Merge branch 'for-linus' of git://git.kernel.dk/linux-2.6-block
[deliverable/linux.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 struct e1000_stats {
35 char stat_string[ETH_GSTRING_LEN];
36 int sizeof_stat;
37 int stat_offset;
38 };
39
40 #define E1000_STAT(m) FIELD_SIZEOF(struct e1000_adapter, m), \
41 offsetof(struct e1000_adapter, m)
42 static const struct e1000_stats e1000_gstrings_stats[] = {
43 { "rx_packets", E1000_STAT(stats.gprc) },
44 { "tx_packets", E1000_STAT(stats.gptc) },
45 { "rx_bytes", E1000_STAT(stats.gorcl) },
46 { "tx_bytes", E1000_STAT(stats.gotcl) },
47 { "rx_broadcast", E1000_STAT(stats.bprc) },
48 { "tx_broadcast", E1000_STAT(stats.bptc) },
49 { "rx_multicast", E1000_STAT(stats.mprc) },
50 { "tx_multicast", E1000_STAT(stats.mptc) },
51 { "rx_errors", E1000_STAT(stats.rxerrc) },
52 { "tx_errors", E1000_STAT(stats.txerrc) },
53 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
54 { "multicast", E1000_STAT(stats.mprc) },
55 { "collisions", E1000_STAT(stats.colc) },
56 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
57 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
58 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
59 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
60 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
61 { "rx_missed_errors", E1000_STAT(stats.mpc) },
62 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
63 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
64 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
65 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
66 { "tx_window_errors", E1000_STAT(stats.latecol) },
67 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
68 { "tx_deferred_ok", E1000_STAT(stats.dc) },
69 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
70 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
71 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
72 { "tx_restart_queue", E1000_STAT(restart_queue) },
73 { "rx_long_length_errors", E1000_STAT(stats.roc) },
74 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
75 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
76 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
77 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
78 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
79 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
80 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
81 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
82 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
83 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
84 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
85 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
86 { "tx_smbus", E1000_STAT(stats.mgptc) },
87 { "rx_smbus", E1000_STAT(stats.mgprc) },
88 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
89 };
90
91 #define E1000_QUEUE_STATS_LEN 0
92 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
93 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
94 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
95 "Register test (offline)", "Eeprom test (offline)",
96 "Interrupt test (offline)", "Loopback test (offline)",
97 "Link test (on/offline)"
98 };
99 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
100
101 static int e1000_get_settings(struct net_device *netdev,
102 struct ethtool_cmd *ecmd)
103 {
104 struct e1000_adapter *adapter = netdev_priv(netdev);
105 struct e1000_hw *hw = &adapter->hw;
106
107 if (hw->media_type == e1000_media_type_copper) {
108
109 ecmd->supported = (SUPPORTED_10baseT_Half |
110 SUPPORTED_10baseT_Full |
111 SUPPORTED_100baseT_Half |
112 SUPPORTED_100baseT_Full |
113 SUPPORTED_1000baseT_Full|
114 SUPPORTED_Autoneg |
115 SUPPORTED_TP);
116 ecmd->advertising = ADVERTISED_TP;
117
118 if (hw->autoneg == 1) {
119 ecmd->advertising |= ADVERTISED_Autoneg;
120 /* the e1000 autoneg seems to match ethtool nicely */
121 ecmd->advertising |= hw->autoneg_advertised;
122 }
123
124 ecmd->port = PORT_TP;
125 ecmd->phy_address = hw->phy_addr;
126
127 if (hw->mac_type == e1000_82543)
128 ecmd->transceiver = XCVR_EXTERNAL;
129 else
130 ecmd->transceiver = XCVR_INTERNAL;
131
132 } else {
133 ecmd->supported = (SUPPORTED_1000baseT_Full |
134 SUPPORTED_FIBRE |
135 SUPPORTED_Autoneg);
136
137 ecmd->advertising = (ADVERTISED_1000baseT_Full |
138 ADVERTISED_FIBRE |
139 ADVERTISED_Autoneg);
140
141 ecmd->port = PORT_FIBRE;
142
143 if (hw->mac_type >= e1000_82545)
144 ecmd->transceiver = XCVR_INTERNAL;
145 else
146 ecmd->transceiver = XCVR_EXTERNAL;
147 }
148
149 if (er32(STATUS) & E1000_STATUS_LU) {
150
151 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
152 &adapter->link_duplex);
153 ecmd->speed = adapter->link_speed;
154
155 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
156 * and HALF_DUPLEX != DUPLEX_HALF */
157
158 if (adapter->link_duplex == FULL_DUPLEX)
159 ecmd->duplex = DUPLEX_FULL;
160 else
161 ecmd->duplex = DUPLEX_HALF;
162 } else {
163 ecmd->speed = -1;
164 ecmd->duplex = -1;
165 }
166
167 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
168 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
169 return 0;
170 }
171
172 static int e1000_set_settings(struct net_device *netdev,
173 struct ethtool_cmd *ecmd)
174 {
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176 struct e1000_hw *hw = &adapter->hw;
177
178 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
179 msleep(1);
180
181 if (ecmd->autoneg == AUTONEG_ENABLE) {
182 hw->autoneg = 1;
183 if (hw->media_type == e1000_media_type_fiber)
184 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
185 ADVERTISED_FIBRE |
186 ADVERTISED_Autoneg;
187 else
188 hw->autoneg_advertised = ecmd->advertising |
189 ADVERTISED_TP |
190 ADVERTISED_Autoneg;
191 ecmd->advertising = hw->autoneg_advertised;
192 } else
193 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
194 clear_bit(__E1000_RESETTING, &adapter->flags);
195 return -EINVAL;
196 }
197
198 /* reset the link */
199
200 if (netif_running(adapter->netdev)) {
201 e1000_down(adapter);
202 e1000_up(adapter);
203 } else
204 e1000_reset(adapter);
205
206 clear_bit(__E1000_RESETTING, &adapter->flags);
207 return 0;
208 }
209
210 static void e1000_get_pauseparam(struct net_device *netdev,
211 struct ethtool_pauseparam *pause)
212 {
213 struct e1000_adapter *adapter = netdev_priv(netdev);
214 struct e1000_hw *hw = &adapter->hw;
215
216 pause->autoneg =
217 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
218
219 if (hw->fc == E1000_FC_RX_PAUSE)
220 pause->rx_pause = 1;
221 else if (hw->fc == E1000_FC_TX_PAUSE)
222 pause->tx_pause = 1;
223 else if (hw->fc == E1000_FC_FULL) {
224 pause->rx_pause = 1;
225 pause->tx_pause = 1;
226 }
227 }
228
229 static int e1000_set_pauseparam(struct net_device *netdev,
230 struct ethtool_pauseparam *pause)
231 {
232 struct e1000_adapter *adapter = netdev_priv(netdev);
233 struct e1000_hw *hw = &adapter->hw;
234 int retval = 0;
235
236 adapter->fc_autoneg = pause->autoneg;
237
238 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
239 msleep(1);
240
241 if (pause->rx_pause && pause->tx_pause)
242 hw->fc = E1000_FC_FULL;
243 else if (pause->rx_pause && !pause->tx_pause)
244 hw->fc = E1000_FC_RX_PAUSE;
245 else if (!pause->rx_pause && pause->tx_pause)
246 hw->fc = E1000_FC_TX_PAUSE;
247 else if (!pause->rx_pause && !pause->tx_pause)
248 hw->fc = E1000_FC_NONE;
249
250 hw->original_fc = hw->fc;
251
252 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
253 if (netif_running(adapter->netdev)) {
254 e1000_down(adapter);
255 e1000_up(adapter);
256 } else
257 e1000_reset(adapter);
258 } else
259 retval = ((hw->media_type == e1000_media_type_fiber) ?
