[SK_BUFF]: Introduce ip_hdr(), remove skb->nh.iph
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110 /* required last entry */
111 {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130 struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132 struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165 struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring,
170 int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172 struct e1000_rx_ring *rx_ring,
173 int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176 struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178 struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181 struct e1000_rx_ring *rx_ring,
182 int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184 struct e1000_rx_ring *rx_ring,
185 int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188 int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196 struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
218 module_param(copybreak, uint, 0644);
219 MODULE_PARM_DESC(copybreak,
220 "Maximum size of packet that is copied to a new buffer on receive");
221
222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
223 pci_channel_state_t state);
224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
225 static void e1000_io_resume(struct pci_dev *pdev);
226
227 static struct pci_error_handlers e1000_err_handler = {
228 .error_detected = e1000_io_error_detected,
229 .slot_reset = e1000_io_slot_reset,
230 .resume = e1000_io_resume,
231 };
232
233 static struct pci_driver e1000_driver = {
234 .name = e1000_driver_name,
235 .id_table = e1000_pci_tbl,
236 .probe = e1000_probe,
237 .remove = __devexit_p(e1000_remove),
238 #ifdef CONFIG_PM
239 /* Power Managment Hooks */
240 .suspend = e1000_suspend,
241 .resume = e1000_resume,
242 #endif
243 .shutdown = e1000_shutdown,
244 .err_handler = &e1000_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 /**
257 * e1000_init_module - Driver Registration Routine
258 *
259 * e1000_init_module is the first routine called when the driver is
260 * loaded. All it does is register with the PCI subsystem.
261 **/
262
263 static int __init
264 e1000_init_module(void)
265 {
266 int ret;
267 printk(KERN_INFO "%s - version %s\n",
268 e1000_driver_string, e1000_driver_version);
269
270 printk(KERN_INFO "%s\n", e1000_copyright);
271
272 ret = pci_register_driver(&e1000_driver);
273 if (copybreak != COPYBREAK_DEFAULT) {
274 if (copybreak == 0)
275 printk(KERN_INFO "e1000: copybreak disabled\n");
276 else
277 printk(KERN_INFO "e1000: copybreak enabled for "
278 "packets <= %u bytes\n", copybreak);
279 }
280 return ret;
281 }
282
283 module_init(e1000_init_module);
284
285 /**
286 * e1000_exit_module - Driver Exit Cleanup Routine
287 *
288 * e1000_exit_module is called just before the driver is removed
289 * from memory.
290 **/
291
292 static void __exit
293 e1000_exit_module(void)
294 {
295 pci_unregister_driver(&e1000_driver);
296 }
297
298 module_exit(e1000_exit_module);
299
300 static int e1000_request_irq(struct e1000_adapter *adapter)
301 {
302 struct net_device *netdev = adapter->netdev;
303 int flags, err = 0;
304
305 flags = IRQF_SHARED;
306 #ifdef CONFIG_PCI_MSI
307 if (adapter->hw.mac_type >= e1000_82571) {
308 adapter->have_msi = TRUE;
309 if ((err = pci_enable_msi(adapter->pdev))) {
310 DPRINTK(PROBE, ERR,
311 "Unable to allocate MSI interrupt Error: %d\n", err);
312 adapter->have_msi = FALSE;
313 }
314 }
315 if (adapter->have_msi) {
316 flags &= ~IRQF_SHARED;
317 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
318 netdev->name, netdev);
319 if (err)
320 DPRINTK(PROBE, ERR,
321 "Unable to allocate interrupt Error: %d\n", err);
322 } else
323 #endif
324 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
325 netdev->name, netdev)))
326 DPRINTK(PROBE, ERR,
327 "Unable to allocate interrupt Error: %d\n", err);
328
329 return err;
330 }
331
332 static void e1000_free_irq(struct e1000_adapter *adapter)
333 {
334 struct net_device *netdev = adapter->netdev;
335
336 free_irq(adapter->pdev->irq, netdev);
337
338 #ifdef CONFIG_PCI_MSI
339 if (adapter->have_msi)
340 pci_disable_msi(adapter->pdev);
341 #endif
342 }
343
344 /**
345 * e1000_irq_disable - Mask off interrupt generation on the NIC
346 * @adapter: board private structure
347 **/
348
349 static void
350 e1000_irq_disable(struct e1000_adapter *adapter)
351 {
352 atomic_inc(&adapter->irq_sem);
353 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
354 E1000_WRITE_FLUSH(&adapter->hw);
355 synchronize_irq(adapter->pdev->irq);
356 }
357
358 /**
359 * e1000_irq_enable - Enable default interrupt generation settings
360 * @adapter: board private structure
361 **/
362
363 static void
364 e1000_irq_enable(struct e1000_adapter *adapter)
365 {
366 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
367 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
368 E1000_WRITE_FLUSH(&adapter->hw);
369 }
370 }
371
372 static void
373 e1000_update_mng_vlan(struct e1000_adapter *adapter)
374 {
375 struct net_device *netdev = adapter->netdev;
376 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
377 uint16_t old_vid = adapter->mng_vlan_id;
378 if (adapter->vlgrp) {
379 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
380 if (adapter->hw.mng_cookie.status &
381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
382 e1000_vlan_rx_add_vid(netdev, vid);
383 adapter->mng_vlan_id = vid;
384 } else
385 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
386
387 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
388 (vid != old_vid) &&
389 !vlan_group_get_device(adapter->vlgrp, old_vid))
390 e1000_vlan_rx_kill_vid(netdev, old_vid);
391 } else
392 adapter->mng_vlan_id = vid;
393 }
394 }
395
396 /**
397 * e1000_release_hw_control - release control of the h/w to f/w
398 * @adapter: address of board private structure
399 *
400 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401 * For ASF and Pass Through versions of f/w this means that the
402 * driver is no longer loaded. For AMT version (only with 82573) i
403 * of the f/w this means that the network i/f is closed.
404 *
405 **/
406
407 static void
408 e1000_release_hw_control(struct e1000_adapter *adapter)
409 {
410 uint32_t ctrl_ext;
411 uint32_t swsm;
412 uint32_t extcnf;
413
414 /* Let firmware taken over control of h/w */
415 switch (adapter->hw.mac_type) {
416 case e1000_82571:
417 case e1000_82572:
418 case e1000_80003es2lan:
419 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
420 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
421 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
422 break;
423 case e1000_82573:
424 swsm = E1000_READ_REG(&adapter->hw, SWSM);
425 E1000_WRITE_REG(&adapter->hw, SWSM,
426 swsm & ~E1000_SWSM_DRV_LOAD);
427 case e1000_ich8lan:
428 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
429 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
430 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
431 break;
432 default:
433 break;
434 }
435 }
436
437 /**
438 * e1000_get_hw_control - get control of the h/w from f/w
439 * @adapter: address of board private structure
440 *
441 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442 * For ASF and Pass Through versions of f/w this means that
443 * the driver is loaded. For AMT version (only with 82573)
444 * of the f/w this means that the network i/f is open.
445 *
446 **/
447
448 static void
449 e1000_get_hw_control(struct e1000_adapter *adapter)
450 {
451 uint32_t ctrl_ext;
452 uint32_t swsm;
453 uint32_t extcnf;
454
455 /* Let firmware know the driver has taken over */
456 switch (adapter->hw.mac_type) {
457 case e1000_82571:
458 case e1000_82572:
459 case e1000_80003es2lan:
460 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
461 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
462 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
463 break;
464 case e1000_82573:
465 swsm = E1000_READ_REG(&adapter->hw, SWSM);
466 E1000_WRITE_REG(&adapter->hw, SWSM,
467 swsm | E1000_SWSM_DRV_LOAD);
468 break;
469 case e1000_ich8lan:
470 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
471 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
472 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
473 break;
474 default:
475 break;
476 }
477 }
478
479 static void
480 e1000_init_manageability(struct e1000_adapter *adapter)
481 {
482 if (adapter->en_mng_pt) {
483 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
484
485 /* disable hardware interception of ARP */
486 manc &= ~(E1000_MANC_ARP_EN);
487
488 /* enable receiving management packets to the host */
489 /* this will probably generate destination unreachable messages
490 * from the host OS, but the packets will be handled on SMBUS */
491 if (adapter->hw.has_manc2h) {
492 uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
493
494 manc |= E1000_MANC_EN_MNG2HOST;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497 manc2h |= E1000_MNG2HOST_PORT_623;
498 manc2h |= E1000_MNG2HOST_PORT_664;
499 E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
500 }
501
502 E1000_WRITE_REG(&adapter->hw, MANC, manc);
503 }
504 }
505
506 static void
507 e1000_release_manageability(struct e1000_adapter *adapter)
508 {
509 if (adapter->en_mng_pt) {
510 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
511
512 /* re-enable hardware interception of ARP */
513 manc |= E1000_MANC_ARP_EN;
514
515 if (adapter->hw.has_manc2h)
516 manc &= ~E1000_MANC_EN_MNG2HOST;
517
518 /* don't explicitly have to mess with MANC2H since
519 * MANC has an enable disable that gates MANC2H */
520
521 E1000_WRITE_REG(&adapter->hw, MANC, manc);
522 }
523 }
524
525 int
526 e1000_up(struct e1000_adapter *adapter)
527 {
528 struct net_device *netdev = adapter->netdev;
529 int i;
530
531 /* hardware has been reset, we need to reload some things */
532
533 e1000_set_multi(netdev);
534
535 e1000_restore_vlan(adapter);
536 e1000_init_manageability(adapter);
537
538 e1000_configure_tx(adapter);
539 e1000_setup_rctl(adapter);
540 e1000_configure_rx(adapter);
541 /* call E1000_DESC_UNUSED which always leaves
542 * at least 1 descriptor unused to make sure
543 * next_to_use != next_to_clean */
544 for (i = 0; i < adapter->num_rx_queues; i++) {
545 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
546 adapter->alloc_rx_buf(adapter, ring,
547 E1000_DESC_UNUSED(ring));
548 }
549
550 adapter->tx_queue_len = netdev->tx_queue_len;
551
552 #ifdef CONFIG_E1000_NAPI
553 netif_poll_enable(netdev);
554 #endif
555 e1000_irq_enable(adapter);
556
557 clear_bit(__E1000_DOWN, &adapter->flags);
558
559 /* fire a link change interrupt to start the watchdog */
560 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
561 return 0;
562 }
563
564 /**
565 * e1000_power_up_phy - restore link in case the phy was powered down
566 * @adapter: address of board private structure
567 *
568 * The phy may be powered down to save power and turn off link when the
569 * driver is unloaded and wake on lan is not enabled (among others)
570 * *** this routine MUST be followed by a call to e1000_reset ***
571 *
572 **/
573
574 void e1000_power_up_phy(struct e1000_adapter *adapter)
575 {
576 uint16_t mii_reg = 0;
577
578 /* Just clear the power down bit to wake the phy back up */
579 if (adapter->hw.media_type == e1000_media_type_copper) {
580 /* according to the manual, the phy will retain its
581 * settings across a power-down/up cycle */
582 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
583 mii_reg &= ~MII_CR_POWER_DOWN;
584 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
585 }
586 }
587
588 static void e1000_power_down_phy(struct e1000_adapter *adapter)
589 {
590 /* Power down the PHY so no link is implied when interface is down *
591 * The PHY cannot be powered down if any of the following is TRUE *
592 * (a) WoL is enabled
593 * (b) AMT is active
594 * (c) SoL/IDER session is active */
595 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
596 adapter->hw.media_type == e1000_media_type_copper) {
597 uint16_t mii_reg = 0;
598
599 switch (adapter->hw.mac_type) {
600 case e1000_82540:
601 case e1000_82545:
602 case e1000_82545_rev_3:
603 case e1000_82546:
604 case e1000_82546_rev_3:
605 case e1000_82541:
606 case e1000_82541_rev_2:
607 case e1000_82547:
608 case e1000_82547_rev_2:
609 if (E1000_READ_REG(&adapter->hw, MANC) &
610 E1000_MANC_SMBUS_EN)
611 goto out;
612 break;
613 case e1000_82571:
614 case e1000_82572:
615 case e1000_82573:
616 case e1000_80003es2lan:
617 case e1000_ich8lan:
618 if (e1000_check_mng_mode(&adapter->hw) ||
619 e1000_check_phy_reset_block(&adapter->hw))
620 goto out;
621 break;
622 default:
623 goto out;
624 }
625 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
626 mii_reg |= MII_CR_POWER_DOWN;
627 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
628 mdelay(1);
629 }
630 out:
631 return;
632 }
633
634 void
635 e1000_down(struct e1000_adapter *adapter)
636 {
637 struct net_device *netdev = adapter->netdev;
638
639 /* signal that we're down so the interrupt handler does not
640 * reschedule our watchdog timer */
641 set_bit(__E1000_DOWN, &adapter->flags);
642
643 e1000_irq_disable(adapter);
644
645 del_timer_sync(&adapter->tx_fifo_stall_timer);
646 del_timer_sync(&adapter->watchdog_timer);
647 del_timer_sync(&adapter->phy_info_timer);
648
649 #ifdef CONFIG_E1000_NAPI
650 netif_poll_disable(netdev);
651 #endif
652 netdev->tx_queue_len = adapter->tx_queue_len;
653 adapter->link_speed = 0;
654 adapter->link_duplex = 0;
655 netif_carrier_off(netdev);
656 netif_stop_queue(netdev);
657
658 e1000_reset(adapter);
659 e1000_clean_all_tx_rings(adapter);
660 e1000_clean_all_rx_rings(adapter);
661 }
662
663 void
664 e1000_reinit_locked(struct e1000_adapter *adapter)
665 {
666 WARN_ON(in_interrupt());
667 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
668 msleep(1);
669 e1000_down(adapter);
670 e1000_up(adapter);
671 clear_bit(__E1000_RESETTING, &adapter->flags);
672 }
673
674 void
675 e1000_reset(struct e1000_adapter *adapter)
676 {
677 uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
678 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
679 boolean_t legacy_pba_adjust = FALSE;
680
681 /* Repartition Pba for greater than 9k mtu
682 * To take effect CTRL.RST is required.
683 */
684
685 switch (adapter->hw.mac_type) {
686 case e1000_82542_rev2_0:
687 case e1000_82542_rev2_1:
688 case e1000_82543:
689 case e1000_82544:
690 case e1000_82540:
691 case e1000_82541:
692 case e1000_82541_rev_2:
693 legacy_pba_adjust = TRUE;
694 pba = E1000_PBA_48K;
695 break;
696 case e1000_82545:
697 case e1000_82545_rev_3:
698 case e1000_82546:
699 case e1000_82546_rev_3:
700 pba = E1000_PBA_48K;
701 break;
702 case e1000_82547:
703 case e1000_82547_rev_2:
704 legacy_pba_adjust = TRUE;
705 pba = E1000_PBA_30K;
706 break;
707 case e1000_82571:
708 case e1000_82572:
709 case e1000_80003es2lan:
710 pba = E1000_PBA_38K;
711 break;
712 case e1000_82573:
713 pba = E1000_PBA_20K;
714 break;
715 case e1000_ich8lan:
716 pba = E1000_PBA_8K;
717 case e1000_undefined:
718 case e1000_num_macs:
719 break;
720 }
721
722 if (legacy_pba_adjust == TRUE) {
723 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
724 pba -= 8; /* allocate more FIFO for Tx */
725
726 if (adapter->hw.mac_type == e1000_82547) {
727 adapter->tx_fifo_head = 0;
728 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
729 adapter->tx_fifo_size =
730 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
731 atomic_set(&adapter->tx_fifo_stall, 0);
732 }
733 } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
734 /* adjust PBA for jumbo frames */
735 E1000_WRITE_REG(&adapter->hw, PBA, pba);
736
737 /* To maintain wire speed transmits, the Tx FIFO should be
738 * large enough to accomodate two full transmit packets,
739 * rounded up to the next 1KB and expressed in KB. Likewise,
740 * the Rx FIFO should be large enough to accomodate at least
741 * one full receive packet and is similarly rounded up and
742 * expressed in KB. */
743 pba = E1000_READ_REG(&adapter->hw, PBA);
744 /* upper 16 bits has Tx packet buffer allocation size in KB */
745 tx_space = pba >> 16;
746 /* lower 16 bits has Rx packet buffer allocation size in KB */
747 pba &= 0xffff;
748 /* don't include ethernet FCS because hardware appends/strips */
749 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
750 VLAN_TAG_SIZE;
751 min_tx_space = min_rx_space;
752 min_tx_space *= 2;
753 E1000_ROUNDUP(min_tx_space, 1024);
754 min_tx_space >>= 10;
755 E1000_ROUNDUP(min_rx_space, 1024);
756 min_rx_space >>= 10;
757
758 /* If current Tx allocation is less than the min Tx FIFO size,
759 * and the min Tx FIFO size is less than the current Rx FIFO
760 * allocation, take space away from current Rx allocation */
761 if (tx_space < min_tx_space &&
762 ((min_tx_space - tx_space) < pba)) {
763 pba = pba - (min_tx_space - tx_space);
764
765 /* PCI/PCIx hardware has PBA alignment constraints */
766 switch (adapter->hw.mac_type) {
767 case e1000_82545 ... e1000_82546_rev_3:
768 pba &= ~(E1000_PBA_8K - 1);
769 break;
770 default:
771 break;
772 }
773
774 /* if short on rx space, rx wins and must trump tx
775 * adjustment or use Early Receive if available */
776 if (pba < min_rx_space) {
777 switch (adapter->hw.mac_type) {
778 case e1000_82573:
779 /* ERT enabled in e1000_configure_rx */
780 break;
781 default:
782 pba = min_rx_space;
783 break;
784 }
785 }
786 }
787 }
788
789 E1000_WRITE_REG(&adapter->hw, PBA, pba);
790
791 /* flow control settings */
792 /* Set the FC high water mark to 90% of the FIFO size.
793 * Required to clear last 3 LSB */
794 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
795 /* We can't use 90% on small FIFOs because the remainder
796 * would be less than 1 full frame. In this case, we size
797 * it to allow at least a full frame above the high water
798 * mark. */
799 if (pba < E1000_PBA_16K)
800 fc_high_water_mark = (pba * 1024) - 1600;
801
802 adapter->hw.fc_high_water = fc_high_water_mark;
803 adapter->hw.fc_low_water = fc_high_water_mark - 8;
804 if (adapter->hw.mac_type == e1000_80003es2lan)
805 adapter->hw.fc_pause_time = 0xFFFF;
806 else
807 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
808 adapter->hw.fc_send_xon = 1;
809 adapter->hw.fc = adapter->hw.original_fc;
810
811 /* Allow time for pending master requests to run */
812 e1000_reset_hw(&adapter->hw);
813 if (adapter->hw.mac_type >= e1000_82544)
814 E1000_WRITE_REG(&adapter->hw, WUC, 0);
815
816 if (e1000_init_hw(&adapter->hw))
817 DPRINTK(PROBE, ERR, "Hardware Error\n");
818 e1000_update_mng_vlan(adapter);
819
820 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
821 if (adapter->hw.mac_type >= e1000_82544 &&
822 adapter->hw.mac_type <= e1000_82547_rev_2 &&
823 adapter->hw.autoneg == 1 &&
824 adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
825 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
826 /* clear phy power management bit if we are in gig only mode,
827 * which if enabled will attempt negotiation to 100Mb, which
828 * can cause a loss of link at power off or driver unload */
829 ctrl &= ~E1000_CTRL_SWDPIN3;
830 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
831 }
832
833 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
834 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
835
836 e1000_reset_adaptive(&adapter->hw);
837 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
838
839 if (!adapter->smart_power_down &&
840 (adapter->hw.mac_type == e1000_82571 ||
841 adapter->hw.mac_type == e1000_82572)) {
842 uint16_t phy_data = 0;
843 /* speed up time to link by disabling smart power down, ignore
844 * the return value of this function because there is nothing
845 * different we would do if it failed */
846 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
847 &phy_data);
848 phy_data &= ~IGP02E1000_PM_SPD;
849 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
850 phy_data);
851 }
852
853 e1000_release_manageability(adapter);
854 }
855
856 /**
857 * e1000_probe - Device Initialization Routine
858 * @pdev: PCI device information struct
859 * @ent: entry in e1000_pci_tbl
860 *
861 * Returns 0 on success, negative on failure
862 *
863 * e1000_probe initializes an adapter identified by a pci_dev structure.
