vlan: Don't check for vlan group before vlan_tx_tag_present.
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k6-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_update_phy_info_task(struct work_struct *work);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_82547_tx_fifo_stall(unsigned long data);
129 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
130 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
131 struct net_device *netdev);
132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
134 static int e1000_set_mac(struct net_device *netdev, void *p);
135 static irqreturn_t e1000_intr(int irq, void *data);
136 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
137 struct e1000_tx_ring *tx_ring);
138 static int e1000_clean(struct napi_struct *napi, int budget);
139 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
140 struct e1000_rx_ring *rx_ring,
141 int *work_done, int work_to_do);
142 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
143 struct e1000_rx_ring *rx_ring,
144 int *work_done, int work_to_do);
145 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
146 struct e1000_rx_ring *rx_ring,
147 int cleaned_count);
148 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
149 struct e1000_rx_ring *rx_ring,
150 int cleaned_count);
151 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
152 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
153 int cmd);
154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
156 static void e1000_tx_timeout(struct net_device *dev);
157 static void e1000_reset_task(struct work_struct *work);
158 static void e1000_smartspeed(struct e1000_adapter *adapter);
159 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
160 struct sk_buff *skb);
161
162 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
163 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
164 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
165 static void e1000_restore_vlan(struct e1000_adapter *adapter);
166
167 #ifdef CONFIG_PM
168 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
169 static int e1000_resume(struct pci_dev *pdev);
170 #endif
171 static void e1000_shutdown(struct pci_dev *pdev);
172
173 #ifdef CONFIG_NET_POLL_CONTROLLER
174 /* for netdump / net console */
175 static void e1000_netpoll (struct net_device *netdev);
176 #endif
177
178 #define COPYBREAK_DEFAULT 256
179 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
180 module_param(copybreak, uint, 0644);
181 MODULE_PARM_DESC(copybreak,
182 "Maximum size of packet that is copied to a new buffer on receive");
183
184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
185 pci_channel_state_t state);
186 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
187 static void e1000_io_resume(struct pci_dev *pdev);
188
189 static struct pci_error_handlers e1000_err_handler = {
190 .error_detected = e1000_io_error_detected,
191 .slot_reset = e1000_io_slot_reset,
192 .resume = e1000_io_resume,
193 };
194
195 static struct pci_driver e1000_driver = {
196 .name = e1000_driver_name,
197 .id_table = e1000_pci_tbl,
198 .probe = e1000_probe,
199 .remove = __devexit_p(e1000_remove),
200 #ifdef CONFIG_PM
201 /* Power Managment Hooks */
202 .suspend = e1000_suspend,
203 .resume = e1000_resume,
204 #endif
205 .shutdown = e1000_shutdown,
206 .err_handler = &e1000_err_handler
207 };
208
209 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
210 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
211 MODULE_LICENSE("GPL");
212 MODULE_VERSION(DRV_VERSION);
213
214 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217
218 /**
219 * e1000_get_hw_dev - return device
220 * used by hardware layer to print debugging information
221 *
222 **/
223 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
224 {
225 struct e1000_adapter *adapter = hw->back;
226 return adapter->netdev;
227 }
228
229 /**
230 * e1000_init_module - Driver Registration Routine
231 *
232 * e1000_init_module is the first routine called when the driver is
233 * loaded. All it does is register with the PCI subsystem.
234 **/
235
236 static int __init e1000_init_module(void)
237 {
238 int ret;
239 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
240
241 pr_info("%s\n", e1000_copyright);
242
243 ret = pci_register_driver(&e1000_driver);
244 if (copybreak != COPYBREAK_DEFAULT) {
245 if (copybreak == 0)
246 pr_info("copybreak disabled\n");
247 else
248 pr_info("copybreak enabled for "
249 "packets <= %u bytes\n", copybreak);
250 }
251 return ret;
252 }
253
254 module_init(e1000_init_module);
255
256 /**
257 * e1000_exit_module - Driver Exit Cleanup Routine
258 *
259 * e1000_exit_module is called just before the driver is removed
260 * from memory.
261 **/
262
263 static void __exit e1000_exit_module(void)
264 {
265 pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272 struct net_device *netdev = adapter->netdev;
273 irq_handler_t handler = e1000_intr;
274 int irq_flags = IRQF_SHARED;
275 int err;
276
277 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
278 netdev);
279 if (err) {
280 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
281 }
282
283 return err;
284 }
285
286 static void e1000_free_irq(struct e1000_adapter *adapter)
287 {
288 struct net_device *netdev = adapter->netdev;
289
290 free_irq(adapter->pdev->irq, netdev);
291 }
292
293 /**
294 * e1000_irq_disable - Mask off interrupt generation on the NIC
295 * @adapter: board private structure
296 **/
297
298 static void e1000_irq_disable(struct e1000_adapter *adapter)
299 {
300 struct e1000_hw *hw = &adapter->hw;
301
302 ew32(IMC, ~0);
303 E1000_WRITE_FLUSH();
304 synchronize_irq(adapter->pdev->irq);
305 }
306
307 /**
308 * e1000_irq_enable - Enable default interrupt generation settings
309 * @adapter: board private structure
310 **/
311
312 static void e1000_irq_enable(struct e1000_adapter *adapter)
313 {
314 struct e1000_hw *hw = &adapter->hw;
315
316 ew32(IMS, IMS_ENABLE_MASK);
317 E1000_WRITE_FLUSH();
318 }
319
320 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
321 {
322 struct e1000_hw *hw = &adapter->hw;
323 struct net_device *netdev = adapter->netdev;
324 u16 vid = hw->mng_cookie.vlan_id;
325 u16 old_vid = adapter->mng_vlan_id;
326 if (adapter->vlgrp) {
327 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
328 if (hw->mng_cookie.status &
329 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
330 e1000_vlan_rx_add_vid(netdev, vid);
331 adapter->mng_vlan_id = vid;
332 } else
333 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
334
335 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
336 (vid != old_vid) &&
337 !vlan_group_get_device(adapter->vlgrp, old_vid))
338 e1000_vlan_rx_kill_vid(netdev, old_vid);
339 } else
340 adapter->mng_vlan_id = vid;
341 }
342 }
343
344 static void e1000_init_manageability(struct e1000_adapter *adapter)
345 {
346 struct e1000_hw *hw = &adapter->hw;
347
348 if (adapter->en_mng_pt) {
349 u32 manc = er32(MANC);
350
351 /* disable hardware interception of ARP */
352 manc &= ~(E1000_MANC_ARP_EN);
353
354 ew32(MANC, manc);
355 }
356 }
357
358 static void e1000_release_manageability(struct e1000_adapter *adapter)
359 {
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* re-enable hardware interception of ARP */
366 manc |= E1000_MANC_ARP_EN;
367
368 ew32(MANC, manc);
369 }
370 }
371
372 /**
373 * e1000_configure - configure the hardware for RX and TX
374 * @adapter = private board structure
375 **/
376 static void e1000_configure(struct e1000_adapter *adapter)
377 {
378 struct net_device *netdev = adapter->netdev;
379 int i;
380
381 e1000_set_rx_mode(netdev);
382
383 e1000_restore_vlan(adapter);
384 e1000_init_manageability(adapter);
385
386 e1000_configure_tx(adapter);
387 e1000_setup_rctl(adapter);
388 e1000_configure_rx(adapter);
389 /* call E1000_DESC_UNUSED which always leaves
390 * at least 1 descriptor unused to make sure
391 * next_to_use != next_to_clean */
392 for (i = 0; i < adapter->num_rx_queues; i++) {
393 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
394 adapter->alloc_rx_buf(adapter, ring,
395 E1000_DESC_UNUSED(ring));
396 }
397 }
398
399 int e1000_up(struct e1000_adapter *adapter)
400 {
401 struct e1000_hw *hw = &adapter->hw;
402
403 /* hardware has been reset, we need to reload some things */
404 e1000_configure(adapter);
405
406 clear_bit(__E1000_DOWN, &adapter->flags);
407
408 napi_enable(&adapter->napi);
409
410 e1000_irq_enable(adapter);
411
412 netif_wake_queue(adapter->netdev);
413
414 /* fire a link change interrupt to start the watchdog */
415 ew32(ICS, E1000_ICS_LSC);
416 return 0;
417 }
418
419 /**
420 * e1000_power_up_phy - restore link in case the phy was powered down
421 * @adapter: address of board private structure
422 *
423 * The phy may be powered down to save power and turn off link when the
424 * driver is unloaded and wake on lan is not enabled (among others)
425 * *** this routine MUST be followed by a call to e1000_reset ***
426 *
427 **/
428
429 void e1000_power_up_phy(struct e1000_adapter *adapter)
430 {
431 struct e1000_hw *hw = &adapter->hw;
432 u16 mii_reg = 0;
433
434 /* Just clear the power down bit to wake the phy back up */
435 if (hw->media_type == e1000_media_type_copper) {
436 /* according to the manual, the phy will retain its
437 * settings across a power-down/up cycle */
438 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
439 mii_reg &= ~MII_CR_POWER_DOWN;
440 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
441 }
442 }
443
444 static void e1000_power_down_phy(struct e1000_adapter *adapter)
445 {
446 struct e1000_hw *hw = &adapter->hw;
447
448 /* Power down the PHY so no link is implied when interface is down *
449 * The PHY cannot be powered down if any of the following is true *
450 * (a) WoL is enabled
451 * (b) AMT is active
452 * (c) SoL/IDER session is active */
453 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
454 hw->media_type == e1000_media_type_copper) {
455 u16 mii_reg = 0;
456
457 switch (hw->mac_type) {
458 case e1000_82540:
459 case e1000_82545:
460 case e1000_82545_rev_3:
461 case e1000_82546:
462 case e1000_82546_rev_3:
463 case e1000_82541:
464 case e1000_82541_rev_2:
465 case e1000_82547:
466 case e1000_82547_rev_2:
467 if (er32(MANC) & E1000_MANC_SMBUS_EN)
468 goto out;
469 break;
470 default:
471 goto out;
472 }
473 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
474 mii_reg |= MII_CR_POWER_DOWN;
475 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
476 mdelay(1);
477 }
478 out:
479 return;
480 }
481
482 void e1000_down(struct e1000_adapter *adapter)
483 {
484 struct e1000_hw *hw = &adapter->hw;
485 struct net_device *netdev = adapter->netdev;
486 u32 rctl, tctl;
487
488 /* signal that we're down so the interrupt handler does not
489 * reschedule our watchdog timer */
490 set_bit(__E1000_DOWN, &adapter->flags);
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 napi_disable(&adapter->napi);
508
509 e1000_irq_disable(adapter);
510
511 del_timer_sync(&adapter->tx_fifo_stall_timer);
512 del_timer_sync(&adapter->watchdog_timer);
513 del_timer_sync(&adapter->phy_info_timer);
514
515 adapter->link_speed = 0;
516 adapter->link_duplex = 0;
517 netif_carrier_off(netdev);
518
519 e1000_reset(adapter);
520 e1000_clean_all_tx_rings(adapter);
521 e1000_clean_all_rx_rings(adapter);
522 }
523
524 void e1000_reinit_safe(struct e1000_adapter *adapter)
525 {
526 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
527 msleep(1);
528 rtnl_lock();
529 e1000_down(adapter);
530 e1000_up(adapter);
531 rtnl_unlock();
532 clear_bit(__E1000_RESETTING, &adapter->flags);
533 }
534
535 void e1000_reinit_locked(struct e1000_adapter *adapter)
536 {
537 /* if rtnl_lock is not held the call path is bogus */
538 ASSERT_RTNL();
539 WARN_ON(in_interrupt());
540 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
541 msleep(1);
542 e1000_down(adapter);
543 e1000_up(adapter);
544 clear_bit(__E1000_RESETTING, &adapter->flags);
545 }
546
547 void e1000_reset(struct e1000_adapter *adapter)
548 {
549 struct e1000_hw *hw = &adapter->hw;
550 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
551 bool legacy_pba_adjust = false;
552 u16 hwm;
553
554 /* Repartition Pba for greater than 9k mtu
555 * To take effect CTRL.RST is required.
556 */
557
558 switch (hw->mac_type) {
559 case e1000_82542_rev2_0:
560 case e1000_82542_rev2_1:
561 case e1000_82543:
562 case e1000_82544:
563 case e1000_82540:
564 case e1000_82541:
565 case e1000_82541_rev_2:
566 legacy_pba_adjust = true;
567 pba = E1000_PBA_48K;
568 break;
569 case e1000_82545:
570 case e1000_82545_rev_3:
571 case e1000_82546:
572 case e1000_82546_rev_3:
573 pba = E1000_PBA_48K;
574 break;
575 case e1000_82547:
576 case e1000_82547_rev_2:
577 legacy_pba_adjust = true;
578 pba = E1000_PBA_30K;
579 break;
580 case e1000_undefined:
581 case e1000_num_macs:
582 break;
583 }
584
585 if (legacy_pba_adjust) {
586 if (hw->max_frame_size > E1000_RXBUFFER_8192)
587 pba -= 8; /* allocate more FIFO for Tx */
588
589 if (hw->mac_type == e1000_82547) {
590 adapter->tx_fifo_head = 0;
591 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
592 adapter->tx_fifo_size =
593 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
594 atomic_set(&adapter->tx_fifo_stall, 0);
595 }
596 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
597 /* adjust PBA for jumbo frames */
598 ew32(PBA, pba);
599
600 /* To maintain wire speed transmits, the Tx FIFO should be
601 * large enough to accommodate two full transmit packets,
602 * rounded up to the next 1KB and expressed in KB. Likewise,
603 * the Rx FIFO should be large enough to accommodate at least
604 * one full receive packet and is similarly rounded up and
605 * expressed in KB. */
606 pba = er32(PBA);
607 /* upper 16 bits has Tx packet buffer allocation size in KB */
608 tx_space = pba >> 16;
609 /* lower 16 bits has Rx packet buffer allocation size in KB */
610 pba &= 0xffff;
611 /*
612 * the tx fifo also stores 16 bytes of information about the tx
613 * but don't include ethernet FCS because hardware appends it
614 */
615 min_tx_space = (hw->max_frame_size +
616 sizeof(struct e1000_tx_desc) -
617 ETH_FCS_LEN) * 2;
618 min_tx_space = ALIGN(min_tx_space, 1024);
619 min_tx_space >>= 10;
620 /* software strips receive CRC, so leave room for it */
621 min_rx_space = hw->max_frame_size;
622 min_rx_space = ALIGN(min_rx_space, 1024);
623 min_rx_space >>= 10;
624
625 /* If current Tx allocation is less than the min Tx FIFO size,
626 * and the min Tx FIFO size is less than the current Rx FIFO
627 * allocation, take space away from current Rx allocation */
628 if (tx_space < min_tx_space &&
629 ((min_tx_space - tx_space) < pba)) {
630 pba = pba - (min_tx_space - tx_space);
631
632 /* PCI/PCIx hardware has PBA alignment constraints */
633 switch (hw->mac_type) {
634 case e1000_82545 ... e1000_82546_rev_3:
635 pba &= ~(E1000_PBA_8K - 1);
636 break;
637 default:
638 break;
639 }
640
641 /* if short on rx space, rx wins and must trump tx
642 * adjustment or use Early Receive if available */
643 if (pba < min_rx_space)
644 pba = min_rx_space;
645 }
646 }
647
648 ew32(PBA, pba);
649
650 /*
651 * flow control settings:
652 * The high water mark must be low enough to fit one full frame
653 * (or the size used for early receive) above it in the Rx FIFO.
654 * Set it to the lower of:
655 * - 90% of the Rx FIFO size, and
656 * - the full Rx FIFO size minus the early receive size (for parts
657 * with ERT support assuming ERT set to E1000_ERT_2048), or
658 * - the full Rx FIFO size minus one full frame
659 */
660 hwm = min(((pba << 10) * 9 / 10),
661 ((pba << 10) - hw->max_frame_size));
662
663 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
664 hw->fc_low_water = hw->fc_high_water - 8;
665 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
666 hw->fc_send_xon = 1;
667 hw->fc = hw->original_fc;
668
669 /* Allow time for pending master requests to run */
670 e1000_reset_hw(hw);
671 if (hw->mac_type >= e1000_82544)
672 ew32(WUC, 0);
673
674 if (e1000_init_hw(hw))
675 e_dev_err("Hardware Error\n");
676 e1000_update_mng_vlan(adapter);
677
678 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
679 if (hw->mac_type >= e1000_82544 &&
680 hw->autoneg == 1 &&
681 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
682 u32 ctrl = er32(CTRL);
683 /* clear phy power management bit if we are in gig only mode,
684 * which if enabled will attempt negotiation to 100Mb, which
685 * can cause a loss of link at power off or driver unload */
686 ctrl &= ~E1000_CTRL_SWDPIN3;
687 ew32(CTRL, ctrl);
688 }
689
690 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
691 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
692
693 e1000_reset_adaptive(hw);
694 e1000_phy_get_info(hw, &adapter->phy_info);
695
696 e1000_release_manageability(adapter);
697 }
698
699 /**
700 * Dump the eeprom for users having checksum issues
701 **/
702 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
703 {
704 struct net_device *netdev = adapter->netdev;
705 struct ethtool_eeprom eeprom;
706 const struct ethtool_ops *ops = netdev->ethtool_ops;
707 u8 *data;
708 int i;
709 u16 csum_old, csum_new = 0;
710
711 eeprom.len = ops->get_eeprom_len(netdev);
712 eeprom.offset = 0;
713
714 data = kmalloc(eeprom.len, GFP_KERNEL);
715 if (!data) {
716 pr_err("Unable to allocate memory to dump EEPROM data\n");
717 return;
718 }
719
720 ops->get_eeprom(netdev, &eeprom, data);
721
722 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
723 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
724 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
725 csum_new += data[i] + (data[i + 1] << 8);
726 csum_new = EEPROM_SUM - csum_new;
727
728 pr_err("/*********************/\n");
729 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
730 pr_err("Calculated : 0x%04x\n", csum_new);
731
732 pr_err("Offset Values\n");
733 pr_err("======== ======\n");
734 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
735
736 pr_err("Include this output when contacting your support provider.\n");
737 pr_err("This is not a software error! Something bad happened to\n");
738 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
739 pr_err("result in further problems, possibly loss of data,\n");
740 pr_err("corruption or system hangs!\n");
741 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
742 pr_err("which is invalid and requires you to set the proper MAC\n");
743 pr_err("address manually before continuing to enable this network\n");
744 pr_err("device. Please inspect the EEPROM dump and report the\n");
745 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
746 pr_err("/*********************/\n");
747
748 kfree(data);
749 }
750
751 /**
752 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
753 * @pdev: PCI device information struct
754 *
755 * Return true if an adapter needs ioport resources
756 **/
757 static int e1000_is_need_ioport(struct pci_dev *pdev)
758 {
759 switch (pdev->device) {
760 case E1000_DEV_ID_82540EM:
761 case E1000_DEV_ID_82540EM_LOM:
762 case E1000_DEV_ID_82540EP:
763 case E1000_DEV_ID_82540EP_LOM:
764 case E1000_DEV_ID_82540EP_LP:
765 case E1000_DEV_ID_82541EI:
766 case E1000_DEV_ID_82541EI_MOBILE:
767 case E1000_DEV_ID_82541ER:
768 case E1000_DEV_ID_82541ER_LOM:
769 case E1000_DEV_ID_82541GI:
770 case E1000_DEV_ID_82541GI_LF:
771 case E1000_DEV_ID_82541GI_MOBILE:
772 case E1000_DEV_ID_82544EI_COPPER:
773 case E1000_DEV_ID_82544EI_FIBER:
774 case E1000_DEV_ID_82544GC_COPPER:
775 case E1000_DEV_ID_82544GC_LOM:
776 case E1000_DEV_ID_82545EM_COPPER:
777 case E1000_DEV_ID_82545EM_FIBER:
778 case E1000_DEV_ID_82546EB_COPPER:
779 case E1000_DEV_ID_82546EB_FIBER:
780 case E1000_DEV_ID_82546EB_QUAD_COPPER:
781 return true;
782 default:
783 return false;
784 }
785 }
786
787 static const struct net_device_ops e1000_netdev_ops = {
788 .ndo_open = e1000_open,
789 .ndo_stop = e1000_close,
790 .ndo_start_xmit = e1000_xmit_frame,
791 .ndo_get_stats = e1000_get_stats,
792 .ndo_set_rx_mode = e1000_set_rx_mode,
793 .ndo_set_mac_address = e1000_set_mac,
794 .ndo_tx_timeout = e1000_tx_timeout,
795 .ndo_change_mtu = e1000_change_mtu,
796 .ndo_do_ioctl = e1000_ioctl,
797 .ndo_validate_addr = eth_validate_addr,
798
799 .ndo_vlan_rx_register = e1000_vlan_rx_register,
800 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
801 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
802 #ifdef CONFIG_NET_POLL_CONTROLLER
803 .ndo_poll_controller = e1000_netpoll,
804 #endif
805 };
806
807 /**
808 * e1000_init_hw_struct - initialize members of hw struct
809 * @adapter: board private struct
810 * @hw: structure used by e1000_hw.c
811 *
812 * Factors out initialization of the e1000_hw struct to its own function
813 * that can be called very early at init (just after struct allocation).
