19a0b2a6ada1beb8904f65f2aa60ab61b31fd2e8
[deliverable/linux.git] / drivers / net / e1000 / e1000_hw.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33 #include "e1000_hw.h"
34
35 static int32_t e1000_set_phy_type(struct e1000_hw *hw);
36 static void e1000_phy_init_script(struct e1000_hw *hw);
37 static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
38 static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
39 static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
40 static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
41 static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
42 static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
43 static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
44 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
45 uint16_t count);
46 static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
47 static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
48 static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
49 uint16_t words, uint16_t *data);
50 static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
51 uint16_t offset, uint16_t words,
52 uint16_t *data);
53 static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
54 static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
55 static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
56 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
57 uint16_t count);
58 static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
59 uint16_t phy_data);
60 static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
61 uint16_t *phy_data);
62 static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
63 static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
64 static void e1000_release_eeprom(struct e1000_hw *hw);
65 static void e1000_standby_eeprom(struct e1000_hw *hw);
66 static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
67 static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
68 static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
69 static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
70 static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
71 static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
72 static int32_t e1000_check_downshift(struct e1000_hw *hw);
73 static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
74 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
75 static void e1000_clear_vfta(struct e1000_hw *hw);
76 static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
77 static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
78 boolean_t link_up);
79 static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
80 static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
81 static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
82 static int32_t e1000_get_cable_length(struct e1000_hw *hw,
83 uint16_t *min_length,
84 uint16_t *max_length);
85 static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
86 static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
87 static int32_t e1000_id_led_init(struct e1000_hw * hw);
88 static void e1000_init_rx_addrs(struct e1000_hw *hw);
89 static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
90 static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
91 static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
92 static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
93 uint16_t words, uint16_t *data);
94 static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
95 static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
96 static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
97
98 static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
99 uint32_t value);
100
101 #define E1000_WRITE_REG_IO(a, reg, val) \
102 e1000_write_reg_io((a), E1000_##reg, val)
103
104 /* IGP cable length table */
105 static const
106 uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
107 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
108 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
109 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
110 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
111 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
112 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
113 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
114 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
115
116 static const
117 uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
118 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
119 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
120 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
121 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
122 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
123 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
124 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
125 104, 109, 114, 118, 121, 124};
126
127
128 /******************************************************************************
129 * Set the phy type member in the hw struct.
130 *
131 * hw - Struct containing variables accessed by shared code
132 *****************************************************************************/
133 int32_t
134 e1000_set_phy_type(struct e1000_hw *hw)
135 {
136 DEBUGFUNC("e1000_set_phy_type");
137
138 if(hw->mac_type == e1000_undefined)
139 return -E1000_ERR_PHY_TYPE;
140
141 switch(hw->phy_id) {
142 case M88E1000_E_PHY_ID:
143 case M88E1000_I_PHY_ID:
144 case M88E1011_I_PHY_ID:
145 case M88E1111_I_PHY_ID:
146 hw->phy_type = e1000_phy_m88;
147 break;
148 case IGP01E1000_I_PHY_ID:
149 if(hw->mac_type == e1000_82541 ||
150 hw->mac_type == e1000_82541_rev_2 ||
151 hw->mac_type == e1000_82547 ||
152 hw->mac_type == e1000_82547_rev_2) {
153 hw->phy_type = e1000_phy_igp;
154 break;
155 }
156 /* Fall Through */
157 default:
158 /* Should never have loaded on this device */
159 hw->phy_type = e1000_phy_undefined;
160 return -E1000_ERR_PHY_TYPE;
161 }
162
163 return E1000_SUCCESS;
164 }
165
166 /******************************************************************************
167 * IGP phy init script - initializes the GbE PHY
168 *
169 * hw - Struct containing variables accessed by shared code
170 *****************************************************************************/
171 static void
172 e1000_phy_init_script(struct e1000_hw *hw)
173 {
174 uint32_t ret_val;
175 uint16_t phy_saved_data;
176
177 DEBUGFUNC("e1000_phy_init_script");
178
179 if(hw->phy_init_script) {
180 msec_delay(20);
181
182 /* Save off the current value of register 0x2F5B to be restored at
183 * the end of this routine. */
184 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
185
186 /* Disabled the PHY transmitter */
187 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
188
189 msec_delay(20);
190
191 e1000_write_phy_reg(hw,0x0000,0x0140);
192
193 msec_delay(5);
194
195 switch(hw->mac_type) {
196 case e1000_82541:
197 case e1000_82547:
198 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
199
200 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
201
202 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
203
204 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
205
206 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
207
208 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
209
210 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
211
212 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
213
214 e1000_write_phy_reg(hw, 0x2010, 0x0008);
215 break;
216
217 case e1000_82541_rev_2:
218 case e1000_82547_rev_2:
219 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
220 break;
221 default:
222 break;
223 }
224
225 e1000_write_phy_reg(hw, 0x0000, 0x3300);
226
227 msec_delay(20);
228
229 /* Now enable the transmitter */
230 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
231
232 if(hw->mac_type == e1000_82547) {
233 uint16_t fused, fine, coarse;
234
235 /* Move to analog registers page */
236 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
237
238 if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
239 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
240
241 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
242 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
243
244 if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
245 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
246 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
247 } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
248 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
249
250 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
251 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
252 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
253
254 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
255 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
256 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
257 }
258 }
259 }
260 }
261
262 /******************************************************************************
263 * Set the mac type member in the hw struct.
264 *
265 * hw - Struct containing variables accessed by shared code
266 *****************************************************************************/
267 int32_t
268 e1000_set_mac_type(struct e1000_hw *hw)
269 {
270 DEBUGFUNC("e1000_set_mac_type");
271
272 switch (hw->device_id) {
273 case E1000_DEV_ID_82542:
274 switch (hw->revision_id) {
275 case E1000_82542_2_0_REV_ID:
276 hw->mac_type = e1000_82542_rev2_0;
277 break;
278 case E1000_82542_2_1_REV_ID:
279 hw->mac_type = e1000_82542_rev2_1;
280 break;
281 default:
282 /* Invalid 82542 revision ID */
283 return -E1000_ERR_MAC_TYPE;
284 }
285 break;
286 case E1000_DEV_ID_82543GC_FIBER:
287 case E1000_DEV_ID_82543GC_COPPER:
288 hw->mac_type = e1000_82543;
289 break;
290 case E1000_DEV_ID_82544EI_COPPER:
291 case E1000_DEV_ID_82544EI_FIBER:
292 case E1000_DEV_ID_82544GC_COPPER:
293 case E1000_DEV_ID_82544GC_LOM:
294 hw->mac_type = e1000_82544;
295 break;
296 case E1000_DEV_ID_82540EM:
297 case E1000_DEV_ID_82540EM_LOM:
298 case E1000_DEV_ID_82540EP:
299 case E1000_DEV_ID_82540EP_LOM:
300 case E1000_DEV_ID_82540EP_LP:
301 hw->mac_type = e1000_82540;
302 break;
303 case E1000_DEV_ID_82545EM_COPPER:
304 case E1000_DEV_ID_82545EM_FIBER:
305 hw->mac_type = e1000_82545;
306 break;
307 case E1000_DEV_ID_82545GM_COPPER:
308 case E1000_DEV_ID_82545GM_FIBER:
309 case E1000_DEV_ID_82545GM_SERDES:
310 hw->mac_type = e1000_82545_rev_3;
311 break;
312 case E1000_DEV_ID_82546EB_COPPER:
313 case E1000_DEV_ID_82546EB_FIBER:
314 case E1000_DEV_ID_82546EB_QUAD_COPPER:
315 hw->mac_type = e1000_82546;
316 break;
317 case E1000_DEV_ID_82546GB_COPPER:
318 case E1000_DEV_ID_82546GB_FIBER:
319 case E1000_DEV_ID_82546GB_SERDES:
320 case E1000_DEV_ID_82546GB_PCIE:
321 hw->mac_type = e1000_82546_rev_3;
322 break;
323 case E1000_DEV_ID_82541EI:
324 case E1000_DEV_ID_82541EI_MOBILE:
325 hw->mac_type = e1000_82541;
326 break;
327 case E1000_DEV_ID_82541ER:
328 case E1000_DEV_ID_82541GI:
329 case E1000_DEV_ID_82541GI_LF:
330 case E1000_DEV_ID_82541GI_MOBILE:
331 hw->mac_type = e1000_82541_rev_2;
332 break;
333 case E1000_DEV_ID_82547EI:
334 hw->mac_type = e1000_82547;
335 break;
336 case E1000_DEV_ID_82547GI:
337 hw->mac_type = e1000_82547_rev_2;
338 break;
339 case E1000_DEV_ID_82571EB_COPPER:
340 case E1000_DEV_ID_82571EB_FIBER:
341 case E1000_DEV_ID_82571EB_SERDES:
342 hw->mac_type = e1000_82571;
343 break;
344 case E1000_DEV_ID_82572EI_COPPER:
345 case E1000_DEV_ID_82572EI_FIBER:
346 case E1000_DEV_ID_82572EI_SERDES:
347 hw->mac_type = e1000_82572;
348 break;
349 case E1000_DEV_ID_82573E:
350 case E1000_DEV_ID_82573E_IAMT:
351 case E1000_DEV_ID_82573L:
352 hw->mac_type = e1000_82573;
353 break;
354 default:
355 /* Should never have loaded on this device */
356 return -E1000_ERR_MAC_TYPE;
357 }
358
359 switch(hw->mac_type) {
360 case e1000_82571:
361 case e1000_82572:
362 case e1000_82573:
363 hw->eeprom_semaphore_present = TRUE;
364 /* fall through */
365 case e1000_82541:
366 case e1000_82547:
367 case e1000_82541_rev_2:
368 case e1000_82547_rev_2:
369 hw->asf_firmware_present = TRUE;
370 break;
371 default:
372 break;
373 }
374
375 return E1000_SUCCESS;
376 }
377
378 /*****************************************************************************
379 * Set media type and TBI compatibility.
380 *
381 * hw - Struct containing variables accessed by shared code
382 * **************************************************************************/
383 void
384 e1000_set_media_type(struct e1000_hw *hw)
385 {
386 uint32_t status;
387
388 DEBUGFUNC("e1000_set_media_type");
389
390 if(hw->mac_type != e1000_82543) {
391 /* tbi_compatibility is only valid on 82543 */
392 hw->tbi_compatibility_en = FALSE;
393 }
394
395 switch (hw->device_id) {
396 case E1000_DEV_ID_82545GM_SERDES:
397 case E1000_DEV_ID_82546GB_SERDES:
398 case E1000_DEV_ID_82571EB_SERDES:
399 case E1000_DEV_ID_82572EI_SERDES:
400 hw->media_type = e1000_media_type_internal_serdes;
401 break;
402 default:
403 switch (hw->mac_type) {
404 case e1000_82542_rev2_0:
405 case e1000_82542_rev2_1:
406 hw->media_type = e1000_media_type_fiber;
407 break;
408 case e1000_82573:
409 /* The STATUS_TBIMODE bit is reserved or reused for the this
410 * device.
411 */
412 hw->media_type = e1000_media_type_copper;
413 break;
414 default:
415 status = E1000_READ_REG(hw, STATUS);
416 if (status & E1000_STATUS_TBIMODE) {
417 hw->media_type = e1000_media_type_fiber;
418 /* tbi_compatibility not valid on fiber */
419 hw->tbi_compatibility_en = FALSE;
420 } else {
421 hw->media_type = e1000_media_type_copper;
422 }
423 break;
424 }
425 }
426 }
427
428 /******************************************************************************
429 * Reset the transmit and receive units; mask and clear all interrupts.
430 *
431 * hw - Struct containing variables accessed by shared code
432 *****************************************************************************/
433 int32_t
434 e1000_reset_hw(struct e1000_hw *hw)
435 {
436 uint32_t ctrl;
437 uint32_t ctrl_ext;
438 uint32_t icr;
439 uint32_t manc;
440 uint32_t led_ctrl;
441 uint32_t timeout;
442 uint32_t extcnf_ctrl;
443 int32_t ret_val;
444
445 DEBUGFUNC("e1000_reset_hw");
446
447 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
448 if(hw->mac_type == e1000_82542_rev2_0) {
449 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
450 e1000_pci_clear_mwi(hw);
451 }
452
453 if(hw->bus_type == e1000_bus_type_pci_express) {
454 /* Prevent the PCI-E bus from sticking if there is no TLP connection
455 * on the last TLP read/write transaction when MAC is reset.
456 */
457 if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
458 DEBUGOUT("PCI-E Master disable polling has failed.\n");
459 }
460 }
461
462 /* Clear interrupt mask to stop board from generating interrupts */
463 DEBUGOUT("Masking off all interrupts\n");
464 E1000_WRITE_REG(hw, IMC, 0xffffffff);
465
466 /* Disable the Transmit and Receive units. Then delay to allow
467 * any pending transactions to complete before we hit the MAC with
468 * the global reset.
469 */
470 E1000_WRITE_REG(hw, RCTL, 0);
471 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
472 E1000_WRITE_FLUSH(hw);
473
474 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
475 hw->tbi_compatibility_on = FALSE;
476
477 /* Delay to allow any outstanding PCI transactions to complete before
478 * resetting the device
479 */
480 msec_delay(10);
481
482 ctrl = E1000_READ_REG(hw, CTRL);
483
484 /* Must reset the PHY before resetting the MAC */
485 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
486 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
487 msec_delay(5);
488 }
489
490 /* Must acquire the MDIO ownership before MAC reset.
491 * Ownership defaults to firmware after a reset. */
492 if(hw->mac_type == e1000_82573) {
493 timeout = 10;
494
495 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
496 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
497
498 do {
499 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
500 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
501
502 if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
503 break;
504 else
505 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
506
507 msec_delay(2);
508 timeout--;
509 } while(timeout);
510 }
511
512 /* Issue a global reset to the MAC. This will reset the chip's
513 * transmit, receive, DMA, and link units. It will not effect
514 * the current PCI configuration. The global reset bit is self-
515 * clearing, and should clear within a microsecond.
516 */
517 DEBUGOUT("Issuing a global reset to MAC\n");
518
519 switch(hw->mac_type) {
520 case e1000_82544:
521 case e1000_82540:
522 case e1000_82545:
523 case e1000_82546:
524 case e1000_82541:
525 case e1000_82541_rev_2:
526 /* These controllers can't ack the 64-bit write when issuing the
527 * reset, so use IO-mapping as a workaround to issue the reset */
528 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
529 break;
530 case e1000_82545_rev_3:
531 case e1000_82546_rev_3:
532 /* Reset is performed on a shadow of the control register */
533 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
534 break;
535 default:
536 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
537 break;
538 }
539
540 /* After MAC reset, force reload of EEPROM to restore power-on settings to
541 * device. Later controllers reload the EEPROM automatically, so just wait
542 * for reload to complete.
543 */
544 switch(hw->mac_type) {
545 case e1000_82542_rev2_0:
546 case e1000_82542_rev2_1:
547 case e1000_82543:
548 case e1000_82544:
549 /* Wait for reset to complete */
550 udelay(10);
551 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
552 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
553 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
554 E1000_WRITE_FLUSH(hw);
555 /* Wait for EEPROM reload */
556 msec_delay(2);
557 break;
558 case e1000_82541:
559 case e1000_82541_rev_2:
560 case e1000_82547:
561 case e1000_82547_rev_2:
562 /* Wait for EEPROM reload */
563 msec_delay(20);
564 break;
565 case e1000_82573:
566 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
567 udelay(10);
568 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
569 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
570 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
571 E1000_WRITE_FLUSH(hw);
572 }
573 /* fall through */
574 case e1000_82571:
575 case e1000_82572:
576 ret_val = e1000_get_auto_rd_done(hw);
577 if(ret_val)
578 /* We don't want to continue accessing MAC registers. */
579 return ret_val;
580 break;
581 default:
582 /* Wait for EEPROM reload (it happens automatically) */
583 msec_delay(5);
584 break;
585 }
586
587 /* Disable HW ARPs on ASF enabled adapters */
588 if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
589 manc = E1000_READ_REG(hw, MANC);
590 manc &= ~(E1000_MANC_ARP_EN);
591 E1000_WRITE_REG(hw, MANC, manc);
592 }
593
594 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
595 e1000_phy_init_script(hw);
596
597 /* Configure activity LED after PHY reset */
598 led_ctrl = E1000_READ_REG(hw, LEDCTL);
599 led_ctrl &= IGP_ACTIVITY_LED_MASK;
600 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
601 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
602 }
603
604 /* Clear interrupt mask to stop board from generating interrupts */
605 DEBUGOUT("Masking off all interrupts\n");
606 E1000_WRITE_REG(hw, IMC, 0xffffffff);
607
608 /* Clear any pending interrupt events. */
609 icr = E1000_READ_REG(hw, ICR);
610
611 /* If MWI was previously enabled, reenable it. */
612 if(hw->mac_type == e1000_82542_rev2_0) {
613 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
614 e1000_pci_set_mwi(hw);
615 }
616
617 return E1000_SUCCESS;
618 }
619
620 /******************************************************************************
621 * Performs basic configuration of the adapter.
622 *
623 * hw - Struct containing variables accessed by shared code
624 *
625 * Assumes that the controller has previously been reset and is in a
626 * post-reset uninitialized state. Initializes the receive address registers,
627 * multicast table, and VLAN filter table. Calls routines to setup link
628 * configuration and flow control settings. Clears all on-chip counters. Leaves
629 * the transmit and receive units disabled and uninitialized.
630 *****************************************************************************/
631 int32_t
632 e1000_init_hw(struct e1000_hw *hw)
633 {
634 uint32_t ctrl;
635 uint32_t i;
636 int32_t ret_val;
637 uint16_t pcix_cmd_word;
638 uint16_t pcix_stat_hi_word;
639 uint16_t cmd_mmrbc;
640 uint16_t stat_mmrbc;
641 uint32_t mta_size;
642
643 DEBUGFUNC("e1000_init_hw");
644
645 /* Initialize Identification LED */
646 ret_val = e1000_id_led_init(hw);
647 if(ret_val) {
648 DEBUGOUT("Error Initializing Identification LED\n");
649 return ret_val;
650 }
651
652 /* Set the media type and TBI compatibility */
653 e1000_set_media_type(hw);
654
655 /* Disabling VLAN filtering. */
656 DEBUGOUT("Initializing the IEEE VLAN\n");
657 if (hw->mac_type < e1000_82545_rev_3)
658 E1000_WRITE_REG(hw, VET, 0);
659 e1000_clear_vfta(hw);
660
661 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
662 if(hw->mac_type == e1000_82542_rev2_0) {
663 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
664 e1000_pci_clear_mwi(hw);
665 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
666 E1000_WRITE_FLUSH(hw);
667 msec_delay(5);
668 }
669
670 /* Setup the receive address. This involves initializing all of the Receive
671 * Address Registers (RARs 0 - 15).
672 */
673 e1000_init_rx_addrs(hw);
674
675 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
676 if(hw->mac_type == e1000_82542_rev2_0) {
677 E1000_WRITE_REG(hw, RCTL, 0);
678 E1000_WRITE_FLUSH(hw);
679 msec_delay(1);
680 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
681 e1000_pci_set_mwi(hw);
682 }
683
684 /* Zero out the Multicast HASH table */
685 DEBUGOUT("Zeroing the MTA\n");
686 mta_size = E1000_MC_TBL_SIZE;
687 for(i = 0; i < mta_size; i++)
688 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
689
690 /* Set the PCI priority bit correctly in the CTRL register. This
691 * determines if the adapter gives priority to receives, or if it
692 * gives equal priority to transmits and receives. Valid only on
693 * 82542 and 82543 silicon.
694 */
695 if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
696 ctrl = E1000_READ_REG(hw, CTRL);
697 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
698 }
699
700 switch(hw->mac_type) {
701 case e1000_82545_rev_3:
702 case e1000_82546_rev_3:
703 break;
704 default:
705 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
706 if(hw->bus_type == e1000_bus_type_pcix) {
707 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
708 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
709 &pcix_stat_hi_word);
710 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
711 PCIX_COMMAND_MMRBC_SHIFT;
712 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
713 PCIX_STATUS_HI_MMRBC_SHIFT;
714 if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
715 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
716 if(cmd_mmrbc > stat_mmrbc) {
717 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
718 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
719 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
720 &pcix_cmd_word);
721 }
722 }
723 break;
724 }
725
726 /* Call a subroutine to configure the link and setup flow control. */
727 ret_val = e1000_setup_link(hw);
728
729 /* Set the transmit descriptor write-back policy */
730 if(hw->mac_type > e1000_82544) {
731 ctrl = E1000_READ_REG(hw, TXDCTL);
732 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
733 switch (hw->mac_type) {
734 default:
735 break;
736 case e1000_82571:
737 case e1000_82572:
738 ctrl |= (1 << 22);
739 case e1000_82573:
740 ctrl |= E1000_TXDCTL_COUNT_DESC;
741 break;
742 }
743 E1000_WRITE_REG(hw, TXDCTL, ctrl);
744 }
745
746 if (hw->mac_type == e1000_82573) {
747 e1000_enable_tx_pkt_filtering(hw);
748 }
749
750 switch (hw->mac_type) {
751 default:
752 break;
753 case e1000_82571:
754 case e1000_82572:
755 ctrl = E1000_READ_REG(hw, TXDCTL1);
756 ctrl &= ~E1000_TXDCTL_WTHRESH;
757 ctrl |= E1000_TXDCTL_COUNT_DESC | E1000_TXDCTL_FULL_TX_DESC_WB;
758 ctrl |= (1 << 22);
759 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
760 break;
761 }
762
763
764
765 if (hw->mac_type == e1000_82573) {
766 uint32_t gcr = E1000_READ_REG(hw, GCR);
767 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
768 E1000_WRITE_REG(hw, GCR, gcr);
769 }
770
771 /* Clear all of the statistics registers (clear on read). It is
772 * important that we do this after we have tried to establish link
773 * because the symbol error count will increment wildly if there
774 * is no link.
775 */
776 e1000_clear_hw_cntrs(hw);
777
778 return ret_val;
779 }
780
781 /******************************************************************************
782 * Adjust SERDES output amplitude based on EEPROM setting.
783 *
784 * hw - Struct containing variables accessed by shared code.
785 *****************************************************************************/
786 static int32_t
787 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
788 {
789 uint16_t eeprom_data;
790 int32_t ret_val;
791
792 DEBUGFUNC("e1000_adjust_serdes_amplitude");
793
794 if(hw->media_type != e1000_media_type_internal_serdes)
795 return E1000_SUCCESS;
796
797 switch(hw->mac_type) {
798 case e1000_82545_rev_3:
799 case e1000_82546_rev_3:
800 break;
801 default:
802 return E1000_SUCCESS;
803 }
804
805 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
806 if (ret_val) {
807 return ret_val;
808 }
809
810 if(eeprom_data != EEPROM_RESERVED_WORD) {
811 /* Adjust SERDES output amplitude only. */
812 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
813 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
814 if(ret_val)
815 return ret_val;
816 }
817
818 return E1000_SUCCESS;
819 }
820
821 /******************************************************************************
822 * Configures flow control and link settings.
823 *
824 * hw - Struct containing variables accessed by shared code
825 *
826 * Determines which flow control settings to use. Calls the apropriate media-
827 * specific link configuration function. Configures the flow control settings.
828 * Assuming the adapter has a valid link partner, a valid link should be
829 * established. Assumes the hardware has previously been reset and the
830 * transmitter and receiver are not enabled.
831 *****************************************************************************/
832 int32_t
833 e1000_setup_link(struct e1000_hw *hw)
834 {
835 uint32_t ctrl_ext;
836 int32_t ret_val;
837 uint16_t eeprom_data;
838
839 DEBUGFUNC("e1000_setup_link");
840
841 /* In the case of the phy reset being blocked, we already have a link.
842 * We do not have to set it up again. */
843 if (e1000_check_phy_reset_block(hw))
844 return E1000_SUCCESS;
845
846 /* Read and store word 0x0F of the EEPROM. This word contains bits
847 * that determine the hardware's default PAUSE (flow control) mode,
848 * a bit that determines whether the HW defaults to enabling or
849 * disabling auto-negotiation, and the direction of the
850 * SW defined pins. If there is no SW over-ride of the flow
851 * control setting, then the variable hw->fc will
852 * be initialized based on a value in the EEPROM.
853 */
854 if (hw->fc == e1000_fc_default) {
855 switch (hw->mac_type) {
856 case e1000_82573:
857 hw->fc = e1000_fc_full;
858 break;
859 default:
860 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
861 1, &eeprom_data);
862 if (ret_val) {
863 DEBUGOUT("EEPROM Read Error\n");
864 return -E1000_ERR_EEPROM;
865 }
866 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
867 hw->fc = e1000_fc_none;
868 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
869 EEPROM_WORD0F_ASM_DIR)
870 hw->fc = e1000_fc_tx_pause;
871 else
872 hw->fc = e1000_fc_full;
873 break;
874 }
875 }
876
877 /* We want to save off the original Flow Control configuration just
878 * in case we get disconnected and then reconnected into a different
879 * hub or switch with different Flow Control capabilities.
880 */
881 if(hw->mac_type == e1000_82542_rev2_0)
882 hw->fc &= (~e1000_fc_tx_pause);
883
884 if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
885 hw->fc &= (~e1000_fc_rx_pause);
886
887 hw->original_fc = hw->fc;
888
889 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
890
891 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
892 * polarity value for the SW controlled pins, and setup the
893 * Extended Device Control reg with that info.
894 * This is needed because one of the SW controlled pins is used for
895 * signal detection. So this should be done before e1000_setup_pcs_link()
896 * or e1000_phy_setup() is called.
897 */
898 if(hw->mac_type == e1000_82543) {
899 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
900 SWDPIO__EXT_SHIFT);
901 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
902 }
903
904 /* Call the necessary subroutine to configure the link. */
905 ret_val = (hw->media_type == e1000_media_type_copper) ?
906 e1000_setup_copper_link(hw) :
907 e1000_setup_fiber_serdes_link(hw);
908
909 /* Initialize the flow control address, type, and PAUSE timer
910 * registers to their default values. This is done even if flow
911 * control is disabled, because it does not hurt anything to
912 * initialize these registers.
913 */
914 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
915
916 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
917 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
918 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
919
920 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
921
922 /* Set the flow control receive threshold registers. Normally,
923 * these registers will be set to a default threshold that may be
924 * adjusted later by the driver's runtime code. However, if the
925 * ability to transmit pause frames in not enabled, then these
926 * registers will be set to 0.
927 */
928 if(!(hw->fc & e1000_fc_tx_pause)) {
929 E1000_WRITE_REG(hw, FCRTL, 0);
930 E1000_WRITE_REG(hw, FCRTH, 0);
931 } else {
932 /* We need to set up the Receive Threshold high and low water marks
933 * as well as (optionally) enabling the transmission of XON frames.