864 * The OS initialization, configuring of the adapter private structure,
865 * and a hardware reset occur.
866 **/
867
868 static int __devinit
869 e1000_probe(struct pci_dev *pdev,
870 const struct pci_device_id *ent)
871 {
872 struct net_device *netdev;
873 struct e1000_adapter *adapter;
874 unsigned long mmio_start, mmio_len;
875 unsigned long flash_start, flash_len;
876
877 static int cards_found = 0;
878 static int global_quad_port_a = 0; /* global ksp3 port a indication */
879 int i, err, pci_using_dac;
880 uint16_t eeprom_data = 0;
881 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
882 if ((err = pci_enable_device(pdev)))
883 return err;
884
885 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
886 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
887 pci_using_dac = 1;
888 } else {
889 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
890 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
891 E1000_ERR("No usable DMA configuration, aborting\n");
892 goto err_dma;
893 }
894 pci_using_dac = 0;
895 }
896
897 if ((err = pci_request_regions(pdev, e1000_driver_name)))
898 goto err_pci_reg;
899
900 pci_set_master(pdev);
901
902 err = -ENOMEM;
903 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
904 if (!netdev)
905 goto err_alloc_etherdev;
906
907 SET_MODULE_OWNER(netdev);
908 SET_NETDEV_DEV(netdev, &pdev->dev);
909
910 pci_set_drvdata(pdev, netdev);
911 adapter = netdev_priv(netdev);
912 adapter->netdev = netdev;
913 adapter->pdev = pdev;
914 adapter->hw.back = adapter;
915 adapter->msg_enable = (1 << debug) - 1;
916
917 mmio_start = pci_resource_start(pdev, BAR_0);
918 mmio_len = pci_resource_len(pdev, BAR_0);
919
920 err = -EIO;
921 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
922 if (!adapter->hw.hw_addr)
923 goto err_ioremap;
924
925 for (i = BAR_1; i <= BAR_5; i++) {
926 if (pci_resource_len(pdev, i) == 0)
927 continue;
928 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
929 adapter->hw.io_base = pci_resource_start(pdev, i);
930 break;
931 }
932 }
933
934 netdev->open = &e1000_open;
935 netdev->stop = &e1000_close;
936 netdev->hard_start_xmit = &e1000_xmit_frame;
937 netdev->get_stats = &e1000_get_stats;
938 netdev->set_multicast_list = &e1000_set_multi;
939 netdev->set_mac_address = &e1000_set_mac;
940 netdev->change_mtu = &e1000_change_mtu;
941 netdev->do_ioctl = &e1000_ioctl;
942 e1000_set_ethtool_ops(netdev);
943 netdev->tx_timeout = &e1000_tx_timeout;
944 netdev->watchdog_timeo = 5 * HZ;
945 #ifdef CONFIG_E1000_NAPI
946 netdev->poll = &e1000_clean;
947 netdev->weight = 64;
948 #endif
949 netdev->vlan_rx_register = e1000_vlan_rx_register;
950 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
951 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953 netdev->poll_controller = e1000_netpoll;
954 #endif
955 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
956
957 netdev->mem_start = mmio_start;
958 netdev->mem_end = mmio_start + mmio_len;
959 netdev->base_addr = adapter->hw.io_base;
960
961 adapter->bd_number = cards_found;
962
963 /* setup the private structure */
964
965 if ((err = e1000_sw_init(adapter)))
966 goto err_sw_init;
967
968 err = -EIO;
969 /* Flash BAR mapping must happen after e1000_sw_init
970 * because it depends on mac_type */
971 if ((adapter->hw.mac_type == e1000_ich8lan) &&
972 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
973 flash_start = pci_resource_start(pdev, 1);
974 flash_len = pci_resource_len(pdev, 1);
975 adapter->hw.flash_address = ioremap(flash_start, flash_len);
976 if (!adapter->hw.flash_address)
977 goto err_flashmap;
978 }
979
980 if (e1000_check_phy_reset_block(&adapter->hw))
981 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
982
983 if (adapter->hw.mac_type >= e1000_82543) {
984 netdev->features = NETIF_F_SG |
985 NETIF_F_HW_CSUM |
986 NETIF_F_HW_VLAN_TX |
987 NETIF_F_HW_VLAN_RX |
988 NETIF_F_HW_VLAN_FILTER;
989 if (adapter->hw.mac_type == e1000_ich8lan)
990 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
991 }
992
993 if ((adapter->hw.mac_type >= e1000_82544) &&
994 (adapter->hw.mac_type != e1000_82547))
995 netdev->features |= NETIF_F_TSO;
996
997 if (adapter->hw.mac_type > e1000_82547_rev_2)
998 netdev->features |= NETIF_F_TSO6;
999 if (pci_using_dac)
1000 netdev->features |= NETIF_F_HIGHDMA;
1001
1002 netdev->features |= NETIF_F_LLTX;
1003
1004 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1005
1006 /* initialize eeprom parameters */
1007
1008 if (e1000_init_eeprom_params(&adapter->hw)) {
1009 E1000_ERR("EEPROM initialization failed\n");
1010 goto err_eeprom;
1011 }
1012
1013 /* before reading the EEPROM, reset the controller to
1014 * put the device in a known good starting state */
1015
1016 e1000_reset_hw(&adapter->hw);
1017
1018 /* make sure the EEPROM is good */
1019
1020 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1021 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1022 goto err_eeprom;
1023 }
1024
1025 /* copy the MAC address out of the EEPROM */
1026
1027 if (e1000_read_mac_addr(&adapter->hw))
1028 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1029 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1030 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1031
1032 if (!is_valid_ether_addr(netdev->perm_addr)) {
1033 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1034 goto err_eeprom;
1035 }
1036
1037 e1000_get_bus_info(&adapter->hw);
1038
1039 init_timer(&adapter->tx_fifo_stall_timer);
1040 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1041 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1042
1043 init_timer(&adapter->watchdog_timer);
1044 adapter->watchdog_timer.function = &e1000_watchdog;
1045 adapter->watchdog_timer.data = (unsigned long) adapter;
1046
1047 init_timer(&adapter->phy_info_timer);
1048 adapter->phy_info_timer.function = &e1000_update_phy_info;
1049 adapter->phy_info_timer.data = (unsigned long) adapter;
1050
1051 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1052
1053 e1000_check_options(adapter);
1054
1055 /* Initial Wake on LAN setting
1056 * If APM wake is enabled in the EEPROM,
1057 * enable the ACPI Magic Packet filter
1058 */
1059
1060 switch (adapter->hw.mac_type) {
1061 case e1000_82542_rev2_0:
1062 case e1000_82542_rev2_1:
1063 case e1000_82543:
1064 break;
1065 case e1000_82544:
1066 e1000_read_eeprom(&adapter->hw,
1067 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1068 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1069 break;
1070 case e1000_ich8lan:
1071 e1000_read_eeprom(&adapter->hw,
1072 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1073 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1074 break;
1075 case e1000_82546:
1076 case e1000_82546_rev_3:
1077 case e1000_82571:
1078 case e1000_80003es2lan:
1079 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1080 e1000_read_eeprom(&adapter->hw,
1081 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1082 break;
1083 }
1084 /* Fall Through */
1085 default:
1086 e1000_read_eeprom(&adapter->hw,
1087 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1088 break;
1089 }
1090 if (eeprom_data & eeprom_apme_mask)
1091 adapter->eeprom_wol |= E1000_WUFC_MAG;
1092
1093 /* now that we have the eeprom settings, apply the special cases
1094 * where the eeprom may be wrong or the board simply won't support
1095 * wake on lan on a particular port */
1096 switch (pdev->device) {
1097 case E1000_DEV_ID_82546GB_PCIE:
1098 adapter->eeprom_wol = 0;
1099 break;
1100 case E1000_DEV_ID_82546EB_FIBER:
1101 case E1000_DEV_ID_82546GB_FIBER:
1102 case E1000_DEV_ID_82571EB_FIBER:
1103 /* Wake events only supported on port A for dual fiber
1104 * regardless of eeprom setting */
1105 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1106 adapter->eeprom_wol = 0;
1107 break;
1108 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1109 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1110 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1111 /* if quad port adapter, disable WoL on all but port A */
1112 if (global_quad_port_a != 0)
1113 adapter->eeprom_wol = 0;
1114 else
1115 adapter->quad_port_a = 1;
1116 /* Reset for multiple quad port adapters */
1117 if (++global_quad_port_a == 4)
1118 global_quad_port_a = 0;
1119 break;
1120 }
1121
1122 /* initialize the wol settings based on the eeprom settings */
1123 adapter->wol = adapter->eeprom_wol;
1124
1125 /* print bus type/speed/width info */
1126 {
1127 struct e1000_hw *hw = &adapter->hw;
1128 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1129 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1130 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1131 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1132 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1133 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1134 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1135 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1136 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1137 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1138 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1139 "32-bit"));
1140 }
1141
1142 for (i = 0; i < 6; i++)
1143 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1144
1145 /* reset the hardware with the new settings */
1146 e1000_reset(adapter);
1147
1148 /* If the controller is 82573 and f/w is AMT, do not set
1149 * DRV_LOAD until the interface is up. For all other cases,
1150 * let the f/w know that the h/w is now under the control
1151 * of the driver. */
1152 if (adapter->hw.mac_type != e1000_82573 ||
1153 !e1000_check_mng_mode(&adapter->hw))
1154 e1000_get_hw_control(adapter);
1155
1156 strcpy(netdev->name, "eth%d");
1157 if ((err = register_netdev(netdev)))
1158 goto err_register;
1159
1160 /* tell the stack to leave us alone until e1000_open() is called */
1161 netif_carrier_off(netdev);
1162 netif_stop_queue(netdev);
1163
1164 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1165
1166 cards_found++;
1167 return 0;
1168
1169 err_register:
1170 e1000_release_hw_control(adapter);
1171 err_eeprom:
1172 if (!e1000_check_phy_reset_block(&adapter->hw))
1173 e1000_phy_hw_reset(&adapter->hw);
1174
1175 if (adapter->hw.flash_address)
1176 iounmap(adapter->hw.flash_address);
1177 err_flashmap:
1178 #ifdef CONFIG_E1000_NAPI
1179 for (i = 0; i < adapter->num_rx_queues; i++)
1180 dev_put(&adapter->polling_netdev[i]);
1181 #endif
1182
1183 kfree(adapter->tx_ring);
1184 kfree(adapter->rx_ring);
1185 #ifdef CONFIG_E1000_NAPI
1186 kfree(adapter->polling_netdev);
1187 #endif
1188 err_sw_init:
1189 iounmap(adapter->hw.hw_addr);
1190 err_ioremap:
1191 free_netdev(netdev);
1192 err_alloc_etherdev:
1193 pci_release_regions(pdev);
1194 err_pci_reg:
1195 err_dma:
1196 pci_disable_device(pdev);
1197 return err;
1198 }
1199
1200 /**
1201 * e1000_remove - Device Removal Routine
1202 * @pdev: PCI device information struct
1203 *
1204 * e1000_remove is called by the PCI subsystem to alert the driver
1205 * that it should release a PCI device. The could be caused by a
1206 * Hot-Plug event, or because the driver is going to be removed from
1207 * memory.
1208 **/
1209
1210 static void __devexit
1211 e1000_remove(struct pci_dev *pdev)
1212 {
1213 struct net_device *netdev = pci_get_drvdata(pdev);
1214 struct e1000_adapter *adapter = netdev_priv(netdev);
1215 #ifdef CONFIG_E1000_NAPI
1216 int i;
1217 #endif
1218
1219 flush_scheduled_work();
1220
1221 e1000_release_manageability(adapter);
1222
1223 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1224 * would have already happened in close and is redundant. */
1225 e1000_release_hw_control(adapter);
1226
1227 unregister_netdev(netdev);
1228 #ifdef CONFIG_E1000_NAPI
1229 for (i = 0; i < adapter->num_rx_queues; i++)
1230 dev_put(&adapter->polling_netdev[i]);
1231 #endif
1232
1233 if (!e1000_check_phy_reset_block(&adapter->hw))
1234 e1000_phy_hw_reset(&adapter->hw);
1235
1236 kfree(adapter->tx_ring);
1237 kfree(adapter->rx_ring);
1238 #ifdef CONFIG_E1000_NAPI
1239 kfree(adapter->polling_netdev);
1240 #endif
1241
1242 iounmap(adapter->hw.hw_addr);
1243 if (adapter->hw.flash_address)
1244 iounmap(adapter->hw.flash_address);
1245 pci_release_regions(pdev);
1246
1247 free_netdev(netdev);
1248
1249 pci_disable_device(pdev);
1250 }
1251
1252 /**
1253 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1254 * @adapter: board private structure to initialize
1255 *
1256 * e1000_sw_init initializes the Adapter private data structure.
1257 * Fields are initialized based on PCI device information and
1258 * OS network device settings (MTU size).
1259 **/
1260
1261 static int __devinit
1262 e1000_sw_init(struct e1000_adapter *adapter)
1263 {
1264 struct e1000_hw *hw = &adapter->hw;
1265 struct net_device *netdev = adapter->netdev;
1266 struct pci_dev *pdev = adapter->pdev;
1267 #ifdef CONFIG_E1000_NAPI
1268 int i;
1269 #endif
1270
1271 /* PCI config space info */
1272
1273 hw->vendor_id = pdev->vendor;
1274 hw->device_id = pdev->device;
1275 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1276 hw->subsystem_id = pdev->subsystem_device;
1277
1278 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1279
1280 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1281
1282 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1283 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1284 hw->max_frame_size = netdev->mtu +
1285 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1286 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1287
1288 /* identify the MAC */
1289
1290 if (e1000_set_mac_type(hw)) {
1291 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1292 return -EIO;
1293 }
1294
1295 switch (hw->mac_type) {
1296 default:
1297 break;
1298 case e1000_82541:
1299 case e1000_82547:
1300 case e1000_82541_rev_2:
1301 case e1000_82547_rev_2:
1302 hw->phy_init_script = 1;
1303 break;
1304 }
1305
1306 e1000_set_media_type(hw);
1307
1308 hw->wait_autoneg_complete = FALSE;
1309 hw->tbi_compatibility_en = TRUE;
1310 hw->adaptive_ifs = TRUE;
1311
1312 /* Copper options */
1313
1314 if (hw->media_type == e1000_media_type_copper) {
1315 hw->mdix = AUTO_ALL_MODES;
1316 hw->disable_polarity_correction = FALSE;
1317 hw->master_slave = E1000_MASTER_SLAVE;
1318 }
1319
1320 adapter->num_tx_queues = 1;
1321 adapter->num_rx_queues = 1;
1322
1323 if (e1000_alloc_queues(adapter)) {
1324 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1325 return -ENOMEM;
1326 }
1327
1328 #ifdef CONFIG_E1000_NAPI
1329 for (i = 0; i < adapter->num_rx_queues; i++) {
1330 adapter->polling_netdev[i].priv = adapter;
1331 adapter->polling_netdev[i].poll = &e1000_clean;
1332 adapter->polling_netdev[i].weight = 64;
1333 dev_hold(&adapter->polling_netdev[i]);
1334 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1335 }
1336 spin_lock_init(&adapter->tx_queue_lock);
1337 #endif
1338
1339 atomic_set(&adapter->irq_sem, 1);
1340 spin_lock_init(&adapter->stats_lock);
1341
1342 set_bit(__E1000_DOWN, &adapter->flags);
1343
1344 return 0;
1345 }
1346
1347 /**
1348 * e1000_alloc_queues - Allocate memory for all rings
1349 * @adapter: board private structure to initialize
1350 *
1351 * We allocate one ring per queue at run-time since we don't know the
1352 * number of queues at compile-time. The polling_netdev array is
1353 * intended for Multiqueue, but should work fine with a single queue.
1354 **/
1355
1356 static int __devinit
1357 e1000_alloc_queues(struct e1000_adapter *adapter)
1358 {
1359 int size;
1360
1361 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1362 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1363 if (!adapter->tx_ring)
1364 return -ENOMEM;
1365 memset(adapter->tx_ring, 0, size);
1366
1367 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1368 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1369 if (!adapter->rx_ring) {
1370 kfree(adapter->tx_ring);
1371 return -ENOMEM;
1372 }
1373 memset(adapter->rx_ring, 0, size);
1374
1375 #ifdef CONFIG_E1000_NAPI
1376 size = sizeof(struct net_device) * adapter->num_rx_queues;
1377 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1378 if (!adapter->polling_netdev) {
1379 kfree(adapter->tx_ring);
1380 kfree(adapter->rx_ring);
1381 return -ENOMEM;
1382 }
1383 memset(adapter->polling_netdev, 0, size);
1384 #endif
1385
1386 return E1000_SUCCESS;
1387 }
1388
1389 /**
1390 * e1000_open - Called when a network interface is made active
1391 * @netdev: network interface device structure
1392 *
1393 * Returns 0 on success, negative value on failure
1394 *
1395 * The open entry point is called when a network interface is made
1396 * active by the system (IFF_UP). At this point all resources needed
1397 * for transmit and receive operations are allocated, the interrupt
1398 * handler is registered with the OS, the watchdog timer is started,
1399 * and the stack is notified that the interface is ready.
1400 **/
1401
1402 static int
1403 e1000_open(struct net_device *netdev)
1404 {
1405 struct e1000_adapter *adapter = netdev_priv(netdev);
1406 int err;
1407
1408 /* disallow open during test */
1409 if (test_bit(__E1000_TESTING, &adapter->flags))
1410 return -EBUSY;
1411
1412 /* allocate transmit descriptors */
1413 if ((err = e1000_setup_all_tx_resources(adapter)))
1414 goto err_setup_tx;
1415
1416 /* allocate receive descriptors */
1417 if ((err = e1000_setup_all_rx_resources(adapter)))
1418 goto err_setup_rx;
1419
1420 err = e1000_request_irq(adapter);
1421 if (err)
1422 goto err_req_irq;
1423
1424 e1000_power_up_phy(adapter);
1425
1426 if ((err = e1000_up(adapter)))
1427 goto err_up;
1428 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1429 if ((adapter->hw.mng_cookie.status &
1430 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1431 e1000_update_mng_vlan(adapter);
1432 }
1433
1434 /* If AMT is enabled, let the firmware know that the network
1435 * interface is now open */
1436 if (adapter->hw.mac_type == e1000_82573 &&
1437 e1000_check_mng_mode(&adapter->hw))
1438 e1000_get_hw_control(adapter);
1439
1440 return E1000_SUCCESS;
1441
1442 err_up:
1443 e1000_power_down_phy(adapter);
1444 e1000_free_irq(adapter);
1445 err_req_irq:
1446 e1000_free_all_rx_resources(adapter);
1447 err_setup_rx:
1448 e1000_free_all_tx_resources(adapter);
1449 err_setup_tx:
1450 e1000_reset(adapter);
1451
1452 return err;
1453 }
1454
1455 /**
1456 * e1000_close - Disables a network interface
1457 * @netdev: network interface device structure
1458 *
1459 * Returns 0, this is not allowed to fail
1460 *
1461 * The close entry point is called when an interface is de-activated
1462 * by the OS. The hardware is still under the drivers control, but
1463 * needs to be disabled. A global MAC reset is issued to stop the
1464 * hardware, and all transmit and receive resources are freed.
