[PATCH] uml: fix compile warning after consolidation patch
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32 * 6.0.58 4/20/05
33 * o Accepted ethtool cleanup patch from Stephen Hemminger
34 * 6.0.44+ 2/15/05
35 * o applied Anton's patch to resolve tx hang in hardware
36 * o Applied Andrew Mortons patch - e1000 stops working after resume
37 */
38
39 char e1000_driver_name[] = "e1000";
40 char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.0.60-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51 *
52 * Last entry must be all 0s
53 *
54 * Macro expands to...
55 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56 */
57 static struct pci_device_id e1000_pci_tbl[] = {
58 INTEL_E1000_ETHERNET_DEVICE(0x1000),
59 INTEL_E1000_ETHERNET_DEVICE(0x1001),
60 INTEL_E1000_ETHERNET_DEVICE(0x1004),
61 INTEL_E1000_ETHERNET_DEVICE(0x1008),
62 INTEL_E1000_ETHERNET_DEVICE(0x1009),
63 INTEL_E1000_ETHERNET_DEVICE(0x100C),
64 INTEL_E1000_ETHERNET_DEVICE(0x100D),
65 INTEL_E1000_ETHERNET_DEVICE(0x100E),
66 INTEL_E1000_ETHERNET_DEVICE(0x100F),
67 INTEL_E1000_ETHERNET_DEVICE(0x1010),
68 INTEL_E1000_ETHERNET_DEVICE(0x1011),
69 INTEL_E1000_ETHERNET_DEVICE(0x1012),
70 INTEL_E1000_ETHERNET_DEVICE(0x1013),
71 INTEL_E1000_ETHERNET_DEVICE(0x1014),
72 INTEL_E1000_ETHERNET_DEVICE(0x1015),
73 INTEL_E1000_ETHERNET_DEVICE(0x1016),
74 INTEL_E1000_ETHERNET_DEVICE(0x1017),
75 INTEL_E1000_ETHERNET_DEVICE(0x1018),
76 INTEL_E1000_ETHERNET_DEVICE(0x1019),
77 INTEL_E1000_ETHERNET_DEVICE(0x101A),
78 INTEL_E1000_ETHERNET_DEVICE(0x101D),
79 INTEL_E1000_ETHERNET_DEVICE(0x101E),
80 INTEL_E1000_ETHERNET_DEVICE(0x1026),
81 INTEL_E1000_ETHERNET_DEVICE(0x1027),
82 INTEL_E1000_ETHERNET_DEVICE(0x1028),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x108A),
92 INTEL_E1000_ETHERNET_DEVICE(0x108B),
93 INTEL_E1000_ETHERNET_DEVICE(0x108C),
94 INTEL_E1000_ETHERNET_DEVICE(0x1099),
95 /* required last entry */
96 {0,}
97 };
98
99 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
100
101 int e1000_up(struct e1000_adapter *adapter);
102 void e1000_down(struct e1000_adapter *adapter);
103 void e1000_reset(struct e1000_adapter *adapter);
104 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
105 int e1000_setup_tx_resources(struct e1000_adapter *adapter);
106 int e1000_setup_rx_resources(struct e1000_adapter *adapter);
107 void e1000_free_tx_resources(struct e1000_adapter *adapter);
108 void e1000_free_rx_resources(struct e1000_adapter *adapter);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 /* Local Function Prototypes */
112
113 static int e1000_init_module(void);
114 static void e1000_exit_module(void);
115 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
116 static void __devexit e1000_remove(struct pci_dev *pdev);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
124 static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
125 static void e1000_set_multi(struct net_device *netdev);
126 static void e1000_update_phy_info(unsigned long data);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_watchdog_task(struct e1000_adapter *adapter);
129 static void e1000_82547_tx_fifo_stall(unsigned long data);
130 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
131 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
132 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
133 static int e1000_set_mac(struct net_device *netdev, void *p);
134 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
135 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
136 #ifdef CONFIG_E1000_NAPI
137 static int e1000_clean(struct net_device *netdev, int *budget);
138 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
139 int *work_done, int work_to_do);
140 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
141 int *work_done, int work_to_do);
142 #else
143 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
144 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter);
145 #endif
146 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
147 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter);
148 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
149 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
150 int cmd);
151 void e1000_set_ethtool_ops(struct net_device *netdev);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_tx_timeout_task(struct net_device *dev);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
159
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
165 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
166 #ifdef CONFIG_PM
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169
170 #ifdef CONFIG_NET_POLL_CONTROLLER
171 /* for netdump / net console */
172 static void e1000_netpoll (struct net_device *netdev);
173 #endif
174
175 /* Exported from other modules */
176
177 extern void e1000_check_options(struct e1000_adapter *adapter);
178
179 static struct pci_driver e1000_driver = {
180 .name = e1000_driver_name,
181 .id_table = e1000_pci_tbl,
182 .probe = e1000_probe,
183 .remove = __devexit_p(e1000_remove),
184 /* Power Managment Hooks */
185 #ifdef CONFIG_PM
186 .suspend = e1000_suspend,
187 .resume = e1000_resume
188 #endif
189 };
190
191 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
192 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
193 MODULE_LICENSE("GPL");
194 MODULE_VERSION(DRV_VERSION);
195
196 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
197 module_param(debug, int, 0);
198 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
199
200 /**
201 * e1000_init_module - Driver Registration Routine
202 *
203 * e1000_init_module is the first routine called when the driver is
204 * loaded. All it does is register with the PCI subsystem.
205 **/
206
207 static int __init
208 e1000_init_module(void)
209 {
210 int ret;
211 printk(KERN_INFO "%s - version %s\n",
212 e1000_driver_string, e1000_driver_version);
213
214 printk(KERN_INFO "%s\n", e1000_copyright);
215
216 ret = pci_module_init(&e1000_driver);
217
218 return ret;
219 }
220
221 module_init(e1000_init_module);
222
223 /**
224 * e1000_exit_module - Driver Exit Cleanup Routine
225 *
226 * e1000_exit_module is called just before the driver is removed
227 * from memory.
228 **/
229
230 static void __exit
231 e1000_exit_module(void)
232 {
233 pci_unregister_driver(&e1000_driver);
234 }
235
236 module_exit(e1000_exit_module);
237
238 /**
239 * e1000_irq_disable - Mask off interrupt generation on the NIC
240 * @adapter: board private structure
241 **/
242
243 static inline void
244 e1000_irq_disable(struct e1000_adapter *adapter)
245 {
246 atomic_inc(&adapter->irq_sem);
247 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
248 E1000_WRITE_FLUSH(&adapter->hw);
249 synchronize_irq(adapter->pdev->irq);
250 }
251
252 /**
253 * e1000_irq_enable - Enable default interrupt generation settings
254 * @adapter: board private structure
255 **/
256
257 static inline void
258 e1000_irq_enable(struct e1000_adapter *adapter)
259 {
260 if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
261 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
262 E1000_WRITE_FLUSH(&adapter->hw);
263 }
264 }
265 void
266 e1000_update_mng_vlan(struct e1000_adapter *adapter)
267 {
268 struct net_device *netdev = adapter->netdev;
269 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
270 uint16_t old_vid = adapter->mng_vlan_id;
271 if(adapter->vlgrp) {
272 if(!adapter->vlgrp->vlan_devices[vid]) {
273 if(adapter->hw.mng_cookie.status &
274 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
275 e1000_vlan_rx_add_vid(netdev, vid);
276 adapter->mng_vlan_id = vid;
277 } else
278 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
279
280 if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
281 (vid != old_vid) &&
282 !adapter->vlgrp->vlan_devices[old_vid])
283 e1000_vlan_rx_kill_vid(netdev, old_vid);
284 }
285 }
286 }
287
288 int
289 e1000_up(struct e1000_adapter *adapter)
290 {
291 struct net_device *netdev = adapter->netdev;
292 int err;
293
294 /* hardware has been reset, we need to reload some things */
295
296 /* Reset the PHY if it was previously powered down */
297 if(adapter->hw.media_type == e1000_media_type_copper) {
298 uint16_t mii_reg;
299 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
300 if(mii_reg & MII_CR_POWER_DOWN)
301 e1000_phy_reset(&adapter->hw);
302 }
303
304 e1000_set_multi(netdev);
305
306 e1000_restore_vlan(adapter);
307
308 e1000_configure_tx(adapter);
309 e1000_setup_rctl(adapter);
310 e1000_configure_rx(adapter);
311 adapter->alloc_rx_buf(adapter);
312
313 #ifdef CONFIG_PCI_MSI
314 if(adapter->hw.mac_type > e1000_82547_rev_2) {
315 adapter->have_msi = TRUE;
316 if((err = pci_enable_msi(adapter->pdev))) {
317 DPRINTK(PROBE, ERR,
318 "Unable to allocate MSI interrupt Error: %d\n", err);
319 adapter->have_msi = FALSE;
320 }
321 }
322 #endif
323 if((err = request_irq(adapter->pdev->irq, &e1000_intr,
324 SA_SHIRQ | SA_SAMPLE_RANDOM,
325 netdev->name, netdev))) {
326 DPRINTK(PROBE, ERR,
327 "Unable to allocate interrupt Error: %d\n", err);
328 return err;
329 }
330
331 mod_timer(&adapter->watchdog_timer, jiffies);
332
333 #ifdef CONFIG_E1000_NAPI
334 netif_poll_enable(netdev);
335 #endif
336 e1000_irq_enable(adapter);
337
338 return 0;
339 }
340
341 void
342 e1000_down(struct e1000_adapter *adapter)
343 {
344 struct net_device *netdev = adapter->netdev;
345
346 e1000_irq_disable(adapter);
347 free_irq(adapter->pdev->irq, netdev);
348 #ifdef CONFIG_PCI_MSI
349 if(adapter->hw.mac_type > e1000_82547_rev_2 &&
350 adapter->have_msi == TRUE)
351 pci_disable_msi(adapter->pdev);
352 #endif
353 del_timer_sync(&adapter->tx_fifo_stall_timer);
354 del_timer_sync(&adapter->watchdog_timer);
355 del_timer_sync(&adapter->phy_info_timer);
356
357 #ifdef CONFIG_E1000_NAPI
358 netif_poll_disable(netdev);
359 #endif
360 adapter->link_speed = 0;
361 adapter->link_duplex = 0;
362 netif_carrier_off(netdev);
363 netif_stop_queue(netdev);
364
365 e1000_reset(adapter);
366 e1000_clean_tx_ring(adapter);
367 e1000_clean_rx_ring(adapter);
368
369 /* If WoL is not enabled
370 * and management mode is not IAMT
371 * Power down the PHY so no link is implied when interface is down */
372 if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
373 adapter->hw.media_type == e1000_media_type_copper &&
374 !e1000_check_mng_mode(&adapter->hw) &&
375 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
376 uint16_t mii_reg;
377 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
378 mii_reg |= MII_CR_POWER_DOWN;
379 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
380 mdelay(1);
381 }
382 }
383
384 void
385 e1000_reset(struct e1000_adapter *adapter)
386 {
387 struct net_device *netdev = adapter->netdev;
388 uint32_t pba, manc;
389 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
390 uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
391
392 /* Repartition Pba for greater than 9k mtu
393 * To take effect CTRL.RST is required.
394 */
395
396 switch (adapter->hw.mac_type) {
397 case e1000_82547:
398 case e1000_82547_rev_2:
399 pba = E1000_PBA_30K;
400 break;
401 case e1000_82573:
402 pba = E1000_PBA_12K;
403 break;
404 default:
405 pba = E1000_PBA_48K;
406 break;
407 }
408
409 if((adapter->hw.mac_type != e1000_82573) &&
410 (adapter->rx_buffer_len > E1000_RXBUFFER_8192)) {
411 pba -= 8; /* allocate more FIFO for Tx */
412 /* send an XOFF when there is enough space in the
413 * Rx FIFO to hold one extra full size Rx packet
414 */
415 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE +
416 ETHERNET_FCS_SIZE + 1;
417 fc_low_water_mark = fc_high_water_mark + 8;
418 }
419
420
421 if(adapter->hw.mac_type == e1000_82547) {
422 adapter->tx_fifo_head = 0;
423 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
424 adapter->tx_fifo_size =
425 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
426 atomic_set(&adapter->tx_fifo_stall, 0);
427 }
428
429 E1000_WRITE_REG(&adapter->hw, PBA, pba);
430
431 /* flow control settings */
432 adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
433 fc_high_water_mark;
434 adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
435 fc_low_water_mark;
436 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
437 adapter->hw.fc_send_xon = 1;
438 adapter->hw.fc = adapter->hw.original_fc;
439
440 /* Allow time for pending master requests to run */
441 e1000_reset_hw(&adapter->hw);
442 if(adapter->hw.mac_type >= e1000_82544)
443 E1000_WRITE_REG(&adapter->hw, WUC, 0);
444 if(e1000_init_hw(&adapter->hw))
445 DPRINTK(PROBE, ERR, "Hardware Error\n");
446 e1000_update_mng_vlan(adapter);
447 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
448 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
449
450 e1000_reset_adaptive(&adapter->hw);
451 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
452 if (adapter->en_mng_pt) {
453 manc = E1000_READ_REG(&adapter->hw, MANC);
454 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
455 E1000_WRITE_REG(&adapter->hw, MANC, manc);
456 }
457 }
458
459 /**
460 * e1000_probe - Device Initialization Routine
461 * @pdev: PCI device information struct
462 * @ent: entry in e1000_pci_tbl
463 *
464 * Returns 0 on success, negative on failure
465 *
466 * e1000_probe initializes an adapter identified by a pci_dev structure.
467 * The OS initialization, configuring of the adapter private structure,
468 * and a hardware reset occur.