814 * Fields are initialized based on PCI device information and
815 * OS network device settings (MTU size).
816 * Returns negative error codes if MAC type setup fails.
817 */
818 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
819 struct e1000_hw *hw)
820 {
821 struct pci_dev *pdev = adapter->pdev;
822
823 /* PCI config space info */
824 hw->vendor_id = pdev->vendor;
825 hw->device_id = pdev->device;
826 hw->subsystem_vendor_id = pdev->subsystem_vendor;
827 hw->subsystem_id = pdev->subsystem_device;
828 hw->revision_id = pdev->revision;
829
830 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
831
832 hw->max_frame_size = adapter->netdev->mtu +
833 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
834 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
835
836 /* identify the MAC */
837 if (e1000_set_mac_type(hw)) {
838 e_err(probe, "Unknown MAC Type\n");
839 return -EIO;
840 }
841
842 switch (hw->mac_type) {
843 default:
844 break;
845 case e1000_82541:
846 case e1000_82547:
847 case e1000_82541_rev_2:
848 case e1000_82547_rev_2:
849 hw->phy_init_script = 1;
850 break;
851 }
852
853 e1000_set_media_type(hw);
854 e1000_get_bus_info(hw);
855
856 hw->wait_autoneg_complete = false;
857 hw->tbi_compatibility_en = true;
858 hw->adaptive_ifs = true;
859
860 /* Copper options */
861
862 if (hw->media_type == e1000_media_type_copper) {
863 hw->mdix = AUTO_ALL_MODES;
864 hw->disable_polarity_correction = false;
865 hw->master_slave = E1000_MASTER_SLAVE;
866 }
867
868 return 0;
869 }
870
871 /**
872 * e1000_probe - Device Initialization Routine
873 * @pdev: PCI device information struct
874 * @ent: entry in e1000_pci_tbl
875 *
876 * Returns 0 on success, negative on failure
877 *
878 * e1000_probe initializes an adapter identified by a pci_dev structure.
879 * The OS initialization, configuring of the adapter private structure,
880 * and a hardware reset occur.
881 **/
882 static int __devinit e1000_probe(struct pci_dev *pdev,
883 const struct pci_device_id *ent)
884 {
885 struct net_device *netdev;
886 struct e1000_adapter *adapter;
887 struct e1000_hw *hw;
888
889 static int cards_found = 0;
890 static int global_quad_port_a = 0; /* global ksp3 port a indication */
891 int i, err, pci_using_dac;
892 u16 eeprom_data = 0;
893 u16 eeprom_apme_mask = E1000_EEPROM_APME;
894 int bars, need_ioport;
895
896 /* do not allocate ioport bars when not needed */
897 need_ioport = e1000_is_need_ioport(pdev);
898 if (need_ioport) {
899 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
900 err = pci_enable_device(pdev);
901 } else {
902 bars = pci_select_bars(pdev, IORESOURCE_MEM);
903 err = pci_enable_device_mem(pdev);
904 }
905 if (err)
906 return err;
907
908 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
909 if (err)
910 goto err_pci_reg;
911
912 pci_set_master(pdev);
913 err = pci_save_state(pdev);
914 if (err)
915 goto err_alloc_etherdev;
916
917 err = -ENOMEM;
918 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
919 if (!netdev)
920 goto err_alloc_etherdev;
921
922 SET_NETDEV_DEV(netdev, &pdev->dev);
923
924 pci_set_drvdata(pdev, netdev);
925 adapter = netdev_priv(netdev);
926 adapter->netdev = netdev;
927 adapter->pdev = pdev;
928 adapter->msg_enable = (1 << debug) - 1;
929 adapter->bars = bars;
930 adapter->need_ioport = need_ioport;
931
932 hw = &adapter->hw;
933 hw->back = adapter;
934
935 err = -EIO;
936 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
937 if (!hw->hw_addr)
938 goto err_ioremap;
939
940 if (adapter->need_ioport) {
941 for (i = BAR_1; i <= BAR_5; i++) {
942 if (pci_resource_len(pdev, i) == 0)
943 continue;
944 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
945 hw->io_base = pci_resource_start(pdev, i);
946 break;
947 }
948 }
949 }
950
951 /* make ready for any if (hw->...) below */
952 err = e1000_init_hw_struct(adapter, hw);
953 if (err)
954 goto err_sw_init;
955
956 /*
957 * there is a workaround being applied below that limits
958 * 64-bit DMA addresses to 64-bit hardware. There are some
959 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
960 */
961 pci_using_dac = 0;
962 if ((hw->bus_type == e1000_bus_type_pcix) &&
963 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
964 /*
965 * according to DMA-API-HOWTO, coherent calls will always
966 * succeed if the set call did
967 */
968 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
969 pci_using_dac = 1;
970 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
971 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
972 } else {
973 pr_err("No usable DMA config, aborting\n");
974 goto err_dma;
975 }
976
977 netdev->netdev_ops = &e1000_netdev_ops;
978 e1000_set_ethtool_ops(netdev);
979 netdev->watchdog_timeo = 5 * HZ;
980 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
981
982 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
983
984 adapter->bd_number = cards_found;
985
986 /* setup the private structure */
987
988 err = e1000_sw_init(adapter);
989 if (err)
990 goto err_sw_init;
991
992 err = -EIO;
993
994 if (hw->mac_type >= e1000_82543) {
995 netdev->features = NETIF_F_SG |
996 NETIF_F_HW_CSUM |
997 NETIF_F_HW_VLAN_TX |
998 NETIF_F_HW_VLAN_RX |
999 NETIF_F_HW_VLAN_FILTER;
1000 }
1001
1002 if ((hw->mac_type >= e1000_82544) &&
1003 (hw->mac_type != e1000_82547))
1004 netdev->features |= NETIF_F_TSO;
1005
1006 if (pci_using_dac) {
1007 netdev->features |= NETIF_F_HIGHDMA;
1008 netdev->vlan_features |= NETIF_F_HIGHDMA;
1009 }
1010
1011 netdev->vlan_features |= NETIF_F_TSO;
1012 netdev->vlan_features |= NETIF_F_HW_CSUM;
1013 netdev->vlan_features |= NETIF_F_SG;
1014
1015 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1016
1017 /* initialize eeprom parameters */
1018 if (e1000_init_eeprom_params(hw)) {
1019 e_err(probe, "EEPROM initialization failed\n");
1020 goto err_eeprom;
1021 }
1022
1023 /* before reading the EEPROM, reset the controller to
1024 * put the device in a known good starting state */
1025
1026 e1000_reset_hw(hw);
1027
1028 /* make sure the EEPROM is good */
1029 if (e1000_validate_eeprom_checksum(hw) < 0) {
1030 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1031 e1000_dump_eeprom(adapter);
1032 /*
1033 * set MAC address to all zeroes to invalidate and temporary
1034 * disable this device for the user. This blocks regular
1035 * traffic while still permitting ethtool ioctls from reaching
1036 * the hardware as well as allowing the user to run the
1037 * interface after manually setting a hw addr using
1038 * `ip set address`
1039 */
1040 memset(hw->mac_addr, 0, netdev->addr_len);
1041 } else {
1042 /* copy the MAC address out of the EEPROM */
1043 if (e1000_read_mac_addr(hw))
1044 e_err(probe, "EEPROM Read Error\n");
1045 }
1046 /* don't block initalization here due to bad MAC address */
1047 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1048 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1049
1050 if (!is_valid_ether_addr(netdev->perm_addr))
1051 e_err(probe, "Invalid MAC Address\n");
1052
1053 init_timer(&adapter->tx_fifo_stall_timer);
1054 adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1055 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1056
1057 init_timer(&adapter->watchdog_timer);
1058 adapter->watchdog_timer.function = e1000_watchdog;
1059 adapter->watchdog_timer.data = (unsigned long) adapter;
1060
1061 init_timer(&adapter->phy_info_timer);
1062 adapter->phy_info_timer.function = e1000_update_phy_info;
1063 adapter->phy_info_timer.data = (unsigned long)adapter;
1064
1065 INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1066 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1067 INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1068
1069 e1000_check_options(adapter);
1070
1071 /* Initial Wake on LAN setting
1072 * If APM wake is enabled in the EEPROM,
1073 * enable the ACPI Magic Packet filter
1074 */
1075
1076 switch (hw->mac_type) {
1077 case e1000_82542_rev2_0:
1078 case e1000_82542_rev2_1:
1079 case e1000_82543:
1080 break;
1081 case e1000_82544:
1082 e1000_read_eeprom(hw,
1083 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1084 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1085 break;
1086 case e1000_82546:
1087 case e1000_82546_rev_3:
1088 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1089 e1000_read_eeprom(hw,
1090 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1091 break;
1092 }
1093 /* Fall Through */
1094 default:
1095 e1000_read_eeprom(hw,
1096 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1097 break;
1098 }
1099 if (eeprom_data & eeprom_apme_mask)
1100 adapter->eeprom_wol |= E1000_WUFC_MAG;
1101
1102 /* now that we have the eeprom settings, apply the special cases
1103 * where the eeprom may be wrong or the board simply won't support
1104 * wake on lan on a particular port */
1105 switch (pdev->device) {
1106 case E1000_DEV_ID_82546GB_PCIE:
1107 adapter->eeprom_wol = 0;
1108 break;
1109 case E1000_DEV_ID_82546EB_FIBER:
1110 case E1000_DEV_ID_82546GB_FIBER:
1111 /* Wake events only supported on port A for dual fiber
1112 * regardless of eeprom setting */
1113 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1114 adapter->eeprom_wol = 0;
1115 break;
1116 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1117 /* if quad port adapter, disable WoL on all but port A */
1118 if (global_quad_port_a != 0)
1119 adapter->eeprom_wol = 0;
1120 else
1121 adapter->quad_port_a = 1;
1122 /* Reset for multiple quad port adapters */
1123 if (++global_quad_port_a == 4)
1124 global_quad_port_a = 0;
1125 break;
1126 }
1127
1128 /* initialize the wol settings based on the eeprom settings */
1129 adapter->wol = adapter->eeprom_wol;
1130 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1131
1132 /* reset the hardware with the new settings */
1133 e1000_reset(adapter);
1134
1135 strcpy(netdev->name, "eth%d");
1136 err = register_netdev(netdev);
1137 if (err)
1138 goto err_register;
1139
1140 /* print bus type/speed/width info */
1141 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1142 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1143 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1144 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1145 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1146 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1147 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1148 netdev->dev_addr);
1149
1150 /* carrier off reporting is important to ethtool even BEFORE open */
1151 netif_carrier_off(netdev);
1152
1153 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1154
1155 cards_found++;
1156 return 0;
1157
1158 err_register:
1159 err_eeprom:
1160 e1000_phy_hw_reset(hw);
1161
1162 if (hw->flash_address)
1163 iounmap(hw->flash_address);
1164 kfree(adapter->tx_ring);
1165 kfree(adapter->rx_ring);
1166 err_dma:
1167 err_sw_init:
1168 iounmap(hw->hw_addr);
1169 err_ioremap:
1170 free_netdev(netdev);
1171 err_alloc_etherdev:
1172 pci_release_selected_regions(pdev, bars);
1173 err_pci_reg:
1174 pci_disable_device(pdev);
1175 return err;
1176 }
1177
1178 /**
1179 * e1000_remove - Device Removal Routine
1180 * @pdev: PCI device information struct
1181 *
1182 * e1000_remove is called by the PCI subsystem to alert the driver
1183 * that it should release a PCI device. The could be caused by a
1184 * Hot-Plug event, or because the driver is going to be removed from
1185 * memory.
1186 **/
1187
1188 static void __devexit e1000_remove(struct pci_dev *pdev)
1189 {
1190 struct net_device *netdev = pci_get_drvdata(pdev);
1191 struct e1000_adapter *adapter = netdev_priv(netdev);
1192 struct e1000_hw *hw = &adapter->hw;
1193
1194 set_bit(__E1000_DOWN, &adapter->flags);
1195 del_timer_sync(&adapter->tx_fifo_stall_timer);
1196 del_timer_sync(&adapter->watchdog_timer);
1197 del_timer_sync(&adapter->phy_info_timer);
1198
1199 cancel_work_sync(&adapter->reset_task);
1200
1201 e1000_release_manageability(adapter);
1202
1203 unregister_netdev(netdev);
1204
1205 e1000_phy_hw_reset(hw);
1206
1207 kfree(adapter->tx_ring);
1208 kfree(adapter->rx_ring);
1209
1210 iounmap(hw->hw_addr);
1211 if (hw->flash_address)
1212 iounmap(hw->flash_address);
1213 pci_release_selected_regions(pdev, adapter->bars);
1214
1215 free_netdev(netdev);
1216
1217 pci_disable_device(pdev);
1218 }
1219
1220 /**
1221 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1222 * @adapter: board private structure to initialize
1223 *
1224 * e1000_sw_init initializes the Adapter private data structure.
1225 * e1000_init_hw_struct MUST be called before this function
1226 **/
1227
1228 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1229 {
1230 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1231
1232 adapter->num_tx_queues = 1;
1233 adapter->num_rx_queues = 1;
1234
1235 if (e1000_alloc_queues(adapter)) {
1236 e_err(probe, "Unable to allocate memory for queues\n");
1237 return -ENOMEM;
1238 }
1239
1240 /* Explicitly disable IRQ since the NIC can be in any state. */
1241 e1000_irq_disable(adapter);
1242
1243 spin_lock_init(&adapter->stats_lock);
1244
1245 set_bit(__E1000_DOWN, &adapter->flags);
1246
1247 return 0;
1248 }
1249
1250 /**
1251 * e1000_alloc_queues - Allocate memory for all rings
1252 * @adapter: board private structure to initialize
1253 *
1254 * We allocate one ring per queue at run-time since we don't know the
1255 * number of queues at compile-time.
1256 **/
1257
1258 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1259 {
1260 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1261 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1262 if (!adapter->tx_ring)
1263 return -ENOMEM;
1264
1265 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1266 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1267 if (!adapter->rx_ring) {
1268 kfree(adapter->tx_ring);
1269 return -ENOMEM;
1270 }
1271
1272 return E1000_SUCCESS;
1273 }
1274
1275 /**
1276 * e1000_open - Called when a network interface is made active
1277 * @netdev: network interface device structure
1278 *
1279 * Returns 0 on success, negative value on failure
1280 *
1281 * The open entry point is called when a network interface is made
1282 * active by the system (IFF_UP). At this point all resources needed
1283 * for transmit and receive operations are allocated, the interrupt
1284 * handler is registered with the OS, the watchdog timer is started,
1285 * and the stack is notified that the interface is ready.
1286 **/
1287
1288 static int e1000_open(struct net_device *netdev)
1289 {
1290 struct e1000_adapter *adapter = netdev_priv(netdev);
1291 struct e1000_hw *hw = &adapter->hw;
1292 int err;
1293
1294 /* disallow open during test */
1295 if (test_bit(__E1000_TESTING, &adapter->flags))
1296 return -EBUSY;
1297
1298 netif_carrier_off(netdev);
1299
1300 /* allocate transmit descriptors */
1301 err = e1000_setup_all_tx_resources(adapter);
1302 if (err)
1303 goto err_setup_tx;
1304
1305 /* allocate receive descriptors */
1306 err = e1000_setup_all_rx_resources(adapter);
1307 if (err)
1308 goto err_setup_rx;
1309
1310 e1000_power_up_phy(adapter);
1311
1312 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1313 if ((hw->mng_cookie.status &
1314 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1315 e1000_update_mng_vlan(adapter);
1316 }
1317
1318 /* before we allocate an interrupt, we must be ready to handle it.
1319 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1320 * as soon as we call pci_request_irq, so we have to setup our
1321 * clean_rx handler before we do so. */
1322 e1000_configure(adapter);
1323
1324 err = e1000_request_irq(adapter);
1325 if (err)
1326 goto err_req_irq;
1327
1328 /* From here on the code is the same as e1000_up() */
1329 clear_bit(__E1000_DOWN, &adapter->flags);
1330
1331 napi_enable(&adapter->napi);
1332
1333 e1000_irq_enable(adapter);
1334
1335 netif_start_queue(netdev);
1336
1337 /* fire a link status change interrupt to start the watchdog */
1338 ew32(ICS, E1000_ICS_LSC);
1339
1340 return E1000_SUCCESS;
1341
1342 err_req_irq:
1343 e1000_power_down_phy(adapter);
1344 e1000_free_all_rx_resources(adapter);
1345 err_setup_rx:
1346 e1000_free_all_tx_resources(adapter);
1347 err_setup_tx:
1348 e1000_reset(adapter);
1349
1350 return err;
1351 }
1352
1353 /**
1354 * e1000_close - Disables a network interface
1355 * @netdev: network interface device structure
1356 *
1357 * Returns 0, this is not allowed to fail
1358 *
1359 * The close entry point is called when an interface is de-activated
1360 * by the OS. The hardware is still under the drivers control, but
1361 * needs to be disabled. A global MAC reset is issued to stop the
1362 * hardware, and all transmit and receive resources are freed.
