drivers/net: use vzalloc()
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k6-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39 *
40 * Last entry must be all 0s
41 *
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44 */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_update_phy_info_task(struct work_struct *work);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_82547_tx_fifo_stall(unsigned long data);
129 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
130 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
131 struct net_device *netdev);
132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
134 static int e1000_set_mac(struct net_device *netdev, void *p);
135 static irqreturn_t e1000_intr(int irq, void *data);
136 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
137 struct e1000_tx_ring *tx_ring);
138 static int e1000_clean(struct napi_struct *napi, int budget);
139 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
140 struct e1000_rx_ring *rx_ring,
141 int *work_done, int work_to_do);
142 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
143 struct e1000_rx_ring *rx_ring,
144 int *work_done, int work_to_do);
145 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
146 struct e1000_rx_ring *rx_ring,
147 int cleaned_count);
148 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
149 struct e1000_rx_ring *rx_ring,
150 int cleaned_count);
151 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
152 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
153 int cmd);
154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
156 static void e1000_tx_timeout(struct net_device *dev);
157 static void e1000_reset_task(struct work_struct *work);
158 static void e1000_smartspeed(struct e1000_adapter *adapter);
159 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
160 struct sk_buff *skb);
161
162 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
163 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
164 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
165 static void e1000_restore_vlan(struct e1000_adapter *adapter);
166
167 #ifdef CONFIG_PM
168 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
169 static int e1000_resume(struct pci_dev *pdev);
170 #endif
171 static void e1000_shutdown(struct pci_dev *pdev);
172
173 #ifdef CONFIG_NET_POLL_CONTROLLER
174 /* for netdump / net console */
175 static void e1000_netpoll (struct net_device *netdev);
176 #endif
177
178 #define COPYBREAK_DEFAULT 256
179 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
180 module_param(copybreak, uint, 0644);
181 MODULE_PARM_DESC(copybreak,
182 "Maximum size of packet that is copied to a new buffer on receive");
183
184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
185 pci_channel_state_t state);
186 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
187 static void e1000_io_resume(struct pci_dev *pdev);
188
189 static struct pci_error_handlers e1000_err_handler = {
190 .error_detected = e1000_io_error_detected,
191 .slot_reset = e1000_io_slot_reset,
192 .resume = e1000_io_resume,
193 };
194
195 static struct pci_driver e1000_driver = {
196 .name = e1000_driver_name,
197 .id_table = e1000_pci_tbl,
198 .probe = e1000_probe,
199 .remove = __devexit_p(e1000_remove),
200 #ifdef CONFIG_PM
201 /* Power Managment Hooks */
202 .suspend = e1000_suspend,
203 .resume = e1000_resume,
204 #endif
205 .shutdown = e1000_shutdown,
206 .err_handler = &e1000_err_handler
207 };
208
209 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
210 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
211 MODULE_LICENSE("GPL");
212 MODULE_VERSION(DRV_VERSION);
213
214 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217
218 /**
219 * e1000_get_hw_dev - return device
220 * used by hardware layer to print debugging information
221 *
222 **/
223 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
224 {
225 struct e1000_adapter *adapter = hw->back;
226 return adapter->netdev;
227 }
228
229 /**
230 * e1000_init_module - Driver Registration Routine
231 *
232 * e1000_init_module is the first routine called when the driver is
233 * loaded. All it does is register with the PCI subsystem.
234 **/
235
236 static int __init e1000_init_module(void)
237 {
238 int ret;
239 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
240
241 pr_info("%s\n", e1000_copyright);
242
243 ret = pci_register_driver(&e1000_driver);
244 if (copybreak != COPYBREAK_DEFAULT) {
245 if (copybreak == 0)
246 pr_info("copybreak disabled\n");
247 else
248 pr_info("copybreak enabled for "
249 "packets <= %u bytes\n", copybreak);
250 }
251 return ret;
252 }
253
254 module_init(e1000_init_module);
255
256 /**
257 * e1000_exit_module - Driver Exit Cleanup Routine
258 *
259 * e1000_exit_module is called just before the driver is removed
260 * from memory.
261 **/
262
263 static void __exit e1000_exit_module(void)
264 {
265 pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272 struct net_device *netdev = adapter->netdev;
273 irq_handler_t handler = e1000_intr;
274 int irq_flags = IRQF_SHARED;
275 int err;
276
277 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
278 netdev);
279 if (err) {
280 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
281 }
282
283 return err;
284 }
285
286 static void e1000_free_irq(struct e1000_adapter *adapter)
287 {
288 struct net_device *netdev = adapter->netdev;
289
290 free_irq(adapter->pdev->irq, netdev);
291 }
292
293 /**
294 * e1000_irq_disable - Mask off interrupt generation on the NIC
295 * @adapter: board private structure
296 **/
297
298 static void e1000_irq_disable(struct e1000_adapter *adapter)
299 {
300 struct e1000_hw *hw = &adapter->hw;
301
302 ew32(IMC, ~0);
303 E1000_WRITE_FLUSH();
304 synchronize_irq(adapter->pdev->irq);
305 }
306
307 /**
308 * e1000_irq_enable - Enable default interrupt generation settings
309 * @adapter: board private structure
310 **/
311
312 static void e1000_irq_enable(struct e1000_adapter *adapter)
313 {
314 struct e1000_hw *hw = &adapter->hw;
315
316 ew32(IMS, IMS_ENABLE_MASK);
317 E1000_WRITE_FLUSH();
318 }
319
320 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
321 {
322 struct e1000_hw *hw = &adapter->hw;
323 struct net_device *netdev = adapter->netdev;
324 u16 vid = hw->mng_cookie.vlan_id;
325 u16 old_vid = adapter->mng_vlan_id;
326 if (adapter->vlgrp) {
327 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
328 if (hw->mng_cookie.status &
329 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
330 e1000_vlan_rx_add_vid(netdev, vid);
331 adapter->mng_vlan_id = vid;
332 } else
333 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
334
335 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
336 (vid != old_vid) &&
337 !vlan_group_get_device(adapter->vlgrp, old_vid))
338 e1000_vlan_rx_kill_vid(netdev, old_vid);
339 } else
340 adapter->mng_vlan_id = vid;
341 }
342 }
343
344 static void e1000_init_manageability(struct e1000_adapter *adapter)
345 {
346 struct e1000_hw *hw = &adapter->hw;
347
348 if (adapter->en_mng_pt) {
349 u32 manc = er32(MANC);
350
351 /* disable hardware interception of ARP */
352 manc &= ~(E1000_MANC_ARP_EN);
353
354 ew32(MANC, manc);
355 }
356 }
357
358 static void e1000_release_manageability(struct e1000_adapter *adapter)
359 {
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* re-enable hardware interception of ARP */
366 manc |= E1000_MANC_ARP_EN;
367
368 ew32(MANC, manc);
369 }
370 }
371
372 /**
373 * e1000_configure - configure the hardware for RX and TX
374 * @adapter = private board structure
375 **/
376 static void e1000_configure(struct e1000_adapter *adapter)
377 {
378 struct net_device *netdev = adapter->netdev;
379 int i;
380
381 e1000_set_rx_mode(netdev);
382
383 e1000_restore_vlan(adapter);
384 e1000_init_manageability(adapter);
385
386 e1000_configure_tx(adapter);
387 e1000_setup_rctl(adapter);
388 e1000_configure_rx(adapter);
389 /* call E1000_DESC_UNUSED which always leaves
390 * at least 1 descriptor unused to make sure
391 * next_to_use != next_to_clean */
392 for (i = 0; i < adapter->num_rx_queues; i++) {
393 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
394 adapter->alloc_rx_buf(adapter, ring,
395 E1000_DESC_UNUSED(ring));
396 }
397 }
398
399 int e1000_up(struct e1000_adapter *adapter)
400 {
401 struct e1000_hw *hw = &adapter->hw;
402
403 /* hardware has been reset, we need to reload some things */
404 e1000_configure(adapter);
405
406 clear_bit(__E1000_DOWN, &adapter->flags);
407
408 napi_enable(&adapter->napi);
409
410 e1000_irq_enable(adapter);
411
412 netif_wake_queue(adapter->netdev);
413
414 /* fire a link change interrupt to start the watchdog */
415 ew32(ICS, E1000_ICS_LSC);
416 return 0;
417 }
418
419 /**
420 * e1000_power_up_phy - restore link in case the phy was powered down
421 * @adapter: address of board private structure
422 *
423 * The phy may be powered down to save power and turn off link when the
424 * driver is unloaded and wake on lan is not enabled (among others)
425 * *** this routine MUST be followed by a call to e1000_reset ***
426 *
427 **/
428
429 void e1000_power_up_phy(struct e1000_adapter *adapter)
430 {
431 struct e1000_hw *hw = &adapter->hw;
432 u16 mii_reg = 0;
433
434 /* Just clear the power down bit to wake the phy back up */
435 if (hw->media_type == e1000_media_type_copper) {
436 /* according to the manual, the phy will retain its
437 * settings across a power-down/up cycle */
438 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
439 mii_reg &= ~MII_CR_POWER_DOWN;
440 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
441 }
442 }
443
444 static void e1000_power_down_phy(struct e1000_adapter *adapter)
445 {
446 struct e1000_hw *hw = &adapter->hw;
447
448 /* Power down the PHY so no link is implied when interface is down *
449 * The PHY cannot be powered down if any of the following is true *
450 * (a) WoL is enabled
451 * (b) AMT is active
452 * (c) SoL/IDER session is active */
453 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
454 hw->media_type == e1000_media_type_copper) {
455 u16 mii_reg = 0;
456
457 switch (hw->mac_type) {
458 case e1000_82540:
459 case e1000_82545:
460 case e1000_82545_rev_3:
461 case e1000_82546:
462 case e1000_82546_rev_3:
463 case e1000_82541:
464 case e1000_82541_rev_2:
465 case e1000_82547:
466 case e1000_82547_rev_2:
467 if (er32(MANC) & E1000_MANC_SMBUS_EN)
468 goto out;
469 break;
470 default:
471 goto out;
472 }
473 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
474 mii_reg |= MII_CR_POWER_DOWN;
475 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
476 mdelay(1);
477 }
478 out:
479 return;
480 }
481
482 void e1000_down(struct e1000_adapter *adapter)
483 {
484 struct e1000_hw *hw = &adapter->hw;
485 struct net_device *netdev = adapter->netdev;
486 u32 rctl, tctl;
487
488 /* signal that we're down so the interrupt handler does not
489 * reschedule our watchdog timer */
490 set_bit(__E1000_DOWN, &adapter->flags);
491
492 /* disable receives in the hardware */
493 rctl = er32(RCTL);
494 ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 /* flush and sleep below */
496
497 netif_tx_disable(netdev);
498
499 /* disable transmits in the hardware */
500 tctl = er32(TCTL);
501 tctl &= ~E1000_TCTL_EN;
502 ew32(TCTL, tctl);
503 /* flush both disables and wait for them to finish */
504 E1000_WRITE_FLUSH();
505 msleep(10);
506
507 napi_disable(&adapter->napi);
508
509 e1000_irq_disable(adapter);
510
511 del_timer_sync(&adapter->tx_fifo_stall_timer);
512 del_timer_sync(&adapter->watchdog_timer);
513 del_timer_sync(&adapter->phy_info_timer);
514
515 adapter->link_speed = 0;
516 adapter->link_duplex = 0;
517 netif_carrier_off(netdev);
518
519 e1000_reset(adapter);
520 e1000_clean_all_tx_rings(adapter);
521 e1000_clean_all_rx_rings(adapter);
522 }
523
524 static void e1000_reinit_safe(struct e1000_adapter *adapter)
525 {
526 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
527 msleep(1);
528 rtnl_lock();
529 e1000_down(adapter);
530 e1000_up(adapter);
531 rtnl_unlock();
532 clear_bit(__E1000_RESETTING, &adapter->flags);
533 }
534
535 void e1000_reinit_locked(struct e1000_adapter *adapter)
536 {
537 /* if rtnl_lock is not held the call path is bogus */
538 ASSERT_RTNL();
539 WARN_ON(in_interrupt());
540 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
541 msleep(1);
542 e1000_down(adapter);
543 e1000_up(adapter);
544 clear_bit(__E1000_RESETTING, &adapter->flags);
545 }
546
547 void e1000_reset(struct e1000_adapter *adapter)
548 {
549 struct e1000_hw *hw = &adapter->hw;
550 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
551 bool legacy_pba_adjust = false;
552 u16 hwm;
553
554 /* Repartition Pba for greater than 9k mtu
555 * To take effect CTRL.RST is required.
556 */
557
558 switch (hw->mac_type) {
559 case e1000_82542_rev2_0:
560 case e1000_82542_rev2_1:
561 case e1000_82543:
562 case e1000_82544:
563 case e1000_82540:
564 case e1000_82541:
565 case e1000_82541_rev_2:
566 legacy_pba_adjust = true;
567 pba = E1000_PBA_48K;
568 break;
569 case e1000_82545:
570 case e1000_82545_rev_3:
571 case e1000_82546:
572 case e1000_82546_rev_3:
573 pba = E1000_PBA_48K;
574 break;
575 case e1000_82547:
576 case e1000_82547_rev_2:
577 legacy_pba_adjust = true;
578 pba = E1000_PBA_30K;
579 break;
580 case e1000_undefined:
581 case e1000_num_macs:
582 break;
583 }
584
585 if (legacy_pba_adjust) {
586 if (hw->max_frame_size > E1000_RXBUFFER_8192)
587 pba -= 8; /* allocate more FIFO for Tx */
588
589 if (hw->mac_type == e1000_82547) {
590 adapter->tx_fifo_head = 0;
591 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
592 adapter->tx_fifo_size =
593 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
594 atomic_set(&adapter->tx_fifo_stall, 0);
595 }
596 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
597 /* adjust PBA for jumbo frames */
598 ew32(PBA, pba);
599
600 /* To maintain wire speed transmits, the Tx FIFO should be
601 * large enough to accommodate two full transmit packets,
602 * rounded up to the next 1KB and expressed in KB. Likewise,
603 * the Rx FIFO should be large enough to accommodate at least
604 * one full receive packet and is similarly rounded up and
605 * expressed in KB. */
606 pba = er32(PBA);
607 /* upper 16 bits has Tx packet buffer allocation size in KB */
608 tx_space = pba >> 16;
609 /* lower 16 bits has Rx packet buffer allocation size in KB */
610 pba &= 0xffff;
611 /*
612 * the tx fifo also stores 16 bytes of information about the tx
613 * but don't include ethernet FCS because hardware appends it
614 */
615 min_tx_space = (hw->max_frame_size +
616 sizeof(struct e1000_tx_desc) -
617 ETH_FCS_LEN) * 2;
618 min_tx_space = ALIGN(min_tx_space, 1024);
619 min_tx_space >>= 10;
620 /* software strips receive CRC, so leave room for it */
621 min_rx_space = hw->max_frame_size;
622 min_rx_space = ALIGN(min_rx_space, 1024);
623 min_rx_space >>= 10;
624
625 /* If current Tx allocation is less than the min Tx FIFO size,
626 * and the min Tx FIFO size is less than the current Rx FIFO
627 * allocation, take space away from current Rx allocation */
628 if (tx_space < min_tx_space &&
629 ((min_tx_space - tx_space) < pba)) {
630 pba = pba - (min_tx_space - tx_space);
631
632 /* PCI/PCIx hardware has PBA alignment constraints */
633 switch (hw->mac_type) {
634 case e1000_82545 ... e1000_82546_rev_3:
635 pba &= ~(E1000_PBA_8K - 1);
636 break;
637 default:
638 break;
639 }
640
641 /* if short on rx space, rx wins and must trump tx
642 * adjustment or use Early Receive if available */
643 if (pba < min_rx_space)
644 pba = min_rx_space;
645 }
646 }
647
648 ew32(PBA, pba);
649
650 /*
651 * flow control settings:
652 * The high water mark must be low enough to fit one full frame
653 * (or the size used for early receive) above it in the Rx FIFO.
654 * Set it to the lower of:
655 * - 90% of the Rx FIFO size, and
656 * - the full Rx FIFO size minus the early receive size (for parts
657 * with ERT support assuming ERT set to E1000_ERT_2048), or
658 * - the full Rx FIFO size minus one full frame
659 */
660 hwm = min(((pba << 10) * 9 / 10),
661 ((pba << 10) - hw->max_frame_size));
662
663 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
664 hw->fc_low_water = hw->fc_high_water - 8;
665 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
666 hw->fc_send_xon = 1;
667 hw->fc = hw->original_fc;
668
669 /* Allow time for pending master requests to run */
670 e1000_reset_hw(hw);
671 if (hw->mac_type >= e1000_82544)
672 ew32(WUC, 0);
673
674 if (e1000_init_hw(hw))
675 e_dev_err("Hardware Error\n");
676 e1000_update_mng_vlan(adapter);
677
678 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
679 if (hw->mac_type >= e1000_82544 &&
680 hw->autoneg == 1 &&
681 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
682 u32 ctrl = er32(CTRL);
683 /* clear phy power management bit if we are in gig only mode,
684 * which if enabled will attempt negotiation to 100Mb, which
685 * can cause a loss of link at power off or driver unload */
686 ctrl &= ~E1000_CTRL_SWDPIN3;
687 ew32(CTRL, ctrl);
688 }
689
690 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
691 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
692
693 e1000_reset_adaptive(hw);
694 e1000_phy_get_info(hw, &adapter->phy_info);
695
696 e1000_release_manageability(adapter);
697 }
698
699 /**
700 * Dump the eeprom for users having checksum issues
701 **/
702 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
703 {
704 struct net_device *netdev = adapter->netdev;
705 struct ethtool_eeprom eeprom;
706 const struct ethtool_ops *ops = netdev->ethtool_ops;
707 u8 *data;
708 int i;
709 u16 csum_old, csum_new = 0;
710
711 eeprom.len = ops->get_eeprom_len(netdev);
712 eeprom.offset = 0;
713
714 data = kmalloc(eeprom.len, GFP_KERNEL);
715 if (!data) {
716 pr_err("Unable to allocate memory to dump EEPROM data\n");
717 return;
718 }
719
720 ops->get_eeprom(netdev, &eeprom, data);
721
722 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
723 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
724 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
725 csum_new += data[i] + (data[i + 1] << 8);
726 csum_new = EEPROM_SUM - csum_new;
727
728 pr_err("/*********************/\n");
729 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
730 pr_err("Calculated : 0x%04x\n", csum_new);
731
732 pr_err("Offset Values\n");
733 pr_err("======== ======\n");
734 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
735
736 pr_err("Include this output when contacting your support provider.\n");
737 pr_err("This is not a software error! Something bad happened to\n");
738 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
739 pr_err("result in further problems, possibly loss of data,\n");
740 pr_err("corruption or system hangs!\n");
741 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
742 pr_err("which is invalid and requires you to set the proper MAC\n");
743 pr_err("address manually before continuing to enable this network\n");
744 pr_err("device. Please inspect the EEPROM dump and report the\n");
745 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
746 pr_err("/*********************/\n");
747
748 kfree(data);
749 }
750
751 /**
752 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
753 * @pdev: PCI device information struct
754 *
755 * Return true if an adapter needs ioport resources
756 **/
757 static int e1000_is_need_ioport(struct pci_dev *pdev)
758 {
759 switch (pdev->device) {
760 case E1000_DEV_ID_82540EM:
761 case E1000_DEV_ID_82540EM_LOM:
762 case E1000_DEV_ID_82540EP:
763 case E1000_DEV_ID_82540EP_LOM:
764 case E1000_DEV_ID_82540EP_LP:
765 case E1000_DEV_ID_82541EI:
766 case E1000_DEV_ID_82541EI_MOBILE:
767 case E1000_DEV_ID_82541ER:
768 case E1000_DEV_ID_82541ER_LOM:
769 case E1000_DEV_ID_82541GI:
770 case E1000_DEV_ID_82541GI_LF:
771 case E1000_DEV_ID_82541GI_MOBILE:
772 case E1000_DEV_ID_82544EI_COPPER:
773 case E1000_DEV_ID_82544EI_FIBER:
774 case E1000_DEV_ID_82544GC_COPPER:
775 case E1000_DEV_ID_82544GC_LOM:
776 case E1000_DEV_ID_82545EM_COPPER:
777 case E1000_DEV_ID_82545EM_FIBER:
778 case E1000_DEV_ID_82546EB_COPPER:
779 case E1000_DEV_ID_82546EB_FIBER:
780 case E1000_DEV_ID_82546EB_QUAD_COPPER:
781 return true;
782 default:
783 return false;
784 }
785 }
786
787 static const struct net_device_ops e1000_netdev_ops = {
788 .ndo_open = e1000_open,
789 .ndo_stop = e1000_close,
790 .ndo_start_xmit = e1000_xmit_frame,
791 .ndo_get_stats = e1000_get_stats,
792 .ndo_set_rx_mode = e1000_set_rx_mode,
793 .ndo_set_mac_address = e1000_set_mac,
794 .ndo_tx_timeout = e1000_tx_timeout,
795 .ndo_change_mtu = e1000_change_mtu,
796 .ndo_do_ioctl = e1000_ioctl,
797 .ndo_validate_addr = eth_validate_addr,
798
799 .ndo_vlan_rx_register = e1000_vlan_rx_register,
800 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
801 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
802 #ifdef CONFIG_NET_POLL_CONTROLLER
803 .ndo_poll_controller = e1000_netpoll,
804 #endif
805 };
806
807 /**
808 * e1000_init_hw_struct - initialize members of hw struct
809 * @adapter: board private struct
810 * @hw: structure used by e1000_hw.c
811 *
812 * Factors out initialization of the e1000_hw struct to its own function
813 * that can be called very early at init (just after struct allocation).