469 **/
470
471 static int __devinit
472 e1000_probe(struct pci_dev *pdev,
473 const struct pci_device_id *ent)
474 {
475 struct net_device *netdev;
476 struct e1000_adapter *adapter;
477 unsigned long mmio_start, mmio_len;
478 uint32_t swsm;
479
480 static int cards_found = 0;
481 int i, err, pci_using_dac;
482 uint16_t eeprom_data;
483 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
484 if((err = pci_enable_device(pdev)))
485 return err;
486
487 if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
488 pci_using_dac = 1;
489 } else {
490 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
491 E1000_ERR("No usable DMA configuration, aborting\n");
492 return err;
493 }
494 pci_using_dac = 0;
495 }
496
497 if((err = pci_request_regions(pdev, e1000_driver_name)))
498 return err;
499
500 pci_set_master(pdev);
501
502 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
503 if(!netdev) {
504 err = -ENOMEM;
505 goto err_alloc_etherdev;
506 }
507
508 SET_MODULE_OWNER(netdev);
509 SET_NETDEV_DEV(netdev, &pdev->dev);
510
511 pci_set_drvdata(pdev, netdev);
512 adapter = netdev_priv(netdev);
513 adapter->netdev = netdev;
514 adapter->pdev = pdev;
515 adapter->hw.back = adapter;
516 adapter->msg_enable = (1 << debug) - 1;
517
518 mmio_start = pci_resource_start(pdev, BAR_0);
519 mmio_len = pci_resource_len(pdev, BAR_0);
520
521 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
522 if(!adapter->hw.hw_addr) {
523 err = -EIO;
524 goto err_ioremap;
525 }
526
527 for(i = BAR_1; i <= BAR_5; i++) {
528 if(pci_resource_len(pdev, i) == 0)
529 continue;
530 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
531 adapter->hw.io_base = pci_resource_start(pdev, i);
532 break;
533 }
534 }
535
536 netdev->open = &e1000_open;
537 netdev->stop = &e1000_close;
538 netdev->hard_start_xmit = &e1000_xmit_frame;
539 netdev->get_stats = &e1000_get_stats;
540 netdev->set_multicast_list = &e1000_set_multi;
541 netdev->set_mac_address = &e1000_set_mac;
542 netdev->change_mtu = &e1000_change_mtu;
543 netdev->do_ioctl = &e1000_ioctl;
544 e1000_set_ethtool_ops(netdev);
545 netdev->tx_timeout = &e1000_tx_timeout;
546 netdev->watchdog_timeo = 5 * HZ;
547 #ifdef CONFIG_E1000_NAPI
548 netdev->poll = &e1000_clean;
549 netdev->weight = 64;
550 #endif
551 netdev->vlan_rx_register = e1000_vlan_rx_register;
552 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
553 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
554 #ifdef CONFIG_NET_POLL_CONTROLLER
555 netdev->poll_controller = e1000_netpoll;
556 #endif
557 strcpy(netdev->name, pci_name(pdev));
558
559 netdev->mem_start = mmio_start;
560 netdev->mem_end = mmio_start + mmio_len;
561 netdev->base_addr = adapter->hw.io_base;
562
563 adapter->bd_number = cards_found;
564
565 /* setup the private structure */
566
567 if((err = e1000_sw_init(adapter)))
568 goto err_sw_init;
569
570 if((err = e1000_check_phy_reset_block(&adapter->hw)))
571 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
572
573 if(adapter->hw.mac_type >= e1000_82543) {
574 netdev->features = NETIF_F_SG |
575 NETIF_F_HW_CSUM |
576 NETIF_F_HW_VLAN_TX |
577 NETIF_F_HW_VLAN_RX |
578 NETIF_F_HW_VLAN_FILTER;
579 }
580
581 #ifdef NETIF_F_TSO
582 if((adapter->hw.mac_type >= e1000_82544) &&
583 (adapter->hw.mac_type != e1000_82547))
584 netdev->features |= NETIF_F_TSO;
585
586 #ifdef NETIF_F_TSO_IPV6
587 if(adapter->hw.mac_type > e1000_82547_rev_2)
588 netdev->features |= NETIF_F_TSO_IPV6;
589 #endif
590 #endif
591 if(pci_using_dac)
592 netdev->features |= NETIF_F_HIGHDMA;
593
594 /* hard_start_xmit is safe against parallel locking */
595 netdev->features |= NETIF_F_LLTX;
596
597 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
598
599 /* before reading the EEPROM, reset the controller to
600 * put the device in a known good starting state */
601
602 e1000_reset_hw(&adapter->hw);
603
604 /* make sure the EEPROM is good */
605
606 if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
607 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
608 err = -EIO;
609 goto err_eeprom;
610 }
611
612 /* copy the MAC address out of the EEPROM */
613
614 if(e1000_read_mac_addr(&adapter->hw))
615 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
616 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
617
618 if(!is_valid_ether_addr(netdev->dev_addr)) {
619 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
620 err = -EIO;
621 goto err_eeprom;
622 }
623
624 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
625
626 e1000_get_bus_info(&adapter->hw);
627
628 init_timer(&adapter->tx_fifo_stall_timer);
629 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
630 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
631
632 init_timer(&adapter->watchdog_timer);
633 adapter->watchdog_timer.function = &e1000_watchdog;
634 adapter->watchdog_timer.data = (unsigned long) adapter;
635
636 INIT_WORK(&adapter->watchdog_task,
637 (void (*)(void *))e1000_watchdog_task, adapter);
638
639 init_timer(&adapter->phy_info_timer);
640 adapter->phy_info_timer.function = &e1000_update_phy_info;
641 adapter->phy_info_timer.data = (unsigned long) adapter;
642
643 INIT_WORK(&adapter->tx_timeout_task,
644 (void (*)(void *))e1000_tx_timeout_task, netdev);
645
646 /* we're going to reset, so assume we have no link for now */
647
648 netif_carrier_off(netdev);
649 netif_stop_queue(netdev);
650
651 e1000_check_options(adapter);
652
653 /* Initial Wake on LAN setting
654 * If APM wake is enabled in the EEPROM,
655 * enable the ACPI Magic Packet filter
656 */
657
658 switch(adapter->hw.mac_type) {
659 case e1000_82542_rev2_0:
660 case e1000_82542_rev2_1:
661 case e1000_82543:
662 break;
663 case e1000_82544:
664 e1000_read_eeprom(&adapter->hw,
665 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
666 eeprom_apme_mask = E1000_EEPROM_82544_APM;
667 break;
668 case e1000_82546:
669 case e1000_82546_rev_3:
670 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
671 && (adapter->hw.media_type == e1000_media_type_copper)) {
672 e1000_read_eeprom(&adapter->hw,
673 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
674 break;
675 }
676 /* Fall Through */
677 default:
678 e1000_read_eeprom(&adapter->hw,
679 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
680 break;
681 }
682 if(eeprom_data & eeprom_apme_mask)
683 adapter->wol |= E1000_WUFC_MAG;
684
685 /* reset the hardware with the new settings */
686 e1000_reset(adapter);
687
688 /* Let firmware know the driver has taken over */
689 switch(adapter->hw.mac_type) {
690 case e1000_82573:
691 swsm = E1000_READ_REG(&adapter->hw, SWSM);
692 E1000_WRITE_REG(&adapter->hw, SWSM,
693 swsm | E1000_SWSM_DRV_LOAD);
694 break;
695 default:
696 break;
697 }
698
699 strcpy(netdev->name, "eth%d");
700 if((err = register_netdev(netdev)))
701 goto err_register;
702
703 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
704
705 cards_found++;
706 return 0;
707
708 err_register:
709 err_sw_init:
710 err_eeprom:
711 iounmap(adapter->hw.hw_addr);
712 err_ioremap:
713 free_netdev(netdev);
714 err_alloc_etherdev:
715 pci_release_regions(pdev);
716 return err;
717 }
718
719 /**
720 * e1000_remove - Device Removal Routine
721 * @pdev: PCI device information struct
722 *
723 * e1000_remove is called by the PCI subsystem to alert the driver
724 * that it should release a PCI device. The could be caused by a
725 * Hot-Plug event, or because the driver is going to be removed from
726 * memory.
727 **/
728
729 static void __devexit
730 e1000_remove(struct pci_dev *pdev)
731 {
732 struct net_device *netdev = pci_get_drvdata(pdev);
733 struct e1000_adapter *adapter = netdev_priv(netdev);
734 uint32_t manc, swsm;
735
736 flush_scheduled_work();
737
738 if(adapter->hw.mac_type >= e1000_82540 &&
739 adapter->hw.media_type == e1000_media_type_copper) {
740 manc = E1000_READ_REG(&adapter->hw, MANC);
741 if(manc & E1000_MANC_SMBUS_EN) {
742 manc |= E1000_MANC_ARP_EN;
743 E1000_WRITE_REG(&adapter->hw, MANC, manc);
744 }
745 }
746
747 switch(adapter->hw.mac_type) {
748 case e1000_82573:
749 swsm = E1000_READ_REG(&adapter->hw, SWSM);
750 E1000_WRITE_REG(&adapter->hw, SWSM,
751 swsm & ~E1000_SWSM_DRV_LOAD);
752 break;
753
754 default:
755 break;
756 }
757
758 unregister_netdev(netdev);
759
760 if(!e1000_check_phy_reset_block(&adapter->hw))
761 e1000_phy_hw_reset(&adapter->hw);
762
763 iounmap(adapter->hw.hw_addr);
764 pci_release_regions(pdev);
765
766 free_netdev(netdev);
767
768 pci_disable_device(pdev);
769 }
770
771 /**
772 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
773 * @adapter: board private structure to initialize
774 *
775 * e1000_sw_init initializes the Adapter private data structure.
776 * Fields are initialized based on PCI device information and
777 * OS network device settings (MTU size).
778 **/
779
780 static int __devinit
781 e1000_sw_init(struct e1000_adapter *adapter)
782 {
783 struct e1000_hw *hw = &adapter->hw;
784 struct net_device *netdev = adapter->netdev;
785 struct pci_dev *pdev = adapter->pdev;
786
787 /* PCI config space info */
788
789 hw->vendor_id = pdev->vendor;
790 hw->device_id = pdev->device;
791 hw->subsystem_vendor_id = pdev->subsystem_vendor;
792 hw->subsystem_id = pdev->subsystem_device;
793
794 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
795
796 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
797
798 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
799 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
800 hw->max_frame_size = netdev->mtu +
801 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
802 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
803
804 /* identify the MAC */
805
806 if(e1000_set_mac_type(hw)) {
807 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
808 return -EIO;
809 }
810
811 /* initialize eeprom parameters */
812
813 if(e1000_init_eeprom_params(hw)) {
814 E1000_ERR("EEPROM initialization failed\n");
815 return -EIO;
816 }
817
818 switch(hw->mac_type) {
819 default:
820 break;
821 case e1000_82541:
822 case e1000_82547:
823 case e1000_82541_rev_2:
824 case e1000_82547_rev_2:
825 hw->phy_init_script = 1;
826 break;
827 }
828
829 e1000_set_media_type(hw);
830
831 hw->wait_autoneg_complete = FALSE;
832 hw->tbi_compatibility_en = TRUE;
833 hw->adaptive_ifs = TRUE;
834
835 /* Copper options */
836
837 if(hw->media_type == e1000_media_type_copper) {
838 hw->mdix = AUTO_ALL_MODES;
839 hw->disable_polarity_correction = FALSE;
840 hw->master_slave = E1000_MASTER_SLAVE;
841 }
842
843 atomic_set(&adapter->irq_sem, 1);
844 spin_lock_init(&adapter->stats_lock);
845 spin_lock_init(&adapter->tx_lock);
846
847 return 0;
848 }
849
850 /**
851 * e1000_open - Called when a network interface is made active
852 * @netdev: network interface device structure
853 *
854 * Returns 0 on success, negative value on failure
855 *
856 * The open entry point is called when a network interface is made
857 * active by the system (IFF_UP). At this point all resources needed
858 * for transmit and receive operations are allocated, the interrupt
859 * handler is registered with the OS, the watchdog timer is started,
860 * and the stack is notified that the interface is ready.
861 **/
862
863 static int
864 e1000_open(struct net_device *netdev)
865 {
866 struct e1000_adapter *adapter = netdev_priv(netdev);
867 int err;
868
869 /* allocate transmit descriptors */
870
871 if((err = e1000_setup_tx_resources(adapter)))
872 goto err_setup_tx;
873
874 /* allocate receive descriptors */
875
876 if((err = e1000_setup_rx_resources(adapter)))
877 goto err_setup_rx;
878
879 if((err = e1000_up(adapter)))
880 goto err_up;
881 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
882 if((adapter->hw.mng_cookie.status &
883 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
884 e1000_update_mng_vlan(adapter);
885 }
886
887 return E1000_SUCCESS;
888
889 err_up:
890 e1000_free_rx_resources(adapter);
891 err_setup_rx:
892 e1000_free_tx_resources(adapter);
893 err_setup_tx:
894 e1000_reset(adapter);
895
896 return err;
897 }
898
899 /**
900 * e1000_close - Disables a network interface
901 * @netdev: network interface device structure
902 *
903 * Returns 0, this is not allowed to fail
904 *
905 * The close entry point is called when an interface is de-activated
906 * by the OS. The hardware is still under the drivers control, but
907 * needs to be disabled. A global MAC reset is issued to stop the
908 * hardware, and all transmit and receive resources are freed.