1363 **/
1364
1365 static int e1000_close(struct net_device *netdev)
1366 {
1367 struct e1000_adapter *adapter = netdev_priv(netdev);
1368 struct e1000_hw *hw = &adapter->hw;
1369
1370 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1371 e1000_down(adapter);
1372 e1000_power_down_phy(adapter);
1373 e1000_free_irq(adapter);
1374
1375 e1000_free_all_tx_resources(adapter);
1376 e1000_free_all_rx_resources(adapter);
1377
1378 /* kill manageability vlan ID if supported, but not if a vlan with
1379 * the same ID is registered on the host OS (let 8021q kill it) */
1380 if ((hw->mng_cookie.status &
1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1382 !(adapter->vlgrp &&
1383 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1384 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1385 }
1386
1387 return 0;
1388 }
1389
1390 /**
1391 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1392 * @adapter: address of board private structure
1393 * @start: address of beginning of memory
1394 * @len: length of memory
1395 **/
1396 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1397 unsigned long len)
1398 {
1399 struct e1000_hw *hw = &adapter->hw;
1400 unsigned long begin = (unsigned long)start;
1401 unsigned long end = begin + len;
1402
1403 /* First rev 82545 and 82546 need to not allow any memory
1404 * write location to cross 64k boundary due to errata 23 */
1405 if (hw->mac_type == e1000_82545 ||
1406 hw->mac_type == e1000_82546) {
1407 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1408 }
1409
1410 return true;
1411 }
1412
1413 /**
1414 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1415 * @adapter: board private structure
1416 * @txdr: tx descriptor ring (for a specific queue) to setup
1417 *
1418 * Return 0 on success, negative on failure
1419 **/
1420
1421 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1422 struct e1000_tx_ring *txdr)
1423 {
1424 struct pci_dev *pdev = adapter->pdev;
1425 int size;
1426
1427 size = sizeof(struct e1000_buffer) * txdr->count;
1428 txdr->buffer_info = vmalloc(size);
1429 if (!txdr->buffer_info) {
1430 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1431 "ring\n");
1432 return -ENOMEM;
1433 }
1434 memset(txdr->buffer_info, 0, size);
1435
1436 /* round up to nearest 4K */
1437
1438 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1439 txdr->size = ALIGN(txdr->size, 4096);
1440
1441 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1442 GFP_KERNEL);
1443 if (!txdr->desc) {
1444 setup_tx_desc_die:
1445 vfree(txdr->buffer_info);
1446 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1447 "ring\n");
1448 return -ENOMEM;
1449 }
1450
1451 /* Fix for errata 23, can't cross 64kB boundary */
1452 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1453 void *olddesc = txdr->desc;
1454 dma_addr_t olddma = txdr->dma;
1455 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1456 txdr->size, txdr->desc);
1457 /* Try again, without freeing the previous */
1458 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1459 &txdr->dma, GFP_KERNEL);
1460 /* Failed allocation, critical failure */
1461 if (!txdr->desc) {
1462 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1463 olddma);
1464 goto setup_tx_desc_die;
1465 }
1466
1467 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1468 /* give up */
1469 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1470 txdr->dma);
1471 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1472 olddma);
1473 e_err(probe, "Unable to allocate aligned memory "
1474 "for the transmit descriptor ring\n");
1475 vfree(txdr->buffer_info);
1476 return -ENOMEM;
1477 } else {
1478 /* Free old allocation, new allocation was successful */
1479 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1480 olddma);
1481 }
1482 }
1483 memset(txdr->desc, 0, txdr->size);
1484
1485 txdr->next_to_use = 0;
1486 txdr->next_to_clean = 0;
1487
1488 return 0;
1489 }
1490
1491 /**
1492 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1493 * (Descriptors) for all queues
1494 * @adapter: board private structure
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498
1499 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1500 {
1501 int i, err = 0;
1502
1503 for (i = 0; i < adapter->num_tx_queues; i++) {
1504 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1505 if (err) {
1506 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1507 for (i-- ; i >= 0; i--)
1508 e1000_free_tx_resources(adapter,
1509 &adapter->tx_ring[i]);
1510 break;
1511 }
1512 }
1513
1514 return err;
1515 }
1516
1517 /**
1518 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1519 * @adapter: board private structure
1520 *
1521 * Configure the Tx unit of the MAC after a reset.
1522 **/
1523
1524 static void e1000_configure_tx(struct e1000_adapter *adapter)
1525 {
1526 u64 tdba;
1527 struct e1000_hw *hw = &adapter->hw;
1528 u32 tdlen, tctl, tipg;
1529 u32 ipgr1, ipgr2;
1530
1531 /* Setup the HW Tx Head and Tail descriptor pointers */
1532
1533 switch (adapter->num_tx_queues) {
1534 case 1:
1535 default:
1536 tdba = adapter->tx_ring[0].dma;
1537 tdlen = adapter->tx_ring[0].count *
1538 sizeof(struct e1000_tx_desc);
1539 ew32(TDLEN, tdlen);
1540 ew32(TDBAH, (tdba >> 32));
1541 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1542 ew32(TDT, 0);
1543 ew32(TDH, 0);
1544 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1545 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1546 break;
1547 }
1548
1549 /* Set the default values for the Tx Inter Packet Gap timer */
1550 if ((hw->media_type == e1000_media_type_fiber ||
1551 hw->media_type == e1000_media_type_internal_serdes))
1552 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1553 else
1554 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1555
1556 switch (hw->mac_type) {
1557 case e1000_82542_rev2_0:
1558 case e1000_82542_rev2_1:
1559 tipg = DEFAULT_82542_TIPG_IPGT;
1560 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1561 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1562 break;
1563 default:
1564 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1565 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1566 break;
1567 }
1568 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1569 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1570 ew32(TIPG, tipg);
1571
1572 /* Set the Tx Interrupt Delay register */
1573
1574 ew32(TIDV, adapter->tx_int_delay);
1575 if (hw->mac_type >= e1000_82540)
1576 ew32(TADV, adapter->tx_abs_int_delay);
1577
1578 /* Program the Transmit Control Register */
1579
1580 tctl = er32(TCTL);
1581 tctl &= ~E1000_TCTL_CT;
1582 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1583 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1584
1585 e1000_config_collision_dist(hw);
1586
1587 /* Setup Transmit Descriptor Settings for eop descriptor */
1588 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1589
1590 /* only set IDE if we are delaying interrupts using the timers */
1591 if (adapter->tx_int_delay)
1592 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1593
1594 if (hw->mac_type < e1000_82543)
1595 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1596 else
1597 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1598
1599 /* Cache if we're 82544 running in PCI-X because we'll
1600 * need this to apply a workaround later in the send path. */
1601 if (hw->mac_type == e1000_82544 &&
1602 hw->bus_type == e1000_bus_type_pcix)
1603 adapter->pcix_82544 = 1;
1604
1605 ew32(TCTL, tctl);
1606
1607 }
1608
1609 /**
1610 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1611 * @adapter: board private structure
1612 * @rxdr: rx descriptor ring (for a specific queue) to setup
1613 *
1614 * Returns 0 on success, negative on failure
1615 **/
1616
1617 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1618 struct e1000_rx_ring *rxdr)
1619 {
1620 struct pci_dev *pdev = adapter->pdev;
1621 int size, desc_len;
1622
1623 size = sizeof(struct e1000_buffer) * rxdr->count;
1624 rxdr->buffer_info = vmalloc(size);
1625 if (!rxdr->buffer_info) {
1626 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1627 "ring\n");
1628 return -ENOMEM;
1629 }
1630 memset(rxdr->buffer_info, 0, size);
1631
1632 desc_len = sizeof(struct e1000_rx_desc);
1633
1634 /* Round up to nearest 4K */
1635
1636 rxdr->size = rxdr->count * desc_len;
1637 rxdr->size = ALIGN(rxdr->size, 4096);
1638
1639 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1640 GFP_KERNEL);
1641
1642 if (!rxdr->desc) {
1643 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1644 "ring\n");
1645 setup_rx_desc_die:
1646 vfree(rxdr->buffer_info);
1647 return -ENOMEM;
1648 }
1649
1650 /* Fix for errata 23, can't cross 64kB boundary */
1651 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1652 void *olddesc = rxdr->desc;
1653 dma_addr_t olddma = rxdr->dma;
1654 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1655 rxdr->size, rxdr->desc);
1656 /* Try again, without freeing the previous */
1657 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1658 &rxdr->dma, GFP_KERNEL);
1659 /* Failed allocation, critical failure */
1660 if (!rxdr->desc) {
1661 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1662 olddma);
1663 e_err(probe, "Unable to allocate memory for the Rx "
1664 "descriptor ring\n");
1665 goto setup_rx_desc_die;
1666 }
1667
1668 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1669 /* give up */
1670 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1671 rxdr->dma);
1672 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1673 olddma);
1674 e_err(probe, "Unable to allocate aligned memory for "
1675 "the Rx descriptor ring\n");
1676 goto setup_rx_desc_die;
1677 } else {
1678 /* Free old allocation, new allocation was successful */
1679 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1680 olddma);
1681 }
1682 }
1683 memset(rxdr->desc, 0, rxdr->size);
1684
1685 rxdr->next_to_clean = 0;
1686 rxdr->next_to_use = 0;
1687 rxdr->rx_skb_top = NULL;
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1694 * (Descriptors) for all queues
1695 * @adapter: board private structure
1696 *
1697 * Return 0 on success, negative on failure
1698 **/
1699
1700 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1701 {
1702 int i, err = 0;
1703
1704 for (i = 0; i < adapter->num_rx_queues; i++) {
1705 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1706 if (err) {
1707 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1708 for (i-- ; i >= 0; i--)
1709 e1000_free_rx_resources(adapter,
1710 &adapter->rx_ring[i]);
1711 break;
1712 }
1713 }
1714
1715 return err;
1716 }
1717
1718 /**
1719 * e1000_setup_rctl - configure the receive control registers
1720 * @adapter: Board private structure
1721 **/
1722 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1723 {
1724 struct e1000_hw *hw = &adapter->hw;
1725 u32 rctl;
1726
1727 rctl = er32(RCTL);
1728
1729 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1730
1731 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1732 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1733 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1734
1735 if (hw->tbi_compatibility_on == 1)
1736 rctl |= E1000_RCTL_SBP;
1737 else
1738 rctl &= ~E1000_RCTL_SBP;
1739
1740 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1741 rctl &= ~E1000_RCTL_LPE;
1742 else
1743 rctl |= E1000_RCTL_LPE;
1744
1745 /* Setup buffer sizes */
1746 rctl &= ~E1000_RCTL_SZ_4096;
1747 rctl |= E1000_RCTL_BSEX;
1748 switch (adapter->rx_buffer_len) {
1749 case E1000_RXBUFFER_2048:
1750 default:
1751 rctl |= E1000_RCTL_SZ_2048;
1752 rctl &= ~E1000_RCTL_BSEX;
1753 break;
1754 case E1000_RXBUFFER_4096:
1755 rctl |= E1000_RCTL_SZ_4096;
1756 break;
1757 case E1000_RXBUFFER_8192:
1758 rctl |= E1000_RCTL_SZ_8192;
1759 break;
1760 case E1000_RXBUFFER_16384:
1761 rctl |= E1000_RCTL_SZ_16384;
1762 break;
1763 }
1764
1765 ew32(RCTL, rctl);
1766 }
1767
1768 /**
1769 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1770 * @adapter: board private structure
1771 *
1772 * Configure the Rx unit of the MAC after a reset.
1773 **/
1774
1775 static void e1000_configure_rx(struct e1000_adapter *adapter)
1776 {
1777 u64 rdba;
1778 struct e1000_hw *hw = &adapter->hw;
1779 u32 rdlen, rctl, rxcsum;
1780
1781 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1782 rdlen = adapter->rx_ring[0].count *
1783 sizeof(struct e1000_rx_desc);
1784 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1785 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1786 } else {
1787 rdlen = adapter->rx_ring[0].count *
1788 sizeof(struct e1000_rx_desc);
1789 adapter->clean_rx = e1000_clean_rx_irq;
1790 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1791 }
1792
1793 /* disable receives while setting up the descriptors */
1794 rctl = er32(RCTL);
1795 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1796
1797 /* set the Receive Delay Timer Register */
1798 ew32(RDTR, adapter->rx_int_delay);
1799
1800 if (hw->mac_type >= e1000_82540) {
1801 ew32(RADV, adapter->rx_abs_int_delay);
1802 if (adapter->itr_setting != 0)
1803 ew32(ITR, 1000000000 / (adapter->itr * 256));
1804 }
1805
1806 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1807 * the Base and Length of the Rx Descriptor Ring */
1808 switch (adapter->num_rx_queues) {
1809 case 1:
1810 default:
1811 rdba = adapter->rx_ring[0].dma;
1812 ew32(RDLEN, rdlen);
1813 ew32(RDBAH, (rdba >> 32));
1814 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1815 ew32(RDT, 0);
1816 ew32(RDH, 0);
1817 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1818 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1819 break;
1820 }
1821
1822 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1823 if (hw->mac_type >= e1000_82543) {
1824 rxcsum = er32(RXCSUM);
1825 if (adapter->rx_csum)
1826 rxcsum |= E1000_RXCSUM_TUOFL;
1827 else
1828 /* don't need to clear IPPCSE as it defaults to 0 */
1829 rxcsum &= ~E1000_RXCSUM_TUOFL;
1830 ew32(RXCSUM, rxcsum);
1831 }
1832
1833 /* Enable Receives */
1834 ew32(RCTL, rctl);
1835 }
1836
1837 /**
1838 * e1000_free_tx_resources - Free Tx Resources per Queue
1839 * @adapter: board private structure
1840 * @tx_ring: Tx descriptor ring for a specific queue
1841 *
1842 * Free all transmit software resources
1843 **/
1844
1845 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1846 struct e1000_tx_ring *tx_ring)
1847 {
1848 struct pci_dev *pdev = adapter->pdev;
1849
1850 e1000_clean_tx_ring(adapter, tx_ring);
1851
1852 vfree(tx_ring->buffer_info);
1853 tx_ring->buffer_info = NULL;
1854
1855 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1856 tx_ring->dma);
1857
1858 tx_ring->desc = NULL;
1859 }
1860
1861 /**
1862 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1863 * @adapter: board private structure
1864 *
1865 * Free all transmit software resources
1866 **/
1867
1868 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1869 {
1870 int i;
1871
1872 for (i = 0; i < adapter->num_tx_queues; i++)
1873 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1874 }
1875
1876 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1877 struct e1000_buffer *buffer_info)
1878 {
1879 if (buffer_info->dma) {
1880 if (buffer_info->mapped_as_page)
1881 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1882 buffer_info->length, DMA_TO_DEVICE);
1883 else
1884 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1885 buffer_info->length,
1886 DMA_TO_DEVICE);
1887 buffer_info->dma = 0;
1888 }
1889 if (buffer_info->skb) {
1890 dev_kfree_skb_any(buffer_info->skb);
1891 buffer_info->skb = NULL;
1892 }
1893 buffer_info->time_stamp = 0;
1894 /* buffer_info must be completely set up in the transmit path */
1895 }
1896
1897 /**
1898 * e1000_clean_tx_ring - Free Tx Buffers
1899 * @adapter: board private structure
1900 * @tx_ring: ring to be cleaned
1901 **/
1902
1903 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1904 struct e1000_tx_ring *tx_ring)
1905 {
1906 struct e1000_hw *hw = &adapter->hw;
1907 struct e1000_buffer *buffer_info;
1908 unsigned long size;
1909 unsigned int i;
1910
1911 /* Free all the Tx ring sk_buffs */
1912
1913 for (i = 0; i < tx_ring->count; i++) {
1914 buffer_info = &tx_ring->buffer_info[i];
1915 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1916 }
1917
1918 size = sizeof(struct e1000_buffer) * tx_ring->count;
1919 memset(tx_ring->buffer_info, 0, size);
1920
1921 /* Zero out the descriptor ring */
1922
1923 memset(tx_ring->desc, 0, tx_ring->size);
1924
1925 tx_ring->next_to_use = 0;
1926 tx_ring->next_to_clean = 0;
1927 tx_ring->last_tx_tso = 0;
1928
1929 writel(0, hw->hw_addr + tx_ring->tdh);
1930 writel(0, hw->hw_addr + tx_ring->tdt);
1931 }
1932
1933 /**
1934 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1935 * @adapter: board private structure
1936 **/
1937
1938 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1939 {
1940 int i;
1941
1942 for (i = 0; i < adapter->num_tx_queues; i++)
1943 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1944 }
1945
1946 /**
1947 * e1000_free_rx_resources - Free Rx Resources
1948 * @adapter: board private structure
1949 * @rx_ring: ring to clean the resources from
1950 *
1951 * Free all receive software resources
1952 **/
1953
1954 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1955 struct e1000_rx_ring *rx_ring)
1956 {
1957 struct pci_dev *pdev = adapter->pdev;
1958
1959 e1000_clean_rx_ring(adapter, rx_ring);
1960
1961 vfree(rx_ring->buffer_info);
1962 rx_ring->buffer_info = NULL;
1963
1964 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1965 rx_ring->dma);
1966
1967 rx_ring->desc = NULL;
1968 }
1969
1970 /**
1971 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1972 * @adapter: board private structure
1973 *
1974 * Free all receive software resources
1975 **/
1976
1977 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1978 {
1979 int i;
1980
1981 for (i = 0; i < adapter->num_rx_queues; i++)
1982 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1983 }
1984
1985 /**
1986 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1987 * @adapter: board private structure
1988 * @rx_ring: ring to free buffers from
1989 **/
1990
1991 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1992 struct e1000_rx_ring *rx_ring)
1993 {
1994 struct e1000_hw *hw = &adapter->hw;
1995 struct e1000_buffer *buffer_info;
1996 struct pci_dev *pdev = adapter->pdev;
1997 unsigned long size;
1998 unsigned int i;
1999
2000 /* Free all the Rx ring sk_buffs */
2001 for (i = 0; i < rx_ring->count; i++) {
2002 buffer_info = &rx_ring->buffer_info[i];
2003 if (buffer_info->dma &&
2004 adapter->clean_rx == e1000_clean_rx_irq) {
2005 dma_unmap_single(&pdev->dev, buffer_info->dma,
2006 buffer_info->length,
2007 DMA_FROM_DEVICE);
2008 } else if (buffer_info->dma &&
2009 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2010 dma_unmap_page(&pdev->dev, buffer_info->dma,
2011 buffer_info->length,
2012 DMA_FROM_DEVICE);
2013 }
2014
2015 buffer_info->dma = 0;
2016 if (buffer_info->page) {
2017 put_page(buffer_info->page);
2018 buffer_info->page = NULL;
2019 }
2020 if (buffer_info->skb) {
2021 dev_kfree_skb(buffer_info->skb);
2022 buffer_info->skb = NULL;
2023 }
2024 }
2025
2026 /* there also may be some cached data from a chained receive */
2027 if (rx_ring->rx_skb_top) {
2028 dev_kfree_skb(rx_ring->rx_skb_top);
2029 rx_ring->rx_skb_top = NULL;
2030 }
2031
2032 size = sizeof(struct e1000_buffer) * rx_ring->count;
2033 memset(rx_ring->buffer_info, 0, size);
2034
2035 /* Zero out the descriptor ring */
2036 memset(rx_ring->desc, 0, rx_ring->size);
2037
2038 rx_ring->next_to_clean = 0;
2039 rx_ring->next_to_use = 0;
2040
2041 writel(0, hw->hw_addr + rx_ring->rdh);
2042 writel(0, hw->hw_addr + rx_ring->rdt);
2043 }
2044
2045 /**
2046 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2047 * @adapter: board private structure
2048 **/
2049
2050 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2051 {
2052 int i;
2053
2054 for (i = 0; i < adapter->num_rx_queues; i++)
2055 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2056 }
2057
2058 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2059 * and memory write and invalidate disabled for certain operations
2060 */
2061 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2062 {
2063 struct e1000_hw *hw = &adapter->hw;
2064 struct net_device *netdev = adapter->netdev;
2065 u32 rctl;
2066
2067 e1000_pci_clear_mwi(hw);
2068
2069 rctl = er32(RCTL);
2070 rctl |= E1000_RCTL_RST;
2071 ew32(RCTL, rctl);
2072 E1000_WRITE_FLUSH();
2073 mdelay(5);
2074
2075 if (netif_running(netdev))
2076 e1000_clean_all_rx_rings(adapter);
2077 }
2078
2079 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2080 {
2081 struct e1000_hw *hw = &adapter->hw;
2082 struct net_device *netdev = adapter->netdev;
2083 u32 rctl;
2084
2085 rctl = er32(RCTL);
2086 rctl &= ~E1000_RCTL_RST;
2087 ew32(RCTL, rctl);
2088 E1000_WRITE_FLUSH();
2089 mdelay(5);
2090
2091 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2092 e1000_pci_set_mwi(hw);
2093
2094 if (netif_running(netdev)) {
2095 /* No need to loop, because 82542 supports only 1 queue */
2096 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2097 e1000_configure_rx(adapter);
2098 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2099 }
2100 }
2101
2102 /**
2103 * e1000_set_mac - Change the Ethernet Address of the NIC
2104 * @netdev: network interface device structure
2105 * @p: pointer to an address structure
2106 *
2107 * Returns 0 on success, negative on failure
2108 **/
2109
2110 static int e1000_set_mac(struct net_device *netdev, void *p)
2111 {
2112 struct e1000_adapter *adapter = netdev_priv(netdev);
2113 struct e1000_hw *hw = &adapter->hw;
2114 struct sockaddr *addr = p;
2115
2116 if (!is_valid_ether_addr(addr->sa_data))
2117 return -EADDRNOTAVAIL;
2118
2119 /* 82542 2.0 needs to be in reset to write receive address registers */
2120
2121 if (hw->mac_type == e1000_82542_rev2_0)
2122 e1000_enter_82542_rst(adapter);
2123
2124 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2125 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2126
2127 e1000_rar_set(hw, hw->mac_addr, 0);
2128
2129 if (hw->mac_type == e1000_82542_rev2_0)
2130 e1000_leave_82542_rst(adapter);
2131
2132 return 0;
2133 }
2134
2135 /**
2136 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2137 * @netdev: network interface device structure
2138 *
2139 * The set_rx_mode entry point is called whenever the unicast or multicast
2140 * address lists or the network interface flags are updated. This routine is
2141 * responsible for configuring the hardware for proper unicast, multicast,
2142 * promiscuous mode, and all-multi behavior.
