and see if one gets posted. If
856 * an interrupt was not posted to the bus, the
857 * test failed.
858 */
859 adapter->test_icr = 0;
860 E1000_WRITE_REG(&adapter->hw, IMS, mask);
861 E1000_WRITE_REG(&adapter->hw, ICS, mask);
862 msec_delay(10);
863
864 if(!(adapter->test_icr & mask)) {
865 *data = 4;
866 break;
867 }
868
869 if(!shared_int) {
870 /* Disable the other interrupts to be reported in
871 * the cause register and then force the other
872 * interrupts and see if any get posted. If
873 * an interrupt was posted to the bus, the
874 * test failed.
875 */
876 adapter->test_icr = 0;
877 E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
878 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
879 msec_delay(10);
880
881 if(adapter->test_icr) {
882 *data = 5;
883 break;
884 }
885 }
886 }
887
888 /* Disable all the interrupts */
889 E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
890 msec_delay(10);
891
892 /* Unhook test interrupt handler */
893 free_irq(irq, netdev);
894
895 return *data;
896 }
897
898 static void
899 e1000_free_desc_rings(struct e1000_adapter *adapter)
900 {
901 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
902 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
903 struct pci_dev *pdev = adapter->pdev;
904 int i;
905
906 if(txdr->desc && txdr->buffer_info) {
907 for(i = 0; i < txdr->count; i++) {
908 if(txdr->buffer_info[i].dma)
909 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
910 txdr->buffer_info[i].length,
911 PCI_DMA_TODEVICE);
912 if(txdr->buffer_info[i].skb)
913 dev_kfree_skb(txdr->buffer_info[i].skb);
914 }
915 }
916
917 if(rxdr->desc && rxdr->buffer_info) {
918 for(i = 0; i < rxdr->count; i++) {
919 if(rxdr->buffer_info[i].dma)
920 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
921 rxdr->buffer_info[i].length,
922 PCI_DMA_FROMDEVICE);
923 if(rxdr->buffer_info[i].skb)
924 dev_kfree_skb(rxdr->buffer_info[i].skb);
925 }
926 }
927
928 if(txdr->desc)
929 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
930 if(rxdr->desc)
931 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
932
933 if(txdr->buffer_info)
934 kfree(txdr->buffer_info);
935 if(rxdr->buffer_info)
936 kfree(rxdr->buffer_info);
937
938 return;
939 }
940
941 static int
942 e1000_setup_desc_rings(struct e1000_adapter *adapter)
943 {
944 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
945 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
946 struct pci_dev *pdev = adapter->pdev;
947 uint32_t rctl;
948 int size, i, ret_val;
949
950 /* Setup Tx descriptor ring and Tx buffers */
951
952 if(!txdr->count)
953 txdr->count = E1000_DEFAULT_TXD;
954
955 size = txdr->count * sizeof(struct e1000_buffer);
956 if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
957 ret_val = 1;
958 goto err_nomem;
959 }
960 memset(txdr->buffer_info, 0, size);
961
962 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
963 E1000_ROUNDUP(txdr->size, 4096);
964 if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
965 ret_val = 2;
966 goto err_nomem;
967 }
968 memset(txdr->desc, 0, txdr->size);
969 txdr->next_to_use = txdr->next_to_clean = 0;
970
971 E1000_WRITE_REG(&adapter->hw, TDBAL,
972 ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
973 E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
974 E1000_WRITE_REG(&adapter->hw, TDLEN,
975 txdr->count * sizeof(struct e1000_tx_desc));
976 E1000_WRITE_REG(&adapter->hw, TDH, 0);
977 E1000_WRITE_REG(&adapter->hw, TDT, 0);
978 E1000_WRITE_REG(&adapter->hw, TCTL,
979 E1000_TCTL_PSP | E1000_TCTL_EN |
980 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
981 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
982
983 for(i = 0; i < txdr->count; i++) {
984 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
985 struct sk_buff *skb;
986 unsigned int size = 1024;
987
988 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
989 ret_val = 3;
990 goto err_nomem;
991 }
992 skb_put(skb, size);
993 txdr->buffer_info[i].skb = skb;
994 txdr->buffer_info[i].length = skb->len;
995 txdr->buffer_info[i].dma =
996 pci_map_single(pdev, skb->data, skb->len,
997 PCI_DMA_TODEVICE);
998 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
999 tx_desc->lower.data = cpu_to_le32(skb->len);