260 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
261
262 clear_bit(__E1000_RESETTING, &adapter->flags);
263 return retval;
264 }
265
266 static u32 e1000_get_rx_csum(struct net_device *netdev)
267 {
268 struct e1000_adapter *adapter = netdev_priv(netdev);
269 return adapter->rx_csum;
270 }
271
272 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
273 {
274 struct e1000_adapter *adapter = netdev_priv(netdev);
275 adapter->rx_csum = data;
276
277 if (netif_running(netdev))
278 e1000_reinit_locked(adapter);
279 else
280 e1000_reset(adapter);
281 return 0;
282 }
283
284 static u32 e1000_get_tx_csum(struct net_device *netdev)
285 {
286 return (netdev->features & NETIF_F_HW_CSUM) != 0;
287 }
288
289 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
290 {
291 struct e1000_adapter *adapter = netdev_priv(netdev);
292 struct e1000_hw *hw = &adapter->hw;
293
294 if (hw->mac_type < e1000_82543) {
295 if (!data)
296 return -EINVAL;
297 return 0;
298 }
299
300 if (data)
301 netdev->features |= NETIF_F_HW_CSUM;
302 else
303 netdev->features &= ~NETIF_F_HW_CSUM;
304
305 return 0;
306 }
307
308 static int e1000_set_tso(struct net_device *netdev, u32 data)
309 {
310 struct e1000_adapter *adapter = netdev_priv(netdev);
311 struct e1000_hw *hw = &adapter->hw;
312
313 if ((hw->mac_type < e1000_82544) ||
314 (hw->mac_type == e1000_82547))
315 return data ? -EINVAL : 0;
316
317 if (data)
318 netdev->features |= NETIF_F_TSO;
319 else
320 netdev->features &= ~NETIF_F_TSO;
321
322 netdev->features &= ~NETIF_F_TSO6;
323
324 DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
325 adapter->tso_force = true;
326 return 0;
327 }
328
329 static u32 e1000_get_msglevel(struct net_device *netdev)
330 {
331 struct e1000_adapter *adapter = netdev_priv(netdev);
332 return adapter->msg_enable;
333 }
334
335 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
336 {
337 struct e1000_adapter *adapter = netdev_priv(netdev);
338 adapter->msg_enable = data;
339 }
340
341 static int e1000_get_regs_len(struct net_device *netdev)
342 {
343 #define E1000_REGS_LEN 32
344 return E1000_REGS_LEN * sizeof(u32);
345 }
346
347 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
348 void *p)
349 {
350 struct e1000_adapter *adapter = netdev_priv(netdev);
351 struct e1000_hw *hw = &adapter->hw;
352 u32 *regs_buff = p;
353 u16 phy_data;
354
355 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
356
357 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
358
359 regs_buff[0] = er32(CTRL);
360 regs_buff[1] = er32(STATUS);
361
362 regs_buff[2] = er32(RCTL);
363 regs_buff[3] = er32(RDLEN);
364 regs_buff[4] = er32(RDH);
365 regs_buff[5] = er32(RDT);
366 regs_buff[6] = er32(RDTR);
367
368 regs_buff[7] = er32(TCTL);
369 regs_buff[8] = er32(TDLEN);
370 regs_buff[9] = er32(TDH);
371 regs_buff[10] = er32(TDT);
372 regs_buff[11] = er32(TIDV);
373
374 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
375 if (hw->phy_type == e1000_phy_igp) {
376 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377 IGP01E1000_PHY_AGC_A);
378 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
379 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380 regs_buff[13] = (u32)phy_data; /* cable length */
381 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382 IGP01E1000_PHY_AGC_B);
383 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
384 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385 regs_buff[14] = (u32)phy_data; /* cable length */
386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387 IGP01E1000_PHY_AGC_C);
388 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
389 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390 regs_buff[15] = (u32)phy_data; /* cable length */
391 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392 IGP01E1000_PHY_AGC_D);
393 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
394 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395 regs_buff[16] = (u32)phy_data; /* cable length */
396 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
397 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
398 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
399 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400 regs_buff[18] = (u32)phy_data; /* cable polarity */
401 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402 IGP01E1000_PHY_PCS_INIT_REG);
403 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
404 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405 regs_buff[19] = (u32)phy_data; /* cable polarity */
406 regs_buff[20] = 0; /* polarity correction enabled (always) */
407 regs_buff[22] = 0; /* phy receive errors (unavailable) */
408 regs_buff[23] = regs_buff[18]; /* mdix mode */
409 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
410 } else {
411 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
412 regs_buff[13] = (u32)phy_data; /* cable length */
413 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
415 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
416 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
417 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
418 regs_buff[18] = regs_buff[13]; /* cable polarity */
419 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
420 regs_buff[20] = regs_buff[17]; /* polarity correction */
421 /* phy receive errors */
422 regs_buff[22] = adapter->phy_stats.receive_errors;
423 regs_buff[23] = regs_buff[13]; /* mdix mode */
424 }
425 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
426 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
427 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
428 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
429 if (hw->mac_type >= e1000_82540 &&
430 hw->media_type == e1000_media_type_copper) {
431 regs_buff[26] = er32(MANC);
432 }
433 }
434
435 static int e1000_get_eeprom_len(struct net_device *netdev)
436 {
437 struct e1000_adapter *adapter = netdev_priv(netdev);
438 struct e1000_hw *hw = &adapter->hw;
439
440 return hw->eeprom.word_size * 2;
441 }
442
443 static int e1000_get_eeprom(struct net_device *netdev,
444 struct ethtool_eeprom *eeprom, u8 *bytes)
445 {
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 struct e1000_hw *hw = &adapter->hw;
448 u16 *eeprom_buff;
449 int first_word, last_word;
450 int ret_val = 0;
451 u16 i;
452
453 if (eeprom->len == 0)
454 return -EINVAL;
455
456 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
457
458 first_word = eeprom->offset >> 1;
459 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
460
461 eeprom_buff = kmalloc(sizeof(u16) *
462 (last_word - first_word + 1), GFP_KERNEL);
463 if (!eeprom_buff)
464 return -ENOMEM;
465
466 if (hw->eeprom.type == e1000_eeprom_spi)
467 ret_val = e1000_read_eeprom(hw, first_word,
468 last_word - first_word + 1,
469 eeprom_buff);
470 else {
471 for (i = 0; i < last_word - first_word + 1; i++) {
472 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
473 &eeprom_buff[i]);
474 if (ret_val)
475 break;
476 }
477 }
478
479 /* Device's eeprom is always little-endian, word addressable */
480 for (i = 0; i < last_word - first_word + 1; i++)
481 le16_to_cpus(&eeprom_buff[i]);
482
483 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
484 eeprom->len);
485 kfree(eeprom_buff);
486
487 return ret_val;
488 }
489
490 static int e1000_set_eeprom(struct net_device *netdev,
491 struct ethtool_eeprom *eeprom, u8 *bytes)
492 {
493 struct e1000_adapter *adapter = netdev_priv(netdev);
494 struct e1000_hw *hw = &adapter->hw;