2143 **/
2144
2145 static void e1000_set_rx_mode(struct net_device *netdev)
2146 {
2147 struct e1000_adapter *adapter = netdev_priv(netdev);
2148 struct e1000_hw *hw = &adapter->hw;
2149 struct netdev_hw_addr *ha;
2150 bool use_uc = false;
2151 u32 rctl;
2152 u32 hash_value;
2153 int i, rar_entries = E1000_RAR_ENTRIES;
2154 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2155 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2156
2157 if (!mcarray) {
2158 e_err(probe, "memory allocation failed\n");
2159 return;
2160 }
2161
2162 /* Check for Promiscuous and All Multicast modes */
2163
2164 rctl = er32(RCTL);
2165
2166 if (netdev->flags & IFF_PROMISC) {
2167 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2168 rctl &= ~E1000_RCTL_VFE;
2169 } else {
2170 if (netdev->flags & IFF_ALLMULTI)
2171 rctl |= E1000_RCTL_MPE;
2172 else
2173 rctl &= ~E1000_RCTL_MPE;
2174 /* Enable VLAN filter if there is a VLAN */
2175 if (adapter->vlgrp)
2176 rctl |= E1000_RCTL_VFE;
2177 }
2178
2179 if (netdev_uc_count(netdev) > rar_entries - 1) {
2180 rctl |= E1000_RCTL_UPE;
2181 } else if (!(netdev->flags & IFF_PROMISC)) {
2182 rctl &= ~E1000_RCTL_UPE;
2183 use_uc = true;
2184 }
2185
2186 ew32(RCTL, rctl);
2187
2188 /* 82542 2.0 needs to be in reset to write receive address registers */
2189
2190 if (hw->mac_type == e1000_82542_rev2_0)
2191 e1000_enter_82542_rst(adapter);
2192
2193 /* load the first 14 addresses into the exact filters 1-14. Unicast
2194 * addresses take precedence to avoid disabling unicast filtering
2195 * when possible.
2196 *
2197 * RAR 0 is used for the station MAC adddress
2198 * if there are not 14 addresses, go ahead and clear the filters
2199 */
2200 i = 1;
2201 if (use_uc)
2202 netdev_for_each_uc_addr(ha, netdev) {
2203 if (i == rar_entries)
2204 break;
2205 e1000_rar_set(hw, ha->addr, i++);
2206 }
2207
2208 netdev_for_each_mc_addr(ha, netdev) {
2209 if (i == rar_entries) {
2210 /* load any remaining addresses into the hash table */
2211 u32 hash_reg, hash_bit, mta;
2212 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2213 hash_reg = (hash_value >> 5) & 0x7F;
2214 hash_bit = hash_value & 0x1F;
2215 mta = (1 << hash_bit);
2216 mcarray[hash_reg] |= mta;
2217 } else {
2218 e1000_rar_set(hw, ha->addr, i++);
2219 }
2220 }
2221
2222 for (; i < rar_entries; i++) {
2223 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2224 E1000_WRITE_FLUSH();
2225 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2226 E1000_WRITE_FLUSH();
2227 }
2228
2229 /* write the hash table completely, write from bottom to avoid
2230 * both stupid write combining chipsets, and flushing each write */
2231 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2232 /*
2233 * If we are on an 82544 has an errata where writing odd
2234 * offsets overwrites the previous even offset, but writing
2235 * backwards over the range solves the issue by always
2236 * writing the odd offset first
2237 */
2238 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2239 }
2240 E1000_WRITE_FLUSH();
2241
2242 if (hw->mac_type == e1000_82542_rev2_0)
2243 e1000_leave_82542_rst(adapter);
2244
2245 kfree(mcarray);
2246 }
2247
2248 /* Need to wait a few seconds after link up to get diagnostic information from
2249 * the phy */
2250
2251 static void e1000_update_phy_info(unsigned long data)
2252 {
2253 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2254 schedule_work(&adapter->phy_info_task);
2255 }
2256
2257 static void e1000_update_phy_info_task(struct work_struct *work)
2258 {
2259 struct e1000_adapter *adapter = container_of(work,
2260 struct e1000_adapter,
2261 phy_info_task);
2262 struct e1000_hw *hw = &adapter->hw;
2263
2264 rtnl_lock();
2265 e1000_phy_get_info(hw, &adapter->phy_info);
2266 rtnl_unlock();
2267 }
2268
2269 /**
2270 * e1000_82547_tx_fifo_stall - Timer Call-back
2271 * @data: pointer to adapter cast into an unsigned long
2272 **/
2273 static void e1000_82547_tx_fifo_stall(unsigned long data)
2274 {
2275 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2276 schedule_work(&adapter->fifo_stall_task);
2277 }
2278
2279 /**
2280 * e1000_82547_tx_fifo_stall_task - task to complete work
2281 * @work: work struct contained inside adapter struct
2282 **/
2283 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2284 {
2285 struct e1000_adapter *adapter = container_of(work,
2286 struct e1000_adapter,
2287 fifo_stall_task);
2288 struct e1000_hw *hw = &adapter->hw;
2289 struct net_device *netdev = adapter->netdev;
2290 u32 tctl;
2291
2292 rtnl_lock();
2293 if (atomic_read(&adapter->tx_fifo_stall)) {
2294 if ((er32(TDT) == er32(TDH)) &&
2295 (er32(TDFT) == er32(TDFH)) &&
2296 (er32(TDFTS) == er32(TDFHS))) {
2297 tctl = er32(TCTL);
2298 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2299 ew32(TDFT, adapter->tx_head_addr);
2300 ew32(TDFH, adapter->tx_head_addr);
2301 ew32(TDFTS, adapter->tx_head_addr);
2302 ew32(TDFHS, adapter->tx_head_addr);
2303 ew32(TCTL, tctl);
2304 E1000_WRITE_FLUSH();
2305
2306 adapter->tx_fifo_head = 0;
2307 atomic_set(&adapter->tx_fifo_stall, 0);
2308 netif_wake_queue(netdev);
2309 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2310 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2311 }
2312 }
2313 rtnl_unlock();
2314 }
2315
2316 bool e1000_has_link(struct e1000_adapter *adapter)
2317 {
2318 struct e1000_hw *hw = &adapter->hw;
2319 bool link_active = false;
2320
2321 /* get_link_status is set on LSC (link status) interrupt or
2322 * rx sequence error interrupt. get_link_status will stay
2323 * false until the e1000_check_for_link establishes link
2324 * for copper adapters ONLY
2325 */
2326 switch (hw->media_type) {
2327 case e1000_media_type_copper:
2328 if (hw->get_link_status) {
2329 e1000_check_for_link(hw);
2330 link_active = !hw->get_link_status;
2331 } else {
2332 link_active = true;
2333 }
2334 break;
2335 case e1000_media_type_fiber:
2336 e1000_check_for_link(hw);
2337 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2338 break;
2339 case e1000_media_type_internal_serdes:
2340 e1000_check_for_link(hw);
2341 link_active = hw->serdes_has_link;
2342 break;
2343 default:
2344 break;
2345 }
2346
2347 return link_active;
2348 }
2349
2350 /**
2351 * e1000_watchdog - Timer Call-back
2352 * @data: pointer to adapter cast into an unsigned long
2353 **/
2354 static void e1000_watchdog(unsigned long data)
2355 {
2356 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2357 struct e1000_hw *hw = &adapter->hw;
2358 struct net_device *netdev = adapter->netdev;
2359 struct e1000_tx_ring *txdr = adapter->tx_ring;
2360 u32 link, tctl;
2361
2362 link = e1000_has_link(adapter);
2363 if ((netif_carrier_ok(netdev)) && link)
2364 goto link_up;
2365
2366 if (link) {
2367 if (!netif_carrier_ok(netdev)) {
2368 u32 ctrl;
2369 bool txb2b = true;
2370 /* update snapshot of PHY registers on LSC */
2371 e1000_get_speed_and_duplex(hw,
2372 &adapter->link_speed,
2373 &adapter->link_duplex);
2374
2375 ctrl = er32(CTRL);
2376 pr_info("%s NIC Link is Up %d Mbps %s, "
2377 "Flow Control: %s\n",
2378 netdev->name,
2379 adapter->link_speed,
2380 adapter->link_duplex == FULL_DUPLEX ?
2381 "Full Duplex" : "Half Duplex",
2382 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2383 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2384 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2385 E1000_CTRL_TFCE) ? "TX" : "None")));
2386
2387 /* adjust timeout factor according to speed/duplex */
2388 adapter->tx_timeout_factor = 1;
2389 switch (adapter->link_speed) {
2390 case SPEED_10:
2391 txb2b = false;
2392 adapter->tx_timeout_factor = 16;
2393 break;
2394 case SPEED_100:
2395 txb2b = false;
2396 /* maybe add some timeout factor ? */
2397 break;
2398 }
2399
2400 /* enable transmits in the hardware */
2401 tctl = er32(TCTL);
2402 tctl |= E1000_TCTL_EN;
2403 ew32(TCTL, tctl);
2404
2405 netif_carrier_on(netdev);
2406 if (!test_bit(__E1000_DOWN, &adapter->flags))
2407 mod_timer(&adapter->phy_info_timer,
2408 round_jiffies(jiffies + 2 * HZ));
2409 adapter->smartspeed = 0;
2410 }
2411 } else {
2412 if (netif_carrier_ok(netdev)) {
2413 adapter->link_speed = 0;
2414 adapter->link_duplex = 0;
2415 pr_info("%s NIC Link is Down\n",
2416 netdev->name);
2417 netif_carrier_off(netdev);
2418
2419 if (!test_bit(__E1000_DOWN, &adapter->flags))
2420 mod_timer(&adapter->phy_info_timer,
2421 round_jiffies(jiffies + 2 * HZ));
2422 }
2423
2424 e1000_smartspeed(adapter);
2425 }
2426
2427 link_up:
2428 e1000_update_stats(adapter);
2429
2430 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2431 adapter->tpt_old = adapter->stats.tpt;
2432 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2433 adapter->colc_old = adapter->stats.colc;
2434
2435 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2436 adapter->gorcl_old = adapter->stats.gorcl;
2437 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2438 adapter->gotcl_old = adapter->stats.gotcl;
2439
2440 e1000_update_adaptive(hw);
2441
2442 if (!netif_carrier_ok(netdev)) {
2443 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2444 /* We've lost link, so the controller stops DMA,
2445 * but we've got queued Tx work that's never going
2446 * to get done, so reset controller to flush Tx.
2447 * (Do the reset outside of interrupt context). */
2448 adapter->tx_timeout_count++;
2449 schedule_work(&adapter->reset_task);
2450 /* return immediately since reset is imminent */
2451 return;
2452 }
2453 }
2454
2455 /* Simple mode for Interrupt Throttle Rate (ITR) */
2456 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2457 /*
2458 * Symmetric Tx/Rx gets a reduced ITR=2000;
2459 * Total asymmetrical Tx or Rx gets ITR=8000;
2460 * everyone else is between 2000-8000.
2461 */
2462 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2463 u32 dif = (adapter->gotcl > adapter->gorcl ?
2464 adapter->gotcl - adapter->gorcl :
2465 adapter->gorcl - adapter->gotcl) / 10000;
2466 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2467
2468 ew32(ITR, 1000000000 / (itr * 256));
2469 }
2470
2471 /* Cause software interrupt to ensure rx ring is cleaned */
2472 ew32(ICS, E1000_ICS_RXDMT0);
2473
2474 /* Force detection of hung controller every watchdog period */
2475 adapter->detect_tx_hung = true;
2476
2477 /* Reset the timer */
2478 if (!test_bit(__E1000_DOWN, &adapter->flags))
2479 mod_timer(&adapter->watchdog_timer,
2480 round_jiffies(jiffies + 2 * HZ));
2481 }
2482
2483 enum latency_range {
2484 lowest_latency = 0,
2485 low_latency = 1,
2486 bulk_latency = 2,
2487 latency_invalid = 255
2488 };
2489
2490 /**
2491 * e1000_update_itr - update the dynamic ITR value based on statistics
2492 * @adapter: pointer to adapter
2493 * @itr_setting: current adapter->itr
2494 * @packets: the number of packets during this measurement interval
2495 * @bytes: the number of bytes during this measurement interval
2496 *
2497 * Stores a new ITR value based on packets and byte
2498 * counts during the last interrupt. The advantage of per interrupt
2499 * computation is faster updates and more accurate ITR for the current
2500 * traffic pattern. Constants in this function were computed
2501 * based on theoretical maximum wire speed and thresholds were set based
2502 * on testing data as well as attempting to minimize response time
2503 * while increasing bulk throughput.
2504 * this functionality is controlled by the InterruptThrottleRate module
2505 * parameter (see e1000_param.c)
2506 **/
2507 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2508 u16 itr_setting, int packets, int bytes)
2509 {
2510 unsigned int retval = itr_setting;
2511 struct e1000_hw *hw = &adapter->hw;
2512
2513 if (unlikely(hw->mac_type < e1000_82540))
2514 goto update_itr_done;
2515
2516 if (packets == 0)
2517 goto update_itr_done;
2518
2519 switch (itr_setting) {
2520 case lowest_latency:
2521 /* jumbo frames get bulk treatment*/
2522 if (bytes/packets > 8000)
2523 retval = bulk_latency;
2524 else if ((packets < 5) && (bytes > 512))
2525 retval = low_latency;
2526 break;
2527 case low_latency: /* 50 usec aka 20000 ints/s */
2528 if (bytes > 10000) {
2529 /* jumbo frames need bulk latency setting */
2530 if (bytes/packets > 8000)
2531 retval = bulk_latency;
2532 else if ((packets < 10) || ((bytes/packets) > 1200))
2533 retval = bulk_latency;
2534 else if ((packets > 35))
2535 retval = lowest_latency;
2536 } else if (bytes/packets > 2000)
2537 retval = bulk_latency;
2538 else if (packets <= 2 && bytes < 512)
2539 retval = lowest_latency;
2540 break;
2541 case bulk_latency: /* 250 usec aka 4000 ints/s */
2542 if (bytes > 25000) {
2543 if (packets > 35)
2544 retval = low_latency;
2545 } else if (bytes < 6000) {
2546 retval = low_latency;
2547 }
2548 break;
2549 }
2550
2551 update_itr_done:
2552 return retval;
2553 }
2554
2555 static void e1000_set_itr(struct e1000_adapter *adapter)
2556 {
2557 struct e1000_hw *hw = &adapter->hw;
2558 u16 current_itr;
2559 u32 new_itr = adapter->itr;
2560
2561 if (unlikely(hw->mac_type < e1000_82540))
2562 return;
2563
2564 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2565 if (unlikely(adapter->link_speed != SPEED_1000)) {
2566 current_itr = 0;
2567 new_itr = 4000;
2568 goto set_itr_now;
2569 }
2570
2571 adapter->tx_itr = e1000_update_itr(adapter,
2572 adapter->tx_itr,
2573 adapter->total_tx_packets,
2574 adapter->total_tx_bytes);
2575 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2576 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2577 adapter->tx_itr = low_latency;
2578
2579 adapter->rx_itr = e1000_update_itr(adapter,
2580 adapter->rx_itr,
2581 adapter->total_rx_packets,
2582 adapter->total_rx_bytes);
2583 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2584 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2585 adapter->rx_itr = low_latency;
2586
2587 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2588
2589 switch (current_itr) {
2590 /* counts and packets in update_itr are dependent on these numbers */
2591 case lowest_latency:
2592 new_itr = 70000;
2593 break;
2594 case low_latency:
2595 new_itr = 20000; /* aka hwitr = ~200 */
2596 break;
2597 case bulk_latency:
2598 new_itr = 4000;
2599 break;
2600 default:
2601 break;
2602 }
2603
2604 set_itr_now:
2605 if (new_itr != adapter->itr) {
2606 /* this attempts to bias the interrupt rate towards Bulk
2607 * by adding intermediate steps when interrupt rate is
2608 * increasing */
2609 new_itr = new_itr > adapter->itr ?