814 * Fields are initialized based on PCI device information and
815 * OS network device settings (MTU size).
816 * Returns negative error codes if MAC type setup fails.
817 */
818 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
819 struct e1000_hw *hw)
820 {
821 struct pci_dev *pdev = adapter->pdev;
822
823 /* PCI config space info */
824 hw->vendor_id = pdev->vendor;
825 hw->device_id = pdev->device;
826 hw->subsystem_vendor_id = pdev->subsystem_vendor;
827 hw->subsystem_id = pdev->subsystem_device;
828 hw->revision_id = pdev->revision;
829
830 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
831
832 hw->max_frame_size = adapter->netdev->mtu +
833 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
834 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
835
836 /* identify the MAC */
837 if (e1000_set_mac_type(hw)) {
838 e_err(probe, "Unknown MAC Type\n");
839 return -EIO;
840 }
841
842 switch (hw->mac_type) {
843 default:
844 break;
845 case e1000_82541:
846 case e1000_82547:
847 case e1000_82541_rev_2:
848 case e1000_82547_rev_2:
849 hw->phy_init_script = 1;
850 break;
851 }
852
853 e1000_set_media_type(hw);
854 e1000_get_bus_info(hw);
855
856 hw->wait_autoneg_complete = false;
857 hw->tbi_compatibility_en = true;
858 hw->adaptive_ifs = true;
859
860 /* Copper options */
861
862 if (hw->media_type == e1000_media_type_copper) {
863 hw->mdix = AUTO_ALL_MODES;
864 hw->disable_polarity_correction = false;
865 hw->master_slave = E1000_MASTER_SLAVE;
866 }
867
868 return 0;
869 }
870
871 /**
872 * e1000_probe - Device Initialization Routine
873 * @pdev: PCI device information struct
874 * @ent: entry in e1000_pci_tbl
875 *
876 * Returns 0 on success, negative on failure
877 *
878 * e1000_probe initializes an adapter identified by a pci_dev structure.
879 * The OS initialization, configuring of the adapter private structure,
880 * and a hardware reset occur.
881 **/
882 static int __devinit e1000_probe(struct pci_dev *pdev,
883 const struct pci_device_id *ent)
884 {
885 struct net_device *netdev;
886 struct e1000_adapter *adapter;
887 struct e1000_hw *hw;
888
889 static int cards_found = 0;
890 static int global_quad_port_a = 0; /* global ksp3 port a indication */
891 int i, err, pci_using_dac;
892 u16 eeprom_data = 0;
893 u16 eeprom_apme_mask = E1000_EEPROM_APME;
894 int bars, need_ioport;
895
896 /* do not allocate ioport bars when not needed */
897 need_ioport = e1000_is_need_ioport(pdev);
898 if (need_ioport) {
899 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
900 err = pci_enable_device(pdev);
901 } else {
902 bars = pci_select_bars(pdev, IORESOURCE_MEM);
903 err = pci_enable_device_mem(pdev);
904 }
905 if (err)
906 return err;
907
908 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
909 if (err)
910 goto err_pci_reg;
911
912 pci_set_master(pdev);
913 err = pci_save_state(pdev);
914 if (err)
915 goto err_alloc_etherdev;
916
917 err = -ENOMEM;
918 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
919 if (!netdev)
920 goto err_alloc_etherdev;
921
922 SET_NETDEV_DEV(netdev, &pdev->dev);
923
924 pci_set_drvdata(pdev, netdev);
925 adapter = netdev_priv(netdev);
926 adapter->netdev = netdev;
927 adapter->pdev = pdev;
928 adapter->msg_enable = (1 << debug) - 1;
929 adapter->bars = bars;
930 adapter->need_ioport = need_ioport;
931
932 hw = &adapter->hw;
933 hw->back = adapter;
934
935 err = -EIO;
936 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
937 if (!hw->hw_addr)
938 goto err_ioremap;
939
940 if (adapter->need_ioport) {
941 for (i = BAR_1; i <= BAR_5; i++) {
942 if (pci_resource_len(pdev, i) == 0)
943 continue;
944 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
945 hw->io_base = pci_resource_start(pdev, i);
946 break;
947 }
948 }
949 }
950
951 /* make ready for any if (hw->...) below */
952 err = e1000_init_hw_struct(adapter, hw);
953 if (err)
954 goto err_sw_init;
955
956 /*
957 * there is a workaround being applied below that limits
958 * 64-bit DMA addresses to 64-bit hardware. There are some
959 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
960 */
961 pci_using_dac = 0;
962 if ((hw->bus_type == e1000_bus_type_pcix) &&
963 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
964 /*
965 * according to DMA-API-HOWTO, coherent calls will always
966 * succeed if the set call did
967 */
968 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
969 pci_using_dac = 1;
970 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
971 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
972 } else {
973 pr_err("No usable DMA config, aborting\n");
974 goto err_dma;
975 }
976
977 netdev->netdev_ops = &e1000_netdev_ops;
978 e1000_set_ethtool_ops(netdev);
979 netdev->watchdog_timeo = 5 * HZ;
980 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
981
982 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
983
984 adapter->bd_number = cards_found;
985
986 /* setup the private structure */
987
988 err = e1000_sw_init(adapter);
989 if (err)
990 goto err_sw_init;
991
992 err = -EIO;
993
994 if (hw->mac_type >= e1000_82543) {
995 netdev->features = NETIF_F_SG |
996 NETIF_F_HW_CSUM |
997 NETIF_F_HW_VLAN_TX |
998 NETIF_F_HW_VLAN_RX |
999 NETIF_F_HW_VLAN_FILTER;
1000 }
1001
1002 if ((hw->mac_type >= e1000_82544) &&
1003 (hw->mac_type != e1000_82547))
1004 netdev->features |= NETIF_F_TSO;
1005
1006 if (pci_using_dac) {
1007 netdev->features |= NETIF_F_HIGHDMA;
1008 netdev->vlan_features |= NETIF_F_HIGHDMA;
1009 }
1010
1011 netdev->vlan_features |= NETIF_F_TSO;
1012 netdev->vlan_features |= NETIF_F_HW_CSUM;
1013 netdev->vlan_features |= NETIF_F_SG;
1014
1015 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1016
1017 /* initialize eeprom parameters */
1018 if (e1000_init_eeprom_params(hw)) {
1019 e_err(probe, "EEPROM initialization failed\n");
1020 goto err_eeprom;
1021 }
1022
1023 /* before reading the EEPROM, reset the controller to
1024 * put the device in a known good starting state */
1025
1026 e1000_reset_hw(hw);
1027
1028 /* make sure the EEPROM is good */
1029 if (e1000_validate_eeprom_checksum(hw) < 0) {
1030 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1031 e1000_dump_eeprom(adapter);
1032 /*
1033 * set MAC address to all zeroes to invalidate and temporary
1034 * disable this device for the user. This blocks regular
1035 * traffic while still permitting ethtool ioctls from reaching
1036 * the hardware as well as allowing the user to run the
1037 * interface after manually setting a hw addr using
1038 * `ip set address`
1039 */
1040 memset(hw->mac_addr, 0, netdev->addr_len);
1041 } else {
1042 /* copy the MAC address out of the EEPROM */
1043 if (e1000_read_mac_addr(hw))
1044 e_err(probe, "EEPROM Read Error\n");
1045 }
1046 /* don't block initalization here due to bad MAC address */
1047 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1048 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1049
1050 if (!is_valid_ether_addr(netdev->perm_addr))
1051 e_err(probe, "Invalid MAC Address\n");
1052
1053 init_timer(&adapter->tx_fifo_stall_timer);
1054 adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1055 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1056
1057 init_timer(&adapter->watchdog_timer);
1058 adapter->watchdog_timer.function = e1000_watchdog;
1059 adapter->watchdog_timer.data = (unsigned long) adapter;
1060
1061 init_timer(&adapter->phy_info_timer);
1062 adapter->phy_info_timer.function = e1000_update_phy_info;
1063 adapter->phy_info_timer.data = (unsigned long)adapter;
1064
1065 INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1066 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1067 INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1068
1069 e1000_check_options(adapter);
1070
1071 /* Initial Wake on LAN setting
1072 * If APM wake is enabled in the EEPROM,
1073 * enable the ACPI Magic Packet filter
1074 */
1075
1076 switch (hw->mac_type) {
1077 case e1000_82542_rev2_0:
1078 case e1000_82542_rev2_1:
1079 case e1000_82543:
1080 break;
1081 case e1000_82544:
1082 e1000_read_eeprom(hw,
1083 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1084 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1085 break;
1086 case e1000_82546:
1087 case e1000_82546_rev_3:
1088 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1089 e1000_read_eeprom(hw,
1090 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1091 break;
1092 }
1093 /* Fall Through */
1094 default:
1095 e1000_read_eeprom(hw,
1096 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1097 break;
1098 }
1099 if (eeprom_data & eeprom_apme_mask)
1100 adapter->eeprom_wol |= E1000_WUFC_MAG;
1101
1102 /* now that we have the eeprom settings, apply the special cases
1103 * where the eeprom may be wrong or the board simply won't support
1104 * wake on lan on a particular port */
1105 switch (pdev->device) {
1106 case E1000_DEV_ID_82546GB_PCIE:
1107 adapter->eeprom_wol = 0;
1108 break;
1109 case E1000_DEV_ID_82546EB_FIBER:
1110 case E1000_DEV_ID_82546GB_FIBER:
1111 /* Wake events only supported on port A for dual fiber
1112 * regardless of eeprom setting */
1113 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1114 adapter->eeprom_wol = 0;
1115 break;
1116 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1117 /* if quad port adapter, disable WoL on all but port A */
1118 if (global_quad_port_a != 0)
1119 adapter->eeprom_wol = 0;
1120 else
1121 adapter->quad_port_a = 1;
1122 /* Reset for multiple quad port adapters */
1123 if (++global_quad_port_a == 4)
1124 global_quad_port_a = 0;
1125 break;
1126 }
1127
1128 /* initialize the wol settings based on the eeprom settings */
1129 adapter->wol = adapter->eeprom_wol;
1130 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1131
1132 /* reset the hardware with the new settings */
1133 e1000_reset(adapter);
1134
1135 strcpy(netdev->name, "eth%d");
1136 err = register_netdev(netdev);
1137 if (err)
1138 goto err_register;
1139
1140 /* print bus type/speed/width info */
1141 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1142 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1143 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1144 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1145 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1146 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1147 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1148 netdev->dev_addr);
1149
1150 /* carrier off reporting is important to ethtool even BEFORE open */
1151 netif_carrier_off(netdev);
1152
1153 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1154
1155 cards_found++;
1156 return 0;
1157
1158 err_register:
1159 err_eeprom:
1160 e1000_phy_hw_reset(hw);
1161
1162 if (hw->flash_address)
1163 iounmap(hw->flash_address);
1164 kfree(adapter->tx_ring);
1165 kfree(adapter->rx_ring);
1166 err_dma:
1167 err_sw_init:
1168 iounmap(hw->hw_addr);
1169 err_ioremap:
1170 free_netdev(netdev);
1171 err_alloc_etherdev:
1172 pci_release_selected_regions(pdev, bars);
1173 err_pci_reg:
1174 pci_disable_device(pdev);
1175 return err;
1176 }
1177
1178 /**
1179 * e1000_remove - Device Removal Routine
1180 * @pdev: PCI device information struct
1181 *
1182 * e1000_remove is called by the PCI subsystem to alert the driver
1183 * that it should release a PCI device. The could be caused by a
1184 * Hot-Plug event, or because the driver is going to be removed from
1185 * memory.
1186 **/
1187
1188 static void __devexit e1000_remove(struct pci_dev *pdev)
1189 {
1190 struct net_device *netdev = pci_get_drvdata(pdev);
1191 struct e1000_adapter *adapter = netdev_priv(netdev);
1192 struct e1000_hw *hw = &adapter->hw;
1193
1194 set_bit(__E1000_DOWN, &adapter->flags);
1195 del_timer_sync(&adapter->tx_fifo_stall_timer);
1196 del_timer_sync(&adapter->watchdog_timer);
1197 del_timer_sync(&adapter->phy_info_timer);
1198
1199 cancel_work_sync(&adapter->reset_task);
1200
1201 e1000_release_manageability(adapter);
1202
1203 unregister_netdev(netdev);
1204
1205 e1000_phy_hw_reset(hw);
1206
1207 kfree(adapter->tx_ring);
1208 kfree(adapter->rx_ring);
1209
1210 iounmap(hw->hw_addr);
1211 if (hw->flash_address)
1212 iounmap(hw->flash_address);
1213 pci_release_selected_regions(pdev, adapter->bars);
1214
1215 free_netdev(netdev);
1216
1217 pci_disable_device(pdev);
1218 }
1219
1220 /**
1221 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1222 * @adapter: board private structure to initialize
1223 *
1224 * e1000_sw_init initializes the Adapter private data structure.
1225 * e1000_init_hw_struct MUST be called before this function
1226 **/
1227
1228 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1229 {
1230 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1231
1232 adapter->num_tx_queues = 1;
1233 adapter->num_rx_queues = 1;
1234
1235 if (e1000_alloc_queues(adapter)) {
1236 e_err(probe, "Unable to allocate memory for queues\n");
1237 return -ENOMEM;
1238 }
1239
1240 /* Explicitly disable IRQ since the NIC can be in any state. */
1241 e1000_irq_disable(adapter);
1242
1243 spin_lock_init(&adapter->stats_lock);
1244
1245 set_bit(__E1000_DOWN, &adapter->flags);
1246
1247 return 0;
1248 }
1249
1250 /**
1251 * e1000_alloc_queues - Allocate memory for all rings
1252 * @adapter: board private structure to initialize
1253 *
1254 * We allocate one ring per queue at run-time since we don't know the
1255 * number of queues at compile-time.
1256 **/
1257
1258 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1259 {
1260 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1261 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1262 if (!adapter->tx_ring)
1263 return -ENOMEM;
1264
1265 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1266 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1267 if (!adapter->rx_ring) {
1268 kfree(adapter->tx_ring);
1269 return -ENOMEM;
1270 }
1271
1272 return E1000_SUCCESS;
1273 }
1274
1275 /**
1276 * e1000_open - Called when a network interface is made active
1277 * @netdev: network interface device structure
1278 *
1279 * Returns 0 on success, negative value on failure
1280 *
1281 * The open entry point is called when a network interface is made
1282 * active by the system (IFF_UP). At this point all resources needed
1283 * for transmit and receive operations are allocated, the interrupt
1284 * handler is registered with the OS, the watchdog timer is started,
1285 * and the stack is notified that the interface is ready.
1286 **/
1287
1288 static int e1000_open(struct net_device *netdev)
1289 {
1290 struct e1000_adapter *adapter = netdev_priv(netdev);
1291 struct e1000_hw *hw = &adapter->hw;
1292 int err;
1293
1294 /* disallow open during test */
1295 if (test_bit(__E1000_TESTING, &adapter->flags))
1296 return -EBUSY;
1297
1298 netif_carrier_off(netdev);
1299
1300 /* allocate transmit descriptors */
1301 err = e1000_setup_all_tx_resources(adapter);
1302 if (err)
1303 goto err_setup_tx;
1304
1305 /* allocate receive descriptors */
1306 err = e1000_setup_all_rx_resources(adapter);
1307 if (err)
1308 goto err_setup_rx;
1309
1310 e1000_power_up_phy(adapter);
1311
1312 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1313 if ((hw->mng_cookie.status &
1314 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1315 e1000_update_mng_vlan(adapter);
1316 }
1317
1318 /* before we allocate an interrupt, we must be ready to handle it.