1000 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1001 E1000_TXD_CMD_IFCS |
1002 E1000_TXD_CMD_RPS);
1003 tx_desc->upper.data = 0;
1004 }
1005
1006 /* Setup Rx descriptor ring and Rx buffers */
1007
1008 if(!rxdr->count)
1009 rxdr->count = E1000_DEFAULT_RXD;
1010
1011 size = rxdr->count * sizeof(struct e1000_buffer);
1012 if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1013 ret_val = 4;
1014 goto err_nomem;
1015 }
1016 memset(rxdr->buffer_info, 0, size);
1017
1018 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1019 if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1020 ret_val = 5;
1021 goto err_nomem;
1022 }
1023 memset(rxdr->desc, 0, rxdr->size);
1024 rxdr->next_to_use = rxdr->next_to_clean = 0;
1025
1026 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1027 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1028 E1000_WRITE_REG(&adapter->hw, RDBAL,
1029 ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1030 E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1031 E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1032 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1033 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1034 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1035 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1036 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1037 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1038
1039 for(i = 0; i < rxdr->count; i++) {
1040 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1041 struct sk_buff *skb;
1042
1043 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1044 GFP_KERNEL))) {
1045 ret_val = 6;
1046 goto err_nomem;
1047 }
1048 skb_reserve(skb, NET_IP_ALIGN);
1049 rxdr->buffer_info[i].skb = skb;
1050 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1051 rxdr->buffer_info[i].dma =
1052 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1053 PCI_DMA_FROMDEVICE);
1054 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1055 memset(skb->data, 0x00, skb->len);
1056 }
1057
1058 return 0;
1059
1060 err_nomem:
1061 e1000_free_desc_rings(adapter);
1062 return ret_val;
1063 }
1064
1065 static void
1066 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1067 {
1068 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1069 e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1070 e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1071 e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1072 e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1073 }
1074
1075 static void
1076 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1077 {
1078 uint16_t phy_reg;
1079
1080 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1081 * Extended PHY Specific Control Register to 25MHz clock. This
1082 * value defaults back to a 2.5MHz clock when the PHY is reset.
1083 */
1084 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1085 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1086 e1000_write_phy_reg(&adapter->hw,
1087 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1088
1089 /* In addition, because of the s/w reset above, we need to enable
1090 * CRS on TX. This must be set for both full and half duplex
1091 * operation.
1092 */
1093 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1094 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1095 e1000_write_phy_reg(&adapter->hw,
1096 M88E1000_PHY_SPEC_CTRL, phy_reg);
1097 }
1098
1099 static int
1100 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1101 {
1102 uint32_t ctrl_reg;
1103 uint16_t phy_reg;
1104
1105 /* Setup the Device Control Register for PHY loopback test. */
1106
1107 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1108 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1109 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1110 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1111 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1112 E1000_CTRL_FD); /* Force Duplex to FULL */
1113
1114 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1115
1116 /* Read the PHY Specific Control Register (0x10) */
1117 e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1118
1119 /* Clear Auto-Crossover bits in PHY Specific Control Register
1120 * (bits 6:5).