495 u16 *eeprom_buff;
496 void *ptr;
497 int max_len, first_word, last_word, ret_val = 0;
498 u16 i;
499
500 if (eeprom->len == 0)
501 return -EOPNOTSUPP;
502
503 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
504 return -EFAULT;
505
506 max_len = hw->eeprom.word_size * 2;
507
508 first_word = eeprom->offset >> 1;
509 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
510 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
511 if (!eeprom_buff)
512 return -ENOMEM;
513
514 ptr = (void *)eeprom_buff;
515
516 if (eeprom->offset & 1) {
517 /* need read/modify/write of first changed EEPROM word */
518 /* only the second byte of the word is being modified */
519 ret_val = e1000_read_eeprom(hw, first_word, 1,
520 &eeprom_buff[0]);
521 ptr++;
522 }
523 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
524 /* need read/modify/write of last changed EEPROM word */
525 /* only the first byte of the word is being modified */
526 ret_val = e1000_read_eeprom(hw, last_word, 1,
527 &eeprom_buff[last_word - first_word]);
528 }
529
530 /* Device's eeprom is always little-endian, word addressable */
531 for (i = 0; i < last_word - first_word + 1; i++)
532 le16_to_cpus(&eeprom_buff[i]);
533
534 memcpy(ptr, bytes, eeprom->len);
535
536 for (i = 0; i < last_word - first_word + 1; i++)
537 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539 ret_val = e1000_write_eeprom(hw, first_word,
540 last_word - first_word + 1, eeprom_buff);
541
542 /* Update the checksum over the first part of the EEPROM if needed */
543 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544 e1000_update_eeprom_checksum(hw);
545
546 kfree(eeprom_buff);
547 return ret_val;
548 }
549
550 static void e1000_get_drvinfo(struct net_device *netdev,
551 struct ethtool_drvinfo *drvinfo)
552 {
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554 char firmware_version[32];
555
556 strncpy(drvinfo->driver, e1000_driver_name, 32);
557 strncpy(drvinfo->version, e1000_driver_version, 32);
558
559 sprintf(firmware_version, "N/A");
560 strncpy(drvinfo->fw_version, firmware_version, 32);
561 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
562 drvinfo->regdump_len = e1000_get_regs_len(netdev);
563 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
564 }
565
566 static void e1000_get_ringparam(struct net_device *netdev,
567 struct ethtool_ringparam *ring)
568 {
569 struct e1000_adapter *adapter = netdev_priv(netdev);
570 struct e1000_hw *hw = &adapter->hw;
571 e1000_mac_type mac_type = hw->mac_type;
572 struct e1000_tx_ring *txdr = adapter->tx_ring;
573 struct e1000_rx_ring *rxdr = adapter->rx_ring;
574
575 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
576 E1000_MAX_82544_RXD;
577 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
578 E1000_MAX_82544_TXD;
579 ring->rx_mini_max_pending = 0;
580 ring->rx_jumbo_max_pending = 0;
581 ring->rx_pending = rxdr->count;
582 ring->tx_pending = txdr->count;
583 ring->rx_mini_pending = 0;
584 ring->rx_jumbo_pending = 0;
585 }
586
587 static int e1000_set_ringparam(struct net_device *netdev,
588 struct ethtool_ringparam *ring)
589 {
590 struct e1000_adapter *adapter = netdev_priv(netdev);
591 struct e1000_hw *hw = &adapter->hw;
592 e1000_mac_type mac_type = hw->mac_type;
593 struct e1000_tx_ring *txdr, *tx_old;
594 struct e1000_rx_ring *rxdr, *rx_old;
595 int i, err;
596
597 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
598 return -EINVAL;
599
600 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
601 msleep(1);
602
603 if (netif_running(adapter->netdev))
604 e1000_down(adapter);
605
606 tx_old = adapter->tx_ring;
607 rx_old = adapter->rx_ring;
608
609 err = -ENOMEM;
610 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
611 if (!txdr)
612 goto err_alloc_tx;
613
614 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
615 if (!rxdr)
616 goto err_alloc_rx;
617
618 adapter->tx_ring = txdr;
619 adapter->rx_ring = rxdr;
620
621 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
622 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
623 E1000_MAX_RXD : E1000_MAX_82544_RXD));
624 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
625
626 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
627 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
628 E1000_MAX_TXD : E1000_MAX_82544_TXD));
629 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
630
631 for (i = 0; i < adapter->num_tx_queues; i++)
632 txdr[i].count = txdr->count;
633 for (i = 0; i < adapter->num_rx_queues; i++)
634 rxdr[i].count = rxdr->count;
635
636 if (netif_running(adapter->netdev)) {
637 /* Try to get new resources before deleting old */
638 err = e1000_setup_all_rx_resources(adapter);
639 if (err)
640 goto err_setup_rx;
641 err = e1000_setup_all_tx_resources(adapter);
642 if (err)
643 goto err_setup_tx;
644
645 /* save the new, restore the old in order to free it,
646 * then restore the new back again */
647
648 adapter->rx_ring = rx_old;
649 adapter->tx_ring = tx_old;
650 e1000_free_all_rx_resources(adapter);
651 e1000_free_all_tx_resources(adapter);
652 kfree(tx_old);
653 kfree(rx_old);
654 adapter->rx_ring = rxdr;
655 adapter->tx_ring = txdr;
656 err = e1000_up(adapter);
657 if (err)
658 goto err_setup;
659 }
660
661 clear_bit(__E1000_RESETTING, &adapter->flags);
662 return 0;
663 err_setup_tx:
664 e1000_free_all_rx_resources(adapter);
665 err_setup_rx:
666 adapter->rx_ring = rx_old;
667 adapter->tx_ring = tx_old;
668 kfree(rxdr);
669 err_alloc_rx:
670 kfree(txdr);
671 err_alloc_tx:
672 e1000_up(adapter);
673 err_setup:
674 clear_bit(__E1000_RESETTING, &adapter->flags);
675 return err;
676 }
677
678 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
679 u32 mask, u32 write)
680 {
681 struct e1000_hw *hw = &adapter->hw;
682 static const u32 test[] =
683 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
684 u8 __iomem *address = hw->hw_addr + reg;
685 u32 read;
686 int i;
687
688 for (i = 0; i < ARRAY_SIZE(test); i++) {
689 writel(write & test[i], address);
690 read = readl(address);
691 if (read != (write & test[i] & mask)) {
692 DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
693 "got 0x%08X expected 0x%08X\n",
694 reg, read, (write & test[i] & mask));
695 *data = reg;
696 return true;
697 }
698 }
699 return false;
700 }
701
702 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
703 u32 mask, u32 write)
704 {
705 struct e1000_hw *hw = &adapter->hw;
706 u8 __iomem *address = hw->hw_addr + reg;
707 u32 read;
708
709 writel(write & mask, address);
710 read = readl(address);
711 if ((read & mask) != (write & mask)) {
712 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
713 "got 0x%08X expected 0x%08X\n",
714 reg, (read & mask), (write & mask));
715 *data = reg;
716 return true;
717 }
718 return false;
719 }
720
721 #define REG_PATTERN_TEST(reg, mask, write) \
722 do { \
723 if (reg_pattern_test(adapter, data, \
724 (hw->mac_type >= e1000_82543) \
725 ? E1000_##reg : E1000_82542_##reg, \
726 mask, write)) \
727 return 1; \
728 } while (0)
729
730 #define REG_SET_AND_CHECK(reg, mask, write) \
731 do { \
732 if (reg_set_and_check(adapter, data, \
733 (hw->mac_type >= e1000_82543) \
734 ? E1000_##reg : E1000_82542_##reg, \
735 mask, write)) \
736 return 1; \
737 } while (0)
738
739 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
740 {
741 u32 value, before, after;
742 u32 i, toggle;
743 struct e1000_hw *hw = &adapter->hw;
744
745 /* The status register is Read Only, so a write should fail.