1319 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1320 * as soon as we call pci_request_irq, so we have to setup our
1321 * clean_rx handler before we do so. */
1322 e1000_configure(adapter);
1323
1324 err = e1000_request_irq(adapter);
1325 if (err)
1326 goto err_req_irq;
1327
1328 /* From here on the code is the same as e1000_up() */
1329 clear_bit(__E1000_DOWN, &adapter->flags);
1330
1331 napi_enable(&adapter->napi);
1332
1333 e1000_irq_enable(adapter);
1334
1335 netif_start_queue(netdev);
1336
1337 /* fire a link status change interrupt to start the watchdog */
1338 ew32(ICS, E1000_ICS_LSC);
1339
1340 return E1000_SUCCESS;
1341
1342 err_req_irq:
1343 e1000_power_down_phy(adapter);
1344 e1000_free_all_rx_resources(adapter);
1345 err_setup_rx:
1346 e1000_free_all_tx_resources(adapter);
1347 err_setup_tx:
1348 e1000_reset(adapter);
1349
1350 return err;
1351 }
1352
1353 /**
1354 * e1000_close - Disables a network interface
1355 * @netdev: network interface device structure
1356 *
1357 * Returns 0, this is not allowed to fail
1358 *
1359 * The close entry point is called when an interface is de-activated
1360 * by the OS. The hardware is still under the drivers control, but
1361 * needs to be disabled. A global MAC reset is issued to stop the
1362 * hardware, and all transmit and receive resources are freed.
1363 **/
1364
1365 static int e1000_close(struct net_device *netdev)
1366 {
1367 struct e1000_adapter *adapter = netdev_priv(netdev);
1368 struct e1000_hw *hw = &adapter->hw;
1369
1370 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1371 e1000_down(adapter);
1372 e1000_power_down_phy(adapter);
1373 e1000_free_irq(adapter);
1374
1375 e1000_free_all_tx_resources(adapter);
1376 e1000_free_all_rx_resources(adapter);
1377
1378 /* kill manageability vlan ID if supported, but not if a vlan with
1379 * the same ID is registered on the host OS (let 8021q kill it) */
1380 if ((hw->mng_cookie.status &
1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1382 !(adapter->vlgrp &&
1383 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1384 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1385 }
1386
1387 return 0;
1388 }
1389
1390 /**
1391 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1392 * @adapter: address of board private structure
1393 * @start: address of beginning of memory
1394 * @len: length of memory
1395 **/
1396 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1397 unsigned long len)
1398 {
1399 struct e1000_hw *hw = &adapter->hw;
1400 unsigned long begin = (unsigned long)start;
1401 unsigned long end = begin + len;
1402
1403 /* First rev 82545 and 82546 need to not allow any memory
1404 * write location to cross 64k boundary due to errata 23 */
1405 if (hw->mac_type == e1000_82545 ||
1406 hw->mac_type == e1000_82546) {
1407 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1408 }
1409
1410 return true;
1411 }
1412
1413 /**
1414 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1415 * @adapter: board private structure
1416 * @txdr: tx descriptor ring (for a specific queue) to setup
1417 *
1418 * Return 0 on success, negative on failure
1419 **/
1420
1421 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1422 struct e1000_tx_ring *txdr)
1423 {
1424 struct pci_dev *pdev = adapter->pdev;
1425 int size;
1426
1427 size = sizeof(struct e1000_buffer) * txdr->count;
1428 txdr->buffer_info = vzalloc(size);
1429 if (!txdr->buffer_info) {
1430 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1431 "ring\n");
1432 return -ENOMEM;
1433 }
1434
1435 /* round up to nearest 4K */
1436
1437 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1438 txdr->size = ALIGN(txdr->size, 4096);
1439
1440 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1441 GFP_KERNEL);
1442 if (!txdr->desc) {
1443 setup_tx_desc_die:
1444 vfree(txdr->buffer_info);
1445 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1446 "ring\n");
1447 return -ENOMEM;
1448 }
1449
1450 /* Fix for errata 23, can't cross 64kB boundary */
1451 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1452 void *olddesc = txdr->desc;
1453 dma_addr_t olddma = txdr->dma;
1454 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1455 txdr->size, txdr->desc);
1456 /* Try again, without freeing the previous */
1457 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1458 &txdr->dma, GFP_KERNEL);
1459 /* Failed allocation, critical failure */
1460 if (!txdr->desc) {
1461 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1462 olddma);
1463 goto setup_tx_desc_die;
1464 }
1465
1466 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1467 /* give up */
1468 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1469 txdr->dma);
1470 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1471 olddma);
1472 e_err(probe, "Unable to allocate aligned memory "
1473 "for the transmit descriptor ring\n");
1474 vfree(txdr->buffer_info);
1475 return -ENOMEM;
1476 } else {
1477 /* Free old allocation, new allocation was successful */
1478 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1479 olddma);
1480 }
1481 }
1482 memset(txdr->desc, 0, txdr->size);
1483
1484 txdr->next_to_use = 0;
1485 txdr->next_to_clean = 0;
1486
1487 return 0;
1488 }
1489
1490 /**
1491 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1492 * (Descriptors) for all queues
1493 * @adapter: board private structure
1494 *
1495 * Return 0 on success, negative on failure
1496 **/
1497
1498 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1499 {
1500 int i, err = 0;
1501
1502 for (i = 0; i < adapter->num_tx_queues; i++) {
1503 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1504 if (err) {
1505 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1506 for (i-- ; i >= 0; i--)
1507 e1000_free_tx_resources(adapter,
1508 &adapter->tx_ring[i]);
1509 break;
1510 }
1511 }
1512
1513 return err;
1514 }
1515
1516 /**
1517 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1518 * @adapter: board private structure
1519 *
1520 * Configure the Tx unit of the MAC after a reset.
1521 **/
1522
1523 static void e1000_configure_tx(struct e1000_adapter *adapter)
1524 {
1525 u64 tdba;
1526 struct e1000_hw *hw = &adapter->hw;
1527 u32 tdlen, tctl, tipg;
1528 u32 ipgr1, ipgr2;
1529
1530 /* Setup the HW Tx Head and Tail descriptor pointers */
1531
1532 switch (adapter->num_tx_queues) {
1533 case 1:
1534 default:
1535 tdba = adapter->tx_ring[0].dma;
1536 tdlen = adapter->tx_ring[0].count *
1537 sizeof(struct e1000_tx_desc);
1538 ew32(TDLEN, tdlen);
1539 ew32(TDBAH, (tdba >> 32));
1540 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1541 ew32(TDT, 0);
1542 ew32(TDH, 0);
1543 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1544 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1545 break;
1546 }
1547
1548 /* Set the default values for the Tx Inter Packet Gap timer */
1549 if ((hw->media_type == e1000_media_type_fiber ||
1550 hw->media_type == e1000_media_type_internal_serdes))
1551 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1552 else
1553 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1554
1555 switch (hw->mac_type) {
1556 case e1000_82542_rev2_0:
1557 case e1000_82542_rev2_1:
1558 tipg = DEFAULT_82542_TIPG_IPGT;
1559 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1560 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1561 break;
1562 default:
1563 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1564 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1565 break;
1566 }
1567 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1568 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1569 ew32(TIPG, tipg);
1570
1571 /* Set the Tx Interrupt Delay register */
1572
1573 ew32(TIDV, adapter->tx_int_delay);
1574 if (hw->mac_type >= e1000_82540)
1575 ew32(TADV, adapter->tx_abs_int_delay);
1576
1577 /* Program the Transmit Control Register */
1578
1579 tctl = er32(TCTL);
1580 tctl &= ~E1000_TCTL_CT;
1581 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1582 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1583
1584 e1000_config_collision_dist(hw);
1585
1586 /* Setup Transmit Descriptor Settings for eop descriptor */
1587 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1588
1589 /* only set IDE if we are delaying interrupts using the timers */
1590 if (adapter->tx_int_delay)
1591 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1592
1593 if (hw->mac_type < e1000_82543)
1594 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1595 else
1596 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1597
1598 /* Cache if we're 82544 running in PCI-X because we'll
1599 * need this to apply a workaround later in the send path. */
1600 if (hw->mac_type == e1000_82544 &&
1601 hw->bus_type == e1000_bus_type_pcix)
1602 adapter->pcix_82544 = 1;
1603
1604 ew32(TCTL, tctl);
1605
1606 }
1607
1608 /**
1609 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1610 * @adapter: board private structure
1611 * @rxdr: rx descriptor ring (for a specific queue) to setup
1612 *
1613 * Returns 0 on success, negative on failure
1614 **/
1615
1616 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1617 struct e1000_rx_ring *rxdr)
1618 {
1619 struct pci_dev *pdev = adapter->pdev;
1620 int size, desc_len;
1621
1622 size = sizeof(struct e1000_buffer) * rxdr->count;
1623 rxdr->buffer_info = vzalloc(size);
1624 if (!rxdr->buffer_info) {
1625 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1626 "ring\n");
1627 return -ENOMEM;
1628 }
1629
1630 desc_len = sizeof(struct e1000_rx_desc);
1631
1632 /* Round up to nearest 4K */
1633
1634 rxdr->size = rxdr->count * desc_len;
1635 rxdr->size = ALIGN(rxdr->size, 4096);
1636
1637 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1638 GFP_KERNEL);
1639
1640 if (!rxdr->desc) {
1641 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1642 "ring\n");
1643 setup_rx_desc_die:
1644 vfree(rxdr->buffer_info);
1645 return -ENOMEM;
1646 }
1647
1648 /* Fix for errata 23, can't cross 64kB boundary */
1649 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1650 void *olddesc = rxdr->desc;
1651 dma_addr_t olddma = rxdr->dma;
1652 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1653 rxdr->size, rxdr->desc);
1654 /* Try again, without freeing the previous */
1655 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1656 &rxdr->dma, GFP_KERNEL);
1657 /* Failed allocation, critical failure */
1658 if (!rxdr->desc) {
1659 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1660 olddma);
1661 e_err(probe, "Unable to allocate memory for the Rx "
1662 "descriptor ring\n");
1663 goto setup_rx_desc_die;
1664 }
1665
1666 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1667 /* give up */
1668 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1669 rxdr->dma);
1670 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1671 olddma);
1672 e_err(probe, "Unable to allocate aligned memory for "
1673 "the Rx descriptor ring\n");
1674 goto setup_rx_desc_die;
1675 } else {
1676 /* Free old allocation, new allocation was successful */
1677 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1678 olddma);
1679 }
1680 }
1681 memset(rxdr->desc, 0, rxdr->size);
1682
1683 rxdr->next_to_clean = 0;
1684 rxdr->next_to_use = 0;
1685 rxdr->rx_skb_top = NULL;
1686
1687 return 0;
1688 }
1689
1690 /**
1691 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1692 * (Descriptors) for all queues
1693 * @adapter: board private structure
1694 *
1695 * Return 0 on success, negative on failure
1696 **/
1697
1698 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1699 {
1700 int i, err = 0;
1701
1702 for (i = 0; i < adapter->num_rx_queues; i++) {
1703 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1704 if (err) {
1705 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1706 for (i-- ; i >= 0; i--)
1707 e1000_free_rx_resources(adapter,
1708 &adapter->rx_ring[i]);
1709 break;
1710 }
1711 }
1712
1713 return err;
1714 }
1715
1716 /**
1717 * e1000_setup_rctl - configure the receive control registers
1718 * @adapter: Board private structure
1719 **/
1720 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1721 {
1722 struct e1000_hw *hw = &adapter->hw;
1723 u32 rctl;
1724
1725 rctl = er32(RCTL);
1726
1727 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1728
1729 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1730 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1731 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1732
1733 if (hw->tbi_compatibility_on == 1)
1734 rctl |= E1000_RCTL_SBP;
1735 else
1736 rctl &= ~E1000_RCTL_SBP;
1737
1738 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1739 rctl &= ~E1000_RCTL_LPE;
1740 else
1741 rctl |= E1000_RCTL_LPE;
1742
1743 /* Setup buffer sizes */
1744 rctl &= ~E1000_RCTL_SZ_4096;
1745 rctl |= E1000_RCTL_BSEX;
1746 switch (adapter->rx_buffer_len) {
1747 case E1000_RXBUFFER_2048:
1748 default:
1749 rctl |= E1000_RCTL_SZ_2048;
1750 rctl &= ~E1000_RCTL_BSEX;
1751 break;
1752 case E1000_RXBUFFER_4096:
1753 rctl |= E1000_RCTL_SZ_4096;
1754 break;
1755 case E1000_RXBUFFER_8192:
1756 rctl |= E1000_RCTL_SZ_8192;
1757 break;
1758 case E1000_RXBUFFER_16384:
1759 rctl |= E1000_RCTL_SZ_16384;
1760 break;
1761 }
1762
1763 ew32(RCTL, rctl);
1764 }
1765
1766 /**
1767 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1768 * @adapter: board private structure
1769 *
1770 * Configure the Rx unit of the MAC after a reset.
1771 **/
1772
1773 static void e1000_configure_rx(struct e1000_adapter *adapter)
1774 {
1775 u64 rdba;
1776 struct e1000_hw *hw = &adapter->hw;
1777 u32 rdlen, rctl, rxcsum;
1778
1779 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1780 rdlen = adapter->rx_ring[0].count *
1781 sizeof(struct e1000_rx_desc);
1782 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1783 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1784 } else {
1785 rdlen = adapter->rx_ring[0].count *
1786 sizeof(struct e1000_rx_desc);
1787 adapter->clean_rx = e1000_clean_rx_irq;
1788 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1789 }
1790
1791 /* disable receives while setting up the descriptors */
1792 rctl = er32(RCTL);
1793 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1794
1795 /* set the Receive Delay Timer Register */
1796 ew32(RDTR, adapter->rx_int_delay);
1797
1798 if (hw->mac_type >= e1000_82540) {
1799 ew32(RADV, adapter->rx_abs_int_delay);
1800 if (adapter->itr_setting != 0)
1801 ew32(ITR, 1000000000 / (adapter->itr * 256));
1802 }
1803
1804 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1805 * the Base and Length of the Rx Descriptor Ring */
1806 switch (adapter->num_rx_queues) {
1807 case 1:
1808 default:
1809 rdba = adapter->rx_ring[0].dma;
1810 ew32(RDLEN, rdlen);
1811 ew32(RDBAH, (rdba >> 32));
1812 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1813 ew32(RDT, 0);
1814 ew32(RDH, 0);
1815 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1816 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1817 break;
1818 }
1819
1820 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1821 if (hw->mac_type >= e1000_82543) {
1822 rxcsum = er32(RXCSUM);
1823 if (adapter->rx_csum)
1824 rxcsum |= E1000_RXCSUM_TUOFL;
1825 else
1826 /* don't need to clear IPPCSE as it defaults to 0 */
1827 rxcsum &= ~E1000_RXCSUM_TUOFL;
1828 ew32(RXCSUM, rxcsum);
1829 }
1830
1831 /* Enable Receives */
1832 ew32(RCTL, rctl);
1833 }
1834
1835 /**
1836 * e1000_free_tx_resources - Free Tx Resources per Queue
1837 * @adapter: board private structure
1838 * @tx_ring: Tx descriptor ring for a specific queue
1839 *
1840 * Free all transmit software resources
1841 **/
1842
1843 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1844 struct e1000_tx_ring *tx_ring)
1845 {
1846 struct pci_dev *pdev = adapter->pdev;
1847
1848 e1000_clean_tx_ring(adapter, tx_ring);
1849
1850 vfree(tx_ring->buffer_info);
1851 tx_ring->buffer_info = NULL;
1852
1853 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1854 tx_ring->dma);
1855
1856 tx_ring->desc = NULL;
1857 }
1858
1859 /**
1860 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1861 * @adapter: board private structure
1862 *
1863 * Free all transmit software resources
1864 **/
1865
1866 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1867 {
1868 int i;
1869
1870 for (i = 0; i < adapter->num_tx_queues; i++)
1871 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1872 }
1873
1874 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1875 struct e1000_buffer *buffer_info)
1876 {
1877 if (buffer_info->dma) {
1878 if (buffer_info->mapped_as_page)
1879 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1880 buffer_info->length, DMA_TO_DEVICE);
1881 else
1882 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1883 buffer_info->length,
1884 DMA_TO_DEVICE);
1885 buffer_info->dma = 0;
1886 }
1887 if (buffer_info->skb) {
1888 dev_kfree_skb_any(buffer_info->skb);
1889 buffer_info->skb = NULL;
1890 }
1891 buffer_info->time_stamp = 0;
1892 /* buffer_info must be completely set up in the transmit path */
1893 }
1894
1895 /**
1896 * e1000_clean_tx_ring - Free Tx Buffers
1897 * @adapter: board private structure
1898 * @tx_ring: ring to be cleaned
1899 **/
1900
1901 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1902 struct e1000_tx_ring *tx_ring)
1903 {
1904 struct e1000_hw *hw = &adapter->hw;
1905 struct e1000_buffer *buffer_info;
1906 unsigned long size;
1907 unsigned int i;
1908
1909 /* Free all the Tx ring sk_buffs */
1910
1911 for (i = 0; i < tx_ring->count; i++) {
1912 buffer_info = &tx_ring->buffer_info[i];
1913 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1914 }
1915
1916 size = sizeof(struct e1000_buffer) * tx_ring->count;
1917 memset(tx_ring->buffer_info, 0, size);
1918
1919 /* Zero out the descriptor ring */
1920
1921 memset(tx_ring->desc, 0, tx_ring->size);
1922
1923 tx_ring->next_to_use = 0;
1924 tx_ring->next_to_clean = 0;
1925 tx_ring->last_tx_tso = 0;
1926
1927 writel(0, hw->hw_addr + tx_ring->tdh);
1928 writel(0, hw->hw_addr + tx_ring->tdt);
1929 }
1930
1931 /**
1932 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1933 * @adapter: board private structure
1934 **/
1935
1936 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1937 {
1938 int i;
1939
1940 for (i = 0; i < adapter->num_tx_queues; i++)
1941 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1942 }
1943
1944 /**
1945 * e1000_free_rx_resources - Free Rx Resources
1946 * @adapter: board private structure
1947 * @rx_ring: ring to clean the resources from
1948 *
1949 * Free all receive software resources
1950 **/
1951
1952 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1953 struct e1000_rx_ring *rx_ring)
1954 {
1955 struct pci_dev *pdev = adapter->pdev;
1956
1957 e1000_clean_rx_ring(adapter, rx_ring);
1958
1959 vfree(rx_ring->buffer_info);
1960 rx_ring->buffer_info = NULL;
1961
1962 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1963 rx_ring->dma);
1964
1965 rx_ring->desc = NULL;
1966 }
1967
1968 /**
1969 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1970 * @adapter: board private structure
1971 *
1972 * Free all receive software resources
1973 **/
1974
1975 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1976 {
1977 int i;
1978
1979 for (i = 0; i < adapter->num_rx_queues; i++)
1980 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1981 }
1982
1983 /**
1984 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1985 * @adapter: board private structure
1986 * @rx_ring: ring to free buffers from
1987 **/
1988
1989 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1990 struct e1000_rx_ring *rx_ring)
1991 {
1992 struct e1000_hw *hw = &adapter->hw;
1993 struct e1000_buffer *buffer_info;
1994 struct pci_dev *pdev = adapter->pdev;
1995 unsigned long size;
1996 unsigned int i;
1997
1998 /* Free all the Rx ring sk_buffs */
1999 for (i = 0; i < rx_ring->count; i++) {
2000 buffer_info = &rx_ring->buffer_info[i];
2001 if (buffer_info->dma &&
2002 adapter->clean_rx == e1000_clean_rx_irq) {
2003 dma_unmap_single(&pdev->dev, buffer_info->dma,
2004 buffer_info->length,
2005 DMA_FROM_DEVICE);
2006 } else if (buffer_info->dma &&
2007 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2008 dma_unmap_page(&pdev->dev, buffer_info->dma,
2009 buffer_info->length,
2010 DMA_FROM_DEVICE);
2011 }
2012
2013 buffer_info->dma = 0;
2014 if (buffer_info->page) {
2015 put_page(buffer_info->page);
2016 buffer_info->page = NULL;
2017 }
2018 if (buffer_info->skb) {
2019 dev_kfree_skb(buffer_info->skb);
2020 buffer_info->skb = NULL;
2021 }
2022 }
2023
2024 /* there also may be some cached data from a chained receive */
2025 if (rx_ring->rx_skb_top) {
2026 dev_kfree_skb(rx_ring->rx_skb_top);
2027 rx_ring->rx_skb_top = NULL;
2028 }
2029
2030 size = sizeof(struct e1000_buffer) * rx_ring->count;
2031 memset(rx_ring->buffer_info, 0, size);
2032
2033 /* Zero out the descriptor ring */
2034 memset(rx_ring->desc, 0, rx_ring->size);
2035
2036 rx_ring->next_to_clean = 0;
2037 rx_ring->next_to_use = 0;
2038
2039 writel(0, hw->hw_addr + rx_ring->rdh);
2040 writel(0, hw->hw_addr + rx_ring->rdt);
2041 }
2042
2043 /**
2044 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2045 * @adapter: board private structure
2046 **/
2047
2048 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2049 {
2050 int i;
2051
2052 for (i = 0; i < adapter->num_rx_queues; i++)
2053 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2054 }
2055
2056 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2057 * and memory write and invalidate disabled for certain operations
2058 */
2059 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2060 {
2061 struct e1000_hw *hw = &adapter->hw;
2062 struct net_device *netdev = adapter->netdev;
2063 u32 rctl;
2064
2065 e1000_pci_clear_mwi(hw);
2066
2067 rctl = er32(RCTL);
2068 rctl |= E1000_RCTL_RST;
2069 ew32(RCTL, rctl);
2070 E1000_WRITE_FLUSH();
2071 mdelay(5);
2072
2073 if (netif_running(netdev))
2074 e1000_clean_all_rx_rings(adapter);
2075 }
2076
2077 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2078 {
2079 struct e1000_hw *hw = &adapter->hw;
2080 struct net_device *netdev = adapter->netdev;
2081 u32 rctl;
2082
2083 rctl = er32(RCTL);
2084 rctl &= ~E1000_RCTL_RST;
2085 ew32(RCTL, rctl);
2086 E1000_WRITE_FLUSH();
2087 mdelay(5);
2088
2089 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2090 e1000_pci_set_mwi(hw);
2091
2092 if (netif_running(netdev)) {
2093 /* No need to loop, because 82542 supports only 1 queue */
2094 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2095 e1000_configure_rx(adapter);
2096 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2097 }
2098 }
2099
2100 /**
2101 * e1000_set_mac - Change the Ethernet Address of the NIC
2102 * @netdev: network interface device structure
2103 * @p: pointer to an address structure
2104 *
2105 * Returns 0 on success, negative on failure
2106 **/
2107
2108 static int e1000_set_mac(struct net_device *netdev, void *p)
2109 {
2110 struct e1000_adapter *adapter = netdev_priv(netdev);
2111 struct e1000_hw *hw = &adapter->hw;
2112 struct sockaddr *addr = p;
2113
2114 if (!is_valid_ether_addr(addr->sa_data))
2115 return -EADDRNOTAVAIL;
2116
2117 /* 82542 2.0 needs to be in reset to write receive address registers */
2118
2119 if (hw->mac_type == e1000_82542_rev2_0)
2120 e1000_enter_82542_rst(adapter);
2121
2122 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2123 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2124
2125 e1000_rar_set(hw, hw->mac_addr, 0);
2126
2127 if (hw->mac_type == e1000_82542_rev2_0)
2128 e1000_leave_82542_rst(adapter);
2129
2130 return 0;
2131 }
2132
2133 /**
2134 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2135 * @netdev: network interface device structure
2136 *
2137 * The set_rx_mode entry point is called whenever the unicast or multicast
2138 * address lists or the network interface flags are updated. This routine is
2139 * responsible for configuring the hardware for proper unicast, multicast,
2140 * promiscuous mode, and all-multi behavior.