934 */
935 if(hw->fc_send_xon) {
936 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
937 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
938 } else {
939 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
940 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
941 }
942 }
943 return ret_val;
944 }
945
946 /******************************************************************************
947 * Sets up link for a fiber based or serdes based adapter
948 *
949 * hw - Struct containing variables accessed by shared code
950 *
951 * Manipulates Physical Coding Sublayer functions in order to configure
952 * link. Assumes the hardware has been previously reset and the transmitter
953 * and receiver are not enabled.
954 *****************************************************************************/
955 static int32_t
956 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
957 {
958 uint32_t ctrl;
959 uint32_t status;
960 uint32_t txcw = 0;
961 uint32_t i;
962 uint32_t signal = 0;
963 int32_t ret_val;
964
965 DEBUGFUNC("e1000_setup_fiber_serdes_link");
966
967 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
968 * until explicitly turned off or a power cycle is performed. A read to
969 * the register does not indicate its status. Therefore, we ensure
970 * loopback mode is disabled during initialization.
971 */
972 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
973 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
974
975 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
976 * set when the optics detect a signal. On older adapters, it will be
977 * cleared when there is a signal. This applies to fiber media only.
978 * If we're on serdes media, adjust the output amplitude to value set in
979 * the EEPROM.
980 */
981 ctrl = E1000_READ_REG(hw, CTRL);
982 if(hw->media_type == e1000_media_type_fiber)
983 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
984
985 ret_val = e1000_adjust_serdes_amplitude(hw);
986 if(ret_val)
987 return ret_val;
988
989 /* Take the link out of reset */
990 ctrl &= ~(E1000_CTRL_LRST);
991
992 /* Adjust VCO speed to improve BER performance */
993 ret_val = e1000_set_vco_speed(hw);
994 if(ret_val)
995 return ret_val;
996
997 e1000_config_collision_dist(hw);
998
999 /* Check for a software override of the flow control settings, and setup
1000 * the device accordingly. If auto-negotiation is enabled, then software
1001 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1002 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1003 * auto-negotiation is disabled, then software will have to manually
1004 * configure the two flow control enable bits in the CTRL register.
1005 *
1006 * The possible values of the "fc" parameter are:
1007 * 0: Flow control is completely disabled
1008 * 1: Rx flow control is enabled (we can receive pause frames, but
1009 * not send pause frames).
1010 * 2: Tx flow control is enabled (we can send pause frames but we do
1011 * not support receiving pause frames).
1012 * 3: Both Rx and TX flow control (symmetric) are enabled.
1013 */
1014 switch (hw->fc) {
1015 case e1000_fc_none:
1016 /* Flow control is completely disabled by a software over-ride. */
1017 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1018 break;
1019 case e1000_fc_rx_pause:
1020 /* RX Flow control is enabled and TX Flow control is disabled by a
1021 * software over-ride. Since there really isn't a way to advertise
1022 * that we are capable of RX Pause ONLY, we will advertise that we
1023 * support both symmetric and asymmetric RX PAUSE. Later, we will
1024 * disable the adapter's ability to send PAUSE frames.
1025 */
1026 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1027 break;
1028 case e1000_fc_tx_pause:
1029 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1030 * software over-ride.
1031 */
1032 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1033 break;
1034 case e1000_fc_full:
1035 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1036 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1037 break;
1038 default:
1039 DEBUGOUT("Flow control param set incorrectly\n");
1040 return -E1000_ERR_CONFIG;
1041 break;
1042 }
1043
1044 /* Since auto-negotiation is enabled, take the link out of reset (the link
1045 * will be in reset, because we previously reset the chip). This will
1046 * restart auto-negotiation. If auto-neogtiation is successful then the
1047 * link-up status bit will be set and the flow control enable bits (RFCE
1048 * and TFCE) will be set according to their negotiated value.
1049 */
1050 DEBUGOUT("Auto-negotiation enabled\n");
1051
1052 E1000_WRITE_REG(hw, TXCW, txcw);
1053 E1000_WRITE_REG(hw, CTRL, ctrl);
1054 E1000_WRITE_FLUSH(hw);
1055
1056 hw->txcw = txcw;
1057 msec_delay(1);
1058
1059 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1060 * indication in the Device Status Register. Time-out if a link isn't
1061 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1062 * less than 500 milliseconds even if the other end is doing it in SW).
1063 * For internal serdes, we just assume a signal is present, then poll.
1064 */
1065 if(hw->media_type == e1000_media_type_internal_serdes ||
1066 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1067 DEBUGOUT("Looking for Link\n");
1068 for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1069 msec_delay(10);
1070 status = E1000_READ_REG(hw, STATUS);
1071 if(status & E1000_STATUS_LU) break;
1072 }
1073 if(i == (LINK_UP_TIMEOUT / 10)) {
1074 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1075 hw->autoneg_failed = 1;
1076 /* AutoNeg failed to achieve a link, so we'll call
1077 * e1000_check_for_link. This routine will force the link up if
1078 * we detect a signal. This will allow us to communicate with
1079 * non-autonegotiating link partners.
1080 */
1081 ret_val = e1000_check_for_link(hw);
1082 if(ret_val) {
1083 DEBUGOUT("Error while checking for link\n");
1084 return ret_val;
1085 }
1086 hw->autoneg_failed = 0;
1087 } else {
1088 hw->autoneg_failed = 0;
1089 DEBUGOUT("Valid Link Found\n");
1090 }
1091 } else {
1092 DEBUGOUT("No Signal Detected\n");
1093 }
1094 return E1000_SUCCESS;
1095 }
1096
1097 /******************************************************************************
1098 * Make sure we have a valid PHY and change PHY mode before link setup.
1099 *
1100 * hw - Struct containing variables accessed by shared code
1101 ******************************************************************************/
1102 static int32_t
1103 e1000_copper_link_preconfig(struct e1000_hw *hw)
1104 {
1105 uint32_t ctrl;
1106 int32_t ret_val;
1107 uint16_t phy_data;
1108
1109 DEBUGFUNC("e1000_copper_link_preconfig");
1110
1111 ctrl = E1000_READ_REG(hw, CTRL);
1112 /* With 82543, we need to force speed and duplex on the MAC equal to what
1113 * the PHY speed and duplex configuration is. In addition, we need to
1114 * perform a hardware reset on the PHY to take it out of reset.
1115 */
1116 if(hw->mac_type > e1000_82543) {
1117 ctrl |= E1000_CTRL_SLU;
1118 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1119 E1000_WRITE_REG(hw, CTRL, ctrl);
1120 } else {
1121 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1122 E1000_WRITE_REG(hw, CTRL, ctrl);
1123 ret_val = e1000_phy_hw_reset(hw);
1124 if(ret_val)
1125 return ret_val;
1126 }
1127
1128 /* Make sure we have a valid PHY */
1129 ret_val = e1000_detect_gig_phy(hw);
1130 if(ret_val) {
1131 DEBUGOUT("Error, did not detect valid phy.\n");
1132 return ret_val;
1133 }
1134 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1135
1136 /* Set PHY to class A mode (if necessary) */
1137 ret_val = e1000_set_phy_mode(hw);
1138 if(ret_val)
1139 return ret_val;
1140
1141 if((hw->mac_type == e1000_82545_rev_3) ||
1142 (hw->mac_type == e1000_82546_rev_3)) {
1143 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1144 phy_data |= 0x00000008;
1145 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1146 }
1147
1148 if(hw->mac_type <= e1000_82543 ||
1149 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1150 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1151 hw->phy_reset_disable = FALSE;
1152
1153 return E1000_SUCCESS;
1154 }
1155
1156
1157 /********************************************************************
1158 * Copper link setup for e1000_phy_igp series.
1159 *
1160 * hw - Struct containing variables accessed by shared code
1161 *********************************************************************/
1162 static int32_t
1163 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1164 {
1165 uint32_t led_ctrl;
1166 int32_t ret_val;
1167 uint16_t phy_data;
1168
1169 DEBUGFUNC("e1000_copper_link_igp_setup");
1170
1171 if (hw->phy_reset_disable)
1172 return E1000_SUCCESS;
1173
1174 ret_val = e1000_phy_reset(hw);
1175 if (ret_val) {
1176 DEBUGOUT("Error Resetting the PHY\n");
1177 return ret_val;
1178 }
1179
1180 /* Wait 10ms for MAC to configure PHY from eeprom settings */
1181 msec_delay(15);
1182
1183 /* Configure activity LED after PHY reset */
1184 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1185 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1186 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1187 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1188
1189 /* disable lplu d3 during driver init */
1190 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1191 if (ret_val) {
1192 DEBUGOUT("Error Disabling LPLU D3\n");
1193 return ret_val;
1194 }
1195
1196 /* disable lplu d0 during driver init */
1197 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1198 if (ret_val) {
1199 DEBUGOUT("Error Disabling LPLU D0\n");
1200 return ret_val;
1201 }
1202 /* Configure mdi-mdix settings */
1203 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1204 if (ret_val)
1205 return ret_val;
1206
1207 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1208 hw->dsp_config_state = e1000_dsp_config_disabled;
1209 /* Force MDI for earlier revs of the IGP PHY */
1210 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1211 hw->mdix = 1;
1212
1213 } else {
1214 hw->dsp_config_state = e1000_dsp_config_enabled;
1215 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1216
1217 switch (hw->mdix) {
1218 case 1:
1219 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1220 break;
1221 case 2:
1222 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1223 break;
1224 case 0:
1225 default:
1226 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1227 break;
1228 }
1229 }
1230 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1231 if(ret_val)
1232 return ret_val;
1233
1234 /* set auto-master slave resolution settings */
1235 if(hw->autoneg) {
1236 e1000_ms_type phy_ms_setting = hw->master_slave;
1237
1238 if(hw->ffe_config_state == e1000_ffe_config_active)
1239 hw->ffe_config_state = e1000_ffe_config_enabled;
1240
1241 if(hw->dsp_config_state == e1000_dsp_config_activated)
1242 hw->dsp_config_state = e1000_dsp_config_enabled;
1243
1244 /* when autonegotiation advertisment is only 1000Mbps then we
1245 * should disable SmartSpeed and enable Auto MasterSlave
1246 * resolution as hardware default. */
1247 if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1248 /* Disable SmartSpeed */
1249 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
1250 if(ret_val)
1251 return ret_val;
1252 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1253 ret_val = e1000_write_phy_reg(hw,
1254 IGP01E1000_PHY_PORT_CONFIG,
1255 phy_data);
1256 if(ret_val)
1257 return ret_val;
1258 /* Set auto Master/Slave resolution process */
1259 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1260 if(ret_val)
1261 return ret_val;
1262 phy_data &= ~CR_1000T_MS_ENABLE;
1263 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1264 if(ret_val)
1265 return ret_val;
1266 }
1267
1268 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1269 if(ret_val)
1270 return ret_val;
1271
1272 /* load defaults for future use */
1273 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1274 ((phy_data & CR_1000T_MS_VALUE) ?
1275 e1000_ms_force_master :
1276 e1000_ms_force_slave) :
1277 e1000_ms_auto;
1278
1279 switch (phy_ms_setting) {
1280 case e1000_ms_force_master:
1281 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1282 break;
1283 case e1000_ms_force_slave:
1284 phy_data |= CR_1000T_MS_ENABLE;
1285 phy_data &= ~(CR_1000T_MS_VALUE);
1286 break;
1287 case e1000_ms_auto:
1288 phy_data &= ~CR_1000T_MS_ENABLE;
1289 default:
1290 break;
1291 }
1292 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1293 if(ret_val)
1294 return ret_val;
1295 }
1296
1297 return E1000_SUCCESS;
1298 }
1299
1300
1301 /********************************************************************
1302 * Copper link setup for e1000_phy_m88 series.
1303 *
1304 * hw - Struct containing variables accessed by shared code
1305 *********************************************************************/
1306 static int32_t
1307 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1308 {
1309 int32_t ret_val;
1310 uint16_t phy_data;
1311
1312 DEBUGFUNC("e1000_copper_link_mgp_setup");
1313
1314 if(hw->phy_reset_disable)
1315 return E1000_SUCCESS;
1316
1317 /* Enable CRS on TX. This must be set for half-duplex operation. */
1318 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1319 if(ret_val)
1320 return ret_val;
1321
1322 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1323
1324 /* Options:
1325 * MDI/MDI-X = 0 (default)
1326 * 0 - Auto for all speeds
1327 * 1 - MDI mode
1328 * 2 - MDI-X mode
1329 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1330 */
1331 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1332
1333 switch (hw->mdix) {
1334 case 1:
1335 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1336 break;
1337 case 2:
1338 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1339 break;
1340 case 3:
1341 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1342 break;
1343 case 0:
1344 default:
1345 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1346 break;
1347 }
1348
1349 /* Options:
1350 * disable_polarity_correction = 0 (default)
1351 * Automatic Correction for Reversed Cable Polarity
1352 * 0 - Disabled
1353 * 1 - Enabled
1354 */
1355 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1356 if(hw->disable_polarity_correction == 1)
1357 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1358 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359 if(ret_val)
1360 return ret_val;
1361
1362 /* Force TX_CLK in the Extended PHY Specific Control Register
1363 * to 25MHz clock.
1364 */
1365 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1366 if(ret_val)
1367 return ret_val;
1368
1369 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1370
1371 if (hw->phy_revision < M88E1011_I_REV_4) {
1372 /* Configure Master and Slave downshift values */
1373 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1374 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1375 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1376 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1377 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1378 if(ret_val)
1379 return ret_val;
1380 }
1381
1382 /* SW Reset the PHY so all changes take effect */
1383 ret_val = e1000_phy_reset(hw);
1384 if(ret_val) {
1385 DEBUGOUT("Error Resetting the PHY\n");
1386 return ret_val;
1387 }
1388
1389 return E1000_SUCCESS;
1390 }
1391
1392 /********************************************************************
1393 * Setup auto-negotiation and flow control advertisements,
1394 * and then perform auto-negotiation.
1395 *
1396 * hw - Struct containing variables accessed by shared code
1397 *********************************************************************/
1398 static int32_t
1399 e1000_copper_link_autoneg(struct e1000_hw *hw)
1400 {
1401 int32_t ret_val;
1402 uint16_t phy_data;
1403
1404 DEBUGFUNC("e1000_copper_link_autoneg");
1405
1406 /* Perform some bounds checking on the hw->autoneg_advertised
1407 * parameter. If this variable is zero, then set it to the default.
1408 */
1409 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1410
1411 /* If autoneg_advertised is zero, we assume it was not defaulted
1412 * by the calling code so we set to advertise full capability.
1413 */
1414 if(hw->autoneg_advertised == 0)
1415 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1416
1417 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1418 ret_val = e1000_phy_setup_autoneg(hw);
1419 if(ret_val) {
1420 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1421 return ret_val;
1422 }
1423 DEBUGOUT("Restarting Auto-Neg\n");
1424
1425 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1426 * the Auto Neg Restart bit in the PHY control register.
1427 */
1428 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1429 if(ret_val)
1430 return ret_val;
1431
1432 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1433 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1434 if(ret_val)
1435 return ret_val;
1436
1437 /* Does the user want to wait for Auto-Neg to complete here, or
1438 * check at a later time (for example, callback routine).
1439 */
1440 if(hw->wait_autoneg_complete) {
1441 ret_val = e1000_wait_autoneg(hw);
1442 if(ret_val) {
1443 DEBUGOUT("Error while waiting for autoneg to complete\n");
1444 return ret_val;
1445 }
1446 }
1447
1448 hw->get_link_status = TRUE;
1449
1450 return E1000_SUCCESS;
1451 }
1452
1453
1454 /******************************************************************************
1455 * Config the MAC and the PHY after link is up.
1456 * 1) Set up the MAC to the current PHY speed/duplex
1457 * if we are on 82543. If we
1458 * are on newer silicon, we only need to configure
1459 * collision distance in the Transmit Control Register.
1460 * 2) Set up flow control on the MAC to that established with
1461 * the link partner.
1462 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1463 *
1464 * hw - Struct containing variables accessed by shared code
1465 ******************************************************************************/
1466 static int32_t
1467 e1000_copper_link_postconfig(struct e1000_hw *hw)
1468 {
1469 int32_t ret_val;
1470 DEBUGFUNC("e1000_copper_link_postconfig");
1471
1472 if(hw->mac_type >= e1000_82544) {
1473 e1000_config_collision_dist(hw);
1474 } else {
1475 ret_val = e1000_config_mac_to_phy(hw);
1476 if(ret_val) {
1477 DEBUGOUT("Error configuring MAC to PHY settings\n");
1478 return ret_val;
1479 }
1480 }
1481 ret_val = e1000_config_fc_after_link_up(hw);
1482 if(ret_val) {
1483 DEBUGOUT("Error Configuring Flow Control\n");
1484 return ret_val;
1485 }
1486
1487 /* Config DSP to improve Giga link quality */
1488 if(hw->phy_type == e1000_phy_igp) {
1489 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1490 if(ret_val) {
1491 DEBUGOUT("Error Configuring DSP after link up\n");
1492 return ret_val;
1493 }
1494 }
1495
1496 return E1000_SUCCESS;
1497 }
1498
1499 /******************************************************************************
1500 * Detects which PHY is present and setup the speed and duplex
1501 *
1502 * hw - Struct containing variables accessed by shared code
1503 ******************************************************************************/
1504 static int32_t
1505 e1000_setup_copper_link(struct e1000_hw *hw)
1506 {
1507 int32_t ret_val;
1508 uint16_t i;
1509 uint16_t phy_data;
1510
1511 DEBUGFUNC("e1000_setup_copper_link");
1512
1513 /* Check if it is a valid PHY and set PHY mode if necessary. */
1514 ret_val = e1000_copper_link_preconfig(hw);
1515 if(ret_val)
1516 return ret_val;
1517
1518 if (hw->phy_type == e1000_phy_igp ||
1519 hw->phy_type == e1000_phy_igp_2) {
1520 ret_val = e1000_copper_link_igp_setup(hw);
1521 if(ret_val)
1522 return ret_val;
1523 } else if (hw->phy_type == e1000_phy_m88) {
1524 ret_val = e1000_copper_link_mgp_setup(hw);
1525 if(ret_val)
1526 return ret_val;
1527 }
1528
1529 if(hw->autoneg) {
1530 /* Setup autoneg and flow control advertisement
1531 * and perform autonegotiation */
1532 ret_val = e1000_copper_link_autoneg(hw);
1533 if(ret_val)
1534 return ret_val;
1535 } else {
1536 /* PHY will be set to 10H, 10F, 100H,or 100F
1537 * depending on value from forced_speed_duplex. */
1538 DEBUGOUT("Forcing speed and duplex\n");
1539 ret_val = e1000_phy_force_speed_duplex(hw);
1540 if(ret_val) {
1541 DEBUGOUT("Error Forcing Speed and Duplex\n");
1542 return ret_val;
1543 }
1544 }
1545
1546 /* Check link status. Wait up to 100 microseconds for link to become
1547 * valid.
1548 */
1549 for(i = 0; i < 10; i++) {
1550 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1551 if(ret_val)
1552 return ret_val;
1553 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1554 if(ret_val)
1555 return ret_val;
1556
1557 if(phy_data & MII_SR_LINK_STATUS) {
1558 /* Config the MAC and PHY after link is up */
1559 ret_val = e1000_copper_link_postconfig(hw);
1560 if(ret_val)
1561 return ret_val;
1562
1563 DEBUGOUT("Valid link established!!!\n");
1564 return E1000_SUCCESS;
1565 }
1566 udelay(10);
1567 }
1568
1569 DEBUGOUT("Unable to establish link!!!\n");
1570 return E1000_SUCCESS;
1571 }
1572
1573 /******************************************************************************
1574 * Configures PHY autoneg and flow control advertisement settings
1575 *
1576 * hw - Struct containing variables accessed by shared code
1577 ******************************************************************************/
1578 int32_t
1579 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1580 {
1581 int32_t ret_val;
1582 uint16_t mii_autoneg_adv_reg;
1583 uint16_t mii_1000t_ctrl_reg;
1584
1585 DEBUGFUNC("e1000_phy_setup_autoneg");
1586
1587 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1588 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1589 if(ret_val)
1590 return ret_val;
1591
1592 /* Read the MII 1000Base-T Control Register (Address 9). */
1593 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1594 if(ret_val)
1595 return ret_val;
1596
1597 /* Need to parse both autoneg_advertised and fc and set up
1598 * the appropriate PHY registers. First we will parse for
1599 * autoneg_advertised software override. Since we can advertise
1600 * a plethora of combinations, we need to check each bit
1601 * individually.
1602 */
1603
1604 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1605 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1606 * the 1000Base-T Control Register (Address 9).
1607 */
1608 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1609 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1610
1611 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
1612
1613 /* Do we want to advertise 10 Mb Half Duplex? */
1614 if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
1615 DEBUGOUT("Advertise 10mb Half duplex\n");
1616 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1617 }
1618
1619 /* Do we want to advertise 10 Mb Full Duplex? */
1620 if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
1621 DEBUGOUT("Advertise 10mb Full duplex\n");
1622 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1623 }
1624
1625 /* Do we want to advertise 100 Mb Half Duplex? */
1626 if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
1627 DEBUGOUT("Advertise 100mb Half duplex\n");
1628 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1629 }
1630
1631 /* Do we want to advertise 100 Mb Full Duplex? */
1632 if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
1633 DEBUGOUT("Advertise 100mb Full duplex\n");
1634 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1635 }
1636
1637 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1638 if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1639 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
1640 }
1641
1642 /* Do we want to advertise 1000 Mb Full Duplex? */
1643 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1644 DEBUGOUT("Advertise 1000mb Full duplex\n");
1645 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1646 }
1647
1648 /* Check for a software override of the flow control settings, and
1649 * setup the PHY advertisement registers accordingly. If
1650 * auto-negotiation is enabled, then software will have to set the
1651 * "PAUSE" bits to the correct value in the Auto-Negotiation
1652 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1653 *
1654 * The possible values of the "fc" parameter are:
1655 * 0: Flow control is completely disabled
1656 * 1: Rx flow control is enabled (we can receive pause frames
1657 * but not send pause frames).
1658 * 2: Tx flow control is enabled (we can send pause frames
1659 * but we do not support receiving pause frames).
1660 * 3: Both Rx and TX flow control (symmetric) are enabled.
1661 * other: No software override. The flow control configuration
1662 * in the EEPROM is used.
1663 */
1664 switch (hw->fc) {
1665 case e1000_fc_none: /* 0 */
1666 /* Flow control (RX & TX) is completely disabled by a
1667 * software over-ride.
1668 */
1669 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1670 break;
1671 case e1000_fc_rx_pause: /* 1 */
1672 /* RX Flow control is enabled, and TX Flow control is
1673 * disabled, by a software over-ride.
1674 */
1675 /* Since there really isn't a way to advertise that we are
1676 * capable of RX Pause ONLY, we will advertise that we
1677 * support both symmetric and asymmetric RX PAUSE. Later
1678 * (in e1000_config_fc_after_link_up) we will disable the
1679 *hw's ability to send PAUSE frames.
1680 */
1681 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1682 break;
1683 case e1000_fc_tx_pause: /* 2 */
1684 /* TX Flow control is enabled, and RX Flow control is
1685 * disabled, by a software over-ride.
1686 */
1687 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1688 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1689 break;
1690 case e1000_fc_full: /* 3 */
1691 /* Flow control (both RX and TX) is enabled by a software
1692 * over-ride.
1693 */
1694 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1695 break;
1696 default:
1697 DEBUGOUT("Flow control param set incorrectly\n");
1698 return -E1000_ERR_CONFIG;
1699 }
1700
1701 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1702 if(ret_val)
1703 return ret_val;
1704
1705 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1706
1707 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1708 if(ret_val)
1709 return ret_val;
1710
1711 return E1000_SUCCESS;
1712 }
1713
1714 /******************************************************************************
1715 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1716 *
1717 * hw - Struct containing variables accessed by shared code
1718 ******************************************************************************/
1719 static int32_t
1720 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1721 {
1722 uint32_t ctrl;
1723 int32_t ret_val;
1724 uint16_t mii_ctrl_reg;
1725 uint16_t mii_status_reg;
1726 uint16_t phy_data;
1727 uint16_t i;
1728
1729 DEBUGFUNC("e1000_phy_force_speed_duplex");
1730
1731 /* Turn off Flow control if we are forcing speed and duplex. */
1732 hw->fc = e1000_fc_none;
1733
1734 DEBUGOUT1("hw->fc = %d\n", hw->fc);
1735
1736 /* Read the Device Control Register. */
1737 ctrl = E1000_READ_REG(hw, CTRL);
1738
1739 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1740 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1741 ctrl &= ~(DEVICE_SPEED_MASK);
1742
1743 /* Clear the Auto Speed Detect Enable bit. */
1744 ctrl &= ~E1000_CTRL_ASDE;
1745
1746 /* Read the MII Control Register. */
1747 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1748 if(ret_val)
1749 return ret_val;
1750
1751 /* We need to disable autoneg in order to force link and duplex. */
1752
1753 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1754
1755 /* Are we forcing Full or Half Duplex? */
1756 if(hw->forced_speed_duplex == e1000_100_full ||
1757 hw->forced_speed_duplex == e1000_10_full) {
1758 /* We want to force full duplex so we SET the full duplex bits in the
1759 * Device and MII Control Registers.
1760 */
1761 ctrl |= E1000_CTRL_FD;
1762 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1763 DEBUGOUT("Full Duplex\n");
1764 } else {
1765 /* We want to force half duplex so we CLEAR the full duplex bits in
1766 * the Device and MII Control Registers.
1767 */
1768 ctrl &= ~E1000_CTRL_FD;
1769 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1770 DEBUGOUT("Half Duplex\n");
1771 }
1772
1773 /* Are we forcing 100Mbps??? */
1774 if(hw->forced_speed_duplex == e1000_100_full ||
1775 hw->forced_speed_duplex == e1000_100_half) {
1776 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1777 ctrl |= E1000_CTRL_SPD_100;
1778 mii_ctrl_reg |= MII_CR_SPEED_100;
1779 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1780 DEBUGOUT("Forcing 100mb ");
1781 } else {
1782 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1783 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1784 mii_ctrl_reg |= MII_CR_SPEED_10;
1785 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1786 DEBUGOUT("Forcing 10mb ");
1787 }
1788
1789 e1000_config_collision_dist(hw);
1790
1791 /* Write the configured values back to the Device Control Reg. */
1792 E1000_WRITE_REG(hw, CTRL, ctrl);
1793
1794 if (hw->phy_type == e1000_phy_m88) {
1795 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1796 if(ret_val)
1797 return ret_val;
1798
1799 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1800 * forced whenever speed are duplex are forced.