1121 */
1122 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1123 e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1124
1125 /* Perform software reset on the PHY */
1126 e1000_phy_reset(&adapter->hw);
1127
1128 /* Have to setup TX_CLK and TX_CRS after software reset */
1129 e1000_phy_reset_clk_and_crs(adapter);
1130
1131 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1132
1133 /* Wait for reset to complete. */
1134 udelay(500);
1135
1136 /* Have to setup TX_CLK and TX_CRS after software reset */
1137 e1000_phy_reset_clk_and_crs(adapter);
1138
1139 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1140 e1000_phy_disable_receiver(adapter);
1141
1142 /* Set the loopback bit in the PHY control register. */
1143 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1144 phy_reg |= MII_CR_LOOPBACK;
1145 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1146
1147 /* Setup TX_CLK and TX_CRS one more time. */
1148 e1000_phy_reset_clk_and_crs(adapter);
1149
1150 /* Check Phy Configuration */
1151 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1152 if(phy_reg != 0x4100)
1153 return 9;
1154
1155 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1156 if(phy_reg != 0x0070)
1157 return 10;
1158
1159 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1160 if(phy_reg != 0x001A)
1161 return 11;
1162
1163 return 0;
1164 }
1165
1166 static int
1167 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1168 {
1169 uint32_t ctrl_reg = 0;
1170 uint32_t stat_reg = 0;
1171
1172 adapter->hw.autoneg = FALSE;
1173
1174 if(adapter->hw.phy_type == e1000_phy_m88) {
1175 /* Auto-MDI/MDIX Off */
1176 e1000_write_phy_reg(&adapter->hw,
1177 M88E1000_PHY_SPEC_CTRL, 0x0808);
1178 /* reset to update Auto-MDI/MDIX */
1179 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1180 /* autoneg off */
1181 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1182 }
1183 /* force 1000, set loopback */
1184 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1185
1186 /* Now set up the MAC to the same speed/duplex as the PHY. */
1187 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1188 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1189 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1190 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1191 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1192 E1000_CTRL_FD); /* Force Duplex to FULL */
1193
1194 if(adapter->hw.media_type == e1000_media_type_copper &&
1195 adapter->hw.phy_type == e1000_phy_m88) {
1196 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1197 } else {
1198 /* Set the ILOS bit on the fiber Nic is half
1199 * duplex link is detected. */
1200 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1201 if((stat_reg & E1000_STATUS_FD) == 0)
1202 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1203 }
1204
1205 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1206
1207 /* Disable the receiver on the PHY so when a cable is plugged in, the
1208 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1209 */
1210 if(adapter->hw.phy_type == e1000_phy_m88)
1211 e1000_phy_disable_receiver(adapter);
1212
1213 udelay(500);
1214
1215 return 0;
1216 }
1217
1218 static int
1219 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1220 {
1221 uint16_t phy_reg = 0;
1222 uint16_t count = 0;
1223
1224 switch (adapter->hw.mac_type) {
1225 case e1000_82543:
1226 if(adapter->hw.media_type == e1000_media_type_copper) {
1227 /* Attempt to setup Loopback mode on Non-integrated PHY.
1228 * Some PHY registers get corrupted at random, so
1229 * attempt this 10 times.
1230 */
1231 while(e1000_nonintegrated_phy_loopback(adapter) &&
1232 count++ < 10);
1233 if(count < 11)
1234 return 0;
1235 }
1236 break;
1237
1238 case e1000_82544:
1239 case e1000_82540:
1240 case e1000_82545:
1241 case e1000_82545_rev_3:
1242 case e1000_82546:
1243 case e1000_82546_rev_3:
1244 case e1000_82541:
1245 case e1000_82541_rev_2:
1246 case e1000_82547:
1247 case e1000_82547_rev_2:
1248 case e1000_82573:
1249 return e1000_integrated_phy_loopback(adapter);
1250 break;
1251
1252 default:
1253 /* Default PHY loopback work is to read the MII
1254 * control register and assert bit 14 (loopback mode).