2141 **/
2142
2143 static void e1000_set_rx_mode(struct net_device *netdev)
2144 {
2145 struct e1000_adapter *adapter = netdev_priv(netdev);
2146 struct e1000_hw *hw = &adapter->hw;
2147 struct netdev_hw_addr *ha;
2148 bool use_uc = false;
2149 u32 rctl;
2150 u32 hash_value;
2151 int i, rar_entries = E1000_RAR_ENTRIES;
2152 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2153 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2154
2155 if (!mcarray) {
2156 e_err(probe, "memory allocation failed\n");
2157 return;
2158 }
2159
2160 /* Check for Promiscuous and All Multicast modes */
2161
2162 rctl = er32(RCTL);
2163
2164 if (netdev->flags & IFF_PROMISC) {
2165 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2166 rctl &= ~E1000_RCTL_VFE;
2167 } else {
2168 if (netdev->flags & IFF_ALLMULTI)
2169 rctl |= E1000_RCTL_MPE;
2170 else
2171 rctl &= ~E1000_RCTL_MPE;
2172 /* Enable VLAN filter if there is a VLAN */
2173 if (adapter->vlgrp)
2174 rctl |= E1000_RCTL_VFE;
2175 }
2176
2177 if (netdev_uc_count(netdev) > rar_entries - 1) {
2178 rctl |= E1000_RCTL_UPE;
2179 } else if (!(netdev->flags & IFF_PROMISC)) {
2180 rctl &= ~E1000_RCTL_UPE;
2181 use_uc = true;
2182 }
2183
2184 ew32(RCTL, rctl);
2185
2186 /* 82542 2.0 needs to be in reset to write receive address registers */
2187
2188 if (hw->mac_type == e1000_82542_rev2_0)
2189 e1000_enter_82542_rst(adapter);
2190
2191 /* load the first 14 addresses into the exact filters 1-14. Unicast
2192 * addresses take precedence to avoid disabling unicast filtering
2193 * when possible.
2194 *
2195 * RAR 0 is used for the station MAC adddress
2196 * if there are not 14 addresses, go ahead and clear the filters
2197 */
2198 i = 1;
2199 if (use_uc)
2200 netdev_for_each_uc_addr(ha, netdev) {
2201 if (i == rar_entries)
2202 break;
2203 e1000_rar_set(hw, ha->addr, i++);
2204 }
2205
2206 netdev_for_each_mc_addr(ha, netdev) {
2207 if (i == rar_entries) {
2208 /* load any remaining addresses into the hash table */
2209 u32 hash_reg, hash_bit, mta;
2210 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2211 hash_reg = (hash_value >> 5) & 0x7F;
2212 hash_bit = hash_value & 0x1F;
2213 mta = (1 << hash_bit);
2214 mcarray[hash_reg] |= mta;
2215 } else {
2216 e1000_rar_set(hw, ha->addr, i++);
2217 }
2218 }
2219
2220 for (; i < rar_entries; i++) {
2221 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2222 E1000_WRITE_FLUSH();
2223 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2224 E1000_WRITE_FLUSH();
2225 }
2226
2227 /* write the hash table completely, write from bottom to avoid
2228 * both stupid write combining chipsets, and flushing each write */
2229 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2230 /*
2231 * If we are on an 82544 has an errata where writing odd
2232 * offsets overwrites the previous even offset, but writing
2233 * backwards over the range solves the issue by always
2234 * writing the odd offset first
2235 */
2236 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2237 }
2238 E1000_WRITE_FLUSH();
2239
2240 if (hw->mac_type == e1000_82542_rev2_0)
2241 e1000_leave_82542_rst(adapter);
2242
2243 kfree(mcarray);
2244 }
2245
2246 /* Need to wait a few seconds after link up to get diagnostic information from
2247 * the phy */
2248
2249 static void e1000_update_phy_info(unsigned long data)
2250 {
2251 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2252 schedule_work(&adapter->phy_info_task);
2253 }
2254
2255 static void e1000_update_phy_info_task(struct work_struct *work)
2256 {
2257 struct e1000_adapter *adapter = container_of(work,
2258 struct e1000_adapter,
2259 phy_info_task);
2260 struct e1000_hw *hw = &adapter->hw;
2261
2262 rtnl_lock();
2263 e1000_phy_get_info(hw, &adapter->phy_info);
2264 rtnl_unlock();
2265 }
2266
2267 /**
2268 * e1000_82547_tx_fifo_stall - Timer Call-back
2269 * @data: pointer to adapter cast into an unsigned long
2270 **/
2271 static void e1000_82547_tx_fifo_stall(unsigned long data)
2272 {
2273 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2274 schedule_work(&adapter->fifo_stall_task);
2275 }
2276
2277 /**
2278 * e1000_82547_tx_fifo_stall_task - task to complete work
2279 * @work: work struct contained inside adapter struct
2280 **/
2281 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2282 {
2283 struct e1000_adapter *adapter = container_of(work,
2284 struct e1000_adapter,
2285 fifo_stall_task);
2286 struct e1000_hw *hw = &adapter->hw;
2287 struct net_device *netdev = adapter->netdev;
2288 u32 tctl;
2289
2290 rtnl_lock();
2291 if (atomic_read(&adapter->tx_fifo_stall)) {
2292 if ((er32(TDT) == er32(TDH)) &&
2293 (er32(TDFT) == er32(TDFH)) &&
2294 (er32(TDFTS) == er32(TDFHS))) {
2295 tctl = er32(TCTL);
2296 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2297 ew32(TDFT, adapter->tx_head_addr);
2298 ew32(TDFH, adapter->tx_head_addr);
2299 ew32(TDFTS, adapter->tx_head_addr);
2300 ew32(TDFHS, adapter->tx_head_addr);
2301 ew32(TCTL, tctl);
2302 E1000_WRITE_FLUSH();
2303
2304 adapter->tx_fifo_head = 0;
2305 atomic_set(&adapter->tx_fifo_stall, 0);
2306 netif_wake_queue(netdev);
2307 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2308 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2309 }
2310 }
2311 rtnl_unlock();
2312 }
2313
2314 bool e1000_has_link(struct e1000_adapter *adapter)
2315 {
2316 struct e1000_hw *hw = &adapter->hw;
2317 bool link_active = false;
2318
2319 /* get_link_status is set on LSC (link status) interrupt or
2320 * rx sequence error interrupt. get_link_status will stay
2321 * false until the e1000_check_for_link establishes link
2322 * for copper adapters ONLY
2323 */
2324 switch (hw->media_type) {
2325 case e1000_media_type_copper:
2326 if (hw->get_link_status) {
2327 e1000_check_for_link(hw);
2328 link_active = !hw->get_link_status;
2329 } else {
2330 link_active = true;
2331 }
2332 break;
2333 case e1000_media_type_fiber:
2334 e1000_check_for_link(hw);
2335 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2336 break;
2337 case e1000_media_type_internal_serdes:
2338 e1000_check_for_link(hw);
2339 link_active = hw->serdes_has_link;
2340 break;
2341 default:
2342 break;
2343 }
2344
2345 return link_active;
2346 }
2347
2348 /**
2349 * e1000_watchdog - Timer Call-back
2350 * @data: pointer to adapter cast into an unsigned long
2351 **/
2352 static void e1000_watchdog(unsigned long data)
2353 {
2354 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2355 struct e1000_hw *hw = &adapter->hw;
2356 struct net_device *netdev = adapter->netdev;
2357 struct e1000_tx_ring *txdr = adapter->tx_ring;
2358 u32 link, tctl;
2359
2360 link = e1000_has_link(adapter);
2361 if ((netif_carrier_ok(netdev)) && link)
2362 goto link_up;
2363
2364 if (link) {
2365 if (!netif_carrier_ok(netdev)) {
2366 u32 ctrl;
2367 bool txb2b = true;
2368 /* update snapshot of PHY registers on LSC */
2369 e1000_get_speed_and_duplex(hw,
2370 &adapter->link_speed,
2371 &adapter->link_duplex);
2372
2373 ctrl = er32(CTRL);
2374 pr_info("%s NIC Link is Up %d Mbps %s, "
2375 "Flow Control: %s\n",
2376 netdev->name,
2377 adapter->link_speed,
2378 adapter->link_duplex == FULL_DUPLEX ?
2379 "Full Duplex" : "Half Duplex",
2380 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2381 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2382 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2383 E1000_CTRL_TFCE) ? "TX" : "None")));
2384
2385 /* adjust timeout factor according to speed/duplex */
2386 adapter->tx_timeout_factor = 1;
2387 switch (adapter->link_speed) {
2388 case SPEED_10:
2389 txb2b = false;
2390 adapter->tx_timeout_factor = 16;
2391 break;
2392 case SPEED_100:
2393 txb2b = false;
2394 /* maybe add some timeout factor ? */
2395 break;
2396 }
2397
2398 /* enable transmits in the hardware */
2399 tctl = er32(TCTL);
2400 tctl |= E1000_TCTL_EN;
2401 ew32(TCTL, tctl);
2402
2403 netif_carrier_on(netdev);
2404 if (!test_bit(__E1000_DOWN, &adapter->flags))
2405 mod_timer(&adapter->phy_info_timer,
2406 round_jiffies(jiffies + 2 * HZ));
2407 adapter->smartspeed = 0;
2408 }
2409 } else {
2410 if (netif_carrier_ok(netdev)) {
2411 adapter->link_speed = 0;
2412 adapter->link_duplex = 0;
2413 pr_info("%s NIC Link is Down\n",
2414 netdev->name);
2415 netif_carrier_off(netdev);
2416
2417 if (!test_bit(__E1000_DOWN, &adapter->flags))
2418 mod_timer(&adapter->phy_info_timer,
2419 round_jiffies(jiffies + 2 * HZ));
2420 }
2421
2422 e1000_smartspeed(adapter);
2423 }
2424
2425 link_up:
2426 e1000_update_stats(adapter);
2427
2428 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2429 adapter->tpt_old = adapter->stats.tpt;
2430 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2431 adapter->colc_old = adapter->stats.colc;
2432
2433 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2434 adapter->gorcl_old = adapter->stats.gorcl;
2435 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2436 adapter->gotcl_old = adapter->stats.gotcl;
2437
2438 e1000_update_adaptive(hw);
2439
2440 if (!netif_carrier_ok(netdev)) {
2441 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2442 /* We've lost link, so the controller stops DMA,
2443 * but we've got queued Tx work that's never going
2444 * to get done, so reset controller to flush Tx.
2445 * (Do the reset outside of interrupt context). */
2446 adapter->tx_timeout_count++;
2447 schedule_work(&adapter->reset_task);
2448 /* return immediately since reset is imminent */
2449 return;
2450 }
2451 }
2452
2453 /* Simple mode for Interrupt Throttle Rate (ITR) */
2454 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2455 /*
2456 * Symmetric Tx/Rx gets a reduced ITR=2000;
2457 * Total asymmetrical Tx or Rx gets ITR=8000;
2458 * everyone else is between 2000-8000.
2459 */
2460 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2461 u32 dif = (adapter->gotcl > adapter->gorcl ?
2462 adapter->gotcl - adapter->gorcl :
2463 adapter->gorcl - adapter->gotcl) / 10000;
2464 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2465
2466 ew32(ITR, 1000000000 / (itr * 256));
2467 }
2468
2469 /* Cause software interrupt to ensure rx ring is cleaned */
2470 ew32(ICS, E1000_ICS_RXDMT0);
2471
2472 /* Force detection of hung controller every watchdog period */
2473 adapter->detect_tx_hung = true;
2474
2475 /* Reset the timer */
2476 if (!test_bit(__E1000_DOWN, &adapter->flags))
2477 mod_timer(&adapter->watchdog_timer,
2478 round_jiffies(jiffies + 2 * HZ));
2479 }
2480
2481 enum latency_range {
2482 lowest_latency = 0,
2483 low_latency = 1,
2484 bulk_latency = 2,
2485 latency_invalid = 255
2486 };
2487
2488 /**
2489 * e1000_update_itr - update the dynamic ITR value based on statistics
2490 * @adapter: pointer to adapter
2491 * @itr_setting: current adapter->itr
2492 * @packets: the number of packets during this measurement interval
2493 * @bytes: the number of bytes during this measurement interval
2494 *
2495 * Stores a new ITR value based on packets and byte
2496 * counts during the last interrupt. The advantage of per interrupt
2497 * computation is faster updates and more accurate ITR for the current
2498 * traffic pattern. Constants in this function were computed
2499 * based on theoretical maximum wire speed and thresholds were set based
2500 * on testing data as well as attempting to minimize response time
2501 * while increasing bulk throughput.