2610 min(adapter->itr + (new_itr >> 2), new_itr) :
2611 new_itr;
2612 adapter->itr = new_itr;
2613 ew32(ITR, 1000000000 / (new_itr * 256));
2614 }
2615 }
2616
2617 #define E1000_TX_FLAGS_CSUM 0x00000001
2618 #define E1000_TX_FLAGS_VLAN 0x00000002
2619 #define E1000_TX_FLAGS_TSO 0x00000004
2620 #define E1000_TX_FLAGS_IPV4 0x00000008
2621 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2622 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2623
2624 static int e1000_tso(struct e1000_adapter *adapter,
2625 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2626 {
2627 struct e1000_context_desc *context_desc;
2628 struct e1000_buffer *buffer_info;
2629 unsigned int i;
2630 u32 cmd_length = 0;
2631 u16 ipcse = 0, tucse, mss;
2632 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2633 int err;
2634
2635 if (skb_is_gso(skb)) {
2636 if (skb_header_cloned(skb)) {
2637 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2638 if (err)
2639 return err;
2640 }
2641
2642 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2643 mss = skb_shinfo(skb)->gso_size;
2644 if (skb->protocol == htons(ETH_P_IP)) {
2645 struct iphdr *iph = ip_hdr(skb);
2646 iph->tot_len = 0;
2647 iph->check = 0;
2648 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2649 iph->daddr, 0,
2650 IPPROTO_TCP,
2651 0);
2652 cmd_length = E1000_TXD_CMD_IP;
2653 ipcse = skb_transport_offset(skb) - 1;
2654 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2655 ipv6_hdr(skb)->payload_len = 0;
2656 tcp_hdr(skb)->check =
2657 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2658 &ipv6_hdr(skb)->daddr,
2659 0, IPPROTO_TCP, 0);
2660 ipcse = 0;
2661 }
2662 ipcss = skb_network_offset(skb);
2663 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2664 tucss = skb_transport_offset(skb);
2665 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2666 tucse = 0;
2667
2668 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2669 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2670
2671 i = tx_ring->next_to_use;
2672 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2673 buffer_info = &tx_ring->buffer_info[i];
2674
2675 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2676 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2677 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2678 context_desc->upper_setup.tcp_fields.tucss = tucss;
2679 context_desc->upper_setup.tcp_fields.tucso = tucso;
2680 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2681 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2682 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2683 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2684
2685 buffer_info->time_stamp = jiffies;
2686 buffer_info->next_to_watch = i;
2687
2688 if (++i == tx_ring->count) i = 0;
2689 tx_ring->next_to_use = i;
2690
2691 return true;
2692 }
2693 return false;
2694 }
2695
2696 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2697 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2698 {
2699 struct e1000_context_desc *context_desc;
2700 struct e1000_buffer *buffer_info;
2701 unsigned int i;
2702 u8 css;
2703 u32 cmd_len = E1000_TXD_CMD_DEXT;
2704
2705 if (skb->ip_summed != CHECKSUM_PARTIAL)
2706 return false;
2707
2708 switch (skb->protocol) {
2709 case cpu_to_be16(ETH_P_IP):
2710 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2711 cmd_len |= E1000_TXD_CMD_TCP;
2712 break;
2713 case cpu_to_be16(ETH_P_IPV6):
2714 /* XXX not handling all IPV6 headers */
2715 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2716 cmd_len |= E1000_TXD_CMD_TCP;
2717 break;
2718 default:
2719 if (unlikely(net_ratelimit()))
2720 e_warn(drv, "checksum_partial proto=%x!\n",
2721 skb->protocol);
2722 break;
2723 }
2724
2725 css = skb_transport_offset(skb);
2726
2727 i = tx_ring->next_to_use;
2728 buffer_info = &tx_ring->buffer_info[i];
2729 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2730
2731 context_desc->lower_setup.ip_config = 0;
2732 context_desc->upper_setup.tcp_fields.tucss = css;
2733 context_desc->upper_setup.tcp_fields.tucso =
2734 css + skb->csum_offset;
2735 context_desc->upper_setup.tcp_fields.tucse = 0;
2736 context_desc->tcp_seg_setup.data = 0;
2737 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2738
2739 buffer_info->time_stamp = jiffies;
2740 buffer_info->next_to_watch = i;
2741
2742 if (unlikely(++i == tx_ring->count)) i = 0;
2743 tx_ring->next_to_use = i;
2744
2745 return true;
2746 }
2747
2748 #define E1000_MAX_TXD_PWR 12
2749 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2750
2751 static int e1000_tx_map(struct e1000_adapter *adapter,
2752 struct e1000_tx_ring *tx_ring,
2753 struct sk_buff *skb, unsigned int first,
2754 unsigned int max_per_txd, unsigned int nr_frags,
2755 unsigned int mss)
2756 {
2757 struct e1000_hw *hw = &adapter->hw;
2758 struct pci_dev *pdev = adapter->pdev;
2759 struct e1000_buffer *buffer_info;
2760 unsigned int len = skb_headlen(skb);
2761 unsigned int offset = 0, size, count = 0, i;
2762 unsigned int f;
2763
2764 i = tx_ring->next_to_use;
2765
2766 while (len) {
2767 buffer_info = &tx_ring->buffer_info[i];
2768 size = min(len, max_per_txd);
2769 /* Workaround for Controller erratum --
2770 * descriptor for non-tso packet in a linear SKB that follows a
2771 * tso gets written back prematurely before the data is fully
2772 * DMA'd to the controller */
2773 if (!skb->data_len && tx_ring->last_tx_tso &&
2774 !skb_is_gso(skb)) {
2775 tx_ring->last_tx_tso = 0;
2776 size -= 4;
2777 }
2778
2779 /* Workaround for premature desc write-backs
2780 * in TSO mode. Append 4-byte sentinel desc */
2781 if (unlikely(mss && !nr_frags && size == len && size > 8))
2782 size -= 4;
2783 /* work-around for errata 10 and it applies
2784 * to all controllers in PCI-X mode
2785 * The fix is to make sure that the first descriptor of a
2786 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2787 */
2788 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2789 (size > 2015) && count == 0))
2790 size = 2015;
2791
2792 /* Workaround for potential 82544 hang in PCI-X. Avoid
2793 * terminating buffers within evenly-aligned dwords. */
2794 if (unlikely(adapter->pcix_82544 &&
2795 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2796 size > 4))
2797 size -= 4;
2798
2799 buffer_info->length = size;
2800 /* set time_stamp *before* dma to help avoid a possible race */
2801 buffer_info->time_stamp = jiffies;
2802 buffer_info->mapped_as_page = false;
2803 buffer_info->dma = dma_map_single(&pdev->dev,
2804 skb->data + offset,
2805 size, DMA_TO_DEVICE);
2806 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2807 goto dma_error;
2808 buffer_info->next_to_watch = i;
2809
2810 len -= size;
2811 offset += size;
2812 count++;
2813 if (len) {
2814 i++;
2815 if (unlikely(i == tx_ring->count))
2816 i = 0;
2817 }
2818 }
2819
2820 for (f = 0; f < nr_frags; f++) {
2821 struct skb_frag_struct *frag;
2822
2823 frag = &skb_shinfo(skb)->frags[f];
2824 len = frag->size;
2825 offset = frag->page_offset;
2826
2827 while (len) {
2828 i++;
2829 if (unlikely(i == tx_ring->count))
2830 i = 0;
2831
2832 buffer_info = &tx_ring->buffer_info[i];
2833 size = min(len, max_per_txd);
2834 /* Workaround for premature desc write-backs
2835 * in TSO mode. Append 4-byte sentinel desc */
2836 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2837 size -= 4;
2838 /* Workaround for potential 82544 hang in PCI-X.
2839 * Avoid terminating buffers within evenly-aligned
2840 * dwords. */
2841 if (unlikely(adapter->pcix_82544 &&
2842 !((unsigned long)(page_to_phys(frag->page) + offset
2843 + size - 1) & 4) &&
2844 size > 4))
2845 size -= 4;
2846
2847 buffer_info->length = size;
2848 buffer_info->time_stamp = jiffies;
2849 buffer_info->mapped_as_page = true;
2850 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2851 offset, size,
2852 DMA_TO_DEVICE);
2853 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2854 goto dma_error;
2855 buffer_info->next_to_watch = i;
2856
2857 len -= size;
2858 offset += size;
2859 count++;
2860 }
2861 }
2862
2863 tx_ring->buffer_info[i].skb = skb;
2864 tx_ring->buffer_info[first].next_to_watch = i;
2865
2866 return count;
2867
2868 dma_error:
2869 dev_err(&pdev->dev, "TX DMA map failed\n");
2870 buffer_info->dma = 0;
2871 if (count)
2872 count--;
2873
2874 while (count--) {
2875 if (i==0)
2876 i += tx_ring->count;
2877 i--;
2878 buffer_info = &tx_ring->buffer_info[i];
2879 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2880 }
2881
2882 return 0;
2883 }
2884
2885 static void e1000_tx_queue(struct e1000_adapter *adapter,
2886 struct e1000_tx_ring *tx_ring, int tx_flags,
2887 int count)
2888 {
2889 struct e1000_hw *hw = &adapter->hw;
2890 struct e1000_tx_desc *tx_desc = NULL;
2891 struct e1000_buffer *buffer_info;
2892 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2893 unsigned int i;
2894
2895 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2896 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2897 E1000_TXD_CMD_TSE;
2898 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2899
2900 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2901 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2902 }
2903
2904 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2905 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2906 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2907 }
2908
2909 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2910 txd_lower |= E1000_TXD_CMD_VLE;
2911 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2912 }
2913
2914 i = tx_ring->next_to_use;
2915
2916 while (count--) {
2917 buffer_info = &tx_ring->buffer_info[i];
2918 tx_desc = E1000_TX_DESC(*tx_ring, i);
2919 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2920 tx_desc->lower.data =
2921 cpu_to_le32(txd_lower | buffer_info->length);
2922 tx_desc->upper.data = cpu_to_le32(txd_upper);
2923 if (unlikely(++i == tx_ring->count)) i = 0;
2924 }
2925
2926 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2927
2928 /* Force memory writes to complete before letting h/w
2929 * know there are new descriptors to fetch. (Only
2930 * applicable for weak-ordered memory model archs,
2931 * such as IA-64). */
2932 wmb();
2933
2934 tx_ring->next_to_use = i;
2935 writel(i, hw->hw_addr + tx_ring->tdt);
2936 /* we need this if more than one processor can write to our tail
2937 * at a time, it syncronizes IO on IA64/Altix systems */
2938 mmiowb();
2939 }
2940
2941 /**
2942 * 82547 workaround to avoid controller hang in half-duplex environment.
2943 * The workaround is to avoid queuing a large packet that would span
2944 * the internal Tx FIFO ring boundary by notifying the stack to resend
2945 * the packet at a later time. This gives the Tx FIFO an opportunity to
2946 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2947 * to the beginning of the Tx FIFO.
2948 **/
2949
2950 #define E1000_FIFO_HDR 0x10
2951 #define E1000_82547_PAD_LEN 0x3E0
2952
2953 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2954 struct sk_buff *skb)
2955 {
2956 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2957 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2958
2959 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2960
2961 if (adapter->link_duplex != HALF_DUPLEX)
2962 goto no_fifo_stall_required;
2963
2964 if (atomic_read(&adapter->tx_fifo_stall))
2965 return 1;
2966
2967 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2968 atomic_set(&adapter->tx_fifo_stall, 1);
2969 return 1;
2970 }
2971
2972 no_fifo_stall_required:
2973 adapter->tx_fifo_head += skb_fifo_len;
2974 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2975 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2976 return 0;
2977 }
2978
2979 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2980 {
2981 struct e1000_adapter *adapter = netdev_priv(netdev);
2982 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2983
2984 netif_stop_queue(netdev);
2985 /* Herbert's original patch had:
2986 * smp_mb__after_netif_stop_queue();
2987 * but since that doesn't exist yet, just open code it. */
2988 smp_mb();
2989
2990 /* We need to check again in a case another CPU has just
2991 * made room available. */
2992 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2993 return -EBUSY;
2994
2995 /* A reprieve! */
2996 netif_start_queue(netdev);
2997 ++adapter->restart_queue;
2998 return 0;
2999 }
3000
3001 static int e1000_maybe_stop_tx(struct net_device *netdev,
3002 struct e1000_tx_ring *tx_ring, int size)
3003 {
3004 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3005 return 0;
3006 return __e1000_maybe_stop_tx(netdev, size);
3007 }
3008
3009 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3010 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3011 struct net_device *netdev)
3012 {
3013 struct e1000_adapter *adapter = netdev_priv(netdev);
3014 struct e1000_hw *hw = &adapter->hw;
3015 struct e1000_tx_ring *tx_ring;
3016 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3017 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3018 unsigned int tx_flags = 0;
3019 unsigned int len = skb_headlen(skb);
3020 unsigned int nr_frags;
3021 unsigned int mss;
3022 int count = 0;
3023 int tso;
3024 unsigned int f;
3025
3026 /* This goes back to the question of how to logically map a tx queue
3027 * to a flow. Right now, performance is impacted slightly negatively
3028 * if using multiple tx queues. If the stack breaks away from a
3029 * single qdisc implementation, we can look at this again. */
3030 tx_ring = adapter->tx_ring;
3031
3032 if (unlikely(skb->len <= 0)) {
3033 dev_kfree_skb_any(skb);
3034 return NETDEV_TX_OK;
3035 }
3036
3037 mss = skb_shinfo(skb)->gso_size;
3038 /* The controller does a simple calculation to
3039 * make sure there is enough room in the FIFO before
3040 * initiating the DMA for each buffer. The calc is:
3041 * 4 = ceil(buffer len/mss). To make sure we don't
3042 * overrun the FIFO, adjust the max buffer len if mss
3043 * drops. */
3044 if (mss) {
3045 u8 hdr_len;
3046 max_per_txd = min(mss << 2, max_per_txd);
3047 max_txd_pwr = fls(max_per_txd) - 1;
3048
3049 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3050 if (skb->data_len && hdr_len == len) {
3051 switch (hw->mac_type) {
3052 unsigned int pull_size;
3053 case e1000_82544:
3054 /* Make sure we have room to chop off 4 bytes,
3055 * and that the end alignment will work out to
3056 * this hardware's requirements
3057 * NOTE: this is a TSO only workaround
3058 * if end byte alignment not correct move us
3059 * into the next dword */
3060 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3061 break;
3062 /* fall through */
3063 pull_size = min((unsigned int)4, skb->data_len);
3064 if (!__pskb_pull_tail(skb, pull_size)) {
3065 e_err(drv, "__pskb_pull_tail "
3066 "failed.\n");
3067 dev_kfree_skb_any(skb);
3068 return NETDEV_TX_OK;
3069 }
3070 len = skb_headlen(skb);
3071 break;
3072 default:
3073 /* do nothing */
3074 break;
3075 }
3076 }
3077 }
3078
3079 /* reserve a descriptor for the offload context */
3080 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3081 count++;
3082 count++;
3083
3084 /* Controller Erratum workaround */
3085 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3086 count++;
3087
3088 count += TXD_USE_COUNT(len, max_txd_pwr);
3089
3090 if (adapter->pcix_82544)
3091 count++;
3092
3093 /* work-around for errata 10 and it applies to all controllers
3094 * in PCI-X mode, so add one more descriptor to the count
3095 */
3096 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3097 (len > 2015)))
3098 count++;
3099
3100 nr_frags = skb_shinfo(skb)->nr_frags;
3101 for (f = 0; f < nr_frags; f++)
3102 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3103 max_txd_pwr);
3104 if (adapter->pcix_82544)
3105 count += nr_frags;
3106
3107 /* need: count + 2 desc gap to keep tail from touching
3108 * head, otherwise try next time */
3109 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3110 return NETDEV_TX_BUSY;
3111
3112 if (unlikely(hw->mac_type == e1000_82547)) {
3113 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3114 netif_stop_queue(netdev);
3115 if (!test_bit(__E1000_DOWN, &adapter->flags))
3116 mod_timer(&adapter->tx_fifo_stall_timer,
3117 jiffies + 1);
3118 return NETDEV_TX_BUSY;
3119 }
3120 }
3121
3122 if (unlikely(vlan_tx_tag_present(skb))) {
3123 tx_flags |= E1000_TX_FLAGS_VLAN;
3124 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3125 }
3126
3127 first = tx_ring->next_to_use;
3128
3129 tso = e1000_tso(adapter, tx_ring, skb);
3130 if (tso < 0) {
3131 dev_kfree_skb_any(skb);
3132 return NETDEV_TX_OK;
3133 }
3134
3135 if (likely(tso)) {
3136 if (likely(hw->mac_type != e1000_82544))
3137 tx_ring->last_tx_tso = 1;
3138 tx_flags |= E1000_TX_FLAGS_TSO;
3139 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3140 tx_flags |= E1000_TX_FLAGS_CSUM;
3141
3142 if (likely(skb->protocol == htons(ETH_P_IP)))
3143 tx_flags |= E1000_TX_FLAGS_IPV4;
3144
3145 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3146 nr_frags, mss);
3147
3148 if (count) {
3149 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3150 /* Make sure there is space in the ring for the next send. */
3151 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3152
3153 } else {
3154 dev_kfree_skb_any(skb);
3155 tx_ring->buffer_info[first].time_stamp = 0;
3156 tx_ring->next_to_use = first;
3157 }
3158
3159 return NETDEV_TX_OK;
3160 }
3161
3162 /**
3163 * e1000_tx_timeout - Respond to a Tx Hang
3164 * @netdev: network interface device structure
3165 **/
3166
3167 static void e1000_tx_timeout(struct net_device *netdev)
3168 {
3169 struct e1000_adapter *adapter = netdev_priv(netdev);
3170
3171 /* Do the reset outside of interrupt context */
3172 adapter->tx_timeout_count++;
3173 schedule_work(&adapter->reset_task);
3174 }
3175
3176 static void e1000_reset_task(struct work_struct *work)
3177 {
3178 struct e1000_adapter *adapter =
3179 container_of(work, struct e1000_adapter, reset_task);
3180
3181 e1000_reinit_safe(adapter);
3182 }
3183
3184 /**
3185 * e1000_get_stats - Get System Network Statistics
3186 * @netdev: network interface device structure
3187 *
3188 * Returns the address of the device statistics structure.