1255 */
1256 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1257 phy_reg |= MII_CR_LOOPBACK;
1258 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1259 return 0;
1260 break;
1261 }
1262
1263 return 8;
1264 }
1265
1266 static int
1267 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1268 {
1269 uint32_t rctl;
1270
1271 if(adapter->hw.media_type == e1000_media_type_fiber ||
1272 adapter->hw.media_type == e1000_media_type_internal_serdes) {
1273 if(adapter->hw.mac_type == e1000_82545 ||
1274 adapter->hw.mac_type == e1000_82546 ||
1275 adapter->hw.mac_type == e1000_82545_rev_3 ||
1276 adapter->hw.mac_type == e1000_82546_rev_3)
1277 return e1000_set_phy_loopback(adapter);
1278 else {
1279 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1280 rctl |= E1000_RCTL_LBM_TCVR;
1281 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1282 return 0;
1283 }
1284 } else if(adapter->hw.media_type == e1000_media_type_copper)
1285 return e1000_set_phy_loopback(adapter);
1286
1287 return 7;
1288 }
1289
1290 static void
1291 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1292 {
1293 uint32_t rctl;
1294 uint16_t phy_reg;
1295
1296 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1297 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1298 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1299
1300 if(adapter->hw.media_type == e1000_media_type_copper ||
1301 ((adapter->hw.media_type == e1000_media_type_fiber ||
1302 adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1303 (adapter->hw.mac_type == e1000_82545 ||
1304 adapter->hw.mac_type == e1000_82546 ||
1305 adapter->hw.mac_type == e1000_82545_rev_3 ||
1306 adapter->hw.mac_type == e1000_82546_rev_3))) {
1307 adapter->hw.autoneg = TRUE;
1308 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1309 if(phy_reg & MII_CR_LOOPBACK) {
1310 phy_reg &= ~MII_CR_LOOPBACK;
1311 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1312 e1000_phy_reset(&adapter->hw);
1313 }
1314 }
1315 }
1316
1317 static void
1318 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1319 {
1320 memset(skb->data, 0xFF, frame_size);
1321 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1322 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1323 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1324 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1325 }
1326
1327 static int
1328 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1329 {
1330 frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1331 if(*(skb->data + 3) == 0xFF) {
1332 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1333 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1334 return 0;
1335 }
1336 }
1337 return 13;
1338 }
1339
1340 static int
1341 e1000_run_loopback_test(struct e1000_adapter *adapter)
1342 {
1343 struct e1000_desc_ring *txdr = &adapter->test_tx_ring;
1344 struct e1000_desc_ring *rxdr = &adapter->test_rx_ring;
1345 struct pci_dev *pdev = adapter->pdev;
1346 int i, j, k, l, lc, good_cnt, ret_val=0;
1347 unsigned long time;
1348
1349 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1350
1351 /* Calculate the loop count based on the largest descriptor ring
1352 * The idea is to wrap the largest ring a number of times using 64
1353 * send/receive pairs during each loop
1354 */
1355
1356 if(rxdr->count <= txdr->count)
1357 lc = ((txdr->count / 64) * 2) + 1;
1358 else
1359 lc = ((rxdr->count / 64) * 2) + 1;
1360
1361 k = l = 0;
1362 for(j = 0; j <= lc; j++) { /* loop count loop */
1363 for(i = 0; i < 64; i++) { /* send the packets */
1364 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1365 1024);
1366 pci_dma_sync_single_for_device(pdev,
1367 txdr->buffer_info[k].dma,
1368 txdr->buffer_info[k].length,
1369 PCI_DMA_TODEVICE);