746 * Some bits that get toggled are ignored.
747 */
748
749 /* there are several bits on newer hardware that are r/w */
750 toggle = 0xFFFFF833;
751
752 before = er32(STATUS);
753 value = (er32(STATUS) & toggle);
754 ew32(STATUS, toggle);
755 after = er32(STATUS) & toggle;
756 if (value != after) {
757 DPRINTK(DRV, ERR, "failed STATUS register test got: "
758 "0x%08X expected: 0x%08X\n", after, value);
759 *data = 1;
760 return 1;
761 }
762 /* restore previous status */
763 ew32(STATUS, before);
764
765 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
766 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
769
770 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
771 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
772 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
773 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
775 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
776 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
777 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
778 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
780
781 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
782
783 before = 0x06DFB3FE;
784 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
785 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
786
787 if (hw->mac_type >= e1000_82543) {
788
789 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
790 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
793 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
794 value = E1000_RAR_ENTRIES;
795 for (i = 0; i < value; i++) {
796 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
797 0xFFFFFFFF);
798 }
799
800 } else {
801
802 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
803 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
804 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
805 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
806
807 }
808
809 value = E1000_MC_TBL_SIZE;
810 for (i = 0; i < value; i++)
811 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
812
813 *data = 0;
814 return 0;
815 }
816
817 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
818 {
819 struct e1000_hw *hw = &adapter->hw;
820 u16 temp;
821 u16 checksum = 0;
822 u16 i;
823
824 *data = 0;
825 /* Read and add up the contents of the EEPROM */
826 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
827 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
828 *data = 1;
829 break;
830 }
831 checksum += temp;
832 }
833
834 /* If Checksum is not Correct return error else test passed */
835 if ((checksum != (u16)EEPROM_SUM) && !(*data))
836 *data = 2;
837
838 return *data;
839 }
840
841 static irqreturn_t e1000_test_intr(int irq, void *data)
842 {
843 struct net_device *netdev = (struct net_device *)data;
844 struct e1000_adapter *adapter = netdev_priv(netdev);
845 struct e1000_hw *hw = &adapter->hw;
846
847 adapter->test_icr |= er32(ICR);
848
849 return IRQ_HANDLED;
850 }
851
852 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
853 {
854 struct net_device *netdev = adapter->netdev;
855 u32 mask, i = 0;
856 bool shared_int = true;
857 u32 irq = adapter->pdev->irq;
858 struct e1000_hw *hw = &adapter->hw;
859
860 *data = 0;
861
862 /* NOTE: we don't test MSI interrupts here, yet */
863 /* Hook up test interrupt handler just for this test */
864 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
865 netdev))
866 shared_int = false;
867 else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
868 netdev->name, netdev)) {
869 *data = 1;
870 return -1;
871 }
872 DPRINTK(HW, INFO, "testing %s interrupt\n",
873 (shared_int ? "shared" : "unshared"));
874
875 /* Disable all the interrupts */
876 ew32(IMC, 0xFFFFFFFF);
877 msleep(10);
878
879 /* Test each interrupt */
880 for (; i < 10; i++) {
881
882 /* Interrupt to test */
883 mask = 1 << i;
884
885 if (!shared_int) {
886 /* Disable the interrupt to be reported in
887 * the cause register and then force the same
888 * interrupt and see if one gets posted. If
889 * an interrupt was posted to the bus, the
890 * test failed.
891 */
892 adapter->test_icr = 0;
893 ew32(IMC, mask);
894 ew32(ICS, mask);
895 msleep(10);
896
897 if (adapter->test_icr & mask) {
898 *data = 3;
899 break;
900 }
901 }
902
903 /* Enable the interrupt to be reported in
904 * the cause register and then force the same
905 * interrupt and see if one gets posted. If
906 * an interrupt was not posted to the bus, the
907 * test failed.
908 */
909 adapter->test_icr = 0;
910 ew32(IMS, mask);
911 ew32(ICS, mask);
912 msleep(10);
913
914 if (!(adapter->test_icr & mask)) {
915 *data = 4;
916 break;
917 }
918
919 if (!shared_int) {
920 /* Disable the other interrupts to be reported in
921 * the cause register and then force the other
922 * interrupts and see if any get posted. If
923 * an interrupt was posted to the bus, the
924 * test failed.
925 */
926 adapter->test_icr = 0;
927 ew32(IMC, ~mask & 0x00007FFF);
928 ew32(ICS, ~mask & 0x00007FFF);
929 msleep(10);
930
931 if (adapter->test_icr) {
932 *data = 5;
933 break;
934 }
935 }
936 }
937
938 /* Disable all the interrupts */
939 ew32(IMC, 0xFFFFFFFF);
940 msleep(10);
941
942 /* Unhook test interrupt handler */
943 free_irq(irq, netdev);
944
945 return *data;
946 }
947
948 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
949 {
950 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
951 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
952 struct pci_dev *pdev = adapter->pdev;
953 int i;
954
955 if (txdr->desc && txdr->buffer_info) {
956 for (i = 0; i < txdr->count; i++) {
957 if (txdr->buffer_info[i].dma)
958 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
959 txdr->buffer_info[i].length,
960 PCI_DMA_TODEVICE);
961 if (txdr->buffer_info[i].skb)
962 dev_kfree_skb(txdr->buffer_info[i].skb);
963 }
964 }
965
966 if (rxdr->desc && rxdr->buffer_info) {
967 for (i = 0; i < rxdr->count; i++) {
968 if (rxdr->buffer_info[i].dma)
969 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
970 rxdr->buffer_info[i].length,
971 PCI_DMA_FROMDEVICE);
972 if (rxdr->buffer_info[i].skb)
973 dev_kfree_skb(rxdr->buffer_info[i].skb);
974 }
975 }
976
977 if (txdr->desc) {
978 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
979 txdr->desc = NULL;
980 }
981 if (rxdr->desc) {
982 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
983 rxdr->desc = NULL;
984 }
985
986 kfree(txdr->buffer_info);
987 txdr->buffer_info = NULL;
988 kfree(rxdr->buffer_info);
989 rxdr->buffer_info = NULL;
990
991 return;
992 }
993
994 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
995 {
996 struct e1000_hw *hw = &adapter->hw;
997 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
998 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
999 struct pci_dev *pdev = adapter->pdev;
1000 u32 rctl;
1001 int i, ret_val;
1002
1003 /* Setup Tx descriptor ring and Tx buffers */
1004
1005 if (!txdr->count)
1006 txdr->count = E1000_DEFAULT_TXD;
1007
1008 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1009 GFP_KERNEL);
1010 if (!txdr->buffer_info) {
1011 ret_val = 1;
1012 goto err_nomem;
1013 }
1014
1015 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1016 txdr->size = ALIGN(txdr->size, 4096);
1017 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1018 if (!txdr->desc) {
1019 ret_val = 2;
1020 goto err_nomem;
1021 }
1022 memset(txdr->desc, 0, txdr->size);
1023 txdr->next_to_use = txdr->next_to_clean = 0;
1024
1025 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1026 ew32(TDBAH, ((u64)txdr->dma >> 32));
1027 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1028 ew32(TDH, 0);
1029 ew32(TDT, 0);
1030 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1031 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1032 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1033
1034 for (i = 0; i < txdr->count; i++) {