909 **/
910
911 static int
912 e1000_close(struct net_device *netdev)
913 {
914 struct e1000_adapter *adapter = netdev_priv(netdev);
915
916 e1000_down(adapter);
917
918 e1000_free_tx_resources(adapter);
919 e1000_free_rx_resources(adapter);
920
921 if((adapter->hw.mng_cookie.status &
922 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
923 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
924 }
925 return 0;
926 }
927
928 /**
929 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
930 * @adapter: address of board private structure
931 * @start: address of beginning of memory
932 * @len: length of memory
933 **/
934 static inline boolean_t
935 e1000_check_64k_bound(struct e1000_adapter *adapter,
936 void *start, unsigned long len)
937 {
938 unsigned long begin = (unsigned long) start;
939 unsigned long end = begin + len;
940
941 /* First rev 82545 and 82546 need to not allow any memory
942 * write location to cross 64k boundary due to errata 23 */
943 if (adapter->hw.mac_type == e1000_82545 ||
944 adapter->hw.mac_type == e1000_82546) {
945 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
946 }
947
948 return TRUE;
949 }
950
951 /**
952 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
953 * @adapter: board private structure
954 *
955 * Return 0 on success, negative on failure
956 **/
957
958 int
959 e1000_setup_tx_resources(struct e1000_adapter *adapter)
960 {
961 struct e1000_desc_ring *txdr = &adapter->tx_ring;
962 struct pci_dev *pdev = adapter->pdev;
963 int size;
964
965 size = sizeof(struct e1000_buffer) * txdr->count;
966 txdr->buffer_info = vmalloc(size);
967 if(!txdr->buffer_info) {
968 DPRINTK(PROBE, ERR,
969 "Unable to allocate memory for the transmit descriptor ring\n");
970 return -ENOMEM;
971 }
972 memset(txdr->buffer_info, 0, size);
973
974 /* round up to nearest 4K */
975
976 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
977 E1000_ROUNDUP(txdr->size, 4096);
978
979 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
980 if(!txdr->desc) {
981 setup_tx_desc_die:
982 vfree(txdr->buffer_info);
983 DPRINTK(PROBE, ERR,
984 "Unable to allocate memory for the transmit descriptor ring\n");
985 return -ENOMEM;
986 }
987
988 /* Fix for errata 23, can't cross 64kB boundary */
989 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
990 void *olddesc = txdr->desc;
991 dma_addr_t olddma = txdr->dma;
992 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
993 "at %p\n", txdr->size, txdr->desc);
994 /* Try again, without freeing the previous */
995 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
996 if(!txdr->desc) {
997 /* Failed allocation, critical failure */
998 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
999 goto setup_tx_desc_die;
1000 }
1001
1002 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1003 /* give up */
1004 pci_free_consistent(pdev, txdr->size, txdr->desc,
1005 txdr->dma);
1006 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1007 DPRINTK(PROBE, ERR,
1008 "Unable to allocate aligned memory "
1009 "for the transmit descriptor ring\n");
1010 vfree(txdr->buffer_info);
1011 return -ENOMEM;
1012 } else {
1013 /* Free old allocation, new allocation was successful */
1014 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1015 }
1016 }
1017 memset(txdr->desc, 0, txdr->size);
1018
1019 txdr->next_to_use = 0;
1020 txdr->next_to_clean = 0;
1021
1022 return 0;
1023 }
1024
1025 /**
1026 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1027 * @adapter: board private structure
1028 *
1029 * Configure the Tx unit of the MAC after a reset.
1030 **/
1031
1032 static void
1033 e1000_configure_tx(struct e1000_adapter *adapter)
1034 {
1035 uint64_t tdba = adapter->tx_ring.dma;
1036 uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
1037 uint32_t tctl, tipg;
1038
1039 E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1040 E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
1041
1042 E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
1043
1044 /* Setup the HW Tx Head and Tail descriptor pointers */
1045
1046 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1047 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1048
1049 /* Set the default values for the Tx Inter Packet Gap timer */
1050
1051 switch (adapter->hw.mac_type) {
1052 case e1000_82542_rev2_0:
1053 case e1000_82542_rev2_1:
1054 tipg = DEFAULT_82542_TIPG_IPGT;
1055 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1056 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1057 break;
1058 default:
1059 if(adapter->hw.media_type == e1000_media_type_fiber ||
1060 adapter->hw.media_type == e1000_media_type_internal_serdes)
1061 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1062 else
1063 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1064 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1065 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1066 }
1067 E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
1068
1069 /* Set the Tx Interrupt Delay register */
1070
1071 E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
1072 if(adapter->hw.mac_type >= e1000_82540)
1073 E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
1074
1075 /* Program the Transmit Control Register */
1076
1077 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1078
1079 tctl &= ~E1000_TCTL_CT;
1080 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
1081 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1082
1083 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1084
1085 e1000_config_collision_dist(&adapter->hw);
1086
1087 /* Setup Transmit Descriptor Settings for eop descriptor */
1088 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1089 E1000_TXD_CMD_IFCS;
1090
1091 if(adapter->hw.mac_type < e1000_82543)
1092 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1093 else
1094 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1095
1096 /* Cache if we're 82544 running in PCI-X because we'll
1097 * need this to apply a workaround later in the send path. */
1098 if(adapter->hw.mac_type == e1000_82544 &&
1099 adapter->hw.bus_type == e1000_bus_type_pcix)
1100 adapter->pcix_82544 = 1;
1101 }
1102
1103 /**
1104 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1105 * @adapter: board private structure
1106 *
1107 * Returns 0 on success, negative on failure
1108 **/
1109
1110 int
1111 e1000_setup_rx_resources(struct e1000_adapter *adapter)
1112 {
1113 struct e1000_desc_ring *rxdr = &adapter->rx_ring;
1114 struct pci_dev *pdev = adapter->pdev;
1115 int size, desc_len;
1116
1117 size = sizeof(struct e1000_buffer) * rxdr->count;
1118 rxdr->buffer_info = vmalloc(size);
1119 if(!rxdr->buffer_info) {
1120 DPRINTK(PROBE, ERR,
1121 "Unable to allocate memory for the receive descriptor ring\n");
1122 return -ENOMEM;
1123 }
1124 memset(rxdr->buffer_info, 0, size);
1125
1126 size = sizeof(struct e1000_ps_page) * rxdr->count;
1127 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1128 if(!rxdr->ps_page) {
1129 vfree(rxdr->buffer_info);
1130 DPRINTK(PROBE, ERR,
1131 "Unable to allocate memory for the receive descriptor ring\n");
1132 return -ENOMEM;
1133 }
1134 memset(rxdr->ps_page, 0, size);
1135
1136 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1137 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1138 if(!rxdr->ps_page_dma) {
1139 vfree(rxdr->buffer_info);
1140 kfree(rxdr->ps_page);
1141 DPRINTK(PROBE, ERR,
1142 "Unable to allocate memory for the receive descriptor ring\n");
1143 return -ENOMEM;
1144 }
1145 memset(rxdr->ps_page_dma, 0, size);
1146
1147 if(adapter->hw.mac_type <= e1000_82547_rev_2)
1148 desc_len = sizeof(struct e1000_rx_desc);
1149 else
1150 desc_len = sizeof(union e1000_rx_desc_packet_split);
1151
1152 /* Round up to nearest 4K */
1153
1154 rxdr->size = rxdr->count * desc_len;
1155 E1000_ROUNDUP(rxdr->size, 4096);
1156
1157 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1158
1159 if(!rxdr->desc) {
1160 setup_rx_desc_die:
1161 vfree(rxdr->buffer_info);
1162 kfree(rxdr->ps_page);
1163 kfree(rxdr->ps_page_dma);
1164 DPRINTK(PROBE, ERR,
1165 "Unable to allocate memory for the receive descriptor ring\n");
1166 return -ENOMEM;
1167 }
1168
1169 /* Fix for errata 23, can't cross 64kB boundary */
1170 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1171 void *olddesc = rxdr->desc;
1172 dma_addr_t olddma = rxdr->dma;
1173 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1174 "at %p\n", rxdr->size, rxdr->desc);
1175 /* Try again, without freeing the previous */
1176 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1177 if(!rxdr->desc) {
1178 /* Failed allocation, critical failure */
1179 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1180 goto setup_rx_desc_die;
1181 }
1182
1183 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1184 /* give up */
1185 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1186 rxdr->dma);
1187 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1188 DPRINTK(PROBE, ERR,
1189 "Unable to allocate aligned memory "
1190 "for the receive descriptor ring\n");
1191 vfree(rxdr->buffer_info);
1192 kfree(rxdr->ps_page);
1193 kfree(rxdr->ps_page_dma);
1194 return -ENOMEM;
1195 } else {
1196 /* Free old allocation, new allocation was successful */
1197 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1198 }
1199 }
1200 memset(rxdr->desc, 0, rxdr->size);
1201
1202 rxdr->next_to_clean = 0;
1203 rxdr->next_to_use = 0;
1204
1205 return 0;
1206 }
1207
1208 /**
1209 * e1000_setup_rctl - configure the receive control registers
1210 * @adapter: Board private structure
1211 **/
1212
1213 static void
1214 e1000_setup_rctl(struct e1000_adapter *adapter)
1215 {
1216 uint32_t rctl, rfctl;
1217 uint32_t psrctl = 0;
1218
1219 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1220
1221 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1222
1223 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1224 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1225 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1226
1227 if(adapter->hw.tbi_compatibility_on == 1)
1228 rctl |= E1000_RCTL_SBP;
1229 else
1230 rctl &= ~E1000_RCTL_SBP;
1231
1232 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1233 rctl &= ~E1000_RCTL_LPE;
1234 else
1235 rctl |= E1000_RCTL_LPE;
1236
1237 /* Setup buffer sizes */
1238 if(adapter->hw.mac_type == e1000_82573) {
1239 /* We can now specify buffers in 1K increments.
1240 * BSIZE and BSEX are ignored in this case. */
1241 rctl |= adapter->rx_buffer_len << 0x11;
1242 } else {
1243 rctl &= ~E1000_RCTL_SZ_4096;
1244 rctl |= E1000_RCTL_BSEX;
1245 switch (adapter->rx_buffer_len) {
1246 case E1000_RXBUFFER_2048:
1247 default:
1248 rctl |= E1000_RCTL_SZ_2048;
1249 rctl &= ~E1000_RCTL_BSEX;
1250 break;
1251 case E1000_RXBUFFER_4096:
1252 rctl |= E1000_RCTL_SZ_4096;
1253 break;
1254 case E1000_RXBUFFER_8192:
1255 rctl |= E1000_RCTL_SZ_8192;
1256 break;
1257 case E1000_RXBUFFER_16384:
1258 rctl |= E1000_RCTL_SZ_16384;
1259 break;
1260 }
1261 }
1262
1263 #ifdef CONFIG_E1000_PACKET_SPLIT
1264 /* 82571 and greater support packet-split where the protocol
1265 * header is placed in skb->data and the packet data is
1266 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1267 * In the case of a non-split, skb->data is linearly filled,
1268 * followed by the page buffers. Therefore, skb->data is
1269 * sized to hold the largest protocol header.
1270 */
1271 adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2)
1272 && (adapter->netdev->mtu
1273 < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0));
1274 #endif
1275 if(adapter->rx_ps) {
1276 /* Configure extra packet-split registers */
1277 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1278 rfctl |= E1000_RFCTL_EXTEN;
1279 /* disable IPv6 packet split support */
1280 rfctl |= E1000_RFCTL_IPV6_DIS;
1281 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1282
1283 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1284
1285 psrctl |= adapter->rx_ps_bsize0 >>
1286 E1000_PSRCTL_BSIZE0_SHIFT;
1287 psrctl |= PAGE_SIZE >>
1288 E1000_PSRCTL_BSIZE1_SHIFT;
1289 psrctl |= PAGE_SIZE <<
1290 E1000_PSRCTL_BSIZE2_SHIFT;
1291 psrctl |= PAGE_SIZE <<
1292 E1000_PSRCTL_BSIZE3_SHIFT;
1293
1294 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1295 }
1296
1297 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1298 }
1299
1300 /**
1301 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1302 * @adapter: board private structure
1303 *
1304 * Configure the Rx unit of the MAC after a reset.