1801 */
1802 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1803 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1804 if(ret_val)
1805 return ret_val;
1806
1807 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
1808
1809 /* Need to reset the PHY or these changes will be ignored */
1810 mii_ctrl_reg |= MII_CR_RESET;
1811 } else {
1812 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1813 * forced whenever speed or duplex are forced.
1814 */
1815 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1816 if(ret_val)
1817 return ret_val;
1818
1819 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1820 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1821
1822 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1823 if(ret_val)
1824 return ret_val;
1825 }
1826
1827 /* Write back the modified PHY MII control register. */
1828 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1829 if(ret_val)
1830 return ret_val;
1831
1832 udelay(1);
1833
1834 /* The wait_autoneg_complete flag may be a little misleading here.
1835 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1836 * But we do want to delay for a period while forcing only so we
1837 * don't generate false No Link messages. So we will wait here
1838 * only if the user has set wait_autoneg_complete to 1, which is
1839 * the default.
1840 */
1841 if(hw->wait_autoneg_complete) {
1842 /* We will wait for autoneg to complete. */
1843 DEBUGOUT("Waiting for forced speed/duplex link.\n");
1844 mii_status_reg = 0;
1845
1846 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1847 for(i = PHY_FORCE_TIME; i > 0; i--) {
1848 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1849 * to be set.
1850 */
1851 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1852 if(ret_val)
1853 return ret_val;
1854
1855 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1856 if(ret_val)
1857 return ret_val;
1858
1859 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1860 msec_delay(100);
1861 }
1862 if((i == 0) &&
1863 (hw->phy_type == e1000_phy_m88)) {
1864 /* We didn't get link. Reset the DSP and wait again for link. */
1865 ret_val = e1000_phy_reset_dsp(hw);
1866 if(ret_val) {
1867 DEBUGOUT("Error Resetting PHY DSP\n");
1868 return ret_val;
1869 }
1870 }
1871 /* This loop will early-out if the link condition has been met. */
1872 for(i = PHY_FORCE_TIME; i > 0; i--) {
1873 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1874 msec_delay(100);
1875 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1876 * to be set.
1877 */
1878 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1879 if(ret_val)
1880 return ret_val;
1881
1882 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1883 if(ret_val)
1884 return ret_val;
1885 }
1886 }
1887
1888 if (hw->phy_type == e1000_phy_m88) {
1889 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1890 * Extended PHY Specific Control Register to 25MHz clock. This value
1891 * defaults back to a 2.5MHz clock when the PHY is reset.
1892 */
1893 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1894 if(ret_val)
1895 return ret_val;
1896
1897 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1898 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1899 if(ret_val)
1900 return ret_val;
1901
1902 /* In addition, because of the s/w reset above, we need to enable CRS on
1903 * TX. This must be set for both full and half duplex operation.
1904 */
1905 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1906 if(ret_val)
1907 return ret_val;
1908
1909 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1910 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1911 if(ret_val)
1912 return ret_val;
1913
1914 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
1915 (!hw->autoneg) &&
1916 (hw->forced_speed_duplex == e1000_10_full ||
1917 hw->forced_speed_duplex == e1000_10_half)) {
1918 ret_val = e1000_polarity_reversal_workaround(hw);
1919 if(ret_val)
1920 return ret_val;
1921 }
1922 }
1923 return E1000_SUCCESS;
1924 }
1925
1926 /******************************************************************************
1927 * Sets the collision distance in the Transmit Control register
1928 *
1929 * hw - Struct containing variables accessed by shared code
1930 *
1931 * Link should have been established previously. Reads the speed and duplex
1932 * information from the Device Status register.
1933 ******************************************************************************/
1934 void
1935 e1000_config_collision_dist(struct e1000_hw *hw)
1936 {
1937 uint32_t tctl;
1938
1939 DEBUGFUNC("e1000_config_collision_dist");
1940
1941 tctl = E1000_READ_REG(hw, TCTL);
1942
1943 tctl &= ~E1000_TCTL_COLD;
1944 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1945
1946 E1000_WRITE_REG(hw, TCTL, tctl);
1947 E1000_WRITE_FLUSH(hw);
1948 }
1949
1950 /******************************************************************************
1951 * Sets MAC speed and duplex settings to reflect the those in the PHY
1952 *
1953 * hw - Struct containing variables accessed by shared code
1954 * mii_reg - data to write to the MII control register
1955 *
1956 * The contents of the PHY register containing the needed information need to
1957 * be passed in.
1958 ******************************************************************************/
1959 static int32_t
1960 e1000_config_mac_to_phy(struct e1000_hw *hw)
1961 {
1962 uint32_t ctrl;
1963 int32_t ret_val;
1964 uint16_t phy_data;
1965
1966 DEBUGFUNC("e1000_config_mac_to_phy");
1967
1968 /* 82544 or newer MAC, Auto Speed Detection takes care of
1969 * MAC speed/duplex configuration.*/
1970 if (hw->mac_type >= e1000_82544)
1971 return E1000_SUCCESS;
1972
1973 /* Read the Device Control Register and set the bits to Force Speed
1974 * and Duplex.
1975 */
1976 ctrl = E1000_READ_REG(hw, CTRL);
1977 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1978 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1979
1980 /* Set up duplex in the Device Control and Transmit Control
1981 * registers depending on negotiated values.
1982 */
1983 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1984 if(ret_val)
1985 return ret_val;
1986
1987 if(phy_data & M88E1000_PSSR_DPLX)
1988 ctrl |= E1000_CTRL_FD;
1989 else
1990 ctrl &= ~E1000_CTRL_FD;
1991
1992 e1000_config_collision_dist(hw);
1993
1994 /* Set up speed in the Device Control register depending on
1995 * negotiated values.
1996 */
1997 if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1998 ctrl |= E1000_CTRL_SPD_1000;
1999 else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
2000 ctrl |= E1000_CTRL_SPD_100;
2001
2002 /* Write the configured values back to the Device Control Reg. */
2003 E1000_WRITE_REG(hw, CTRL, ctrl);
2004 return E1000_SUCCESS;
2005 }
2006
2007 /******************************************************************************
2008 * Forces the MAC's flow control settings.
2009 *
2010 * hw - Struct containing variables accessed by shared code
2011 *
2012 * Sets the TFCE and RFCE bits in the device control register to reflect
2013 * the adapter settings. TFCE and RFCE need to be explicitly set by
2014 * software when a Copper PHY is used because autonegotiation is managed
2015 * by the PHY rather than the MAC. Software must also configure these
2016 * bits when link is forced on a fiber connection.
2017 *****************************************************************************/
2018 int32_t
2019 e1000_force_mac_fc(struct e1000_hw *hw)
2020 {
2021 uint32_t ctrl;
2022
2023 DEBUGFUNC("e1000_force_mac_fc");
2024
2025 /* Get the current configuration of the Device Control Register */
2026 ctrl = E1000_READ_REG(hw, CTRL);
2027
2028 /* Because we didn't get link via the internal auto-negotiation
2029 * mechanism (we either forced link or we got link via PHY
2030 * auto-neg), we have to manually enable/disable transmit an
2031 * receive flow control.
2032 *
2033 * The "Case" statement below enables/disable flow control
2034 * according to the "hw->fc" parameter.
2035 *
2036 * The possible values of the "fc" parameter are:
2037 * 0: Flow control is completely disabled
2038 * 1: Rx flow control is enabled (we can receive pause
2039 * frames but not send pause frames).
2040 * 2: Tx flow control is enabled (we can send pause frames
2041 * frames but we do not receive pause frames).
2042 * 3: Both Rx and TX flow control (symmetric) is enabled.
2043 * other: No other values should be possible at this point.
2044 */
2045
2046 switch (hw->fc) {
2047 case e1000_fc_none:
2048 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2049 break;
2050 case e1000_fc_rx_pause:
2051 ctrl &= (~E1000_CTRL_TFCE);
2052 ctrl |= E1000_CTRL_RFCE;
2053 break;
2054 case e1000_fc_tx_pause:
2055 ctrl &= (~E1000_CTRL_RFCE);
2056 ctrl |= E1000_CTRL_TFCE;
2057 break;
2058 case e1000_fc_full:
2059 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2060 break;
2061 default:
2062 DEBUGOUT("Flow control param set incorrectly\n");
2063 return -E1000_ERR_CONFIG;
2064 }
2065
2066 /* Disable TX Flow Control for 82542 (rev 2.0) */
2067 if(hw->mac_type == e1000_82542_rev2_0)
2068 ctrl &= (~E1000_CTRL_TFCE);
2069
2070 E1000_WRITE_REG(hw, CTRL, ctrl);
2071 return E1000_SUCCESS;
2072 }
2073
2074 /******************************************************************************
2075 * Configures flow control settings after link is established
2076 *
2077 * hw - Struct containing variables accessed by shared code
2078 *
2079 * Should be called immediately after a valid link has been established.
2080 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2081 * and autonegotiation is enabled, the MAC flow control settings will be set
2082 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2083 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2084 *****************************************************************************/
2085 static int32_t
2086 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2087 {
2088 int32_t ret_val;
2089 uint16_t mii_status_reg;
2090 uint16_t mii_nway_adv_reg;
2091 uint16_t mii_nway_lp_ability_reg;
2092 uint16_t speed;
2093 uint16_t duplex;
2094
2095 DEBUGFUNC("e1000_config_fc_after_link_up");
2096
2097 /* Check for the case where we have fiber media and auto-neg failed
2098 * so we had to force link. In this case, we need to force the
2099 * configuration of the MAC to match the "fc" parameter.
2100 */
2101 if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2102 ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
2103 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2104 ret_val = e1000_force_mac_fc(hw);
2105 if(ret_val) {
2106 DEBUGOUT("Error forcing flow control settings\n");
2107 return ret_val;
2108 }
2109 }
2110
2111 /* Check for the case where we have copper media and auto-neg is
2112 * enabled. In this case, we need to check and see if Auto-Neg
2113 * has completed, and if so, how the PHY and link partner has
2114 * flow control configured.
2115 */
2116 if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2117 /* Read the MII Status Register and check to see if AutoNeg
2118 * has completed. We read this twice because this reg has
2119 * some "sticky" (latched) bits.
2120 */
2121 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2122 if(ret_val)
2123 return ret_val;
2124 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2125 if(ret_val)
2126 return ret_val;
2127
2128 if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2129 /* The AutoNeg process has completed, so we now need to
2130 * read both the Auto Negotiation Advertisement Register
2131 * (Address 4) and the Auto_Negotiation Base Page Ability
2132 * Register (Address 5) to determine how flow control was
2133 * negotiated.
2134 */
2135 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2136 &mii_nway_adv_reg);
2137 if(ret_val)
2138 return ret_val;
2139 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2140 &mii_nway_lp_ability_reg);
2141 if(ret_val)
2142 return ret_val;
2143
2144 /* Two bits in the Auto Negotiation Advertisement Register
2145 * (Address 4) and two bits in the Auto Negotiation Base
2146 * Page Ability Register (Address 5) determine flow control
2147 * for both the PHY and the link partner. The following
2148 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2149 * 1999, describes these PAUSE resolution bits and how flow
2150 * control is determined based upon these settings.
2151 * NOTE: DC = Don't Care
2152 *
2153 * LOCAL DEVICE | LINK PARTNER
2154 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2155 *-------|---------|-------|---------|--------------------
2156 * 0 | 0 | DC | DC | e1000_fc_none
2157 * 0 | 1 | 0 | DC | e1000_fc_none
2158 * 0 | 1 | 1 | 0 | e1000_fc_none
2159 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2160 * 1 | 0 | 0 | DC | e1000_fc_none
2161 * 1 | DC | 1 | DC | e1000_fc_full
2162 * 1 | 1 | 0 | 0 | e1000_fc_none
2163 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2164 *
2165 */
2166 /* Are both PAUSE bits set to 1? If so, this implies
2167 * Symmetric Flow Control is enabled at both ends. The
2168 * ASM_DIR bits are irrelevant per the spec.
2169 *
2170 * For Symmetric Flow Control:
2171 *
2172 * LOCAL DEVICE | LINK PARTNER
2173 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2174 *-------|---------|-------|---------|--------------------
2175 * 1 | DC | 1 | DC | e1000_fc_full
2176 *
2177 */
2178 if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2179 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2180 /* Now we need to check if the user selected RX ONLY
2181 * of pause frames. In this case, we had to advertise
2182 * FULL flow control because we could not advertise RX
2183 * ONLY. Hence, we must now check to see if we need to
2184 * turn OFF the TRANSMISSION of PAUSE frames.
2185 */
2186 if(hw->original_fc == e1000_fc_full) {
2187 hw->fc = e1000_fc_full;
2188 DEBUGOUT("Flow Control = FULL.\r\n");
2189 } else {
2190 hw->fc = e1000_fc_rx_pause;
2191 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2192 }
2193 }
2194 /* For receiving PAUSE frames ONLY.
2195 *
2196 * LOCAL DEVICE | LINK PARTNER
2197 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2198 *-------|---------|-------|---------|--------------------
2199 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2200 *
2201 */
2202 else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2203 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2204 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2205 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2206 hw->fc = e1000_fc_tx_pause;
2207 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
2208 }
2209 /* For transmitting PAUSE frames ONLY.
2210 *
2211 * LOCAL DEVICE | LINK PARTNER
2212 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2213 *-------|---------|-------|---------|--------------------
2214 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2215 *
2216 */
2217 else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2218 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2219 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2220 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2221 hw->fc = e1000_fc_rx_pause;
2222 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2223 }
2224 /* Per the IEEE spec, at this point flow control should be
2225 * disabled. However, we want to consider that we could
2226 * be connected to a legacy switch that doesn't advertise
2227 * desired flow control, but can be forced on the link
2228 * partner. So if we advertised no flow control, that is
2229 * what we will resolve to. If we advertised some kind of
2230 * receive capability (Rx Pause Only or Full Flow Control)
2231 * and the link partner advertised none, we will configure
2232 * ourselves to enable Rx Flow Control only. We can do
2233 * this safely for two reasons: If the link partner really
2234 * didn't want flow control enabled, and we enable Rx, no
2235 * harm done since we won't be receiving any PAUSE frames
2236 * anyway. If the intent on the link partner was to have
2237 * flow control enabled, then by us enabling RX only, we
2238 * can at least receive pause frames and process them.
2239 * This is a good idea because in most cases, since we are
2240 * predominantly a server NIC, more times than not we will
2241 * be asked to delay transmission of packets than asking
2242 * our link partner to pause transmission of frames.
2243 */
2244 else if((hw->original_fc == e1000_fc_none ||
2245 hw->original_fc == e1000_fc_tx_pause) ||
2246 hw->fc_strict_ieee) {
2247 hw->fc = e1000_fc_none;
2248 DEBUGOUT("Flow Control = NONE.\r\n");
2249 } else {
2250 hw->fc = e1000_fc_rx_pause;
2251 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2252 }
2253
2254 /* Now we need to do one last check... If we auto-
2255 * negotiated to HALF DUPLEX, flow control should not be
2256 * enabled per IEEE 802.3 spec.
2257 */
2258 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2259 if(ret_val) {
2260 DEBUGOUT("Error getting link speed and duplex\n");
2261 return ret_val;
2262 }
2263
2264 if(duplex == HALF_DUPLEX)
2265 hw->fc = e1000_fc_none;
2266
2267 /* Now we call a subroutine to actually force the MAC
2268 * controller to use the correct flow control settings.
2269 */
2270 ret_val = e1000_force_mac_fc(hw);
2271 if(ret_val) {
2272 DEBUGOUT("Error forcing flow control settings\n");
2273 return ret_val;
2274 }
2275 } else {
2276 DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
2277 }
2278 }
2279 return E1000_SUCCESS;
2280 }
2281
2282 /******************************************************************************
2283 * Checks to see if the link status of the hardware has changed.
2284 *
2285 * hw - Struct containing variables accessed by shared code
2286 *
2287 * Called by any function that needs to check the link status of the adapter.
2288 *****************************************************************************/
2289 int32_t
2290 e1000_check_for_link(struct e1000_hw *hw)
2291 {
2292 uint32_t rxcw = 0;
2293 uint32_t ctrl;
2294 uint32_t status;
2295 uint32_t rctl;
2296 uint32_t icr;
2297 uint32_t signal = 0;
2298 int32_t ret_val;
2299 uint16_t phy_data;
2300
2301 DEBUGFUNC("e1000_check_for_link");
2302
2303 ctrl = E1000_READ_REG(hw, CTRL);
2304 status = E1000_READ_REG(hw, STATUS);
2305
2306 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2307 * set when the optics detect a signal. On older adapters, it will be
2308 * cleared when there is a signal. This applies to fiber media only.
2309 */
2310 if((hw->media_type == e1000_media_type_fiber) ||
2311 (hw->media_type == e1000_media_type_internal_serdes)) {
2312 rxcw = E1000_READ_REG(hw, RXCW);
2313
2314 if(hw->media_type == e1000_media_type_fiber) {
2315 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2316 if(status & E1000_STATUS_LU)
2317 hw->get_link_status = FALSE;
2318 }
2319 }
2320
2321 /* If we have a copper PHY then we only want to go out to the PHY
2322 * registers to see if Auto-Neg has completed and/or if our link
2323 * status has changed. The get_link_status flag will be set if we
2324 * receive a Link Status Change interrupt or we have Rx Sequence
2325 * Errors.
2326 */
2327 if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2328 /* First we want to see if the MII Status Register reports
2329 * link. If so, then we want to get the current speed/duplex
2330 * of the PHY.
2331 * Read the register twice since the link bit is sticky.
2332 */
2333 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2334 if(ret_val)
2335 return ret_val;
2336 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2337 if(ret_val)
2338 return ret_val;
2339
2340 if(phy_data & MII_SR_LINK_STATUS) {
2341 hw->get_link_status = FALSE;
2342 /* Check if there was DownShift, must be checked immediately after
2343 * link-up */
2344 e1000_check_downshift(hw);
2345
2346 /* If we are on 82544 or 82543 silicon and speed/duplex
2347 * are forced to 10H or 10F, then we will implement the polarity
2348 * reversal workaround. We disable interrupts first, and upon
2349 * returning, place the devices interrupt state to its previous
2350 * value except for the link status change interrupt which will
2351 * happen due to the execution of this workaround.
2352 */
2353
2354 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2355 (!hw->autoneg) &&
2356 (hw->forced_speed_duplex == e1000_10_full ||
2357 hw->forced_speed_duplex == e1000_10_half)) {
2358 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2359 ret_val = e1000_polarity_reversal_workaround(hw);
2360 icr = E1000_READ_REG(hw, ICR);
2361 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2362 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2363 }
2364
2365 } else {
2366 /* No link detected */
2367 e1000_config_dsp_after_link_change(hw, FALSE);
2368 return 0;
2369 }
2370
2371 /* If we are forcing speed/duplex, then we simply return since
2372 * we have already determined whether we have link or not.
2373 */
2374 if(!hw->autoneg) return -E1000_ERR_CONFIG;
2375
2376 /* optimize the dsp settings for the igp phy */
2377 e1000_config_dsp_after_link_change(hw, TRUE);
2378
2379 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2380 * have Si on board that is 82544 or newer, Auto
2381 * Speed Detection takes care of MAC speed/duplex
2382 * configuration. So we only need to configure Collision
2383 * Distance in the MAC. Otherwise, we need to force
2384 * speed/duplex on the MAC to the current PHY speed/duplex
2385 * settings.
2386 */
2387 if(hw->mac_type >= e1000_82544)
2388 e1000_config_collision_dist(hw);
2389 else {
2390 ret_val = e1000_config_mac_to_phy(hw);
2391 if(ret_val) {
2392 DEBUGOUT("Error configuring MAC to PHY settings\n");
2393 return ret_val;
2394 }
2395 }
2396
2397 /* Configure Flow Control now that Auto-Neg has completed. First, we
2398 * need to restore the desired flow control settings because we may
2399 * have had to re-autoneg with a different link partner.
2400 */
2401 ret_val = e1000_config_fc_after_link_up(hw);
2402 if(ret_val) {
2403 DEBUGOUT("Error configuring flow control\n");
2404 return ret_val;
2405 }
2406
2407 /* At this point we know that we are on copper and we have
2408 * auto-negotiated link. These are conditions for checking the link
2409 * partner capability register. We use the link speed to determine if
2410 * TBI compatibility needs to be turned on or off. If the link is not
2411 * at gigabit speed, then TBI compatibility is not needed. If we are
2412 * at gigabit speed, we turn on TBI compatibility.
2413 */
2414 if(hw->tbi_compatibility_en) {
2415 uint16_t speed, duplex;
2416 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2417 if(speed != SPEED_1000) {
2418 /* If link speed is not set to gigabit speed, we do not need
2419 * to enable TBI compatibility.
2420 */
2421 if(hw->tbi_compatibility_on) {
2422 /* If we previously were in the mode, turn it off. */
2423 rctl = E1000_READ_REG(hw, RCTL);
2424 rctl &= ~E1000_RCTL_SBP;
2425 E1000_WRITE_REG(hw, RCTL, rctl);
2426 hw->tbi_compatibility_on = FALSE;
2427 }
2428 } else {
2429 /* If TBI compatibility is was previously off, turn it on. For
2430 * compatibility with a TBI link partner, we will store bad
2431 * packets. Some frames have an additional byte on the end and
2432 * will look like CRC errors to to the hardware.
2433 */
2434 if(!hw->tbi_compatibility_on) {
2435 hw->tbi_compatibility_on = TRUE;
2436 rctl = E1000_READ_REG(hw, RCTL);
2437 rctl |= E1000_RCTL_SBP;
2438 E1000_WRITE_REG(hw, RCTL, rctl);
2439 }
2440 }
2441 }
2442 }
2443 /* If we don't have link (auto-negotiation failed or link partner cannot
2444 * auto-negotiate), the cable is plugged in (we have signal), and our
2445 * link partner is not trying to auto-negotiate with us (we are receiving
2446 * idles or data), we need to force link up. We also need to give
2447 * auto-negotiation time to complete, in case the cable was just plugged
2448 * in. The autoneg_failed flag does this.
2449 */
2450 else if((((hw->media_type == e1000_media_type_fiber) &&
2451 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2452 (hw->media_type == e1000_media_type_internal_serdes)) &&
2453 (!(status & E1000_STATUS_LU)) &&
2454 (!(rxcw & E1000_RXCW_C))) {
2455 if(hw->autoneg_failed == 0) {
2456 hw->autoneg_failed = 1;
2457 return 0;
2458 }
2459 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2460
2461 /* Disable auto-negotiation in the TXCW register */
2462 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2463
2464 /* Force link-up and also force full-duplex. */
2465 ctrl = E1000_READ_REG(hw, CTRL);
2466 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2467 E1000_WRITE_REG(hw, CTRL, ctrl);
2468
2469 /* Configure Flow Control after forcing link up. */
2470 ret_val = e1000_config_fc_after_link_up(hw);
2471 if(ret_val) {
2472 DEBUGOUT("Error configuring flow control\n");
2473 return ret_val;
2474 }
2475 }
2476 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2477 * auto-negotiation in the TXCW register and disable forced link in the
2478 * Device Control register in an attempt to auto-negotiate with our link
2479 * partner.
2480 */
2481 else if(((hw->media_type == e1000_media_type_fiber) ||
2482 (hw->media_type == e1000_media_type_internal_serdes)) &&
2483 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2484 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2485 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2486 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2487
2488 hw->serdes_link_down = FALSE;
2489 }
2490 /* If we force link for non-auto-negotiation switch, check link status
2491 * based on MAC synchronization for internal serdes media type.
2492 */
2493 else if((hw->media_type == e1000_media_type_internal_serdes) &&
2494 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2495 /* SYNCH bit and IV bit are sticky. */
2496 udelay(10);
2497 if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
2498 if(!(rxcw & E1000_RXCW_IV)) {
2499 hw->serdes_link_down = FALSE;
2500 DEBUGOUT("SERDES: Link is up.\n");
2501 }
2502 } else {
2503 hw->serdes_link_down = TRUE;
2504 DEBUGOUT("SERDES: Link is down.\n");
2505 }
2506 }
2507 if((hw->media_type == e1000_media_type_internal_serdes) &&
2508 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2509 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
2510 }
2511 return E1000_SUCCESS;
2512 }
2513
2514 /******************************************************************************
2515 * Detects the current speed and duplex settings of the hardware.
2516 *
2517 * hw - Struct containing variables accessed by shared code
2518 * speed - Speed of the connection
2519 * duplex - Duplex setting of the connection
2520 *****************************************************************************/
2521 int32_t
2522 e1000_get_speed_and_duplex(struct e1000_hw *hw,
2523 uint16_t *speed,
2524 uint16_t *duplex)
2525 {
2526 uint32_t status;
2527 int32_t ret_val;
2528 uint16_t phy_data;
2529
2530 DEBUGFUNC("e1000_get_speed_and_duplex");
2531
2532 if(hw->mac_type >= e1000_82543) {
2533 status = E1000_READ_REG(hw, STATUS);
2534 if(status & E1000_STATUS_SPEED_1000) {
2535 *speed = SPEED_1000;
2536 DEBUGOUT("1000 Mbs, ");
2537 } else if(status & E1000_STATUS_SPEED_100) {
2538 *speed = SPEED_100;
2539 DEBUGOUT("100 Mbs, ");
2540 } else {
2541 *speed = SPEED_10;
2542 DEBUGOUT("10 Mbs, ");
2543 }
2544
2545 if(status & E1000_STATUS_FD) {
2546 *duplex = FULL_DUPLEX;
2547 DEBUGOUT("Full Duplex\r\n");
2548 } else {
2549 *duplex = HALF_DUPLEX;
2550 DEBUGOUT(" Half Duplex\r\n");
2551 }
2552 } else {
2553 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2554 *speed = SPEED_1000;
2555 *duplex = FULL_DUPLEX;
2556 }
2557
2558 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2559 * if it is operating at half duplex. Here we set the duplex settings to
2560 * match the duplex in the link partner's capabilities.
2561 */
2562 if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2563 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2564 if(ret_val)
2565 return ret_val;
2566
2567 if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2568 *duplex = HALF_DUPLEX;
2569 else {
2570 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2571 if(ret_val)
2572 return ret_val;
2573 if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2574 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2575 *duplex = HALF_DUPLEX;
2576 }
2577 }
2578
2579 return E1000_SUCCESS;
2580 }
2581
2582 /******************************************************************************
2583 * Blocks until autoneg completes or times out (~4.5 seconds)
2584 *
2585 * hw - Struct containing variables accessed by shared code
2586 ******************************************************************************/
2587 static int32_t
2588 e1000_wait_autoneg(struct e1000_hw *hw)
2589 {
2590 int32_t ret_val;
2591 uint16_t i;
2592 uint16_t phy_data;
2593
2594 DEBUGFUNC("e1000_wait_autoneg");
2595 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2596
2597 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2598 for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2599 /* Read the MII Status Register and wait for Auto-Neg
2600 * Complete bit to be set.