2502 * this functionality is controlled by the InterruptThrottleRate module
2503 * parameter (see e1000_param.c)
2504 **/
2505 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2506 u16 itr_setting, int packets, int bytes)
2507 {
2508 unsigned int retval = itr_setting;
2509 struct e1000_hw *hw = &adapter->hw;
2510
2511 if (unlikely(hw->mac_type < e1000_82540))
2512 goto update_itr_done;
2513
2514 if (packets == 0)
2515 goto update_itr_done;
2516
2517 switch (itr_setting) {
2518 case lowest_latency:
2519 /* jumbo frames get bulk treatment*/
2520 if (bytes/packets > 8000)
2521 retval = bulk_latency;
2522 else if ((packets < 5) && (bytes > 512))
2523 retval = low_latency;
2524 break;
2525 case low_latency: /* 50 usec aka 20000 ints/s */
2526 if (bytes > 10000) {
2527 /* jumbo frames need bulk latency setting */
2528 if (bytes/packets > 8000)
2529 retval = bulk_latency;
2530 else if ((packets < 10) || ((bytes/packets) > 1200))
2531 retval = bulk_latency;
2532 else if ((packets > 35))
2533 retval = lowest_latency;
2534 } else if (bytes/packets > 2000)
2535 retval = bulk_latency;
2536 else if (packets <= 2 && bytes < 512)
2537 retval = lowest_latency;
2538 break;
2539 case bulk_latency: /* 250 usec aka 4000 ints/s */
2540 if (bytes > 25000) {
2541 if (packets > 35)
2542 retval = low_latency;
2543 } else if (bytes < 6000) {
2544 retval = low_latency;
2545 }
2546 break;
2547 }
2548
2549 update_itr_done:
2550 return retval;
2551 }
2552
2553 static void e1000_set_itr(struct e1000_adapter *adapter)
2554 {
2555 struct e1000_hw *hw = &adapter->hw;
2556 u16 current_itr;
2557 u32 new_itr = adapter->itr;
2558
2559 if (unlikely(hw->mac_type < e1000_82540))
2560 return;
2561
2562 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2563 if (unlikely(adapter->link_speed != SPEED_1000)) {
2564 current_itr = 0;
2565 new_itr = 4000;
2566 goto set_itr_now;
2567 }
2568
2569 adapter->tx_itr = e1000_update_itr(adapter,
2570 adapter->tx_itr,
2571 adapter->total_tx_packets,
2572 adapter->total_tx_bytes);
2573 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2574 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2575 adapter->tx_itr = low_latency;
2576
2577 adapter->rx_itr = e1000_update_itr(adapter,
2578 adapter->rx_itr,
2579 adapter->total_rx_packets,
2580 adapter->total_rx_bytes);
2581 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2582 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2583 adapter->rx_itr = low_latency;
2584
2585 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2586
2587 switch (current_itr) {
2588 /* counts and packets in update_itr are dependent on these numbers */
2589 case lowest_latency:
2590 new_itr = 70000;
2591 break;
2592 case low_latency:
2593 new_itr = 20000; /* aka hwitr = ~200 */
2594 break;
2595 case bulk_latency:
2596 new_itr = 4000;
2597 break;
2598 default:
2599 break;
2600 }
2601
2602 set_itr_now:
2603 if (new_itr != adapter->itr) {
2604 /* this attempts to bias the interrupt rate towards Bulk
2605 * by adding intermediate steps when interrupt rate is
2606 * increasing */
2607 new_itr = new_itr > adapter->itr ?
2608 min(adapter->itr + (new_itr >> 2), new_itr) :
2609 new_itr;
2610 adapter->itr = new_itr;
2611 ew32(ITR, 1000000000 / (new_itr * 256));
2612 }
2613 }
2614
2615 #define E1000_TX_FLAGS_CSUM 0x00000001
2616 #define E1000_TX_FLAGS_VLAN 0x00000002
2617 #define E1000_TX_FLAGS_TSO 0x00000004
2618 #define E1000_TX_FLAGS_IPV4 0x00000008
2619 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2620 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2621
2622 static int e1000_tso(struct e1000_adapter *adapter,
2623 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2624 {
2625 struct e1000_context_desc *context_desc;
2626 struct e1000_buffer *buffer_info;
2627 unsigned int i;
2628 u32 cmd_length = 0;
2629 u16 ipcse = 0, tucse, mss;
2630 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2631 int err;
2632
2633 if (skb_is_gso(skb)) {
2634 if (skb_header_cloned(skb)) {
2635 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2636 if (err)
2637 return err;
2638 }
2639
2640 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2641 mss = skb_shinfo(skb)->gso_size;
2642 if (skb->protocol == htons(ETH_P_IP)) {
2643 struct iphdr *iph = ip_hdr(skb);
2644 iph->tot_len = 0;
2645 iph->check = 0;
2646 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2647 iph->daddr, 0,
2648 IPPROTO_TCP,
2649 0);
2650 cmd_length = E1000_TXD_CMD_IP;
2651 ipcse = skb_transport_offset(skb) - 1;
2652 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2653 ipv6_hdr(skb)->payload_len = 0;
2654 tcp_hdr(skb)->check =
2655 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2656 &ipv6_hdr(skb)->daddr,
2657 0, IPPROTO_TCP, 0);
2658 ipcse = 0;
2659 }
2660 ipcss = skb_network_offset(skb);
2661 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2662 tucss = skb_transport_offset(skb);
2663 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2664 tucse = 0;
2665
2666 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2667 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2668
2669 i = tx_ring->next_to_use;
2670 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2671 buffer_info = &tx_ring->buffer_info[i];
2672
2673 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2674 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2675 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2676 context_desc->upper_setup.tcp_fields.tucss = tucss;
2677 context_desc->upper_setup.tcp_fields.tucso = tucso;
2678 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2679 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2680 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2681 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2682
2683 buffer_info->time_stamp = jiffies;
2684 buffer_info->next_to_watch = i;
2685
2686 if (++i == tx_ring->count) i = 0;
2687 tx_ring->next_to_use = i;
2688
2689 return true;
2690 }
2691 return false;
2692 }
2693
2694 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2695 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2696 {
2697 struct e1000_context_desc *context_desc;
2698 struct e1000_buffer *buffer_info;
2699 unsigned int i;
2700 u8 css;
2701 u32 cmd_len = E1000_TXD_CMD_DEXT;
2702
2703 if (skb->ip_summed != CHECKSUM_PARTIAL)
2704 return false;
2705
2706 switch (skb->protocol) {
2707 case cpu_to_be16(ETH_P_IP):
2708 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2709 cmd_len |= E1000_TXD_CMD_TCP;
2710 break;
2711 case cpu_to_be16(ETH_P_IPV6):
2712 /* XXX not handling all IPV6 headers */
2713 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2714 cmd_len |= E1000_TXD_CMD_TCP;
2715 break;
2716 default:
2717 if (unlikely(net_ratelimit()))
2718 e_warn(drv, "checksum_partial proto=%x!\n",
2719 skb->protocol);
2720 break;
2721 }
2722
2723 css = skb_transport_offset(skb);
2724
2725 i = tx_ring->next_to_use;
2726 buffer_info = &tx_ring->buffer_info[i];
2727 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2728
2729 context_desc->lower_setup.ip_config = 0;
2730 context_desc->upper_setup.tcp_fields.tucss = css;
2731 context_desc->upper_setup.tcp_fields.tucso =
2732 css + skb->csum_offset;
2733 context_desc->upper_setup.tcp_fields.tucse = 0;
2734 context_desc->tcp_seg_setup.data = 0;
2735 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2736
2737 buffer_info->time_stamp = jiffies;
2738 buffer_info->next_to_watch = i;
2739
2740 if (unlikely(++i == tx_ring->count)) i = 0;
2741 tx_ring->next_to_use = i;
2742
2743 return true;
2744 }
2745
2746 #define E1000_MAX_TXD_PWR 12
2747 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2748
2749 static int e1000_tx_map(struct e1000_adapter *adapter,
2750 struct e1000_tx_ring *tx_ring,
2751 struct sk_buff *skb, unsigned int first,
2752 unsigned int max_per_txd, unsigned int nr_frags,
2753 unsigned int mss)
2754 {
2755 struct e1000_hw *hw = &adapter->hw;
2756 struct pci_dev *pdev = adapter->pdev;
2757 struct e1000_buffer *buffer_info;
2758 unsigned int len = skb_headlen(skb);
2759 unsigned int offset = 0, size, count = 0, i;
2760 unsigned int f;
2761
2762 i = tx_ring->next_to_use;
2763
2764 while (len) {
2765 buffer_info = &tx_ring->buffer_info[i];
2766 size = min(len, max_per_txd);
2767 /* Workaround for Controller erratum --
2768 * descriptor for non-tso packet in a linear SKB that follows a
2769 * tso gets written back prematurely before the data is fully
2770 * DMA'd to the controller */
2771 if (!skb->data_len && tx_ring->last_tx_tso &&
2772 !skb_is_gso(skb)) {
2773 tx_ring->last_tx_tso = 0;
2774 size -= 4;
2775 }
2776
2777 /* Workaround for premature desc write-backs
2778 * in TSO mode. Append 4-byte sentinel desc */
2779 if (unlikely(mss && !nr_frags && size == len && size > 8))
2780 size -= 4;
2781 /* work-around for errata 10 and it applies
2782 * to all controllers in PCI-X mode
2783 * The fix is to make sure that the first descriptor of a
2784 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2785 */
2786 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2787 (size > 2015) && count == 0))
2788 size = 2015;
2789
2790 /* Workaround for potential 82544 hang in PCI-X. Avoid
2791 * terminating buffers within evenly-aligned dwords. */
2792 if (unlikely(adapter->pcix_82544 &&
2793 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2794 size > 4))
2795 size -= 4;
2796
2797 buffer_info->length = size;
2798 /* set time_stamp *before* dma to help avoid a possible race */
2799 buffer_info->time_stamp = jiffies;
2800 buffer_info->mapped_as_page = false;
2801 buffer_info->dma = dma_map_single(&pdev->dev,
2802 skb->data + offset,
2803 size, DMA_TO_DEVICE);
2804 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2805 goto dma_error;
2806 buffer_info->next_to_watch = i;
2807
2808 len -= size;
2809 offset += size;
2810 count++;
2811 if (len) {
2812 i++;
2813 if (unlikely(i == tx_ring->count))
2814 i = 0;
2815 }
2816 }
2817
2818 for (f = 0; f < nr_frags; f++) {
2819 struct skb_frag_struct *frag;
2820
2821 frag = &skb_shinfo(skb)->frags[f];
2822 len = frag->size;
2823 offset = frag->page_offset;
2824
2825 while (len) {
2826 i++;
2827 if (unlikely(i == tx_ring->count))
2828 i = 0;
2829
2830 buffer_info = &tx_ring->buffer_info[i];
2831 size = min(len, max_per_txd);
2832 /* Workaround for premature desc write-backs
2833 * in TSO mode. Append 4-byte sentinel desc */
2834 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2835 size -= 4;
2836 /* Workaround for potential 82544 hang in PCI-X.
2837 * Avoid terminating buffers within evenly-aligned
2838 * dwords. */
2839 if (unlikely(adapter->pcix_82544 &&
2840 !((unsigned long)(page_to_phys(frag->page) + offset
2841 + size - 1) & 4) &&
2842 size > 4))
2843 size -= 4;
2844
2845 buffer_info->length = size;
2846 buffer_info->time_stamp = jiffies;
2847 buffer_info->mapped_as_page = true;
2848 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2849 offset, size,
2850 DMA_TO_DEVICE);
2851 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2852 goto dma_error;
2853 buffer_info->next_to_watch = i;
2854
2855 len -= size;
2856 offset += size;
2857 count++;
2858 }
2859 }
2860
2861 tx_ring->buffer_info[i].skb = skb;
2862 tx_ring->buffer_info[first].next_to_watch = i;
2863
2864 return count;
2865
2866 dma_error:
2867 dev_err(&pdev->dev, "TX DMA map failed\n");
2868 buffer_info->dma = 0;
2869 if (count)
2870 count--;
2871
2872 while (count--) {
2873 if (i==0)
2874 i += tx_ring->count;
2875 i--;
2876 buffer_info = &tx_ring->buffer_info[i];
2877 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2878 }
2879
2880 return 0;
2881 }
2882
2883 static void e1000_tx_queue(struct e1000_adapter *adapter,
2884 struct e1000_tx_ring *tx_ring, int tx_flags,
2885 int count)
2886 {
2887 struct e1000_hw *hw = &adapter->hw;
2888 struct e1000_tx_desc *tx_desc = NULL;
2889 struct e1000_buffer *buffer_info;
2890 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2891 unsigned int i;
2892
2893 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2894 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2895 E1000_TXD_CMD_TSE;
2896 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2897
2898 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2899 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2900 }
2901
2902 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2903 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2904 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2905 }
2906
2907 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2908 txd_lower |= E1000_TXD_CMD_VLE;
2909 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2910 }
2911
2912 i = tx_ring->next_to_use;
2913
2914 while (count--) {
2915 buffer_info = &tx_ring->buffer_info[i];
2916 tx_desc = E1000_TX_DESC(*tx_ring, i);
2917 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2918 tx_desc->lower.data =
2919 cpu_to_le32(txd_lower | buffer_info->length);
2920 tx_desc->upper.data = cpu_to_le32(txd_upper);
2921 if (unlikely(++i == tx_ring->count)) i = 0;
2922 }
2923
2924 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2925
2926 /* Force memory writes to complete before letting h/w
2927 * know there are new descriptors to fetch. (Only
2928 * applicable for weak-ordered memory model archs,
2929 * such as IA-64). */
2930 wmb();
2931
2932 tx_ring->next_to_use = i;
2933 writel(i, hw->hw_addr + tx_ring->tdt);
2934 /* we need this if more than one processor can write to our tail
2935 * at a time, it syncronizes IO on IA64/Altix systems */
2936 mmiowb();
2937 }
2938
2939 /**
2940 * 82547 workaround to avoid controller hang in half-duplex environment.
2941 * The workaround is to avoid queuing a large packet that would span
2942 * the internal Tx FIFO ring boundary by notifying the stack to resend
2943 * the packet at a later time. This gives the Tx FIFO an opportunity to
2944 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2945 * to the beginning of the Tx FIFO.
2946 **/
2947
2948 #define E1000_FIFO_HDR 0x10
2949 #define E1000_82547_PAD_LEN 0x3E0
2950
2951 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2952 struct sk_buff *skb)
2953 {
2954 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2955 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2956
2957 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2958
2959 if (adapter->link_duplex != HALF_DUPLEX)
2960 goto no_fifo_stall_required;
2961
2962 if (atomic_read(&adapter->tx_fifo_stall))
2963 return 1;
2964
2965 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2966 atomic_set(&adapter->tx_fifo_stall, 1);
2967 return 1;
2968 }
2969
2970 no_fifo_stall_required:
2971 adapter->tx_fifo_head += skb_fifo_len;
2972 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2973 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2974 return 0;
2975 }
2976
2977 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2978 {
2979 struct e1000_adapter *adapter = netdev_priv(netdev);
2980 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2981
2982 netif_stop_queue(netdev);
2983 /* Herbert's original patch had:
2984 * smp_mb__after_netif_stop_queue();
2985 * but since that doesn't exist yet, just open code it. */
2986 smp_mb();
2987
2988 /* We need to check again in a case another CPU has just
2989 * made room available. */
2990 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2991 return -EBUSY;
2992
2993 /* A reprieve! */
2994 netif_start_queue(netdev);
2995 ++adapter->restart_queue;
2996 return 0;
2997 }
2998
2999 static int e1000_maybe_stop_tx(struct net_device *netdev,
3000 struct e1000_tx_ring *tx_ring, int size)
3001 {
3002 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3003 return 0;
3004 return __e1000_maybe_stop_tx(netdev, size);
3005 }
3006
3007 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3008 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3009 struct net_device *netdev)
3010 {
3011 struct e1000_adapter *adapter = netdev_priv(netdev);
3012 struct e1000_hw *hw = &adapter->hw;
3013 struct e1000_tx_ring *tx_ring;
3014 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3015 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3016 unsigned int tx_flags = 0;
3017 unsigned int len = skb_headlen(skb);
3018 unsigned int nr_frags;
3019 unsigned int mss;
3020 int count = 0;
3021 int tso;
3022 unsigned int f;
3023
3024 /* This goes back to the question of how to logically map a tx queue
3025 * to a flow. Right now, performance is impacted slightly negatively
3026 * if using multiple tx queues. If the stack breaks away from a
3027 * single qdisc implementation, we can look at this again. */
3028 tx_ring = adapter->tx_ring;
3029
3030 if (unlikely(skb->len <= 0)) {
3031 dev_kfree_skb_any(skb);
3032 return NETDEV_TX_OK;
3033 }
3034
3035 mss = skb_shinfo(skb)->gso_size;
3036 /* The controller does a simple calculation to
3037 * make sure there is enough room in the FIFO before
3038 * initiating the DMA for each buffer. The calc is:
3039 * 4 = ceil(buffer len/mss). To make sure we don't
3040 * overrun the FIFO, adjust the max buffer len if mss
3041 * drops. */
3042 if (mss) {
3043 u8 hdr_len;
3044 max_per_txd = min(mss << 2, max_per_txd);
3045 max_txd_pwr = fls(max_per_txd) - 1;
3046
3047 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3048 if (skb->data_len && hdr_len == len) {
3049 switch (hw->mac_type) {
3050 unsigned int pull_size;
3051 case e1000_82544:
3052 /* Make sure we have room to chop off 4 bytes,
3053 * and that the end alignment will work out to
3054 * this hardware's requirements
3055 * NOTE: this is a TSO only workaround
3056 * if end byte alignment not correct move us
3057 * into the next dword */
3058 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3059 break;
3060 /* fall through */
3061 pull_size = min((unsigned int)4, skb->data_len);
3062 if (!__pskb_pull_tail(skb, pull_size)) {
3063 e_err(drv, "__pskb_pull_tail "
3064 "failed.\n");
3065 dev_kfree_skb_any(skb);
3066 return NETDEV_TX_OK;
3067 }
3068 len = skb_headlen(skb);
3069 break;
3070 default:
3071 /* do nothing */
3072 break;
3073 }
3074 }
3075 }
3076
3077 /* reserve a descriptor for the offload context */
3078 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3079 count++;
3080 count++;
3081
3082 /* Controller Erratum workaround */
3083 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3084 count++;
3085
3086 count += TXD_USE_COUNT(len, max_txd_pwr);
3087
3088 if (adapter->pcix_82544)
3089 count++;
3090
3091 /* work-around for errata 10 and it applies to all controllers
3092 * in PCI-X mode, so add one more descriptor to the count
3093 */
3094 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3095 (len > 2015)))
3096 count++;
3097
3098 nr_frags = skb_shinfo(skb)->nr_frags;
3099 for (f = 0; f < nr_frags; f++)
3100 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3101 max_txd_pwr);
3102 if (adapter->pcix_82544)
3103 count += nr_frags;
3104
3105 /* need: count + 2 desc gap to keep tail from touching
3106 * head, otherwise try next time */
3107 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3108 return NETDEV_TX_BUSY;
3109
3110 if (unlikely(hw->mac_type == e1000_82547)) {
3111 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3112 netif_stop_queue(netdev);
3113 if (!test_bit(__E1000_DOWN, &adapter->flags))
3114 mod_timer(&adapter->tx_fifo_stall_timer,
3115 jiffies + 1);
3116 return NETDEV_TX_BUSY;
3117 }
3118 }
3119
3120 if (unlikely(vlan_tx_tag_present(skb))) {
3121 tx_flags |= E1000_TX_FLAGS_VLAN;
3122 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3123 }
3124
3125 first = tx_ring->next_to_use;
3126
3127 tso = e1000_tso(adapter, tx_ring, skb);
3128 if (tso < 0) {
3129 dev_kfree_skb_any(skb);
3130 return NETDEV_TX_OK;
3131 }
3132
3133 if (likely(tso)) {
3134 if (likely(hw->mac_type != e1000_82544))
3135 tx_ring->last_tx_tso = 1;
3136 tx_flags |= E1000_TX_FLAGS_TSO;
3137 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3138 tx_flags |= E1000_TX_FLAGS_CSUM;
3139
3140 if (likely(skb->protocol == htons(ETH_P_IP)))
3141 tx_flags |= E1000_TX_FLAGS_IPV4;
3142
3143 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3144 nr_frags, mss);
3145
3146 if (count) {
3147 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3148 /* Make sure there is space in the ring for the next send. */
3149 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3150
3151 } else {
3152 dev_kfree_skb_any(skb);
3153 tx_ring->buffer_info[first].time_stamp = 0;
3154 tx_ring->next_to_use = first;
3155 }
3156
3157 return NETDEV_TX_OK;
3158 }
3159
3160 /**
3161 * e1000_tx_timeout - Respond to a Tx Hang
3162 * @netdev: network interface device structure
3163 **/
3164
3165 static void e1000_tx_timeout(struct net_device *netdev)
3166 {
3167 struct e1000_adapter *adapter = netdev_priv(netdev);
3168
3169 /* Do the reset outside of interrupt context */
3170 adapter->tx_timeout_count++;
3171 schedule_work(&adapter->reset_task);
3172 }
3173
3174 static void e1000_reset_task(struct work_struct *work)
3175 {
3176 struct e1000_adapter *adapter =
3177 container_of(work, struct e1000_adapter, reset_task);
3178
3179 e1000_reinit_safe(adapter);
3180 }
3181
3182 /**
3183 * e1000_get_stats - Get System Network Statistics
3184 * @netdev: network interface device structure
3185 *
3186 * Returns the address of the device statistics structure.