1305 **/
1306
1307 static void
1308 e1000_configure_rx(struct e1000_adapter *adapter)
1309 {
1310 uint64_t rdba = adapter->rx_ring.dma;
1311 uint32_t rdlen, rctl, rxcsum;
1312
1313 if(adapter->rx_ps) {
1314 rdlen = adapter->rx_ring.count *
1315 sizeof(union e1000_rx_desc_packet_split);
1316 adapter->clean_rx = e1000_clean_rx_irq_ps;
1317 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1318 } else {
1319 rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
1320 adapter->clean_rx = e1000_clean_rx_irq;
1321 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1322 }
1323
1324 /* disable receives while setting up the descriptors */
1325 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1326 E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1327
1328 /* set the Receive Delay Timer Register */
1329 E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
1330
1331 if(adapter->hw.mac_type >= e1000_82540) {
1332 E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
1333 if(adapter->itr > 1)
1334 E1000_WRITE_REG(&adapter->hw, ITR,
1335 1000000000 / (adapter->itr * 256));
1336 }
1337
1338 /* Setup the Base and Length of the Rx Descriptor Ring */
1339 E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1340 E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
1341
1342 E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
1343
1344 /* Setup the HW Rx Head and Tail Descriptor Pointers */
1345 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1346 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1347
1348 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1349 if(adapter->hw.mac_type >= e1000_82543) {
1350 rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
1351 if(adapter->rx_csum == TRUE) {
1352 rxcsum |= E1000_RXCSUM_TUOFL;
1353
1354 /* Enable 82573 IPv4 payload checksum for UDP fragments
1355 * Must be used in conjunction with packet-split. */
1356 if((adapter->hw.mac_type > e1000_82547_rev_2) &&
1357 (adapter->rx_ps)) {
1358 rxcsum |= E1000_RXCSUM_IPPCSE;
1359 }
1360 } else {
1361 rxcsum &= ~E1000_RXCSUM_TUOFL;
1362 /* don't need to clear IPPCSE as it defaults to 0 */
1363 }
1364 E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
1365 }
1366
1367 if (adapter->hw.mac_type == e1000_82573)
1368 E1000_WRITE_REG(&adapter->hw, ERT, 0x0100);
1369
1370 /* Enable Receives */
1371 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1372 }
1373
1374 /**
1375 * e1000_free_tx_resources - Free Tx Resources
1376 * @adapter: board private structure
1377 *
1378 * Free all transmit software resources
1379 **/
1380
1381 void
1382 e1000_free_tx_resources(struct e1000_adapter *adapter)
1383 {
1384 struct pci_dev *pdev = adapter->pdev;
1385
1386 e1000_clean_tx_ring(adapter);
1387
1388 vfree(adapter->tx_ring.buffer_info);
1389 adapter->tx_ring.buffer_info = NULL;
1390
1391 pci_free_consistent(pdev, adapter->tx_ring.size,
1392 adapter->tx_ring.desc, adapter->tx_ring.dma);
1393
1394 adapter->tx_ring.desc = NULL;
1395 }
1396
1397 static inline void
1398 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1399 struct e1000_buffer *buffer_info)
1400 {
1401 if(buffer_info->dma) {
1402 pci_unmap_page(adapter->pdev,
1403 buffer_info->dma,
1404 buffer_info->length,
1405 PCI_DMA_TODEVICE);
1406 buffer_info->dma = 0;
1407 }
1408 if(buffer_info->skb) {
1409 dev_kfree_skb_any(buffer_info->skb);
1410 buffer_info->skb = NULL;
1411 }
1412 }
1413
1414 /**
1415 * e1000_clean_tx_ring - Free Tx Buffers
1416 * @adapter: board private structure
1417 **/
1418
1419 static void
1420 e1000_clean_tx_ring(struct e1000_adapter *adapter)
1421 {
1422 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1423 struct e1000_buffer *buffer_info;
1424 unsigned long size;
1425 unsigned int i;
1426
1427 /* Free all the Tx ring sk_buffs */
1428
1429 if (likely(adapter->previous_buffer_info.skb != NULL)) {
1430 e1000_unmap_and_free_tx_resource(adapter,
1431 &adapter->previous_buffer_info);
1432 }
1433
1434 for(i = 0; i < tx_ring->count; i++) {
1435 buffer_info = &tx_ring->buffer_info[i];
1436 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1437 }
1438
1439 size = sizeof(struct e1000_buffer) * tx_ring->count;
1440 memset(tx_ring->buffer_info, 0, size);
1441
1442 /* Zero out the descriptor ring */
1443
1444 memset(tx_ring->desc, 0, tx_ring->size);
1445
1446 tx_ring->next_to_use = 0;
1447 tx_ring->next_to_clean = 0;
1448
1449 E1000_WRITE_REG(&adapter->hw, TDH, 0);
1450 E1000_WRITE_REG(&adapter->hw, TDT, 0);
1451 }
1452
1453 /**
1454 * e1000_free_rx_resources - Free Rx Resources
1455 * @adapter: board private structure
1456 *
1457 * Free all receive software resources
1458 **/
1459
1460 void
1461 e1000_free_rx_resources(struct e1000_adapter *adapter)
1462 {
1463 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1464 struct pci_dev *pdev = adapter->pdev;
1465
1466 e1000_clean_rx_ring(adapter);
1467
1468 vfree(rx_ring->buffer_info);
1469 rx_ring->buffer_info = NULL;
1470 kfree(rx_ring->ps_page);
1471 rx_ring->ps_page = NULL;
1472 kfree(rx_ring->ps_page_dma);
1473 rx_ring->ps_page_dma = NULL;
1474
1475 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1476
1477 rx_ring->desc = NULL;
1478 }
1479
1480 /**
1481 * e1000_clean_rx_ring - Free Rx Buffers
1482 * @adapter: board private structure
1483 **/
1484
1485 static void
1486 e1000_clean_rx_ring(struct e1000_adapter *adapter)
1487 {
1488 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
1489 struct e1000_buffer *buffer_info;
1490 struct e1000_ps_page *ps_page;
1491 struct e1000_ps_page_dma *ps_page_dma;
1492 struct pci_dev *pdev = adapter->pdev;
1493 unsigned long size;
1494 unsigned int i, j;
1495
1496 /* Free all the Rx ring sk_buffs */
1497
1498 for(i = 0; i < rx_ring->count; i++) {
1499 buffer_info = &rx_ring->buffer_info[i];
1500 if(buffer_info->skb) {
1501 ps_page = &rx_ring->ps_page[i];
1502 ps_page_dma = &rx_ring->ps_page_dma[i];
1503 pci_unmap_single(pdev,
1504 buffer_info->dma,
1505 buffer_info->length,
1506 PCI_DMA_FROMDEVICE);
1507
1508 dev_kfree_skb(buffer_info->skb);
1509 buffer_info->skb = NULL;
1510
1511 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
1512 if(!ps_page->ps_page[j]) break;
1513 pci_unmap_single(pdev,
1514 ps_page_dma->ps_page_dma[j],
1515 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1516 ps_page_dma->ps_page_dma[j] = 0;
1517 put_page(ps_page->ps_page[j]);
1518 ps_page->ps_page[j] = NULL;
1519 }
1520 }
1521 }
1522
1523 size = sizeof(struct e1000_buffer) * rx_ring->count;
1524 memset(rx_ring->buffer_info, 0, size);
1525 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1526 memset(rx_ring->ps_page, 0, size);
1527 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1528 memset(rx_ring->ps_page_dma, 0, size);
1529
1530 /* Zero out the descriptor ring */
1531
1532 memset(rx_ring->desc, 0, rx_ring->size);
1533
1534 rx_ring->next_to_clean = 0;
1535 rx_ring->next_to_use = 0;
1536
1537 E1000_WRITE_REG(&adapter->hw, RDH, 0);
1538 E1000_WRITE_REG(&adapter->hw, RDT, 0);
1539 }
1540
1541 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1542 * and memory write and invalidate disabled for certain operations
1543 */
1544 static void
1545 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1546 {
1547 struct net_device *netdev = adapter->netdev;
1548 uint32_t rctl;
1549
1550 e1000_pci_clear_mwi(&adapter->hw);
1551
1552 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1553 rctl |= E1000_RCTL_RST;
1554 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1555 E1000_WRITE_FLUSH(&adapter->hw);
1556 mdelay(5);
1557
1558 if(netif_running(netdev))
1559 e1000_clean_rx_ring(adapter);
1560 }
1561
1562 static void
1563 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1564 {
1565 struct net_device *netdev = adapter->netdev;
1566 uint32_t rctl;
1567
1568 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1569 rctl &= ~E1000_RCTL_RST;
1570 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1571 E1000_WRITE_FLUSH(&adapter->hw);
1572 mdelay(5);
1573
1574 if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
1575 e1000_pci_set_mwi(&adapter->hw);
1576
1577 if(netif_running(netdev)) {
1578 e1000_configure_rx(adapter);
1579 e1000_alloc_rx_buffers(adapter);
1580 }
1581 }
1582
1583 /**
1584 * e1000_set_mac - Change the Ethernet Address of the NIC
1585 * @netdev: network interface device structure
1586 * @p: pointer to an address structure
1587 *
1588 * Returns 0 on success, negative on failure
1589 **/
1590
1591 static int
1592 e1000_set_mac(struct net_device *netdev, void *p)
1593 {
1594 struct e1000_adapter *adapter = netdev_priv(netdev);
1595 struct sockaddr *addr = p;
1596
1597 if(!is_valid_ether_addr(addr->sa_data))
1598 return -EADDRNOTAVAIL;
1599
1600 /* 82542 2.0 needs to be in reset to write receive address registers */
1601
1602 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1603 e1000_enter_82542_rst(adapter);
1604
1605 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1606 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
1607
1608 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
1609
1610 if(adapter->hw.mac_type == e1000_82542_rev2_0)
1611 e1000_leave_82542_rst(adapter);
1612
1613 return 0;
1614 }
1615
1616 /**
1617 * e1000_set_multi - Multicast and Promiscuous mode set
1618 * @netdev: network interface device structure
1619 *
1620 * The set_multi entry point is called whenever the multicast address
1621 * list or the network interface flags are updated. This routine is
1622 * responsible for configuring the hardware for proper multicast,
1623 * promiscuous mode, and all-multi behavior.
1624 **/
1625
1626 static void
1627 e1000_set_multi(struct net_device *netdev)
1628 {
1629 struct e1000_adapter *adapter = netdev_priv(netdev);
1630 struct e1000_hw *hw = &adapter->hw;
1631 struct dev_mc_list *mc_ptr;
1632 unsigned long flags;
1633 uint32_t rctl;
1634 uint32_t hash_value;
1635 int i;
1636
1637 spin_lock_irqsave(&adapter->tx_lock, flags);
1638
1639 /* Check for Promiscuous and All Multicast modes */
1640
1641 rctl = E1000_READ_REG(hw, RCTL);
1642
1643 if(netdev->flags & IFF_PROMISC) {
1644 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1645 } else if(netdev->flags & IFF_ALLMULTI) {
1646 rctl |= E1000_RCTL_MPE;
1647 rctl &= ~E1000_RCTL_UPE;
1648 } else {
1649 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1650 }
1651
1652 E1000_WRITE_REG(hw, RCTL, rctl);
1653
1654 /* 82542 2.0 needs to be in reset to write receive address registers */
1655
1656 if(hw->mac_type == e1000_82542_rev2_0)
1657 e1000_enter_82542_rst(adapter);
1658
1659 /* load the first 14 multicast address into the exact filters 1-14
1660 * RAR 0 is used for the station MAC adddress
1661 * if there are not 14 addresses, go ahead and clear the filters
1662 */
1663 mc_ptr = netdev->mc_list;
1664
1665 for(i = 1; i < E1000_RAR_ENTRIES; i++) {
1666 if(mc_ptr) {
1667 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
1668 mc_ptr = mc_ptr->next;
1669 } else {
1670 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
1671 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
1672 }
1673 }
1674
1675 /* clear the old settings from the multicast hash table */
1676
1677 for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
1678 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
1679
1680 /* load any remaining addresses into the hash table */
1681
1682 for(; mc_ptr; mc_ptr = mc_ptr->next) {
1683 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
1684 e1000_mta_set(hw, hash_value);
1685 }
1686
1687 if(hw->mac_type == e1000_82542_rev2_0)
1688 e1000_leave_82542_rst(adapter);
1689
1690 spin_unlock_irqrestore(&adapter->tx_lock, flags);
1691 }
1692
1693 /* Need to wait a few seconds after link up to get diagnostic information from
1694 * the phy */
1695
1696 static void
1697 e1000_update_phy_info(unsigned long data)
1698 {
1699 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1700 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1701 }
1702
1703 /**
1704 * e1000_82547_tx_fifo_stall - Timer Call-back
1705 * @data: pointer to adapter cast into an unsigned long
1706 **/
1707
1708 static void
1709 e1000_82547_tx_fifo_stall(unsigned long data)
1710 {
1711 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1712 struct net_device *netdev = adapter->netdev;
1713 uint32_t tctl;
1714
1715 if(atomic_read(&adapter->tx_fifo_stall)) {
1716 if((E1000_READ_REG(&adapter->hw, TDT) ==
1717 E1000_READ_REG(&adapter->hw, TDH)) &&
1718 (E1000_READ_REG(&adapter->hw, TDFT) ==
1719 E1000_READ_REG(&adapter->hw, TDFH)) &&
1720 (E1000_READ_REG(&adapter->hw, TDFTS) ==
1721 E1000_READ_REG(&adapter->hw, TDFHS))) {
1722 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1723 E1000_WRITE_REG(&adapter->hw, TCTL,
1724 tctl & ~E1000_TCTL_EN);
1725 E1000_WRITE_REG(&adapter->hw, TDFT,
1726 adapter->tx_head_addr);
1727 E1000_WRITE_REG(&adapter->hw, TDFH,
1728 adapter->tx_head_addr);
1729 E1000_WRITE_REG(&adapter->hw, TDFTS,
1730 adapter->tx_head_addr);
1731 E1000_WRITE_REG(&adapter->hw, TDFHS,
1732 adapter->tx_head_addr);
1733 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1734 E1000_WRITE_FLUSH(&adapter->hw);
1735
1736 adapter->tx_fifo_head = 0;
1737 atomic_set(&adapter->tx_fifo_stall, 0);
1738 netif_wake_queue(netdev);
1739 } else {
1740 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
1741 }
1742 }
1743 }
1744
1745 /**
1746 * e1000_watchdog - Timer Call-back
1747 * @data: pointer to adapter cast into an unsigned long
1748 **/
1749 static void
1750 e1000_watchdog(unsigned long data)
1751 {
1752 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1753
1754 /* Do the rest outside of interrupt context */
1755 schedule_work(&adapter->watchdog_task);
1756 }
1757
1758 static void
1759 e1000_watchdog_task(struct e1000_adapter *adapter)
1760 {
1761 struct net_device *netdev = adapter->netdev;
1762 struct e1000_desc_ring *txdr = &adapter->tx_ring;
1763 uint32_t link;
1764
1765 e1000_check_for_link(&adapter->hw);
1766 if (adapter->hw.mac_type == e1000_82573) {
1767 e1000_enable_tx_pkt_filtering(&adapter->hw);
1768 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
1769 e1000_update_mng_vlan(adapter);
1770 }
1771
1772 if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1773 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
1774 link = !adapter->hw.serdes_link_down;
1775 else
1776 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
1777
1778 if(link) {
1779 if(!netif_carrier_ok(netdev)) {
1780 e1000_get_speed_and_duplex(&adapter->hw,
1781 &adapter->link_speed,
1782 &adapter->link_duplex);
1783
1784 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
1785 adapter->link_speed,
1786 adapter->link_duplex == FULL_DUPLEX ?
1787 "Full Duplex" : "Half Duplex");
1788
1789 netif_carrier_on(netdev);
1790 netif_wake_queue(netdev);
1791 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1792 adapter->smartspeed = 0;
1793 }
1794 } else {
1795 if(netif_carrier_ok(netdev)) {
1796 adapter->link_speed = 0;
1797 adapter->link_duplex = 0;
1798 DPRINTK(LINK, INFO, "NIC Link is Down\n");
1799 netif_carrier_off(netdev);
1800 netif_stop_queue(netdev);
1801 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
1802 }
1803
1804 e1000_smartspeed(adapter);
1805 }
1806
1807 e1000_update_stats(adapter);
1808
1809 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1810 adapter->tpt_old = adapter->stats.tpt;
1811 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
1812 adapter->colc_old = adapter->stats.colc;
1813
1814 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
1815 adapter->gorcl_old = adapter->stats.gorcl;
1816 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
1817 adapter->gotcl_old = adapter->stats.gotcl;
1818
1819 e1000_update_adaptive(&adapter->hw);
1820
1821 if(!netif_carrier_ok(netdev)) {
1822 if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1823 /* We've lost link, so the controller stops DMA,
1824 * but we've got queued Tx work that's never going
1825 * to get done, so reset controller to flush Tx.