2601 */
2602 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2603 if(ret_val)
2604 return ret_val;
2605 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2606 if(ret_val)
2607 return ret_val;
2608 if(phy_data & MII_SR_AUTONEG_COMPLETE) {
2609 return E1000_SUCCESS;
2610 }
2611 msec_delay(100);
2612 }
2613 return E1000_SUCCESS;
2614 }
2615
2616 /******************************************************************************
2617 * Raises the Management Data Clock
2618 *
2619 * hw - Struct containing variables accessed by shared code
2620 * ctrl - Device control register's current value
2621 ******************************************************************************/
2622 static void
2623 e1000_raise_mdi_clk(struct e1000_hw *hw,
2624 uint32_t *ctrl)
2625 {
2626 /* Raise the clock input to the Management Data Clock (by setting the MDC
2627 * bit), and then delay 10 microseconds.
2628 */
2629 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2630 E1000_WRITE_FLUSH(hw);
2631 udelay(10);
2632 }
2633
2634 /******************************************************************************
2635 * Lowers the Management Data Clock
2636 *
2637 * hw - Struct containing variables accessed by shared code
2638 * ctrl - Device control register's current value
2639 ******************************************************************************/
2640 static void
2641 e1000_lower_mdi_clk(struct e1000_hw *hw,
2642 uint32_t *ctrl)
2643 {
2644 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2645 * bit), and then delay 10 microseconds.
2646 */
2647 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2648 E1000_WRITE_FLUSH(hw);
2649 udelay(10);
2650 }
2651
2652 /******************************************************************************
2653 * Shifts data bits out to the PHY
2654 *
2655 * hw - Struct containing variables accessed by shared code
2656 * data - Data to send out to the PHY
2657 * count - Number of bits to shift out
2658 *
2659 * Bits are shifted out in MSB to LSB order.
2660 ******************************************************************************/
2661 static void
2662 e1000_shift_out_mdi_bits(struct e1000_hw *hw,
2663 uint32_t data,
2664 uint16_t count)
2665 {
2666 uint32_t ctrl;
2667 uint32_t mask;
2668
2669 /* We need to shift "count" number of bits out to the PHY. So, the value
2670 * in the "data" parameter will be shifted out to the PHY one bit at a
2671 * time. In order to do this, "data" must be broken down into bits.
2672 */
2673 mask = 0x01;
2674 mask <<= (count - 1);
2675
2676 ctrl = E1000_READ_REG(hw, CTRL);
2677
2678 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2679 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2680
2681 while(mask) {
2682 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2683 * then raising and lowering the Management Data Clock. A "0" is
2684 * shifted out to the PHY by setting the MDIO bit to "0" and then
2685 * raising and lowering the clock.
2686 */
2687 if(data & mask) ctrl |= E1000_CTRL_MDIO;
2688 else ctrl &= ~E1000_CTRL_MDIO;
2689
2690 E1000_WRITE_REG(hw, CTRL, ctrl);
2691 E1000_WRITE_FLUSH(hw);
2692
2693 udelay(10);
2694
2695 e1000_raise_mdi_clk(hw, &ctrl);
2696 e1000_lower_mdi_clk(hw, &ctrl);
2697
2698 mask = mask >> 1;
2699 }
2700 }
2701
2702 /******************************************************************************
2703 * Shifts data bits in from the PHY
2704 *
2705 * hw - Struct containing variables accessed by shared code
2706 *
2707 * Bits are shifted in in MSB to LSB order.
2708 ******************************************************************************/
2709 static uint16_t
2710 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2711 {
2712 uint32_t ctrl;
2713 uint16_t data = 0;
2714 uint8_t i;
2715
2716 /* In order to read a register from the PHY, we need to shift in a total
2717 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2718 * to avoid contention on the MDIO pin when a read operation is performed.
2719 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2720 * by raising the input to the Management Data Clock (setting the MDC bit),
2721 * and then reading the value of the MDIO bit.
2722 */
2723 ctrl = E1000_READ_REG(hw, CTRL);
2724
2725 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2726 ctrl &= ~E1000_CTRL_MDIO_DIR;
2727 ctrl &= ~E1000_CTRL_MDIO;
2728
2729 E1000_WRITE_REG(hw, CTRL, ctrl);
2730 E1000_WRITE_FLUSH(hw);
2731
2732 /* Raise and Lower the clock before reading in the data. This accounts for
2733 * the turnaround bits. The first clock occurred when we clocked out the
2734 * last bit of the Register Address.
2735 */
2736 e1000_raise_mdi_clk(hw, &ctrl);
2737 e1000_lower_mdi_clk(hw, &ctrl);
2738
2739 for(data = 0, i = 0; i < 16; i++) {
2740 data = data << 1;
2741 e1000_raise_mdi_clk(hw, &ctrl);
2742 ctrl = E1000_READ_REG(hw, CTRL);
2743 /* Check to see if we shifted in a "1". */
2744 if(ctrl & E1000_CTRL_MDIO) data |= 1;
2745 e1000_lower_mdi_clk(hw, &ctrl);
2746 }
2747
2748 e1000_raise_mdi_clk(hw, &ctrl);
2749 e1000_lower_mdi_clk(hw, &ctrl);
2750
2751 return data;
2752 }
2753
2754 /*****************************************************************************
2755 * Reads the value from a PHY register, if the value is on a specific non zero
2756 * page, sets the page first.
2757 * hw - Struct containing variables accessed by shared code
2758 * reg_addr - address of the PHY register to read
2759 ******************************************************************************/
2760 int32_t
2761 e1000_read_phy_reg(struct e1000_hw *hw,
2762 uint32_t reg_addr,
2763 uint16_t *phy_data)
2764 {
2765 uint32_t ret_val;
2766
2767 DEBUGFUNC("e1000_read_phy_reg");
2768
2769 if((hw->phy_type == e1000_phy_igp ||
2770 hw->phy_type == e1000_phy_igp_2) &&
2771 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2772 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2773 (uint16_t)reg_addr);
2774 if(ret_val) {
2775 return ret_val;
2776 }
2777 }
2778
2779 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2780 phy_data);
2781
2782 return ret_val;
2783 }
2784
2785 int32_t
2786 e1000_read_phy_reg_ex(struct e1000_hw *hw,
2787 uint32_t reg_addr,
2788 uint16_t *phy_data)
2789 {
2790 uint32_t i;
2791 uint32_t mdic = 0;
2792 const uint32_t phy_addr = 1;
2793
2794 DEBUGFUNC("e1000_read_phy_reg_ex");
2795
2796 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2797 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2798 return -E1000_ERR_PARAM;
2799 }
2800
2801 if(hw->mac_type > e1000_82543) {
2802 /* Set up Op-code, Phy Address, and register address in the MDI
2803 * Control register. The MAC will take care of interfacing with the
2804 * PHY to retrieve the desired data.
2805 */
2806 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2807 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2808 (E1000_MDIC_OP_READ));
2809
2810 E1000_WRITE_REG(hw, MDIC, mdic);
2811
2812 /* Poll the ready bit to see if the MDI read completed */
2813 for(i = 0; i < 64; i++) {
2814 udelay(50);
2815 mdic = E1000_READ_REG(hw, MDIC);
2816 if(mdic & E1000_MDIC_READY) break;
2817 }
2818 if(!(mdic & E1000_MDIC_READY)) {
2819 DEBUGOUT("MDI Read did not complete\n");
2820 return -E1000_ERR_PHY;
2821 }
2822 if(mdic & E1000_MDIC_ERROR) {
2823 DEBUGOUT("MDI Error\n");
2824 return -E1000_ERR_PHY;
2825 }
2826 *phy_data = (uint16_t) mdic;
2827 } else {
2828 /* We must first send a preamble through the MDIO pin to signal the
2829 * beginning of an MII instruction. This is done by sending 32
2830 * consecutive "1" bits.
2831 */
2832 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2833
2834 /* Now combine the next few fields that are required for a read
2835 * operation. We use this method instead of calling the
2836 * e1000_shift_out_mdi_bits routine five different times. The format of
2837 * a MII read instruction consists of a shift out of 14 bits and is
2838 * defined as follows:
2839 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2840 * followed by a shift in of 18 bits. This first two bits shifted in
2841 * are TurnAround bits used to avoid contention on the MDIO pin when a
2842 * READ operation is performed. These two bits are thrown away
2843 * followed by a shift in of 16 bits which contains the desired data.
2844 */
2845 mdic = ((reg_addr) | (phy_addr << 5) |
2846 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2847
2848 e1000_shift_out_mdi_bits(hw, mdic, 14);
2849
2850 /* Now that we've shifted out the read command to the MII, we need to
2851 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2852 * register address.
2853 */
2854 *phy_data = e1000_shift_in_mdi_bits(hw);
2855 }
2856 return E1000_SUCCESS;
2857 }
2858
2859 /******************************************************************************
2860 * Writes a value to a PHY register
2861 *
2862 * hw - Struct containing variables accessed by shared code
2863 * reg_addr - address of the PHY register to write
2864 * data - data to write to the PHY
2865 ******************************************************************************/
2866 int32_t
2867 e1000_write_phy_reg(struct e1000_hw *hw,
2868 uint32_t reg_addr,
2869 uint16_t phy_data)
2870 {
2871 uint32_t ret_val;
2872
2873 DEBUGFUNC("e1000_write_phy_reg");
2874
2875 if((hw->phy_type == e1000_phy_igp ||
2876 hw->phy_type == e1000_phy_igp_2) &&
2877 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2878 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2879 (uint16_t)reg_addr);
2880 if(ret_val) {
2881 return ret_val;
2882 }
2883 }
2884
2885 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2886 phy_data);
2887
2888 return ret_val;
2889 }
2890
2891 int32_t
2892 e1000_write_phy_reg_ex(struct e1000_hw *hw,
2893 uint32_t reg_addr,
2894 uint16_t phy_data)
2895 {
2896 uint32_t i;
2897 uint32_t mdic = 0;
2898 const uint32_t phy_addr = 1;
2899
2900 DEBUGFUNC("e1000_write_phy_reg_ex");
2901
2902 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2903 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2904 return -E1000_ERR_PARAM;
2905 }
2906
2907 if(hw->mac_type > e1000_82543) {
2908 /* Set up Op-code, Phy Address, register address, and data intended
2909 * for the PHY register in the MDI Control register. The MAC will take
2910 * care of interfacing with the PHY to send the desired data.
2911 */
2912 mdic = (((uint32_t) phy_data) |
2913 (reg_addr << E1000_MDIC_REG_SHIFT) |
2914 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2915 (E1000_MDIC_OP_WRITE));
2916
2917 E1000_WRITE_REG(hw, MDIC, mdic);
2918
2919 /* Poll the ready bit to see if the MDI read completed */
2920 for(i = 0; i < 640; i++) {
2921 udelay(5);
2922 mdic = E1000_READ_REG(hw, MDIC);
2923 if(mdic & E1000_MDIC_READY) break;
2924 }
2925 if(!(mdic & E1000_MDIC_READY)) {
2926 DEBUGOUT("MDI Write did not complete\n");
2927 return -E1000_ERR_PHY;
2928 }
2929 } else {
2930 /* We'll need to use the SW defined pins to shift the write command
2931 * out to the PHY. We first send a preamble to the PHY to signal the
2932 * beginning of the MII instruction. This is done by sending 32
2933 * consecutive "1" bits.
2934 */
2935 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2936
2937 /* Now combine the remaining required fields that will indicate a
2938 * write operation. We use this method instead of calling the
2939 * e1000_shift_out_mdi_bits routine for each field in the command. The
2940 * format of a MII write instruction is as follows:
2941 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2942 */
2943 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2944 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2945 mdic <<= 16;
2946 mdic |= (uint32_t) phy_data;
2947
2948 e1000_shift_out_mdi_bits(hw, mdic, 32);
2949 }
2950
2951 return E1000_SUCCESS;
2952 }
2953
2954
2955 /******************************************************************************
2956 * Returns the PHY to the power-on reset state
2957 *
2958 * hw - Struct containing variables accessed by shared code
2959 ******************************************************************************/
2960 int32_t
2961 e1000_phy_hw_reset(struct e1000_hw *hw)
2962 {
2963 uint32_t ctrl, ctrl_ext;
2964 uint32_t led_ctrl;
2965 int32_t ret_val;
2966
2967 DEBUGFUNC("e1000_phy_hw_reset");
2968
2969 /* In the case of the phy reset being blocked, it's not an error, we
2970 * simply return success without performing the reset. */
2971 ret_val = e1000_check_phy_reset_block(hw);
2972 if (ret_val)
2973 return E1000_SUCCESS;
2974
2975 DEBUGOUT("Resetting Phy...\n");
2976
2977 if(hw->mac_type > e1000_82543) {
2978 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2979 * bit. Then, take it out of reset.
2980 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
2981 * and deassert. For e1000_82571 hardware and later, we instead delay
2982 * for 10ms after the deassertion.
2983 */
2984 ctrl = E1000_READ_REG(hw, CTRL);
2985 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2986 E1000_WRITE_FLUSH(hw);
2987
2988 if (hw->mac_type < e1000_82571)
2989 msec_delay(10);
2990 else
2991 udelay(100);
2992
2993 E1000_WRITE_REG(hw, CTRL, ctrl);
2994 E1000_WRITE_FLUSH(hw);
2995
2996 if (hw->mac_type >= e1000_82571)
2997 msec_delay(10);
2998 } else {
2999 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3000 * bit to put the PHY into reset. Then, take it out of reset.
3001 */
3002 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3003 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3004 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3005 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3006 E1000_WRITE_FLUSH(hw);
3007 msec_delay(10);
3008 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3009 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3010 E1000_WRITE_FLUSH(hw);
3011 }
3012 udelay(150);
3013
3014 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3015 /* Configure activity LED after PHY reset */
3016 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3017 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3018 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3019 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3020 }
3021
3022 /* Wait for FW to finish PHY configuration. */
3023 ret_val = e1000_get_phy_cfg_done(hw);
3024
3025 return ret_val;
3026 }
3027
3028 /******************************************************************************
3029 * Resets the PHY
3030 *
3031 * hw - Struct containing variables accessed by shared code
3032 *
3033 * Sets bit 15 of the MII Control regiser
3034 ******************************************************************************/
3035 int32_t
3036 e1000_phy_reset(struct e1000_hw *hw)
3037 {
3038 int32_t ret_val;
3039 uint16_t phy_data;
3040
3041 DEBUGFUNC("e1000_phy_reset");
3042
3043 /* In the case of the phy reset being blocked, it's not an error, we
3044 * simply return success without performing the reset. */
3045 ret_val = e1000_check_phy_reset_block(hw);
3046 if (ret_val)
3047 return E1000_SUCCESS;
3048
3049 switch (hw->mac_type) {
3050 case e1000_82541_rev_2:
3051 case e1000_82571:
3052 case e1000_82572:
3053 ret_val = e1000_phy_hw_reset(hw);
3054 if(ret_val)
3055 return ret_val;
3056 break;
3057 default:
3058 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3059 if(ret_val)
3060 return ret_val;
3061
3062 phy_data |= MII_CR_RESET;
3063 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3064 if(ret_val)
3065 return ret_val;
3066
3067 udelay(1);
3068 break;
3069 }
3070
3071 if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
3072 e1000_phy_init_script(hw);
3073
3074 return E1000_SUCCESS;
3075 }
3076
3077 /******************************************************************************
3078 * Probes the expected PHY address for known PHY IDs
3079 *
3080 * hw - Struct containing variables accessed by shared code
3081 ******************************************************************************/
3082 static int32_t
3083 e1000_detect_gig_phy(struct e1000_hw *hw)
3084 {
3085 int32_t phy_init_status, ret_val;
3086 uint16_t phy_id_high, phy_id_low;
3087 boolean_t match = FALSE;
3088
3089 DEBUGFUNC("e1000_detect_gig_phy");
3090
3091 /* The 82571 firmware may still be configuring the PHY. In this
3092 * case, we cannot access the PHY until the configuration is done. So
3093 * we explicitly set the PHY values. */
3094 if(hw->mac_type == e1000_82571 ||
3095 hw->mac_type == e1000_82572) {
3096 hw->phy_id = IGP01E1000_I_PHY_ID;
3097 hw->phy_type = e1000_phy_igp_2;
3098 return E1000_SUCCESS;
3099 }
3100
3101 /* Read the PHY ID Registers to identify which PHY is onboard. */
3102 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3103 if(ret_val)
3104 return ret_val;
3105
3106 hw->phy_id = (uint32_t) (phy_id_high << 16);
3107 udelay(20);
3108 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3109 if(ret_val)
3110 return ret_val;
3111
3112 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
3113 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
3114
3115 switch(hw->mac_type) {
3116 case e1000_82543:
3117 if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
3118 break;
3119 case e1000_82544:
3120 if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
3121 break;
3122 case e1000_82540:
3123 case e1000_82545:
3124 case e1000_82545_rev_3:
3125 case e1000_82546:
3126 case e1000_82546_rev_3:
3127 if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
3128 break;
3129 case e1000_82541:
3130 case e1000_82541_rev_2:
3131 case e1000_82547:
3132 case e1000_82547_rev_2:
3133 if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
3134 break;
3135 case e1000_82573:
3136 if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
3137 break;
3138 default:
3139 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
3140 return -E1000_ERR_CONFIG;
3141 }
3142 phy_init_status = e1000_set_phy_type(hw);
3143
3144 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3145 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
3146 return E1000_SUCCESS;
3147 }
3148 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
3149 return -E1000_ERR_PHY;
3150 }
3151
3152 /******************************************************************************
3153 * Resets the PHY's DSP
3154 *
3155 * hw - Struct containing variables accessed by shared code
3156 ******************************************************************************/
3157 static int32_t
3158 e1000_phy_reset_dsp(struct e1000_hw *hw)
3159 {
3160 int32_t ret_val;
3161 DEBUGFUNC("e1000_phy_reset_dsp");
3162
3163 do {
3164 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3165 if(ret_val) break;
3166 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3167 if(ret_val) break;
3168 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3169 if(ret_val) break;
3170 ret_val = E1000_SUCCESS;
3171 } while(0);
3172
3173 return ret_val;
3174 }
3175
3176 /******************************************************************************
3177 * Get PHY information from various PHY registers for igp PHY only.
3178 *
3179 * hw - Struct containing variables accessed by shared code
3180 * phy_info - PHY information structure
3181 ******************************************************************************/
3182 static int32_t
3183 e1000_phy_igp_get_info(struct e1000_hw *hw,
3184 struct e1000_phy_info *phy_info)
3185 {
3186 int32_t ret_val;
3187 uint16_t phy_data, polarity, min_length, max_length, average;
3188
3189 DEBUGFUNC("e1000_phy_igp_get_info");
3190
3191 /* The downshift status is checked only once, after link is established,
3192 * and it stored in the hw->speed_downgraded parameter. */
3193 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
3194
3195 /* IGP01E1000 does not need to support it. */
3196 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3197
3198 /* IGP01E1000 always correct polarity reversal */
3199 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3200
3201 /* Check polarity status */
3202 ret_val = e1000_check_polarity(hw, &polarity);
3203 if(ret_val)
3204 return ret_val;
3205
3206 phy_info->cable_polarity = polarity;
3207
3208 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3209 if(ret_val)
3210 return ret_val;
3211
3212 phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
3213 IGP01E1000_PSSR_MDIX_SHIFT;
3214
3215 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3216 IGP01E1000_PSSR_SPEED_1000MBPS) {
3217 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3218 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3219 if(ret_val)
3220 return ret_val;
3221
3222 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3223 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3224 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3225 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3226
3227 /* Get cable length */
3228 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3229 if(ret_val)
3230 return ret_val;
3231
3232 /* Translate to old method */
3233 average = (max_length + min_length) / 2;
3234
3235 if(average <= e1000_igp_cable_length_50)
3236 phy_info->cable_length = e1000_cable_length_50;
3237 else if(average <= e1000_igp_cable_length_80)
3238 phy_info->cable_length = e1000_cable_length_50_80;
3239 else if(average <= e1000_igp_cable_length_110)
3240 phy_info->cable_length = e1000_cable_length_80_110;
3241 else if(average <= e1000_igp_cable_length_140)
3242 phy_info->cable_length = e1000_cable_length_110_140;
3243 else
3244 phy_info->cable_length = e1000_cable_length_140;
3245 }
3246
3247 return E1000_SUCCESS;
3248 }
3249
3250 /******************************************************************************
3251 * Get PHY information from various PHY registers fot m88 PHY only.
3252 *
3253 * hw - Struct containing variables accessed by shared code
3254 * phy_info - PHY information structure
3255 ******************************************************************************/
3256 static int32_t
3257 e1000_phy_m88_get_info(struct e1000_hw *hw,
3258 struct e1000_phy_info *phy_info)
3259 {
3260 int32_t ret_val;
3261 uint16_t phy_data, polarity;
3262
3263 DEBUGFUNC("e1000_phy_m88_get_info");
3264
3265 /* The downshift status is checked only once, after link is established,
3266 * and it stored in the hw->speed_downgraded parameter. */
3267 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
3268
3269 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3270 if(ret_val)
3271 return ret_val;
3272
3273 phy_info->extended_10bt_distance =
3274 (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3275 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
3276 phy_info->polarity_correction =
3277 (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3278 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
3279
3280 /* Check polarity status */
3281 ret_val = e1000_check_polarity(hw, &polarity);
3282 if(ret_val)
3283 return ret_val;
3284 phy_info->cable_polarity = polarity;
3285
3286 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3287 if(ret_val)
3288 return ret_val;
3289
3290 phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
3291 M88E1000_PSSR_MDIX_SHIFT;
3292
3293 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3294 /* Cable Length Estimation and Local/Remote Receiver Information
3295 * are only valid at 1000 Mbps.
3296 */
3297 phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
3298 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3299
3300 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3301 if(ret_val)
3302 return ret_val;
3303
3304 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3305 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3306
3307 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3308 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3309 }
3310
3311 return E1000_SUCCESS;
3312 }
3313
3314 /******************************************************************************
3315 * Get PHY information from various PHY registers
3316 *
3317 * hw - Struct containing variables accessed by shared code
3318 * phy_info - PHY information structure
3319 ******************************************************************************/
3320 int32_t
3321 e1000_phy_get_info(struct e1000_hw *hw,
3322 struct e1000_phy_info *phy_info)
3323 {
3324 int32_t ret_val;
3325 uint16_t phy_data;
3326
3327 DEBUGFUNC("e1000_phy_get_info");
3328
3329 phy_info->cable_length = e1000_cable_length_undefined;
3330 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3331 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3332 phy_info->downshift = e1000_downshift_undefined;
3333 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3334 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3335 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3336 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3337
3338 if(hw->media_type != e1000_media_type_copper) {
3339 DEBUGOUT("PHY info is only valid for copper media\n");
3340 return -E1000_ERR_CONFIG;
3341 }
3342
3343 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3344 if(ret_val)
3345 return ret_val;
3346
3347 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3348 if(ret_val)
3349 return ret_val;
3350
3351 if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3352 DEBUGOUT("PHY info is only valid if link is up\n");
3353 return -E1000_ERR_CONFIG;
3354 }
3355
3356 if(hw->phy_type == e1000_phy_igp ||
3357 hw->phy_type == e1000_phy_igp_2)
3358 return e1000_phy_igp_get_info(hw, phy_info);
3359 else
3360 return e1000_phy_m88_get_info(hw, phy_info);
3361 }
3362
3363 int32_t
3364 e1000_validate_mdi_setting(struct e1000_hw *hw)
3365 {
3366 DEBUGFUNC("e1000_validate_mdi_settings");
3367
3368 if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3369 DEBUGOUT("Invalid MDI setting detected\n");
3370 hw->mdix = 1;
3371 return -E1000_ERR_CONFIG;
3372 }
3373 return E1000_SUCCESS;
3374 }
3375
3376
3377 /******************************************************************************
3378 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3379 * is configured.
3380 *
3381 * hw - Struct containing variables accessed by shared code
3382 *****************************************************************************/
3383 int32_t
3384 e1000_init_eeprom_params(struct e1000_hw *hw)
3385 {
3386 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3387 uint32_t eecd = E1000_READ_REG(hw, EECD);
3388 int32_t ret_val = E1000_SUCCESS;
3389 uint16_t eeprom_size;
3390
3391 DEBUGFUNC("e1000_init_eeprom_params");
3392
3393 switch (hw->mac_type) {
3394 case e1000_82542_rev2_0:
3395 case e1000_82542_rev2_1:
3396 case e1000_82543:
3397 case e1000_82544:
3398 eeprom->type = e1000_eeprom_microwire;
3399 eeprom->word_size = 64;
3400 eeprom->opcode_bits = 3;
3401 eeprom->address_bits = 6;
3402 eeprom->delay_usec = 50;
3403 eeprom->use_eerd = FALSE;
3404 eeprom->use_eewr = FALSE;
3405 break;
3406 case e1000_82540:
3407 case e1000_82545:
3408 case e1000_82545_rev_3:
3409 case e1000_82546:
3410 case e1000_82546_rev_3:
3411 eeprom->type = e1000_eeprom_microwire;
3412 eeprom->opcode_bits = 3;
3413 eeprom->delay_usec = 50;
3414 if(eecd & E1000_EECD_SIZE) {
3415 eeprom->word_size = 256;
3416 eeprom->address_bits = 8;
3417 } else {
3418 eeprom->word_size = 64;
3419 eeprom->address_bits = 6;
3420 }
3421 eeprom->use_eerd = FALSE;
3422 eeprom->use_eewr = FALSE;
3423 break;
3424 case e1000_82541:
3425 case e1000_82541_rev_2:
3426 case e1000_82547:
3427 case e1000_82547_rev_2:
3428 if (eecd & E1000_EECD_TYPE) {
3429 eeprom->type = e1000_eeprom_spi;
3430 eeprom->opcode_bits = 8;
3431 eeprom->delay_usec = 1;
3432 if (eecd & E1000_EECD_ADDR_BITS) {
3433 eeprom->page_size = 32;
3434 eeprom->address_bits = 16;
3435 } else {
3436 eeprom->page_size = 8;
3437 eeprom->address_bits = 8;
3438 }
3439 } else {
3440 eeprom->type = e1000_eeprom_microwire;
3441 eeprom->opcode_bits = 3;
3442 eeprom->delay_usec = 50;
3443 if (eecd & E1000_EECD_ADDR_BITS) {
3444 eeprom->word_size = 256;
3445 eeprom->address_bits = 8;
3446 } else {
3447 eeprom->word_size = 64;
3448 eeprom->address_bits = 6;
3449 }
3450 }
3451 eeprom->use_eerd = FALSE;
3452 eeprom->use_eewr = FALSE;
3453 break;
3454 case e1000_82571:
3455 case e1000_82572:
3456 eeprom->type = e1000_eeprom_spi;
3457 eeprom->opcode_bits = 8;
3458 eeprom->delay_usec = 1;
3459 if (eecd & E1000_EECD_ADDR_BITS) {
3460 eeprom->page_size = 32;
3461 eeprom->address_bits = 16;
3462 } else {
3463 eeprom->page_size = 8;
3464 eeprom->address_bits = 8;
3465 }
3466 eeprom->use_eerd = FALSE;
3467 eeprom->use_eewr = FALSE;
3468 break;
3469 case e1000_82573:
3470 eeprom->type = e1000_eeprom_spi;
3471 eeprom->opcode_bits = 8;
3472 eeprom->delay_usec = 1;
3473 if (eecd & E1000_EECD_ADDR_BITS) {
3474 eeprom->page_size = 32;
3475 eeprom->address_bits = 16;
3476 } else {
3477 eeprom->page_size = 8;
3478 eeprom->address_bits = 8;
3479 }
3480 eeprom->use_eerd = TRUE;
3481 eeprom->use_eewr = TRUE;
3482 if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
3483 eeprom->type = e1000_eeprom_flash;
3484 eeprom->word_size = 2048;
3485
3486 /* Ensure that the Autonomous FLASH update bit is cleared due to
3487 * Flash update issue on parts which use a FLASH for NVM. */
3488 eecd &= ~E1000_EECD_AUPDEN;
3489 E1000_WRITE_REG(hw, EECD, eecd);
3490 }
3491 break;
3492 default:
3493 break;
3494 }
3495
3496 if (eeprom->type == e1000_eeprom_spi) {
3497 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3498 * 32KB (incremented by powers of 2).