1465 **/
1466
1467 static int
1468 e1000_close(struct net_device *netdev)
1469 {
1470 struct e1000_adapter *adapter = netdev_priv(netdev);
1471
1472 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1473 e1000_down(adapter);
1474 e1000_power_down_phy(adapter);
1475 e1000_free_irq(adapter);
1476
1477 e1000_free_all_tx_resources(adapter);
1478 e1000_free_all_rx_resources(adapter);
1479
1480 /* kill manageability vlan ID if supported, but not if a vlan with
1481 * the same ID is registered on the host OS (let 8021q kill it) */
1482 if ((adapter->hw.mng_cookie.status &
1483 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1484 !(adapter->vlgrp &&
1485 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1486 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1487 }
1488
1489 /* If AMT is enabled, let the firmware know that the network
1490 * interface is now closed */
1491 if (adapter->hw.mac_type == e1000_82573 &&
1492 e1000_check_mng_mode(&adapter->hw))
1493 e1000_release_hw_control(adapter);
1494
1495 return 0;
1496 }
1497
1498 /**
1499 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1500 * @adapter: address of board private structure
1501 * @start: address of beginning of memory
1502 * @len: length of memory
1503 **/
1504 static boolean_t
1505 e1000_check_64k_bound(struct e1000_adapter *adapter,
1506 void *start, unsigned long len)
1507 {
1508 unsigned long begin = (unsigned long) start;
1509 unsigned long end = begin + len;
1510
1511 /* First rev 82545 and 82546 need to not allow any memory
1512 * write location to cross 64k boundary due to errata 23 */
1513 if (adapter->hw.mac_type == e1000_82545 ||
1514 adapter->hw.mac_type == e1000_82546) {
1515 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1516 }
1517
1518 return TRUE;
1519 }
1520
1521 /**
1522 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1523 * @adapter: board private structure
1524 * @txdr: tx descriptor ring (for a specific queue) to setup
1525 *
1526 * Return 0 on success, negative on failure
1527 **/
1528
1529 static int
1530 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1531 struct e1000_tx_ring *txdr)
1532 {
1533 struct pci_dev *pdev = adapter->pdev;
1534 int size;
1535
1536 size = sizeof(struct e1000_buffer) * txdr->count;
1537 txdr->buffer_info = vmalloc(size);
1538 if (!txdr->buffer_info) {
1539 DPRINTK(PROBE, ERR,
1540 "Unable to allocate memory for the transmit descriptor ring\n");
1541 return -ENOMEM;
1542 }
1543 memset(txdr->buffer_info, 0, size);
1544
1545 /* round up to nearest 4K */
1546
1547 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1548 E1000_ROUNDUP(txdr->size, 4096);
1549
1550 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1551 if (!txdr->desc) {
1552 setup_tx_desc_die:
1553 vfree(txdr->buffer_info);
1554 DPRINTK(PROBE, ERR,
1555 "Unable to allocate memory for the transmit descriptor ring\n");
1556 return -ENOMEM;
1557 }
1558
1559 /* Fix for errata 23, can't cross 64kB boundary */
1560 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1561 void *olddesc = txdr->desc;
1562 dma_addr_t olddma = txdr->dma;
1563 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1564 "at %p\n", txdr->size, txdr->desc);
1565 /* Try again, without freeing the previous */
1566 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1567 /* Failed allocation, critical failure */
1568 if (!txdr->desc) {
1569 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1570 goto setup_tx_desc_die;
1571 }
1572
1573 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1574 /* give up */
1575 pci_free_consistent(pdev, txdr->size, txdr->desc,
1576 txdr->dma);
1577 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1578 DPRINTK(PROBE, ERR,
1579 "Unable to allocate aligned memory "
1580 "for the transmit descriptor ring\n");
1581 vfree(txdr->buffer_info);
1582 return -ENOMEM;
1583 } else {
1584 /* Free old allocation, new allocation was successful */
1585 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1586 }
1587 }
1588 memset(txdr->desc, 0, txdr->size);
1589
1590 txdr->next_to_use = 0;
1591 txdr->next_to_clean = 0;
1592 spin_lock_init(&txdr->tx_lock);
1593
1594 return 0;
1595 }
1596
1597 /**
1598 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1599 * (Descriptors) for all queues
1600 * @adapter: board private structure
1601 *
1602 * Return 0 on success, negative on failure
1603 **/
1604
1605 int
1606 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1607 {
1608 int i, err = 0;
1609
1610 for (i = 0; i < adapter->num_tx_queues; i++) {
1611 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1612 if (err) {
1613 DPRINTK(PROBE, ERR,
1614 "Allocation for Tx Queue %u failed\n", i);
1615 for (i-- ; i >= 0; i--)
1616 e1000_free_tx_resources(adapter,
1617 &adapter->tx_ring[i]);
1618 break;
1619 }
1620 }
1621
1622 return err;
1623 }
1624
1625 /**
1626 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1627 * @adapter: board private structure
1628 *
1629 * Configure the Tx unit of the MAC after a reset.
1630 **/
1631
1632 static void
1633 e1000_configure_tx(struct e1000_adapter *adapter)
1634 {
1635 uint64_t tdba;
1636 struct e1000_hw *hw = &adapter->hw;
1637 uint32_t tdlen, tctl, tipg, tarc;
1638 uint32_t ipgr1, ipgr2;
1639
1640 /* Setup the HW Tx Head and Tail descriptor pointers */
1641
1642 switch (adapter->num_tx_queues) {
1643 case 1:
1644 default:
1645 tdba = adapter->tx_ring[0].dma;
1646 tdlen = adapter->tx_ring[0].count *
1647 sizeof(struct e1000_tx_desc);
1648 E1000_WRITE_REG(hw, TDLEN, tdlen);
1649 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1650 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1651 E1000_WRITE_REG(hw, TDT, 0);
1652 E1000_WRITE_REG(hw, TDH, 0);
1653 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1654 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1655 break;
1656 }
1657
1658 /* Set the default values for the Tx Inter Packet Gap timer */
1659 if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1660 (hw->media_type == e1000_media_type_fiber ||
1661 hw->media_type == e1000_media_type_internal_serdes))
1662 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1663 else
1664 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1665
1666 switch (hw->mac_type) {
1667 case e1000_82542_rev2_0:
1668 case e1000_82542_rev2_1:
1669 tipg = DEFAULT_82542_TIPG_IPGT;
1670 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1671 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1672 break;
1673 case e1000_80003es2lan:
1674 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1675 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1676 break;
1677 default:
1678 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1679 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1680 break;
1681 }
1682 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1683 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1684 E1000_WRITE_REG(hw, TIPG, tipg);
1685
1686 /* Set the Tx Interrupt Delay register */
1687
1688 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1689 if (hw->mac_type >= e1000_82540)
1690 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1691
1692 /* Program the Transmit Control Register */
1693
1694 tctl = E1000_READ_REG(hw, TCTL);
1695 tctl &= ~E1000_TCTL_CT;
1696 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1697 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1698
1699 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1700 tarc = E1000_READ_REG(hw, TARC0);
1701 /* set the speed mode bit, we'll clear it if we're not at
1702 * gigabit link later */
1703 tarc |= (1 << 21);
1704 E1000_WRITE_REG(hw, TARC0, tarc);
1705 } else if (hw->mac_type == e1000_80003es2lan) {
1706 tarc = E1000_READ_REG(hw, TARC0);
1707 tarc |= 1;
1708 E1000_WRITE_REG(hw, TARC0, tarc);
1709 tarc = E1000_READ_REG(hw, TARC1);
1710 tarc |= 1;
1711 E1000_WRITE_REG(hw, TARC1, tarc);
1712 }
1713
1714 e1000_config_collision_dist(hw);
1715
1716 /* Setup Transmit Descriptor Settings for eop descriptor */
1717 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1718
1719 /* only set IDE if we are delaying interrupts using the timers */
1720 if (adapter->tx_int_delay)
1721 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1722
1723 if (hw->mac_type < e1000_82543)
1724 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1725 else
1726 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1727
1728 /* Cache if we're 82544 running in PCI-X because we'll
1729 * need this to apply a workaround later in the send path. */
1730 if (hw->mac_type == e1000_82544 &&
1731 hw->bus_type == e1000_bus_type_pcix)
1732 adapter->pcix_82544 = 1;
1733
1734 E1000_WRITE_REG(hw, TCTL, tctl);
1735
1736 }
1737
1738 /**
1739 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1740 * @adapter: board private structure
1741 * @rxdr: rx descriptor ring (for a specific queue) to setup
1742 *
1743 * Returns 0 on success, negative on failure
1744 **/
1745
1746 static int
1747 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1748 struct e1000_rx_ring *rxdr)
1749 {
1750 struct pci_dev *pdev = adapter->pdev;
1751 int size, desc_len;
1752
1753 size = sizeof(struct e1000_buffer) * rxdr->count;
1754 rxdr->buffer_info = vmalloc(size);
1755 if (!rxdr->buffer_info) {
1756 DPRINTK(PROBE, ERR,
1757 "Unable to allocate memory for the receive descriptor ring\n");
1758 return -ENOMEM;
1759 }
1760 memset(rxdr->buffer_info, 0, size);
1761
1762 size = sizeof(struct e1000_ps_page) * rxdr->count;
1763 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1764 if (!rxdr->ps_page) {
1765 vfree(rxdr->buffer_info);
1766 DPRINTK(PROBE, ERR,
1767 "Unable to allocate memory for the receive descriptor ring\n");
1768 return -ENOMEM;
1769 }
1770 memset(rxdr->ps_page, 0, size);
1771
1772 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1773 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1774 if (!rxdr->ps_page_dma) {
1775 vfree(rxdr->buffer_info);
1776 kfree(rxdr->ps_page);
1777 DPRINTK(PROBE, ERR,
1778 "Unable to allocate memory for the receive descriptor ring\n");
1779 return -ENOMEM;
1780 }
1781 memset(rxdr->ps_page_dma, 0, size);
1782
1783 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1784 desc_len = sizeof(struct e1000_rx_desc);
1785 else
1786 desc_len = sizeof(union e1000_rx_desc_packet_split);
1787
1788 /* Round up to nearest 4K */
1789
1790 rxdr->size = rxdr->count * desc_len;
1791 E1000_ROUNDUP(rxdr->size, 4096);
1792
1793 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1794
1795 if (!rxdr->desc) {
1796 DPRINTK(PROBE, ERR,
1797 "Unable to allocate memory for the receive descriptor ring\n");
1798 setup_rx_desc_die:
1799 vfree(rxdr->buffer_info);
1800 kfree(rxdr->ps_page);
1801 kfree(rxdr->ps_page_dma);
1802 return -ENOMEM;
1803 }
1804
1805 /* Fix for errata 23, can't cross 64kB boundary */
1806 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1807 void *olddesc = rxdr->desc;
1808 dma_addr_t olddma = rxdr->dma;
1809 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1810 "at %p\n", rxdr->size, rxdr->desc);
1811 /* Try again, without freeing the previous */
1812 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1813 /* Failed allocation, critical failure */
1814 if (!rxdr->desc) {
1815 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1816 DPRINTK(PROBE, ERR,
1817 "Unable to allocate memory "
1818 "for the receive descriptor ring\n");
1819 goto setup_rx_desc_die;
1820 }
1821
1822 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1823 /* give up */
1824 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1825 rxdr->dma);
1826 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1827 DPRINTK(PROBE, ERR,
1828 "Unable to allocate aligned memory "
1829 "for the receive descriptor ring\n");
1830 goto setup_rx_desc_die;
1831 } else {
1832 /* Free old allocation, new allocation was successful */
1833 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1834 }
1835 }
1836 memset(rxdr->desc, 0, rxdr->size);
1837
1838 rxdr->next_to_clean = 0;
1839 rxdr->next_to_use = 0;
1840
1841 return 0;
1842 }
1843
1844 /**
1845 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1846 * (Descriptors) for all queues
1847 * @adapter: board private structure
1848 *
1849 * Return 0 on success, negative on failure
1850 **/
1851
1852 int
1853 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1854 {
1855 int i, err = 0;
1856
1857 for (i = 0; i < adapter->num_rx_queues; i++) {
1858 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1859 if (err) {
1860 DPRINTK(PROBE, ERR,
1861 "Allocation for Rx Queue %u failed\n", i);
1862 for (i-- ; i >= 0; i--)
1863 e1000_free_rx_resources(adapter,
1864 &adapter->rx_ring[i]);
1865 break;
1866 }
1867 }
1868
1869 return err;
1870 }
1871
1872 /**
1873 * e1000_setup_rctl - configure the receive control registers
1874 * @adapter: Board private structure
1875 **/
1876 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1877 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1878 static void
1879 e1000_setup_rctl(struct e1000_adapter *adapter)
1880 {
1881 uint32_t rctl, rfctl;
1882 uint32_t psrctl = 0;
1883 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1884 uint32_t pages = 0;
1885 #endif
1886
1887 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1888
1889 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1890
1891 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1892 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1893 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1894
1895 if (adapter->hw.tbi_compatibility_on == 1)
1896 rctl |= E1000_RCTL_SBP;
1897 else
1898 rctl &= ~E1000_RCTL_SBP;
1899
1900 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1901 rctl &= ~E1000_RCTL_LPE;
1902 else
1903 rctl |= E1000_RCTL_LPE;
1904
1905 /* Setup buffer sizes */
1906 rctl &= ~E1000_RCTL_SZ_4096;
1907 rctl |= E1000_RCTL_BSEX;
1908 switch (adapter->rx_buffer_len) {
1909 case E1000_RXBUFFER_256:
1910 rctl |= E1000_RCTL_SZ_256;
1911 rctl &= ~E1000_RCTL_BSEX;
1912 break;
1913 case E1000_RXBUFFER_512:
1914 rctl |= E1000_RCTL_SZ_512;
1915 rctl &= ~E1000_RCTL_BSEX;
1916 break;
1917 case E1000_RXBUFFER_1024:
1918 rctl |= E1000_RCTL_SZ_1024;
1919 rctl &= ~E1000_RCTL_BSEX;
1920 break;
1921 case E1000_RXBUFFER_2048:
1922 default:
1923 rctl |= E1000_RCTL_SZ_2048;
1924 rctl &= ~E1000_RCTL_BSEX;
1925 break;
1926 case E1000_RXBUFFER_4096:
1927 rctl |= E1000_RCTL_SZ_4096;
1928 break;
1929 case E1000_RXBUFFER_8192:
1930 rctl |= E1000_RCTL_SZ_8192;
1931 break;
1932 case E1000_RXBUFFER_16384:
1933 rctl |= E1000_RCTL_SZ_16384;
1934 break;
1935 }
1936
1937 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1938 /* 82571 and greater support packet-split where the protocol
1939 * header is placed in skb->data and the packet data is
1940 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1941 * In the case of a non-split, skb->data is linearly filled,
1942 * followed by the page buffers. Therefore, skb->data is
1943 * sized to hold the largest protocol header.
1944 */
1945 /* allocations using alloc_page take too long for regular MTU
1946 * so only enable packet split for jumbo frames */
1947 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1948 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1949 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1950 adapter->rx_ps_pages = pages;
1951 else
1952 adapter->rx_ps_pages = 0;
1953 #endif
1954 if (adapter->rx_ps_pages) {
1955 /* Configure extra packet-split registers */
1956 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1957 rfctl |= E1000_RFCTL_EXTEN;
1958 /* disable packet split support for IPv6 extension headers,
1959 * because some malformed IPv6 headers can hang the RX */
1960 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1961 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1962
1963 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1964
1965 rctl |= E1000_RCTL_DTYP_PS;
1966
1967 psrctl |= adapter->rx_ps_bsize0 >>
1968 E1000_PSRCTL_BSIZE0_SHIFT;
1969
1970 switch (adapter->rx_ps_pages) {
1971 case 3:
1972 psrctl |= PAGE_SIZE <<
1973 E1000_PSRCTL_BSIZE3_SHIFT;
1974 case 2:
1975 psrctl |= PAGE_SIZE <<
1976 E1000_PSRCTL_BSIZE2_SHIFT;
1977 case 1:
1978 psrctl |= PAGE_SIZE >>
1979 E1000_PSRCTL_BSIZE1_SHIFT;
1980 break;
1981 }
1982
1983 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1984 }
1985
1986 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1987 }
1988
1989 /**
1990 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1991 * @adapter: board private structure
1992 *
1993 * Configure the Rx unit of the MAC after a reset.