1826 * (Do the reset outside of interrupt context). */
1827 schedule_work(&adapter->tx_timeout_task);
1828 }
1829 }
1830
1831 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
1832 if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
1833 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
1834 * asymmetrical Tx or Rx gets ITR=8000; everyone
1835 * else is between 2000-8000. */
1836 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
1837 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
1838 adapter->gotcl - adapter->gorcl :
1839 adapter->gorcl - adapter->gotcl) / 10000;
1840 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
1841 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
1842 }
1843
1844 /* Cause software interrupt to ensure rx ring is cleaned */
1845 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
1846
1847 /* Force detection of hung controller every watchdog period */
1848 adapter->detect_tx_hung = TRUE;
1849
1850 /* Reset the timer */
1851 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
1852 }
1853
1854 #define E1000_TX_FLAGS_CSUM 0x00000001
1855 #define E1000_TX_FLAGS_VLAN 0x00000002
1856 #define E1000_TX_FLAGS_TSO 0x00000004
1857 #define E1000_TX_FLAGS_IPV4 0x00000008
1858 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
1859 #define E1000_TX_FLAGS_VLAN_SHIFT 16
1860
1861 static inline int
1862 e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
1863 {
1864 #ifdef NETIF_F_TSO
1865 struct e1000_context_desc *context_desc;
1866 unsigned int i;
1867 uint32_t cmd_length = 0;
1868 uint16_t ipcse = 0, tucse, mss;
1869 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
1870 int err;
1871
1872 if(skb_shinfo(skb)->tso_size) {
1873 if (skb_header_cloned(skb)) {
1874 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1875 if (err)
1876 return err;
1877 }
1878
1879 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
1880 mss = skb_shinfo(skb)->tso_size;
1881 if(skb->protocol == ntohs(ETH_P_IP)) {
1882 skb->nh.iph->tot_len = 0;
1883 skb->nh.iph->check = 0;
1884 skb->h.th->check =
1885 ~csum_tcpudp_magic(skb->nh.iph->saddr,
1886 skb->nh.iph->daddr,
1887 0,
1888 IPPROTO_TCP,
1889 0);
1890 cmd_length = E1000_TXD_CMD_IP;
1891 ipcse = skb->h.raw - skb->data - 1;
1892 #ifdef NETIF_F_TSO_IPV6
1893 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
1894 skb->nh.ipv6h->payload_len = 0;
1895 skb->h.th->check =
1896 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
1897 &skb->nh.ipv6h->daddr,
1898 0,
1899 IPPROTO_TCP,
1900 0);
1901 ipcse = 0;
1902 #endif
1903 }
1904 ipcss = skb->nh.raw - skb->data;
1905 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
1906 tucss = skb->h.raw - skb->data;
1907 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
1908 tucse = 0;
1909
1910 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
1911 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1912
1913 i = adapter->tx_ring.next_to_use;
1914 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1915
1916 context_desc->lower_setup.ip_fields.ipcss = ipcss;
1917 context_desc->lower_setup.ip_fields.ipcso = ipcso;
1918 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
1919 context_desc->upper_setup.tcp_fields.tucss = tucss;
1920 context_desc->upper_setup.tcp_fields.tucso = tucso;
1921 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
1922 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
1923 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
1924 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
1925
1926 if(++i == adapter->tx_ring.count) i = 0;
1927 adapter->tx_ring.next_to_use = i;
1928
1929 return 1;
1930 }
1931 #endif
1932
1933 return 0;
1934 }
1935
1936 static inline boolean_t
1937 e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
1938 {
1939 struct e1000_context_desc *context_desc;
1940 unsigned int i;
1941 uint8_t css;
1942
1943 if(likely(skb->ip_summed == CHECKSUM_HW)) {
1944 css = skb->h.raw - skb->data;
1945
1946 i = adapter->tx_ring.next_to_use;
1947 context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
1948
1949 context_desc->upper_setup.tcp_fields.tucss = css;
1950 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
1951 context_desc->upper_setup.tcp_fields.tucse = 0;
1952 context_desc->tcp_seg_setup.data = 0;
1953 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
1954
1955 if(unlikely(++i == adapter->tx_ring.count)) i = 0;
1956 adapter->tx_ring.next_to_use = i;
1957
1958 return TRUE;
1959 }
1960
1961 return FALSE;
1962 }
1963
1964 #define E1000_MAX_TXD_PWR 12
1965 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
1966
1967 static inline int
1968 e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
1969 unsigned int first, unsigned int max_per_txd,
1970 unsigned int nr_frags, unsigned int mss)
1971 {
1972 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
1973 struct e1000_buffer *buffer_info;
1974 unsigned int len = skb->len;
1975 unsigned int offset = 0, size, count = 0, i;
1976 unsigned int f;
1977 len -= skb->data_len;
1978
1979 i = tx_ring->next_to_use;
1980
1981 while(len) {
1982 buffer_info = &tx_ring->buffer_info[i];
1983 size = min(len, max_per_txd);
1984 #ifdef NETIF_F_TSO
1985 /* Workaround for premature desc write-backs
1986 * in TSO mode. Append 4-byte sentinel desc */
1987 if(unlikely(mss && !nr_frags && size == len && size > 8))
1988 size -= 4;
1989 #endif
1990 /* work-around for errata 10 and it applies
1991 * to all controllers in PCI-X mode
1992 * The fix is to make sure that the first descriptor of a
1993 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
1994 */
1995 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
1996 (size > 2015) && count == 0))
1997 size = 2015;
1998
1999 /* Workaround for potential 82544 hang in PCI-X. Avoid
2000 * terminating buffers within evenly-aligned dwords. */
2001 if(unlikely(adapter->pcix_82544 &&
2002 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2003 size > 4))
2004 size -= 4;
2005
2006 buffer_info->length = size;
2007 buffer_info->dma =
2008 pci_map_single(adapter->pdev,
2009 skb->data + offset,
2010 size,
2011 PCI_DMA_TODEVICE);
2012 buffer_info->time_stamp = jiffies;
2013
2014 len -= size;
2015 offset += size;
2016 count++;
2017 if(unlikely(++i == tx_ring->count)) i = 0;
2018 }
2019
2020 for(f = 0; f < nr_frags; f++) {
2021 struct skb_frag_struct *frag;
2022
2023 frag = &skb_shinfo(skb)->frags[f];
2024 len = frag->size;
2025 offset = frag->page_offset;
2026
2027 while(len) {
2028 buffer_info = &tx_ring->buffer_info[i];
2029 size = min(len, max_per_txd);
2030 #ifdef NETIF_F_TSO
2031 /* Workaround for premature desc write-backs
2032 * in TSO mode. Append 4-byte sentinel desc */
2033 if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2034 size -= 4;
2035 #endif
2036 /* Workaround for potential 82544 hang in PCI-X.
2037 * Avoid terminating buffers within evenly-aligned
2038 * dwords. */
2039 if(unlikely(adapter->pcix_82544 &&
2040 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2041 size > 4))
2042 size -= 4;
2043
2044 buffer_info->length = size;
2045 buffer_info->dma =
2046 pci_map_page(adapter->pdev,
2047 frag->page,
2048 offset,
2049 size,
2050 PCI_DMA_TODEVICE);
2051 buffer_info->time_stamp = jiffies;
2052
2053 len -= size;
2054 offset += size;
2055 count++;
2056 if(unlikely(++i == tx_ring->count)) i = 0;
2057 }
2058 }
2059
2060 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2061 tx_ring->buffer_info[i].skb = skb;
2062 tx_ring->buffer_info[first].next_to_watch = i;
2063
2064 return count;
2065 }
2066
2067 static inline void
2068 e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
2069 {
2070 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2071 struct e1000_tx_desc *tx_desc = NULL;
2072 struct e1000_buffer *buffer_info;
2073 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2074 unsigned int i;
2075
2076 if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2077 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2078 E1000_TXD_CMD_TSE;
2079 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2080
2081 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2082 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2083 }
2084
2085 if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2086 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2087 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2088 }
2089
2090 if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2091 txd_lower |= E1000_TXD_CMD_VLE;
2092 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2093 }
2094
2095 i = tx_ring->next_to_use;
2096
2097 while(count--) {
2098 buffer_info = &tx_ring->buffer_info[i];
2099 tx_desc = E1000_TX_DESC(*tx_ring, i);
2100 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2101 tx_desc->lower.data =
2102 cpu_to_le32(txd_lower | buffer_info->length);
2103 tx_desc->upper.data = cpu_to_le32(txd_upper);
2104 if(unlikely(++i == tx_ring->count)) i = 0;
2105 }
2106
2107 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2108
2109 /* Force memory writes to complete before letting h/w
2110 * know there are new descriptors to fetch. (Only
2111 * applicable for weak-ordered memory model archs,
2112 * such as IA-64). */
2113 wmb();
2114
2115 tx_ring->next_to_use = i;
2116 E1000_WRITE_REG(&adapter->hw, TDT, i);
2117 }
2118
2119 /**
2120 * 82547 workaround to avoid controller hang in half-duplex environment.
2121 * The workaround is to avoid queuing a large packet that would span
2122 * the internal Tx FIFO ring boundary by notifying the stack to resend
2123 * the packet at a later time. This gives the Tx FIFO an opportunity to
2124 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2125 * to the beginning of the Tx FIFO.
2126 **/
2127
2128 #define E1000_FIFO_HDR 0x10
2129 #define E1000_82547_PAD_LEN 0x3E0
2130
2131 static inline int
2132 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2133 {
2134 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2135 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2136
2137 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2138
2139 if(adapter->link_duplex != HALF_DUPLEX)
2140 goto no_fifo_stall_required;
2141
2142 if(atomic_read(&adapter->tx_fifo_stall))
2143 return 1;
2144
2145 if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2146 atomic_set(&adapter->tx_fifo_stall, 1);
2147 return 1;
2148 }
2149
2150 no_fifo_stall_required:
2151 adapter->tx_fifo_head += skb_fifo_len;
2152 if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2153 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2154 return 0;
2155 }
2156
2157 #define MINIMUM_DHCP_PACKET_SIZE 282
2158 static inline int
2159 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2160 {
2161 struct e1000_hw *hw = &adapter->hw;
2162 uint16_t length, offset;
2163 if(vlan_tx_tag_present(skb)) {
2164 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2165 ( adapter->hw.mng_cookie.status &
2166 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2167 return 0;
2168 }
2169 if(htons(ETH_P_IP) == skb->protocol) {
2170 const struct iphdr *ip = skb->nh.iph;
2171 if(IPPROTO_UDP == ip->protocol) {
2172 struct udphdr *udp = (struct udphdr *)(skb->h.uh);
2173 if(ntohs(udp->dest) == 67) {
2174 offset = (uint8_t *)udp + 8 - skb->data;
2175 length = skb->len - offset;
2176
2177 return e1000_mng_write_dhcp_info(hw,
2178 (uint8_t *)udp + 8, length);
2179 }
2180 }
2181 } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2182 struct ethhdr *eth = (struct ethhdr *) skb->data;
2183 if((htons(ETH_P_IP) == eth->h_proto)) {
2184 const struct iphdr *ip =
2185 (struct iphdr *)((uint8_t *)skb->data+14);
2186 if(IPPROTO_UDP == ip->protocol) {
2187 struct udphdr *udp =
2188 (struct udphdr *)((uint8_t *)ip +
2189 (ip->ihl << 2));
2190 if(ntohs(udp->dest) == 67) {
2191 offset = (uint8_t *)udp + 8 - skb->data;
2192 length = skb->len - offset;
2193
2194 return e1000_mng_write_dhcp_info(hw,
2195 (uint8_t *)udp + 8,
2196 length);
2197 }
2198 }
2199 }
2200 }
2201 return 0;
2202 }
2203
2204 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2205 static int
2206 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2207 {
2208 struct e1000_adapter *adapter = netdev_priv(netdev);
2209 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2210 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2211 unsigned int tx_flags = 0;
2212 unsigned int len = skb->len;
2213 unsigned long flags;
2214 unsigned int nr_frags = 0;
2215 unsigned int mss = 0;
2216 int count = 0;
2217 int tso;
2218 unsigned int f;
2219 len -= skb->data_len;
2220
2221 if(unlikely(skb->len <= 0)) {
2222 dev_kfree_skb_any(skb);
2223 return NETDEV_TX_OK;
2224 }
2225
2226 #ifdef NETIF_F_TSO
2227 mss = skb_shinfo(skb)->tso_size;
2228 /* The controller does a simple calculation to
2229 * make sure there is enough room in the FIFO before
2230 * initiating the DMA for each buffer. The calc is:
2231 * 4 = ceil(buffer len/mss). To make sure we don't
2232 * overrun the FIFO, adjust the max buffer len if mss
2233 * drops. */
2234 if(mss) {
2235 max_per_txd = min(mss << 2, max_per_txd);
2236 max_txd_pwr = fls(max_per_txd) - 1;
2237 }
2238
2239 if((mss) || (skb->ip_summed == CHECKSUM_HW))
2240 count++;
2241 count++;
2242 #else
2243 if(skb->ip_summed == CHECKSUM_HW)
2244 count++;
2245 #endif
2246 count += TXD_USE_COUNT(len, max_txd_pwr);
2247
2248 if(adapter->pcix_82544)
2249 count++;
2250
2251 /* work-around for errata 10 and it applies to all controllers
2252 * in PCI-X mode, so add one more descriptor to the count
2253 */
2254 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2255 (len > 2015)))
2256 count++;
2257
2258 nr_frags = skb_shinfo(skb)->nr_frags;
2259 for(f = 0; f < nr_frags; f++)
2260 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2261 max_txd_pwr);
2262 if(adapter->pcix_82544)
2263 count += nr_frags;
2264
2265 local_irq_save(flags);
2266 if (!spin_trylock(&adapter->tx_lock)) {
2267 /* Collision - tell upper layer to requeue */
2268 local_irq_restore(flags);
2269 return NETDEV_TX_LOCKED;
2270 }
2271 if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2272 e1000_transfer_dhcp_info(adapter, skb);
2273
2274
2275 /* need: count + 2 desc gap to keep tail from touching
2276 * head, otherwise try next time */
2277 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
2278 netif_stop_queue(netdev);
2279 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2280 return NETDEV_TX_BUSY;
2281 }
2282
2283 if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2284 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2285 netif_stop_queue(netdev);
2286 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2287 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2288 return NETDEV_TX_BUSY;
2289 }
2290 }
2291
2292 if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2293 tx_flags |= E1000_TX_FLAGS_VLAN;
2294 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2295 }
2296
2297 first = adapter->tx_ring.next_to_use;
2298
2299 tso = e1000_tso(adapter, skb);
2300 if (tso < 0) {
2301 dev_kfree_skb_any(skb);
2302 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2303 return NETDEV_TX_OK;
2304 }
2305
2306 if (likely(tso))
2307 tx_flags |= E1000_TX_FLAGS_TSO;
2308 else if(likely(e1000_tx_csum(adapter, skb)))
2309 tx_flags |= E1000_TX_FLAGS_CSUM;
2310
2311 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2312 * 82573 hardware supports TSO capabilities for IPv6 as well...