1370 if(unlikely(++k == txdr->count)) k = 0;
1371 }
1372 E1000_WRITE_REG(&adapter->hw, TDT, k);
1373 msec_delay(200);
1374 time = jiffies; /* set the start time for the receive */
1375 good_cnt = 0;
1376 do { /* receive the sent packets */
1377 pci_dma_sync_single_for_cpu(pdev,
1378 rxdr->buffer_info[l].dma,
1379 rxdr->buffer_info[l].length,
1380 PCI_DMA_FROMDEVICE);
1381
1382 ret_val = e1000_check_lbtest_frame(
1383 rxdr->buffer_info[l].skb,
1384 1024);
1385 if(!ret_val)
1386 good_cnt++;
1387 if(unlikely(++l == rxdr->count)) l = 0;
1388 /* time + 20 msecs (200 msecs on 2.4) is more than
1389 * enough time to complete the receives, if it's
1390 * exceeded, break and error off
1391 */
1392 } while (good_cnt < 64 && jiffies < (time + 20));
1393 if(good_cnt != 64) {
1394 ret_val = 13; /* ret_val is the same as mis-compare */
1395 break;
1396 }
1397 if(jiffies >= (time + 2)) {
1398 ret_val = 14; /* error code for time out error */
1399 break;
1400 }
1401 } /* end loop count loop */
1402 return ret_val;
1403 }
1404
1405 static int
1406 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1407 {
1408 if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1409 if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
1410 *data = e1000_run_loopback_test(adapter);
1411 e1000_loopback_cleanup(adapter);
1412 e1000_free_desc_rings(adapter);
1413 err_loopback:
1414 return *data;
1415 }
1416
1417 static int
1418 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1419 {
1420 *data = 0;
1421 if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1422 int i = 0;
1423 adapter->hw.serdes_link_down = TRUE;
1424
1425 /* On some blade server designs, link establishment
1426 * could take as long as 2-3 minutes */
1427 do {
1428 e1000_check_for_link(&adapter->hw);
1429 if (adapter->hw.serdes_link_down == FALSE)
1430 return *data;
1431 msec_delay(20);
1432 } while (i++ < 3750);
1433
1434 *data = 1;
1435 } else {
1436 e1000_check_for_link(&adapter->hw);
1437 if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
1438 msec_delay(4000);
1439
1440 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1441 *data = 1;
1442 }
1443 }
1444 return *data;
1445 }
1446
1447 static int
1448 e1000_diag_test_count(struct net_device *netdev)
1449 {
1450 return E1000_TEST_LEN;
1451 }
1452
1453 static void
1454 e1000_diag_test(struct net_device *netdev,
1455 struct ethtool_test *eth_test, uint64_t *data)
1456 {
1457 struct e1000_adapter *adapter = netdev_priv(netdev);
1458 boolean_t if_running = netif_running(netdev);
1459
1460 if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1461 /* Offline tests */
1462
1463 /* save speed, duplex, autoneg settings */
1464 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1465 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1466 uint8_t autoneg = adapter->hw.autoneg;
1467
1468 /* Link test performed before hardware reset so autoneg doesn't
1469 * interfere with test result */
1470 if(e1000_link_test(adapter, &data[4]))
1471 eth_test->flags |= ETH_TEST_FL_FAILED;
1472
1473 if(if_running)
1474 e1000_down(adapter);
1475 else
1476 e1000_reset(adapter);
1477
1478 if(e1000_reg_test(adapter, &data[0]))
1479 eth_test->flags |= ETH_TEST_FL_FAILED;
1480
1481 e1000_reset(adapter);
1482 if(e1000_eeprom_test(adapter, &data[1]))
1483 eth_test->flags |= ETH_TEST_FL_FAILED;
1484
1485 e1000_reset(adapter);
1486 if(e1000_intr_test(adapter, &data[2]))
1487 eth_test->flags |= ETH_TEST_FL_FAILED;
1488
1489 e1000_reset(adapter);
1490 if(e1000_loopback_test(adapter, &data[3]))
1491 eth_test->flags |= ETH_TEST_FL_FAILED;
1492
1493 /* restore speed, duplex, autoneg settings */
1494 adapter->hw.autoneg_advertised = autoneg_advertised;
1495 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1496 adapter->hw.autoneg = autoneg;