1994 **/
1995
1996 static void
1997 e1000_configure_rx(struct e1000_adapter *adapter)
1998 {
1999 uint64_t rdba;
2000 struct e1000_hw *hw = &adapter->hw;
2001 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2002
2003 if (adapter->rx_ps_pages) {
2004 /* this is a 32 byte descriptor */
2005 rdlen = adapter->rx_ring[0].count *
2006 sizeof(union e1000_rx_desc_packet_split);
2007 adapter->clean_rx = e1000_clean_rx_irq_ps;
2008 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2009 } else {
2010 rdlen = adapter->rx_ring[0].count *
2011 sizeof(struct e1000_rx_desc);
2012 adapter->clean_rx = e1000_clean_rx_irq;
2013 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2014 }
2015
2016 /* disable receives while setting up the descriptors */
2017 rctl = E1000_READ_REG(hw, RCTL);
2018 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2019
2020 /* set the Receive Delay Timer Register */
2021 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2022
2023 if (hw->mac_type >= e1000_82540) {
2024 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2025 if (adapter->itr_setting != 0)
2026 E1000_WRITE_REG(hw, ITR,
2027 1000000000 / (adapter->itr * 256));
2028 }
2029
2030 if (hw->mac_type >= e1000_82571) {
2031 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2032 /* Reset delay timers after every interrupt */
2033 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2034 #ifdef CONFIG_E1000_NAPI
2035 /* Auto-Mask interrupts upon ICR access */
2036 ctrl_ext |= E1000_CTRL_EXT_IAME;
2037 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2038 #endif
2039 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2040 E1000_WRITE_FLUSH(hw);
2041 }
2042
2043 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2044 * the Base and Length of the Rx Descriptor Ring */
2045 switch (adapter->num_rx_queues) {
2046 case 1:
2047 default:
2048 rdba = adapter->rx_ring[0].dma;
2049 E1000_WRITE_REG(hw, RDLEN, rdlen);
2050 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2051 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2052 E1000_WRITE_REG(hw, RDT, 0);
2053 E1000_WRITE_REG(hw, RDH, 0);
2054 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2055 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2056 break;
2057 }
2058
2059 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2060 if (hw->mac_type >= e1000_82543) {
2061 rxcsum = E1000_READ_REG(hw, RXCSUM);
2062 if (adapter->rx_csum == TRUE) {
2063 rxcsum |= E1000_RXCSUM_TUOFL;
2064
2065 /* Enable 82571 IPv4 payload checksum for UDP fragments
2066 * Must be used in conjunction with packet-split. */
2067 if ((hw->mac_type >= e1000_82571) &&
2068 (adapter->rx_ps_pages)) {
2069 rxcsum |= E1000_RXCSUM_IPPCSE;
2070 }
2071 } else {
2072 rxcsum &= ~E1000_RXCSUM_TUOFL;
2073 /* don't need to clear IPPCSE as it defaults to 0 */
2074 }
2075 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2076 }
2077
2078 /* enable early receives on 82573, only takes effect if using > 2048
2079 * byte total frame size. for example only for jumbo frames */
2080 #define E1000_ERT_2048 0x100
2081 if (hw->mac_type == e1000_82573)
2082 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2083
2084 /* Enable Receives */
2085 E1000_WRITE_REG(hw, RCTL, rctl);
2086 }
2087
2088 /**
2089 * e1000_free_tx_resources - Free Tx Resources per Queue
2090 * @adapter: board private structure
2091 * @tx_ring: Tx descriptor ring for a specific queue
2092 *
2093 * Free all transmit software resources
2094 **/
2095
2096 static void
2097 e1000_free_tx_resources(struct e1000_adapter *adapter,
2098 struct e1000_tx_ring *tx_ring)
2099 {
2100 struct pci_dev *pdev = adapter->pdev;
2101
2102 e1000_clean_tx_ring(adapter, tx_ring);
2103
2104 vfree(tx_ring->buffer_info);
2105 tx_ring->buffer_info = NULL;
2106
2107 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2108
2109 tx_ring->desc = NULL;
2110 }
2111
2112 /**
2113 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2114 * @adapter: board private structure
2115 *
2116 * Free all transmit software resources
2117 **/
2118
2119 void
2120 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2121 {
2122 int i;
2123
2124 for (i = 0; i < adapter->num_tx_queues; i++)
2125 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2126 }
2127
2128 static void
2129 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2130 struct e1000_buffer *buffer_info)
2131 {
2132 if (buffer_info->dma) {
2133 pci_unmap_page(adapter->pdev,
2134 buffer_info->dma,
2135 buffer_info->length,
2136 PCI_DMA_TODEVICE);
2137 buffer_info->dma = 0;
2138 }
2139 if (buffer_info->skb) {
2140 dev_kfree_skb_any(buffer_info->skb);
2141 buffer_info->skb = NULL;
2142 }
2143 /* buffer_info must be completely set up in the transmit path */
2144 }
2145
2146 /**
2147 * e1000_clean_tx_ring - Free Tx Buffers
2148 * @adapter: board private structure
2149 * @tx_ring: ring to be cleaned
2150 **/
2151
2152 static void
2153 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2154 struct e1000_tx_ring *tx_ring)
2155 {
2156 struct e1000_buffer *buffer_info;
2157 unsigned long size;
2158 unsigned int i;
2159
2160 /* Free all the Tx ring sk_buffs */
2161
2162 for (i = 0; i < tx_ring->count; i++) {
2163 buffer_info = &tx_ring->buffer_info[i];
2164 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2165 }
2166
2167 size = sizeof(struct e1000_buffer) * tx_ring->count;
2168 memset(tx_ring->buffer_info, 0, size);
2169
2170 /* Zero out the descriptor ring */
2171
2172 memset(tx_ring->desc, 0, tx_ring->size);
2173
2174 tx_ring->next_to_use = 0;
2175 tx_ring->next_to_clean = 0;
2176 tx_ring->last_tx_tso = 0;
2177
2178 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2179 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2180 }
2181
2182 /**
2183 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2184 * @adapter: board private structure
2185 **/
2186
2187 static void
2188 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2189 {
2190 int i;
2191
2192 for (i = 0; i < adapter->num_tx_queues; i++)
2193 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2194 }
2195
2196 /**
2197 * e1000_free_rx_resources - Free Rx Resources
2198 * @adapter: board private structure
2199 * @rx_ring: ring to clean the resources from
2200 *
2201 * Free all receive software resources
2202 **/
2203
2204 static void
2205 e1000_free_rx_resources(struct e1000_adapter *adapter,
2206 struct e1000_rx_ring *rx_ring)
2207 {
2208 struct pci_dev *pdev = adapter->pdev;
2209
2210 e1000_clean_rx_ring(adapter, rx_ring);
2211
2212 vfree(rx_ring->buffer_info);
2213 rx_ring->buffer_info = NULL;
2214 kfree(rx_ring->ps_page);
2215 rx_ring->ps_page = NULL;
2216 kfree(rx_ring->ps_page_dma);
2217 rx_ring->ps_page_dma = NULL;
2218
2219 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2220
2221 rx_ring->desc = NULL;
2222 }
2223
2224 /**
2225 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2226 * @adapter: board private structure
2227 *
2228 * Free all receive software resources
2229 **/
2230
2231 void
2232 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2233 {
2234 int i;
2235
2236 for (i = 0; i < adapter->num_rx_queues; i++)
2237 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2238 }
2239
2240 /**
2241 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2242 * @adapter: board private structure
2243 * @rx_ring: ring to free buffers from
2244 **/
2245
2246 static void
2247 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2248 struct e1000_rx_ring *rx_ring)
2249 {
2250 struct e1000_buffer *buffer_info;
2251 struct e1000_ps_page *ps_page;
2252 struct e1000_ps_page_dma *ps_page_dma;
2253 struct pci_dev *pdev = adapter->pdev;
2254 unsigned long size;
2255 unsigned int i, j;
2256
2257 /* Free all the Rx ring sk_buffs */
2258 for (i = 0; i < rx_ring->count; i++) {
2259 buffer_info = &rx_ring->buffer_info[i];
2260 if (buffer_info->skb) {
2261 pci_unmap_single(pdev,
2262 buffer_info->dma,
2263 buffer_info->length,
2264 PCI_DMA_FROMDEVICE);
2265
2266 dev_kfree_skb(buffer_info->skb);
2267 buffer_info->skb = NULL;
2268 }
2269 ps_page = &rx_ring->ps_page[i];
2270 ps_page_dma = &rx_ring->ps_page_dma[i];
2271 for (j = 0; j < adapter->rx_ps_pages; j++) {
2272 if (!ps_page->ps_page[j]) break;
2273 pci_unmap_page(pdev,
2274 ps_page_dma->ps_page_dma[j],
2275 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2276 ps_page_dma->ps_page_dma[j] = 0;
2277 put_page(ps_page->ps_page[j]);
2278 ps_page->ps_page[j] = NULL;
2279 }
2280 }
2281
2282 size = sizeof(struct e1000_buffer) * rx_ring->count;
2283 memset(rx_ring->buffer_info, 0, size);
2284 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2285 memset(rx_ring->ps_page, 0, size);
2286 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2287 memset(rx_ring->ps_page_dma, 0, size);
2288
2289 /* Zero out the descriptor ring */
2290
2291 memset(rx_ring->desc, 0, rx_ring->size);
2292
2293 rx_ring->next_to_clean = 0;
2294 rx_ring->next_to_use = 0;
2295
2296 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2297 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2298 }
2299
2300 /**
2301 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2302 * @adapter: board private structure
2303 **/
2304
2305 static void
2306 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2307 {
2308 int i;
2309
2310 for (i = 0; i < adapter->num_rx_queues; i++)
2311 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2312 }
2313
2314 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2315 * and memory write and invalidate disabled for certain operations
2316 */
2317 static void
2318 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2319 {
2320 struct net_device *netdev = adapter->netdev;
2321 uint32_t rctl;
2322
2323 e1000_pci_clear_mwi(&adapter->hw);
2324
2325 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2326 rctl |= E1000_RCTL_RST;
2327 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2328 E1000_WRITE_FLUSH(&adapter->hw);
2329 mdelay(5);
2330
2331 if (netif_running(netdev))
2332 e1000_clean_all_rx_rings(adapter);
2333 }
2334
2335 static void
2336 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2337 {
2338 struct net_device *netdev = adapter->netdev;
2339 uint32_t rctl;
2340
2341 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2342 rctl &= ~E1000_RCTL_RST;
2343 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2344 E1000_WRITE_FLUSH(&adapter->hw);
2345 mdelay(5);
2346
2347 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2348 e1000_pci_set_mwi(&adapter->hw);
2349
2350 if (netif_running(netdev)) {
2351 /* No need to loop, because 82542 supports only 1 queue */
2352 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2353 e1000_configure_rx(adapter);
2354 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2355 }
2356 }
2357
2358 /**
2359 * e1000_set_mac - Change the Ethernet Address of the NIC
2360 * @netdev: network interface device structure
2361 * @p: pointer to an address structure
2362 *
2363 * Returns 0 on success, negative on failure
2364 **/
2365
2366 static int
2367 e1000_set_mac(struct net_device *netdev, void *p)
2368 {
2369 struct e1000_adapter *adapter = netdev_priv(netdev);
2370 struct sockaddr *addr = p;
2371
2372 if (!is_valid_ether_addr(addr->sa_data))
2373 return -EADDRNOTAVAIL;
2374
2375 /* 82542 2.0 needs to be in reset to write receive address registers */
2376
2377 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2378 e1000_enter_82542_rst(adapter);
2379
2380 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2381 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2382
2383 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2384
2385 /* With 82571 controllers, LAA may be overwritten (with the default)
2386 * due to controller reset from the other port. */
2387 if (adapter->hw.mac_type == e1000_82571) {
2388 /* activate the work around */
2389 adapter->hw.laa_is_present = 1;
2390
2391 /* Hold a copy of the LAA in RAR[14] This is done so that
2392 * between the time RAR[0] gets clobbered and the time it
2393 * gets fixed (in e1000_watchdog), the actual LAA is in one
2394 * of the RARs and no incoming packets directed to this port
2395 * are dropped. Eventaully the LAA will be in RAR[0] and
2396 * RAR[14] */
2397 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2398 E1000_RAR_ENTRIES - 1);
2399 }
2400
2401 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2402 e1000_leave_82542_rst(adapter);
2403
2404 return 0;
2405 }
2406
2407 /**
2408 * e1000_set_multi - Multicast and Promiscuous mode set
2409 * @netdev: network interface device structure
2410 *
2411 * The set_multi entry point is called whenever the multicast address
2412 * list or the network interface flags are updated. This routine is
2413 * responsible for configuring the hardware for proper multicast,
2414 * promiscuous mode, and all-multi behavior.
2415 **/
2416
2417 static void
2418 e1000_set_multi(struct net_device *netdev)
2419 {
2420 struct e1000_adapter *adapter = netdev_priv(netdev);
2421 struct e1000_hw *hw = &adapter->hw;
2422 struct dev_mc_list *mc_ptr;
2423 uint32_t rctl;
2424 uint32_t hash_value;
2425 int i, rar_entries = E1000_RAR_ENTRIES;
2426 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2427 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2428 E1000_NUM_MTA_REGISTERS;
2429
2430 if (adapter->hw.mac_type == e1000_ich8lan)
2431 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2432
2433 /* reserve RAR[14] for LAA over-write work-around */
2434 if (adapter->hw.mac_type == e1000_82571)
2435 rar_entries--;
2436
2437 /* Check for Promiscuous and All Multicast modes */
2438
2439 rctl = E1000_READ_REG(hw, RCTL);
2440
2441 if (netdev->flags & IFF_PROMISC) {
2442 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2443 } else if (netdev->flags & IFF_ALLMULTI) {
2444 rctl |= E1000_RCTL_MPE;
2445 rctl &= ~E1000_RCTL_UPE;
2446 } else {
2447 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2448 }
2449
2450 E1000_WRITE_REG(hw, RCTL, rctl);
2451
2452 /* 82542 2.0 needs to be in reset to write receive address registers */
2453
2454 if (hw->mac_type == e1000_82542_rev2_0)
2455 e1000_enter_82542_rst(adapter);
2456
2457 /* load the first 14 multicast address into the exact filters 1-14
2458 * RAR 0 is used for the station MAC adddress
2459 * if there are not 14 addresses, go ahead and clear the filters
2460 * -- with 82571 controllers only 0-13 entries are filled here
2461 */
2462 mc_ptr = netdev->mc_list;
2463
2464 for (i = 1; i < rar_entries; i++) {
2465 if (mc_ptr) {
2466 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2467 mc_ptr = mc_ptr->next;
2468 } else {
2469 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2470 E1000_WRITE_FLUSH(hw);
2471 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2472 E1000_WRITE_FLUSH(hw);
2473 }
2474 }
2475
2476 /* clear the old settings from the multicast hash table */
2477
2478 for (i = 0; i < mta_reg_count; i++) {
2479 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2480 E1000_WRITE_FLUSH(hw);
2481 }
2482
2483 /* load any remaining addresses into the hash table */
2484
2485 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2486 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2487 e1000_mta_set(hw, hash_value);
2488 }
2489
2490 if (hw->mac_type == e1000_82542_rev2_0)
2491 e1000_leave_82542_rst(adapter);
2492 }
2493
2494 /* Need to wait a few seconds after link up to get diagnostic information from
2495 * the phy */
2496
2497 static void
2498 e1000_update_phy_info(unsigned long data)
2499 {
2500 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2501 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2502 }
2503
2504 /**
2505 * e1000_82547_tx_fifo_stall - Timer Call-back
2506 * @data: pointer to adapter cast into an unsigned long
2507 **/
2508
2509 static void
2510 e1000_82547_tx_fifo_stall(unsigned long data)
2511 {
2512 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2513 struct net_device *netdev = adapter->netdev;
2514 uint32_t tctl;
2515
2516 if (atomic_read(&adapter->tx_fifo_stall)) {
2517 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2518 E1000_READ_REG(&adapter->hw, TDH)) &&
2519 (E1000_READ_REG(&adapter->hw, TDFT) ==
2520 E1000_READ_REG(&adapter->hw, TDFH)) &&
2521 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2522 E1000_READ_REG(&adapter->hw, TDFHS))) {
2523 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2524 E1000_WRITE_REG(&adapter->hw, TCTL,
2525 tctl & ~E1000_TCTL_EN);
2526 E1000_WRITE_REG(&adapter->hw, TDFT,
2527 adapter->tx_head_addr);
2528 E1000_WRITE_REG(&adapter->hw, TDFH,
2529 adapter->tx_head_addr);
2530 E1000_WRITE_REG(&adapter->hw, TDFTS,
2531 adapter->tx_head_addr);
2532 E1000_WRITE_REG(&adapter->hw, TDFHS,
2533 adapter->tx_head_addr);
2534 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2535 E1000_WRITE_FLUSH(&adapter->hw);
2536
2537 adapter->tx_fifo_head = 0;
2538 atomic_set(&adapter->tx_fifo_stall, 0);
2539 netif_wake_queue(netdev);
2540 } else {
2541 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2542 }
2543 }
2544 }
2545
2546 /**
2547 * e1000_watchdog - Timer Call-back
2548 * @data: pointer to adapter cast into an unsigned long
2549 **/
2550 static void
2551 e1000_watchdog(unsigned long data)
2552 {
2553 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2554 struct net_device *netdev = adapter->netdev;
2555 struct e1000_tx_ring *txdr = adapter->tx_ring;
2556 uint32_t link, tctl;
2557 int32_t ret_val;
2558
2559 ret_val = e1000_check_for_link(&adapter->hw);
2560 if ((ret_val == E1000_ERR_PHY) &&
2561 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2562 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2563 /* See e1000_kumeran_lock_loss_workaround() */
2564 DPRINTK(LINK, INFO,
2565 "Gigabit has been disabled, downgrading speed\n");
2566 }
2567
2568 if (adapter->hw.mac_type == e1000_82573) {
2569 e1000_enable_tx_pkt_filtering(&adapter->hw);
2570 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2571 e1000_update_mng_vlan(adapter);
2572 }
2573
2574 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2575 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2576 link = !adapter->hw.serdes_link_down;
2577 else
2578 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2579
2580 if (link) {
2581 if (!netif_carrier_ok(netdev)) {
2582 uint32_t ctrl;
2583 boolean_t txb2b = 1;
2584 e1000_get_speed_and_duplex(&adapter->hw,
2585 &adapter->link_speed,
2586 &adapter->link_duplex);
2587
2588 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2589 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2590 "Flow Control: %s\n",
2591 adapter->link_speed,
2592 adapter->link_duplex == FULL_DUPLEX ?
2593 "Full Duplex" : "Half Duplex",
2594 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2595 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2596 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2597 E1000_CTRL_TFCE) ? "TX" : "None" )));
2598
2599 /* tweak tx_queue_len according to speed/duplex
2600 * and adjust the timeout factor */
2601 netdev->tx_queue_len = adapter->tx_queue_len;
2602 adapter->tx_timeout_factor = 1;
2603 switch (adapter->link_speed) {
2604 case SPEED_10:
2605 txb2b = 0;
2606 netdev->tx_queue_len = 10;
2607 adapter->tx_timeout_factor = 8;
2608 break;
2609 case SPEED_100:
2610 txb2b = 0;
2611 netdev->tx_queue_len = 100;
2612 /* maybe add some timeout factor ? */
2613 break;
2614 }
2615
2616 if ((adapter->hw.mac_type == e1000_82571 ||
2617 adapter->hw.mac_type == e1000_82572) &&
2618 txb2b == 0) {
2619 uint32_t tarc0;
2620 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2621 tarc0 &= ~(1 << 21);
2622 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2623 }
2624
2625 /* disable TSO for pcie and 10/100 speeds, to avoid
2626 * some hardware issues */
2627 if (!adapter->tso_force &&
2628 adapter->hw.bus_type == e1000_bus_type_pci_express){
2629 switch (adapter->link_speed) {
2630 case SPEED_10:
2631 case SPEED_100:
2632 DPRINTK(PROBE,INFO,
2633 "10/100 speed: disabling TSO\n");
2634 netdev->features &= ~NETIF_F_TSO;
2635 netdev->features &= ~NETIF_F_TSO6;
2636 break;
2637 case SPEED_1000:
2638 netdev->features |= NETIF_F_TSO;
2639 netdev->features |= NETIF_F_TSO6;
2640 break;
2641 default:
2642 /* oops */
2643 break;
2644 }
2645 }
2646
2647 /* enable transmits in the hardware, need to do this
2648 * after setting TARC0 */
2649 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2650 tctl |= E1000_TCTL_EN;
2651 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2652
2653 netif_carrier_on(netdev);
2654 netif_wake_queue(netdev);
2655 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2656 adapter->smartspeed = 0;
2657 } else {
2658 /* make sure the receive unit is started */
2659 if (adapter->hw.rx_needs_kicking) {
2660 struct e1000_hw *hw = &adapter->hw;
2661 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2662 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2663 }
2664 }
2665 } else {
2666 if (netif_carrier_ok(netdev)) {
2667 adapter->link_speed = 0;
2668 adapter->link_duplex = 0;
2669 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2670 netif_carrier_off(netdev);
2671 netif_stop_queue(netdev);
2672 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2673
2674 /* 80003ES2LAN workaround--
2675 * For packet buffer work-around on link down event;
2676 * disable receives in the ISR and
2677 * reset device here in the watchdog
2678 */
2679 if (adapter->hw.mac_type == e1000_80003es2lan)
2680 /* reset device */
2681 schedule_work(&adapter->reset_task);
2682 }
2683
2684 e1000_smartspeed(adapter);
2685 }
2686
2687 e1000_update_stats(adapter);
2688
2689 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2690 adapter->tpt_old = adapter->stats.tpt;
2691 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2692 adapter->colc_old = adapter->stats.colc;
2693
2694 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2695 adapter->gorcl_old = adapter->stats.gorcl;
2696 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2697 adapter->gotcl_old = adapter->stats.gotcl;
2698
2699 e1000_update_adaptive(&adapter->hw);
2700
2701 if (!netif_carrier_ok(netdev)) {
2702 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2703 /* We've lost link, so the controller stops DMA,
2704 * but we've got queued Tx work that's never going
2705 * to get done, so reset controller to flush Tx.
2706 * (Do the reset outside of interrupt context). */
2707 adapter->tx_timeout_count++;
2708 schedule_work(&adapter->reset_task);
2709 }
2710 }
2711
2712 /* Cause software interrupt to ensure rx ring is cleaned */
2713 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2714
2715 /* Force detection of hung controller every watchdog period */
2716 adapter->detect_tx_hung = TRUE;
2717
2718 /* With 82571 controllers, LAA may be overwritten due to controller
2719 * reset from the other port. Set the appropriate LAA in RAR[0] */
2720 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2721 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2722
2723 /* Reset the timer */
2724 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2725 }
2726
2727 enum latency_range {
2728 lowest_latency = 0,
2729 low_latency = 1,
2730 bulk_latency = 2,
2731 latency_invalid = 255
2732 };
2733
2734 /**
2735 * e1000_update_itr - update the dynamic ITR value based on statistics
2736 * Stores a new ITR value based on packets and byte
2737 * counts during the last interrupt. The advantage of per interrupt
2738 * computation is faster updates and more accurate ITR for the current
2739 * traffic pattern. Constants in this function were computed
2740 * based on theoretical maximum wire speed and thresholds were set based
2741 * on testing data as well as attempting to minimize response time
2742 * while increasing bulk throughput.