3499 */
3500 if(hw->mac_type <= e1000_82547_rev_2) {
3501 /* Set to default value for initial eeprom read. */
3502 eeprom->word_size = 64;
3503 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3504 if(ret_val)
3505 return ret_val;
3506 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3507 /* 256B eeprom size was not supported in earlier hardware, so we
3508 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3509 * is never the result used in the shifting logic below. */
3510 if(eeprom_size)
3511 eeprom_size++;
3512 } else {
3513 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
3514 E1000_EECD_SIZE_EX_SHIFT);
3515 }
3516
3517 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3518 }
3519 return ret_val;
3520 }
3521
3522 /******************************************************************************
3523 * Raises the EEPROM's clock input.
3524 *
3525 * hw - Struct containing variables accessed by shared code
3526 * eecd - EECD's current value
3527 *****************************************************************************/
3528 static void
3529 e1000_raise_ee_clk(struct e1000_hw *hw,
3530 uint32_t *eecd)
3531 {
3532 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3533 * wait <delay> microseconds.
3534 */
3535 *eecd = *eecd | E1000_EECD_SK;
3536 E1000_WRITE_REG(hw, EECD, *eecd);
3537 E1000_WRITE_FLUSH(hw);
3538 udelay(hw->eeprom.delay_usec);
3539 }
3540
3541 /******************************************************************************
3542 * Lowers the EEPROM's clock input.
3543 *
3544 * hw - Struct containing variables accessed by shared code
3545 * eecd - EECD's current value
3546 *****************************************************************************/
3547 static void
3548 e1000_lower_ee_clk(struct e1000_hw *hw,
3549 uint32_t *eecd)
3550 {
3551 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3552 * wait 50 microseconds.
3553 */
3554 *eecd = *eecd & ~E1000_EECD_SK;
3555 E1000_WRITE_REG(hw, EECD, *eecd);
3556 E1000_WRITE_FLUSH(hw);
3557 udelay(hw->eeprom.delay_usec);
3558 }
3559
3560 /******************************************************************************
3561 * Shift data bits out to the EEPROM.
3562 *
3563 * hw - Struct containing variables accessed by shared code
3564 * data - data to send to the EEPROM
3565 * count - number of bits to shift out
3566 *****************************************************************************/
3567 static void
3568 e1000_shift_out_ee_bits(struct e1000_hw *hw,
3569 uint16_t data,
3570 uint16_t count)
3571 {
3572 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3573 uint32_t eecd;
3574 uint32_t mask;
3575
3576 /* We need to shift "count" bits out to the EEPROM. So, value in the
3577 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3578 * In order to do this, "data" must be broken down into bits.
3579 */
3580 mask = 0x01 << (count - 1);
3581 eecd = E1000_READ_REG(hw, EECD);
3582 if (eeprom->type == e1000_eeprom_microwire) {
3583 eecd &= ~E1000_EECD_DO;
3584 } else if (eeprom->type == e1000_eeprom_spi) {
3585 eecd |= E1000_EECD_DO;
3586 }
3587 do {
3588 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3589 * and then raising and then lowering the clock (the SK bit controls
3590 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3591 * by setting "DI" to "0" and then raising and then lowering the clock.
3592 */
3593 eecd &= ~E1000_EECD_DI;
3594
3595 if(data & mask)
3596 eecd |= E1000_EECD_DI;
3597
3598 E1000_WRITE_REG(hw, EECD, eecd);
3599 E1000_WRITE_FLUSH(hw);
3600
3601 udelay(eeprom->delay_usec);
3602
3603 e1000_raise_ee_clk(hw, &eecd);
3604 e1000_lower_ee_clk(hw, &eecd);
3605
3606 mask = mask >> 1;
3607
3608 } while(mask);
3609
3610 /* We leave the "DI" bit set to "0" when we leave this routine. */
3611 eecd &= ~E1000_EECD_DI;
3612 E1000_WRITE_REG(hw, EECD, eecd);
3613 }
3614
3615 /******************************************************************************
3616 * Shift data bits in from the EEPROM
3617 *
3618 * hw - Struct containing variables accessed by shared code
3619 *****************************************************************************/
3620 static uint16_t
3621 e1000_shift_in_ee_bits(struct e1000_hw *hw,
3622 uint16_t count)
3623 {
3624 uint32_t eecd;
3625 uint32_t i;
3626 uint16_t data;
3627
3628 /* In order to read a register from the EEPROM, we need to shift 'count'
3629 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3630 * input to the EEPROM (setting the SK bit), and then reading the value of
3631 * the "DO" bit. During this "shifting in" process the "DI" bit should
3632 * always be clear.
3633 */
3634
3635 eecd = E1000_READ_REG(hw, EECD);
3636
3637 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3638 data = 0;
3639
3640 for(i = 0; i < count; i++) {
3641 data = data << 1;
3642 e1000_raise_ee_clk(hw, &eecd);
3643
3644 eecd = E1000_READ_REG(hw, EECD);
3645
3646 eecd &= ~(E1000_EECD_DI);
3647 if(eecd & E1000_EECD_DO)
3648 data |= 1;
3649
3650 e1000_lower_ee_clk(hw, &eecd);
3651 }
3652
3653 return data;
3654 }
3655
3656 /******************************************************************************
3657 * Prepares EEPROM for access
3658 *
3659 * hw - Struct containing variables accessed by shared code
3660 *
3661 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3662 * function should be called before issuing a command to the EEPROM.
3663 *****************************************************************************/
3664 static int32_t
3665 e1000_acquire_eeprom(struct e1000_hw *hw)
3666 {
3667 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3668 uint32_t eecd, i=0;
3669
3670 DEBUGFUNC("e1000_acquire_eeprom");
3671
3672 if(e1000_get_hw_eeprom_semaphore(hw))
3673 return -E1000_ERR_EEPROM;
3674
3675 eecd = E1000_READ_REG(hw, EECD);
3676
3677 if (hw->mac_type != e1000_82573) {
3678 /* Request EEPROM Access */
3679 if(hw->mac_type > e1000_82544) {
3680 eecd |= E1000_EECD_REQ;
3681 E1000_WRITE_REG(hw, EECD, eecd);
3682 eecd = E1000_READ_REG(hw, EECD);
3683 while((!(eecd & E1000_EECD_GNT)) &&
3684 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3685 i++;
3686 udelay(5);
3687 eecd = E1000_READ_REG(hw, EECD);
3688 }
3689 if(!(eecd & E1000_EECD_GNT)) {
3690 eecd &= ~E1000_EECD_REQ;
3691 E1000_WRITE_REG(hw, EECD, eecd);
3692 DEBUGOUT("Could not acquire EEPROM grant\n");
3693 e1000_put_hw_eeprom_semaphore(hw);
3694 return -E1000_ERR_EEPROM;
3695 }
3696 }
3697 }
3698
3699 /* Setup EEPROM for Read/Write */
3700
3701 if (eeprom->type == e1000_eeprom_microwire) {
3702 /* Clear SK and DI */
3703 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3704 E1000_WRITE_REG(hw, EECD, eecd);
3705
3706 /* Set CS */
3707 eecd |= E1000_EECD_CS;
3708 E1000_WRITE_REG(hw, EECD, eecd);
3709 } else if (eeprom->type == e1000_eeprom_spi) {
3710 /* Clear SK and CS */
3711 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3712 E1000_WRITE_REG(hw, EECD, eecd);
3713 udelay(1);
3714 }
3715
3716 return E1000_SUCCESS;
3717 }
3718
3719 /******************************************************************************
3720 * Returns EEPROM to a "standby" state
3721 *
3722 * hw - Struct containing variables accessed by shared code
3723 *****************************************************************************/
3724 static void
3725 e1000_standby_eeprom(struct e1000_hw *hw)
3726 {
3727 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3728 uint32_t eecd;
3729
3730 eecd = E1000_READ_REG(hw, EECD);
3731
3732 if(eeprom->type == e1000_eeprom_microwire) {
3733 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3734 E1000_WRITE_REG(hw, EECD, eecd);
3735 E1000_WRITE_FLUSH(hw);
3736 udelay(eeprom->delay_usec);
3737
3738 /* Clock high */
3739 eecd |= E1000_EECD_SK;
3740 E1000_WRITE_REG(hw, EECD, eecd);
3741 E1000_WRITE_FLUSH(hw);
3742 udelay(eeprom->delay_usec);
3743
3744 /* Select EEPROM */
3745 eecd |= E1000_EECD_CS;
3746 E1000_WRITE_REG(hw, EECD, eecd);
3747 E1000_WRITE_FLUSH(hw);
3748 udelay(eeprom->delay_usec);
3749
3750 /* Clock low */
3751 eecd &= ~E1000_EECD_SK;
3752 E1000_WRITE_REG(hw, EECD, eecd);
3753 E1000_WRITE_FLUSH(hw);
3754 udelay(eeprom->delay_usec);
3755 } else if(eeprom->type == e1000_eeprom_spi) {
3756 /* Toggle CS to flush commands */
3757 eecd |= E1000_EECD_CS;
3758 E1000_WRITE_REG(hw, EECD, eecd);
3759 E1000_WRITE_FLUSH(hw);
3760 udelay(eeprom->delay_usec);
3761 eecd &= ~E1000_EECD_CS;
3762 E1000_WRITE_REG(hw, EECD, eecd);
3763 E1000_WRITE_FLUSH(hw);
3764 udelay(eeprom->delay_usec);
3765 }
3766 }
3767
3768 /******************************************************************************
3769 * Terminates a command by inverting the EEPROM's chip select pin
3770 *
3771 * hw - Struct containing variables accessed by shared code
3772 *****************************************************************************/
3773 static void
3774 e1000_release_eeprom(struct e1000_hw *hw)
3775 {
3776 uint32_t eecd;
3777
3778 DEBUGFUNC("e1000_release_eeprom");
3779
3780 eecd = E1000_READ_REG(hw, EECD);
3781
3782 if (hw->eeprom.type == e1000_eeprom_spi) {
3783 eecd |= E1000_EECD_CS; /* Pull CS high */
3784 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3785
3786 E1000_WRITE_REG(hw, EECD, eecd);
3787
3788 udelay(hw->eeprom.delay_usec);
3789 } else if(hw->eeprom.type == e1000_eeprom_microwire) {
3790 /* cleanup eeprom */
3791
3792 /* CS on Microwire is active-high */
3793 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3794
3795 E1000_WRITE_REG(hw, EECD, eecd);
3796
3797 /* Rising edge of clock */
3798 eecd |= E1000_EECD_SK;
3799 E1000_WRITE_REG(hw, EECD, eecd);
3800 E1000_WRITE_FLUSH(hw);
3801 udelay(hw->eeprom.delay_usec);
3802
3803 /* Falling edge of clock */
3804 eecd &= ~E1000_EECD_SK;
3805 E1000_WRITE_REG(hw, EECD, eecd);
3806 E1000_WRITE_FLUSH(hw);
3807 udelay(hw->eeprom.delay_usec);
3808 }
3809
3810 /* Stop requesting EEPROM access */
3811 if(hw->mac_type > e1000_82544) {
3812 eecd &= ~E1000_EECD_REQ;
3813 E1000_WRITE_REG(hw, EECD, eecd);
3814 }
3815
3816 e1000_put_hw_eeprom_semaphore(hw);
3817 }
3818
3819 /******************************************************************************
3820 * Reads a 16 bit word from the EEPROM.
3821 *
3822 * hw - Struct containing variables accessed by shared code
3823 *****************************************************************************/
3824 int32_t
3825 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3826 {
3827 uint16_t retry_count = 0;
3828 uint8_t spi_stat_reg;
3829
3830 DEBUGFUNC("e1000_spi_eeprom_ready");
3831
3832 /* Read "Status Register" repeatedly until the LSB is cleared. The
3833 * EEPROM will signal that the command has been completed by clearing
3834 * bit 0 of the internal status register. If it's not cleared within
3835 * 5 milliseconds, then error out.
3836 */
3837 retry_count = 0;
3838 do {
3839 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3840 hw->eeprom.opcode_bits);
3841 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
3842 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3843 break;
3844
3845 udelay(5);
3846 retry_count += 5;
3847
3848 e1000_standby_eeprom(hw);
3849 } while(retry_count < EEPROM_MAX_RETRY_SPI);
3850
3851 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3852 * only 0-5mSec on 5V devices)
3853 */
3854 if(retry_count >= EEPROM_MAX_RETRY_SPI) {
3855 DEBUGOUT("SPI EEPROM Status error\n");
3856 return -E1000_ERR_EEPROM;
3857 }
3858
3859 return E1000_SUCCESS;
3860 }
3861
3862 /******************************************************************************
3863 * Reads a 16 bit word from the EEPROM.
3864 *
3865 * hw - Struct containing variables accessed by shared code
3866 * offset - offset of word in the EEPROM to read
3867 * data - word read from the EEPROM
3868 * words - number of words to read
3869 *****************************************************************************/
3870 int32_t
3871 e1000_read_eeprom(struct e1000_hw *hw,
3872 uint16_t offset,
3873 uint16_t words,
3874 uint16_t *data)
3875 {
3876 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3877 uint32_t i = 0;
3878 int32_t ret_val;
3879
3880 DEBUGFUNC("e1000_read_eeprom");
3881
3882 /* A check for invalid values: offset too large, too many words, and not
3883 * enough words.
3884 */
3885 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
3886 (words == 0)) {
3887 DEBUGOUT("\"words\" parameter out of bounds\n");
3888 return -E1000_ERR_EEPROM;
3889 }
3890
3891 /* FLASH reads without acquiring the semaphore are safe */
3892 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
3893 hw->eeprom.use_eerd == FALSE) {
3894 switch (hw->mac_type) {
3895 default:
3896 /* Prepare the EEPROM for reading */
3897 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3898 return -E1000_ERR_EEPROM;
3899 break;
3900 }
3901 }
3902
3903 if(eeprom->use_eerd == TRUE) {
3904 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
3905 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
3906 (hw->mac_type != e1000_82573))
3907 e1000_release_eeprom(hw);
3908 return ret_val;
3909 }
3910
3911 if(eeprom->type == e1000_eeprom_spi) {
3912 uint16_t word_in;
3913 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
3914
3915 if(e1000_spi_eeprom_ready(hw)) {
3916 e1000_release_eeprom(hw);
3917 return -E1000_ERR_EEPROM;
3918 }
3919
3920 e1000_standby_eeprom(hw);
3921
3922 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3923 if((eeprom->address_bits == 8) && (offset >= 128))
3924 read_opcode |= EEPROM_A8_OPCODE_SPI;
3925
3926 /* Send the READ command (opcode + addr) */
3927 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3928 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
3929
3930 /* Read the data. The address of the eeprom internally increments with
3931 * each byte (spi) being read, saving on the overhead of eeprom setup
3932 * and tear-down. The address counter will roll over if reading beyond
3933 * the size of the eeprom, thus allowing the entire memory to be read
3934 * starting from any offset. */
3935 for (i = 0; i < words; i++) {
3936 word_in = e1000_shift_in_ee_bits(hw, 16);
3937 data[i] = (word_in >> 8) | (word_in << 8);
3938 }
3939 } else if(eeprom->type == e1000_eeprom_microwire) {
3940 for (i = 0; i < words; i++) {
3941 /* Send the READ command (opcode + addr) */
3942 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
3943 eeprom->opcode_bits);
3944 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
3945 eeprom->address_bits);
3946
3947 /* Read the data. For microwire, each word requires the overhead
3948 * of eeprom setup and tear-down. */
3949 data[i] = e1000_shift_in_ee_bits(hw, 16);
3950 e1000_standby_eeprom(hw);
3951 }
3952 }
3953
3954 /* End this read operation */
3955 e1000_release_eeprom(hw);
3956
3957 return E1000_SUCCESS;
3958 }
3959
3960 /******************************************************************************
3961 * Reads a 16 bit word from the EEPROM using the EERD register.
3962 *
3963 * hw - Struct containing variables accessed by shared code
3964 * offset - offset of word in the EEPROM to read
3965 * data - word read from the EEPROM
3966 * words - number of words to read
3967 *****************************************************************************/
3968 static int32_t
3969 e1000_read_eeprom_eerd(struct e1000_hw *hw,
3970 uint16_t offset,
3971 uint16_t words,
3972 uint16_t *data)
3973 {
3974 uint32_t i, eerd = 0;
3975 int32_t error = 0;
3976
3977 for (i = 0; i < words; i++) {
3978 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
3979 E1000_EEPROM_RW_REG_START;
3980
3981 E1000_WRITE_REG(hw, EERD, eerd);
3982 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
3983
3984 if(error) {
3985 break;
3986 }
3987 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
3988
3989 }
3990
3991 return error;
3992 }
3993
3994 /******************************************************************************
3995 * Writes a 16 bit word from the EEPROM using the EEWR register.
3996 *
3997 * hw - Struct containing variables accessed by shared code
3998 * offset - offset of word in the EEPROM to read
3999 * data - word read from the EEPROM
4000 * words - number of words to read
4001 *****************************************************************************/
4002 static int32_t
4003 e1000_write_eeprom_eewr(struct e1000_hw *hw,
4004 uint16_t offset,
4005 uint16_t words,
4006 uint16_t *data)
4007 {
4008 uint32_t register_value = 0;
4009 uint32_t i = 0;
4010 int32_t error = 0;
4011
4012 for (i = 0; i < words; i++) {
4013 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
4014 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
4015 E1000_EEPROM_RW_REG_START;
4016
4017 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
4018 if(error) {
4019 break;
4020 }
4021
4022 E1000_WRITE_REG(hw, EEWR, register_value);
4023
4024 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
4025
4026 if(error) {
4027 break;
4028 }
4029 }
4030
4031 return error;
4032 }
4033
4034 /******************************************************************************
4035 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
4036 *
4037 * hw - Struct containing variables accessed by shared code
4038 *****************************************************************************/
4039 static int32_t
4040 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
4041 {
4042 uint32_t attempts = 100000;
4043 uint32_t i, reg = 0;
4044 int32_t done = E1000_ERR_EEPROM;
4045
4046 for(i = 0; i < attempts; i++) {
4047 if(eerd == E1000_EEPROM_POLL_READ)
4048 reg = E1000_READ_REG(hw, EERD);
4049 else
4050 reg = E1000_READ_REG(hw, EEWR);
4051
4052 if(reg & E1000_EEPROM_RW_REG_DONE) {
4053 done = E1000_SUCCESS;
4054 break;
4055 }
4056 udelay(5);
4057 }
4058
4059 return done;
4060 }
4061
4062 /***************************************************************************
4063 * Description: Determines if the onboard NVM is FLASH or EEPROM.
4064 *
4065 * hw - Struct containing variables accessed by shared code
4066 ****************************************************************************/
4067 static boolean_t
4068 e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
4069 {
4070 uint32_t eecd = 0;
4071
4072 if(hw->mac_type == e1000_82573) {
4073 eecd = E1000_READ_REG(hw, EECD);
4074
4075 /* Isolate bits 15 & 16 */
4076 eecd = ((eecd >> 15) & 0x03);
4077
4078 /* If both bits are set, device is Flash type */
4079 if(eecd == 0x03) {
4080 return FALSE;
4081 }
4082 }
4083 return TRUE;
4084 }
4085
4086 /******************************************************************************
4087 * Verifies that the EEPROM has a valid checksum
4088 *
4089 * hw - Struct containing variables accessed by shared code
4090 *
4091 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4092 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4093 * valid.
4094 *****************************************************************************/
4095 int32_t
4096 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4097 {
4098 uint16_t checksum = 0;
4099 uint16_t i, eeprom_data;
4100
4101 DEBUGFUNC("e1000_validate_eeprom_checksum");
4102
4103 if ((hw->mac_type == e1000_82573) &&
4104 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
4105 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
4106 * 10h-12h. Checksum may need to be fixed. */
4107 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
4108 if ((eeprom_data & 0x10) == 0) {
4109 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
4110 * has already been fixed. If the checksum is still wrong and this
4111 * bit is a 1, we need to return bad checksum. Otherwise, we need
4112 * to set this bit to a 1 and update the checksum. */
4113 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
4114 if ((eeprom_data & 0x8000) == 0) {
4115 eeprom_data |= 0x8000;
4116 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
4117 e1000_update_eeprom_checksum(hw);
4118 }
4119 }
4120 }
4121
4122 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4123 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4124 DEBUGOUT("EEPROM Read Error\n");
4125 return -E1000_ERR_EEPROM;
4126 }
4127 checksum += eeprom_data;
4128 }
4129
4130 if(checksum == (uint16_t) EEPROM_SUM)
4131 return E1000_SUCCESS;
4132 else {
4133 DEBUGOUT("EEPROM Checksum Invalid\n");
4134 return -E1000_ERR_EEPROM;
4135 }
4136 }
4137
4138 /******************************************************************************
4139 * Calculates the EEPROM checksum and writes it to the EEPROM
4140 *
4141 * hw - Struct containing variables accessed by shared code
4142 *
4143 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4144 * Writes the difference to word offset 63 of the EEPROM.
4145 *****************************************************************************/
4146 int32_t
4147 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4148 {
4149 uint16_t checksum = 0;
4150 uint16_t i, eeprom_data;
4151
4152 DEBUGFUNC("e1000_update_eeprom_checksum");
4153
4154 for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4155 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4156 DEBUGOUT("EEPROM Read Error\n");
4157 return -E1000_ERR_EEPROM;
4158 }
4159 checksum += eeprom_data;
4160 }
4161 checksum = (uint16_t) EEPROM_SUM - checksum;
4162 if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4163 DEBUGOUT("EEPROM Write Error\n");
4164 return -E1000_ERR_EEPROM;
4165 } else if (hw->eeprom.type == e1000_eeprom_flash) {
4166 e1000_commit_shadow_ram(hw);
4167 }
4168 return E1000_SUCCESS;
4169 }
4170
4171 /******************************************************************************
4172 * Parent function for writing words to the different EEPROM types.
4173 *
4174 * hw - Struct containing variables accessed by shared code
4175 * offset - offset within the EEPROM to be written to
4176 * words - number of words to write
4177 * data - 16 bit word to be written to the EEPROM
4178 *
4179 * If e1000_update_eeprom_checksum is not called after this function, the
4180 * EEPROM will most likely contain an invalid checksum.
4181 *****************************************************************************/
4182 int32_t
4183 e1000_write_eeprom(struct e1000_hw *hw,
4184 uint16_t offset,
4185 uint16_t words,
4186 uint16_t *data)
4187 {
4188 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4189 int32_t status = 0;
4190
4191 DEBUGFUNC("e1000_write_eeprom");
4192
4193 /* A check for invalid values: offset too large, too many words, and not
4194 * enough words.
4195 */
4196 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4197 (words == 0)) {
4198 DEBUGOUT("\"words\" parameter out of bounds\n");
4199 return -E1000_ERR_EEPROM;
4200 }
4201
4202 /* 82573 writes only through eewr */
4203 if(eeprom->use_eewr == TRUE)
4204 return e1000_write_eeprom_eewr(hw, offset, words, data);
4205
4206 /* Prepare the EEPROM for writing */
4207 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4208 return -E1000_ERR_EEPROM;
4209
4210 if(eeprom->type == e1000_eeprom_microwire) {
4211 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4212 } else {
4213 status = e1000_write_eeprom_spi(hw, offset, words, data);
4214 msec_delay(10);
4215 }
4216
4217 /* Done with writing */
4218 e1000_release_eeprom(hw);
4219
4220 return status;
4221 }
4222
4223 /******************************************************************************
4224 * Writes a 16 bit word to a given offset in an SPI EEPROM.