3187 * The statistics are actually updated from the timer callback.
3188 **/
3189
3190 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3191 {
3192 /* only return the current stats */
3193 return &netdev->stats;
3194 }
3195
3196 /**
3197 * e1000_change_mtu - Change the Maximum Transfer Unit
3198 * @netdev: network interface device structure
3199 * @new_mtu: new value for maximum frame size
3200 *
3201 * Returns 0 on success, negative on failure
3202 **/
3203
3204 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3205 {
3206 struct e1000_adapter *adapter = netdev_priv(netdev);
3207 struct e1000_hw *hw = &adapter->hw;
3208 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3209
3210 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3211 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3212 e_err(probe, "Invalid MTU setting\n");
3213 return -EINVAL;
3214 }
3215
3216 /* Adapter-specific max frame size limits. */
3217 switch (hw->mac_type) {
3218 case e1000_undefined ... e1000_82542_rev2_1:
3219 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3220 e_err(probe, "Jumbo Frames not supported.\n");
3221 return -EINVAL;
3222 }
3223 break;
3224 default:
3225 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3226 break;
3227 }
3228
3229 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3230 msleep(1);
3231 /* e1000_down has a dependency on max_frame_size */
3232 hw->max_frame_size = max_frame;
3233 if (netif_running(netdev))
3234 e1000_down(adapter);
3235
3236 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3237 * means we reserve 2 more, this pushes us to allocate from the next
3238 * larger slab size.
3239 * i.e. RXBUFFER_2048 --> size-4096 slab
3240 * however with the new *_jumbo_rx* routines, jumbo receives will use
3241 * fragmented skbs */
3242
3243 if (max_frame <= E1000_RXBUFFER_2048)
3244 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3245 else
3246 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3247 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3248 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3249 adapter->rx_buffer_len = PAGE_SIZE;
3250 #endif
3251
3252 /* adjust allocation if LPE protects us, and we aren't using SBP */
3253 if (!hw->tbi_compatibility_on &&
3254 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3255 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3256 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3257
3258 pr_info("%s changing MTU from %d to %d\n",
3259 netdev->name, netdev->mtu, new_mtu);
3260 netdev->mtu = new_mtu;
3261
3262 if (netif_running(netdev))
3263 e1000_up(adapter);
3264 else
3265 e1000_reset(adapter);
3266
3267 clear_bit(__E1000_RESETTING, &adapter->flags);
3268
3269 return 0;
3270 }
3271
3272 /**
3273 * e1000_update_stats - Update the board statistics counters
3274 * @adapter: board private structure
3275 **/
3276
3277 void e1000_update_stats(struct e1000_adapter *adapter)
3278 {
3279 struct net_device *netdev = adapter->netdev;
3280 struct e1000_hw *hw = &adapter->hw;
3281 struct pci_dev *pdev = adapter->pdev;
3282 unsigned long flags;
3283 u16 phy_tmp;
3284
3285 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3286
3287 /*
3288 * Prevent stats update while adapter is being reset, or if the pci
3289 * connection is down.
3290 */
3291 if (adapter->link_speed == 0)
3292 return;
3293 if (pci_channel_offline(pdev))
3294 return;
3295
3296 spin_lock_irqsave(&adapter->stats_lock, flags);
3297
3298 /* these counters are modified from e1000_tbi_adjust_stats,
3299 * called from the interrupt context, so they must only
3300 * be written while holding adapter->stats_lock
3301 */
3302
3303 adapter->stats.crcerrs += er32(CRCERRS);
3304 adapter->stats.gprc += er32(GPRC);
3305 adapter->stats.gorcl += er32(GORCL);
3306 adapter->stats.gorch += er32(GORCH);
3307 adapter->stats.bprc += er32(BPRC);
3308 adapter->stats.mprc += er32(MPRC);
3309 adapter->stats.roc += er32(ROC);
3310
3311 adapter->stats.prc64 += er32(PRC64);
3312 adapter->stats.prc127 += er32(PRC127);
3313 adapter->stats.prc255 += er32(PRC255);
3314 adapter->stats.prc511 += er32(PRC511);
3315 adapter->stats.prc1023 += er32(PRC1023);
3316 adapter->stats.prc1522 += er32(PRC1522);
3317
3318 adapter->stats.symerrs += er32(SYMERRS);
3319 adapter->stats.mpc += er32(MPC);
3320 adapter->stats.scc += er32(SCC);
3321 adapter->stats.ecol += er32(ECOL);
3322 adapter->stats.mcc += er32(MCC);
3323 adapter->stats.latecol += er32(LATECOL);
3324 adapter->stats.dc += er32(DC);
3325 adapter->stats.sec += er32(SEC);
3326 adapter->stats.rlec += er32(RLEC);
3327 adapter->stats.xonrxc += er32(XONRXC);
3328 adapter->stats.xontxc += er32(XONTXC);
3329 adapter->stats.xoffrxc += er32(XOFFRXC);
3330 adapter->stats.xofftxc += er32(XOFFTXC);
3331 adapter->stats.fcruc += er32(FCRUC);
3332 adapter->stats.gptc += er32(GPTC);
3333 adapter->stats.gotcl += er32(GOTCL);
3334 adapter->stats.gotch += er32(GOTCH);
3335 adapter->stats.rnbc += er32(RNBC);
3336 adapter->stats.ruc += er32(RUC);
3337 adapter->stats.rfc += er32(RFC);
3338 adapter->stats.rjc += er32(RJC);
3339 adapter->stats.torl += er32(TORL);
3340 adapter->stats.torh += er32(TORH);
3341 adapter->stats.totl += er32(TOTL);
3342 adapter->stats.toth += er32(TOTH);
3343 adapter->stats.tpr += er32(TPR);
3344
3345 adapter->stats.ptc64 += er32(PTC64);
3346 adapter->stats.ptc127 += er32(PTC127);
3347 adapter->stats.ptc255 += er32(PTC255);
3348 adapter->stats.ptc511 += er32(PTC511);
3349 adapter->stats.ptc1023 += er32(PTC1023);
3350 adapter->stats.ptc1522 += er32(PTC1522);
3351
3352 adapter->stats.mptc += er32(MPTC);
3353 adapter->stats.bptc += er32(BPTC);
3354
3355 /* used for adaptive IFS */
3356
3357 hw->tx_packet_delta = er32(TPT);
3358 adapter->stats.tpt += hw->tx_packet_delta;
3359 hw->collision_delta = er32(COLC);
3360 adapter->stats.colc += hw->collision_delta;
3361
3362 if (hw->mac_type >= e1000_82543) {
3363 adapter->stats.algnerrc += er32(ALGNERRC);
3364 adapter->stats.rxerrc += er32(RXERRC);
3365 adapter->stats.tncrs += er32(TNCRS);
3366 adapter->stats.cexterr += er32(CEXTERR);
3367 adapter->stats.tsctc += er32(TSCTC);
3368 adapter->stats.tsctfc += er32(TSCTFC);
3369 }
3370
3371 /* Fill out the OS statistics structure */
3372 netdev->stats.multicast = adapter->stats.mprc;
3373 netdev->stats.collisions = adapter->stats.colc;
3374
3375 /* Rx Errors */
3376
3377 /* RLEC on some newer hardware can be incorrect so build
3378 * our own version based on RUC and ROC */
3379 netdev->stats.rx_errors = adapter->stats.rxerrc +
3380 adapter->stats.crcerrs + adapter->stats.algnerrc +
3381 adapter->stats.ruc + adapter->stats.roc +
3382 adapter->stats.cexterr;
3383 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3384 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3385 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3386 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3387 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3388
3389 /* Tx Errors */
3390 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3391 netdev->stats.tx_errors = adapter->stats.txerrc;
3392 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3393 netdev->stats.tx_window_errors = adapter->stats.latecol;
3394 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3395 if (hw->bad_tx_carr_stats_fd &&
3396 adapter->link_duplex == FULL_DUPLEX) {
3397 netdev->stats.tx_carrier_errors = 0;
3398 adapter->stats.tncrs = 0;
3399 }
3400
3401 /* Tx Dropped needs to be maintained elsewhere */
3402
3403 /* Phy Stats */
3404 if (hw->media_type == e1000_media_type_copper) {
3405 if ((adapter->link_speed == SPEED_1000) &&
3406 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3407 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3408 adapter->phy_stats.idle_errors += phy_tmp;
3409 }
3410
3411 if ((hw->mac_type <= e1000_82546) &&
3412 (hw->phy_type == e1000_phy_m88) &&
3413 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3414 adapter->phy_stats.receive_errors += phy_tmp;
3415 }
3416
3417 /* Management Stats */
3418 if (hw->has_smbus) {
3419 adapter->stats.mgptc += er32(MGTPTC);
3420 adapter->stats.mgprc += er32(MGTPRC);
3421 adapter->stats.mgpdc += er32(MGTPDC);
3422 }
3423
3424 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3425 }
3426
3427 /**
3428 * e1000_intr - Interrupt Handler
3429 * @irq: interrupt number
3430 * @data: pointer to a network interface device structure
3431 **/
3432
3433 static irqreturn_t e1000_intr(int irq, void *data)
3434 {
3435 struct net_device *netdev = data;
3436 struct e1000_adapter *adapter = netdev_priv(netdev);
3437 struct e1000_hw *hw = &adapter->hw;
3438 u32 icr = er32(ICR);
3439
3440 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3441 return IRQ_NONE; /* Not our interrupt */
3442
3443 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3444 hw->get_link_status = 1;
3445 /* guard against interrupt when we're going down */
3446 if (!test_bit(__E1000_DOWN, &adapter->flags))
3447 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3448 }
3449
3450 /* disable interrupts, without the synchronize_irq bit */
3451 ew32(IMC, ~0);
3452 E1000_WRITE_FLUSH();
3453
3454 if (likely(napi_schedule_prep(&adapter->napi))) {
3455 adapter->total_tx_bytes = 0;
3456 adapter->total_tx_packets = 0;
3457 adapter->total_rx_bytes = 0;
3458 adapter->total_rx_packets = 0;
3459 __napi_schedule(&adapter->napi);
3460 } else {
3461 /* this really should not happen! if it does it is basically a
3462 * bug, but not a hard error, so enable ints and continue */
3463 if (!test_bit(__E1000_DOWN, &adapter->flags))
3464 e1000_irq_enable(adapter);
3465 }
3466
3467 return IRQ_HANDLED;
3468 }
3469
3470 /**
3471 * e1000_clean - NAPI Rx polling callback
3472 * @adapter: board private structure
3473 **/
3474 static int e1000_clean(struct napi_struct *napi, int budget)
3475 {
3476 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3477 int tx_clean_complete = 0, work_done = 0;
3478
3479 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3480
3481 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3482
3483 if (!tx_clean_complete)
3484 work_done = budget;
3485
3486 /* If budget not fully consumed, exit the polling mode */
3487 if (work_done < budget) {
3488 if (likely(adapter->itr_setting & 3))
3489 e1000_set_itr(adapter);
3490 napi_complete(napi);
3491 if (!test_bit(__E1000_DOWN, &adapter->flags))
3492 e1000_irq_enable(adapter);
3493 }
3494
3495 return work_done;
3496 }
3497
3498 /**
3499 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3500 * @adapter: board private structure
3501 **/
3502 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3503 struct e1000_tx_ring *tx_ring)
3504 {
3505 struct e1000_hw *hw = &adapter->hw;
3506 struct net_device *netdev = adapter->netdev;
3507 struct e1000_tx_desc *tx_desc, *eop_desc;
3508 struct e1000_buffer *buffer_info;
3509 unsigned int i, eop;
3510 unsigned int count = 0;
3511 unsigned int total_tx_bytes=0, total_tx_packets=0;
3512
3513 i = tx_ring->next_to_clean;
3514 eop = tx_ring->buffer_info[i].next_to_watch;
3515 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3516
3517 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3518 (count < tx_ring->count)) {
3519 bool cleaned = false;
3520 rmb(); /* read buffer_info after eop_desc */
3521 for ( ; !cleaned; count++) {
3522 tx_desc = E1000_TX_DESC(*tx_ring, i);
3523 buffer_info = &tx_ring->buffer_info[i];
3524 cleaned = (i == eop);
3525
3526 if (cleaned) {
3527 struct sk_buff *skb = buffer_info->skb;
3528 unsigned int segs, bytecount;
3529 segs = skb_shinfo(skb)->gso_segs ?: 1;
3530 /* multiply data chunks by size of headers */
3531 bytecount = ((segs - 1) * skb_headlen(skb)) +
3532 skb->len;
3533 total_tx_packets += segs;
3534 total_tx_bytes += bytecount;
3535 }
3536 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3537 tx_desc->upper.data = 0;
3538
3539 if (unlikely(++i == tx_ring->count)) i = 0;
3540 }
3541
3542 eop = tx_ring->buffer_info[i].next_to_watch;
3543 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3544 }
3545
3546 tx_ring->next_to_clean = i;
3547
3548 #define TX_WAKE_THRESHOLD 32
3549 if (unlikely(count && netif_carrier_ok(netdev) &&
3550 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3551 /* Make sure that anybody stopping the queue after this
3552 * sees the new next_to_clean.