1497
1498 e1000_reset(adapter);
1499 if(if_running)
1500 e1000_up(adapter);
1501 } else {
1502 /* Online tests */
1503 if(e1000_link_test(adapter, &data[4]))
1504 eth_test->flags |= ETH_TEST_FL_FAILED;
1505
1506 /* Offline tests aren't run; pass by default */
1507 data[0] = 0;
1508 data[1] = 0;
1509 data[2] = 0;
1510 data[3] = 0;
1511 }
1512 }
1513
1514 static void
1515 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1516 {
1517 struct e1000_adapter *adapter = netdev_priv(netdev);
1518 struct e1000_hw *hw = &adapter->hw;
1519
1520 switch(adapter->hw.device_id) {
1521 case E1000_DEV_ID_82542:
1522 case E1000_DEV_ID_82543GC_FIBER:
1523 case E1000_DEV_ID_82543GC_COPPER:
1524 case E1000_DEV_ID_82544EI_FIBER:
1525 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1526 case E1000_DEV_ID_82545EM_FIBER:
1527 case E1000_DEV_ID_82545EM_COPPER:
1528 wol->supported = 0;
1529 wol->wolopts = 0;
1530 return;
1531
1532 case E1000_DEV_ID_82546EB_FIBER:
1533 case E1000_DEV_ID_82546GB_FIBER:
1534 /* Wake events only supported on port A for dual fiber */
1535 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1536 wol->supported = 0;
1537 wol->wolopts = 0;
1538 return;
1539 }
1540 /* Fall Through */
1541
1542 default:
1543 wol->supported = WAKE_UCAST | WAKE_MCAST |
1544 WAKE_BCAST | WAKE_MAGIC;
1545
1546 wol->wolopts = 0;
1547 if(adapter->wol & E1000_WUFC_EX)
1548 wol->wolopts |= WAKE_UCAST;
1549 if(adapter->wol & E1000_WUFC_MC)
1550 wol->wolopts |= WAKE_MCAST;
1551 if(adapter->wol & E1000_WUFC_BC)
1552 wol->wolopts |= WAKE_BCAST;
1553 if(adapter->wol & E1000_WUFC_MAG)
1554 wol->wolopts |= WAKE_MAGIC;
1555 return;
1556 }
1557 }
1558
1559 static int
1560 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1561 {
1562 struct e1000_adapter *adapter = netdev_priv(netdev);
1563 struct e1000_hw *hw = &adapter->hw;
1564
1565 switch(adapter->hw.device_id) {
1566 case E1000_DEV_ID_82542:
1567 case E1000_DEV_ID_82543GC_FIBER:
1568 case E1000_DEV_ID_82543GC_COPPER:
1569 case E1000_DEV_ID_82544EI_FIBER:
1570 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1571 case E1000_DEV_ID_82545EM_FIBER:
1572 case E1000_DEV_ID_82545EM_COPPER:
1573 return wol->wolopts ? -EOPNOTSUPP : 0;
1574
1575 case E1000_DEV_ID_82546EB_FIBER:
1576 case E1000_DEV_ID_82546GB_FIBER:
1577 /* Wake events only supported on port A for dual fiber */
1578 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1579 return wol->wolopts ? -EOPNOTSUPP : 0;
1580 /* Fall Through */
1581
1582 default:
1583 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1584 return -EOPNOTSUPP;
1585
1586 adapter->wol = 0;
1587
1588 if(wol->wolopts & WAKE_UCAST)
1589 adapter->wol |= E1000_WUFC_EX;
1590 if(wol->wolopts & WAKE_MCAST)
1591 adapter->wol |= E1000_WUFC_MC;
1592 if(wol->wolopts & WAKE_BCAST)
1593 adapter->wol |= E1000_WUFC_BC;
1594 if(wol->wolopts & WAKE_MAGIC)
1595 adapter->wol |= E1000_WUFC_MAG;
1596 }
1597
1598 return 0;
1599 }
1600
1601 /* toggle LED 4 times per second = 2 "blinks" per second */
1602 #define E1000_ID_INTERVAL (HZ/4)
1603
1604 /* bit defines for adapter->led_status */
1605 #define E1000_LED_ON 0
1606
1607 static void
1608 e1000_led_blink_callback(unsigned long data)
1609 {
1610 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1611
1612 if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1613 e1000_led_off(&adapter->hw);
1614 else
1615 e1000_led_on(&adapter->hw);
1616
1617 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1618 }
1619
1620 static int
1621 e1000_phys_id(struct net_device *netdev, uint32_t data)
1622 {
1623 struct e1000_adapter *adapter = netdev_priv(netdev);
1624
1625 if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1626 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1627