4225 *
4226 * hw - Struct containing variables accessed by shared code
4227 * offset - offset within the EEPROM to be written to
4228 * words - number of words to write
4229 * data - pointer to array of 8 bit words to be written to the EEPROM
4230 *
4231 *****************************************************************************/
4232 int32_t
4233 e1000_write_eeprom_spi(struct e1000_hw *hw,
4234 uint16_t offset,
4235 uint16_t words,
4236 uint16_t *data)
4237 {
4238 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4239 uint16_t widx = 0;
4240
4241 DEBUGFUNC("e1000_write_eeprom_spi");
4242
4243 while (widx < words) {
4244 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
4245
4246 if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
4247
4248 e1000_standby_eeprom(hw);
4249
4250 /* Send the WRITE ENABLE command (8 bit opcode ) */
4251 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4252 eeprom->opcode_bits);
4253
4254 e1000_standby_eeprom(hw);
4255
4256 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4257 if((eeprom->address_bits == 8) && (offset >= 128))
4258 write_opcode |= EEPROM_A8_OPCODE_SPI;
4259
4260 /* Send the Write command (8-bit opcode + addr) */
4261 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4262
4263 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
4264 eeprom->address_bits);
4265
4266 /* Send the data */
4267
4268 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4269 while (widx < words) {
4270 uint16_t word_out = data[widx];
4271 word_out = (word_out >> 8) | (word_out << 8);
4272 e1000_shift_out_ee_bits(hw, word_out, 16);
4273 widx++;
4274
4275 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4276 * operation, while the smaller eeproms are capable of an 8-byte
4277 * PAGE WRITE operation. Break the inner loop to pass new address
4278 */
4279 if((((offset + widx)*2) % eeprom->page_size) == 0) {
4280 e1000_standby_eeprom(hw);
4281 break;
4282 }
4283 }
4284 }
4285
4286 return E1000_SUCCESS;
4287 }
4288
4289 /******************************************************************************
4290 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
4291 *
4292 * hw - Struct containing variables accessed by shared code
4293 * offset - offset within the EEPROM to be written to
4294 * words - number of words to write
4295 * data - pointer to array of 16 bit words to be written to the EEPROM
4296 *
4297 *****************************************************************************/
4298 int32_t
4299 e1000_write_eeprom_microwire(struct e1000_hw *hw,
4300 uint16_t offset,
4301 uint16_t words,
4302 uint16_t *data)
4303 {
4304 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4305 uint32_t eecd;
4306 uint16_t words_written = 0;
4307 uint16_t i = 0;
4308
4309 DEBUGFUNC("e1000_write_eeprom_microwire");
4310
4311 /* Send the write enable command to the EEPROM (3-bit opcode plus
4312 * 6/8-bit dummy address beginning with 11). It's less work to include
4313 * the 11 of the dummy address as part of the opcode than it is to shift
4314 * it over the correct number of bits for the address. This puts the
4315 * EEPROM into write/erase mode.
4316 */
4317 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4318 (uint16_t)(eeprom->opcode_bits + 2));
4319
4320 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4321
4322 /* Prepare the EEPROM */
4323 e1000_standby_eeprom(hw);
4324
4325 while (words_written < words) {
4326 /* Send the Write command (3-bit opcode + addr) */
4327 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4328 eeprom->opcode_bits);
4329
4330 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
4331 eeprom->address_bits);
4332
4333 /* Send the data */
4334 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4335
4336 /* Toggle the CS line. This in effect tells the EEPROM to execute
4337 * the previous command.
4338 */
4339 e1000_standby_eeprom(hw);
4340
4341 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
4342 * signal that the command has been completed by raising the DO signal.
4343 * If DO does not go high in 10 milliseconds, then error out.
4344 */
4345 for(i = 0; i < 200; i++) {
4346 eecd = E1000_READ_REG(hw, EECD);
4347 if(eecd & E1000_EECD_DO) break;
4348 udelay(50);
4349 }
4350 if(i == 200) {
4351 DEBUGOUT("EEPROM Write did not complete\n");
4352 return -E1000_ERR_EEPROM;
4353 }
4354
4355 /* Recover from write */
4356 e1000_standby_eeprom(hw);
4357
4358 words_written++;
4359 }
4360
4361 /* Send the write disable command to the EEPROM (3-bit opcode plus
4362 * 6/8-bit dummy address beginning with 10). It's less work to include
4363 * the 10 of the dummy address as part of the opcode than it is to shift
4364 * it over the correct number of bits for the address. This takes the
4365 * EEPROM out of write/erase mode.
4366 */
4367 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4368 (uint16_t)(eeprom->opcode_bits + 2));
4369
4370 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4371
4372 return E1000_SUCCESS;
4373 }
4374
4375 /******************************************************************************
4376 * Flushes the cached eeprom to NVM. This is done by saving the modified values
4377 * in the eeprom cache and the non modified values in the currently active bank
4378 * to the new bank.
4379 *
4380 * hw - Struct containing variables accessed by shared code
4381 * offset - offset of word in the EEPROM to read
4382 * data - word read from the EEPROM
4383 * words - number of words to read
4384 *****************************************************************************/
4385 static int32_t
4386 e1000_commit_shadow_ram(struct e1000_hw *hw)
4387 {
4388 uint32_t attempts = 100000;
4389 uint32_t eecd = 0;
4390 uint32_t flop = 0;
4391 uint32_t i = 0;
4392 int32_t error = E1000_SUCCESS;
4393
4394 /* The flop register will be used to determine if flash type is STM */
4395 flop = E1000_READ_REG(hw, FLOP);
4396
4397 if (hw->mac_type == e1000_82573) {
4398 for (i=0; i < attempts; i++) {
4399 eecd = E1000_READ_REG(hw, EECD);
4400 if ((eecd & E1000_EECD_FLUPD) == 0) {
4401 break;
4402 }
4403 udelay(5);
4404 }
4405
4406 if (i == attempts) {
4407 return -E1000_ERR_EEPROM;
4408 }
4409
4410 /* If STM opcode located in bits 15:8 of flop, reset firmware */
4411 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
4412 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
4413 }
4414
4415 /* Perform the flash update */
4416 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
4417
4418 for (i=0; i < attempts; i++) {
4419 eecd = E1000_READ_REG(hw, EECD);
4420 if ((eecd & E1000_EECD_FLUPD) == 0) {
4421 break;
4422 }
4423 udelay(5);
4424 }
4425
4426 if (i == attempts) {
4427 return -E1000_ERR_EEPROM;
4428 }
4429 }
4430
4431 return error;
4432 }
4433
4434 /******************************************************************************
4435 * Reads the adapter's part number from the EEPROM
4436 *
4437 * hw - Struct containing variables accessed by shared code
4438 * part_num - Adapter's part number
4439 *****************************************************************************/
4440 int32_t
4441 e1000_read_part_num(struct e1000_hw *hw,
4442 uint32_t *part_num)
4443 {
4444 uint16_t offset = EEPROM_PBA_BYTE_1;
4445 uint16_t eeprom_data;
4446
4447 DEBUGFUNC("e1000_read_part_num");
4448
4449 /* Get word 0 from EEPROM */
4450 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4451 DEBUGOUT("EEPROM Read Error\n");
4452 return -E1000_ERR_EEPROM;
4453 }
4454 /* Save word 0 in upper half of part_num */
4455 *part_num = (uint32_t) (eeprom_data << 16);
4456
4457 /* Get word 1 from EEPROM */
4458 if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
4459 DEBUGOUT("EEPROM Read Error\n");
4460 return -E1000_ERR_EEPROM;
4461 }
4462 /* Save word 1 in lower half of part_num */
4463 *part_num |= eeprom_data;
4464
4465 return E1000_SUCCESS;
4466 }
4467
4468 /******************************************************************************
4469 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4470 * second function of dual function devices
4471 *
4472 * hw - Struct containing variables accessed by shared code
4473 *****************************************************************************/
4474 int32_t
4475 e1000_read_mac_addr(struct e1000_hw * hw)
4476 {
4477 uint16_t offset;
4478 uint16_t eeprom_data, i;
4479
4480 DEBUGFUNC("e1000_read_mac_addr");
4481
4482 for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4483 offset = i >> 1;
4484 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4485 DEBUGOUT("EEPROM Read Error\n");
4486 return -E1000_ERR_EEPROM;
4487 }
4488 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
4489 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
4490 }
4491 switch (hw->mac_type) {
4492 default:
4493 break;
4494 case e1000_82546:
4495 case e1000_82546_rev_3:
4496 case e1000_82571:
4497 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
4498 hw->perm_mac_addr[5] ^= 0x01;
4499 break;
4500 }
4501
4502 for(i = 0; i < NODE_ADDRESS_SIZE; i++)
4503 hw->mac_addr[i] = hw->perm_mac_addr[i];
4504 return E1000_SUCCESS;
4505 }
4506
4507 /******************************************************************************
4508 * Initializes receive address filters.
4509 *
4510 * hw - Struct containing variables accessed by shared code
4511 *
4512 * Places the MAC address in receive address register 0 and clears the rest
4513 * of the receive addresss registers. Clears the multicast table. Assumes
4514 * the receiver is in reset when the routine is called.
4515 *****************************************************************************/
4516 static void
4517 e1000_init_rx_addrs(struct e1000_hw *hw)
4518 {
4519 uint32_t i;
4520 uint32_t rar_num;
4521
4522 DEBUGFUNC("e1000_init_rx_addrs");
4523
4524 /* Setup the receive address. */
4525 DEBUGOUT("Programming MAC Address into RAR[0]\n");
4526
4527 e1000_rar_set(hw, hw->mac_addr, 0);
4528
4529 rar_num = E1000_RAR_ENTRIES;
4530
4531 /* Reserve a spot for the Locally Administered Address to work around
4532 * an 82571 issue in which a reset on one port will reload the MAC on
4533 * the other port. */
4534 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
4535 rar_num -= 1;
4536 /* Zero out the other 15 receive addresses. */
4537 DEBUGOUT("Clearing RAR[1-15]\n");
4538 for(i = 1; i < rar_num; i++) {
4539 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4540 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4541 }
4542 }
4543
4544 #if 0
4545 /******************************************************************************
4546 * Updates the MAC's list of multicast addresses.
4547 *
4548 * hw - Struct containing variables accessed by shared code
4549 * mc_addr_list - the list of new multicast addresses
4550 * mc_addr_count - number of addresses
4551 * pad - number of bytes between addresses in the list
4552 * rar_used_count - offset where to start adding mc addresses into the RAR's
4553 *
4554 * The given list replaces any existing list. Clears the last 15 receive
4555 * address registers and the multicast table. Uses receive address registers
4556 * for the first 15 multicast addresses, and hashes the rest into the
4557 * multicast table.
4558 *****************************************************************************/
4559 void
4560 e1000_mc_addr_list_update(struct e1000_hw *hw,
4561 uint8_t *mc_addr_list,
4562 uint32_t mc_addr_count,
4563 uint32_t pad,
4564 uint32_t rar_used_count)
4565 {
4566 uint32_t hash_value;
4567 uint32_t i;
4568 uint32_t num_rar_entry;
4569 uint32_t num_mta_entry;
4570
4571 DEBUGFUNC("e1000_mc_addr_list_update");
4572
4573 /* Set the new number of MC addresses that we are being requested to use. */
4574 hw->num_mc_addrs = mc_addr_count;
4575
4576 /* Clear RAR[1-15] */
4577 DEBUGOUT(" Clearing RAR[1-15]\n");
4578 num_rar_entry = E1000_RAR_ENTRIES;
4579 /* Reserve a spot for the Locally Administered Address to work around
4580 * an 82571 issue in which a reset on one port will reload the MAC on
4581 * the other port. */
4582 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
4583 num_rar_entry -= 1;
4584
4585 for(i = rar_used_count; i < num_rar_entry; i++) {
4586 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4587 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4588 }
4589
4590 /* Clear the MTA */
4591 DEBUGOUT(" Clearing MTA\n");
4592 num_mta_entry = E1000_NUM_MTA_REGISTERS;
4593 for(i = 0; i < num_mta_entry; i++) {
4594 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
4595 }
4596
4597 /* Add the new addresses */
4598 for(i = 0; i < mc_addr_count; i++) {
4599 DEBUGOUT(" Adding the multicast addresses:\n");
4600 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
4601 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
4602 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
4603 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
4604 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
4605 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
4606 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
4607
4608 hash_value = e1000_hash_mc_addr(hw,
4609 mc_addr_list +
4610 (i * (ETH_LENGTH_OF_ADDRESS + pad)));
4611
4612 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
4613
4614 /* Place this multicast address in the RAR if there is room, *
4615 * else put it in the MTA
4616 */
4617 if (rar_used_count < num_rar_entry) {
4618 e1000_rar_set(hw,
4619 mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
4620 rar_used_count);
4621 rar_used_count++;
4622 } else {
4623 e1000_mta_set(hw, hash_value);
4624 }
4625 }
4626 DEBUGOUT("MC Update Complete\n");
4627 }
4628 #endif /* 0 */
4629
4630 /******************************************************************************
4631 * Hashes an address to determine its location in the multicast table
4632 *
4633 * hw - Struct containing variables accessed by shared code
4634 * mc_addr - the multicast address to hash
4635 *****************************************************************************/
4636 uint32_t
4637 e1000_hash_mc_addr(struct e1000_hw *hw,
4638 uint8_t *mc_addr)
4639 {
4640 uint32_t hash_value = 0;
4641
4642 /* The portion of the address that is used for the hash table is
4643 * determined by the mc_filter_type setting.
4644 */
4645 switch (hw->mc_filter_type) {
4646 /* [0] [1] [2] [3] [4] [5]
4647 * 01 AA 00 12 34 56
4648 * LSB MSB
4649 */
4650 case 0:
4651 /* [47:36] i.e. 0x563 for above example address */
4652 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
4653 break;
4654 case 1:
4655 /* [46:35] i.e. 0xAC6 for above example address */
4656 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
4657 break;
4658 case 2:
4659 /* [45:34] i.e. 0x5D8 for above example address */
4660 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
4661 break;
4662 case 3:
4663 /* [43:32] i.e. 0x634 for above example address */
4664 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
4665 break;
4666 }
4667
4668 hash_value &= 0xFFF;
4669
4670 return hash_value;
4671 }
4672
4673 /******************************************************************************
4674 * Sets the bit in the multicast table corresponding to the hash value.
4675 *
4676 * hw - Struct containing variables accessed by shared code
4677 * hash_value - Multicast address hash value
4678 *****************************************************************************/
4679 void
4680 e1000_mta_set(struct e1000_hw *hw,
4681 uint32_t hash_value)
4682 {
4683 uint32_t hash_bit, hash_reg;
4684 uint32_t mta;
4685 uint32_t temp;
4686
4687 /* The MTA is a register array of 128 32-bit registers.
4688 * It is treated like an array of 4096 bits. We want to set
4689 * bit BitArray[hash_value]. So we figure out what register
4690 * the bit is in, read it, OR in the new bit, then write
4691 * back the new value. The register is determined by the
4692 * upper 7 bits of the hash value and the bit within that
4693 * register are determined by the lower 5 bits of the value.
4694 */
4695 hash_reg = (hash_value >> 5) & 0x7F;
4696 hash_bit = hash_value & 0x1F;
4697
4698 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
4699
4700 mta |= (1 << hash_bit);
4701
4702 /* If we are on an 82544 and we are trying to write an odd offset
4703 * in the MTA, save off the previous entry before writing and
4704 * restore the old value after writing.
4705 */
4706 if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
4707 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
4708 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4709 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
4710 } else {
4711 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4712 }
4713 }
4714
4715 /******************************************************************************
4716 * Puts an ethernet address into a receive address register.
4717 *
4718 * hw - Struct containing variables accessed by shared code
4719 * addr - Address to put into receive address register
4720 * index - Receive address register to write
4721 *****************************************************************************/
4722 void
4723 e1000_rar_set(struct e1000_hw *hw,
4724 uint8_t *addr,
4725 uint32_t index)
4726 {
4727 uint32_t rar_low, rar_high;
4728
4729 /* HW expects these in little endian so we reverse the byte order
4730 * from network order (big endian) to little endian
4731 */
4732 rar_low = ((uint32_t) addr[0] |
4733 ((uint32_t) addr[1] << 8) |
4734 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
4735
4736 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
4737
4738 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4739 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4740 }
4741
4742 /******************************************************************************
4743 * Writes a value to the specified offset in the VLAN filter table.
4744 *
4745 * hw - Struct containing variables accessed by shared code
4746 * offset - Offset in VLAN filer table to write
4747 * value - Value to write into VLAN filter table
4748 *****************************************************************************/
4749 void
4750 e1000_write_vfta(struct e1000_hw *hw,
4751 uint32_t offset,
4752 uint32_t value)
4753 {
4754 uint32_t temp;
4755
4756 if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4757 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4758 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4759 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4760 } else {
4761 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4762 }
4763 }
4764
4765 /******************************************************************************
4766 * Clears the VLAN filer table
4767 *
4768 * hw - Struct containing variables accessed by shared code
4769 *****************************************************************************/
4770 static void
4771 e1000_clear_vfta(struct e1000_hw *hw)
4772 {
4773 uint32_t offset;
4774 uint32_t vfta_value = 0;
4775 uint32_t vfta_offset = 0;
4776 uint32_t vfta_bit_in_reg = 0;
4777
4778 if (hw->mac_type == e1000_82573) {
4779 if (hw->mng_cookie.vlan_id != 0) {
4780 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
4781 * ID. The following operations determine which 32b entry
4782 * (i.e. offset) into the array we want to set the VLAN ID
4783 * (i.e. bit) of the manageability unit. */
4784 vfta_offset = (hw->mng_cookie.vlan_id >>
4785 E1000_VFTA_ENTRY_SHIFT) &
4786 E1000_VFTA_ENTRY_MASK;
4787 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
4788 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
4789 }
4790 }
4791 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4792 /* If the offset we want to clear is the same offset of the
4793 * manageability VLAN ID, then clear all bits except that of the
4794 * manageability unit */
4795 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4796 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4797 }
4798 }
4799
4800 static int32_t
4801 e1000_id_led_init(struct e1000_hw * hw)
4802 {
4803 uint32_t ledctl;
4804 const uint32_t ledctl_mask = 0x000000FF;
4805 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4806 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4807 uint16_t eeprom_data, i, temp;
4808 const uint16_t led_mask = 0x0F;
4809
4810 DEBUGFUNC("e1000_id_led_init");
4811
4812 if(hw->mac_type < e1000_82540) {
4813 /* Nothing to do */
4814 return E1000_SUCCESS;
4815 }
4816
4817 ledctl = E1000_READ_REG(hw, LEDCTL);
4818 hw->ledctl_default = ledctl;
4819 hw->ledctl_mode1 = hw->ledctl_default;
4820 hw->ledctl_mode2 = hw->ledctl_default;
4821
4822 if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4823 DEBUGOUT("EEPROM Read Error\n");
4824 return -E1000_ERR_EEPROM;
4825 }
4826 if((eeprom_data== ID_LED_RESERVED_0000) ||
4827 (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
4828 for(i = 0; i < 4; i++) {
4829 temp = (eeprom_data >> (i << 2)) & led_mask;
4830 switch(temp) {
4831 case ID_LED_ON1_DEF2:
4832 case ID_LED_ON1_ON2:
4833 case ID_LED_ON1_OFF2:
4834 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4835 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4836 break;
4837 case ID_LED_OFF1_DEF2:
4838 case ID_LED_OFF1_ON2:
4839 case ID_LED_OFF1_OFF2:
4840 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4841 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4842 break;
4843 default:
4844 /* Do nothing */
4845 break;
4846 }
4847 switch(temp) {
4848 case ID_LED_DEF1_ON2:
4849 case ID_LED_ON1_ON2:
4850 case ID_LED_OFF1_ON2:
4851 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4852 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4853 break;
4854 case ID_LED_DEF1_OFF2:
4855 case ID_LED_ON1_OFF2:
4856 case ID_LED_OFF1_OFF2:
4857 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4858 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4859 break;
4860 default:
4861 /* Do nothing */
4862 break;
4863 }
4864 }
4865 return E1000_SUCCESS;
4866 }
4867
4868 /******************************************************************************
4869 * Prepares SW controlable LED for use and saves the current state of the LED.
4870 *
4871 * hw - Struct containing variables accessed by shared code
4872 *****************************************************************************/
4873 int32_t
4874 e1000_setup_led(struct e1000_hw *hw)
4875 {
4876 uint32_t ledctl;
4877 int32_t ret_val = E1000_SUCCESS;
4878
4879 DEBUGFUNC("e1000_setup_led");
4880
4881 switch(hw->mac_type) {
4882 case e1000_82542_rev2_0:
4883 case e1000_82542_rev2_1:
4884 case e1000_82543:
4885 case e1000_82544:
4886 /* No setup necessary */
4887 break;
4888 case e1000_82541:
4889 case e1000_82547:
4890 case e1000_82541_rev_2:
4891 case e1000_82547_rev_2:
4892 /* Turn off PHY Smart Power Down (if enabled) */
4893 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4894 &hw->phy_spd_default);
4895 if(ret_val)
4896 return ret_val;
4897 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4898 (uint16_t)(hw->phy_spd_default &
4899 ~IGP01E1000_GMII_SPD));
4900 if(ret_val)
4901 return ret_val;
4902 /* Fall Through */
4903 default:
4904 if(hw->media_type == e1000_media_type_fiber) {
4905 ledctl = E1000_READ_REG(hw, LEDCTL);
4906 /* Save current LEDCTL settings */
4907 hw->ledctl_default = ledctl;
4908 /* Turn off LED0 */
4909 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4910 E1000_LEDCTL_LED0_BLINK |
4911 E1000_LEDCTL_LED0_MODE_MASK);
4912 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4913 E1000_LEDCTL_LED0_MODE_SHIFT);
4914 E1000_WRITE_REG(hw, LEDCTL, ledctl);
4915 } else if(hw->media_type == e1000_media_type_copper)
4916 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
4917 break;
4918 }
4919
4920 return E1000_SUCCESS;
4921 }
4922
4923 /******************************************************************************
4924 * Restores the saved state of the SW controlable LED.
4925 *
4926 * hw - Struct containing variables accessed by shared code
4927 *****************************************************************************/
4928 int32_t
4929 e1000_cleanup_led(struct e1000_hw *hw)
4930 {
4931 int32_t ret_val = E1000_SUCCESS;
4932
4933 DEBUGFUNC("e1000_cleanup_led");
4934
4935 switch(hw->mac_type) {
4936 case e1000_82542_rev2_0:
4937 case e1000_82542_rev2_1:
4938 case e1000_82543:
4939 case e1000_82544:
4940 /* No cleanup necessary */
4941 break;
4942 case e1000_82541:
4943 case e1000_82547:
4944 case e1000_82541_rev_2:
4945 case e1000_82547_rev_2:
4946 /* Turn on PHY Smart Power Down (if previously enabled) */
4947 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4948 hw->phy_spd_default);
4949 if(ret_val)
4950 return ret_val;
4951 /* Fall Through */
4952 default:
4953 /* Restore LEDCTL settings */
4954 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
4955 break;
4956 }
4957
4958 return E1000_SUCCESS;
4959 }
4960
4961 /******************************************************************************
4962 * Turns on the software controllable LED
4963 *
4964 * hw - Struct containing variables accessed by shared code
4965 *****************************************************************************/
4966 int32_t
4967 e1000_led_on(struct e1000_hw *hw)
4968 {
4969 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4970
4971 DEBUGFUNC("e1000_led_on");
4972
4973 switch(hw->mac_type) {
4974 case e1000_82542_rev2_0:
4975 case e1000_82542_rev2_1:
4976 case e1000_82543:
4977 /* Set SW Defineable Pin 0 to turn on the LED */
4978 ctrl |= E1000_CTRL_SWDPIN0;
4979 ctrl |= E1000_CTRL_SWDPIO0;
4980 break;
4981 case e1000_82544:
4982 if(hw->media_type == e1000_media_type_fiber) {
4983 /* Set SW Defineable Pin 0 to turn on the LED */
4984 ctrl |= E1000_CTRL_SWDPIN0;
4985 ctrl |= E1000_CTRL_SWDPIO0;
4986 } else {
4987 /* Clear SW Defineable Pin 0 to turn on the LED */
4988 ctrl &= ~E1000_CTRL_SWDPIN0;
4989 ctrl |= E1000_CTRL_SWDPIO0;
4990 }
4991 break;
4992 default:
4993 if(hw->media_type == e1000_media_type_fiber) {
4994 /* Clear SW Defineable Pin 0 to turn on the LED */
4995 ctrl &= ~E1000_CTRL_SWDPIN0;
4996 ctrl |= E1000_CTRL_SWDPIO0;
4997 } else if(hw->media_type == e1000_media_type_copper) {
4998 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
4999 return E1000_SUCCESS;
5000 }
5001 break;
5002 }
5003
5004 E1000_WRITE_REG(hw, CTRL, ctrl);
5005
5006 return E1000_SUCCESS;
5007 }
5008
5009 /******************************************************************************
5010 * Turns off the software controllable LED
5011 *
5012 * hw - Struct containing variables accessed by shared code
5013 *****************************************************************************/
5014 int32_t
5015 e1000_led_off(struct e1000_hw *hw)
5016 {
5017 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
5018
5019 DEBUGFUNC("e1000_led_off");
5020
5021 switch(hw->mac_type) {
5022 case e1000_82542_rev2_0:
5023 case e1000_82542_rev2_1:
5024 case e1000_82543:
5025 /* Clear SW Defineable Pin 0 to turn off the LED */
5026 ctrl &= ~E1000_CTRL_SWDPIN0;
5027 ctrl |= E1000_CTRL_SWDPIO0;
5028 break;
5029 case e1000_82544:
5030 if(hw->media_type == e1000_media_type_fiber) {
5031 /* Clear SW Defineable Pin 0 to turn off the LED */
5032 ctrl &= ~E1000_CTRL_SWDPIN0;
5033 ctrl |= E1000_CTRL_SWDPIO0;
5034 } else {
5035 /* Set SW Defineable Pin 0 to turn off the LED */
5036 ctrl |= E1000_CTRL_SWDPIN0;
5037 ctrl |= E1000_CTRL_SWDPIO0;
5038 }
5039 break;
5040 default:
5041 if(hw->media_type == e1000_media_type_fiber) {
5042 /* Set SW Defineable Pin 0 to turn off the LED */
5043 ctrl |= E1000_CTRL_SWDPIN0;
5044 ctrl |= E1000_CTRL_SWDPIO0;
5045 } else if(hw->media_type == e1000_media_type_copper) {
5046 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
5047 return E1000_SUCCESS;
5048 }
5049 break;
5050 }
5051
5052 E1000_WRITE_REG(hw, CTRL, ctrl);
5053
5054 return E1000_SUCCESS;
5055 }
5056
5057 /******************************************************************************
5058 * Clears all hardware statistics counters.