3189 * The statistics are actually updated from the timer callback.
3190 **/
3191
3192 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3193 {
3194 /* only return the current stats */
3195 return &netdev->stats;
3196 }
3197
3198 /**
3199 * e1000_change_mtu - Change the Maximum Transfer Unit
3200 * @netdev: network interface device structure
3201 * @new_mtu: new value for maximum frame size
3202 *
3203 * Returns 0 on success, negative on failure
3204 **/
3205
3206 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3207 {
3208 struct e1000_adapter *adapter = netdev_priv(netdev);
3209 struct e1000_hw *hw = &adapter->hw;
3210 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3211
3212 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3213 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3214 e_err(probe, "Invalid MTU setting\n");
3215 return -EINVAL;
3216 }
3217
3218 /* Adapter-specific max frame size limits. */
3219 switch (hw->mac_type) {
3220 case e1000_undefined ... e1000_82542_rev2_1:
3221 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3222 e_err(probe, "Jumbo Frames not supported.\n");
3223 return -EINVAL;
3224 }
3225 break;
3226 default:
3227 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3228 break;
3229 }
3230
3231 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3232 msleep(1);
3233 /* e1000_down has a dependency on max_frame_size */
3234 hw->max_frame_size = max_frame;
3235 if (netif_running(netdev))
3236 e1000_down(adapter);
3237
3238 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3239 * means we reserve 2 more, this pushes us to allocate from the next
3240 * larger slab size.
3241 * i.e. RXBUFFER_2048 --> size-4096 slab
3242 * however with the new *_jumbo_rx* routines, jumbo receives will use
3243 * fragmented skbs */
3244
3245 if (max_frame <= E1000_RXBUFFER_2048)
3246 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3247 else
3248 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3249 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3250 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3251 adapter->rx_buffer_len = PAGE_SIZE;
3252 #endif
3253
3254 /* adjust allocation if LPE protects us, and we aren't using SBP */
3255 if (!hw->tbi_compatibility_on &&
3256 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3257 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3258 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3259
3260 pr_info("%s changing MTU from %d to %d\n",
3261 netdev->name, netdev->mtu, new_mtu);
3262 netdev->mtu = new_mtu;
3263
3264 if (netif_running(netdev))
3265 e1000_up(adapter);
3266 else
3267 e1000_reset(adapter);
3268
3269 clear_bit(__E1000_RESETTING, &adapter->flags);
3270
3271 return 0;
3272 }
3273
3274 /**
3275 * e1000_update_stats - Update the board statistics counters
3276 * @adapter: board private structure
3277 **/
3278
3279 void e1000_update_stats(struct e1000_adapter *adapter)
3280 {
3281 struct net_device *netdev = adapter->netdev;
3282 struct e1000_hw *hw = &adapter->hw;
3283 struct pci_dev *pdev = adapter->pdev;
3284 unsigned long flags;
3285 u16 phy_tmp;
3286
3287 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3288
3289 /*
3290 * Prevent stats update while adapter is being reset, or if the pci
3291 * connection is down.
3292 */
3293 if (adapter->link_speed == 0)
3294 return;
3295 if (pci_channel_offline(pdev))
3296 return;
3297
3298 spin_lock_irqsave(&adapter->stats_lock, flags);
3299
3300 /* these counters are modified from e1000_tbi_adjust_stats,
3301 * called from the interrupt context, so they must only
3302 * be written while holding adapter->stats_lock
3303 */
3304
3305 adapter->stats.crcerrs += er32(CRCERRS);
3306 adapter->stats.gprc += er32(GPRC);
3307 adapter->stats.gorcl += er32(GORCL);
3308 adapter->stats.gorch += er32(GORCH);
3309 adapter->stats.bprc += er32(BPRC);
3310 adapter->stats.mprc += er32(MPRC);
3311 adapter->stats.roc += er32(ROC);
3312
3313 adapter->stats.prc64 += er32(PRC64);
3314 adapter->stats.prc127 += er32(PRC127);
3315 adapter->stats.prc255 += er32(PRC255);
3316 adapter->stats.prc511 += er32(PRC511);
3317 adapter->stats.prc1023 += er32(PRC1023);
3318 adapter->stats.prc1522 += er32(PRC1522);
3319
3320 adapter->stats.symerrs += er32(SYMERRS);
3321 adapter->stats.mpc += er32(MPC);
3322 adapter->stats.scc += er32(SCC);
3323 adapter->stats.ecol += er32(ECOL);
3324 adapter->stats.mcc += er32(MCC);
3325 adapter->stats.latecol += er32(LATECOL);
3326 adapter->stats.dc += er32(DC);
3327 adapter->stats.sec += er32(SEC);
3328 adapter->stats.rlec += er32(RLEC);
3329 adapter->stats.xonrxc += er32(XONRXC);
3330 adapter->stats.xontxc += er32(XONTXC);
3331 adapter->stats.xoffrxc += er32(XOFFRXC);
3332 adapter->stats.xofftxc += er32(XOFFTXC);
3333 adapter->stats.fcruc += er32(FCRUC);
3334 adapter->stats.gptc += er32(GPTC);
3335 adapter->stats.gotcl += er32(GOTCL);
3336 adapter->stats.gotch += er32(GOTCH);
3337 adapter->stats.rnbc += er32(RNBC);
3338 adapter->stats.ruc += er32(RUC);
3339 adapter->stats.rfc += er32(RFC);
3340 adapter->stats.rjc += er32(RJC);
3341 adapter->stats.torl += er32(TORL);
3342 adapter->stats.torh += er32(TORH);
3343 adapter->stats.totl += er32(TOTL);
3344 adapter->stats.toth += er32(TOTH);
3345 adapter->stats.tpr += er32(TPR);
3346
3347 adapter->stats.ptc64 += er32(PTC64);
3348 adapter->stats.ptc127 += er32(PTC127);
3349 adapter->stats.ptc255 += er32(PTC255);
3350 adapter->stats.ptc511 += er32(PTC511);
3351 adapter->stats.ptc1023 += er32(PTC1023);
3352 adapter->stats.ptc1522 += er32(PTC1522);
3353
3354 adapter->stats.mptc += er32(MPTC);
3355 adapter->stats.bptc += er32(BPTC);
3356
3357 /* used for adaptive IFS */
3358
3359 hw->tx_packet_delta = er32(TPT);
3360 adapter->stats.tpt += hw->tx_packet_delta;
3361 hw->collision_delta = er32(COLC);
3362 adapter->stats.colc += hw->collision_delta;
3363
3364 if (hw->mac_type >= e1000_82543) {
3365 adapter->stats.algnerrc += er32(ALGNERRC);
3366 adapter->stats.rxerrc += er32(RXERRC);
3367 adapter->stats.tncrs += er32(TNCRS);
3368 adapter->stats.cexterr += er32(CEXTERR);
3369 adapter->stats.tsctc += er32(TSCTC);
3370 adapter->stats.tsctfc += er32(TSCTFC);
3371 }
3372
3373 /* Fill out the OS statistics structure */
3374 netdev->stats.multicast = adapter->stats.mprc;
3375 netdev->stats.collisions = adapter->stats.colc;
3376
3377 /* Rx Errors */
3378
3379 /* RLEC on some newer hardware can be incorrect so build
3380 * our own version based on RUC and ROC */
3381 netdev->stats.rx_errors = adapter->stats.rxerrc +
3382 adapter->stats.crcerrs + adapter->stats.algnerrc +
3383 adapter->stats.ruc + adapter->stats.roc +
3384 adapter->stats.cexterr;
3385 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3386 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3387 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3388 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3389 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3390
3391 /* Tx Errors */
3392 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3393 netdev->stats.tx_errors = adapter->stats.txerrc;
3394 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3395 netdev->stats.tx_window_errors = adapter->stats.latecol;
3396 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3397 if (hw->bad_tx_carr_stats_fd &&
3398 adapter->link_duplex == FULL_DUPLEX) {
3399 netdev->stats.tx_carrier_errors = 0;
3400 adapter->stats.tncrs = 0;
3401 }
3402
3403 /* Tx Dropped needs to be maintained elsewhere */
3404
3405 /* Phy Stats */
3406 if (hw->media_type == e1000_media_type_copper) {
3407 if ((adapter->link_speed == SPEED_1000) &&
3408 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3409 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3410 adapter->phy_stats.idle_errors += phy_tmp;
3411 }
3412
3413 if ((hw->mac_type <= e1000_82546) &&
3414 (hw->phy_type == e1000_phy_m88) &&
3415 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3416 adapter->phy_stats.receive_errors += phy_tmp;
3417 }
3418
3419 /* Management Stats */
3420 if (hw->has_smbus) {
3421 adapter->stats.mgptc += er32(MGTPTC);
3422 adapter->stats.mgprc += er32(MGTPRC);
3423 adapter->stats.mgpdc += er32(MGTPDC);
3424 }
3425
3426 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3427 }
3428
3429 /**
3430 * e1000_intr - Interrupt Handler
3431 * @irq: interrupt number
3432 * @data: pointer to a network interface device structure
3433 **/
3434
3435 static irqreturn_t e1000_intr(int irq, void *data)
3436 {
3437 struct net_device *netdev = data;
3438 struct e1000_adapter *adapter = netdev_priv(netdev);
3439 struct e1000_hw *hw = &adapter->hw;
3440 u32 icr = er32(ICR);
3441
3442 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3443 return IRQ_NONE; /* Not our interrupt */
3444
3445 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3446 hw->get_link_status = 1;
3447 /* guard against interrupt when we're going down */
3448 if (!test_bit(__E1000_DOWN, &adapter->flags))
3449 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3450 }
3451
3452 /* disable interrupts, without the synchronize_irq bit */
3453 ew32(IMC, ~0);
3454 E1000_WRITE_FLUSH();
3455
3456 if (likely(napi_schedule_prep(&adapter->napi))) {
3457 adapter->total_tx_bytes = 0;
3458 adapter->total_tx_packets = 0;
3459 adapter->total_rx_bytes = 0;
3460 adapter->total_rx_packets = 0;
3461 __napi_schedule(&adapter->napi);
3462 } else {
3463 /* this really should not happen! if it does it is basically a
3464 * bug, but not a hard error, so enable ints and continue */
3465 if (!test_bit(__E1000_DOWN, &adapter->flags))
3466 e1000_irq_enable(adapter);
3467 }
3468
3469 return IRQ_HANDLED;
3470 }
3471
3472 /**
3473 * e1000_clean - NAPI Rx polling callback
3474 * @adapter: board private structure
3475 **/
3476 static int e1000_clean(struct napi_struct *napi, int budget)
3477 {
3478 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3479 int tx_clean_complete = 0, work_done = 0;
3480
3481 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3482
3483 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3484
3485 if (!tx_clean_complete)
3486 work_done = budget;
3487
3488 /* If budget not fully consumed, exit the polling mode */
3489 if (work_done < budget) {
3490 if (likely(adapter->itr_setting & 3))
3491 e1000_set_itr(adapter);
3492 napi_complete(napi);
3493 if (!test_bit(__E1000_DOWN, &adapter->flags))
3494 e1000_irq_enable(adapter);
3495 }
3496
3497 return work_done;
3498 }
3499
3500 /**
3501 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3502 * @adapter: board private structure
3503 **/
3504 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3505 struct e1000_tx_ring *tx_ring)
3506 {
3507 struct e1000_hw *hw = &adapter->hw;
3508 struct net_device *netdev = adapter->netdev;
3509 struct e1000_tx_desc *tx_desc, *eop_desc;
3510 struct e1000_buffer *buffer_info;
3511 unsigned int i, eop;
3512 unsigned int count = 0;
3513 unsigned int total_tx_bytes=0, total_tx_packets=0;
3514
3515 i = tx_ring->next_to_clean;
3516 eop = tx_ring->buffer_info[i].next_to_watch;
3517 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3518
3519 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3520 (count < tx_ring->count)) {
3521 bool cleaned = false;
3522 rmb(); /* read buffer_info after eop_desc */
3523 for ( ; !cleaned; count++) {
3524 tx_desc = E1000_TX_DESC(*tx_ring, i);
3525 buffer_info = &tx_ring->buffer_info[i];
3526 cleaned = (i == eop);
3527
3528 if (cleaned) {
3529 struct sk_buff *skb = buffer_info->skb;
3530 unsigned int segs, bytecount;
3531 segs = skb_shinfo(skb)->gso_segs ?: 1;
3532 /* multiply data chunks by size of headers */
3533 bytecount = ((segs - 1) * skb_headlen(skb)) +
3534 skb->len;
3535 total_tx_packets += segs;
3536 total_tx_bytes += bytecount;
3537 }
3538 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3539 tx_desc->upper.data = 0;
3540
3541 if (unlikely(++i == tx_ring->count)) i = 0;
3542 }
3543
3544 eop = tx_ring->buffer_info[i].next_to_watch;
3545 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3546 }
3547
3548 tx_ring->next_to_clean = i;
3549
3550 #define TX_WAKE_THRESHOLD 32
3551 if (unlikely(count && netif_carrier_ok(netdev) &&
3552 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3553 /* Make sure that anybody stopping the queue after this
3554 * sees the new next_to_clean.