2743 * this functionality is controlled by the InterruptThrottleRate module
2744 * parameter (see e1000_param.c)
2745 * @adapter: pointer to adapter
2746 * @itr_setting: current adapter->itr
2747 * @packets: the number of packets during this measurement interval
2748 * @bytes: the number of bytes during this measurement interval
2749 **/
2750 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2751 uint16_t itr_setting,
2752 int packets,
2753 int bytes)
2754 {
2755 unsigned int retval = itr_setting;
2756 struct e1000_hw *hw = &adapter->hw;
2757
2758 if (unlikely(hw->mac_type < e1000_82540))
2759 goto update_itr_done;
2760
2761 if (packets == 0)
2762 goto update_itr_done;
2763
2764 switch (itr_setting) {
2765 case lowest_latency:
2766 /* jumbo frames get bulk treatment*/
2767 if (bytes/packets > 8000)
2768 retval = bulk_latency;
2769 else if ((packets < 5) && (bytes > 512))
2770 retval = low_latency;
2771 break;
2772 case low_latency: /* 50 usec aka 20000 ints/s */
2773 if (bytes > 10000) {
2774 /* jumbo frames need bulk latency setting */
2775 if (bytes/packets > 8000)
2776 retval = bulk_latency;
2777 else if ((packets < 10) || ((bytes/packets) > 1200))
2778 retval = bulk_latency;
2779 else if ((packets > 35))
2780 retval = lowest_latency;
2781 } else if (bytes/packets > 2000)
2782 retval = bulk_latency;
2783 else if (packets <= 2 && bytes < 512)
2784 retval = lowest_latency;
2785 break;
2786 case bulk_latency: /* 250 usec aka 4000 ints/s */
2787 if (bytes > 25000) {
2788 if (packets > 35)
2789 retval = low_latency;
2790 } else if (bytes < 6000) {
2791 retval = low_latency;
2792 }
2793 break;
2794 }
2795
2796 update_itr_done:
2797 return retval;
2798 }
2799
2800 static void e1000_set_itr(struct e1000_adapter *adapter)
2801 {
2802 struct e1000_hw *hw = &adapter->hw;
2803 uint16_t current_itr;
2804 uint32_t new_itr = adapter->itr;
2805
2806 if (unlikely(hw->mac_type < e1000_82540))
2807 return;
2808
2809 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2810 if (unlikely(adapter->link_speed != SPEED_1000)) {
2811 current_itr = 0;
2812 new_itr = 4000;
2813 goto set_itr_now;
2814 }
2815
2816 adapter->tx_itr = e1000_update_itr(adapter,
2817 adapter->tx_itr,
2818 adapter->total_tx_packets,
2819 adapter->total_tx_bytes);
2820 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2821 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2822 adapter->tx_itr = low_latency;
2823
2824 adapter->rx_itr = e1000_update_itr(adapter,
2825 adapter->rx_itr,
2826 adapter->total_rx_packets,
2827 adapter->total_rx_bytes);
2828 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2829 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2830 adapter->rx_itr = low_latency;
2831
2832 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2833
2834 switch (current_itr) {
2835 /* counts and packets in update_itr are dependent on these numbers */
2836 case lowest_latency:
2837 new_itr = 70000;
2838 break;
2839 case low_latency:
2840 new_itr = 20000; /* aka hwitr = ~200 */
2841 break;
2842 case bulk_latency:
2843 new_itr = 4000;
2844 break;
2845 default:
2846 break;
2847 }
2848
2849 set_itr_now:
2850 if (new_itr != adapter->itr) {
2851 /* this attempts to bias the interrupt rate towards Bulk
2852 * by adding intermediate steps when interrupt rate is
2853 * increasing */
2854 new_itr = new_itr > adapter->itr ?
2855 min(adapter->itr + (new_itr >> 2), new_itr) :
2856 new_itr;
2857 adapter->itr = new_itr;
2858 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2859 }
2860
2861 return;
2862 }
2863
2864 #define E1000_TX_FLAGS_CSUM 0x00000001
2865 #define E1000_TX_FLAGS_VLAN 0x00000002
2866 #define E1000_TX_FLAGS_TSO 0x00000004
2867 #define E1000_TX_FLAGS_IPV4 0x00000008
2868 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2869 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2870
2871 static int
2872 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2873 struct sk_buff *skb)
2874 {
2875 struct e1000_context_desc *context_desc;
2876 struct e1000_buffer *buffer_info;
2877 unsigned int i;
2878 uint32_t cmd_length = 0;
2879 uint16_t ipcse = 0, tucse, mss;
2880 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2881 int err;
2882
2883 if (skb_is_gso(skb)) {
2884 if (skb_header_cloned(skb)) {
2885 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2886 if (err)
2887 return err;
2888 }
2889
2890 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2891 mss = skb_shinfo(skb)->gso_size;
2892 if (skb->protocol == htons(ETH_P_IP)) {
2893 struct iphdr *iph = ip_hdr(skb);
2894 iph->tot_len = 0;
2895 iph->check = 0;
2896 skb->h.th->check = ~csum_tcpudp_magic(iph->saddr,
2897 iph->daddr, 0,
2898 IPPROTO_TCP, 0);
2899 cmd_length = E1000_TXD_CMD_IP;
2900 ipcse = skb->h.raw - skb->data - 1;
2901 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2902 skb->nh.ipv6h->payload_len = 0;
2903 skb->h.th->check =
2904 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2905 &skb->nh.ipv6h->daddr,
2906 0,
2907 IPPROTO_TCP,
2908 0);
2909 ipcse = 0;
2910 }
2911 ipcss = skb_network_offset(skb);
2912 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2913 tucss = skb->h.raw - skb->data;
2914 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2915 tucse = 0;
2916
2917 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2918 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2919
2920 i = tx_ring->next_to_use;
2921 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2922 buffer_info = &tx_ring->buffer_info[i];
2923
2924 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2925 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2926 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2927 context_desc->upper_setup.tcp_fields.tucss = tucss;
2928 context_desc->upper_setup.tcp_fields.tucso = tucso;
2929 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2930 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2931 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2932 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2933
2934 buffer_info->time_stamp = jiffies;
2935 buffer_info->next_to_watch = i;
2936
2937 if (++i == tx_ring->count) i = 0;
2938 tx_ring->next_to_use = i;
2939
2940 return TRUE;
2941 }
2942 return FALSE;
2943 }
2944
2945 static boolean_t
2946 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2947 struct sk_buff *skb)
2948 {
2949 struct e1000_context_desc *context_desc;
2950 struct e1000_buffer *buffer_info;
2951 unsigned int i;
2952 uint8_t css;
2953
2954 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2955 css = skb->h.raw - skb->data;
2956
2957 i = tx_ring->next_to_use;
2958 buffer_info = &tx_ring->buffer_info[i];
2959 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2960
2961 context_desc->lower_setup.ip_config = 0;
2962 context_desc->upper_setup.tcp_fields.tucss = css;
2963 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2964 context_desc->upper_setup.tcp_fields.tucse = 0;
2965 context_desc->tcp_seg_setup.data = 0;
2966 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2967
2968 buffer_info->time_stamp = jiffies;
2969 buffer_info->next_to_watch = i;
2970
2971 if (unlikely(++i == tx_ring->count)) i = 0;
2972 tx_ring->next_to_use = i;
2973
2974 return TRUE;
2975 }
2976
2977 return FALSE;
2978 }
2979
2980 #define E1000_MAX_TXD_PWR 12
2981 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2982
2983 static int
2984 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2985 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2986 unsigned int nr_frags, unsigned int mss)
2987 {
2988 struct e1000_buffer *buffer_info;
2989 unsigned int len = skb->len;
2990 unsigned int offset = 0, size, count = 0, i;
2991 unsigned int f;
2992 len -= skb->data_len;
2993
2994 i = tx_ring->next_to_use;
2995
2996 while (len) {
2997 buffer_info = &tx_ring->buffer_info[i];
2998 size = min(len, max_per_txd);
2999 /* Workaround for Controller erratum --
3000 * descriptor for non-tso packet in a linear SKB that follows a
3001 * tso gets written back prematurely before the data is fully
3002 * DMA'd to the controller */
3003 if (!skb->data_len && tx_ring->last_tx_tso &&
3004 !skb_is_gso(skb)) {
3005 tx_ring->last_tx_tso = 0;
3006 size -= 4;
3007 }
3008
3009 /* Workaround for premature desc write-backs
3010 * in TSO mode. Append 4-byte sentinel desc */
3011 if (unlikely(mss && !nr_frags && size == len && size > 8))
3012 size -= 4;
3013 /* work-around for errata 10 and it applies
3014 * to all controllers in PCI-X mode
3015 * The fix is to make sure that the first descriptor of a
3016 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3017 */
3018 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3019 (size > 2015) && count == 0))
3020 size = 2015;
3021
3022 /* Workaround for potential 82544 hang in PCI-X. Avoid
3023 * terminating buffers within evenly-aligned dwords. */
3024 if (unlikely(adapter->pcix_82544 &&
3025 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3026 size > 4))
3027 size -= 4;
3028
3029 buffer_info->length = size;
3030 buffer_info->dma =
3031 pci_map_single(adapter->pdev,
3032 skb->data + offset,
3033 size,
3034 PCI_DMA_TODEVICE);
3035 buffer_info->time_stamp = jiffies;
3036 buffer_info->next_to_watch = i;
3037
3038 len -= size;
3039 offset += size;
3040 count++;
3041 if (unlikely(++i == tx_ring->count)) i = 0;
3042 }
3043
3044 for (f = 0; f < nr_frags; f++) {
3045 struct skb_frag_struct *frag;
3046
3047 frag = &skb_shinfo(skb)->frags[f];
3048 len = frag->size;
3049 offset = frag->page_offset;
3050
3051 while (len) {
3052 buffer_info = &tx_ring->buffer_info[i];
3053 size = min(len, max_per_txd);
3054 /* Workaround for premature desc write-backs
3055 * in TSO mode. Append 4-byte sentinel desc */
3056 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3057 size -= 4;
3058 /* Workaround for potential 82544 hang in PCI-X.
3059 * Avoid terminating buffers within evenly-aligned
3060 * dwords. */
3061 if (unlikely(adapter->pcix_82544 &&
3062 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3063 size > 4))
3064 size -= 4;
3065
3066 buffer_info->length = size;
3067 buffer_info->dma =
3068 pci_map_page(adapter->pdev,
3069 frag->page,
3070 offset,
3071 size,
3072 PCI_DMA_TODEVICE);
3073 buffer_info->time_stamp = jiffies;
3074 buffer_info->next_to_watch = i;
3075
3076 len -= size;
3077 offset += size;
3078 count++;
3079 if (unlikely(++i == tx_ring->count)) i = 0;
3080 }
3081 }
3082
3083 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3084 tx_ring->buffer_info[i].skb = skb;
3085 tx_ring->buffer_info[first].next_to_watch = i;
3086
3087 return count;
3088 }
3089
3090 static void
3091 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3092 int tx_flags, int count)
3093 {
3094 struct e1000_tx_desc *tx_desc = NULL;
3095 struct e1000_buffer *buffer_info;
3096 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3097 unsigned int i;
3098
3099 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3100 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3101 E1000_TXD_CMD_TSE;
3102 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3103
3104 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3105 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3106 }
3107
3108 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3109 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3110 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3111 }
3112
3113 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3114 txd_lower |= E1000_TXD_CMD_VLE;
3115 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3116 }
3117
3118 i = tx_ring->next_to_use;
3119
3120 while (count--) {
3121 buffer_info = &tx_ring->buffer_info[i];
3122 tx_desc = E1000_TX_DESC(*tx_ring, i);
3123 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3124 tx_desc->lower.data =
3125 cpu_to_le32(txd_lower | buffer_info->length);
3126 tx_desc->upper.data = cpu_to_le32(txd_upper);
3127 if (unlikely(++i == tx_ring->count)) i = 0;
3128 }
3129
3130 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3131
3132 /* Force memory writes to complete before letting h/w
3133 * know there are new descriptors to fetch. (Only
3134 * applicable for weak-ordered memory model archs,
3135 * such as IA-64). */
3136 wmb();
3137
3138 tx_ring->next_to_use = i;
3139 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3140 /* we need this if more than one processor can write to our tail
3141 * at a time, it syncronizes IO on IA64/Altix systems */
3142 mmiowb();
3143 }
3144
3145 /**
3146 * 82547 workaround to avoid controller hang in half-duplex environment.
3147 * The workaround is to avoid queuing a large packet that would span
3148 * the internal Tx FIFO ring boundary by notifying the stack to resend
3149 * the packet at a later time. This gives the Tx FIFO an opportunity to
3150 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3151 * to the beginning of the Tx FIFO.
3152 **/
3153
3154 #define E1000_FIFO_HDR 0x10
3155 #define E1000_82547_PAD_LEN 0x3E0
3156
3157 static int
3158 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3159 {
3160 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3161 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3162
3163 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3164
3165 if (adapter->link_duplex != HALF_DUPLEX)
3166 goto no_fifo_stall_required;
3167
3168 if (atomic_read(&adapter->tx_fifo_stall))
3169 return 1;
3170
3171 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3172 atomic_set(&adapter->tx_fifo_stall, 1);
3173 return 1;
3174 }
3175
3176 no_fifo_stall_required:
3177 adapter->tx_fifo_head += skb_fifo_len;
3178 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3179 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3180 return 0;
3181 }
3182
3183 #define MINIMUM_DHCP_PACKET_SIZE 282
3184 static int
3185 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3186 {
3187 struct e1000_hw *hw = &adapter->hw;
3188 uint16_t length, offset;
3189 if (vlan_tx_tag_present(skb)) {
3190 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3191 ( adapter->hw.mng_cookie.status &
3192 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3193 return 0;
3194 }
3195 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3196 struct ethhdr *eth = (struct ethhdr *) skb->data;
3197 if ((htons(ETH_P_IP) == eth->h_proto)) {
3198 const struct iphdr *ip =
3199 (struct iphdr *)((uint8_t *)skb->data+14);
3200 if (IPPROTO_UDP == ip->protocol) {
3201 struct udphdr *udp =
3202 (struct udphdr *)((uint8_t *)ip +
3203 (ip->ihl << 2));
3204 if (ntohs(udp->dest) == 67) {
3205 offset = (uint8_t *)udp + 8 - skb->data;
3206 length = skb->len - offset;
3207
3208 return e1000_mng_write_dhcp_info(hw,
3209 (uint8_t *)udp + 8,
3210 length);
3211 }
3212 }
3213 }
3214 }
3215 return 0;
3216 }
3217
3218 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3219 {
3220 struct e1000_adapter *adapter = netdev_priv(netdev);
3221 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3222
3223 netif_stop_queue(netdev);
3224 /* Herbert's original patch had:
3225 * smp_mb__after_netif_stop_queue();
3226 * but since that doesn't exist yet, just open code it. */
3227 smp_mb();
3228
3229 /* We need to check again in a case another CPU has just
3230 * made room available. */
3231 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3232 return -EBUSY;
3233
3234 /* A reprieve! */
3235 netif_start_queue(netdev);
3236 ++adapter->restart_queue;
3237 return 0;
3238 }
3239
3240 static int e1000_maybe_stop_tx(struct net_device *netdev,
3241 struct e1000_tx_ring *tx_ring, int size)
3242 {
3243 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3244 return 0;
3245 return __e1000_maybe_stop_tx(netdev, size);
3246 }
3247
3248 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3249 static int
3250 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3251 {
3252 struct e1000_adapter *adapter = netdev_priv(netdev);
3253 struct e1000_tx_ring *tx_ring;
3254 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3255 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3256 unsigned int tx_flags = 0;
3257 unsigned int len = skb->len;
3258 unsigned long flags;
3259 unsigned int nr_frags = 0;
3260 unsigned int mss = 0;
3261 int count = 0;
3262 int tso;
3263 unsigned int f;
3264 len -= skb->data_len;
3265
3266 /* This goes back to the question of how to logically map a tx queue
3267 * to a flow. Right now, performance is impacted slightly negatively
3268 * if using multiple tx queues. If the stack breaks away from a
3269 * single qdisc implementation, we can look at this again. */
3270 tx_ring = adapter->tx_ring;
3271
3272 if (unlikely(skb->len <= 0)) {
3273 dev_kfree_skb_any(skb);
3274 return NETDEV_TX_OK;
3275 }
3276
3277 /* 82571 and newer doesn't need the workaround that limited descriptor
3278 * length to 4kB */
3279 if (adapter->hw.mac_type >= e1000_82571)
3280 max_per_txd = 8192;
3281
3282 mss = skb_shinfo(skb)->gso_size;
3283 /* The controller does a simple calculation to
3284 * make sure there is enough room in the FIFO before
3285 * initiating the DMA for each buffer. The calc is:
3286 * 4 = ceil(buffer len/mss). To make sure we don't
3287 * overrun the FIFO, adjust the max buffer len if mss
3288 * drops. */
3289 if (mss) {
3290 uint8_t hdr_len;
3291 max_per_txd = min(mss << 2, max_per_txd);
3292 max_txd_pwr = fls(max_per_txd) - 1;
3293
3294 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3295 * points to just header, pull a few bytes of payload from
3296 * frags into skb->data */
3297 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3298 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3299 switch (adapter->hw.mac_type) {
3300 unsigned int pull_size;
3301 case e1000_82544:
3302 /* Make sure we have room to chop off 4 bytes,
3303 * and that the end alignment will work out to
3304 * this hardware's requirements
3305 * NOTE: this is a TSO only workaround
3306 * if end byte alignment not correct move us
3307 * into the next dword */
3308 if ((unsigned long)(skb->tail - 1) & 4)
3309 break;
3310 /* fall through */
3311 case e1000_82571:
3312 case e1000_82572:
3313 case e1000_82573:
3314 case e1000_ich8lan:
3315 pull_size = min((unsigned int)4, skb->data_len);
3316 if (!__pskb_pull_tail(skb, pull_size)) {
3317 DPRINTK(DRV, ERR,
3318 "__pskb_pull_tail failed.\n");
3319 dev_kfree_skb_any(skb);
3320 return NETDEV_TX_OK;
3321 }
3322 len = skb->len - skb->data_len;
3323 break;
3324 default:
3325 /* do nothing */
3326 break;
3327 }
3328 }
3329 }
3330
3331 /* reserve a descriptor for the offload context */
3332 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3333 count++;
3334 count++;
3335
3336 /* Controller Erratum workaround */
3337 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3338 count++;
3339
3340 count += TXD_USE_COUNT(len, max_txd_pwr);
3341
3342 if (adapter->pcix_82544)
3343 count++;
3344
3345 /* work-around for errata 10 and it applies to all controllers
3346 * in PCI-X mode, so add one more descriptor to the count
3347 */
3348 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3349 (len > 2015)))
3350 count++;
3351
3352 nr_frags = skb_shinfo(skb)->nr_frags;
3353 for (f = 0; f < nr_frags; f++)
3354 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3355 max_txd_pwr);
3356 if (adapter->pcix_82544)
3357 count += nr_frags;
3358
3359
3360 if (adapter->hw.tx_pkt_filtering &&
3361 (adapter->hw.mac_type == e1000_82573))
3362 e1000_transfer_dhcp_info(adapter, skb);
3363
3364 local_irq_save(flags);
3365 if (!spin_trylock(&tx_ring->tx_lock)) {
3366 /* Collision - tell upper layer to requeue */
3367 local_irq_restore(flags);
3368 return NETDEV_TX_LOCKED;
3369 }
3370
3371 /* need: count + 2 desc gap to keep tail from touching
3372 * head, otherwise try next time */
3373 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3374 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3375 return NETDEV_TX_BUSY;
3376 }
3377
3378 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3379 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3380 netif_stop_queue(netdev);
3381 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3382 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3383 return NETDEV_TX_BUSY;
3384 }
3385 }
3386
3387 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3388 tx_flags |= E1000_TX_FLAGS_VLAN;
3389 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3390 }
3391
3392 first = tx_ring->next_to_use;
3393
3394 tso = e1000_tso(adapter, tx_ring, skb);
3395 if (tso < 0) {
3396 dev_kfree_skb_any(skb);
3397 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3398 return NETDEV_TX_OK;
3399 }
3400
3401 if (likely(tso)) {
3402 tx_ring->last_tx_tso = 1;
3403 tx_flags |= E1000_TX_FLAGS_TSO;
3404 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3405 tx_flags |= E1000_TX_FLAGS_CSUM;
3406
3407 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3408 * 82571 hardware supports TSO capabilities for IPv6 as well...