1035 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1036 struct sk_buff *skb;
1037 unsigned int size = 1024;
1038
1039 skb = alloc_skb(size, GFP_KERNEL);
1040 if (!skb) {
1041 ret_val = 3;
1042 goto err_nomem;
1043 }
1044 skb_put(skb, size);
1045 txdr->buffer_info[i].skb = skb;
1046 txdr->buffer_info[i].length = skb->len;
1047 txdr->buffer_info[i].dma =
1048 pci_map_single(pdev, skb->data, skb->len,
1049 PCI_DMA_TODEVICE);
1050 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1051 tx_desc->lower.data = cpu_to_le32(skb->len);
1052 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1053 E1000_TXD_CMD_IFCS |
1054 E1000_TXD_CMD_RPS);
1055 tx_desc->upper.data = 0;
1056 }
1057
1058 /* Setup Rx descriptor ring and Rx buffers */
1059
1060 if (!rxdr->count)
1061 rxdr->count = E1000_DEFAULT_RXD;
1062
1063 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1064 GFP_KERNEL);
1065 if (!rxdr->buffer_info) {
1066 ret_val = 4;
1067 goto err_nomem;
1068 }
1069
1070 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1071 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1072 if (!rxdr->desc) {
1073 ret_val = 5;
1074 goto err_nomem;
1075 }
1076 memset(rxdr->desc, 0, rxdr->size);
1077 rxdr->next_to_use = rxdr->next_to_clean = 0;
1078
1079 rctl = er32(RCTL);
1080 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1081 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1082 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1083 ew32(RDLEN, rxdr->size);
1084 ew32(RDH, 0);
1085 ew32(RDT, 0);
1086 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1087 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1088 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1089 ew32(RCTL, rctl);
1090
1091 for (i = 0; i < rxdr->count; i++) {
1092 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1093 struct sk_buff *skb;
1094
1095 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1096 if (!skb) {
1097 ret_val = 6;
1098 goto err_nomem;
1099 }
1100 skb_reserve(skb, NET_IP_ALIGN);
1101 rxdr->buffer_info[i].skb = skb;
1102 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1103 rxdr->buffer_info[i].dma =
1104 pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1105 PCI_DMA_FROMDEVICE);
1106 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1107 memset(skb->data, 0x00, skb->len);
1108 }
1109
1110 return 0;
1111
1112 err_nomem:
1113 e1000_free_desc_rings(adapter);
1114 return ret_val;
1115 }
1116
1117 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1118 {
1119 struct e1000_hw *hw = &adapter->hw;
1120
1121 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1122 e1000_write_phy_reg(hw, 29, 0x001F);
1123 e1000_write_phy_reg(hw, 30, 0x8FFC);
1124 e1000_write_phy_reg(hw, 29, 0x001A);
1125 e1000_write_phy_reg(hw, 30, 0x8FF0);
1126 }
1127
1128 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1129 {
1130 struct e1000_hw *hw = &adapter->hw;
1131 u16 phy_reg;
1132
1133 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1134 * Extended PHY Specific Control Register to 25MHz clock. This
1135 * value defaults back to a 2.5MHz clock when the PHY is reset.
1136 */
1137 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1138 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1139 e1000_write_phy_reg(hw,
1140 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1141
1142 /* In addition, because of the s/w reset above, we need to enable
1143 * CRS on TX. This must be set for both full and half duplex
1144 * operation.
1145 */
1146 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1147 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1148 e1000_write_phy_reg(hw,
1149 M88E1000_PHY_SPEC_CTRL, phy_reg);
1150 }
1151
1152 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1153 {
1154 struct e1000_hw *hw = &adapter->hw;
1155 u32 ctrl_reg;
1156 u16 phy_reg;
1157
1158 /* Setup the Device Control Register for PHY loopback test. */
1159
1160 ctrl_reg = er32(CTRL);
1161 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1162 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1163 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1164 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1165 E1000_CTRL_FD); /* Force Duplex to FULL */
1166
1167 ew32(CTRL, ctrl_reg);
1168
1169 /* Read the PHY Specific Control Register (0x10) */
1170 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1171
1172 /* Clear Auto-Crossover bits in PHY Specific Control Register
1173 * (bits 6:5).
1174 */
1175 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1176 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1177
1178 /* Perform software reset on the PHY */
1179 e1000_phy_reset(hw);
1180
1181 /* Have to setup TX_CLK and TX_CRS after software reset */
1182 e1000_phy_reset_clk_and_crs(adapter);
1183
1184 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1185
1186 /* Wait for reset to complete. */
1187 udelay(500);
1188
1189 /* Have to setup TX_CLK and TX_CRS after software reset */
1190 e1000_phy_reset_clk_and_crs(adapter);
1191
1192 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1193 e1000_phy_disable_receiver(adapter);
1194
1195 /* Set the loopback bit in the PHY control register. */
1196 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1197 phy_reg |= MII_CR_LOOPBACK;
1198 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1199
1200 /* Setup TX_CLK and TX_CRS one more time. */
1201 e1000_phy_reset_clk_and_crs(adapter);
1202
1203 /* Check Phy Configuration */
1204 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1205 if (phy_reg != 0x4100)
1206 return 9;
1207
1208 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1209 if (phy_reg != 0x0070)
1210 return 10;
1211
1212 e1000_read_phy_reg(hw, 29, &phy_reg);
1213 if (phy_reg != 0x001A)
1214 return 11;
1215
1216 return 0;
1217 }
1218
1219 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1220 {
1221 struct e1000_hw *hw = &adapter->hw;
1222 u32 ctrl_reg = 0;
1223 u32 stat_reg = 0;
1224
1225 hw->autoneg = false;
1226
1227 if (hw->phy_type == e1000_phy_m88) {
1228 /* Auto-MDI/MDIX Off */
1229 e1000_write_phy_reg(hw,
1230 M88E1000_PHY_SPEC_CTRL, 0x0808);
1231 /* reset to update Auto-MDI/MDIX */
1232 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1233 /* autoneg off */
1234 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1235 }
1236
1237 ctrl_reg = er32(CTRL);
1238
1239 /* force 1000, set loopback */
1240 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1241
1242 /* Now set up the MAC to the same speed/duplex as the PHY. */
1243 ctrl_reg = er32(CTRL);
1244 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1245 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1246 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1247 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1248 E1000_CTRL_FD); /* Force Duplex to FULL */
1249
1250 if (hw->media_type == e1000_media_type_copper &&
1251 hw->phy_type == e1000_phy_m88)
1252 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1253 else {
1254 /* Set the ILOS bit on the fiber Nic is half
1255 * duplex link is detected. */
1256 stat_reg = er32(STATUS);
1257 if ((stat_reg & E1000_STATUS_FD) == 0)
1258 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1259 }
1260
1261 ew32(CTRL, ctrl_reg);
1262
1263 /* Disable the receiver on the PHY so when a cable is plugged in, the
1264 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1265 */
1266 if (hw->phy_type == e1000_phy_m88)
1267 e1000_phy_disable_receiver(adapter);
1268
1269 udelay(500);
1270
1271 return 0;
1272 }
1273
1274 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1275 {
1276 struct e1000_hw *hw = &adapter->hw;
1277 u16 phy_reg = 0;
1278 u16 count = 0;
1279
1280 switch (hw->mac_type) {
1281 case e1000_82543:
1282 if (hw->media_type == e1000_media_type_copper) {
1283 /* Attempt to setup Loopback mode on Non-integrated PHY.