3553 */
3554 smp_mb();
3555
3556 if (netif_queue_stopped(netdev) &&
3557 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3558 netif_wake_queue(netdev);
3559 ++adapter->restart_queue;
3560 }
3561 }
3562
3563 if (adapter->detect_tx_hung) {
3564 /* Detect a transmit hang in hardware, this serializes the
3565 * check with the clearing of time_stamp and movement of i */
3566 adapter->detect_tx_hung = false;
3567 if (tx_ring->buffer_info[eop].time_stamp &&
3568 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3569 (adapter->tx_timeout_factor * HZ)) &&
3570 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3571
3572 /* detected Tx unit hang */
3573 e_err(drv, "Detected Tx Unit Hang\n"
3574 " Tx Queue <%lu>\n"
3575 " TDH <%x>\n"
3576 " TDT <%x>\n"
3577 " next_to_use <%x>\n"
3578 " next_to_clean <%x>\n"
3579 "buffer_info[next_to_clean]\n"
3580 " time_stamp <%lx>\n"
3581 " next_to_watch <%x>\n"
3582 " jiffies <%lx>\n"
3583 " next_to_watch.status <%x>\n",
3584 (unsigned long)((tx_ring - adapter->tx_ring) /
3585 sizeof(struct e1000_tx_ring)),
3586 readl(hw->hw_addr + tx_ring->tdh),
3587 readl(hw->hw_addr + tx_ring->tdt),
3588 tx_ring->next_to_use,
3589 tx_ring->next_to_clean,
3590 tx_ring->buffer_info[eop].time_stamp,
3591 eop,
3592 jiffies,
3593 eop_desc->upper.fields.status);
3594 netif_stop_queue(netdev);
3595 }
3596 }
3597 adapter->total_tx_bytes += total_tx_bytes;
3598 adapter->total_tx_packets += total_tx_packets;
3599 netdev->stats.tx_bytes += total_tx_bytes;
3600 netdev->stats.tx_packets += total_tx_packets;
3601 return count < tx_ring->count;
3602 }
3603
3604 /**
3605 * e1000_rx_checksum - Receive Checksum Offload for 82543
3606 * @adapter: board private structure
3607 * @status_err: receive descriptor status and error fields
3608 * @csum: receive descriptor csum field
3609 * @sk_buff: socket buffer with received data
3610 **/
3611
3612 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3613 u32 csum, struct sk_buff *skb)
3614 {
3615 struct e1000_hw *hw = &adapter->hw;
3616 u16 status = (u16)status_err;
3617 u8 errors = (u8)(status_err >> 24);
3618
3619 skb_checksum_none_assert(skb);
3620
3621 /* 82543 or newer only */
3622 if (unlikely(hw->mac_type < e1000_82543)) return;
3623 /* Ignore Checksum bit is set */
3624 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3625 /* TCP/UDP checksum error bit is set */
3626 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3627 /* let the stack verify checksum errors */
3628 adapter->hw_csum_err++;
3629 return;
3630 }
3631 /* TCP/UDP Checksum has not been calculated */
3632 if (!(status & E1000_RXD_STAT_TCPCS))
3633 return;
3634
3635 /* It must be a TCP or UDP packet with a valid checksum */
3636 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3637 /* TCP checksum is good */
3638 skb->ip_summed = CHECKSUM_UNNECESSARY;
3639 }
3640 adapter->hw_csum_good++;
3641 }
3642
3643 /**
3644 * e1000_consume_page - helper function
3645 **/
3646 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3647 u16 length)
3648 {
3649 bi->page = NULL;
3650 skb->len += length;
3651 skb->data_len += length;
3652 skb->truesize += length;
3653 }
3654
3655 /**
3656 * e1000_receive_skb - helper function to handle rx indications
3657 * @adapter: board private structure
3658 * @status: descriptor status field as written by hardware
3659 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3660 * @skb: pointer to sk_buff to be indicated to stack
3661 */
3662 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3663 __le16 vlan, struct sk_buff *skb)
3664 {
3665 skb->protocol = eth_type_trans(skb, adapter->netdev);
3666
3667 if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3668 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3669 le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3670 skb);
3671 else
3672 napi_gro_receive(&adapter->napi, skb);
3673 }
3674
3675 /**
3676 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3677 * @adapter: board private structure
3678 * @rx_ring: ring to clean
3679 * @work_done: amount of napi work completed this call
3680 * @work_to_do: max amount of work allowed for this call to do
3681 *
3682 * the return value indicates whether actual cleaning was done, there
3683 * is no guarantee that everything was cleaned
3684 */
3685 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3686 struct e1000_rx_ring *rx_ring,
3687 int *work_done, int work_to_do)
3688 {
3689 struct e1000_hw *hw = &adapter->hw;
3690 struct net_device *netdev = adapter->netdev;
3691 struct pci_dev *pdev = adapter->pdev;
3692 struct e1000_rx_desc *rx_desc, *next_rxd;
3693 struct e1000_buffer *buffer_info, *next_buffer;
3694 unsigned long irq_flags;
3695 u32 length;
3696 unsigned int i;
3697 int cleaned_count = 0;
3698 bool cleaned = false;
3699 unsigned int total_rx_bytes=0, total_rx_packets=0;
3700
3701 i = rx_ring->next_to_clean;
3702 rx_desc = E1000_RX_DESC(*rx_ring, i);
3703 buffer_info = &rx_ring->buffer_info[i];
3704
3705 while (rx_desc->status & E1000_RXD_STAT_DD) {
3706 struct sk_buff *skb;
3707 u8 status;
3708
3709 if (*work_done >= work_to_do)
3710 break;
3711 (*work_done)++;
3712 rmb(); /* read descriptor and rx_buffer_info after status DD */
3713
3714 status = rx_desc->status;
3715 skb = buffer_info->skb;
3716 buffer_info->skb = NULL;
3717
3718 if (++i == rx_ring->count) i = 0;
3719 next_rxd = E1000_RX_DESC(*rx_ring, i);
3720 prefetch(next_rxd);
3721
3722 next_buffer = &rx_ring->buffer_info[i];
3723
3724 cleaned = true;
3725 cleaned_count++;
3726 dma_unmap_page(&pdev->dev, buffer_info->dma,
3727 buffer_info->length, DMA_FROM_DEVICE);
3728 buffer_info->dma = 0;
3729
3730 length = le16_to_cpu(rx_desc->length);
3731
3732 /* errors is only valid for DD + EOP descriptors */
3733 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3734 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3735 u8 last_byte = *(skb->data + length - 1);
3736 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3737 last_byte)) {
3738 spin_lock_irqsave(&adapter->stats_lock,
3739 irq_flags);
3740 e1000_tbi_adjust_stats(hw, &adapter->stats,
3741 length, skb->data);
3742 spin_unlock_irqrestore(&adapter->stats_lock,
3743 irq_flags);
3744 length--;
3745 } else {
3746 /* recycle both page and skb */
3747 buffer_info->skb = skb;
3748 /* an error means any chain goes out the window
3749 * too */
3750 if (rx_ring->rx_skb_top)
3751 dev_kfree_skb(rx_ring->rx_skb_top);
3752 rx_ring->rx_skb_top = NULL;
3753 goto next_desc;
3754 }
3755 }
3756
3757 #define rxtop rx_ring->rx_skb_top
3758 if (!(status & E1000_RXD_STAT_EOP)) {
3759 /* this descriptor is only the beginning (or middle) */
3760 if (!rxtop) {
3761 /* this is the beginning of a chain */
3762 rxtop = skb;
3763 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3764 0, length);
3765 } else {
3766 /* this is the middle of a chain */
3767 skb_fill_page_desc(rxtop,
3768 skb_shinfo(rxtop)->nr_frags,
3769 buffer_info->page, 0, length);
3770 /* re-use the skb, only consumed the page */
3771 buffer_info->skb = skb;
3772 }
3773 e1000_consume_page(buffer_info, rxtop, length);
3774 goto next_desc;
3775 } else {
3776 if (rxtop) {
3777 /* end of the chain */
3778 skb_fill_page_desc(rxtop,
3779 skb_shinfo(rxtop)->nr_frags,
3780 buffer_info->page, 0, length);
3781 /* re-use the current skb, we only consumed the
3782 * page */
3783 buffer_info->skb = skb;
3784 skb = rxtop;
3785 rxtop = NULL;
3786 e1000_consume_page(buffer_info, skb, length);
3787 } else {
3788 /* no chain, got EOP, this buf is the packet
3789 * copybreak to save the put_page/alloc_page */
3790 if (length <= copybreak &&
3791 skb_tailroom(skb) >= length) {
3792 u8 *vaddr;
3793 vaddr = kmap_atomic(buffer_info->page,
3794 KM_SKB_DATA_SOFTIRQ);
3795 memcpy(skb_tail_pointer(skb), vaddr, length);
3796 kunmap_atomic(vaddr,
3797 KM_SKB_DATA_SOFTIRQ);
3798 /* re-use the page, so don't erase
3799 * buffer_info->page */
3800 skb_put(skb, length);
3801 } else {
3802 skb_fill_page_desc(skb, 0,
3803 buffer_info->page, 0,
3804 length);
3805 e1000_consume_page(buffer_info, skb,
3806 length);
3807 }
3808 }
3809 }
3810
3811 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3812 e1000_rx_checksum(adapter,
3813 (u32)(status) |
3814 ((u32)(rx_desc->errors) << 24),
3815 le16_to_cpu(rx_desc->csum), skb);
3816
3817 pskb_trim(skb, skb->len - 4);
3818
3819 /* probably a little skewed due to removing CRC */
3820 total_rx_bytes += skb->len;
3821 total_rx_packets++;
3822
3823 /* eth type trans needs skb->data to point to something */
3824 if (!pskb_may_pull(skb, ETH_HLEN)) {
3825 e_err(drv, "pskb_may_pull failed.\n");
3826 dev_kfree_skb(skb);
3827 goto next_desc;
3828 }
3829
3830 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3831
3832 next_desc:
3833 rx_desc->status = 0;
3834
3835 /* return some buffers to hardware, one at a time is too slow */
3836 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3837 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3838 cleaned_count = 0;
3839 }
3840
3841 /* use prefetched values */
3842 rx_desc = next_rxd;
3843 buffer_info = next_buffer;
3844 }
3845 rx_ring->next_to_clean = i;
3846
3847 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3848 if (cleaned_count)
3849 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3850
3851 adapter->total_rx_packets += total_rx_packets;
3852 adapter->total_rx_bytes += total_rx_bytes;
3853 netdev->stats.rx_bytes += total_rx_bytes;
3854 netdev->stats.rx_packets += total_rx_packets;
3855 return cleaned;
3856 }
3857
3858 /*
3859 * this should improve performance for small packets with large amounts
3860 * of reassembly being done in the stack
3861 */
3862 static void e1000_check_copybreak(struct net_device *netdev,
3863 struct e1000_buffer *buffer_info,
3864 u32 length, struct sk_buff **skb)
3865 {
3866 struct sk_buff *new_skb;
3867
3868 if (length > copybreak)
3869 return;
3870
3871 new_skb = netdev_alloc_skb_ip_align(netdev, length);
3872 if (!new_skb)
3873 return;
3874
3875 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3876 (*skb)->data - NET_IP_ALIGN,
3877 length + NET_IP_ALIGN);
3878 /* save the skb in buffer_info as good */
3879 buffer_info->skb = *skb;
3880 *skb = new_skb;
3881 }
3882
3883 /**
3884 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3885 * @adapter: board private structure
3886 * @rx_ring: ring to clean
3887 * @work_done: amount of napi work completed this call
3888 * @work_to_do: max amount of work allowed for this call to do
3889 */
3890 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3891 struct e1000_rx_ring *rx_ring,
3892 int *work_done, int work_to_do)
3893 {
3894 struct e1000_hw *hw = &adapter->hw;
3895 struct net_device *netdev = adapter->netdev;
3896 struct pci_dev *pdev = adapter->pdev;
3897 struct e1000_rx_desc *rx_desc, *next_rxd;
3898 struct e1000_buffer *buffer_info, *next_buffer;
3899 unsigned long flags;
3900 u32 length;
3901 unsigned int i;
3902 int cleaned_count = 0;
3903 bool cleaned = false;
3904 unsigned int total_rx_bytes=0, total_rx_packets=0;
3905
3906 i = rx_ring->next_to_clean;
3907 rx_desc = E1000_RX_DESC(*rx_ring, i);
3908 buffer_info = &rx_ring->buffer_info[i];
3909
3910 while (rx_desc->status & E1000_RXD_STAT_DD) {
3911 struct sk_buff *skb;
3912 u8 status;
3913
3914 if (*work_done >= work_to_do)
3915 break;
3916 (*work_done)++;
3917 rmb(); /* read descriptor and rx_buffer_info after status DD */
3918
3919 status = rx_desc->status;
3920 skb = buffer_info->skb;
3921 buffer_info->skb = NULL;
3922
3923 prefetch(skb->data - NET_IP_ALIGN);
3924
3925 if (++i == rx_ring->count) i = 0;
3926 next_rxd = E1000_RX_DESC(*rx_ring, i);
3927 prefetch(next_rxd);
3928
3929 next_buffer = &rx_ring->buffer_info[i];
3930
3931 cleaned = true;
3932 cleaned_count++;
3933 dma_unmap_single(&pdev->dev, buffer_info->dma,
3934 buffer_info->length, DMA_FROM_DEVICE);
3935 buffer_info->dma = 0;
3936
3937 length = le16_to_cpu(rx_desc->length);
3938 /* !EOP means multiple descriptors were used to store a single
3939 * packet, if thats the case we need to toss it. In fact, we
3940 * to toss every packet with the EOP bit clear and the next
3941 * frame that _does_ have the EOP bit set, as it is by
3942 * definition only a frame fragment
3943 */
3944 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3945 adapter->discarding = true;
3946
3947 if (adapter->discarding) {
3948 /* All receives must fit into a single buffer */
3949 e_dbg("Receive packet consumed multiple buffers\n");
3950 /* recycle */
3951 buffer_info->skb = skb;
3952 if (status & E1000_RXD_STAT_EOP)
3953 adapter->discarding = false;
3954 goto next_desc;
3955 }
3956
3957 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3958 u8 last_byte = *(skb->data + length - 1);
3959 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3960 last_byte)) {
3961 spin_lock_irqsave(&adapter->stats_lock, flags);
3962 e1000_tbi_adjust_stats(hw, &adapter->stats,
3963 length, skb->data);
3964 spin_unlock_irqrestore(&adapter->stats_lock,
3965 flags);
3966 length--;
3967 } else {
3968 /* recycle */
3969 buffer_info->skb = skb;
3970 goto next_desc;
3971 }
3972 }
3973
3974 /* adjust length to remove Ethernet CRC, this must be
3975 * done after the TBI_ACCEPT workaround above */
3976 length -= 4;
3977
3978 /* probably a little skewed due to removing CRC */
3979 total_rx_bytes += length;
3980 total_rx_packets++;
3981
3982 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3983
3984 skb_put(skb, length);
3985
3986 /* Receive Checksum Offload */
3987 e1000_rx_checksum(adapter,
3988 (u32)(status) |
3989 ((u32)(rx_desc->errors) << 24),
3990 le16_to_cpu(rx_desc->csum), skb);
3991
3992 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3993
3994 next_desc:
3995 rx_desc->status = 0;
3996
3997 /* return some buffers to hardware, one at a time is too slow */
3998 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3999 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4000 cleaned_count = 0;
4001 }
4002
4003 /* use prefetched values */
4004 rx_desc = next_rxd;
4005 buffer_info = next_buffer;
4006 }
4007 rx_ring->next_to_clean = i;
4008
4009 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4010 if (cleaned_count)
4011 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4012
4013 adapter->total_rx_packets += total_rx_packets;
4014 adapter->total_rx_bytes += total_rx_bytes;
4015 netdev->stats.rx_bytes += total_rx_bytes;
4016 netdev->stats.rx_packets += total_rx_packets;
4017 return cleaned;
4018 }
4019
4020 /**
4021 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4022 * @adapter: address of board private structure
4023 * @rx_ring: pointer to receive ring structure
4024 * @cleaned_count: number of buffers to allocate this pass
4025 **/
4026
4027 static void
4028 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4029 struct e1000_rx_ring *rx_ring, int cleaned_count)
4030 {
4031 struct net_device *netdev = adapter->netdev;
4032 struct pci_dev *pdev = adapter->pdev;
4033 struct e1000_rx_desc *rx_desc;
4034 struct e1000_buffer *buffer_info;
4035 struct sk_buff *skb;
4036 unsigned int i;
4037 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4038
4039 i = rx_ring->next_to_use;
4040 buffer_info = &rx_ring->buffer_info[i];
4041
4042 while (cleaned_count--) {
4043 skb = buffer_info->skb;
4044 if (skb) {
4045 skb_trim(skb, 0);
4046 goto check_page;
4047 }
4048
4049 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4050 if (unlikely(!skb)) {
4051 /* Better luck next round */
4052 adapter->alloc_rx_buff_failed++;
4053 break;
4054 }
4055
4056 /* Fix for errata 23, can't cross 64kB boundary */
4057 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4058 struct sk_buff *oldskb = skb;
4059 e_err(rx_err, "skb align check failed: %u bytes at "
4060 "%p\n", bufsz, skb->data);
4061 /* Try again, without freeing the previous */
4062 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4063 /* Failed allocation, critical failure */
4064 if (!skb) {
4065 dev_kfree_skb(oldskb);
4066 adapter->alloc_rx_buff_failed++;
4067 break;
4068 }
4069
4070 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4071 /* give up */
4072 dev_kfree_skb(skb);
4073 dev_kfree_skb(oldskb);
4074 break; /* while (cleaned_count--) */
4075 }
4076
4077 /* Use new allocation */
4078 dev_kfree_skb(oldskb);
4079 }
4080 buffer_info->skb = skb;
4081 buffer_info->length = adapter->rx_buffer_len;
4082 check_page:
4083 /* allocate a new page if necessary */
4084 if (!buffer_info->page) {
4085 buffer_info->page = alloc_page(GFP_ATOMIC);
4086 if (unlikely(!buffer_info->page)) {
4087 adapter->alloc_rx_buff_failed++;
4088 break;
4089 }
4090 }
4091
4092 if (!buffer_info->dma) {
4093 buffer_info->dma = dma_map_page(&pdev->dev,
4094 buffer_info->page, 0,
4095 buffer_info->length,
4096 DMA_FROM_DEVICE);
4097 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4098 put_page(buffer_info->page);
4099 dev_kfree_skb(skb);
4100 buffer_info->page = NULL;
4101 buffer_info->skb = NULL;
4102 buffer_info->dma = 0;
4103 adapter->alloc_rx_buff_failed++;
4104 break; /* while !buffer_info->skb */
4105 }
4106 }
4107
4108 rx_desc = E1000_RX_DESC(*rx_ring, i);
4109 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4110
4111 if (unlikely(++i == rx_ring->count))
4112 i = 0;
4113 buffer_info = &rx_ring->buffer_info[i];
4114 }
4115
4116 if (likely(rx_ring->next_to_use != i)) {
4117 rx_ring->next_to_use = i;
4118 if (unlikely(i-- == 0))
4119 i = (rx_ring->count - 1);
4120
4121 /* Force memory writes to complete before letting h/w
4122 * know there are new descriptors to fetch. (Only
4123 * applicable for weak-ordered memory model archs,
4124 * such as IA-64). */
4125 wmb();
4126 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4127 }
4128 }
4129
4130 /**
4131 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4132 * @adapter: address of board private structure
4133 **/
4134
4135 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4136 struct e1000_rx_ring *rx_ring,
4137 int cleaned_count)
4138 {
4139 struct e1000_hw *hw = &adapter->hw;
4140 struct net_device *netdev = adapter->netdev;
4141 struct pci_dev *pdev = adapter->pdev;
4142 struct e1000_rx_desc *rx_desc;
4143 struct e1000_buffer *buffer_info;
4144 struct sk_buff *skb;
4145 unsigned int i;
4146 unsigned int bufsz = adapter->rx_buffer_len;
4147
4148 i = rx_ring->next_to_use;
4149 buffer_info = &rx_ring->buffer_info[i];
4150
4151 while (cleaned_count--) {
4152 skb = buffer_info->skb;
4153 if (skb) {
4154 skb_trim(skb, 0);
4155 goto map_skb;
4156 }
4157
4158 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4159 if (unlikely(!skb)) {
4160 /* Better luck next round */
4161 adapter->alloc_rx_buff_failed++;
4162 break;
4163 }
4164
4165 /* Fix for errata 23, can't cross 64kB boundary */
4166 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4167 struct sk_buff *oldskb = skb;
4168 e_err(rx_err, "skb align check failed: %u bytes at "