3409 * no longer assume, we must. */
3410 if (likely(skb->protocol == htons(ETH_P_IP)))
3411 tx_flags |= E1000_TX_FLAGS_IPV4;
3412
3413 e1000_tx_queue(adapter, tx_ring, tx_flags,
3414 e1000_tx_map(adapter, tx_ring, skb, first,
3415 max_per_txd, nr_frags, mss));
3416
3417 netdev->trans_start = jiffies;
3418
3419 /* Make sure there is space in the ring for the next send. */
3420 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3421
3422 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3423 return NETDEV_TX_OK;
3424 }
3425
3426 /**
3427 * e1000_tx_timeout - Respond to a Tx Hang
3428 * @netdev: network interface device structure
3429 **/
3430
3431 static void
3432 e1000_tx_timeout(struct net_device *netdev)
3433 {
3434 struct e1000_adapter *adapter = netdev_priv(netdev);
3435
3436 /* Do the reset outside of interrupt context */
3437 adapter->tx_timeout_count++;
3438 schedule_work(&adapter->reset_task);
3439 }
3440
3441 static void
3442 e1000_reset_task(struct work_struct *work)
3443 {
3444 struct e1000_adapter *adapter =
3445 container_of(work, struct e1000_adapter, reset_task);
3446
3447 e1000_reinit_locked(adapter);
3448 }
3449
3450 /**
3451 * e1000_get_stats - Get System Network Statistics
3452 * @netdev: network interface device structure
3453 *
3454 * Returns the address of the device statistics structure.
3455 * The statistics are actually updated from the timer callback.
3456 **/
3457
3458 static struct net_device_stats *
3459 e1000_get_stats(struct net_device *netdev)
3460 {
3461 struct e1000_adapter *adapter = netdev_priv(netdev);
3462
3463 /* only return the current stats */
3464 return &adapter->net_stats;
3465 }
3466
3467 /**
3468 * e1000_change_mtu - Change the Maximum Transfer Unit
3469 * @netdev: network interface device structure
3470 * @new_mtu: new value for maximum frame size
3471 *
3472 * Returns 0 on success, negative on failure
3473 **/
3474
3475 static int
3476 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3477 {
3478 struct e1000_adapter *adapter = netdev_priv(netdev);
3479 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3480 uint16_t eeprom_data = 0;
3481
3482 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3483 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3484 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3485 return -EINVAL;
3486 }
3487
3488 /* Adapter-specific max frame size limits. */
3489 switch (adapter->hw.mac_type) {
3490 case e1000_undefined ... e1000_82542_rev2_1:
3491 case e1000_ich8lan:
3492 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3493 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3494 return -EINVAL;
3495 }
3496 break;
3497 case e1000_82573:
3498 /* Jumbo Frames not supported if:
3499 * - this is not an 82573L device
3500 * - ASPM is enabled in any way (0x1A bits 3:2) */
3501 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3502 &eeprom_data);
3503 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3504 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3505 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3506 DPRINTK(PROBE, ERR,
3507 "Jumbo Frames not supported.\n");
3508 return -EINVAL;
3509 }
3510 break;
3511 }
3512 /* ERT will be enabled later to enable wire speed receives */
3513
3514 /* fall through to get support */
3515 case e1000_82571:
3516 case e1000_82572:
3517 case e1000_80003es2lan:
3518 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3519 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3520 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3521 return -EINVAL;
3522 }
3523 break;
3524 default:
3525 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3526 break;
3527 }
3528
3529 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3530 * means we reserve 2 more, this pushes us to allocate from the next
3531 * larger slab size
3532 * i.e. RXBUFFER_2048 --> size-4096 slab */
3533
3534 if (max_frame <= E1000_RXBUFFER_256)
3535 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3536 else if (max_frame <= E1000_RXBUFFER_512)
3537 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3538 else if (max_frame <= E1000_RXBUFFER_1024)
3539 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3540 else if (max_frame <= E1000_RXBUFFER_2048)
3541 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3542 else if (max_frame <= E1000_RXBUFFER_4096)
3543 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3544 else if (max_frame <= E1000_RXBUFFER_8192)
3545 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3546 else if (max_frame <= E1000_RXBUFFER_16384)
3547 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3548
3549 /* adjust allocation if LPE protects us, and we aren't using SBP */
3550 if (!adapter->hw.tbi_compatibility_on &&
3551 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3552 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3553 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3554
3555 netdev->mtu = new_mtu;
3556 adapter->hw.max_frame_size = max_frame;
3557
3558 if (netif_running(netdev))
3559 e1000_reinit_locked(adapter);
3560
3561 return 0;
3562 }
3563
3564 /**
3565 * e1000_update_stats - Update the board statistics counters
3566 * @adapter: board private structure
3567 **/
3568
3569 void
3570 e1000_update_stats(struct e1000_adapter *adapter)
3571 {
3572 struct e1000_hw *hw = &adapter->hw;
3573 struct pci_dev *pdev = adapter->pdev;
3574 unsigned long flags;
3575 uint16_t phy_tmp;
3576
3577 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3578
3579 /*
3580 * Prevent stats update while adapter is being reset, or if the pci
3581 * connection is down.
3582 */
3583 if (adapter->link_speed == 0)
3584 return;
3585 if (pci_channel_offline(pdev))
3586 return;
3587
3588 spin_lock_irqsave(&adapter->stats_lock, flags);
3589
3590 /* these counters are modified from e1000_adjust_tbi_stats,
3591 * called from the interrupt context, so they must only
3592 * be written while holding adapter->stats_lock
3593 */
3594
3595 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3596 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3597 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3598 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3599 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3600 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3601 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3602
3603 if (adapter->hw.mac_type != e1000_ich8lan) {
3604 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3605 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3606 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3607 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3608 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3609 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3610 }
3611
3612 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3613 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3614 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3615 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3616 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3617 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3618 adapter->stats.dc += E1000_READ_REG(hw, DC);
3619 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3620 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3621 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3622 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3623 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3624 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3625 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3626 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3627 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3628 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3629 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3630 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3631 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3632 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3633 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3634 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3635 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3636 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3637 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3638
3639 if (adapter->hw.mac_type != e1000_ich8lan) {
3640 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3641 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3642 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3643 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3644 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3645 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3646 }
3647
3648 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3649 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3650
3651 /* used for adaptive IFS */
3652
3653 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3654 adapter->stats.tpt += hw->tx_packet_delta;
3655 hw->collision_delta = E1000_READ_REG(hw, COLC);
3656 adapter->stats.colc += hw->collision_delta;
3657
3658 if (hw->mac_type >= e1000_82543) {
3659 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3660 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3661 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3662 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3663 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3664 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3665 }
3666 if (hw->mac_type > e1000_82547_rev_2) {
3667 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3668 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3669
3670 if (adapter->hw.mac_type != e1000_ich8lan) {
3671 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3672 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3673 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3674 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3675 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3676 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3677 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3678 }
3679 }
3680
3681 /* Fill out the OS statistics structure */
3682 adapter->net_stats.rx_packets = adapter->stats.gprc;
3683 adapter->net_stats.tx_packets = adapter->stats.gptc;
3684 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3685 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3686 adapter->net_stats.multicast = adapter->stats.mprc;
3687 adapter->net_stats.collisions = adapter->stats.colc;
3688
3689 /* Rx Errors */
3690
3691 /* RLEC on some newer hardware can be incorrect so build
3692 * our own version based on RUC and ROC */
3693 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3694 adapter->stats.crcerrs + adapter->stats.algnerrc +
3695 adapter->stats.ruc + adapter->stats.roc +
3696 adapter->stats.cexterr;
3697 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3698 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3699 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3700 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3701 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3702
3703 /* Tx Errors */
3704 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3705 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3706 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3707 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3708 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3709 if (adapter->hw.bad_tx_carr_stats_fd &&
3710 adapter->link_duplex == FULL_DUPLEX) {
3711 adapter->net_stats.tx_carrier_errors = 0;
3712 adapter->stats.tncrs = 0;
3713 }
3714
3715 /* Tx Dropped needs to be maintained elsewhere */
3716
3717 /* Phy Stats */
3718 if (hw->media_type == e1000_media_type_copper) {
3719 if ((adapter->link_speed == SPEED_1000) &&
3720 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3721 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3722 adapter->phy_stats.idle_errors += phy_tmp;
3723 }
3724
3725 if ((hw->mac_type <= e1000_82546) &&
3726 (hw->phy_type == e1000_phy_m88) &&
3727 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3728 adapter->phy_stats.receive_errors += phy_tmp;
3729 }
3730
3731 /* Management Stats */
3732 if (adapter->hw.has_smbus) {
3733 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3734 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3735 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3736 }
3737
3738 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3739 }
3740 #ifdef CONFIG_PCI_MSI
3741
3742 /**
3743 * e1000_intr_msi - Interrupt Handler
3744 * @irq: interrupt number
3745 * @data: pointer to a network interface device structure
3746 **/
3747
3748 static irqreturn_t
3749 e1000_intr_msi(int irq, void *data)
3750 {
3751 struct net_device *netdev = data;
3752 struct e1000_adapter *adapter = netdev_priv(netdev);
3753 struct e1000_hw *hw = &adapter->hw;
3754 #ifndef CONFIG_E1000_NAPI
3755 int i;
3756 #endif
3757 uint32_t icr = E1000_READ_REG(hw, ICR);
3758
3759 #ifdef CONFIG_E1000_NAPI
3760 /* read ICR disables interrupts using IAM, so keep up with our
3761 * enable/disable accounting */
3762 atomic_inc(&adapter->irq_sem);
3763 #endif
3764 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3765 hw->get_link_status = 1;
3766 /* 80003ES2LAN workaround-- For packet buffer work-around on
3767 * link down event; disable receives here in the ISR and reset
3768 * adapter in watchdog */
3769 if (netif_carrier_ok(netdev) &&
3770 (adapter->hw.mac_type == e1000_80003es2lan)) {
3771 /* disable receives */
3772 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3773 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3774 }
3775 /* guard against interrupt when we're going down */
3776 if (!test_bit(__E1000_DOWN, &adapter->flags))
3777 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3778 }
3779
3780 #ifdef CONFIG_E1000_NAPI
3781 if (likely(netif_rx_schedule_prep(netdev))) {
3782 adapter->total_tx_bytes = 0;
3783 adapter->total_tx_packets = 0;
3784 adapter->total_rx_bytes = 0;
3785 adapter->total_rx_packets = 0;
3786 __netif_rx_schedule(netdev);
3787 } else
3788 e1000_irq_enable(adapter);
3789 #else
3790 adapter->total_tx_bytes = 0;
3791 adapter->total_rx_bytes = 0;
3792 adapter->total_tx_packets = 0;
3793 adapter->total_rx_packets = 0;
3794
3795 for (i = 0; i < E1000_MAX_INTR; i++)
3796 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3797 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3798 break;
3799
3800 if (likely(adapter->itr_setting & 3))
3801 e1000_set_itr(adapter);
3802 #endif
3803
3804 return IRQ_HANDLED;
3805 }
3806 #endif
3807
3808 /**
3809 * e1000_intr - Interrupt Handler
3810 * @irq: interrupt number
3811 * @data: pointer to a network interface device structure
3812 **/
3813
3814 static irqreturn_t
3815 e1000_intr(int irq, void *data)
3816 {
3817 struct net_device *netdev = data;
3818 struct e1000_adapter *adapter = netdev_priv(netdev);
3819 struct e1000_hw *hw = &adapter->hw;
3820 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3821 #ifndef CONFIG_E1000_NAPI
3822 int i;
3823 #endif
3824 if (unlikely(!icr))
3825 return IRQ_NONE; /* Not our interrupt */
3826
3827 #ifdef CONFIG_E1000_NAPI
3828 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3829 * not set, then the adapter didn't send an interrupt */
3830 if (unlikely(hw->mac_type >= e1000_82571 &&
3831 !(icr & E1000_ICR_INT_ASSERTED)))
3832 return IRQ_NONE;
3833
3834 /* Interrupt Auto-Mask...upon reading ICR,
3835 * interrupts are masked. No need for the
3836 * IMC write, but it does mean we should
3837 * account for it ASAP. */
3838 if (likely(hw->mac_type >= e1000_82571))
3839 atomic_inc(&adapter->irq_sem);
3840 #endif
3841
3842 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3843 hw->get_link_status = 1;
3844 /* 80003ES2LAN workaround--
3845 * For packet buffer work-around on link down event;
3846 * disable receives here in the ISR and
3847 * reset adapter in watchdog
3848 */
3849 if (netif_carrier_ok(netdev) &&
3850 (adapter->hw.mac_type == e1000_80003es2lan)) {
3851 /* disable receives */
3852 rctl = E1000_READ_REG(hw, RCTL);
3853 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3854 }
3855 /* guard against interrupt when we're going down */
3856 if (!test_bit(__E1000_DOWN, &adapter->flags))
3857 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3858 }
3859
3860 #ifdef CONFIG_E1000_NAPI
3861 if (unlikely(hw->mac_type < e1000_82571)) {
3862 /* disable interrupts, without the synchronize_irq bit */
3863 atomic_inc(&adapter->irq_sem);
3864 E1000_WRITE_REG(hw, IMC, ~0);
3865 E1000_WRITE_FLUSH(hw);
3866 }
3867 if (likely(netif_rx_schedule_prep(netdev))) {
3868 adapter->total_tx_bytes = 0;
3869 adapter->total_tx_packets = 0;
3870 adapter->total_rx_bytes = 0;
3871 adapter->total_rx_packets = 0;
3872 __netif_rx_schedule(netdev);
3873 } else
3874 /* this really should not happen! if it does it is basically a
3875 * bug, but not a hard error, so enable ints and continue */
3876 e1000_irq_enable(adapter);
3877 #else
3878 /* Writing IMC and IMS is needed for 82547.
3879 * Due to Hub Link bus being occupied, an interrupt
3880 * de-assertion message is not able to be sent.
3881 * When an interrupt assertion message is generated later,
3882 * two messages are re-ordered and sent out.
3883 * That causes APIC to think 82547 is in de-assertion
3884 * state, while 82547 is in assertion state, resulting
3885 * in dead lock. Writing IMC forces 82547 into
3886 * de-assertion state.
3887 */
3888 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3889 atomic_inc(&adapter->irq_sem);
3890 E1000_WRITE_REG(hw, IMC, ~0);
3891 }
3892
3893 adapter->total_tx_bytes = 0;
3894 adapter->total_rx_bytes = 0;
3895 adapter->total_tx_packets = 0;
3896 adapter->total_rx_packets = 0;
3897
3898 for (i = 0; i < E1000_MAX_INTR; i++)
3899 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3900 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3901 break;
3902
3903 if (likely(adapter->itr_setting & 3))
3904 e1000_set_itr(adapter);
3905
3906 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3907 e1000_irq_enable(adapter);
3908
3909 #endif
3910 return IRQ_HANDLED;
3911 }
3912
3913 #ifdef CONFIG_E1000_NAPI
3914 /**
3915 * e1000_clean - NAPI Rx polling callback
3916 * @adapter: board private structure
3917 **/
3918
3919 static int
3920 e1000_clean(struct net_device *poll_dev, int *budget)
3921 {
3922 struct e1000_adapter *adapter;
3923 int work_to_do = min(*budget, poll_dev->quota);
3924 int tx_cleaned = 0, work_done = 0;
3925
3926 /* Must NOT use netdev_priv macro here. */
3927 adapter = poll_dev->priv;
3928
3929 /* Keep link state information with original netdev */
3930 if (!netif_carrier_ok(poll_dev))
3931 goto quit_polling;
3932
3933 /* e1000_clean is called per-cpu. This lock protects
3934 * tx_ring[0] from being cleaned by multiple cpus
3935 * simultaneously. A failure obtaining the lock means
3936 * tx_ring[0] is currently being cleaned anyway. */
3937 if (spin_trylock(&adapter->tx_queue_lock)) {
3938 tx_cleaned = e1000_clean_tx_irq(adapter,
3939 &adapter->tx_ring[0]);
3940 spin_unlock(&adapter->tx_queue_lock);
3941 }
3942
3943 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3944 &work_done, work_to_do);
3945
3946 *budget -= work_done;
3947 poll_dev->quota -= work_done;
3948
3949 /* If no Tx and not enough Rx work done, exit the polling mode */
3950 if ((!tx_cleaned && (work_done == 0)) ||
3951 !netif_running(poll_dev)) {
3952 quit_polling:
3953 if (likely(adapter->itr_setting & 3))
3954 e1000_set_itr(adapter);
3955 netif_rx_complete(poll_dev);
3956 e1000_irq_enable(adapter);
3957 return 0;
3958 }
3959
3960 return 1;
3961 }
3962
3963 #endif
3964 /**
3965 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3966 * @adapter: board private structure
3967 **/
3968
3969 static boolean_t
3970 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3971 struct e1000_tx_ring *tx_ring)
3972 {
3973 struct net_device *netdev = adapter->netdev;
3974 struct e1000_tx_desc *tx_desc, *eop_desc;
3975 struct e1000_buffer *buffer_info;
3976 unsigned int i, eop;
3977 #ifdef CONFIG_E1000_NAPI
3978 unsigned int count = 0;
3979 #endif
3980 boolean_t cleaned = FALSE;
3981 unsigned int total_tx_bytes=0, total_tx_packets=0;
3982
3983 i = tx_ring->next_to_clean;
3984 eop = tx_ring->buffer_info[i].next_to_watch;
3985 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3986
3987 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3988 for (cleaned = FALSE; !cleaned; ) {
3989 tx_desc = E1000_TX_DESC(*tx_ring, i);
3990 buffer_info = &tx_ring->buffer_info[i];
3991 cleaned = (i == eop);
3992
3993 if (cleaned) {
3994 struct sk_buff *skb = buffer_info->skb;
3995 unsigned int segs, bytecount;
3996 segs = skb_shinfo(skb)->gso_segs ?: 1;
3997 /* multiply data chunks by size of headers */
3998 bytecount = ((segs - 1) * skb_headlen(skb)) +
3999 skb->len;
4000 total_tx_packets += segs;
4001 total_tx_bytes += bytecount;
4002 }
4003 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4004 tx_desc->upper.data = 0;
4005
4006 if (unlikely(++i == tx_ring->count)) i = 0;
4007 }
4008
4009 eop = tx_ring->buffer_info[i].next_to_watch;
4010 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4011 #ifdef CONFIG_E1000_NAPI
4012 #define E1000_TX_WEIGHT 64
4013 /* weight of a sort for tx, to avoid endless transmit cleanup */
4014 if (count++ == E1000_TX_WEIGHT) break;
4015 #endif
4016 }
4017
4018 tx_ring->next_to_clean = i;
4019
4020 #define TX_WAKE_THRESHOLD 32
4021 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4022 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4023 /* Make sure that anybody stopping the queue after this
4024 * sees the new next_to_clean.