2313 * no longer assume, we must. */
2314 if(likely(skb->protocol == ntohs(ETH_P_IP)))
2315 tx_flags |= E1000_TX_FLAGS_IPV4;
2316
2317 e1000_tx_queue(adapter,
2318 e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
2319 tx_flags);
2320
2321 netdev->trans_start = jiffies;
2322
2323 /* Make sure there is space in the ring for the next send. */
2324 if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
2325 netif_stop_queue(netdev);
2326
2327 spin_unlock_irqrestore(&adapter->tx_lock, flags);
2328 return NETDEV_TX_OK;
2329 }
2330
2331 /**
2332 * e1000_tx_timeout - Respond to a Tx Hang
2333 * @netdev: network interface device structure
2334 **/
2335
2336 static void
2337 e1000_tx_timeout(struct net_device *netdev)
2338 {
2339 struct e1000_adapter *adapter = netdev_priv(netdev);
2340
2341 /* Do the reset outside of interrupt context */
2342 schedule_work(&adapter->tx_timeout_task);
2343 }
2344
2345 static void
2346 e1000_tx_timeout_task(struct net_device *netdev)
2347 {
2348 struct e1000_adapter *adapter = netdev_priv(netdev);
2349
2350 e1000_down(adapter);
2351 e1000_up(adapter);
2352 }
2353
2354 /**
2355 * e1000_get_stats - Get System Network Statistics
2356 * @netdev: network interface device structure
2357 *
2358 * Returns the address of the device statistics structure.
2359 * The statistics are actually updated from the timer callback.
2360 **/
2361
2362 static struct net_device_stats *
2363 e1000_get_stats(struct net_device *netdev)
2364 {
2365 struct e1000_adapter *adapter = netdev_priv(netdev);
2366
2367 e1000_update_stats(adapter);
2368 return &adapter->net_stats;
2369 }
2370
2371 /**
2372 * e1000_change_mtu - Change the Maximum Transfer Unit
2373 * @netdev: network interface device structure
2374 * @new_mtu: new value for maximum frame size
2375 *
2376 * Returns 0 on success, negative on failure
2377 **/
2378
2379 static int
2380 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2381 {
2382 struct e1000_adapter *adapter = netdev_priv(netdev);
2383 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2384
2385 if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2386 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2387 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2388 return -EINVAL;
2389 }
2390
2391 #define MAX_STD_JUMBO_FRAME_SIZE 9216
2392 /* might want this to be bigger enum check... */
2393 if (adapter->hw.mac_type == e1000_82573 &&
2394 max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2395 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2396 "on 82573\n");
2397 return -EINVAL;
2398 }
2399
2400 if(adapter->hw.mac_type > e1000_82547_rev_2) {
2401 adapter->rx_buffer_len = max_frame;
2402 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2403 } else {
2404 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2405 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2406 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2407 "on 82542\n");
2408 return -EINVAL;
2409
2410 } else {
2411 if(max_frame <= E1000_RXBUFFER_2048) {
2412 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2413 } else if(max_frame <= E1000_RXBUFFER_4096) {
2414 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2415 } else if(max_frame <= E1000_RXBUFFER_8192) {
2416 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2417 } else if(max_frame <= E1000_RXBUFFER_16384) {
2418 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2419 }
2420 }
2421 }
2422
2423 netdev->mtu = new_mtu;
2424
2425 if(netif_running(netdev)) {
2426 e1000_down(adapter);
2427 e1000_up(adapter);
2428 }
2429
2430 adapter->hw.max_frame_size = max_frame;
2431
2432 return 0;
2433 }
2434
2435 /**
2436 * e1000_update_stats - Update the board statistics counters
2437 * @adapter: board private structure
2438 **/
2439
2440 void
2441 e1000_update_stats(struct e1000_adapter *adapter)
2442 {
2443 struct e1000_hw *hw = &adapter->hw;
2444 unsigned long flags;
2445 uint16_t phy_tmp;
2446
2447 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2448
2449 spin_lock_irqsave(&adapter->stats_lock, flags);
2450
2451 /* these counters are modified from e1000_adjust_tbi_stats,
2452 * called from the interrupt context, so they must only
2453 * be written while holding adapter->stats_lock
2454 */
2455
2456 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2457 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2458 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2459 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2460 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2461 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2462 adapter->stats.roc += E1000_READ_REG(hw, ROC);
2463 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2464 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2465 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2466 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2467 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2468 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2469
2470 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2471 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2472 adapter->stats.scc += E1000_READ_REG(hw, SCC);
2473 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2474 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2475 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2476 adapter->stats.dc += E1000_READ_REG(hw, DC);
2477 adapter->stats.sec += E1000_READ_REG(hw, SEC);
2478 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2479 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2480 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2481 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2482 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2483 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2484 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2485 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2486 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2487 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2488 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2489 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2490 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2491 adapter->stats.torl += E1000_READ_REG(hw, TORL);
2492 adapter->stats.torh += E1000_READ_REG(hw, TORH);
2493 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2494 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2495 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2496 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2497 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2498 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2499 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2500 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2501 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2502 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2503 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2504
2505 /* used for adaptive IFS */
2506
2507 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
2508 adapter->stats.tpt += hw->tx_packet_delta;
2509 hw->collision_delta = E1000_READ_REG(hw, COLC);
2510 adapter->stats.colc += hw->collision_delta;
2511
2512 if(hw->mac_type >= e1000_82543) {
2513 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
2514 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
2515 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
2516 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
2517 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
2518 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
2519 }
2520 if(hw->mac_type > e1000_82547_rev_2) {
2521 adapter->stats.iac += E1000_READ_REG(hw, IAC);
2522 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
2523 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
2524 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
2525 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
2526 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
2527 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
2528 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
2529 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
2530 }
2531
2532 /* Fill out the OS statistics structure */
2533
2534 adapter->net_stats.rx_packets = adapter->stats.gprc;
2535 adapter->net_stats.tx_packets = adapter->stats.gptc;
2536 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2537 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2538 adapter->net_stats.multicast = adapter->stats.mprc;
2539 adapter->net_stats.collisions = adapter->stats.colc;
2540
2541 /* Rx Errors */
2542
2543 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2544 adapter->stats.crcerrs + adapter->stats.algnerrc +
2545 adapter->stats.rlec + adapter->stats.mpc +
2546 adapter->stats.cexterr;
2547 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
2548 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2549 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2550 adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
2551 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2552
2553 /* Tx Errors */
2554
2555 adapter->net_stats.tx_errors = adapter->stats.ecol +
2556 adapter->stats.latecol;
2557 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2558 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2559 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2560
2561 /* Tx Dropped needs to be maintained elsewhere */
2562
2563 /* Phy Stats */
2564
2565 if(hw->media_type == e1000_media_type_copper) {
2566 if((adapter->link_speed == SPEED_1000) &&
2567 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
2568 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2569 adapter->phy_stats.idle_errors += phy_tmp;
2570 }
2571
2572 if((hw->mac_type <= e1000_82546) &&
2573 (hw->phy_type == e1000_phy_m88) &&
2574 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
2575 adapter->phy_stats.receive_errors += phy_tmp;
2576 }
2577
2578 spin_unlock_irqrestore(&adapter->stats_lock, flags);
2579 }
2580
2581 /**
2582 * e1000_intr - Interrupt Handler
2583 * @irq: interrupt number
2584 * @data: pointer to a network interface device structure
2585 * @pt_regs: CPU registers structure
2586 **/
2587
2588 static irqreturn_t
2589 e1000_intr(int irq, void *data, struct pt_regs *regs)
2590 {
2591 struct net_device *netdev = data;
2592 struct e1000_adapter *adapter = netdev_priv(netdev);
2593 struct e1000_hw *hw = &adapter->hw;
2594 uint32_t icr = E1000_READ_REG(hw, ICR);
2595 #ifndef CONFIG_E1000_NAPI
2596 unsigned int i;
2597 #endif
2598
2599 if(unlikely(!icr))
2600 return IRQ_NONE; /* Not our interrupt */
2601
2602 if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
2603 hw->get_link_status = 1;
2604 mod_timer(&adapter->watchdog_timer, jiffies);
2605 }
2606
2607 #ifdef CONFIG_E1000_NAPI
2608 if(likely(netif_rx_schedule_prep(netdev))) {
2609
2610 /* Disable interrupts and register for poll. The flush
2611 of the posted write is intentionally left out.
2612 */
2613
2614 atomic_inc(&adapter->irq_sem);
2615 E1000_WRITE_REG(hw, IMC, ~0);
2616 __netif_rx_schedule(netdev);
2617 }
2618 #else
2619 /* Writing IMC and IMS is needed for 82547.
2620 Due to Hub Link bus being occupied, an interrupt
2621 de-assertion message is not able to be sent.
2622 When an interrupt assertion message is generated later,
2623 two messages are re-ordered and sent out.
2624 That causes APIC to think 82547 is in de-assertion
2625 state, while 82547 is in assertion state, resulting
2626 in dead lock. Writing IMC forces 82547 into
2627 de-assertion state.
2628 */
2629 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
2630 atomic_inc(&adapter->irq_sem);
2631 E1000_WRITE_REG(hw, IMC, ~0);
2632 }
2633
2634 for(i = 0; i < E1000_MAX_INTR; i++)
2635 if(unlikely(!adapter->clean_rx(adapter) &
2636 !e1000_clean_tx_irq(adapter)))
2637 break;
2638
2639 if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
2640 e1000_irq_enable(adapter);
2641 #endif
2642
2643 return IRQ_HANDLED;
2644 }
2645
2646 #ifdef CONFIG_E1000_NAPI
2647 /**
2648 * e1000_clean - NAPI Rx polling callback
2649 * @adapter: board private structure
2650 **/
2651
2652 static int
2653 e1000_clean(struct net_device *netdev, int *budget)
2654 {
2655 struct e1000_adapter *adapter = netdev_priv(netdev);
2656 int work_to_do = min(*budget, netdev->quota);
2657 int tx_cleaned;
2658 int work_done = 0;
2659
2660 tx_cleaned = e1000_clean_tx_irq(adapter);
2661 adapter->clean_rx(adapter, &work_done, work_to_do);
2662
2663 *budget -= work_done;
2664 netdev->quota -= work_done;
2665
2666 if ((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
2667 /* If no Tx and not enough Rx work done, exit the polling mode */
2668 netif_rx_complete(netdev);
2669 e1000_irq_enable(adapter);
2670 return 0;
2671 }
2672
2673 return 1;
2674 }
2675
2676 #endif
2677 /**
2678 * e1000_clean_tx_irq - Reclaim resources after transmit completes
2679 * @adapter: board private structure
2680 **/
2681
2682 static boolean_t
2683 e1000_clean_tx_irq(struct e1000_adapter *adapter)
2684 {
2685 struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
2686 struct net_device *netdev = adapter->netdev;
2687 struct e1000_tx_desc *tx_desc, *eop_desc;
2688 struct e1000_buffer *buffer_info;
2689 unsigned int i, eop;
2690 boolean_t cleaned = FALSE;
2691
2692 i = tx_ring->next_to_clean;
2693 eop = tx_ring->buffer_info[i].next_to_watch;
2694 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2695
2696 while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
2697 /* Premature writeback of Tx descriptors clear (free buffers
2698 * and unmap pci_mapping) previous_buffer_info */
2699 if (likely(adapter->previous_buffer_info.skb != NULL)) {
2700 e1000_unmap_and_free_tx_resource(adapter,
2701 &adapter->previous_buffer_info);
2702 }
2703
2704 for(cleaned = FALSE; !cleaned; ) {
2705 tx_desc = E1000_TX_DESC(*tx_ring, i);
2706 buffer_info = &tx_ring->buffer_info[i];
2707 cleaned = (i == eop);
2708
2709 #ifdef NETIF_F_TSO
2710 if (!(netdev->features & NETIF_F_TSO)) {
2711 #endif
2712 e1000_unmap_and_free_tx_resource(adapter,
2713 buffer_info);
2714 #ifdef NETIF_F_TSO
2715 } else {
2716 if (cleaned) {
2717 memcpy(&adapter->previous_buffer_info,
2718 buffer_info,
2719 sizeof(struct e1000_buffer));
2720 memset(buffer_info, 0,
2721 sizeof(struct e1000_buffer));
2722 } else {
2723 e1000_unmap_and_free_tx_resource(
2724 adapter, buffer_info);
2725 }
2726 }
2727 #endif
2728
2729 tx_desc->buffer_addr = 0;
2730 tx_desc->lower.data = 0;
2731 tx_desc->upper.data = 0;
2732
2733 if(unlikely(++i == tx_ring->count)) i = 0;
2734 }
2735
2736 eop = tx_ring->buffer_info[i].next_to_watch;
2737 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2738 }
2739
2740 tx_ring->next_to_clean = i;
2741
2742 spin_lock(&adapter->tx_lock);
2743
2744 if(unlikely(cleaned && netif_queue_stopped(netdev) &&
2745 netif_carrier_ok(netdev)))
2746 netif_wake_queue(netdev);
2747
2748 spin_unlock(&adapter->tx_lock);
2749 if(adapter->detect_tx_hung) {
2750
2751 /* Detect a transmit hang in hardware, this serializes the
2752 * check with the clearing of time_stamp and movement of i */
2753 adapter->detect_tx_hung = FALSE;
2754 if (tx_ring->buffer_info[i].dma &&
2755 time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
2756 && !(E1000_READ_REG(&adapter->hw, STATUS) &
2757 E1000_STATUS_TXOFF)) {
2758
2759 /* detected Tx unit hang */
2760 i = tx_ring->next_to_clean;
2761 eop = tx_ring->buffer_info[i].next_to_watch;
2762 eop_desc = E1000_TX_DESC(*tx_ring, eop);
2763 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
2764 " TDH <%x>\n"
2765 " TDT <%x>\n"
2766 " next_to_use <%x>\n"
2767 " next_to_clean <%x>\n"
2768 "buffer_info[next_to_clean]\n"
2769 " dma <%llx>\n"
2770 " time_stamp <%lx>\n"
2771 " next_to_watch <%x>\n"
2772 " jiffies <%lx>\n"
2773 " next_to_watch.status <%x>\n",
2774 E1000_READ_REG(&adapter->hw, TDH),
2775 E1000_READ_REG(&adapter->hw, TDT),
2776 tx_ring->next_to_use,
2777 i,
2778 (unsigned long long)tx_ring->buffer_info[i].dma,
2779 tx_ring->buffer_info[i].time_stamp,
2780 eop,
2781 jiffies,
2782 eop_desc->upper.fields.status);
2783 netif_stop_queue(netdev);
2784 }
2785 }
2786 #ifdef NETIF_F_TSO
2787
2788 if( unlikely(!(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
2789 time_after(jiffies, adapter->previous_buffer_info.time_stamp + HZ)))
2790 e1000_unmap_and_free_tx_resource(
2791 adapter, &adapter->previous_buffer_info);
2792
2793 #endif
2794 return cleaned;
2795 }
2796
2797 /**
2798 * e1000_rx_checksum - Receive Checksum Offload for 82543
2799 * @adapter: board private structure
2800 * @status_err: receive descriptor status and error fields
2801 * @csum: receive descriptor csum field
2802 * @sk_buff: socket buffer with received data
2803 **/
2804
2805 static inline void
2806 e1000_rx_checksum(struct e1000_adapter *adapter,
2807 uint32_t status_err, uint32_t csum,
2808 struct sk_buff *skb)
2809 {
2810 uint16_t status = (uint16_t)status_err;
2811 uint8_t errors = (uint8_t)(status_err >> 24);
2812 skb->ip_summed = CHECKSUM_NONE;
2813
2814 /* 82543 or newer only */
2815 if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
2816 /* Ignore Checksum bit is set */
2817 if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
2818 /* TCP/UDP checksum error bit is set */
2819 if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
2820 /* let the stack verify checksum errors */
2821 adapter->hw_csum_err++;
2822 return;
2823 }
2824 /* TCP/UDP Checksum has not been calculated */
2825 if(adapter->hw.mac_type <= e1000_82547_rev_2) {
2826 if(!(status & E1000_RXD_STAT_TCPCS))
2827 return;
2828 } else {
2829 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
2830 return;
2831 }
2832 /* It must be a TCP or UDP packet with a valid checksum */
2833 if (likely(status & E1000_RXD_STAT_TCPCS)) {
2834 /* TCP checksum is good */
2835 skb->ip_summed = CHECKSUM_UNNECESSARY;
2836 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
2837 /* IP fragment with UDP payload */
2838 /* Hardware complements the payload checksum, so we undo it
2839 * and then put the value in host order for further stack use.