5059 *
5060 * hw - Struct containing variables accessed by shared code
5061 *****************************************************************************/
5062 static void
5063 e1000_clear_hw_cntrs(struct e1000_hw *hw)
5064 {
5065 volatile uint32_t temp;
5066
5067 temp = E1000_READ_REG(hw, CRCERRS);
5068 temp = E1000_READ_REG(hw, SYMERRS);
5069 temp = E1000_READ_REG(hw, MPC);
5070 temp = E1000_READ_REG(hw, SCC);
5071 temp = E1000_READ_REG(hw, ECOL);
5072 temp = E1000_READ_REG(hw, MCC);
5073 temp = E1000_READ_REG(hw, LATECOL);
5074 temp = E1000_READ_REG(hw, COLC);
5075 temp = E1000_READ_REG(hw, DC);
5076 temp = E1000_READ_REG(hw, SEC);
5077 temp = E1000_READ_REG(hw, RLEC);
5078 temp = E1000_READ_REG(hw, XONRXC);
5079 temp = E1000_READ_REG(hw, XONTXC);
5080 temp = E1000_READ_REG(hw, XOFFRXC);
5081 temp = E1000_READ_REG(hw, XOFFTXC);
5082 temp = E1000_READ_REG(hw, FCRUC);
5083 temp = E1000_READ_REG(hw, PRC64);
5084 temp = E1000_READ_REG(hw, PRC127);
5085 temp = E1000_READ_REG(hw, PRC255);
5086 temp = E1000_READ_REG(hw, PRC511);
5087 temp = E1000_READ_REG(hw, PRC1023);
5088 temp = E1000_READ_REG(hw, PRC1522);
5089 temp = E1000_READ_REG(hw, GPRC);
5090 temp = E1000_READ_REG(hw, BPRC);
5091 temp = E1000_READ_REG(hw, MPRC);
5092 temp = E1000_READ_REG(hw, GPTC);
5093 temp = E1000_READ_REG(hw, GORCL);
5094 temp = E1000_READ_REG(hw, GORCH);
5095 temp = E1000_READ_REG(hw, GOTCL);
5096 temp = E1000_READ_REG(hw, GOTCH);
5097 temp = E1000_READ_REG(hw, RNBC);
5098 temp = E1000_READ_REG(hw, RUC);
5099 temp = E1000_READ_REG(hw, RFC);
5100 temp = E1000_READ_REG(hw, ROC);
5101 temp = E1000_READ_REG(hw, RJC);
5102 temp = E1000_READ_REG(hw, TORL);
5103 temp = E1000_READ_REG(hw, TORH);
5104 temp = E1000_READ_REG(hw, TOTL);
5105 temp = E1000_READ_REG(hw, TOTH);
5106 temp = E1000_READ_REG(hw, TPR);
5107 temp = E1000_READ_REG(hw, TPT);
5108 temp = E1000_READ_REG(hw, PTC64);
5109 temp = E1000_READ_REG(hw, PTC127);
5110 temp = E1000_READ_REG(hw, PTC255);
5111 temp = E1000_READ_REG(hw, PTC511);
5112 temp = E1000_READ_REG(hw, PTC1023);
5113 temp = E1000_READ_REG(hw, PTC1522);
5114 temp = E1000_READ_REG(hw, MPTC);
5115 temp = E1000_READ_REG(hw, BPTC);
5116
5117 if(hw->mac_type < e1000_82543) return;
5118
5119 temp = E1000_READ_REG(hw, ALGNERRC);
5120 temp = E1000_READ_REG(hw, RXERRC);
5121 temp = E1000_READ_REG(hw, TNCRS);
5122 temp = E1000_READ_REG(hw, CEXTERR);
5123 temp = E1000_READ_REG(hw, TSCTC);
5124 temp = E1000_READ_REG(hw, TSCTFC);
5125
5126 if(hw->mac_type <= e1000_82544) return;
5127
5128 temp = E1000_READ_REG(hw, MGTPRC);
5129 temp = E1000_READ_REG(hw, MGTPDC);
5130 temp = E1000_READ_REG(hw, MGTPTC);
5131
5132 if(hw->mac_type <= e1000_82547_rev_2) return;
5133
5134 temp = E1000_READ_REG(hw, IAC);
5135 temp = E1000_READ_REG(hw, ICRXOC);
5136 temp = E1000_READ_REG(hw, ICRXPTC);
5137 temp = E1000_READ_REG(hw, ICRXATC);
5138 temp = E1000_READ_REG(hw, ICTXPTC);
5139 temp = E1000_READ_REG(hw, ICTXATC);
5140 temp = E1000_READ_REG(hw, ICTXQEC);
5141 temp = E1000_READ_REG(hw, ICTXQMTC);
5142 temp = E1000_READ_REG(hw, ICRXDMTC);
5143 }
5144
5145 /******************************************************************************
5146 * Resets Adaptive IFS to its default state.
5147 *
5148 * hw - Struct containing variables accessed by shared code
5149 *
5150 * Call this after e1000_init_hw. You may override the IFS defaults by setting
5151 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
5152 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
5153 * before calling this function.
5154 *****************************************************************************/
5155 void
5156 e1000_reset_adaptive(struct e1000_hw *hw)
5157 {
5158 DEBUGFUNC("e1000_reset_adaptive");
5159
5160 if(hw->adaptive_ifs) {
5161 if(!hw->ifs_params_forced) {
5162 hw->current_ifs_val = 0;
5163 hw->ifs_min_val = IFS_MIN;
5164 hw->ifs_max_val = IFS_MAX;
5165 hw->ifs_step_size = IFS_STEP;
5166 hw->ifs_ratio = IFS_RATIO;
5167 }
5168 hw->in_ifs_mode = FALSE;
5169 E1000_WRITE_REG(hw, AIT, 0);
5170 } else {
5171 DEBUGOUT("Not in Adaptive IFS mode!\n");
5172 }
5173 }
5174
5175 /******************************************************************************
5176 * Called during the callback/watchdog routine to update IFS value based on
5177 * the ratio of transmits to collisions.
5178 *
5179 * hw - Struct containing variables accessed by shared code
5180 * tx_packets - Number of transmits since last callback
5181 * total_collisions - Number of collisions since last callback
5182 *****************************************************************************/
5183 void
5184 e1000_update_adaptive(struct e1000_hw *hw)
5185 {
5186 DEBUGFUNC("e1000_update_adaptive");
5187
5188 if(hw->adaptive_ifs) {
5189 if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
5190 if(hw->tx_packet_delta > MIN_NUM_XMITS) {
5191 hw->in_ifs_mode = TRUE;
5192 if(hw->current_ifs_val < hw->ifs_max_val) {
5193 if(hw->current_ifs_val == 0)
5194 hw->current_ifs_val = hw->ifs_min_val;
5195 else
5196 hw->current_ifs_val += hw->ifs_step_size;
5197 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
5198 }
5199 }
5200 } else {
5201 if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
5202 hw->current_ifs_val = 0;
5203 hw->in_ifs_mode = FALSE;
5204 E1000_WRITE_REG(hw, AIT, 0);
5205 }
5206 }
5207 } else {
5208 DEBUGOUT("Not in Adaptive IFS mode!\n");
5209 }
5210 }
5211
5212 /******************************************************************************
5213 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
5214 *
5215 * hw - Struct containing variables accessed by shared code
5216 * frame_len - The length of the frame in question
5217 * mac_addr - The Ethernet destination address of the frame in question
5218 *****************************************************************************/
5219 void
5220 e1000_tbi_adjust_stats(struct e1000_hw *hw,
5221 struct e1000_hw_stats *stats,
5222 uint32_t frame_len,
5223 uint8_t *mac_addr)
5224 {
5225 uint64_t carry_bit;
5226
5227 /* First adjust the frame length. */
5228 frame_len--;
5229 /* We need to adjust the statistics counters, since the hardware
5230 * counters overcount this packet as a CRC error and undercount
5231 * the packet as a good packet
5232 */
5233 /* This packet should not be counted as a CRC error. */
5234 stats->crcerrs--;
5235 /* This packet does count as a Good Packet Received. */
5236 stats->gprc++;
5237
5238 /* Adjust the Good Octets received counters */
5239 carry_bit = 0x80000000 & stats->gorcl;
5240 stats->gorcl += frame_len;
5241 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
5242 * Received Count) was one before the addition,
5243 * AND it is zero after, then we lost the carry out,
5244 * need to add one to Gorch (Good Octets Received Count High).
5245 * This could be simplified if all environments supported
5246 * 64-bit integers.
5247 */
5248 if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
5249 stats->gorch++;
5250 /* Is this a broadcast or multicast? Check broadcast first,
5251 * since the test for a multicast frame will test positive on
5252 * a broadcast frame.
5253 */
5254 if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
5255 /* Broadcast packet */
5256 stats->bprc++;
5257 else if(*mac_addr & 0x01)
5258 /* Multicast packet */
5259 stats->mprc++;
5260
5261 if(frame_len == hw->max_frame_size) {
5262 /* In this case, the hardware has overcounted the number of
5263 * oversize frames.
5264 */
5265 if(stats->roc > 0)
5266 stats->roc--;
5267 }
5268
5269 /* Adjust the bin counters when the extra byte put the frame in the
5270 * wrong bin. Remember that the frame_len was adjusted above.
5271 */
5272 if(frame_len == 64) {
5273 stats->prc64++;
5274 stats->prc127--;
5275 } else if(frame_len == 127) {
5276 stats->prc127++;
5277 stats->prc255--;
5278 } else if(frame_len == 255) {
5279 stats->prc255++;
5280 stats->prc511--;
5281 } else if(frame_len == 511) {
5282 stats->prc511++;
5283 stats->prc1023--;
5284 } else if(frame_len == 1023) {
5285 stats->prc1023++;
5286 stats->prc1522--;
5287 } else if(frame_len == 1522) {
5288 stats->prc1522++;
5289 }
5290 }
5291
5292 /******************************************************************************
5293 * Gets the current PCI bus type, speed, and width of the hardware
5294 *
5295 * hw - Struct containing variables accessed by shared code
5296 *****************************************************************************/
5297 void
5298 e1000_get_bus_info(struct e1000_hw *hw)
5299 {
5300 uint32_t status;
5301
5302 switch (hw->mac_type) {
5303 case e1000_82542_rev2_0:
5304 case e1000_82542_rev2_1:
5305 hw->bus_type = e1000_bus_type_unknown;
5306 hw->bus_speed = e1000_bus_speed_unknown;
5307 hw->bus_width = e1000_bus_width_unknown;
5308 break;
5309 case e1000_82572:
5310 case e1000_82573:
5311 hw->bus_type = e1000_bus_type_pci_express;
5312 hw->bus_speed = e1000_bus_speed_2500;
5313 hw->bus_width = e1000_bus_width_pciex_1;
5314 break;
5315 case e1000_82571:
5316 hw->bus_type = e1000_bus_type_pci_express;
5317 hw->bus_speed = e1000_bus_speed_2500;
5318 hw->bus_width = e1000_bus_width_pciex_4;
5319 break;
5320 default:
5321 status = E1000_READ_REG(hw, STATUS);
5322 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5323 e1000_bus_type_pcix : e1000_bus_type_pci;
5324
5325 if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
5326 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
5327 e1000_bus_speed_66 : e1000_bus_speed_120;
5328 } else if(hw->bus_type == e1000_bus_type_pci) {
5329 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
5330 e1000_bus_speed_66 : e1000_bus_speed_33;
5331 } else {
5332 switch (status & E1000_STATUS_PCIX_SPEED) {
5333 case E1000_STATUS_PCIX_SPEED_66:
5334 hw->bus_speed = e1000_bus_speed_66;
5335 break;
5336 case E1000_STATUS_PCIX_SPEED_100:
5337 hw->bus_speed = e1000_bus_speed_100;
5338 break;
5339 case E1000_STATUS_PCIX_SPEED_133:
5340 hw->bus_speed = e1000_bus_speed_133;
5341 break;
5342 default:
5343 hw->bus_speed = e1000_bus_speed_reserved;
5344 break;
5345 }
5346 }
5347 hw->bus_width = (status & E1000_STATUS_BUS64) ?
5348 e1000_bus_width_64 : e1000_bus_width_32;
5349 break;
5350 }
5351 }
5352
5353 #if 0
5354 /******************************************************************************
5355 * Reads a value from one of the devices registers using port I/O (as opposed
5356 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5357 *
5358 * hw - Struct containing variables accessed by shared code
5359 * offset - offset to read from
5360 *****************************************************************************/
5361 uint32_t
5362 e1000_read_reg_io(struct e1000_hw *hw,
5363 uint32_t offset)
5364 {
5365 unsigned long io_addr = hw->io_base;
5366 unsigned long io_data = hw->io_base + 4;
5367
5368 e1000_io_write(hw, io_addr, offset);
5369 return e1000_io_read(hw, io_data);
5370 }
5371 #endif /* 0 */
5372
5373 /******************************************************************************
5374 * Writes a value to one of the devices registers using port I/O (as opposed to
5375 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5376 *
5377 * hw - Struct containing variables accessed by shared code
5378 * offset - offset to write to
5379 * value - value to write
5380 *****************************************************************************/
5381 static void
5382 e1000_write_reg_io(struct e1000_hw *hw,
5383 uint32_t offset,
5384 uint32_t value)
5385 {
5386 unsigned long io_addr = hw->io_base;
5387 unsigned long io_data = hw->io_base + 4;
5388
5389 e1000_io_write(hw, io_addr, offset);
5390 e1000_io_write(hw, io_data, value);
5391 }
5392
5393
5394 /******************************************************************************
5395 * Estimates the cable length.
5396 *
5397 * hw - Struct containing variables accessed by shared code
5398 * min_length - The estimated minimum length
5399 * max_length - The estimated maximum length
5400 *
5401 * returns: - E1000_ERR_XXX
5402 * E1000_SUCCESS
5403 *
5404 * This function always returns a ranged length (minimum & maximum).
5405 * So for M88 phy's, this function interprets the one value returned from the
5406 * register to the minimum and maximum range.
5407 * For IGP phy's, the function calculates the range by the AGC registers.
5408 *****************************************************************************/
5409 static int32_t
5410 e1000_get_cable_length(struct e1000_hw *hw,
5411 uint16_t *min_length,
5412 uint16_t *max_length)
5413 {
5414 int32_t ret_val;
5415 uint16_t agc_value = 0;
5416 uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5417 uint16_t max_agc = 0;
5418 uint16_t i, phy_data;
5419 uint16_t cable_length;
5420
5421 DEBUGFUNC("e1000_get_cable_length");
5422
5423 *min_length = *max_length = 0;
5424
5425 /* Use old method for Phy older than IGP */
5426 if(hw->phy_type == e1000_phy_m88) {
5427
5428 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5429 &phy_data);
5430 if(ret_val)
5431 return ret_val;
5432 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5433 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5434
5435 /* Convert the enum value to ranged values */
5436 switch (cable_length) {
5437 case e1000_cable_length_50:
5438 *min_length = 0;
5439 *max_length = e1000_igp_cable_length_50;
5440 break;
5441 case e1000_cable_length_50_80:
5442 *min_length = e1000_igp_cable_length_50;
5443 *max_length = e1000_igp_cable_length_80;
5444 break;
5445 case e1000_cable_length_80_110:
5446 *min_length = e1000_igp_cable_length_80;
5447 *max_length = e1000_igp_cable_length_110;
5448 break;
5449 case e1000_cable_length_110_140:
5450 *min_length = e1000_igp_cable_length_110;
5451 *max_length = e1000_igp_cable_length_140;
5452 break;
5453 case e1000_cable_length_140:
5454 *min_length = e1000_igp_cable_length_140;
5455 *max_length = e1000_igp_cable_length_170;
5456 break;
5457 default:
5458 return -E1000_ERR_PHY;
5459 break;
5460 }
5461 } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5462 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5463 {IGP01E1000_PHY_AGC_A,
5464 IGP01E1000_PHY_AGC_B,
5465 IGP01E1000_PHY_AGC_C,
5466 IGP01E1000_PHY_AGC_D};
5467 /* Read the AGC registers for all channels */
5468 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5469
5470 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5471 if(ret_val)
5472 return ret_val;
5473
5474 cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5475
5476 /* Array bound check. */
5477 if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
5478 (cur_agc == 0))
5479 return -E1000_ERR_PHY;
5480
5481 agc_value += cur_agc;
5482
5483 /* Update minimal AGC value. */
5484 if(min_agc > cur_agc)
5485 min_agc = cur_agc;
5486 }
5487
5488 /* Remove the minimal AGC result for length < 50m */
5489 if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5490 agc_value -= min_agc;
5491
5492 /* Get the average length of the remaining 3 channels */
5493 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5494 } else {
5495 /* Get the average length of all the 4 channels. */
5496 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5497 }
5498
5499 /* Set the range of the calculated length. */
5500 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5501 IGP01E1000_AGC_RANGE) > 0) ?
5502 (e1000_igp_cable_length_table[agc_value] -
5503 IGP01E1000_AGC_RANGE) : 0;
5504 *max_length = e1000_igp_cable_length_table[agc_value] +
5505 IGP01E1000_AGC_RANGE;
5506 } else if (hw->phy_type == e1000_phy_igp_2) {
5507 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
5508 {IGP02E1000_PHY_AGC_A,
5509 IGP02E1000_PHY_AGC_B,
5510 IGP02E1000_PHY_AGC_C,
5511 IGP02E1000_PHY_AGC_D};
5512 /* Read the AGC registers for all channels */
5513 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
5514 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5515 if (ret_val)
5516 return ret_val;
5517
5518 /* Getting bits 15:9, which represent the combination of course and
5519 * fine gain values. The result is a number that can be put into
5520 * the lookup table to obtain the approximate cable length. */
5521 cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
5522 IGP02E1000_AGC_LENGTH_MASK;
5523
5524 /* Remove min & max AGC values from calculation. */
5525 if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc])
5526 min_agc = cur_agc;
5527 if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc])
5528 max_agc = cur_agc;
5529
5530 agc_value += e1000_igp_2_cable_length_table[cur_agc];
5531 }
5532
5533 agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]);
5534 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
5535
5536 /* Calculate cable length with the error range of +/- 10 meters. */
5537 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
5538 (agc_value - IGP02E1000_AGC_RANGE) : 0;
5539 *max_length = agc_value + IGP02E1000_AGC_RANGE;
5540 }
5541
5542 return E1000_SUCCESS;
5543 }
5544
5545 /******************************************************************************
5546 * Check the cable polarity
5547 *
5548 * hw - Struct containing variables accessed by shared code
5549 * polarity - output parameter : 0 - Polarity is not reversed
5550 * 1 - Polarity is reversed.
5551 *
5552 * returns: - E1000_ERR_XXX
5553 * E1000_SUCCESS
5554 *
5555 * For phy's older then IGP, this function simply reads the polarity bit in the
5556 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5557 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5558 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5559 * IGP01E1000_PHY_PCS_INIT_REG.
5560 *****************************************************************************/
5561 static int32_t
5562 e1000_check_polarity(struct e1000_hw *hw,
5563 uint16_t *polarity)
5564 {
5565 int32_t ret_val;
5566 uint16_t phy_data;
5567
5568 DEBUGFUNC("e1000_check_polarity");
5569
5570 if(hw->phy_type == e1000_phy_m88) {
5571 /* return the Polarity bit in the Status register. */
5572 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5573 &phy_data);
5574 if(ret_val)
5575 return ret_val;
5576 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
5577 M88E1000_PSSR_REV_POLARITY_SHIFT;
5578 } else if(hw->phy_type == e1000_phy_igp ||
5579 hw->phy_type == e1000_phy_igp_2) {
5580 /* Read the Status register to check the speed */
5581 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5582 &phy_data);
5583 if(ret_val)
5584 return ret_val;
5585
5586 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5587 * find the polarity status */
5588 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5589 IGP01E1000_PSSR_SPEED_1000MBPS) {
5590
5591 /* Read the GIG initialization PCS register (0x00B4) */
5592 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5593 &phy_data);
5594 if(ret_val)
5595 return ret_val;
5596
5597 /* Check the polarity bits */
5598 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
5599 } else {
5600 /* For 10 Mbps, read the polarity bit in the status register. (for
5601 * 100 Mbps this bit is always 0) */
5602 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
5603 }
5604 }
5605 return E1000_SUCCESS;
5606 }
5607
5608 /******************************************************************************
5609 * Check if Downshift occured
5610 *
5611 * hw - Struct containing variables accessed by shared code
5612 * downshift - output parameter : 0 - No Downshift ocured.
5613 * 1 - Downshift ocured.
5614 *
5615 * returns: - E1000_ERR_XXX
5616 * E1000_SUCCESS
5617 *
5618 * For phy's older then IGP, this function reads the Downshift bit in the Phy
5619 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5620 * Link Health register. In IGP this bit is latched high, so the driver must
5621 * read it immediately after link is established.
5622 *****************************************************************************/
5623 static int32_t
5624 e1000_check_downshift(struct e1000_hw *hw)
5625 {
5626 int32_t ret_val;
5627 uint16_t phy_data;
5628
5629 DEBUGFUNC("e1000_check_downshift");
5630
5631 if(hw->phy_type == e1000_phy_igp ||
5632 hw->phy_type == e1000_phy_igp_2) {
5633 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5634 &phy_data);
5635 if(ret_val)
5636 return ret_val;
5637
5638 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5639 } else if(hw->phy_type == e1000_phy_m88) {
5640 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5641 &phy_data);
5642 if(ret_val)
5643 return ret_val;
5644
5645 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5646 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5647 }
5648
5649 return E1000_SUCCESS;
5650 }
5651
5652 /*****************************************************************************
5653 *
5654 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5655 * gigabit link is achieved to improve link quality.
5656 *
5657 * hw: Struct containing variables accessed by shared code
5658 *
5659 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5660 * E1000_SUCCESS at any other case.
5661 *
5662 ****************************************************************************/
5663
5664 static int32_t
5665 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
5666 boolean_t link_up)
5667 {
5668 int32_t ret_val;
5669 uint16_t phy_data, phy_saved_data, speed, duplex, i;
5670 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5671 {IGP01E1000_PHY_AGC_PARAM_A,
5672 IGP01E1000_PHY_AGC_PARAM_B,
5673 IGP01E1000_PHY_AGC_PARAM_C,
5674 IGP01E1000_PHY_AGC_PARAM_D};
5675 uint16_t min_length, max_length;
5676
5677 DEBUGFUNC("e1000_config_dsp_after_link_change");
5678
5679 if(hw->phy_type != e1000_phy_igp)
5680 return E1000_SUCCESS;
5681
5682 if(link_up) {
5683 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5684 if(ret_val) {
5685 DEBUGOUT("Error getting link speed and duplex\n");
5686 return ret_val;
5687 }
5688
5689 if(speed == SPEED_1000) {
5690
5691 e1000_get_cable_length(hw, &min_length, &max_length);
5692
5693 if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
5694 min_length >= e1000_igp_cable_length_50) {
5695
5696 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5697 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5698 &phy_data);
5699 if(ret_val)
5700 return ret_val;
5701
5702 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5703
5704 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5705 phy_data);
5706 if(ret_val)
5707 return ret_val;
5708 }
5709 hw->dsp_config_state = e1000_dsp_config_activated;
5710 }
5711
5712 if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
5713 (min_length < e1000_igp_cable_length_50)) {
5714
5715 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5716 uint32_t idle_errs = 0;
5717
5718 /* clear previous idle error counts */
5719 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5720 &phy_data);
5721 if(ret_val)
5722 return ret_val;
5723
5724 for(i = 0; i < ffe_idle_err_timeout; i++) {
5725 udelay(1000);
5726 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5727 &phy_data);
5728 if(ret_val)
5729 return ret_val;
5730
5731 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5732 if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5733 hw->ffe_config_state = e1000_ffe_config_active;
5734
5735 ret_val = e1000_write_phy_reg(hw,
5736 IGP01E1000_PHY_DSP_FFE,
5737 IGP01E1000_PHY_DSP_FFE_CM_CP);
5738 if(ret_val)
5739 return ret_val;
5740 break;
5741 }
5742
5743 if(idle_errs)
5744 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5745 }
5746 }
5747 }
5748 } else {
5749 if(hw->dsp_config_state == e1000_dsp_config_activated) {
5750 /* Save off the current value of register 0x2F5B to be restored at
5751 * the end of the routines. */
5752 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5753
5754 if(ret_val)
5755 return ret_val;
5756
5757 /* Disable the PHY transmitter */
5758 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5759
5760 if(ret_val)
5761 return ret_val;
5762
5763 msec_delay_irq(20);
5764
5765 ret_val = e1000_write_phy_reg(hw, 0x0000,
5766 IGP01E1000_IEEE_FORCE_GIGA);
5767 if(ret_val)
5768 return ret_val;
5769 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5770 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
5771 if(ret_val)
5772 return ret_val;
5773
5774 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5775 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5776
5777 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
5778 if(ret_val)
5779 return ret_val;
5780 }
5781
5782 ret_val = e1000_write_phy_reg(hw, 0x0000,
5783 IGP01E1000_IEEE_RESTART_AUTONEG);
5784 if(ret_val)
5785 return ret_val;
5786
5787 msec_delay_irq(20);
5788
5789 /* Now enable the transmitter */
5790 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5791
5792 if(ret_val)
5793 return ret_val;
5794
5795 hw->dsp_config_state = e1000_dsp_config_enabled;
5796 }
5797
5798 if(hw->ffe_config_state == e1000_ffe_config_active) {
5799 /* Save off the current value of register 0x2F5B to be restored at
5800 * the end of the routines. */
5801 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5802
5803 if(ret_val)
5804 return ret_val;
5805
5806 /* Disable the PHY transmitter */
5807 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5808
5809 if(ret_val)
5810 return ret_val;
5811
5812 msec_delay_irq(20);
5813
5814 ret_val = e1000_write_phy_reg(hw, 0x0000,
5815 IGP01E1000_IEEE_FORCE_GIGA);
5816 if(ret_val)
5817 return ret_val;
5818 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5819 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5820 if(ret_val)
5821 return ret_val;
5822
5823 ret_val = e1000_write_phy_reg(hw, 0x0000,
5824 IGP01E1000_IEEE_RESTART_AUTONEG);
5825 if(ret_val)
5826 return ret_val;
5827
5828 msec_delay_irq(20);
5829
5830 /* Now enable the transmitter */
5831 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5832
5833 if(ret_val)
5834 return ret_val;
5835
5836 hw->ffe_config_state = e1000_ffe_config_enabled;
5837 }
5838 }
5839 return E1000_SUCCESS;
5840 }
5841
5842 /*****************************************************************************
5843 * Set PHY to class A mode
5844 * Assumes the following operations will follow to enable the new class mode.
5845 * 1. Do a PHY soft reset
5846 * 2. Restart auto-negotiation or force link.
5847 *
5848 * hw - Struct containing variables accessed by shared code
5849 ****************************************************************************/
5850 static int32_t
5851 e1000_set_phy_mode(struct e1000_hw *hw)
5852 {
5853 int32_t ret_val;
5854 uint16_t eeprom_data;
5855
5856 DEBUGFUNC("e1000_set_phy_mode");
5857
5858 if((hw->mac_type == e1000_82545_rev_3) &&
5859 (hw->media_type == e1000_media_type_copper)) {
5860 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
5861 if(ret_val) {
5862 return ret_val;
5863 }
5864
5865 if((eeprom_data != EEPROM_RESERVED_WORD) &&
5866 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5867 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
5868 if(ret_val)
5869 return ret_val;
5870 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
5871 if(ret_val)
5872 return ret_val;
5873
5874 hw->phy_reset_disable = FALSE;
5875 }
5876 }
5877
5878 return E1000_SUCCESS;
5879 }
5880
5881 /*****************************************************************************
5882 *
5883 * This function sets the lplu state according to the active flag. When
5884 * activating lplu this function also disables smart speed and vise versa.
5885 * lplu will not be activated unless the device autonegotiation advertisment
5886 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5887 * hw: Struct containing variables accessed by shared code
5888 * active - true to enable lplu false to disable lplu.