4169 "%p\n", bufsz, skb->data);
4170 /* Try again, without freeing the previous */
4171 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4172 /* Failed allocation, critical failure */
4173 if (!skb) {
4174 dev_kfree_skb(oldskb);
4175 adapter->alloc_rx_buff_failed++;
4176 break;
4177 }
4178
4179 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4180 /* give up */
4181 dev_kfree_skb(skb);
4182 dev_kfree_skb(oldskb);
4183 adapter->alloc_rx_buff_failed++;
4184 break; /* while !buffer_info->skb */
4185 }
4186
4187 /* Use new allocation */
4188 dev_kfree_skb(oldskb);
4189 }
4190 buffer_info->skb = skb;
4191 buffer_info->length = adapter->rx_buffer_len;
4192 map_skb:
4193 buffer_info->dma = dma_map_single(&pdev->dev,
4194 skb->data,
4195 buffer_info->length,
4196 DMA_FROM_DEVICE);
4197 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4198 dev_kfree_skb(skb);
4199 buffer_info->skb = NULL;
4200 buffer_info->dma = 0;
4201 adapter->alloc_rx_buff_failed++;
4202 break; /* while !buffer_info->skb */
4203 }
4204
4205 /*
4206 * XXX if it was allocated cleanly it will never map to a
4207 * boundary crossing
4208 */
4209
4210 /* Fix for errata 23, can't cross 64kB boundary */
4211 if (!e1000_check_64k_bound(adapter,
4212 (void *)(unsigned long)buffer_info->dma,
4213 adapter->rx_buffer_len)) {
4214 e_err(rx_err, "dma align check failed: %u bytes at "
4215 "%p\n", adapter->rx_buffer_len,
4216 (void *)(unsigned long)buffer_info->dma);
4217 dev_kfree_skb(skb);
4218 buffer_info->skb = NULL;
4219
4220 dma_unmap_single(&pdev->dev, buffer_info->dma,
4221 adapter->rx_buffer_len,
4222 DMA_FROM_DEVICE);
4223 buffer_info->dma = 0;
4224
4225 adapter->alloc_rx_buff_failed++;
4226 break; /* while !buffer_info->skb */
4227 }
4228 rx_desc = E1000_RX_DESC(*rx_ring, i);
4229 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4230
4231 if (unlikely(++i == rx_ring->count))
4232 i = 0;
4233 buffer_info = &rx_ring->buffer_info[i];
4234 }
4235
4236 if (likely(rx_ring->next_to_use != i)) {
4237 rx_ring->next_to_use = i;
4238 if (unlikely(i-- == 0))
4239 i = (rx_ring->count - 1);
4240
4241 /* Force memory writes to complete before letting h/w
4242 * know there are new descriptors to fetch. (Only
4243 * applicable for weak-ordered memory model archs,
4244 * such as IA-64). */
4245 wmb();
4246 writel(i, hw->hw_addr + rx_ring->rdt);
4247 }
4248 }
4249
4250 /**
4251 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4252 * @adapter:
4253 **/
4254
4255 static void e1000_smartspeed(struct e1000_adapter *adapter)
4256 {
4257 struct e1000_hw *hw = &adapter->hw;
4258 u16 phy_status;
4259 u16 phy_ctrl;
4260
4261 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4262 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4263 return;
4264
4265 if (adapter->smartspeed == 0) {
4266 /* If Master/Slave config fault is asserted twice,
4267 * we assume back-to-back */
4268 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4269 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4270 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4271 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4272 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4273 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4274 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4275 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4276 phy_ctrl);
4277 adapter->smartspeed++;
4278 if (!e1000_phy_setup_autoneg(hw) &&
4279 !e1000_read_phy_reg(hw, PHY_CTRL,
4280 &phy_ctrl)) {
4281 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4282 MII_CR_RESTART_AUTO_NEG);
4283 e1000_write_phy_reg(hw, PHY_CTRL,
4284 phy_ctrl);
4285 }
4286 }
4287 return;
4288 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4289 /* If still no link, perhaps using 2/3 pair cable */
4290 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4291 phy_ctrl |= CR_1000T_MS_ENABLE;
4292 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4293 if (!e1000_phy_setup_autoneg(hw) &&
4294 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4295 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4296 MII_CR_RESTART_AUTO_NEG);
4297 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4298 }
4299 }
4300 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4301 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4302 adapter->smartspeed = 0;
4303 }
4304
4305 /**
4306 * e1000_ioctl -
4307 * @netdev:
4308 * @ifreq:
4309 * @cmd:
4310 **/
4311
4312 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4313 {
4314 switch (cmd) {
4315 case SIOCGMIIPHY:
4316 case SIOCGMIIREG:
4317 case SIOCSMIIREG:
4318 return e1000_mii_ioctl(netdev, ifr, cmd);
4319 default:
4320 return -EOPNOTSUPP;
4321 }
4322 }
4323
4324 /**
4325 * e1000_mii_ioctl -
4326 * @netdev:
4327 * @ifreq:
4328 * @cmd:
4329 **/
4330
4331 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4332 int cmd)
4333 {
4334 struct e1000_adapter *adapter = netdev_priv(netdev);
4335 struct e1000_hw *hw = &adapter->hw;
4336 struct mii_ioctl_data *data = if_mii(ifr);
4337 int retval;
4338 u16 mii_reg;
4339 u16 spddplx;
4340 unsigned long flags;
4341
4342 if (hw->media_type != e1000_media_type_copper)
4343 return -EOPNOTSUPP;
4344
4345 switch (cmd) {
4346 case SIOCGMIIPHY:
4347 data->phy_id = hw->phy_addr;
4348 break;
4349 case SIOCGMIIREG:
4350 spin_lock_irqsave(&adapter->stats_lock, flags);
4351 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4352 &data->val_out)) {
4353 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4354 return -EIO;
4355 }
4356 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4357 break;
4358 case SIOCSMIIREG:
4359 if (data->reg_num & ~(0x1F))
4360 return -EFAULT;
4361 mii_reg = data->val_in;
4362 spin_lock_irqsave(&adapter->stats_lock, flags);
4363 if (e1000_write_phy_reg(hw, data->reg_num,
4364 mii_reg)) {
4365 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4366 return -EIO;
4367 }
4368 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4369 if (hw->media_type == e1000_media_type_copper) {
4370 switch (data->reg_num) {
4371 case PHY_CTRL:
4372 if (mii_reg & MII_CR_POWER_DOWN)
4373 break;
4374 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4375 hw->autoneg = 1;
4376 hw->autoneg_advertised = 0x2F;
4377 } else {
4378 if (mii_reg & 0x40)
4379 spddplx = SPEED_1000;
4380 else if (mii_reg & 0x2000)
4381 spddplx = SPEED_100;
4382 else
4383 spddplx = SPEED_10;
4384 spddplx += (mii_reg & 0x100)
4385 ? DUPLEX_FULL :
4386 DUPLEX_HALF;
4387 retval = e1000_set_spd_dplx(adapter,
4388 spddplx);
4389 if (retval)
4390 return retval;
4391 }
4392 if (netif_running(adapter->netdev))
4393 e1000_reinit_locked(adapter);
4394 else
4395 e1000_reset(adapter);
4396 break;
4397 case M88E1000_PHY_SPEC_CTRL:
4398 case M88E1000_EXT_PHY_SPEC_CTRL:
4399 if (e1000_phy_reset(hw))
4400 return -EIO;
4401 break;
4402 }
4403 } else {
4404 switch (data->reg_num) {
4405 case PHY_CTRL:
4406 if (mii_reg & MII_CR_POWER_DOWN)
4407 break;
4408 if (netif_running(adapter->netdev))
4409 e1000_reinit_locked(adapter);
4410 else
4411 e1000_reset(adapter);
4412 break;
4413 }
4414 }
4415 break;
4416 default:
4417 return -EOPNOTSUPP;
4418 }
4419 return E1000_SUCCESS;
4420 }
4421
4422 void e1000_pci_set_mwi(struct e1000_hw *hw)
4423 {
4424 struct e1000_adapter *adapter = hw->back;
4425 int ret_val = pci_set_mwi(adapter->pdev);
4426
4427 if (ret_val)
4428 e_err(probe, "Error in setting MWI\n");
4429 }
4430
4431 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4432 {
4433 struct e1000_adapter *adapter = hw->back;
4434
4435 pci_clear_mwi(adapter->pdev);
4436 }
4437
4438 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4439 {
4440 struct e1000_adapter *adapter = hw->back;
4441 return pcix_get_mmrbc(adapter->pdev);
4442 }
4443
4444 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4445 {
4446 struct e1000_adapter *adapter = hw->back;
4447 pcix_set_mmrbc(adapter->pdev, mmrbc);
4448 }
4449
4450 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4451 {
4452 outl(value, port);
4453 }
4454
4455 static void e1000_vlan_rx_register(struct net_device *netdev,
4456 struct vlan_group *grp)
4457 {
4458 struct e1000_adapter *adapter = netdev_priv(netdev);
4459 struct e1000_hw *hw = &adapter->hw;
4460 u32 ctrl, rctl;
4461
4462 if (!test_bit(__E1000_DOWN, &adapter->flags))
4463 e1000_irq_disable(adapter);
4464 adapter->vlgrp = grp;
4465
4466 if (grp) {
4467 /* enable VLAN tag insert/strip */
4468 ctrl = er32(CTRL);
4469 ctrl |= E1000_CTRL_VME;
4470 ew32(CTRL, ctrl);
4471
4472 /* enable VLAN receive filtering */
4473 rctl = er32(RCTL);
4474 rctl &= ~E1000_RCTL_CFIEN;
4475 if (!(netdev->flags & IFF_PROMISC))
4476 rctl |= E1000_RCTL_VFE;
4477 ew32(RCTL, rctl);
4478 e1000_update_mng_vlan(adapter);
4479 } else {
4480 /* disable VLAN tag insert/strip */
4481 ctrl = er32(CTRL);
4482 ctrl &= ~E1000_CTRL_VME;
4483 ew32(CTRL, ctrl);
4484
4485 /* disable VLAN receive filtering */
4486 rctl = er32(RCTL);
4487 rctl &= ~E1000_RCTL_VFE;
4488 ew32(RCTL, rctl);
4489
4490 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4491 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4492 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4493 }
4494 }
4495
4496 if (!test_bit(__E1000_DOWN, &adapter->flags))
4497 e1000_irq_enable(adapter);
4498 }
4499
4500 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4501 {
4502 struct e1000_adapter *adapter = netdev_priv(netdev);
4503 struct e1000_hw *hw = &adapter->hw;
4504 u32 vfta, index;
4505
4506 if ((hw->mng_cookie.status &
4507 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4508 (vid == adapter->mng_vlan_id))
4509 return;
4510 /* add VID to filter table */
4511 index = (vid >> 5) & 0x7F;
4512 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4513 vfta |= (1 << (vid & 0x1F));
4514 e1000_write_vfta(hw, index, vfta);
4515 }
4516
4517 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4518 {
4519 struct e1000_adapter *adapter = netdev_priv(netdev);
4520 struct e1000_hw *hw = &adapter->hw;
4521 u32 vfta, index;
4522
4523 if (!test_bit(__E1000_DOWN, &adapter->flags))
4524 e1000_irq_disable(adapter);
4525 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4526 if (!test_bit(__E1000_DOWN, &adapter->flags))
4527 e1000_irq_enable(adapter);
4528
4529 /* remove VID from filter table */
4530 index = (vid >> 5) & 0x7F;
4531 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4532 vfta &= ~(1 << (vid & 0x1F));
4533 e1000_write_vfta(hw, index, vfta);
4534 }
4535
4536 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4537 {
4538 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4539
4540 if (adapter->vlgrp) {
4541 u16 vid;
4542 for (vid = 0; vid < VLAN_N_VID; vid++) {
4543 if (!vlan_group_get_device(adapter->vlgrp, vid))
4544 continue;
4545 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4546 }
4547 }
4548 }
4549
4550 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4551 {
4552 struct e1000_hw *hw = &adapter->hw;
4553
4554 hw->autoneg = 0;
4555
4556 /* Fiber NICs only allow 1000 gbps Full duplex */
4557 if ((hw->media_type == e1000_media_type_fiber) &&
4558 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4559 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4560 return -EINVAL;
4561 }
4562
4563 switch (spddplx) {
4564 case SPEED_10 + DUPLEX_HALF:
4565 hw->forced_speed_duplex = e1000_10_half;
4566 break;
4567 case SPEED_10 + DUPLEX_FULL:
4568 hw->forced_speed_duplex = e1000_10_full;
4569 break;
4570 case SPEED_100 + DUPLEX_HALF:
4571 hw->forced_speed_duplex = e1000_100_half;
4572 break;
4573 case SPEED_100 + DUPLEX_FULL:
4574 hw->forced_speed_duplex = e1000_100_full;
4575 break;
4576 case SPEED_1000 + DUPLEX_FULL:
4577 hw->autoneg = 1;
4578 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4579 break;
4580 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4581 default:
4582 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4583 return -EINVAL;
4584 }
4585 return 0;
4586 }
4587
4588 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4589 {
4590 struct net_device *netdev = pci_get_drvdata(pdev);
4591 struct e1000_adapter *adapter = netdev_priv(netdev);
4592 struct e1000_hw *hw = &adapter->hw;
4593 u32 ctrl, ctrl_ext, rctl, status;
4594 u32 wufc = adapter->wol;
4595 #ifdef CONFIG_PM
4596 int retval = 0;
4597 #endif
4598
4599 netif_device_detach(netdev);
4600
4601 if (netif_running(netdev)) {
4602 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4603 e1000_down(adapter);
4604 }
4605
4606 #ifdef CONFIG_PM
4607 retval = pci_save_state(pdev);
4608 if (retval)
4609 return retval;
4610 #endif
4611
4612 status = er32(STATUS);
4613 if (status & E1000_STATUS_LU)
4614 wufc &= ~E1000_WUFC_LNKC;
4615
4616 if (wufc) {
4617 e1000_setup_rctl(adapter);
4618 e1000_set_rx_mode(netdev);
4619
4620 /* turn on all-multi mode if wake on multicast is enabled */
4621 if (wufc & E1000_WUFC_MC) {
4622 rctl = er32(RCTL);
4623 rctl |= E1000_RCTL_MPE;
4624 ew32(RCTL, rctl);
4625 }
4626
4627 if (hw->mac_type >= e1000_82540) {
4628 ctrl = er32(CTRL);
4629 /* advertise wake from D3Cold */
4630 #define E1000_CTRL_ADVD3WUC 0x00100000
4631 /* phy power management enable */
4632 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4633 ctrl |= E1000_CTRL_ADVD3WUC |
4634 E1000_CTRL_EN_PHY_PWR_MGMT;
4635 ew32(CTRL, ctrl);
4636 }
4637
4638 if (hw->media_type == e1000_media_type_fiber ||
4639 hw->media_type == e1000_media_type_internal_serdes) {
4640 /* keep the laser running in D3 */
4641 ctrl_ext = er32(CTRL_EXT);
4642 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4643 ew32(CTRL_EXT, ctrl_ext);
4644 }
4645
4646 ew32(WUC, E1000_WUC_PME_EN);
4647 ew32(WUFC, wufc);
4648 } else {
4649 ew32(WUC, 0);
4650 ew32(WUFC, 0);
4651 }
4652
4653 e1000_release_manageability(adapter);
4654
4655 *enable_wake = !!wufc;
4656
4657 /* make sure adapter isn't asleep if manageability is enabled */
4658 if (adapter->en_mng_pt)
4659 *enable_wake = true;
4660
4661 if (netif_running(netdev))
4662 e1000_free_irq(adapter);
4663
4664 pci_disable_device(pdev);
4665
4666 return 0;
4667 }
4668
4669 #ifdef CONFIG_PM
4670 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4671 {
4672 int retval;
4673 bool wake;
4674
4675 retval = __e1000_shutdown(pdev, &wake);
4676 if (retval)
4677 return retval;
4678
4679 if (wake) {
4680 pci_prepare_to_sleep(pdev);
4681 } else {
4682 pci_wake_from_d3(pdev, false);
4683 pci_set_power_state(pdev, PCI_D3hot);
4684 }
4685
4686 return 0;
4687 }
4688
4689 static int e1000_resume(struct pci_dev *pdev)
4690 {
4691 struct net_device *netdev = pci_get_drvdata(pdev);
4692 struct e1000_adapter *adapter = netdev_priv(netdev);
4693 struct e1000_hw *hw = &adapter->hw;
4694 u32 err;
4695
4696 pci_set_power_state(pdev, PCI_D0);
4697 pci_restore_state(pdev);
4698 pci_save_state(pdev);
4699
4700 if (adapter->need_ioport)
4701 err = pci_enable_device(pdev);
4702 else
4703 err = pci_enable_device_mem(pdev);
4704 if (err) {
4705 pr_err("Cannot enable PCI device from suspend\n");
4706 return err;
4707 }
4708 pci_set_master(pdev);
4709
4710 pci_enable_wake(pdev, PCI_D3hot, 0);
4711 pci_enable_wake(pdev, PCI_D3cold, 0);
4712
4713 if (netif_running(netdev)) {
4714 err = e1000_request_irq(adapter);
4715 if (err)
4716 return err;
4717 }
4718
4719 e1000_power_up_phy(adapter);
4720 e1000_reset(adapter);
4721 ew32(WUS, ~0);
4722
4723 e1000_init_manageability(adapter);
4724
4725 if (netif_running(netdev))
4726 e1000_up(adapter);
4727
4728 netif_device_attach(netdev);
4729
4730 return 0;
4731 }
4732 #endif
4733
4734 static void e1000_shutdown(struct pci_dev *pdev)
4735 {
4736 bool wake;
4737
4738 __e1000_shutdown(pdev, &wake);
4739
4740 if (system_state == SYSTEM_POWER_OFF) {
4741 pci_wake_from_d3(pdev, wake);
4742 pci_set_power_state(pdev, PCI_D3hot);
4743 }
4744 }
4745
4746 #ifdef CONFIG_NET_POLL_CONTROLLER
4747 /*
4748 * Polling 'interrupt' - used by things like netconsole to send skbs
4749 * without having to re-enable interrupts. It's not called while
4750 * the interrupt routine is executing.
4751 */
4752 static void e1000_netpoll(struct net_device *netdev)
4753 {
4754 struct e1000_adapter *adapter = netdev_priv(netdev);
4755
4756 disable_irq(adapter->pdev->irq);
4757 e1000_intr(adapter->pdev->irq, netdev);
4758 enable_irq(adapter->pdev->irq);
4759 }
4760 #endif
4761
4762 /**
4763 * e1000_io_error_detected - called when PCI error is detected
4764 * @pdev: Pointer to PCI device
4765 * @state: The current pci connection state
4766 *
4767 * This function is called after a PCI bus error affecting
4768 * this device has been detected.
4769 */
4770 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4771 pci_channel_state_t state)
4772 {
4773 struct net_device *netdev = pci_get_drvdata(pdev);
4774 struct e1000_adapter *adapter = netdev_priv(netdev);
4775
4776 netif_device_detach(netdev);
4777
4778 if (state == pci_channel_io_perm_failure)
4779 return PCI_ERS_RESULT_DISCONNECT;
4780
4781 if (netif_running(netdev))
4782 e1000_down(adapter);
4783 pci_disable_device(pdev);
4784
4785 /* Request a slot slot reset. */
4786 return PCI_ERS_RESULT_NEED_RESET;
4787 }
4788
4789 /**
4790 * e1000_io_slot_reset - called after the pci bus has been reset.
4791 * @pdev: Pointer to PCI device
4792 *
4793 * Restart the card from scratch, as if from a cold-boot. Implementation
4794 * resembles the first-half of the e1000_resume routine.
4795 */
4796 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4797 {
4798 struct net_device *netdev = pci_get_drvdata(pdev);
4799 struct e1000_adapter *adapter = netdev_priv(netdev);
4800 struct e1000_hw *hw = &adapter->hw;
4801 int err;
4802
4803 if (adapter->need_ioport)
4804 err = pci_enable_device(pdev);
4805 else
4806 err = pci_enable_device_mem(pdev);
4807 if (err) {
4808 pr_err("Cannot re-enable PCI device after reset.\n");
4809 return PCI_ERS_RESULT_DISCONNECT;
4810 }
4811 pci_set_master(pdev);
4812
4813 pci_enable_wake(pdev, PCI_D3hot, 0);
4814 pci_enable_wake(pdev, PCI_D3cold, 0);
4815
4816 e1000_reset(adapter);
4817 ew32(WUS, ~0);
4818
4819 return PCI_ERS_RESULT_RECOVERED;
4820 }
4821
4822 /**
4823 * e1000_io_resume - called when traffic can start flowing again.
4824 * @pdev: Pointer to PCI device
4825 *
4826 * This callback is called when the error recovery driver tells us that
4827 * its OK to resume normal operation. Implementation resembles the
4828 * second-half of the e1000_resume routine.
4829 */
4830 static void e1000_io_resume(struct pci_dev *pdev)
4831 {
4832 struct net_device *netdev = pci_get_drvdata(pdev);
4833 struct e1000_adapter *adapter = netdev_priv(netdev);
4834
4835 e1000_init_manageability(adapter);
4836
4837 if (netif_running(netdev)) {
4838 if (e1000_up(adapter)) {
4839 pr_info("can't bring device back up after reset\n");
4840 return;
4841 }
4842 }
4843
4844 netif_device_attach(netdev);
4845 }
4846
4847 /* e1000_main.c */
This page took 0.200195 seconds and 5 git commands to generate.