2840 */
2841 csum = ntohl(csum ^ 0xFFFF);
2842 skb->csum = csum;
2843 skb->ip_summed = CHECKSUM_HW;
2844 }
2845 adapter->hw_csum_good++;
2846 }
2847
2848 /**
2849 * e1000_clean_rx_irq - Send received data up the network stack; legacy
2850 * @adapter: board private structure
2851 **/
2852
2853 static boolean_t
2854 #ifdef CONFIG_E1000_NAPI
2855 e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
2856 int work_to_do)
2857 #else
2858 e1000_clean_rx_irq(struct e1000_adapter *adapter)
2859 #endif
2860 {
2861 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2862 struct net_device *netdev = adapter->netdev;
2863 struct pci_dev *pdev = adapter->pdev;
2864 struct e1000_rx_desc *rx_desc;
2865 struct e1000_buffer *buffer_info;
2866 struct sk_buff *skb;
2867 unsigned long flags;
2868 uint32_t length;
2869 uint8_t last_byte;
2870 unsigned int i;
2871 boolean_t cleaned = FALSE;
2872
2873 i = rx_ring->next_to_clean;
2874 rx_desc = E1000_RX_DESC(*rx_ring, i);
2875
2876 while(rx_desc->status & E1000_RXD_STAT_DD) {
2877 buffer_info = &rx_ring->buffer_info[i];
2878 #ifdef CONFIG_E1000_NAPI
2879 if(*work_done >= work_to_do)
2880 break;
2881 (*work_done)++;
2882 #endif
2883 cleaned = TRUE;
2884
2885 pci_unmap_single(pdev,
2886 buffer_info->dma,
2887 buffer_info->length,
2888 PCI_DMA_FROMDEVICE);
2889
2890 skb = buffer_info->skb;
2891 length = le16_to_cpu(rx_desc->length);
2892
2893 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
2894 /* All receives must fit into a single buffer */
2895 E1000_DBG("%s: Receive packet consumed multiple"
2896 " buffers\n", netdev->name);
2897 dev_kfree_skb_irq(skb);
2898 goto next_desc;
2899 }
2900
2901 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2902 last_byte = *(skb->data + length - 1);
2903 if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
2904 rx_desc->errors, length, last_byte)) {
2905 spin_lock_irqsave(&adapter->stats_lock, flags);
2906 e1000_tbi_adjust_stats(&adapter->hw,
2907 &adapter->stats,
2908 length, skb->data);
2909 spin_unlock_irqrestore(&adapter->stats_lock,
2910 flags);
2911 length--;
2912 } else {
2913 dev_kfree_skb_irq(skb);
2914 goto next_desc;
2915 }
2916 }
2917
2918 /* Good Receive */
2919 skb_put(skb, length - ETHERNET_FCS_SIZE);
2920
2921 /* Receive Checksum Offload */
2922 e1000_rx_checksum(adapter,
2923 (uint32_t)(rx_desc->status) |
2924 ((uint32_t)(rx_desc->errors) << 24),
2925 rx_desc->csum, skb);
2926 skb->protocol = eth_type_trans(skb, netdev);
2927 #ifdef CONFIG_E1000_NAPI
2928 if(unlikely(adapter->vlgrp &&
2929 (rx_desc->status & E1000_RXD_STAT_VP))) {
2930 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
2931 le16_to_cpu(rx_desc->special) &
2932 E1000_RXD_SPC_VLAN_MASK);
2933 } else {
2934 netif_receive_skb(skb);
2935 }
2936 #else /* CONFIG_E1000_NAPI */
2937 if(unlikely(adapter->vlgrp &&
2938 (rx_desc->status & E1000_RXD_STAT_VP))) {
2939 vlan_hwaccel_rx(skb, adapter->vlgrp,
2940 le16_to_cpu(rx_desc->special) &
2941 E1000_RXD_SPC_VLAN_MASK);
2942 } else {
2943 netif_rx(skb);
2944 }
2945 #endif /* CONFIG_E1000_NAPI */
2946 netdev->last_rx = jiffies;
2947
2948 next_desc:
2949 rx_desc->status = 0;
2950 buffer_info->skb = NULL;
2951 if(unlikely(++i == rx_ring->count)) i = 0;
2952
2953 rx_desc = E1000_RX_DESC(*rx_ring, i);
2954 }
2955 rx_ring->next_to_clean = i;
2956 adapter->alloc_rx_buf(adapter);
2957
2958 return cleaned;
2959 }
2960
2961 /**
2962 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
2963 * @adapter: board private structure
2964 **/
2965
2966 static boolean_t
2967 #ifdef CONFIG_E1000_NAPI
2968 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done,
2969 int work_to_do)
2970 #else
2971 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter)
2972 #endif
2973 {
2974 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
2975 union e1000_rx_desc_packet_split *rx_desc;
2976 struct net_device *netdev = adapter->netdev;
2977 struct pci_dev *pdev = adapter->pdev;
2978 struct e1000_buffer *buffer_info;
2979 struct e1000_ps_page *ps_page;
2980 struct e1000_ps_page_dma *ps_page_dma;
2981 struct sk_buff *skb;
2982 unsigned int i, j;
2983 uint32_t length, staterr;
2984 boolean_t cleaned = FALSE;
2985
2986 i = rx_ring->next_to_clean;
2987 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
2988 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
2989
2990 while(staterr & E1000_RXD_STAT_DD) {
2991 buffer_info = &rx_ring->buffer_info[i];
2992 ps_page = &rx_ring->ps_page[i];
2993 ps_page_dma = &rx_ring->ps_page_dma[i];
2994 #ifdef CONFIG_E1000_NAPI
2995 if(unlikely(*work_done >= work_to_do))
2996 break;
2997 (*work_done)++;
2998 #endif
2999 cleaned = TRUE;
3000 pci_unmap_single(pdev, buffer_info->dma,
3001 buffer_info->length,
3002 PCI_DMA_FROMDEVICE);
3003
3004 skb = buffer_info->skb;
3005
3006 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3007 E1000_DBG("%s: Packet Split buffers didn't pick up"
3008 " the full packet\n", netdev->name);
3009 dev_kfree_skb_irq(skb);
3010 goto next_desc;
3011 }
3012
3013 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3014 dev_kfree_skb_irq(skb);
3015 goto next_desc;
3016 }
3017
3018 length = le16_to_cpu(rx_desc->wb.middle.length0);
3019
3020 if(unlikely(!length)) {
3021 E1000_DBG("%s: Last part of the packet spanning"
3022 " multiple descriptors\n", netdev->name);
3023 dev_kfree_skb_irq(skb);
3024 goto next_desc;
3025 }
3026
3027 /* Good Receive */
3028 skb_put(skb, length);
3029
3030 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3031 if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3032 break;
3033
3034 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3035 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3036 ps_page_dma->ps_page_dma[j] = 0;
3037 skb_shinfo(skb)->frags[j].page =
3038 ps_page->ps_page[j];
3039 ps_page->ps_page[j] = NULL;
3040 skb_shinfo(skb)->frags[j].page_offset = 0;
3041 skb_shinfo(skb)->frags[j].size = length;
3042 skb_shinfo(skb)->nr_frags++;
3043 skb->len += length;
3044 skb->data_len += length;
3045 }
3046
3047 e1000_rx_checksum(adapter, staterr,
3048 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3049 skb->protocol = eth_type_trans(skb, netdev);
3050
3051 #ifdef HAVE_RX_ZERO_COPY
3052 if(likely(rx_desc->wb.upper.header_status &
3053 E1000_RXDPS_HDRSTAT_HDRSP))
3054 skb_shinfo(skb)->zero_copy = TRUE;
3055 #endif
3056 #ifdef CONFIG_E1000_NAPI
3057 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3058 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3059 le16_to_cpu(rx_desc->wb.middle.vlan) &
3060 E1000_RXD_SPC_VLAN_MASK);
3061 } else {
3062 netif_receive_skb(skb);
3063 }
3064 #else /* CONFIG_E1000_NAPI */
3065 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3066 vlan_hwaccel_rx(skb, adapter->vlgrp,
3067 le16_to_cpu(rx_desc->wb.middle.vlan) &
3068 E1000_RXD_SPC_VLAN_MASK);
3069 } else {
3070 netif_rx(skb);
3071 }
3072 #endif /* CONFIG_E1000_NAPI */
3073 netdev->last_rx = jiffies;
3074
3075 next_desc:
3076 rx_desc->wb.middle.status_error &= ~0xFF;
3077 buffer_info->skb = NULL;
3078 if(unlikely(++i == rx_ring->count)) i = 0;
3079
3080 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3081 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3082 }
3083 rx_ring->next_to_clean = i;
3084 adapter->alloc_rx_buf(adapter);
3085
3086 return cleaned;
3087 }
3088
3089 /**
3090 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3091 * @adapter: address of board private structure
3092 **/
3093
3094 static void
3095 e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
3096 {
3097 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3098 struct net_device *netdev = adapter->netdev;
3099 struct pci_dev *pdev = adapter->pdev;
3100 struct e1000_rx_desc *rx_desc;
3101 struct e1000_buffer *buffer_info;
3102 struct sk_buff *skb;
3103 unsigned int i;
3104 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3105
3106 i = rx_ring->next_to_use;
3107 buffer_info = &rx_ring->buffer_info[i];
3108
3109 while(!buffer_info->skb) {
3110 skb = dev_alloc_skb(bufsz);
3111
3112 if(unlikely(!skb)) {
3113 /* Better luck next round */
3114 break;
3115 }
3116
3117 /* Fix for errata 23, can't cross 64kB boundary */
3118 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3119 struct sk_buff *oldskb = skb;
3120 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3121 "at %p\n", bufsz, skb->data);
3122 /* Try again, without freeing the previous */
3123 skb = dev_alloc_skb(bufsz);
3124 /* Failed allocation, critical failure */
3125 if (!skb) {
3126 dev_kfree_skb(oldskb);
3127 break;
3128 }
3129
3130 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3131 /* give up */
3132 dev_kfree_skb(skb);
3133 dev_kfree_skb(oldskb);
3134 break; /* while !buffer_info->skb */
3135 } else {
3136 /* Use new allocation */
3137 dev_kfree_skb(oldskb);
3138 }
3139 }
3140 /* Make buffer alignment 2 beyond a 16 byte boundary
3141 * this will result in a 16 byte aligned IP header after
3142 * the 14 byte MAC header is removed
3143 */
3144 skb_reserve(skb, NET_IP_ALIGN);
3145
3146 skb->dev = netdev;
3147
3148 buffer_info->skb = skb;
3149 buffer_info->length = adapter->rx_buffer_len;
3150 buffer_info->dma = pci_map_single(pdev,
3151 skb->data,
3152 adapter->rx_buffer_len,
3153 PCI_DMA_FROMDEVICE);
3154
3155 /* Fix for errata 23, can't cross 64kB boundary */
3156 if (!e1000_check_64k_bound(adapter,
3157 (void *)(unsigned long)buffer_info->dma,
3158 adapter->rx_buffer_len)) {
3159 DPRINTK(RX_ERR, ERR,
3160 "dma align check failed: %u bytes at %p\n",
3161 adapter->rx_buffer_len,
3162 (void *)(unsigned long)buffer_info->dma);
3163 dev_kfree_skb(skb);
3164 buffer_info->skb = NULL;
3165
3166 pci_unmap_single(pdev, buffer_info->dma,
3167 adapter->rx_buffer_len,
3168 PCI_DMA_FROMDEVICE);
3169
3170 break; /* while !buffer_info->skb */
3171 }
3172 rx_desc = E1000_RX_DESC(*rx_ring, i);
3173 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3174
3175 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3176 /* Force memory writes to complete before letting h/w
3177 * know there are new descriptors to fetch. (Only
3178 * applicable for weak-ordered memory model archs,
3179 * such as IA-64). */
3180 wmb();
3181 E1000_WRITE_REG(&adapter->hw, RDT, i);
3182 }
3183
3184 if(unlikely(++i == rx_ring->count)) i = 0;
3185 buffer_info = &rx_ring->buffer_info[i];
3186 }
3187
3188 rx_ring->next_to_use = i;
3189 }
3190
3191 /**
3192 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3193 * @adapter: address of board private structure
3194 **/
3195
3196 static void
3197 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter)
3198 {
3199 struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
3200 struct net_device *netdev = adapter->netdev;
3201 struct pci_dev *pdev = adapter->pdev;
3202 union e1000_rx_desc_packet_split *rx_desc;
3203 struct e1000_buffer *buffer_info;
3204 struct e1000_ps_page *ps_page;
3205 struct e1000_ps_page_dma *ps_page_dma;
3206 struct sk_buff *skb;
3207 unsigned int i, j;
3208
3209 i = rx_ring->next_to_use;
3210 buffer_info = &rx_ring->buffer_info[i];
3211 ps_page = &rx_ring->ps_page[i];
3212 ps_page_dma = &rx_ring->ps_page_dma[i];
3213
3214 while(!buffer_info->skb) {
3215 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3216
3217 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3218 if(unlikely(!ps_page->ps_page[j])) {
3219 ps_page->ps_page[j] =
3220 alloc_page(GFP_ATOMIC);
3221 if(unlikely(!ps_page->ps_page[j]))
3222 goto no_buffers;
3223 ps_page_dma->ps_page_dma[j] =
3224 pci_map_page(pdev,
3225 ps_page->ps_page[j],
3226 0, PAGE_SIZE,
3227 PCI_DMA_FROMDEVICE);
3228 }
3229 /* Refresh the desc even if buffer_addrs didn't
3230 * change because each write-back erases this info.