1628 if(adapter->hw.mac_type < e1000_82573) {
1629 if(!adapter->blink_timer.function) {
1630 init_timer(&adapter->blink_timer);
1631 adapter->blink_timer.function = e1000_led_blink_callback;
1632 adapter->blink_timer.data = (unsigned long) adapter;
1633 }
1634 e1000_setup_led(&adapter->hw);
1635 mod_timer(&adapter->blink_timer, jiffies);
1636 msleep_interruptible(data * 1000);
1637 del_timer_sync(&adapter->blink_timer);
1638 }
1639 else {
1640 E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
1641 E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1642 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1643 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1644 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1645 msleep_interruptible(data * 1000);
1646 }
1647
1648 e1000_led_off(&adapter->hw);
1649 clear_bit(E1000_LED_ON, &adapter->led_status);
1650 e1000_cleanup_led(&adapter->hw);
1651
1652 return 0;
1653 }
1654
1655 static int
1656 e1000_nway_reset(struct net_device *netdev)
1657 {
1658 struct e1000_adapter *adapter = netdev_priv(netdev);
1659 if(netif_running(netdev)) {
1660 e1000_down(adapter);
1661 e1000_up(adapter);
1662 }
1663 return 0;
1664 }
1665
1666 static int
1667 e1000_get_stats_count(struct net_device *netdev)
1668 {
1669 return E1000_STATS_LEN;
1670 }
1671
1672 static void
1673 e1000_get_ethtool_stats(struct net_device *netdev,
1674 struct ethtool_stats *stats, uint64_t *data)
1675 {
1676 struct e1000_adapter *adapter = netdev_priv(netdev);
1677 int i;
1678
1679 e1000_update_stats(adapter);
1680 for(i = 0; i < E1000_STATS_LEN; i++) {
1681 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1682 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1683 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1684 }
1685 }
1686
1687 static void
1688 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1689 {
1690 int i;
1691
1692 switch(stringset) {
1693 case ETH_SS_TEST:
1694 memcpy(data, *e1000_gstrings_test,
1695 E1000_TEST_LEN*ETH_GSTRING_LEN);
1696 break;
1697 case ETH_SS_STATS:
1698 for (i=0; i < E1000_STATS_LEN; i++) {
1699 memcpy(data + i * ETH_GSTRING_LEN,
1700 e1000_gstrings_stats[i].stat_string,
1701 ETH_GSTRING_LEN);
1702 }
1703 break;
1704 }
1705 }
1706
1707 struct ethtool_ops e1000_ethtool_ops = {
1708 .get_settings = e1000_get_settings,
1709 .set_settings = e1000_set_settings,
1710 .get_drvinfo = e1000_get_drvinfo,
1711 .get_regs_len = e1000_get_regs_len,
1712 .get_regs = e1000_get_regs,
1713 .get_wol = e1000_get_wol,
1714 .set_wol = e1000_set_wol,
1715 .get_msglevel = e1000_get_msglevel,
1716 .set_msglevel = e1000_set_msglevel,
1717 .nway_reset = e1000_nway_reset,
1718 .get_link = ethtool_op_get_link,
1719 .get_eeprom_len = e1000_get_eeprom_len,
1720 .get_eeprom = e1000_get_eeprom,
1721 .set_eeprom = e1000_set_eeprom,
1722 .get_ringparam = e1000_get_ringparam,
1723 .set_ringparam = e1000_set_ringparam,
1724 .get_pauseparam = e1000_get_pauseparam,
1725 .set_pauseparam = e1000_set_pauseparam,
1726 .get_rx_csum = e1000_get_rx_csum,
1727 .set_rx_csum = e1000_set_rx_csum,
1728 .get_tx_csum = e1000_get_tx_csum,
1729 .set_tx_csum = e1000_set_tx_csum,
1730 .get_sg = ethtool_op_get_sg,
1731 .set_sg = ethtool_op_set_sg,
1732 #ifdef NETIF_F_TSO
1733 .get_tso = ethtool_op_get_tso,
1734 .set_tso = e1000_set_tso,
1735 #endif
1736 .self_test_count = e1000_diag_test_count,
1737 .self_test = e1000_diag_test,
1738 .get_strings = e1000_get_strings,
1739 .phys_id = e1000_phys_id,
1740 .get_stats_count = e1000_get_stats_count,
1741 .get_ethtool_stats = e1000_get_ethtool_stats,
1742 };
1743
1744 void e1000_set_ethtool_ops(struct net_device *netdev)
1745 {
1746 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1747 }
This page took 0.099918 seconds and 5 git commands to generate.