4025 */
4026 smp_mb();
4027 if (netif_queue_stopped(netdev)) {
4028 netif_wake_queue(netdev);
4029 ++adapter->restart_queue;
4030 }
4031 }
4032
4033 if (adapter->detect_tx_hung) {
4034 /* Detect a transmit hang in hardware, this serializes the
4035 * check with the clearing of time_stamp and movement of i */
4036 adapter->detect_tx_hung = FALSE;
4037 if (tx_ring->buffer_info[eop].dma &&
4038 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4039 (adapter->tx_timeout_factor * HZ))
4040 && !(E1000_READ_REG(&adapter->hw, STATUS) &
4041 E1000_STATUS_TXOFF)) {
4042
4043 /* detected Tx unit hang */
4044 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4045 " Tx Queue <%lu>\n"
4046 " TDH <%x>\n"
4047 " TDT <%x>\n"
4048 " next_to_use <%x>\n"
4049 " next_to_clean <%x>\n"
4050 "buffer_info[next_to_clean]\n"
4051 " time_stamp <%lx>\n"
4052 " next_to_watch <%x>\n"
4053 " jiffies <%lx>\n"
4054 " next_to_watch.status <%x>\n",
4055 (unsigned long)((tx_ring - adapter->tx_ring) /
4056 sizeof(struct e1000_tx_ring)),
4057 readl(adapter->hw.hw_addr + tx_ring->tdh),
4058 readl(adapter->hw.hw_addr + tx_ring->tdt),
4059 tx_ring->next_to_use,
4060 tx_ring->next_to_clean,
4061 tx_ring->buffer_info[eop].time_stamp,
4062 eop,
4063 jiffies,
4064 eop_desc->upper.fields.status);
4065 netif_stop_queue(netdev);
4066 }
4067 }
4068 adapter->total_tx_bytes += total_tx_bytes;
4069 adapter->total_tx_packets += total_tx_packets;
4070 return cleaned;
4071 }
4072
4073 /**
4074 * e1000_rx_checksum - Receive Checksum Offload for 82543
4075 * @adapter: board private structure
4076 * @status_err: receive descriptor status and error fields
4077 * @csum: receive descriptor csum field
4078 * @sk_buff: socket buffer with received data
4079 **/
4080
4081 static void
4082 e1000_rx_checksum(struct e1000_adapter *adapter,
4083 uint32_t status_err, uint32_t csum,
4084 struct sk_buff *skb)
4085 {
4086 uint16_t status = (uint16_t)status_err;
4087 uint8_t errors = (uint8_t)(status_err >> 24);
4088 skb->ip_summed = CHECKSUM_NONE;
4089
4090 /* 82543 or newer only */
4091 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4092 /* Ignore Checksum bit is set */
4093 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4094 /* TCP/UDP checksum error bit is set */
4095 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4096 /* let the stack verify checksum errors */
4097 adapter->hw_csum_err++;
4098 return;
4099 }
4100 /* TCP/UDP Checksum has not been calculated */
4101 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4102 if (!(status & E1000_RXD_STAT_TCPCS))
4103 return;
4104 } else {
4105 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4106 return;
4107 }
4108 /* It must be a TCP or UDP packet with a valid checksum */
4109 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4110 /* TCP checksum is good */
4111 skb->ip_summed = CHECKSUM_UNNECESSARY;
4112 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4113 /* IP fragment with UDP payload */
4114 /* Hardware complements the payload checksum, so we undo it
4115 * and then put the value in host order for further stack use.
4116 */
4117 csum = ntohl(csum ^ 0xFFFF);
4118 skb->csum = csum;
4119 skb->ip_summed = CHECKSUM_COMPLETE;
4120 }
4121 adapter->hw_csum_good++;
4122 }
4123
4124 /**
4125 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4126 * @adapter: board private structure
4127 **/
4128
4129 static boolean_t
4130 #ifdef CONFIG_E1000_NAPI
4131 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4132 struct e1000_rx_ring *rx_ring,
4133 int *work_done, int work_to_do)
4134 #else
4135 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4136 struct e1000_rx_ring *rx_ring)
4137 #endif
4138 {
4139 struct net_device *netdev = adapter->netdev;
4140 struct pci_dev *pdev = adapter->pdev;
4141 struct e1000_rx_desc *rx_desc, *next_rxd;
4142 struct e1000_buffer *buffer_info, *next_buffer;
4143 unsigned long flags;
4144 uint32_t length;
4145 uint8_t last_byte;
4146 unsigned int i;
4147 int cleaned_count = 0;
4148 boolean_t cleaned = FALSE;
4149 unsigned int total_rx_bytes=0, total_rx_packets=0;
4150
4151 i = rx_ring->next_to_clean;
4152 rx_desc = E1000_RX_DESC(*rx_ring, i);
4153 buffer_info = &rx_ring->buffer_info[i];
4154
4155 while (rx_desc->status & E1000_RXD_STAT_DD) {
4156 struct sk_buff *skb;
4157 u8 status;
4158
4159 #ifdef CONFIG_E1000_NAPI
4160 if (*work_done >= work_to_do)
4161 break;
4162 (*work_done)++;
4163 #endif
4164 status = rx_desc->status;
4165 skb = buffer_info->skb;
4166 buffer_info->skb = NULL;
4167
4168 prefetch(skb->data - NET_IP_ALIGN);
4169
4170 if (++i == rx_ring->count) i = 0;
4171 next_rxd = E1000_RX_DESC(*rx_ring, i);
4172 prefetch(next_rxd);
4173
4174 next_buffer = &rx_ring->buffer_info[i];
4175
4176 cleaned = TRUE;
4177 cleaned_count++;
4178 pci_unmap_single(pdev,
4179 buffer_info->dma,
4180 buffer_info->length,
4181 PCI_DMA_FROMDEVICE);
4182
4183 length = le16_to_cpu(rx_desc->length);
4184
4185 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4186 /* All receives must fit into a single buffer */
4187 E1000_DBG("%s: Receive packet consumed multiple"
4188 " buffers\n", netdev->name);
4189 /* recycle */
4190 buffer_info->skb = skb;
4191 goto next_desc;
4192 }
4193
4194 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4195 last_byte = *(skb->data + length - 1);
4196 if (TBI_ACCEPT(&adapter->hw, status,
4197 rx_desc->errors, length, last_byte)) {
4198 spin_lock_irqsave(&adapter->stats_lock, flags);
4199 e1000_tbi_adjust_stats(&adapter->hw,
4200 &adapter->stats,
4201 length, skb->data);
4202 spin_unlock_irqrestore(&adapter->stats_lock,
4203 flags);
4204 length--;
4205 } else {
4206 /* recycle */
4207 buffer_info->skb = skb;
4208 goto next_desc;
4209 }
4210 }
4211
4212 /* adjust length to remove Ethernet CRC, this must be
4213 * done after the TBI_ACCEPT workaround above */
4214 length -= 4;
4215
4216 /* probably a little skewed due to removing CRC */
4217 total_rx_bytes += length;
4218 total_rx_packets++;
4219
4220 /* code added for copybreak, this should improve
4221 * performance for small packets with large amounts
4222 * of reassembly being done in the stack */
4223 if (length < copybreak) {
4224 struct sk_buff *new_skb =
4225 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4226 if (new_skb) {
4227 skb_reserve(new_skb, NET_IP_ALIGN);
4228 memcpy(new_skb->data - NET_IP_ALIGN,
4229 skb->data - NET_IP_ALIGN,
4230 length + NET_IP_ALIGN);
4231 /* save the skb in buffer_info as good */
4232 buffer_info->skb = skb;
4233 skb = new_skb;
4234 }
4235 /* else just continue with the old one */
4236 }
4237 /* end copybreak code */
4238 skb_put(skb, length);
4239
4240 /* Receive Checksum Offload */
4241 e1000_rx_checksum(adapter,
4242 (uint32_t)(status) |
4243 ((uint32_t)(rx_desc->errors) << 24),
4244 le16_to_cpu(rx_desc->csum), skb);
4245
4246 skb->protocol = eth_type_trans(skb, netdev);
4247 #ifdef CONFIG_E1000_NAPI
4248 if (unlikely(adapter->vlgrp &&
4249 (status & E1000_RXD_STAT_VP))) {
4250 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4251 le16_to_cpu(rx_desc->special) &
4252 E1000_RXD_SPC_VLAN_MASK);
4253 } else {
4254 netif_receive_skb(skb);
4255 }
4256 #else /* CONFIG_E1000_NAPI */
4257 if (unlikely(adapter->vlgrp &&
4258 (status & E1000_RXD_STAT_VP))) {
4259 vlan_hwaccel_rx(skb, adapter->vlgrp,
4260 le16_to_cpu(rx_desc->special) &
4261 E1000_RXD_SPC_VLAN_MASK);
4262 } else {
4263 netif_rx(skb);
4264 }
4265 #endif /* CONFIG_E1000_NAPI */
4266 netdev->last_rx = jiffies;
4267
4268 next_desc:
4269 rx_desc->status = 0;
4270
4271 /* return some buffers to hardware, one at a time is too slow */
4272 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4273 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4274 cleaned_count = 0;
4275 }
4276
4277 /* use prefetched values */
4278 rx_desc = next_rxd;
4279 buffer_info = next_buffer;
4280 }
4281 rx_ring->next_to_clean = i;
4282
4283 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4284 if (cleaned_count)
4285 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4286
4287 adapter->total_rx_packets += total_rx_packets;
4288 adapter->total_rx_bytes += total_rx_bytes;
4289 return cleaned;
4290 }
4291
4292 /**
4293 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4294 * @adapter: board private structure
4295 **/
4296
4297 static boolean_t
4298 #ifdef CONFIG_E1000_NAPI
4299 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4300 struct e1000_rx_ring *rx_ring,
4301 int *work_done, int work_to_do)
4302 #else
4303 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4304 struct e1000_rx_ring *rx_ring)
4305 #endif
4306 {
4307 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4308 struct net_device *netdev = adapter->netdev;
4309 struct pci_dev *pdev = adapter->pdev;
4310 struct e1000_buffer *buffer_info, *next_buffer;
4311 struct e1000_ps_page *ps_page;
4312 struct e1000_ps_page_dma *ps_page_dma;
4313 struct sk_buff *skb;
4314 unsigned int i, j;
4315 uint32_t length, staterr;
4316 int cleaned_count = 0;
4317 boolean_t cleaned = FALSE;
4318 unsigned int total_rx_bytes=0, total_rx_packets=0;
4319
4320 i = rx_ring->next_to_clean;
4321 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4322 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4323 buffer_info = &rx_ring->buffer_info[i];
4324
4325 while (staterr & E1000_RXD_STAT_DD) {
4326 ps_page = &rx_ring->ps_page[i];
4327 ps_page_dma = &rx_ring->ps_page_dma[i];
4328 #ifdef CONFIG_E1000_NAPI
4329 if (unlikely(*work_done >= work_to_do))
4330 break;
4331 (*work_done)++;
4332 #endif
4333 skb = buffer_info->skb;
4334
4335 /* in the packet split case this is header only */
4336 prefetch(skb->data - NET_IP_ALIGN);
4337
4338 if (++i == rx_ring->count) i = 0;
4339 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4340 prefetch(next_rxd);
4341
4342 next_buffer = &rx_ring->buffer_info[i];
4343
4344 cleaned = TRUE;
4345 cleaned_count++;
4346 pci_unmap_single(pdev, buffer_info->dma,
4347 buffer_info->length,
4348 PCI_DMA_FROMDEVICE);
4349
4350 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4351 E1000_DBG("%s: Packet Split buffers didn't pick up"
4352 " the full packet\n", netdev->name);
4353 dev_kfree_skb_irq(skb);
4354 goto next_desc;
4355 }
4356
4357 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4358 dev_kfree_skb_irq(skb);
4359 goto next_desc;
4360 }
4361
4362 length = le16_to_cpu(rx_desc->wb.middle.length0);
4363
4364 if (unlikely(!length)) {
4365 E1000_DBG("%s: Last part of the packet spanning"
4366 " multiple descriptors\n", netdev->name);
4367 dev_kfree_skb_irq(skb);
4368 goto next_desc;
4369 }
4370
4371 /* Good Receive */
4372 skb_put(skb, length);
4373
4374 {
4375 /* this looks ugly, but it seems compiler issues make it
4376 more efficient than reusing j */
4377 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4378
4379 /* page alloc/put takes too long and effects small packet
4380 * throughput, so unsplit small packets and save the alloc/put*/
4381 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4382 u8 *vaddr;
4383 /* there is no documentation about how to call
4384 * kmap_atomic, so we can't hold the mapping
4385 * very long */
4386 pci_dma_sync_single_for_cpu(pdev,
4387 ps_page_dma->ps_page_dma[0],
4388 PAGE_SIZE,
4389 PCI_DMA_FROMDEVICE);
4390 vaddr = kmap_atomic(ps_page->ps_page[0],
4391 KM_SKB_DATA_SOFTIRQ);
4392 memcpy(skb->tail, vaddr, l1);
4393 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4394 pci_dma_sync_single_for_device(pdev,
4395 ps_page_dma->ps_page_dma[0],
4396 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4397 /* remove the CRC */
4398 l1 -= 4;
4399 skb_put(skb, l1);
4400 goto copydone;
4401 } /* if */
4402 }
4403
4404 for (j = 0; j < adapter->rx_ps_pages; j++) {
4405 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4406 break;
4407 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4408 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4409 ps_page_dma->ps_page_dma[j] = 0;
4410 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4411 length);
4412 ps_page->ps_page[j] = NULL;
4413 skb->len += length;
4414 skb->data_len += length;
4415 skb->truesize += length;
4416 }
4417
4418 /* strip the ethernet crc, problem is we're using pages now so
4419 * this whole operation can get a little cpu intensive */
4420 pskb_trim(skb, skb->len - 4);
4421
4422 copydone:
4423 total_rx_bytes += skb->len;
4424 total_rx_packets++;
4425
4426 e1000_rx_checksum(adapter, staterr,
4427 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4428 skb->protocol = eth_type_trans(skb, netdev);
4429
4430 if (likely(rx_desc->wb.upper.header_status &
4431 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4432 adapter->rx_hdr_split++;
4433 #ifdef CONFIG_E1000_NAPI
4434 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4435 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4436 le16_to_cpu(rx_desc->wb.middle.vlan) &
4437 E1000_RXD_SPC_VLAN_MASK);
4438 } else {
4439 netif_receive_skb(skb);
4440 }
4441 #else /* CONFIG_E1000_NAPI */
4442 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4443 vlan_hwaccel_rx(skb, adapter->vlgrp,
4444 le16_to_cpu(rx_desc->wb.middle.vlan) &
4445 E1000_RXD_SPC_VLAN_MASK);
4446 } else {
4447 netif_rx(skb);
4448 }
4449 #endif /* CONFIG_E1000_NAPI */
4450 netdev->last_rx = jiffies;
4451
4452 next_desc:
4453 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4454 buffer_info->skb = NULL;
4455
4456 /* return some buffers to hardware, one at a time is too slow */
4457 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4458 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4459 cleaned_count = 0;
4460 }
4461
4462 /* use prefetched values */
4463 rx_desc = next_rxd;
4464 buffer_info = next_buffer;
4465
4466 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4467 }
4468 rx_ring->next_to_clean = i;
4469
4470 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4471 if (cleaned_count)
4472 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473
4474 adapter->total_rx_packets += total_rx_packets;
4475 adapter->total_rx_bytes += total_rx_bytes;
4476 return cleaned;
4477 }
4478
4479 /**
4480 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4481 * @adapter: address of board private structure
4482 **/
4483
4484 static void
4485 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4486 struct e1000_rx_ring *rx_ring,
4487 int cleaned_count)
4488 {
4489 struct net_device *netdev = adapter->netdev;
4490 struct pci_dev *pdev = adapter->pdev;
4491 struct e1000_rx_desc *rx_desc;
4492 struct e1000_buffer *buffer_info;
4493 struct sk_buff *skb;
4494 unsigned int i;
4495 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4496
4497 i = rx_ring->next_to_use;
4498 buffer_info = &rx_ring->buffer_info[i];
4499
4500 while (cleaned_count--) {
4501 skb = buffer_info->skb;
4502 if (skb) {
4503 skb_trim(skb, 0);
4504 goto map_skb;
4505 }
4506
4507 skb = netdev_alloc_skb(netdev, bufsz);
4508 if (unlikely(!skb)) {
4509 /* Better luck next round */
4510 adapter->alloc_rx_buff_failed++;
4511 break;
4512 }
4513
4514 /* Fix for errata 23, can't cross 64kB boundary */
4515 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4516 struct sk_buff *oldskb = skb;
4517 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4518 "at %p\n", bufsz, skb->data);
4519 /* Try again, without freeing the previous */
4520 skb = netdev_alloc_skb(netdev, bufsz);
4521 /* Failed allocation, critical failure */
4522 if (!skb) {
4523 dev_kfree_skb(oldskb);
4524 break;
4525 }
4526
4527 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4528 /* give up */
4529 dev_kfree_skb(skb);
4530 dev_kfree_skb(oldskb);
4531 break; /* while !buffer_info->skb */
4532 }
4533
4534 /* Use new allocation */
4535 dev_kfree_skb(oldskb);
4536 }
4537 /* Make buffer alignment 2 beyond a 16 byte boundary
4538 * this will result in a 16 byte aligned IP header after
4539 * the 14 byte MAC header is removed
4540 */
4541 skb_reserve(skb, NET_IP_ALIGN);
4542
4543 buffer_info->skb = skb;
4544 buffer_info->length = adapter->rx_buffer_len;
4545 map_skb:
4546 buffer_info->dma = pci_map_single(pdev,
4547 skb->data,
4548 adapter->rx_buffer_len,
4549 PCI_DMA_FROMDEVICE);
4550
4551 /* Fix for errata 23, can't cross 64kB boundary */
4552 if (!e1000_check_64k_bound(adapter,
4553 (void *)(unsigned long)buffer_info->dma,
4554 adapter->rx_buffer_len)) {
4555 DPRINTK(RX_ERR, ERR,
4556 "dma align check failed: %u bytes at %p\n",
4557 adapter->rx_buffer_len,
4558 (void *)(unsigned long)buffer_info->dma);
4559 dev_kfree_skb(skb);
4560 buffer_info->skb = NULL;
4561
4562 pci_unmap_single(pdev, buffer_info->dma,
4563 adapter->rx_buffer_len,
4564 PCI_DMA_FROMDEVICE);
4565
4566 break; /* while !buffer_info->skb */
4567 }
4568 rx_desc = E1000_RX_DESC(*rx_ring, i);
4569 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4570
4571 if (unlikely(++i == rx_ring->count))
4572 i = 0;
4573 buffer_info = &rx_ring->buffer_info[i];
4574 }
4575
4576 if (likely(rx_ring->next_to_use != i)) {
4577 rx_ring->next_to_use = i;
4578 if (unlikely(i-- == 0))
4579 i = (rx_ring->count - 1);
4580
4581 /* Force memory writes to complete before letting h/w
4582 * know there are new descriptors to fetch. (Only
4583 * applicable for weak-ordered memory model archs,
4584 * such as IA-64). */
4585 wmb();
4586 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4587 }
4588 }
4589
4590 /**
4591 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4592 * @adapter: address of board private structure
4593 **/
4594
4595 static void
4596 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4597 struct e1000_rx_ring *rx_ring,
4598 int cleaned_count)
4599 {
4600 struct net_device *netdev = adapter->netdev;
4601 struct pci_dev *pdev = adapter->pdev;
4602 union e1000_rx_desc_packet_split *rx_desc;
4603 struct e1000_buffer *buffer_info;
4604 struct e1000_ps_page *ps_page;
4605 struct e1000_ps_page_dma *ps_page_dma;
4606 struct sk_buff *skb;
4607 unsigned int i, j;
4608
4609 i = rx_ring->next_to_use;
4610 buffer_info = &rx_ring->buffer_info[i];
4611 ps_page = &rx_ring->ps_page[i];
4612 ps_page_dma = &rx_ring->ps_page_dma[i];
4613
4614 while (cleaned_count--) {
4615 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4616
4617 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4618 if (j < adapter->rx_ps_pages) {
4619 if (likely(!ps_page->ps_page[j])) {
4620 ps_page->ps_page[j] =
4621 alloc_page(GFP_ATOMIC);
4622 if (unlikely(!ps_page->ps_page[j])) {
4623 adapter->alloc_rx_buff_failed++;
4624 goto no_buffers;
4625 }
4626 ps_page_dma->ps_page_dma[j] =
4627 pci_map_page(pdev,
4628 ps_page->ps_page[j],
4629 0, PAGE_SIZE,
4630 PCI_DMA_FROMDEVICE);
4631 }
4632 /* Refresh the desc even if buffer_addrs didn't
4633 * change because each write-back erases
4634 * this info.