1284 * Some PHY registers get corrupted at random, so
1285 * attempt this 10 times.
1286 */
1287 while (e1000_nonintegrated_phy_loopback(adapter) &&
1288 count++ < 10);
1289 if (count < 11)
1290 return 0;
1291 }
1292 break;
1293
1294 case e1000_82544:
1295 case e1000_82540:
1296 case e1000_82545:
1297 case e1000_82545_rev_3:
1298 case e1000_82546:
1299 case e1000_82546_rev_3:
1300 case e1000_82541:
1301 case e1000_82541_rev_2:
1302 case e1000_82547:
1303 case e1000_82547_rev_2:
1304 return e1000_integrated_phy_loopback(adapter);
1305 break;
1306 default:
1307 /* Default PHY loopback work is to read the MII
1308 * control register and assert bit 14 (loopback mode).
1309 */
1310 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1311 phy_reg |= MII_CR_LOOPBACK;
1312 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1313 return 0;
1314 break;
1315 }
1316
1317 return 8;
1318 }
1319
1320 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1321 {
1322 struct e1000_hw *hw = &adapter->hw;
1323 u32 rctl;
1324
1325 if (hw->media_type == e1000_media_type_fiber ||
1326 hw->media_type == e1000_media_type_internal_serdes) {
1327 switch (hw->mac_type) {
1328 case e1000_82545:
1329 case e1000_82546:
1330 case e1000_82545_rev_3:
1331 case e1000_82546_rev_3:
1332 return e1000_set_phy_loopback(adapter);
1333 break;
1334 default:
1335 rctl = er32(RCTL);
1336 rctl |= E1000_RCTL_LBM_TCVR;
1337 ew32(RCTL, rctl);
1338 return 0;
1339 }
1340 } else if (hw->media_type == e1000_media_type_copper)
1341 return e1000_set_phy_loopback(adapter);
1342
1343 return 7;
1344 }
1345
1346 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1347 {
1348 struct e1000_hw *hw = &adapter->hw;
1349 u32 rctl;
1350 u16 phy_reg;
1351
1352 rctl = er32(RCTL);
1353 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1354 ew32(RCTL, rctl);
1355
1356 switch (hw->mac_type) {
1357 case e1000_82545:
1358 case e1000_82546:
1359 case e1000_82545_rev_3:
1360 case e1000_82546_rev_3:
1361 default:
1362 hw->autoneg = true;
1363 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1364 if (phy_reg & MII_CR_LOOPBACK) {
1365 phy_reg &= ~MII_CR_LOOPBACK;
1366 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1367 e1000_phy_reset(hw);
1368 }
1369 break;
1370 }
1371 }
1372
1373 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1374 unsigned int frame_size)
1375 {
1376 memset(skb->data, 0xFF, frame_size);
1377 frame_size &= ~1;
1378 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1379 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1380 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1381 }
1382
1383 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1384 unsigned int frame_size)
1385 {
1386 frame_size &= ~1;
1387 if (*(skb->data + 3) == 0xFF) {
1388 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1389 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1390 return 0;
1391 }
1392 }
1393 return 13;
1394 }
1395
1396 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1397 {
1398 struct e1000_hw *hw = &adapter->hw;
1399 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1400 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1401 struct pci_dev *pdev = adapter->pdev;
1402 int i, j, k, l, lc, good_cnt, ret_val=0;
1403 unsigned long time;
1404
1405 ew32(RDT, rxdr->count - 1);
1406
1407 /* Calculate the loop count based on the largest descriptor ring
1408 * The idea is to wrap the largest ring a number of times using 64
1409 * send/receive pairs during each loop
1410 */
1411
1412 if (rxdr->count <= txdr->count)
1413 lc = ((txdr->count / 64) * 2) + 1;
1414 else
1415 lc = ((rxdr->count / 64) * 2) + 1;
1416
1417 k = l = 0;
1418 for (j = 0; j <= lc; j++) { /* loop count loop */
1419 for (i = 0; i < 64; i++) { /* send the packets */
1420 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1421 1024);
1422 pci_dma_sync_single_for_device(pdev,
1423 txdr->buffer_info[k].dma,
1424 txdr->buffer_info[k].length,
1425 PCI_DMA_TODEVICE);
1426 if (unlikely(++k == txdr->count)) k = 0;
1427 }
1428 ew32(TDT, k);
1429 msleep(200);
1430 time = jiffies; /* set the start time for the receive */
1431 good_cnt = 0;
1432 do { /* receive the sent packets */
1433 pci_dma_sync_single_for_cpu(pdev,
1434 rxdr->buffer_info[l].dma,
1435 rxdr->buffer_info[l].length,
1436 PCI_DMA_FROMDEVICE);
1437
1438 ret_val = e1000_check_lbtest_frame(
1439 rxdr->buffer_info[l].skb,
1440 1024);
1441 if (!ret_val)
1442 good_cnt++;
1443 if (unlikely(++l == rxdr->count)) l = 0;
1444 /* time + 20 msecs (200 msecs on 2.4) is more than
1445 * enough time to complete the receives, if it's
1446 * exceeded, break and error off
1447 */
1448 } while (good_cnt < 64 && jiffies < (time + 20));
1449 if (good_cnt != 64) {
1450 ret_val = 13; /* ret_val is the same as mis-compare */
1451 break;
1452 }
1453 if (jiffies >= (time + 2)) {
1454 ret_val = 14; /* error code for time out error */
1455 break;
1456 }
1457 } /* end loop count loop */
1458 return ret_val;
1459 }
1460
1461 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1462 {
1463 *data = e1000_setup_desc_rings(adapter);
1464 if (*data)
1465 goto out;
1466 *data = e1000_setup_loopback_test(adapter);
1467 if (*data)
1468 goto err_loopback;
1469 *data = e1000_run_loopback_test(adapter);
1470 e1000_loopback_cleanup(adapter);
1471
1472 err_loopback:
1473 e1000_free_desc_rings(adapter);
1474 out:
1475 return *data;
1476 }
1477
1478 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1479 {
1480 struct e1000_hw *hw = &adapter->hw;
1481 *data = 0;
1482 if (hw->media_type == e1000_media_type_internal_serdes) {
1483 int i = 0;
1484 hw->serdes_has_link = false;
1485
1486 /* On some blade server designs, link establishment
1487 * could take as long as 2-3 minutes */
1488 do {
1489 e1000_check_for_link(hw);
1490 if (hw->serdes_has_link)
1491 return *data;
1492 msleep(20);
1493 } while (i++ < 3750);
1494
1495 *data = 1;
1496 } else {
1497 e1000_check_for_link(hw);
1498 if (hw->autoneg) /* if auto_neg is set wait for it */
1499 msleep(4000);
1500