5889 *
5890 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5891 * E1000_SUCCESS at any other case.
5892 *
5893 ****************************************************************************/
5894
5895 static int32_t
5896 e1000_set_d3_lplu_state(struct e1000_hw *hw,
5897 boolean_t active)
5898 {
5899 int32_t ret_val;
5900 uint16_t phy_data;
5901 DEBUGFUNC("e1000_set_d3_lplu_state");
5902
5903 if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
5904 return E1000_SUCCESS;
5905
5906 /* During driver activity LPLU should not be used or it will attain link
5907 * from the lowest speeds starting from 10Mbps. The capability is used for
5908 * Dx transitions and states */
5909 if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
5910 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5911 if(ret_val)
5912 return ret_val;
5913 } else {
5914 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
5915 if(ret_val)
5916 return ret_val;
5917 }
5918
5919 if(!active) {
5920 if(hw->mac_type == e1000_82541_rev_2 ||
5921 hw->mac_type == e1000_82547_rev_2) {
5922 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5923 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5924 if(ret_val)
5925 return ret_val;
5926 } else {
5927 phy_data &= ~IGP02E1000_PM_D3_LPLU;
5928 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5929 phy_data);
5930 if (ret_val)
5931 return ret_val;
5932 }
5933
5934 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5935 * Dx states where the power conservation is most important. During
5936 * driver activity we should enable SmartSpeed, so performance is
5937 * maintained. */
5938 if (hw->smart_speed == e1000_smart_speed_on) {
5939 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5940 &phy_data);
5941 if(ret_val)
5942 return ret_val;
5943
5944 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5945 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5946 phy_data);
5947 if(ret_val)
5948 return ret_val;
5949 } else if (hw->smart_speed == e1000_smart_speed_off) {
5950 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5951 &phy_data);
5952 if (ret_val)
5953 return ret_val;
5954
5955 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5956 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5957 phy_data);
5958 if(ret_val)
5959 return ret_val;
5960 }
5961
5962 } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5963 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
5964 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5965
5966 if(hw->mac_type == e1000_82541_rev_2 ||
5967 hw->mac_type == e1000_82547_rev_2) {
5968 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5969 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5970 if(ret_val)
5971 return ret_val;
5972 } else {
5973 phy_data |= IGP02E1000_PM_D3_LPLU;
5974 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5975 phy_data);
5976 if (ret_val)
5977 return ret_val;
5978 }
5979
5980 /* When LPLU is enabled we should disable SmartSpeed */
5981 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
5982 if(ret_val)
5983 return ret_val;
5984
5985 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5986 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
5987 if(ret_val)
5988 return ret_val;
5989
5990 }
5991 return E1000_SUCCESS;
5992 }
5993
5994 /*****************************************************************************
5995 *
5996 * This function sets the lplu d0 state according to the active flag. When
5997 * activating lplu this function also disables smart speed and vise versa.
5998 * lplu will not be activated unless the device autonegotiation advertisment
5999 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
6000 * hw: Struct containing variables accessed by shared code
6001 * active - true to enable lplu false to disable lplu.
6002 *
6003 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6004 * E1000_SUCCESS at any other case.
6005 *
6006 ****************************************************************************/
6007
6008 static int32_t
6009 e1000_set_d0_lplu_state(struct e1000_hw *hw,
6010 boolean_t active)
6011 {
6012 int32_t ret_val;
6013 uint16_t phy_data;
6014 DEBUGFUNC("e1000_set_d0_lplu_state");
6015
6016 if(hw->mac_type <= e1000_82547_rev_2)
6017 return E1000_SUCCESS;
6018
6019 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
6020 if(ret_val)
6021 return ret_val;
6022
6023 if (!active) {
6024 phy_data &= ~IGP02E1000_PM_D0_LPLU;
6025 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
6026 if (ret_val)
6027 return ret_val;
6028
6029 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
6030 * Dx states where the power conservation is most important. During
6031 * driver activity we should enable SmartSpeed, so performance is
6032 * maintained. */
6033 if (hw->smart_speed == e1000_smart_speed_on) {
6034 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6035 &phy_data);
6036 if(ret_val)
6037 return ret_val;
6038
6039 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
6040 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6041 phy_data);
6042 if(ret_val)
6043 return ret_val;
6044 } else if (hw->smart_speed == e1000_smart_speed_off) {
6045 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6046 &phy_data);
6047 if (ret_val)
6048 return ret_val;
6049
6050 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
6051 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6052 phy_data);
6053 if(ret_val)
6054 return ret_val;
6055 }
6056
6057
6058 } else {
6059
6060 phy_data |= IGP02E1000_PM_D0_LPLU;
6061 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
6062 if (ret_val)
6063 return ret_val;
6064
6065 /* When LPLU is enabled we should disable SmartSpeed */
6066 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
6067 if(ret_val)
6068 return ret_val;
6069
6070 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
6071 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
6072 if(ret_val)
6073 return ret_val;
6074
6075 }
6076 return E1000_SUCCESS;
6077 }
6078
6079 /******************************************************************************
6080 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
6081 *
6082 * hw - Struct containing variables accessed by shared code
6083 *****************************************************************************/
6084 static int32_t
6085 e1000_set_vco_speed(struct e1000_hw *hw)
6086 {
6087 int32_t ret_val;
6088 uint16_t default_page = 0;
6089 uint16_t phy_data;
6090
6091 DEBUGFUNC("e1000_set_vco_speed");
6092
6093 switch(hw->mac_type) {
6094 case e1000_82545_rev_3:
6095 case e1000_82546_rev_3:
6096 break;
6097 default:
6098 return E1000_SUCCESS;
6099 }
6100
6101 /* Set PHY register 30, page 5, bit 8 to 0 */
6102
6103 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
6104 if(ret_val)
6105 return ret_val;
6106
6107 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
6108 if(ret_val)
6109 return ret_val;
6110
6111 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
6112 if(ret_val)
6113 return ret_val;
6114
6115 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
6116 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
6117 if(ret_val)
6118 return ret_val;
6119
6120 /* Set PHY register 30, page 4, bit 11 to 1 */
6121
6122 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
6123 if(ret_val)
6124 return ret_val;
6125
6126 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
6127 if(ret_val)
6128 return ret_val;
6129
6130 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
6131 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
6132 if(ret_val)
6133 return ret_val;
6134
6135 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
6136 if(ret_val)
6137 return ret_val;
6138
6139 return E1000_SUCCESS;
6140 }
6141
6142
6143 /*****************************************************************************
6144 * This function reads the cookie from ARC ram.
6145 *
6146 * returns: - E1000_SUCCESS .
6147 ****************************************************************************/
6148 int32_t
6149 e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
6150 {
6151 uint8_t i;
6152 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
6153 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
6154
6155 length = (length >> 2);
6156 offset = (offset >> 2);
6157
6158 for (i = 0; i < length; i++) {
6159 *((uint32_t *) buffer + i) =
6160 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
6161 }
6162 return E1000_SUCCESS;
6163 }
6164
6165
6166 /*****************************************************************************
6167 * This function checks whether the HOST IF is enabled for command operaton
6168 * and also checks whether the previous command is completed.
6169 * It busy waits in case of previous command is not completed.
6170 *
6171 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
6172 * timeout
6173 * - E1000_SUCCESS for success.
6174 ****************************************************************************/
6175 static int32_t
6176 e1000_mng_enable_host_if(struct e1000_hw * hw)
6177 {
6178 uint32_t hicr;
6179 uint8_t i;
6180
6181 /* Check that the host interface is enabled. */
6182 hicr = E1000_READ_REG(hw, HICR);
6183 if ((hicr & E1000_HICR_EN) == 0) {
6184 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
6185 return -E1000_ERR_HOST_INTERFACE_COMMAND;
6186 }
6187 /* check the previous command is completed */
6188 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
6189 hicr = E1000_READ_REG(hw, HICR);
6190 if (!(hicr & E1000_HICR_C))
6191 break;
6192 msec_delay_irq(1);
6193 }
6194
6195 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
6196 DEBUGOUT("Previous command timeout failed .\n");
6197 return -E1000_ERR_HOST_INTERFACE_COMMAND;
6198 }
6199 return E1000_SUCCESS;
6200 }
6201
6202 /*****************************************************************************
6203 * This function writes the buffer content at the offset given on the host if.
6204 * It also does alignment considerations to do the writes in most efficient way.
6205 * Also fills up the sum of the buffer in *buffer parameter.
6206 *
6207 * returns - E1000_SUCCESS for success.
6208 ****************************************************************************/
6209 static int32_t
6210 e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
6211 uint16_t length, uint16_t offset, uint8_t *sum)
6212 {
6213 uint8_t *tmp;
6214 uint8_t *bufptr = buffer;
6215 uint32_t data;
6216 uint16_t remaining, i, j, prev_bytes;
6217
6218 /* sum = only sum of the data and it is not checksum */
6219
6220 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
6221 return -E1000_ERR_PARAM;
6222 }
6223
6224 tmp = (uint8_t *)&data;
6225 prev_bytes = offset & 0x3;
6226 offset &= 0xFFFC;
6227 offset >>= 2;
6228
6229 if (prev_bytes) {
6230 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
6231 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
6232 *(tmp + j) = *bufptr++;
6233 *sum += *(tmp + j);
6234 }
6235 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
6236 length -= j - prev_bytes;
6237 offset++;
6238 }
6239
6240 remaining = length & 0x3;
6241 length -= remaining;
6242
6243 /* Calculate length in DWORDs */
6244 length >>= 2;
6245
6246 /* The device driver writes the relevant command block into the
6247 * ram area. */
6248 for (i = 0; i < length; i++) {
6249 for (j = 0; j < sizeof(uint32_t); j++) {
6250 *(tmp + j) = *bufptr++;
6251 *sum += *(tmp + j);
6252 }
6253
6254 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6255 }
6256 if (remaining) {
6257 for (j = 0; j < sizeof(uint32_t); j++) {
6258 if (j < remaining)
6259 *(tmp + j) = *bufptr++;
6260 else
6261 *(tmp + j) = 0;
6262
6263 *sum += *(tmp + j);
6264 }
6265 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6266 }
6267
6268 return E1000_SUCCESS;
6269 }
6270
6271
6272 /*****************************************************************************
6273 * This function writes the command header after does the checksum calculation.
6274 *
6275 * returns - E1000_SUCCESS for success.
6276 ****************************************************************************/
6277 static int32_t
6278 e1000_mng_write_cmd_header(struct e1000_hw * hw,
6279 struct e1000_host_mng_command_header * hdr)
6280 {
6281 uint16_t i;
6282 uint8_t sum;
6283 uint8_t *buffer;
6284
6285 /* Write the whole command header structure which includes sum of
6286 * the buffer */
6287
6288 uint16_t length = sizeof(struct e1000_host_mng_command_header);
6289
6290 sum = hdr->checksum;
6291 hdr->checksum = 0;
6292
6293 buffer = (uint8_t *) hdr;
6294 i = length;
6295 while(i--)
6296 sum += buffer[i];
6297
6298 hdr->checksum = 0 - sum;
6299
6300 length >>= 2;
6301 /* The device driver writes the relevant command block into the ram area. */
6302 for (i = 0; i < length; i++)
6303 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
6304
6305 return E1000_SUCCESS;
6306 }
6307
6308
6309 /*****************************************************************************
6310 * This function indicates to ARC that a new command is pending which completes
6311 * one write operation by the driver.
6312 *
6313 * returns - E1000_SUCCESS for success.
6314 ****************************************************************************/
6315 static int32_t
6316 e1000_mng_write_commit(
6317 struct e1000_hw * hw)
6318 {
6319 uint32_t hicr;
6320
6321 hicr = E1000_READ_REG(hw, HICR);
6322 /* Setting this bit tells the ARC that a new command is pending. */
6323 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
6324
6325 return E1000_SUCCESS;
6326 }
6327
6328
6329 /*****************************************************************************
6330 * This function checks the mode of the firmware.
6331 *
6332 * returns - TRUE when the mode is IAMT or FALSE.
6333 ****************************************************************************/
6334 boolean_t
6335 e1000_check_mng_mode(
6336 struct e1000_hw *hw)
6337 {
6338 uint32_t fwsm;
6339
6340 fwsm = E1000_READ_REG(hw, FWSM);
6341
6342 if((fwsm & E1000_FWSM_MODE_MASK) ==
6343 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
6344 return TRUE;
6345
6346 return FALSE;
6347 }
6348
6349
6350 /*****************************************************************************
6351 * This function writes the dhcp info .
6352 ****************************************************************************/
6353 int32_t
6354 e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
6355 uint16_t length)
6356 {
6357 int32_t ret_val;
6358 struct e1000_host_mng_command_header hdr;
6359
6360 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
6361 hdr.command_length = length;
6362 hdr.reserved1 = 0;
6363 hdr.reserved2 = 0;
6364 hdr.checksum = 0;
6365
6366 ret_val = e1000_mng_enable_host_if(hw);
6367 if (ret_val == E1000_SUCCESS) {
6368 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
6369 &(hdr.checksum));
6370 if (ret_val == E1000_SUCCESS) {
6371 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
6372 if (ret_val == E1000_SUCCESS)
6373 ret_val = e1000_mng_write_commit(hw);
6374 }
6375 }
6376 return ret_val;
6377 }
6378
6379
6380 /*****************************************************************************
6381 * This function calculates the checksum.
6382 *
6383 * returns - checksum of buffer contents.
6384 ****************************************************************************/
6385 uint8_t
6386 e1000_calculate_mng_checksum(char *buffer, uint32_t length)
6387 {
6388 uint8_t sum = 0;
6389 uint32_t i;
6390
6391 if (!buffer)
6392 return 0;
6393
6394 for (i=0; i < length; i++)
6395 sum += buffer[i];
6396
6397 return (uint8_t) (0 - sum);
6398 }
6399
6400 /*****************************************************************************
6401 * This function checks whether tx pkt filtering needs to be enabled or not.
6402 *
6403 * returns - TRUE for packet filtering or FALSE.
6404 ****************************************************************************/
6405 boolean_t
6406 e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
6407 {
6408 /* called in init as well as watchdog timer functions */
6409
6410 int32_t ret_val, checksum;
6411 boolean_t tx_filter = FALSE;
6412 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
6413 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
6414
6415 if (e1000_check_mng_mode(hw)) {
6416 ret_val = e1000_mng_enable_host_if(hw);
6417 if (ret_val == E1000_SUCCESS) {
6418 ret_val = e1000_host_if_read_cookie(hw, buffer);
6419 if (ret_val == E1000_SUCCESS) {
6420 checksum = hdr->checksum;
6421 hdr->checksum = 0;
6422 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
6423 checksum == e1000_calculate_mng_checksum((char *)buffer,
6424 E1000_MNG_DHCP_COOKIE_LENGTH)) {
6425 if (hdr->status &
6426 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
6427 tx_filter = TRUE;
6428 } else
6429 tx_filter = TRUE;
6430 } else
6431 tx_filter = TRUE;
6432 }
6433 }
6434
6435 hw->tx_pkt_filtering = tx_filter;
6436 return tx_filter;
6437 }
6438
6439 /******************************************************************************
6440 * Verifies the hardware needs to allow ARPs to be processed by the host
6441 *
6442 * hw - Struct containing variables accessed by shared code
6443 *
6444 * returns: - TRUE/FALSE
6445 *
6446 *****************************************************************************/
6447 uint32_t
6448 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
6449 {
6450 uint32_t manc;
6451 uint32_t fwsm, factps;
6452
6453 if (hw->asf_firmware_present) {
6454 manc = E1000_READ_REG(hw, MANC);
6455
6456 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
6457 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
6458 return FALSE;
6459 if (e1000_arc_subsystem_valid(hw) == TRUE) {
6460 fwsm = E1000_READ_REG(hw, FWSM);
6461 factps = E1000_READ_REG(hw, FACTPS);
6462
6463 if (((fwsm & E1000_FWSM_MODE_MASK) ==
6464 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
6465 (factps & E1000_FACTPS_MNGCG))
6466 return TRUE;
6467 } else
6468 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
6469 return TRUE;
6470 }
6471 return FALSE;
6472 }
6473
6474 static int32_t
6475 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
6476 {
6477 int32_t ret_val;
6478 uint16_t mii_status_reg;
6479 uint16_t i;
6480
6481 /* Polarity reversal workaround for forced 10F/10H links. */
6482
6483 /* Disable the transmitter on the PHY */
6484
6485 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6486 if(ret_val)
6487 return ret_val;
6488 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
6489 if(ret_val)
6490 return ret_val;
6491
6492 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6493 if(ret_val)
6494 return ret_val;
6495
6496 /* This loop will early-out if the NO link condition has been met. */
6497 for(i = PHY_FORCE_TIME; i > 0; i--) {
6498 /* Read the MII Status Register and wait for Link Status bit
6499 * to be clear.
6500 */
6501
6502 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6503 if(ret_val)
6504 return ret_val;
6505
6506 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6507 if(ret_val)
6508 return ret_val;
6509
6510 if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
6511 msec_delay_irq(100);
6512 }
6513
6514 /* Recommended delay time after link has been lost */
6515 msec_delay_irq(1000);
6516
6517 /* Now we will re-enable th transmitter on the PHY */
6518
6519 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6520 if(ret_val)
6521 return ret_val;
6522 msec_delay_irq(50);
6523 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
6524 if(ret_val)
6525 return ret_val;
6526 msec_delay_irq(50);
6527 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
6528 if(ret_val)
6529 return ret_val;
6530 msec_delay_irq(50);
6531 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
6532 if(ret_val)
6533 return ret_val;
6534
6535 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6536 if(ret_val)
6537 return ret_val;
6538
6539 /* This loop will early-out if the link condition has been met. */
6540 for(i = PHY_FORCE_TIME; i > 0; i--) {
6541 /* Read the MII Status Register and wait for Link Status bit
6542 * to be set.
6543 */
6544
6545 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6546 if(ret_val)
6547 return ret_val;
6548
6549 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6550 if(ret_val)
6551 return ret_val;
6552
6553 if(mii_status_reg & MII_SR_LINK_STATUS) break;
6554 msec_delay_irq(100);
6555 }
6556 return E1000_SUCCESS;
6557 }
6558
6559 /***************************************************************************
6560 *
6561 * Disables PCI-Express master access.
6562 *
6563 * hw: Struct containing variables accessed by shared code
6564 *
6565 * returns: - none.
6566 *
6567 ***************************************************************************/
6568 static void
6569 e1000_set_pci_express_master_disable(struct e1000_hw *hw)
6570 {
6571 uint32_t ctrl;
6572
6573 DEBUGFUNC("e1000_set_pci_express_master_disable");
6574
6575 if (hw->bus_type != e1000_bus_type_pci_express)
6576 return;
6577
6578 ctrl = E1000_READ_REG(hw, CTRL);
6579 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
6580 E1000_WRITE_REG(hw, CTRL, ctrl);
6581 }
6582
6583 #if 0
6584 /***************************************************************************
6585 *
6586 * Enables PCI-Express master access.
6587 *
6588 * hw: Struct containing variables accessed by shared code
6589 *
6590 * returns: - none.
6591 *
6592 ***************************************************************************/
6593 void
6594 e1000_enable_pciex_master(struct e1000_hw *hw)
6595 {
6596 uint32_t ctrl;
6597
6598 DEBUGFUNC("e1000_enable_pciex_master");
6599
6600 if (hw->bus_type != e1000_bus_type_pci_express)
6601 return;
6602
6603 ctrl = E1000_READ_REG(hw, CTRL);
6604 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
6605 E1000_WRITE_REG(hw, CTRL, ctrl);
6606 }
6607 #endif /* 0 */
6608
6609 /*******************************************************************************
6610 *
6611 * Disables PCI-Express master access and verifies there are no pending requests
6612 *
6613 * hw: Struct containing variables accessed by shared code
6614 *
6615 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
6616 * caused the master requests to be disabled.
6617 * E1000_SUCCESS master requests disabled.
6618 *
6619 ******************************************************************************/
6620 int32_t
6621 e1000_disable_pciex_master(struct e1000_hw *hw)
6622 {
6623 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
6624
6625 DEBUGFUNC("e1000_disable_pciex_master");
6626
6627 if (hw->bus_type != e1000_bus_type_pci_express)
6628 return E1000_SUCCESS;
6629
6630 e1000_set_pci_express_master_disable(hw);
6631
6632 while(timeout) {
6633 if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
6634 break;
6635 else
6636 udelay(100);
6637 timeout--;
6638 }
6639
6640 if(!timeout) {
6641 DEBUGOUT("Master requests are pending.\n");
6642 return -E1000_ERR_MASTER_REQUESTS_PENDING;
6643 }
6644
6645 return E1000_SUCCESS;
6646 }
6647
6648 /*******************************************************************************
6649 *
6650 * Check for EEPROM Auto Read bit done.
6651 *
6652 * hw: Struct containing variables accessed by shared code
6653 *
6654 * returns: - E1000_ERR_RESET if fail to reset MAC
6655 * E1000_SUCCESS at any other case.
6656 *
6657 ******************************************************************************/
6658 static int32_t
6659 e1000_get_auto_rd_done(struct e1000_hw *hw)
6660 {
6661 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
6662
6663 DEBUGFUNC("e1000_get_auto_rd_done");
6664
6665 switch (hw->mac_type) {
6666 default:
6667 msec_delay(5);
6668 break;
6669 case e1000_82571:
6670 case e1000_82572:
6671 case e1000_82573:
6672 while(timeout) {
6673 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
6674 else msec_delay(1);
6675 timeout--;
6676 }
6677
6678 if(!timeout) {
6679 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
6680 return -E1000_ERR_RESET;
6681 }
6682 break;
6683 }
6684
6685 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
6686 * Need to wait for PHY configuration completion before accessing NVM
6687 * and PHY. */
6688 if (hw->mac_type == e1000_82573)
6689 msec_delay(25);
6690
6691 return E1000_SUCCESS;
6692 }
6693
6694 /***************************************************************************
6695 * Checks if the PHY configuration is done
6696 *
6697 * hw: Struct containing variables accessed by shared code
6698 *
6699 * returns: - E1000_ERR_RESET if fail to reset MAC
6700 * E1000_SUCCESS at any other case.
6701 *
6702 ***************************************************************************/
6703 static int32_t
6704 e1000_get_phy_cfg_done(struct e1000_hw *hw)
6705 {
6706 int32_t timeout = PHY_CFG_TIMEOUT;
6707 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
6708
6709 DEBUGFUNC("e1000_get_phy_cfg_done");
6710
6711 switch (hw->mac_type) {
6712 default:
6713 msec_delay(10);
6714 break;
6715 case e1000_82571:
6716 case e1000_82572:
6717 while (timeout) {
6718 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
6719 break;
6720 else
6721 msec_delay(1);
6722 timeout--;
6723 }
6724
6725 if (!timeout) {
6726 DEBUGOUT("MNG configuration cycle has not completed.\n");
6727 return -E1000_ERR_RESET;
6728 }
6729 break;
6730 }
6731
6732 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
6733 * Need to wait for PHY configuration completion before accessing NVM
6734 * and PHY. */
6735 if (hw->mac_type == e1000_82573)
6736 msec_delay(25);
6737
6738 return E1000_SUCCESS;
6739 }
6740
6741 /***************************************************************************
6742 *
6743 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
6744 * adapter or Eeprom access.
6745 *
6746 * hw: Struct containing variables accessed by shared code
6747 *
6748 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
6749 * E1000_SUCCESS at any other case.
6750 *
6751 ***************************************************************************/
6752 static int32_t
6753 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
6754 {
6755 int32_t timeout;
6756 uint32_t swsm;
6757
6758 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
6759
6760 if(!hw->eeprom_semaphore_present)
6761 return E1000_SUCCESS;
6762
6763
6764 /* Get the FW semaphore. */
6765 timeout = hw->eeprom.word_size + 1;
6766 while(timeout) {
6767 swsm = E1000_READ_REG(hw, SWSM);
6768 swsm |= E1000_SWSM_SWESMBI;
6769 E1000_WRITE_REG(hw, SWSM, swsm);
6770 /* if we managed to set the bit we got the semaphore. */
6771 swsm = E1000_READ_REG(hw, SWSM);
6772 if(swsm & E1000_SWSM_SWESMBI)
6773 break;
6774
6775 udelay(50);
6776 timeout--;
6777 }
6778
6779 if(!timeout) {
6780 /* Release semaphores */
6781 e1000_put_hw_eeprom_semaphore(hw);
6782 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
6783 return -E1000_ERR_EEPROM;
6784 }
6785
6786 return E1000_SUCCESS;
6787 }
6788
6789 /***************************************************************************
6790 * This function clears HW semaphore bits.
6791 *
6792 * hw: Struct containing variables accessed by shared code
6793 *
6794 * returns: - None.
6795 *
6796 ***************************************************************************/
6797 static void
6798 e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
6799 {
6800 uint32_t swsm;
6801
6802 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
6803
6804 if(!hw->eeprom_semaphore_present)
6805 return;
6806
6807 swsm = E1000_READ_REG(hw, SWSM);
6808 swsm &= ~(E1000_SWSM_SWESMBI);
6809 E1000_WRITE_REG(hw, SWSM, swsm);
6810 }
6811
6812 /******************************************************************************
6813 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
6814 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
6815 * the caller to figure out how to deal with it.
6816 *
6817 * hw - Struct containing variables accessed by shared code
6818 *
6819 * returns: - E1000_BLK_PHY_RESET
6820 * E1000_SUCCESS
6821 *
6822 *****************************************************************************/
6823 int32_t
6824 e1000_check_phy_reset_block(struct e1000_hw *hw)
6825 {
6826 uint32_t manc = 0;
6827 if(hw->mac_type > e1000_82547_rev_2)
6828 manc = E1000_READ_REG(hw, MANC);
6829 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
6830 E1000_BLK_PHY_RESET : E1000_SUCCESS;
6831 }
6832
6833 static uint8_t
6834 e1000_arc_subsystem_valid(struct e1000_hw *hw)
6835 {
6836 uint32_t fwsm;
6837
6838 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
6839 * may not be provided a DMA clock when no manageability features are
6840 * enabled. We do not want to perform any reads/writes to these registers
6841 * if this is the case. We read FWSM to determine the manageability mode.
6842 */
6843 switch (hw->mac_type) {
6844 case e1000_82571:
6845 case e1000_82572:
6846 case e1000_82573:
6847 fwsm = E1000_READ_REG(hw, FWSM);
6848 if((fwsm & E1000_FWSM_MODE_MASK) != 0)
6849 return TRUE;
6850 break;
6851 default:
6852 break;
6853 }
6854 return FALSE;
6855 }
6856
6857
6858
This page took 0.359631 seconds and 4 git commands to generate.