3555 */
3556 smp_mb();
3557
3558 if (netif_queue_stopped(netdev) &&
3559 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3560 netif_wake_queue(netdev);
3561 ++adapter->restart_queue;
3562 }
3563 }
3564
3565 if (adapter->detect_tx_hung) {
3566 /* Detect a transmit hang in hardware, this serializes the
3567 * check with the clearing of time_stamp and movement of i */
3568 adapter->detect_tx_hung = false;
3569 if (tx_ring->buffer_info[eop].time_stamp &&
3570 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3571 (adapter->tx_timeout_factor * HZ)) &&
3572 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3573
3574 /* detected Tx unit hang */
3575 e_err(drv, "Detected Tx Unit Hang\n"
3576 " Tx Queue <%lu>\n"
3577 " TDH <%x>\n"
3578 " TDT <%x>\n"
3579 " next_to_use <%x>\n"
3580 " next_to_clean <%x>\n"
3581 "buffer_info[next_to_clean]\n"
3582 " time_stamp <%lx>\n"
3583 " next_to_watch <%x>\n"
3584 " jiffies <%lx>\n"
3585 " next_to_watch.status <%x>\n",
3586 (unsigned long)((tx_ring - adapter->tx_ring) /
3587 sizeof(struct e1000_tx_ring)),
3588 readl(hw->hw_addr + tx_ring->tdh),
3589 readl(hw->hw_addr + tx_ring->tdt),
3590 tx_ring->next_to_use,
3591 tx_ring->next_to_clean,
3592 tx_ring->buffer_info[eop].time_stamp,
3593 eop,
3594 jiffies,
3595 eop_desc->upper.fields.status);
3596 netif_stop_queue(netdev);
3597 }
3598 }
3599 adapter->total_tx_bytes += total_tx_bytes;
3600 adapter->total_tx_packets += total_tx_packets;
3601 netdev->stats.tx_bytes += total_tx_bytes;
3602 netdev->stats.tx_packets += total_tx_packets;
3603 return count < tx_ring->count;
3604 }
3605
3606 /**
3607 * e1000_rx_checksum - Receive Checksum Offload for 82543
3608 * @adapter: board private structure
3609 * @status_err: receive descriptor status and error fields
3610 * @csum: receive descriptor csum field
3611 * @sk_buff: socket buffer with received data
3612 **/
3613
3614 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3615 u32 csum, struct sk_buff *skb)
3616 {
3617 struct e1000_hw *hw = &adapter->hw;
3618 u16 status = (u16)status_err;
3619 u8 errors = (u8)(status_err >> 24);
3620
3621 skb_checksum_none_assert(skb);
3622
3623 /* 82543 or newer only */
3624 if (unlikely(hw->mac_type < e1000_82543)) return;
3625 /* Ignore Checksum bit is set */
3626 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3627 /* TCP/UDP checksum error bit is set */
3628 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3629 /* let the stack verify checksum errors */
3630 adapter->hw_csum_err++;
3631 return;
3632 }
3633 /* TCP/UDP Checksum has not been calculated */
3634 if (!(status & E1000_RXD_STAT_TCPCS))
3635 return;
3636
3637 /* It must be a TCP or UDP packet with a valid checksum */
3638 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3639 /* TCP checksum is good */
3640 skb->ip_summed = CHECKSUM_UNNECESSARY;
3641 }
3642 adapter->hw_csum_good++;
3643 }
3644
3645 /**
3646 * e1000_consume_page - helper function
3647 **/
3648 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3649 u16 length)
3650 {
3651 bi->page = NULL;
3652 skb->len += length;
3653 skb->data_len += length;
3654 skb->truesize += length;
3655 }
3656
3657 /**
3658 * e1000_receive_skb - helper function to handle rx indications
3659 * @adapter: board private structure
3660 * @status: descriptor status field as written by hardware
3661 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3662 * @skb: pointer to sk_buff to be indicated to stack
3663 */
3664 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3665 __le16 vlan, struct sk_buff *skb)
3666 {
3667 skb->protocol = eth_type_trans(skb, adapter->netdev);
3668
3669 if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3670 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3671 le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3672 skb);
3673 else
3674 napi_gro_receive(&adapter->napi, skb);
3675 }
3676
3677 /**
3678 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3679 * @adapter: board private structure
3680 * @rx_ring: ring to clean
3681 * @work_done: amount of napi work completed this call
3682 * @work_to_do: max amount of work allowed for this call to do
3683 *
3684 * the return value indicates whether actual cleaning was done, there
3685 * is no guarantee that everything was cleaned
3686 */
3687 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3688 struct e1000_rx_ring *rx_ring,
3689 int *work_done, int work_to_do)
3690 {
3691 struct e1000_hw *hw = &adapter->hw;
3692 struct net_device *netdev = adapter->netdev;
3693 struct pci_dev *pdev = adapter->pdev;
3694 struct e1000_rx_desc *rx_desc, *next_rxd;
3695 struct e1000_buffer *buffer_info, *next_buffer;
3696 unsigned long irq_flags;
3697 u32 length;
3698 unsigned int i;
3699 int cleaned_count = 0;
3700 bool cleaned = false;
3701 unsigned int total_rx_bytes=0, total_rx_packets=0;
3702
3703 i = rx_ring->next_to_clean;
3704 rx_desc = E1000_RX_DESC(*rx_ring, i);
3705 buffer_info = &rx_ring->buffer_info[i];
3706
3707 while (rx_desc->status & E1000_RXD_STAT_DD) {
3708 struct sk_buff *skb;
3709 u8 status;
3710
3711 if (*work_done >= work_to_do)
3712 break;
3713 (*work_done)++;
3714 rmb(); /* read descriptor and rx_buffer_info after status DD */
3715
3716 status = rx_desc->status;
3717 skb = buffer_info->skb;
3718 buffer_info->skb = NULL;
3719
3720 if (++i == rx_ring->count) i = 0;
3721 next_rxd = E1000_RX_DESC(*rx_ring, i);
3722 prefetch(next_rxd);
3723
3724 next_buffer = &rx_ring->buffer_info[i];
3725
3726 cleaned = true;
3727 cleaned_count++;
3728 dma_unmap_page(&pdev->dev, buffer_info->dma,
3729 buffer_info->length, DMA_FROM_DEVICE);
3730 buffer_info->dma = 0;
3731
3732 length = le16_to_cpu(rx_desc->length);
3733
3734 /* errors is only valid for DD + EOP descriptors */
3735 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3736 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3737 u8 last_byte = *(skb->data + length - 1);
3738 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3739 last_byte)) {
3740 spin_lock_irqsave(&adapter->stats_lock,
3741 irq_flags);
3742 e1000_tbi_adjust_stats(hw, &adapter->stats,
3743 length, skb->data);
3744 spin_unlock_irqrestore(&adapter->stats_lock,
3745 irq_flags);
3746 length--;
3747 } else {
3748 /* recycle both page and skb */
3749 buffer_info->skb = skb;
3750 /* an error means any chain goes out the window
3751 * too */
3752 if (rx_ring->rx_skb_top)
3753 dev_kfree_skb(rx_ring->rx_skb_top);
3754 rx_ring->rx_skb_top = NULL;
3755 goto next_desc;
3756 }
3757 }
3758
3759 #define rxtop rx_ring->rx_skb_top
3760 if (!(status & E1000_RXD_STAT_EOP)) {
3761 /* this descriptor is only the beginning (or middle) */
3762 if (!rxtop) {
3763 /* this is the beginning of a chain */
3764 rxtop = skb;
3765 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3766 0, length);
3767 } else {
3768 /* this is the middle of a chain */
3769 skb_fill_page_desc(rxtop,
3770 skb_shinfo(rxtop)->nr_frags,
3771 buffer_info->page, 0, length);
3772 /* re-use the skb, only consumed the page */
3773 buffer_info->skb = skb;
3774 }
3775 e1000_consume_page(buffer_info, rxtop, length);
3776 goto next_desc;
3777 } else {
3778 if (rxtop) {
3779 /* end of the chain */
3780 skb_fill_page_desc(rxtop,
3781 skb_shinfo(rxtop)->nr_frags,
3782 buffer_info->page, 0, length);
3783 /* re-use the current skb, we only consumed the
3784 * page */
3785 buffer_info->skb = skb;
3786 skb = rxtop;
3787 rxtop = NULL;
3788 e1000_consume_page(buffer_info, skb, length);
3789 } else {
3790 /* no chain, got EOP, this buf is the packet
3791 * copybreak to save the put_page/alloc_page */
3792 if (length <= copybreak &&
3793 skb_tailroom(skb) >= length) {
3794 u8 *vaddr;
3795 vaddr = kmap_atomic(buffer_info->page,
3796 KM_SKB_DATA_SOFTIRQ);
3797 memcpy(skb_tail_pointer(skb), vaddr, length);
3798 kunmap_atomic(vaddr,
3799 KM_SKB_DATA_SOFTIRQ);
3800 /* re-use the page, so don't erase
3801 * buffer_info->page */
3802 skb_put(skb, length);
3803 } else {
3804 skb_fill_page_desc(skb, 0,
3805 buffer_info->page, 0,
3806 length);
3807 e1000_consume_page(buffer_info, skb,
3808 length);
3809 }
3810 }
3811 }
3812
3813 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3814 e1000_rx_checksum(adapter,
3815 (u32)(status) |
3816 ((u32)(rx_desc->errors) << 24),
3817 le16_to_cpu(rx_desc->csum), skb);
3818
3819 pskb_trim(skb, skb->len - 4);
3820
3821 /* probably a little skewed due to removing CRC */
3822 total_rx_bytes += skb->len;
3823 total_rx_packets++;
3824
3825 /* eth type trans needs skb->data to point to something */
3826 if (!pskb_may_pull(skb, ETH_HLEN)) {
3827 e_err(drv, "pskb_may_pull failed.\n");
3828 dev_kfree_skb(skb);
3829 goto next_desc;
3830 }
3831
3832 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3833
3834 next_desc:
3835 rx_desc->status = 0;
3836
3837 /* return some buffers to hardware, one at a time is too slow */
3838 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3839 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3840 cleaned_count = 0;
3841 }
3842
3843 /* use prefetched values */
3844 rx_desc = next_rxd;
3845 buffer_info = next_buffer;
3846 }
3847 rx_ring->next_to_clean = i;
3848
3849 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3850 if (cleaned_count)
3851 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3852
3853 adapter->total_rx_packets += total_rx_packets;
3854 adapter->total_rx_bytes += total_rx_bytes;
3855 netdev->stats.rx_bytes += total_rx_bytes;
3856 netdev->stats.rx_packets += total_rx_packets;
3857 return cleaned;
3858 }
3859
3860 /*
3861 * this should improve performance for small packets with large amounts
3862 * of reassembly being done in the stack
3863 */
3864 static void e1000_check_copybreak(struct net_device *netdev,
3865 struct e1000_buffer *buffer_info,
3866 u32 length, struct sk_buff **skb)
3867 {
3868 struct sk_buff *new_skb;
3869
3870 if (length > copybreak)
3871 return;
3872
3873 new_skb = netdev_alloc_skb_ip_align(netdev, length);
3874 if (!new_skb)
3875 return;
3876
3877 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3878 (*skb)->data - NET_IP_ALIGN,
3879 length + NET_IP_ALIGN);
3880 /* save the skb in buffer_info as good */
3881 buffer_info->skb = *skb;
3882 *skb = new_skb;
3883 }
3884
3885 /**
3886 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3887 * @adapter: board private structure
3888 * @rx_ring: ring to clean
3889 * @work_done: amount of napi work completed this call
3890 * @work_to_do: max amount of work allowed for this call to do
3891 */
3892 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3893 struct e1000_rx_ring *rx_ring,
3894 int *work_done, int work_to_do)
3895 {
3896 struct e1000_hw *hw = &adapter->hw;
3897 struct net_device *netdev = adapter->netdev;
3898 struct pci_dev *pdev = adapter->pdev;
3899 struct e1000_rx_desc *rx_desc, *next_rxd;
3900 struct e1000_buffer *buffer_info, *next_buffer;
3901 unsigned long flags;
3902 u32 length;
3903 unsigned int i;
3904 int cleaned_count = 0;
3905 bool cleaned = false;
3906 unsigned int total_rx_bytes=0, total_rx_packets=0;
3907
3908 i = rx_ring->next_to_clean;
3909 rx_desc = E1000_RX_DESC(*rx_ring, i);
3910 buffer_info = &rx_ring->buffer_info[i];
3911
3912 while (rx_desc->status & E1000_RXD_STAT_DD) {
3913 struct sk_buff *skb;
3914 u8 status;
3915
3916 if (*work_done >= work_to_do)
3917 break;
3918 (*work_done)++;
3919 rmb(); /* read descriptor and rx_buffer_info after status DD */
3920
3921 status = rx_desc->status;
3922 skb = buffer_info->skb;
3923 buffer_info->skb = NULL;
3924
3925 prefetch(skb->data - NET_IP_ALIGN);
3926
3927 if (++i == rx_ring->count) i = 0;
3928 next_rxd = E1000_RX_DESC(*rx_ring, i);
3929 prefetch(next_rxd);
3930
3931 next_buffer = &rx_ring->buffer_info[i];
3932
3933 cleaned = true;
3934 cleaned_count++;
3935 dma_unmap_single(&pdev->dev, buffer_info->dma,
3936 buffer_info->length, DMA_FROM_DEVICE);
3937 buffer_info->dma = 0;
3938
3939 length = le16_to_cpu(rx_desc->length);
3940 /* !EOP means multiple descriptors were used to store a single
3941 * packet, if thats the case we need to toss it. In fact, we
3942 * to toss every packet with the EOP bit clear and the next
3943 * frame that _does_ have the EOP bit set, as it is by
3944 * definition only a frame fragment
3945 */
3946 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3947 adapter->discarding = true;
3948
3949 if (adapter->discarding) {
3950 /* All receives must fit into a single buffer */
3951 e_dbg("Receive packet consumed multiple buffers\n");
3952 /* recycle */
3953 buffer_info->skb = skb;
3954 if (status & E1000_RXD_STAT_EOP)
3955 adapter->discarding = false;
3956 goto next_desc;
3957 }
3958
3959 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3960 u8 last_byte = *(skb->data + length - 1);
3961 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3962 last_byte)) {
3963 spin_lock_irqsave(&adapter->stats_lock, flags);
3964 e1000_tbi_adjust_stats(hw, &adapter->stats,
3965 length, skb->data);
3966 spin_unlock_irqrestore(&adapter->stats_lock,
3967 flags);
3968 length--;
3969 } else {
3970 /* recycle */
3971 buffer_info->skb = skb;
3972 goto next_desc;
3973 }
3974 }
3975
3976 /* adjust length to remove Ethernet CRC, this must be
3977 * done after the TBI_ACCEPT workaround above */
3978 length -= 4;
3979
3980 /* probably a little skewed due to removing CRC */
3981 total_rx_bytes += length;
3982 total_rx_packets++;
3983
3984 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3985
3986 skb_put(skb, length);
3987
3988 /* Receive Checksum Offload */
3989 e1000_rx_checksum(adapter,
3990 (u32)(status) |
3991 ((u32)(rx_desc->errors) << 24),
3992 le16_to_cpu(rx_desc->csum), skb);
3993
3994 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3995
3996 next_desc:
3997 rx_desc->status = 0;
3998
3999 /* return some buffers to hardware, one at a time is too slow */
4000 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4001 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4002 cleaned_count = 0;
4003 }
4004
4005 /* use prefetched values */
4006 rx_desc = next_rxd;
4007 buffer_info = next_buffer;
4008 }
4009 rx_ring->next_to_clean = i;
4010
4011 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4012 if (cleaned_count)
4013 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4014
4015 adapter->total_rx_packets += total_rx_packets;
4016 adapter->total_rx_bytes += total_rx_bytes;
4017 netdev->stats.rx_bytes += total_rx_bytes;
4018 netdev->stats.rx_packets += total_rx_packets;
4019 return cleaned;
4020 }
4021
4022 /**
4023 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4024 * @adapter: address of board private structure
4025 * @rx_ring: pointer to receive ring structure
4026 * @cleaned_count: number of buffers to allocate this pass
4027 **/
4028
4029 static void
4030 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4031 struct e1000_rx_ring *rx_ring, int cleaned_count)
4032 {
4033 struct net_device *netdev = adapter->netdev;
4034 struct pci_dev *pdev = adapter->pdev;
4035 struct e1000_rx_desc *rx_desc;
4036 struct e1000_buffer *buffer_info;
4037 struct sk_buff *skb;
4038 unsigned int i;
4039 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4040
4041 i = rx_ring->next_to_use;
4042 buffer_info = &rx_ring->buffer_info[i];
4043
4044 while (cleaned_count--) {
4045 skb = buffer_info->skb;
4046 if (skb) {
4047 skb_trim(skb, 0);
4048 goto check_page;
4049 }
4050
4051 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4052 if (unlikely(!skb)) {
4053 /* Better luck next round */
4054 adapter->alloc_rx_buff_failed++;
4055 break;
4056 }
4057
4058 /* Fix for errata 23, can't cross 64kB boundary */
4059 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4060 struct sk_buff *oldskb = skb;
4061 e_err(rx_err, "skb align check failed: %u bytes at "
4062 "%p\n", bufsz, skb->data);
4063 /* Try again, without freeing the previous */
4064 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4065 /* Failed allocation, critical failure */
4066 if (!skb) {
4067 dev_kfree_skb(oldskb);
4068 adapter->alloc_rx_buff_failed++;
4069 break;
4070 }
4071
4072 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4073 /* give up */
4074 dev_kfree_skb(skb);
4075 dev_kfree_skb(oldskb);
4076 break; /* while (cleaned_count--) */
4077 }
4078
4079 /* Use new allocation */
4080 dev_kfree_skb(oldskb);
4081 }
4082 buffer_info->skb = skb;
4083 buffer_info->length = adapter->rx_buffer_len;
4084 check_page:
4085 /* allocate a new page if necessary */
4086 if (!buffer_info->page) {
4087 buffer_info->page = alloc_page(GFP_ATOMIC);
4088 if (unlikely(!buffer_info->page)) {
4089 adapter->alloc_rx_buff_failed++;
4090 break;
4091 }
4092 }
4093
4094 if (!buffer_info->dma) {
4095 buffer_info->dma = dma_map_page(&pdev->dev,
4096 buffer_info->page, 0,
4097 buffer_info->length,
4098 DMA_FROM_DEVICE);
4099 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4100 put_page(buffer_info->page);
4101 dev_kfree_skb(skb);
4102 buffer_info->page = NULL;
4103 buffer_info->skb = NULL;
4104 buffer_info->dma = 0;
4105 adapter->alloc_rx_buff_failed++;
4106 break; /* while !buffer_info->skb */
4107 }
4108 }
4109
4110 rx_desc = E1000_RX_DESC(*rx_ring, i);
4111 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4112
4113 if (unlikely(++i == rx_ring->count))
4114 i = 0;
4115 buffer_info = &rx_ring->buffer_info[i];
4116 }
4117
4118 if (likely(rx_ring->next_to_use != i)) {
4119 rx_ring->next_to_use = i;
4120 if (unlikely(i-- == 0))
4121 i = (rx_ring->count - 1);
4122
4123 /* Force memory writes to complete before letting h/w
4124 * know there are new descriptors to fetch. (Only
4125 * applicable for weak-ordered memory model archs,
4126 * such as IA-64). */
4127 wmb();
4128 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4129 }
4130 }
4131
4132 /**
4133 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4134 * @adapter: address of board private structure
4135 **/
4136
4137 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4138 struct e1000_rx_ring *rx_ring,
4139 int cleaned_count)
4140 {
4141 struct e1000_hw *hw = &adapter->hw;
4142 struct net_device *netdev = adapter->netdev;
4143 struct pci_dev *pdev = adapter->pdev;
4144 struct e1000_rx_desc *rx_desc;
4145 struct e1000_buffer *buffer_info;
4146 struct sk_buff *skb;
4147 unsigned int i;
4148 unsigned int bufsz = adapter->rx_buffer_len;
4149
4150 i = rx_ring->next_to_use;
4151 buffer_info = &rx_ring->buffer_info[i];
4152
4153 while (cleaned_count--) {
4154 skb = buffer_info->skb;
4155 if (skb) {
4156 skb_trim(skb, 0);
4157 goto map_skb;
4158 }
4159
4160 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4161 if (unlikely(!skb)) {
4162 /* Better luck next round */
4163 adapter->alloc_rx_buff_failed++;
4164 break;
4165 }
4166
4167 /* Fix for errata 23, can't cross 64kB boundary */
4168 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4169 struct sk_buff *oldskb = skb;
4170 e_err(rx_err, "skb align check failed: %u bytes at "