1501 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1502 *data = 1;
1503 }
1504 }
1505 return *data;
1506 }
1507
1508 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1509 {
1510 switch (sset) {
1511 case ETH_SS_TEST:
1512 return E1000_TEST_LEN;
1513 case ETH_SS_STATS:
1514 return E1000_STATS_LEN;
1515 default:
1516 return -EOPNOTSUPP;
1517 }
1518 }
1519
1520 static void e1000_diag_test(struct net_device *netdev,
1521 struct ethtool_test *eth_test, u64 *data)
1522 {
1523 struct e1000_adapter *adapter = netdev_priv(netdev);
1524 struct e1000_hw *hw = &adapter->hw;
1525 bool if_running = netif_running(netdev);
1526
1527 set_bit(__E1000_TESTING, &adapter->flags);
1528 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1529 /* Offline tests */
1530
1531 /* save speed, duplex, autoneg settings */
1532 u16 autoneg_advertised = hw->autoneg_advertised;
1533 u8 forced_speed_duplex = hw->forced_speed_duplex;
1534 u8 autoneg = hw->autoneg;
1535
1536 DPRINTK(HW, INFO, "offline testing starting\n");
1537
1538 /* Link test performed before hardware reset so autoneg doesn't
1539 * interfere with test result */
1540 if (e1000_link_test(adapter, &data[4]))
1541 eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543 if (if_running)
1544 /* indicate we're in test mode */
1545 dev_close(netdev);
1546 else
1547 e1000_reset(adapter);
1548
1549 if (e1000_reg_test(adapter, &data[0]))
1550 eth_test->flags |= ETH_TEST_FL_FAILED;
1551
1552 e1000_reset(adapter);
1553 if (e1000_eeprom_test(adapter, &data[1]))
1554 eth_test->flags |= ETH_TEST_FL_FAILED;
1555
1556 e1000_reset(adapter);
1557 if (e1000_intr_test(adapter, &data[2]))
1558 eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560 e1000_reset(adapter);
1561 /* make sure the phy is powered up */
1562 e1000_power_up_phy(adapter);
1563 if (e1000_loopback_test(adapter, &data[3]))
1564 eth_test->flags |= ETH_TEST_FL_FAILED;
1565
1566 /* restore speed, duplex, autoneg settings */
1567 hw->autoneg_advertised = autoneg_advertised;
1568 hw->forced_speed_duplex = forced_speed_duplex;
1569 hw->autoneg = autoneg;
1570
1571 e1000_reset(adapter);
1572 clear_bit(__E1000_TESTING, &adapter->flags);
1573 if (if_running)
1574 dev_open(netdev);
1575 } else {
1576 DPRINTK(HW, INFO, "online testing starting\n");
1577 /* Online tests */
1578 if (e1000_link_test(adapter, &data[4]))
1579 eth_test->flags |= ETH_TEST_FL_FAILED;
1580
1581 /* Online tests aren't run; pass by default */
1582 data[0] = 0;
1583 data[1] = 0;
1584 data[2] = 0;
1585 data[3] = 0;
1586
1587 clear_bit(__E1000_TESTING, &adapter->flags);
1588 }
1589 msleep_interruptible(4 * 1000);
1590 }
1591
1592 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1593 struct ethtool_wolinfo *wol)
1594 {
1595 struct e1000_hw *hw = &adapter->hw;
1596 int retval = 1; /* fail by default */
1597
1598 switch (hw->device_id) {
1599 case E1000_DEV_ID_82542:
1600 case E1000_DEV_ID_82543GC_FIBER:
1601 case E1000_DEV_ID_82543GC_COPPER:
1602 case E1000_DEV_ID_82544EI_FIBER:
1603 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1604 case E1000_DEV_ID_82545EM_FIBER:
1605 case E1000_DEV_ID_82545EM_COPPER:
1606 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1607 case E1000_DEV_ID_82546GB_PCIE:
1608 /* these don't support WoL at all */
1609 wol->supported = 0;
1610 break;
1611 case E1000_DEV_ID_82546EB_FIBER:
1612 case E1000_DEV_ID_82546GB_FIBER:
1613 /* Wake events not supported on port B */
1614 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1615 wol->supported = 0;
1616 break;
1617 }
1618 /* return success for non excluded adapter ports */
1619 retval = 0;
1620 break;
1621 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1622 /* quad port adapters only support WoL on port A */
1623 if (!adapter->quad_port_a) {
1624 wol->supported = 0;
1625 break;
1626 }
1627 /* return success for non excluded adapter ports */
1628 retval = 0;
1629 break;
1630 default:
1631 /* dual port cards only support WoL on port A from now on
1632 * unless it was enabled in the eeprom for port B
1633 * so exclude FUNC_1 ports from having WoL enabled */
1634 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1635 !adapter->eeprom_wol) {
1636 wol->supported = 0;
1637 break;
1638 }
1639
1640 retval = 0;
1641 }
1642
1643 return retval;
1644 }
1645
1646 static void e1000_get_wol(struct net_device *netdev,
1647 struct ethtool_wolinfo *wol)
1648 {
1649 struct e1000_adapter *adapter = netdev_priv(netdev);
1650 struct e1000_hw *hw = &adapter->hw;
1651
1652 wol->supported = WAKE_UCAST | WAKE_MCAST |
1653 WAKE_BCAST | WAKE_MAGIC;
1654 wol->wolopts = 0;
1655
1656 /* this function will set ->supported = 0 and return 1 if wol is not
1657 * supported by this hardware */
1658 if (e1000_wol_exclusion(adapter, wol) ||
1659 !device_can_wakeup(&adapter->pdev->dev))
1660 return;
1661
1662 /* apply any specific unsupported masks here */
1663 switch (hw->device_id) {
1664 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1665 /* KSP3 does not suppport UCAST wake-ups */
1666 wol->supported &= ~WAKE_UCAST;
1667
1668 if (adapter->wol & E1000_WUFC_EX)
1669 DPRINTK(DRV, ERR, "Interface does not support "
1670 "directed (unicast) frame wake-up packets\n");
1671 break;
1672 default:
1673 break;
1674 }
1675
1676 if (adapter->wol & E1000_WUFC_EX)
1677 wol->wolopts |= WAKE_UCAST;
1678 if (adapter->wol & E1000_WUFC_MC)
1679 wol->wolopts |= WAKE_MCAST;
1680 if (adapter->wol & E1000_WUFC_BC)
1681 wol->wolopts |= WAKE_BCAST;
1682 if (adapter->wol & E1000_WUFC_MAG)
1683 wol->wolopts |= WAKE_MAGIC;
1684
1685 return;
1686 }
1687
1688 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1689 {
1690 struct e1000_adapter *adapter = netdev_priv(netdev);
1691 struct e1000_hw *hw = &adapter->hw;
1692
1693 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1694 return -EOPNOTSUPP;
1695
1696 if (e1000_wol_exclusion(adapter, wol) ||
1697 !device_can_wakeup(&adapter->pdev->dev))
1698 return wol->wolopts ? -EOPNOTSUPP : 0;
1699
1700 switch (hw->device_id) {
1701 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1702 if (wol->wolopts & WAKE_UCAST) {