4635 */
4636 rx_desc->read.buffer_addr[j+1] =
4637 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4638 } else
4639 rx_desc->read.buffer_addr[j+1] = ~0;
4640 }
4641
4642 skb = netdev_alloc_skb(netdev,
4643 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4644
4645 if (unlikely(!skb)) {
4646 adapter->alloc_rx_buff_failed++;
4647 break;
4648 }
4649
4650 /* Make buffer alignment 2 beyond a 16 byte boundary
4651 * this will result in a 16 byte aligned IP header after
4652 * the 14 byte MAC header is removed
4653 */
4654 skb_reserve(skb, NET_IP_ALIGN);
4655
4656 buffer_info->skb = skb;
4657 buffer_info->length = adapter->rx_ps_bsize0;
4658 buffer_info->dma = pci_map_single(pdev, skb->data,
4659 adapter->rx_ps_bsize0,
4660 PCI_DMA_FROMDEVICE);
4661
4662 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4663
4664 if (unlikely(++i == rx_ring->count)) i = 0;
4665 buffer_info = &rx_ring->buffer_info[i];
4666 ps_page = &rx_ring->ps_page[i];
4667 ps_page_dma = &rx_ring->ps_page_dma[i];
4668 }
4669
4670 no_buffers:
4671 if (likely(rx_ring->next_to_use != i)) {
4672 rx_ring->next_to_use = i;
4673 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4674
4675 /* Force memory writes to complete before letting h/w
4676 * know there are new descriptors to fetch. (Only
4677 * applicable for weak-ordered memory model archs,
4678 * such as IA-64). */
4679 wmb();
4680 /* Hardware increments by 16 bytes, but packet split
4681 * descriptors are 32 bytes...so we increment tail
4682 * twice as much.
4683 */
4684 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4685 }
4686 }
4687
4688 /**
4689 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4690 * @adapter:
4691 **/
4692
4693 static void
4694 e1000_smartspeed(struct e1000_adapter *adapter)
4695 {
4696 uint16_t phy_status;
4697 uint16_t phy_ctrl;
4698
4699 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4700 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4701 return;
4702
4703 if (adapter->smartspeed == 0) {
4704 /* If Master/Slave config fault is asserted twice,
4705 * we assume back-to-back */
4706 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4707 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4708 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4709 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4710 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4711 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4712 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4713 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4714 phy_ctrl);
4715 adapter->smartspeed++;
4716 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4717 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4718 &phy_ctrl)) {
4719 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4720 MII_CR_RESTART_AUTO_NEG);
4721 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4722 phy_ctrl);
4723 }
4724 }
4725 return;
4726 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4727 /* If still no link, perhaps using 2/3 pair cable */
4728 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4729 phy_ctrl |= CR_1000T_MS_ENABLE;
4730 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4731 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4732 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4733 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4734 MII_CR_RESTART_AUTO_NEG);
4735 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4736 }
4737 }
4738 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4739 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4740 adapter->smartspeed = 0;
4741 }
4742
4743 /**
4744 * e1000_ioctl -
4745 * @netdev:
4746 * @ifreq:
4747 * @cmd:
4748 **/
4749
4750 static int
4751 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4752 {
4753 switch (cmd) {
4754 case SIOCGMIIPHY:
4755 case SIOCGMIIREG:
4756 case SIOCSMIIREG:
4757 return e1000_mii_ioctl(netdev, ifr, cmd);
4758 default:
4759 return -EOPNOTSUPP;
4760 }
4761 }
4762
4763 /**
4764 * e1000_mii_ioctl -
4765 * @netdev:
4766 * @ifreq:
4767 * @cmd:
4768 **/
4769
4770 static int
4771 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4772 {
4773 struct e1000_adapter *adapter = netdev_priv(netdev);
4774 struct mii_ioctl_data *data = if_mii(ifr);
4775 int retval;
4776 uint16_t mii_reg;
4777 uint16_t spddplx;
4778 unsigned long flags;
4779
4780 if (adapter->hw.media_type != e1000_media_type_copper)
4781 return -EOPNOTSUPP;
4782
4783 switch (cmd) {
4784 case SIOCGMIIPHY:
4785 data->phy_id = adapter->hw.phy_addr;
4786 break;
4787 case SIOCGMIIREG:
4788 if (!capable(CAP_NET_ADMIN))
4789 return -EPERM;
4790 spin_lock_irqsave(&adapter->stats_lock, flags);
4791 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4792 &data->val_out)) {
4793 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4794 return -EIO;
4795 }
4796 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4797 break;
4798 case SIOCSMIIREG:
4799 if (!capable(CAP_NET_ADMIN))
4800 return -EPERM;
4801 if (data->reg_num & ~(0x1F))
4802 return -EFAULT;
4803 mii_reg = data->val_in;
4804 spin_lock_irqsave(&adapter->stats_lock, flags);
4805 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4806 mii_reg)) {
4807 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4808 return -EIO;
4809 }
4810 if (adapter->hw.media_type == e1000_media_type_copper) {
4811 switch (data->reg_num) {
4812 case PHY_CTRL:
4813 if (mii_reg & MII_CR_POWER_DOWN)
4814 break;
4815 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4816 adapter->hw.autoneg = 1;
4817 adapter->hw.autoneg_advertised = 0x2F;
4818 } else {
4819 if (mii_reg & 0x40)
4820 spddplx = SPEED_1000;
4821 else if (mii_reg & 0x2000)
4822 spddplx = SPEED_100;
4823 else
4824 spddplx = SPEED_10;
4825 spddplx += (mii_reg & 0x100)
4826 ? DUPLEX_FULL :
4827 DUPLEX_HALF;
4828 retval = e1000_set_spd_dplx(adapter,
4829 spddplx);
4830 if (retval) {
4831 spin_unlock_irqrestore(
4832 &adapter->stats_lock,
4833 flags);
4834 return retval;
4835 }
4836 }
4837 if (netif_running(adapter->netdev))
4838 e1000_reinit_locked(adapter);
4839 else
4840 e1000_reset(adapter);
4841 break;
4842 case M88E1000_PHY_SPEC_CTRL:
4843 case M88E1000_EXT_PHY_SPEC_CTRL:
4844 if (e1000_phy_reset(&adapter->hw)) {
4845 spin_unlock_irqrestore(
4846 &adapter->stats_lock, flags);
4847 return -EIO;
4848 }
4849 break;
4850 }
4851 } else {
4852 switch (data->reg_num) {
4853 case PHY_CTRL:
4854 if (mii_reg & MII_CR_POWER_DOWN)
4855 break;
4856 if (netif_running(adapter->netdev))
4857 e1000_reinit_locked(adapter);
4858 else
4859 e1000_reset(adapter);
4860 break;
4861 }
4862 }
4863 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4864 break;
4865 default:
4866 return -EOPNOTSUPP;
4867 }
4868 return E1000_SUCCESS;
4869 }
4870
4871 void
4872 e1000_pci_set_mwi(struct e1000_hw *hw)
4873 {
4874 struct e1000_adapter *adapter = hw->back;
4875 int ret_val = pci_set_mwi(adapter->pdev);
4876
4877 if (ret_val)
4878 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4879 }
4880
4881 void
4882 e1000_pci_clear_mwi(struct e1000_hw *hw)
4883 {
4884 struct e1000_adapter *adapter = hw->back;
4885
4886 pci_clear_mwi(adapter->pdev);
4887 }
4888
4889 void
4890 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4891 {
4892 struct e1000_adapter *adapter = hw->back;
4893
4894 pci_read_config_word(adapter->pdev, reg, value);
4895 }
4896
4897 void
4898 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4899 {
4900 struct e1000_adapter *adapter = hw->back;
4901
4902 pci_write_config_word(adapter->pdev, reg, *value);
4903 }
4904
4905 int32_t
4906 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4907 {
4908 struct e1000_adapter *adapter = hw->back;
4909 uint16_t cap_offset;
4910
4911 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4912 if (!cap_offset)
4913 return -E1000_ERR_CONFIG;
4914
4915 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4916
4917 return E1000_SUCCESS;
4918 }
4919
4920 void
4921 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4922 {
4923 outl(value, port);
4924 }
4925
4926 static void
4927 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4928 {
4929 struct e1000_adapter *adapter = netdev_priv(netdev);
4930 uint32_t ctrl, rctl;
4931
4932 e1000_irq_disable(adapter);
4933 adapter->vlgrp = grp;
4934
4935 if (grp) {
4936 /* enable VLAN tag insert/strip */
4937 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4938 ctrl |= E1000_CTRL_VME;
4939 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4940
4941 if (adapter->hw.mac_type != e1000_ich8lan) {
4942 /* enable VLAN receive filtering */
4943 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4944 rctl |= E1000_RCTL_VFE;
4945 rctl &= ~E1000_RCTL_CFIEN;
4946 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4947 e1000_update_mng_vlan(adapter);
4948 }
4949 } else {
4950 /* disable VLAN tag insert/strip */
4951 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4952 ctrl &= ~E1000_CTRL_VME;
4953 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4954
4955 if (adapter->hw.mac_type != e1000_ich8lan) {
4956 /* disable VLAN filtering */
4957 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4958 rctl &= ~E1000_RCTL_VFE;
4959 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4960 if (adapter->mng_vlan_id !=
4961 (uint16_t)E1000_MNG_VLAN_NONE) {
4962 e1000_vlan_rx_kill_vid(netdev,
4963 adapter->mng_vlan_id);
4964 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4965 }
4966 }
4967 }
4968
4969 e1000_irq_enable(adapter);
4970 }
4971
4972 static void
4973 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4974 {
4975 struct e1000_adapter *adapter = netdev_priv(netdev);
4976 uint32_t vfta, index;
4977
4978 if ((adapter->hw.mng_cookie.status &
4979 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4980 (vid == adapter->mng_vlan_id))
4981 return;
4982 /* add VID to filter table */
4983 index = (vid >> 5) & 0x7F;
4984 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4985 vfta |= (1 << (vid & 0x1F));
4986 e1000_write_vfta(&adapter->hw, index, vfta);
4987 }
4988
4989 static void
4990 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4991 {
4992 struct e1000_adapter *adapter = netdev_priv(netdev);
4993 uint32_t vfta, index;
4994
4995 e1000_irq_disable(adapter);
4996 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4997 e1000_irq_enable(adapter);
4998
4999 if ((adapter->hw.mng_cookie.status &
5000 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5001 (vid == adapter->mng_vlan_id)) {
5002 /* release control to f/w */
5003 e1000_release_hw_control(adapter);
5004 return;
5005 }
5006
5007 /* remove VID from filter table */
5008 index = (vid >> 5) & 0x7F;
5009 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5010 vfta &= ~(1 << (vid & 0x1F));
5011 e1000_write_vfta(&adapter->hw, index, vfta);
5012 }
5013
5014 static void
5015 e1000_restore_vlan(struct e1000_adapter *adapter)
5016 {
5017 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5018
5019 if (adapter->vlgrp) {
5020 uint16_t vid;
5021 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5022 if (!vlan_group_get_device(adapter->vlgrp, vid))
5023 continue;
5024 e1000_vlan_rx_add_vid(adapter->netdev, vid);
5025 }
5026 }
5027 }
5028
5029 int
5030 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5031 {
5032 adapter->hw.autoneg = 0;
5033
5034 /* Fiber NICs only allow 1000 gbps Full duplex */
5035 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5036 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5037 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5038 return -EINVAL;
5039 }
5040
5041 switch (spddplx) {
5042 case SPEED_10 + DUPLEX_HALF:
5043 adapter->hw.forced_speed_duplex = e1000_10_half;
5044 break;
5045 case SPEED_10 + DUPLEX_FULL:
5046 adapter->hw.forced_speed_duplex = e1000_10_full;
5047 break;
5048 case SPEED_100 + DUPLEX_HALF:
5049 adapter->hw.forced_speed_duplex = e1000_100_half;
5050 break;
5051 case SPEED_100 + DUPLEX_FULL:
5052 adapter->hw.forced_speed_duplex = e1000_100_full;
5053 break;
5054 case SPEED_1000 + DUPLEX_FULL:
5055 adapter->hw.autoneg = 1;
5056 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5057 break;
5058 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5059 default:
5060 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5061 return -EINVAL;
5062 }
5063 return 0;
5064 }
5065
5066 static int
5067 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5068 {
5069 struct net_device *netdev = pci_get_drvdata(pdev);
5070 struct e1000_adapter *adapter = netdev_priv(netdev);
5071 uint32_t ctrl, ctrl_ext, rctl, status;
5072 uint32_t wufc = adapter->wol;
5073 #ifdef CONFIG_PM
5074 int retval = 0;
5075 #endif
5076
5077 netif_device_detach(netdev);
5078
5079 if (netif_running(netdev)) {
5080 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5081 e1000_down(adapter);
5082 }
5083
5084 #ifdef CONFIG_PM
5085 retval = pci_save_state(pdev);
5086 if (retval)
5087 return retval;
5088 #endif
5089
5090 status = E1000_READ_REG(&adapter->hw, STATUS);
5091 if (status & E1000_STATUS_LU)
5092 wufc &= ~E1000_WUFC_LNKC;
5093
5094 if (wufc) {
5095 e1000_setup_rctl(adapter);
5096 e1000_set_multi(netdev);
5097
5098 /* turn on all-multi mode if wake on multicast is enabled */
5099 if (wufc & E1000_WUFC_MC) {
5100 rctl = E1000_READ_REG(&adapter->hw, RCTL);
5101 rctl |= E1000_RCTL_MPE;
5102 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5103 }
5104
5105 if (adapter->hw.mac_type >= e1000_82540) {
5106 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5107 /* advertise wake from D3Cold */
5108 #define E1000_CTRL_ADVD3WUC 0x00100000
5109 /* phy power management enable */
5110 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5111 ctrl |= E1000_CTRL_ADVD3WUC |
5112 E1000_CTRL_EN_PHY_PWR_MGMT;
5113 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5114 }
5115
5116 if (adapter->hw.media_type == e1000_media_type_fiber ||
5117 adapter->hw.media_type == e1000_media_type_internal_serdes) {
5118 /* keep the laser running in D3 */
5119 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5120 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5121 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5122 }
5123
5124 /* Allow time for pending master requests to run */
5125 e1000_disable_pciex_master(&adapter->hw);
5126
5127 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5128 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5129 pci_enable_wake(pdev, PCI_D3hot, 1);
5130 pci_enable_wake(pdev, PCI_D3cold, 1);
5131 } else {
5132 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5133 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5134 pci_enable_wake(pdev, PCI_D3hot, 0);
5135 pci_enable_wake(pdev, PCI_D3cold, 0);
5136 }
5137
5138 e1000_release_manageability(adapter);
5139
5140 /* make sure adapter isn't asleep if manageability is enabled */
5141 if (adapter->en_mng_pt) {
5142 pci_enable_wake(pdev, PCI_D3hot, 1);
5143 pci_enable_wake(pdev, PCI_D3cold, 1);
5144 }
5145
5146 if (adapter->hw.phy_type == e1000_phy_igp_3)
5147 e1000_phy_powerdown_workaround(&adapter->hw);
5148
5149 if (netif_running(netdev))
5150 e1000_free_irq(adapter);
5151
5152 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5153 * would have already happened in close and is redundant. */
5154 e1000_release_hw_control(adapter);
5155
5156 pci_disable_device(pdev);
5157
5158 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5159
5160 return 0;
5161 }
5162
5163 #ifdef CONFIG_PM
5164 static int
5165 e1000_resume(struct pci_dev *pdev)
5166 {
5167 struct net_device *netdev = pci_get_drvdata(pdev);
5168 struct e1000_adapter *adapter = netdev_priv(netdev);
5169 uint32_t err;
5170
5171 pci_set_power_state(pdev, PCI_D0);
5172 pci_restore_state(pdev);
5173 if ((err = pci_enable_device(pdev))) {
5174 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5175 return err;
5176 }
5177 pci_set_master(pdev);
5178
5179 pci_enable_wake(pdev, PCI_D3hot, 0);
5180 pci_enable_wake(pdev, PCI_D3cold, 0);
5181
5182 if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5183 return err;
5184
5185 e1000_power_up_phy(adapter);
5186 e1000_reset(adapter);
5187 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5188
5189 e1000_init_manageability(adapter);
5190
5191 if (netif_running(netdev))
5192 e1000_up(adapter);
5193
5194 netif_device_attach(netdev);
5195
5196 /* If the controller is 82573 and f/w is AMT, do not set
5197 * DRV_LOAD until the interface is up. For all other cases,
5198 * let the f/w know that the h/w is now under the control
5199 * of the driver. */
5200 if (adapter->hw.mac_type != e1000_82573 ||
5201 !e1000_check_mng_mode(&adapter->hw))
5202 e1000_get_hw_control(adapter);
5203
5204 return 0;
5205 }
5206 #endif
5207
5208 static void e1000_shutdown(struct pci_dev *pdev)
5209 {
5210 e1000_suspend(pdev, PMSG_SUSPEND);
5211 }
5212
5213 #ifdef CONFIG_NET_POLL_CONTROLLER
5214 /*
5215 * Polling 'interrupt' - used by things like netconsole to send skbs
5216 * without having to re-enable interrupts. It's not called while
5217 * the interrupt routine is executing.
5218 */
5219 static void
5220 e1000_netpoll(struct net_device *netdev)
5221 {
5222 struct e1000_adapter *adapter = netdev_priv(netdev);
5223
5224 disable_irq(adapter->pdev->irq);
5225 e1000_intr(adapter->pdev->irq, netdev);
5226 e1000_clean_tx_irq(adapter, adapter->tx_ring);
5227 #ifndef CONFIG_E1000_NAPI
5228 adapter->clean_rx(adapter, adapter->rx_ring);
5229 #endif
5230 enable_irq(adapter->pdev->irq);
5231 }
5232 #endif
5233
5234 /**
5235 * e1000_io_error_detected - called when PCI error is detected
5236 * @pdev: Pointer to PCI device
5237 * @state: The current pci conneection state
5238 *
5239 * This function is called after a PCI bus error affecting
5240 * this device has been detected.
5241 */
5242 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5243 {
5244 struct net_device *netdev = pci_get_drvdata(pdev);
5245 struct e1000_adapter *adapter = netdev->priv;
5246
5247 netif_device_detach(netdev);
5248
5249 if (netif_running(netdev))
5250 e1000_down(adapter);
5251 pci_disable_device(pdev);
5252
5253 /* Request a slot slot reset. */
5254 return PCI_ERS_RESULT_NEED_RESET;
5255 }
5256
5257 /**
5258 * e1000_io_slot_reset - called after the pci bus has been reset.
5259 * @pdev: Pointer to PCI device
5260 *
5261 * Restart the card from scratch, as if from a cold-boot. Implementation
5262 * resembles the first-half of the e1000_resume routine.
5263 */
5264 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5265 {
5266 struct net_device *netdev = pci_get_drvdata(pdev);
5267 struct e1000_adapter *adapter = netdev->priv;
5268
5269 if (pci_enable_device(pdev)) {
5270 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5271 return PCI_ERS_RESULT_DISCONNECT;
5272 }
5273 pci_set_master(pdev);
5274
5275 pci_enable_wake(pdev, PCI_D3hot, 0);
5276 pci_enable_wake(pdev, PCI_D3cold, 0);
5277
5278 e1000_reset(adapter);
5279 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5280
5281 return PCI_ERS_RESULT_RECOVERED;
5282 }
5283
5284 /**
5285 * e1000_io_resume - called when traffic can start flowing again.
5286 * @pdev: Pointer to PCI device
5287 *
5288 * This callback is called when the error recovery driver tells us that
5289 * its OK to resume normal operation. Implementation resembles the
5290 * second-half of the e1000_resume routine.
5291 */
5292 static void e1000_io_resume(struct pci_dev *pdev)
5293 {
5294 struct net_device *netdev = pci_get_drvdata(pdev);
5295 struct e1000_adapter *adapter = netdev->priv;
5296
5297 e1000_init_manageability(adapter);
5298
5299 if (netif_running(netdev)) {
5300 if (e1000_up(adapter)) {
5301 printk("e1000: can't bring device back up after reset\n");
5302 return;
5303 }
5304 }
5305
5306 netif_device_attach(netdev);
5307
5308 /* If the controller is 82573 and f/w is AMT, do not set
5309 * DRV_LOAD until the interface is up. For all other cases,
5310 * let the f/w know that the h/w is now under the control
5311 * of the driver. */
5312 if (adapter->hw.mac_type != e1000_82573 ||
5313 !e1000_check_mng_mode(&adapter->hw))
5314 e1000_get_hw_control(adapter);
5315
5316 }
5317
5318 /* e1000_main.c */
This page took 0.338927 seconds and 5 git commands to generate.