4171 "%p\n", bufsz, skb->data);
4172 /* Try again, without freeing the previous */
4173 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4174 /* Failed allocation, critical failure */
4175 if (!skb) {
4176 dev_kfree_skb(oldskb);
4177 adapter->alloc_rx_buff_failed++;
4178 break;
4179 }
4180
4181 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4182 /* give up */
4183 dev_kfree_skb(skb);
4184 dev_kfree_skb(oldskb);
4185 adapter->alloc_rx_buff_failed++;
4186 break; /* while !buffer_info->skb */
4187 }
4188
4189 /* Use new allocation */
4190 dev_kfree_skb(oldskb);
4191 }
4192 buffer_info->skb = skb;
4193 buffer_info->length = adapter->rx_buffer_len;
4194 map_skb:
4195 buffer_info->dma = dma_map_single(&pdev->dev,
4196 skb->data,
4197 buffer_info->length,
4198 DMA_FROM_DEVICE);
4199 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4200 dev_kfree_skb(skb);
4201 buffer_info->skb = NULL;
4202 buffer_info->dma = 0;
4203 adapter->alloc_rx_buff_failed++;
4204 break; /* while !buffer_info->skb */
4205 }
4206
4207 /*
4208 * XXX if it was allocated cleanly it will never map to a
4209 * boundary crossing
4210 */
4211
4212 /* Fix for errata 23, can't cross 64kB boundary */
4213 if (!e1000_check_64k_bound(adapter,
4214 (void *)(unsigned long)buffer_info->dma,
4215 adapter->rx_buffer_len)) {
4216 e_err(rx_err, "dma align check failed: %u bytes at "
4217 "%p\n", adapter->rx_buffer_len,
4218 (void *)(unsigned long)buffer_info->dma);
4219 dev_kfree_skb(skb);
4220 buffer_info->skb = NULL;
4221
4222 dma_unmap_single(&pdev->dev, buffer_info->dma,
4223 adapter->rx_buffer_len,
4224 DMA_FROM_DEVICE);
4225 buffer_info->dma = 0;
4226
4227 adapter->alloc_rx_buff_failed++;
4228 break; /* while !buffer_info->skb */
4229 }
4230 rx_desc = E1000_RX_DESC(*rx_ring, i);
4231 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4232
4233 if (unlikely(++i == rx_ring->count))
4234 i = 0;
4235 buffer_info = &rx_ring->buffer_info[i];
4236 }
4237
4238 if (likely(rx_ring->next_to_use != i)) {
4239 rx_ring->next_to_use = i;
4240 if (unlikely(i-- == 0))
4241 i = (rx_ring->count - 1);
4242
4243 /* Force memory writes to complete before letting h/w
4244 * know there are new descriptors to fetch. (Only
4245 * applicable for weak-ordered memory model archs,
4246 * such as IA-64). */
4247 wmb();
4248 writel(i, hw->hw_addr + rx_ring->rdt);
4249 }
4250 }
4251
4252 /**
4253 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4254 * @adapter:
4255 **/
4256
4257 static void e1000_smartspeed(struct e1000_adapter *adapter)
4258 {
4259 struct e1000_hw *hw = &adapter->hw;
4260 u16 phy_status;
4261 u16 phy_ctrl;
4262
4263 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4264 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4265 return;
4266
4267 if (adapter->smartspeed == 0) {
4268 /* If Master/Slave config fault is asserted twice,
4269 * we assume back-to-back */
4270 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4271 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4272 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4273 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4274 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4275 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4276 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4277 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4278 phy_ctrl);
4279 adapter->smartspeed++;
4280 if (!e1000_phy_setup_autoneg(hw) &&
4281 !e1000_read_phy_reg(hw, PHY_CTRL,
4282 &phy_ctrl)) {
4283 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4284 MII_CR_RESTART_AUTO_NEG);
4285 e1000_write_phy_reg(hw, PHY_CTRL,
4286 phy_ctrl);
4287 }
4288 }
4289 return;
4290 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4291 /* If still no link, perhaps using 2/3 pair cable */
4292 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4293 phy_ctrl |= CR_1000T_MS_ENABLE;
4294 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4295 if (!e1000_phy_setup_autoneg(hw) &&
4296 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4297 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4298 MII_CR_RESTART_AUTO_NEG);
4299 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4300 }
4301 }
4302 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4303 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4304 adapter->smartspeed = 0;
4305 }
4306
4307 /**
4308 * e1000_ioctl -
4309 * @netdev:
4310 * @ifreq:
4311 * @cmd:
4312 **/
4313
4314 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4315 {
4316 switch (cmd) {
4317 case SIOCGMIIPHY:
4318 case SIOCGMIIREG:
4319 case SIOCSMIIREG:
4320 return e1000_mii_ioctl(netdev, ifr, cmd);
4321 default:
4322 return -EOPNOTSUPP;
4323 }
4324 }
4325
4326 /**
4327 * e1000_mii_ioctl -
4328 * @netdev:
4329 * @ifreq:
4330 * @cmd:
4331 **/
4332
4333 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4334 int cmd)
4335 {
4336 struct e1000_adapter *adapter = netdev_priv(netdev);
4337 struct e1000_hw *hw = &adapter->hw;
4338 struct mii_ioctl_data *data = if_mii(ifr);
4339 int retval;
4340 u16 mii_reg;
4341 u16 spddplx;
4342 unsigned long flags;
4343
4344 if (hw->media_type != e1000_media_type_copper)
4345 return -EOPNOTSUPP;
4346
4347 switch (cmd) {
4348 case SIOCGMIIPHY:
4349 data->phy_id = hw->phy_addr;
4350 break;
4351 case SIOCGMIIREG:
4352 spin_lock_irqsave(&adapter->stats_lock, flags);
4353 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4354 &data->val_out)) {
4355 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4356 return -EIO;
4357 }
4358 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4359 break;
4360 case SIOCSMIIREG:
4361 if (data->reg_num & ~(0x1F))
4362 return -EFAULT;
4363 mii_reg = data->val_in;
4364 spin_lock_irqsave(&adapter->stats_lock, flags);
4365 if (e1000_write_phy_reg(hw, data->reg_num,
4366 mii_reg)) {
4367 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4368 return -EIO;
4369 }
4370 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4371 if (hw->media_type == e1000_media_type_copper) {
4372 switch (data->reg_num) {
4373 case PHY_CTRL:
4374 if (mii_reg & MII_CR_POWER_DOWN)
4375 break;
4376 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4377 hw->autoneg = 1;
4378 hw->autoneg_advertised = 0x2F;
4379 } else {
4380 if (mii_reg & 0x40)
4381 spddplx = SPEED_1000;
4382 else if (mii_reg & 0x2000)
4383 spddplx = SPEED_100;
4384 else
4385 spddplx = SPEED_10;
4386 spddplx += (mii_reg & 0x100)
4387 ? DUPLEX_FULL :
4388 DUPLEX_HALF;
4389 retval = e1000_set_spd_dplx(adapter,
4390 spddplx);
4391 if (retval)
4392 return retval;
4393 }
4394 if (netif_running(adapter->netdev))
4395 e1000_reinit_locked(adapter);
4396 else
4397 e1000_reset(adapter);
4398 break;
4399 case M88E1000_PHY_SPEC_CTRL:
4400 case M88E1000_EXT_PHY_SPEC_CTRL:
4401 if (e1000_phy_reset(hw))
4402 return -EIO;
4403 break;
4404 }
4405 } else {
4406 switch (data->reg_num) {
4407 case PHY_CTRL:
4408 if (mii_reg & MII_CR_POWER_DOWN)
4409 break;
4410 if (netif_running(adapter->netdev))
4411 e1000_reinit_locked(adapter);
4412 else
4413 e1000_reset(adapter);
4414 break;
4415 }
4416 }
4417 break;
4418 default:
4419 return -EOPNOTSUPP;
4420 }
4421 return E1000_SUCCESS;
4422 }
4423
4424 void e1000_pci_set_mwi(struct e1000_hw *hw)
4425 {
4426 struct e1000_adapter *adapter = hw->back;
4427 int ret_val = pci_set_mwi(adapter->pdev);
4428
4429 if (ret_val)
4430 e_err(probe, "Error in setting MWI\n");
4431 }
4432
4433 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4434 {
4435 struct e1000_adapter *adapter = hw->back;
4436
4437 pci_clear_mwi(adapter->pdev);
4438 }
4439
4440 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4441 {
4442 struct e1000_adapter *adapter = hw->back;
4443 return pcix_get_mmrbc(adapter->pdev);
4444 }
4445
4446 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4447 {
4448 struct e1000_adapter *adapter = hw->back;
4449 pcix_set_mmrbc(adapter->pdev, mmrbc);
4450 }
4451
4452 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4453 {
4454 outl(value, port);
4455 }
4456
4457 static void e1000_vlan_rx_register(struct net_device *netdev,
4458 struct vlan_group *grp)
4459 {
4460 struct e1000_adapter *adapter = netdev_priv(netdev);
4461 struct e1000_hw *hw = &adapter->hw;
4462 u32 ctrl, rctl;
4463
4464 if (!test_bit(__E1000_DOWN, &adapter->flags))
4465 e1000_irq_disable(adapter);
4466 adapter->vlgrp = grp;
4467
4468 if (grp) {
4469 /* enable VLAN tag insert/strip */
4470 ctrl = er32(CTRL);
4471 ctrl |= E1000_CTRL_VME;
4472 ew32(CTRL, ctrl);
4473
4474 /* enable VLAN receive filtering */
4475 rctl = er32(RCTL);
4476 rctl &= ~E1000_RCTL_CFIEN;
4477 if (!(netdev->flags & IFF_PROMISC))
4478 rctl |= E1000_RCTL_VFE;
4479 ew32(RCTL, rctl);
4480 e1000_update_mng_vlan(adapter);
4481 } else {
4482 /* disable VLAN tag insert/strip */
4483 ctrl = er32(CTRL);
4484 ctrl &= ~E1000_CTRL_VME;
4485 ew32(CTRL, ctrl);
4486
4487 /* disable VLAN receive filtering */
4488 rctl = er32(RCTL);
4489 rctl &= ~E1000_RCTL_VFE;
4490 ew32(RCTL, rctl);
4491
4492 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4493 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4494 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4495 }
4496 }
4497
4498 if (!test_bit(__E1000_DOWN, &adapter->flags))
4499 e1000_irq_enable(adapter);
4500 }
4501
4502 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4503 {
4504 struct e1000_adapter *adapter = netdev_priv(netdev);
4505 struct e1000_hw *hw = &adapter->hw;
4506 u32 vfta, index;
4507
4508 if ((hw->mng_cookie.status &
4509 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4510 (vid == adapter->mng_vlan_id))
4511 return;
4512 /* add VID to filter table */
4513 index = (vid >> 5) & 0x7F;
4514 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4515 vfta |= (1 << (vid & 0x1F));
4516 e1000_write_vfta(hw, index, vfta);
4517 }
4518
4519 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4520 {
4521 struct e1000_adapter *adapter = netdev_priv(netdev);
4522 struct e1000_hw *hw = &adapter->hw;
4523 u32 vfta, index;
4524
4525 if (!test_bit(__E1000_DOWN, &adapter->flags))
4526 e1000_irq_disable(adapter);
4527 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4528 if (!test_bit(__E1000_DOWN, &adapter->flags))
4529 e1000_irq_enable(adapter);
4530
4531 /* remove VID from filter table */
4532 index = (vid >> 5) & 0x7F;
4533 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4534 vfta &= ~(1 << (vid & 0x1F));
4535 e1000_write_vfta(hw, index, vfta);
4536 }
4537
4538 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4539 {
4540 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4541
4542 if (adapter->vlgrp) {
4543 u16 vid;
4544 for (vid = 0; vid < VLAN_N_VID; vid++) {
4545 if (!vlan_group_get_device(adapter->vlgrp, vid))
4546 continue;
4547 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4548 }
4549 }
4550 }
4551
4552 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4553 {
4554 struct e1000_hw *hw = &adapter->hw;
4555
4556 hw->autoneg = 0;
4557
4558 /* Fiber NICs only allow 1000 gbps Full duplex */
4559 if ((hw->media_type == e1000_media_type_fiber) &&
4560 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4561 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4562 return -EINVAL;
4563 }
4564
4565 switch (spddplx) {
4566 case SPEED_10 + DUPLEX_HALF:
4567 hw->forced_speed_duplex = e1000_10_half;
4568 break;
4569 case SPEED_10 + DUPLEX_FULL:
4570 hw->forced_speed_duplex = e1000_10_full;
4571 break;
4572 case SPEED_100 + DUPLEX_HALF:
4573 hw->forced_speed_duplex = e1000_100_half;
4574 break;
4575 case SPEED_100 + DUPLEX_FULL:
4576 hw->forced_speed_duplex = e1000_100_full;
4577 break;
4578 case SPEED_1000 + DUPLEX_FULL:
4579 hw->autoneg = 1;
4580 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4581 break;
4582 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4583 default:
4584 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4585 return -EINVAL;
4586 }
4587 return 0;
4588 }
4589
4590 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4591 {
4592 struct net_device *netdev = pci_get_drvdata(pdev);
4593 struct e1000_adapter *adapter = netdev_priv(netdev);
4594 struct e1000_hw *hw = &adapter->hw;
4595 u32 ctrl, ctrl_ext, rctl, status;
4596 u32 wufc = adapter->wol;
4597 #ifdef CONFIG_PM
4598 int retval = 0;
4599 #endif
4600
4601 netif_device_detach(netdev);
4602
4603 if (netif_running(netdev)) {
4604 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4605 e1000_down(adapter);
4606 }
4607
4608 #ifdef CONFIG_PM
4609 retval = pci_save_state(pdev);
4610 if (retval)
4611 return retval;
4612 #endif
4613
4614 status = er32(STATUS);
4615 if (status & E1000_STATUS_LU)
4616 wufc &= ~E1000_WUFC_LNKC;
4617
4618 if (wufc) {
4619 e1000_setup_rctl(adapter);
4620 e1000_set_rx_mode(netdev);
4621
4622 /* turn on all-multi mode if wake on multicast is enabled */
4623 if (wufc & E1000_WUFC_MC) {
4624 rctl = er32(RCTL);
4625 rctl |= E1000_RCTL_MPE;
4626 ew32(RCTL, rctl);
4627 }
4628
4629 if (hw->mac_type >= e1000_82540) {
4630 ctrl = er32(CTRL);
4631 /* advertise wake from D3Cold */
4632 #define E1000_CTRL_ADVD3WUC 0x00100000
4633 /* phy power management enable */
4634 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4635 ctrl |= E1000_CTRL_ADVD3WUC |
4636 E1000_CTRL_EN_PHY_PWR_MGMT;
4637 ew32(CTRL, ctrl);
4638 }
4639
4640 if (hw->media_type == e1000_media_type_fiber ||
4641 hw->media_type == e1000_media_type_internal_serdes) {
4642 /* keep the laser running in D3 */
4643 ctrl_ext = er32(CTRL_EXT);
4644 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4645 ew32(CTRL_EXT, ctrl_ext);
4646 }
4647
4648 ew32(WUC, E1000_WUC_PME_EN);
4649 ew32(WUFC, wufc);
4650 } else {
4651 ew32(WUC, 0);
4652 ew32(WUFC, 0);
4653 }
4654
4655 e1000_release_manageability(adapter);
4656
4657 *enable_wake = !!wufc;
4658
4659 /* make sure adapter isn't asleep if manageability is enabled */
4660 if (adapter->en_mng_pt)
4661 *enable_wake = true;
4662
4663 if (netif_running(netdev))
4664 e1000_free_irq(adapter);
4665
4666 pci_disable_device(pdev);
4667
4668 return 0;
4669 }
4670
4671 #ifdef CONFIG_PM
4672 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4673 {
4674 int retval;
4675 bool wake;
4676
4677 retval = __e1000_shutdown(pdev, &wake);
4678 if (retval)
4679 return retval;
4680
4681 if (wake) {
4682 pci_prepare_to_sleep(pdev);
4683 } else {
4684 pci_wake_from_d3(pdev, false);
4685 pci_set_power_state(pdev, PCI_D3hot);
4686 }
4687
4688 return 0;
4689 }
4690
4691 static int e1000_resume(struct pci_dev *pdev)
4692 {
4693 struct net_device *netdev = pci_get_drvdata(pdev);
4694 struct e1000_adapter *adapter = netdev_priv(netdev);
4695 struct e1000_hw *hw = &adapter->hw;
4696 u32 err;
4697
4698 pci_set_power_state(pdev, PCI_D0);
4699 pci_restore_state(pdev);
4700 pci_save_state(pdev);
4701
4702 if (adapter->need_ioport)
4703 err = pci_enable_device(pdev);
4704 else
4705 err = pci_enable_device_mem(pdev);
4706 if (err) {
4707 pr_err("Cannot enable PCI device from suspend\n");
4708 return err;
4709 }
4710 pci_set_master(pdev);
4711
4712 pci_enable_wake(pdev, PCI_D3hot, 0);
4713 pci_enable_wake(pdev, PCI_D3cold, 0);
4714
4715 if (netif_running(netdev)) {
4716 err = e1000_request_irq(adapter);
4717 if (err)
4718 return err;
4719 }
4720
4721 e1000_power_up_phy(adapter);
4722 e1000_reset(adapter);
4723 ew32(WUS, ~0);
4724
4725 e1000_init_manageability(adapter);
4726
4727 if (netif_running(netdev))
4728 e1000_up(adapter);
4729
4730 netif_device_attach(netdev);
4731
4732 return 0;
4733 }
4734 #endif
4735
4736 static void e1000_shutdown(struct pci_dev *pdev)
4737 {
4738 bool wake;
4739
4740 __e1000_shutdown(pdev, &wake);
4741
4742 if (system_state == SYSTEM_POWER_OFF) {
4743 pci_wake_from_d3(pdev, wake);
4744 pci_set_power_state(pdev, PCI_D3hot);
4745 }
4746 }
4747
4748 #ifdef CONFIG_NET_POLL_CONTROLLER
4749 /*
4750 * Polling 'interrupt' - used by things like netconsole to send skbs
4751 * without having to re-enable interrupts. It's not called while
4752 * the interrupt routine is executing.
4753 */
4754 static void e1000_netpoll(struct net_device *netdev)
4755 {
4756 struct e1000_adapter *adapter = netdev_priv(netdev);
4757
4758 disable_irq(adapter->pdev->irq);
4759 e1000_intr(adapter->pdev->irq, netdev);
4760 enable_irq(adapter->pdev->irq);
4761 }
4762 #endif
4763
4764 /**
4765 * e1000_io_error_detected - called when PCI error is detected
4766 * @pdev: Pointer to PCI device
4767 * @state: The current pci connection state
4768 *
4769 * This function is called after a PCI bus error affecting
4770 * this device has been detected.
4771 */
4772 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4773 pci_channel_state_t state)
4774 {
4775 struct net_device *netdev = pci_get_drvdata(pdev);
4776 struct e1000_adapter *adapter = netdev_priv(netdev);
4777
4778 netif_device_detach(netdev);
4779
4780 if (state == pci_channel_io_perm_failure)
4781 return PCI_ERS_RESULT_DISCONNECT;
4782
4783 if (netif_running(netdev))
4784 e1000_down(adapter);
4785 pci_disable_device(pdev);
4786
4787 /* Request a slot slot reset. */
4788 return PCI_ERS_RESULT_NEED_RESET;
4789 }
4790
4791 /**
4792 * e1000_io_slot_reset - called after the pci bus has been reset.
4793 * @pdev: Pointer to PCI device
4794 *
4795 * Restart the card from scratch, as if from a cold-boot. Implementation
4796 * resembles the first-half of the e1000_resume routine.
4797 */
4798 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4799 {
4800 struct net_device *netdev = pci_get_drvdata(pdev);
4801 struct e1000_adapter *adapter = netdev_priv(netdev);
4802 struct e1000_hw *hw = &adapter->hw;
4803 int err;
4804
4805 if (adapter->need_ioport)
4806 err = pci_enable_device(pdev);
4807 else
4808 err = pci_enable_device_mem(pdev);
4809 if (err) {
4810 pr_err("Cannot re-enable PCI device after reset.\n");
4811 return PCI_ERS_RESULT_DISCONNECT;
4812 }
4813 pci_set_master(pdev);
4814
4815 pci_enable_wake(pdev, PCI_D3hot, 0);
4816 pci_enable_wake(pdev, PCI_D3cold, 0);
4817
4818 e1000_reset(adapter);
4819 ew32(WUS, ~0);
4820
4821 return PCI_ERS_RESULT_RECOVERED;
4822 }
4823
4824 /**
4825 * e1000_io_resume - called when traffic can start flowing again.
4826 * @pdev: Pointer to PCI device
4827 *
4828 * This callback is called when the error recovery driver tells us that
4829 * its OK to resume normal operation. Implementation resembles the
4830 * second-half of the e1000_resume routine.
4831 */
4832 static void e1000_io_resume(struct pci_dev *pdev)
4833 {
4834 struct net_device *netdev = pci_get_drvdata(pdev);
4835 struct e1000_adapter *adapter = netdev_priv(netdev);
4836
4837 e1000_init_manageability(adapter);
4838
4839 if (netif_running(netdev)) {
4840 if (e1000_up(adapter)) {
4841 pr_info("can't bring device back up after reset\n");
4842 return;
4843 }
4844 }
4845
4846 netif_device_attach(netdev);
4847 }
4848
4849 /* e1000_main.c */
This page took 0.194759 seconds and 5 git commands to generate.