1703 DPRINTK(DRV, ERR, "Interface does not support "
1704 "directed (unicast) frame wake-up packets\n");
1705 return -EOPNOTSUPP;
1706 }
1707 break;
1708 default:
1709 break;
1710 }
1711
1712 /* these settings will always override what we currently have */
1713 adapter->wol = 0;
1714
1715 if (wol->wolopts & WAKE_UCAST)
1716 adapter->wol |= E1000_WUFC_EX;
1717 if (wol->wolopts & WAKE_MCAST)
1718 adapter->wol |= E1000_WUFC_MC;
1719 if (wol->wolopts & WAKE_BCAST)
1720 adapter->wol |= E1000_WUFC_BC;
1721 if (wol->wolopts & WAKE_MAGIC)
1722 adapter->wol |= E1000_WUFC_MAG;
1723
1724 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1725
1726 return 0;
1727 }
1728
1729 /* toggle LED 4 times per second = 2 "blinks" per second */
1730 #define E1000_ID_INTERVAL (HZ/4)
1731
1732 /* bit defines for adapter->led_status */
1733 #define E1000_LED_ON 0
1734
1735 static void e1000_led_blink_callback(unsigned long data)
1736 {
1737 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1738 struct e1000_hw *hw = &adapter->hw;
1739
1740 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1741 e1000_led_off(hw);
1742 else
1743 e1000_led_on(hw);
1744
1745 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1746 }
1747
1748 static int e1000_phys_id(struct net_device *netdev, u32 data)
1749 {
1750 struct e1000_adapter *adapter = netdev_priv(netdev);
1751 struct e1000_hw *hw = &adapter->hw;
1752
1753 if (!data)
1754 data = INT_MAX;
1755
1756 if (!adapter->blink_timer.function) {
1757 init_timer(&adapter->blink_timer);
1758 adapter->blink_timer.function = e1000_led_blink_callback;
1759 adapter->blink_timer.data = (unsigned long)adapter;
1760 }
1761 e1000_setup_led(hw);
1762 mod_timer(&adapter->blink_timer, jiffies);
1763 msleep_interruptible(data * 1000);
1764 del_timer_sync(&adapter->blink_timer);
1765
1766 e1000_led_off(hw);
1767 clear_bit(E1000_LED_ON, &adapter->led_status);
1768 e1000_cleanup_led(hw);
1769
1770 return 0;
1771 }
1772
1773 static int e1000_get_coalesce(struct net_device *netdev,
1774 struct ethtool_coalesce *ec)
1775 {
1776 struct e1000_adapter *adapter = netdev_priv(netdev);
1777
1778 if (adapter->hw.mac_type < e1000_82545)
1779 return -EOPNOTSUPP;
1780
1781 if (adapter->itr_setting <= 3)
1782 ec->rx_coalesce_usecs = adapter->itr_setting;
1783 else
1784 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1785
1786 return 0;
1787 }
1788
1789 static int e1000_set_coalesce(struct net_device *netdev,
1790 struct ethtool_coalesce *ec)
1791 {
1792 struct e1000_adapter *adapter = netdev_priv(netdev);
1793 struct e1000_hw *hw = &adapter->hw;
1794
1795 if (hw->mac_type < e1000_82545)
1796 return -EOPNOTSUPP;
1797
1798 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1799 ((ec->rx_coalesce_usecs > 3) &&
1800 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1801 (ec->rx_coalesce_usecs == 2))
1802 return -EINVAL;
1803
1804 if (ec->rx_coalesce_usecs <= 3) {
1805 adapter->itr = 20000;
1806 adapter->itr_setting = ec->rx_coalesce_usecs;
1807 } else {
1808 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1809 adapter->itr_setting = adapter->itr & ~3;
1810 }
1811
1812 if (adapter->itr_setting != 0)
1813 ew32(ITR, 1000000000 / (adapter->itr * 256));
1814 else
1815 ew32(ITR, 0);
1816
1817 return 0;
1818 }
1819
1820 static int e1000_nway_reset(struct net_device *netdev)
1821 {
1822 struct e1000_adapter *adapter = netdev_priv(netdev);
1823 if (netif_running(netdev))
1824 e1000_reinit_locked(adapter);
1825 return 0;
1826 }
1827
1828 static void e1000_get_ethtool_stats(struct net_device *netdev,
1829 struct ethtool_stats *stats, u64 *data)
1830 {
1831 struct e1000_adapter *adapter = netdev_priv(netdev);
1832 int i;
1833
1834 e1000_update_stats(adapter);
1835 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1836 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1837 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1838 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1839 }
1840 /* BUG_ON(i != E1000_STATS_LEN); */
1841 }
1842
1843 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1844 u8 *data)
1845 {
1846 u8 *p = data;
1847 int i;
1848
1849 switch (stringset) {
1850 case ETH_SS_TEST:
1851 memcpy(data, *e1000_gstrings_test,
1852 sizeof(e1000_gstrings_test));
1853 break;
1854 case ETH_SS_STATS:
1855 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1856 memcpy(p, e1000_gstrings_stats[i].stat_string,
1857 ETH_GSTRING_LEN);
1858 p += ETH_GSTRING_LEN;
1859 }
1860 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1861 break;
1862 }
1863 }
1864
1865 static const struct ethtool_ops e1000_ethtool_ops = {
1866 .get_settings = e1000_get_settings,
1867 .set_settings = e1000_set_settings,
1868 .get_drvinfo = e1000_get_drvinfo,
1869 .get_regs_len = e1000_get_regs_len,
1870 .get_regs = e1000_get_regs,
1871 .get_wol = e1000_get_wol,
1872 .set_wol = e1000_set_wol,
1873 .get_msglevel = e1000_get_msglevel,
1874 .set_msglevel = e1000_set_msglevel,
1875 .nway_reset = e1000_nway_reset,
1876 .get_link = ethtool_op_get_link,
1877 .get_eeprom_len = e1000_get_eeprom_len,
1878 .get_eeprom = e1000_get_eeprom,
1879 .set_eeprom = e1000_set_eeprom,
1880 .get_ringparam = e1000_get_ringparam,
1881 .set_ringparam = e1000_set_ringparam,
1882 .get_pauseparam = e1000_get_pauseparam,
1883 .set_pauseparam = e1000_set_pauseparam,
1884 .get_rx_csum = e1000_get_rx_csum,
1885 .set_rx_csum = e1000_set_rx_csum,
1886 .get_tx_csum = e1000_get_tx_csum,
1887 .set_tx_csum = e1000_set_tx_csum,
1888 .set_sg = ethtool_op_set_sg,
1889 .set_tso = e1000_set_tso,
1890 .self_test = e1000_diag_test,
1891 .get_strings = e1000_get_strings,
1892 .phys_id = e1000_phys_id,
1893 .get_ethtool_stats = e1000_get_ethtool_stats,
1894 .get_sset_count = e1000_get_sset_count,
1895 .get_coalesce = e1000_get_coalesce,
1896 .set_coalesce = e1000_set_coalesce,
1897 };
1898
1899 void e1000_set_ethtool_ops(struct net_device *netdev)
1900 {
1901 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1902 }
This page took 0.071844 seconds and 6 git commands to generate.