3231 */
3232 rx_desc->read.buffer_addr[j+1] =
3233 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3234 }
3235
3236 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3237
3238 if(unlikely(!skb))
3239 break;
3240
3241 /* Make buffer alignment 2 beyond a 16 byte boundary
3242 * this will result in a 16 byte aligned IP header after
3243 * the 14 byte MAC header is removed
3244 */
3245 skb_reserve(skb, NET_IP_ALIGN);
3246
3247 skb->dev = netdev;
3248
3249 buffer_info->skb = skb;
3250 buffer_info->length = adapter->rx_ps_bsize0;
3251 buffer_info->dma = pci_map_single(pdev, skb->data,
3252 adapter->rx_ps_bsize0,
3253 PCI_DMA_FROMDEVICE);
3254
3255 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3256
3257 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3258 /* Force memory writes to complete before letting h/w
3259 * know there are new descriptors to fetch. (Only
3260 * applicable for weak-ordered memory model archs,
3261 * such as IA-64). */
3262 wmb();
3263 /* Hardware increments by 16 bytes, but packet split
3264 * descriptors are 32 bytes...so we increment tail
3265 * twice as much.
3266 */
3267 E1000_WRITE_REG(&adapter->hw, RDT, i<<1);
3268 }
3269
3270 if(unlikely(++i == rx_ring->count)) i = 0;
3271 buffer_info = &rx_ring->buffer_info[i];
3272 ps_page = &rx_ring->ps_page[i];
3273 ps_page_dma = &rx_ring->ps_page_dma[i];
3274 }
3275
3276 no_buffers:
3277 rx_ring->next_to_use = i;
3278 }
3279
3280 /**
3281 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3282 * @adapter:
3283 **/
3284
3285 static void
3286 e1000_smartspeed(struct e1000_adapter *adapter)
3287 {
3288 uint16_t phy_status;
3289 uint16_t phy_ctrl;
3290
3291 if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3292 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3293 return;
3294
3295 if(adapter->smartspeed == 0) {
3296 /* If Master/Slave config fault is asserted twice,
3297 * we assume back-to-back */
3298 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3299 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3300 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3301 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3302 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3303 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3304 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3305 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3306 phy_ctrl);
3307 adapter->smartspeed++;
3308 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3309 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3310 &phy_ctrl)) {
3311 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3312 MII_CR_RESTART_AUTO_NEG);
3313 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3314 phy_ctrl);
3315 }
3316 }
3317 return;
3318 } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3319 /* If still no link, perhaps using 2/3 pair cable */
3320 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3321 phy_ctrl |= CR_1000T_MS_ENABLE;
3322 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3323 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3324 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3325 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3326 MII_CR_RESTART_AUTO_NEG);
3327 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3328 }
3329 }
3330 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3331 if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3332 adapter->smartspeed = 0;
3333 }
3334
3335 /**
3336 * e1000_ioctl -
3337 * @netdev:
3338 * @ifreq:
3339 * @cmd:
3340 **/
3341
3342 static int
3343 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3344 {
3345 switch (cmd) {
3346 case SIOCGMIIPHY:
3347 case SIOCGMIIREG:
3348 case SIOCSMIIREG:
3349 return e1000_mii_ioctl(netdev, ifr, cmd);
3350 default:
3351 return -EOPNOTSUPP;
3352 }
3353 }
3354
3355 /**
3356 * e1000_mii_ioctl -
3357 * @netdev:
3358 * @ifreq:
3359 * @cmd:
3360 **/
3361
3362 static int
3363 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3364 {
3365 struct e1000_adapter *adapter = netdev_priv(netdev);
3366 struct mii_ioctl_data *data = if_mii(ifr);
3367 int retval;
3368 uint16_t mii_reg;
3369 uint16_t spddplx;
3370 unsigned long flags;
3371
3372 if(adapter->hw.media_type != e1000_media_type_copper)
3373 return -EOPNOTSUPP;
3374
3375 switch (cmd) {
3376 case SIOCGMIIPHY:
3377 data->phy_id = adapter->hw.phy_addr;
3378 break;
3379 case SIOCGMIIREG:
3380 if(!capable(CAP_NET_ADMIN))
3381 return -EPERM;
3382 spin_lock_irqsave(&adapter->stats_lock, flags);
3383 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3384 &data->val_out)) {
3385 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3386 return -EIO;
3387 }
3388 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3389 break;
3390 case SIOCSMIIREG:
3391 if(!capable(CAP_NET_ADMIN))
3392 return -EPERM;
3393 if(data->reg_num & ~(0x1F))
3394 return -EFAULT;
3395 mii_reg = data->val_in;
3396 spin_lock_irqsave(&adapter->stats_lock, flags);
3397 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3398 mii_reg)) {
3399 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3400 return -EIO;
3401 }
3402 if(adapter->hw.phy_type == e1000_phy_m88) {
3403 switch (data->reg_num) {
3404 case PHY_CTRL:
3405 if(mii_reg & MII_CR_POWER_DOWN)
3406 break;
3407 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3408 adapter->hw.autoneg = 1;
3409 adapter->hw.autoneg_advertised = 0x2F;
3410 } else {
3411 if (mii_reg & 0x40)
3412 spddplx = SPEED_1000;
3413 else if (mii_reg & 0x2000)
3414 spddplx = SPEED_100;
3415 else
3416 spddplx = SPEED_10;
3417 spddplx += (mii_reg & 0x100)
3418 ? FULL_DUPLEX :
3419 HALF_DUPLEX;
3420 retval = e1000_set_spd_dplx(adapter,
3421 spddplx);
3422 if(retval) {
3423 spin_unlock_irqrestore(
3424 &adapter->stats_lock,
3425 flags);
3426 return retval;
3427 }
3428 }
3429 if(netif_running(adapter->netdev)) {
3430 e1000_down(adapter);
3431 e1000_up(adapter);
3432 } else
3433 e1000_reset(adapter);
3434 break;
3435 case M88E1000_PHY_SPEC_CTRL:
3436 case M88E1000_EXT_PHY_SPEC_CTRL:
3437 if(e1000_phy_reset(&adapter->hw)) {
3438 spin_unlock_irqrestore(
3439 &adapter->stats_lock, flags);
3440 return -EIO;
3441 }
3442 break;
3443 }
3444 } else {
3445 switch (data->reg_num) {
3446 case PHY_CTRL:
3447 if(mii_reg & MII_CR_POWER_DOWN)
3448 break;
3449 if(netif_running(adapter->netdev)) {
3450 e1000_down(adapter);
3451 e1000_up(adapter);
3452 } else
3453 e1000_reset(adapter);
3454 break;
3455 }
3456 }
3457 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3458 break;
3459 default:
3460 return -EOPNOTSUPP;
3461 }
3462 return E1000_SUCCESS;
3463 }
3464
3465 void
3466 e1000_pci_set_mwi(struct e1000_hw *hw)
3467 {
3468 struct e1000_adapter *adapter = hw->back;
3469 int ret_val = pci_set_mwi(adapter->pdev);
3470
3471 if(ret_val)
3472 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
3473 }
3474
3475 void
3476 e1000_pci_clear_mwi(struct e1000_hw *hw)
3477 {
3478 struct e1000_adapter *adapter = hw->back;
3479
3480 pci_clear_mwi(adapter->pdev);
3481 }
3482
3483 void
3484 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3485 {
3486 struct e1000_adapter *adapter = hw->back;
3487
3488 pci_read_config_word(adapter->pdev, reg, value);
3489 }
3490
3491 void
3492 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
3493 {
3494 struct e1000_adapter *adapter = hw->back;
3495
3496 pci_write_config_word(adapter->pdev, reg, *value);
3497 }
3498
3499 uint32_t
3500 e1000_io_read(struct e1000_hw *hw, unsigned long port)
3501 {
3502 return inl(port);
3503 }
3504
3505 void
3506 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
3507 {
3508 outl(value, port);
3509 }
3510
3511 static void
3512 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
3513 {
3514 struct e1000_adapter *adapter = netdev_priv(netdev);
3515 uint32_t ctrl, rctl;
3516
3517 e1000_irq_disable(adapter);
3518 adapter->vlgrp = grp;
3519
3520 if(grp) {
3521 /* enable VLAN tag insert/strip */
3522 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3523 ctrl |= E1000_CTRL_VME;
3524 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3525
3526 /* enable VLAN receive filtering */
3527 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3528 rctl |= E1000_RCTL_VFE;
3529 rctl &= ~E1000_RCTL_CFIEN;
3530 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3531 e1000_update_mng_vlan(adapter);
3532 } else {
3533 /* disable VLAN tag insert/strip */
3534 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3535 ctrl &= ~E1000_CTRL_VME;
3536 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3537
3538 /* disable VLAN filtering */
3539 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3540 rctl &= ~E1000_RCTL_VFE;
3541 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3542 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
3543 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3544 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3545 }
3546 }
3547
3548 e1000_irq_enable(adapter);
3549 }
3550
3551 static void
3552 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
3553 {
3554 struct e1000_adapter *adapter = netdev_priv(netdev);
3555 uint32_t vfta, index;
3556 if((adapter->hw.mng_cookie.status &
3557 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3558 (vid == adapter->mng_vlan_id))
3559 return;
3560 /* add VID to filter table */
3561 index = (vid >> 5) & 0x7F;
3562 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3563 vfta |= (1 << (vid & 0x1F));
3564 e1000_write_vfta(&adapter->hw, index, vfta);
3565 }
3566
3567 static void
3568 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
3569 {
3570 struct e1000_adapter *adapter = netdev_priv(netdev);
3571 uint32_t vfta, index;
3572
3573 e1000_irq_disable(adapter);
3574
3575 if(adapter->vlgrp)
3576 adapter->vlgrp->vlan_devices[vid] = NULL;
3577
3578 e1000_irq_enable(adapter);
3579
3580 if((adapter->hw.mng_cookie.status &
3581 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
3582 (vid == adapter->mng_vlan_id))
3583 return;
3584 /* remove VID from filter table */
3585 index = (vid >> 5) & 0x7F;
3586 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
3587 vfta &= ~(1 << (vid & 0x1F));
3588 e1000_write_vfta(&adapter->hw, index, vfta);
3589 }
3590
3591 static void
3592 e1000_restore_vlan(struct e1000_adapter *adapter)
3593 {
3594 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3595
3596 if(adapter->vlgrp) {
3597 uint16_t vid;
3598 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3599 if(!adapter->vlgrp->vlan_devices[vid])
3600 continue;
3601 e1000_vlan_rx_add_vid(adapter->netdev, vid);
3602 }
3603 }
3604 }
3605
3606 int
3607 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
3608 {
3609 adapter->hw.autoneg = 0;
3610
3611 /* Fiber NICs only allow 1000 gbps Full duplex */
3612 if((adapter->hw.media_type == e1000_media_type_fiber) &&
3613 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3614 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
3615 return -EINVAL;
3616 }
3617
3618 switch(spddplx) {
3619 case SPEED_10 + DUPLEX_HALF:
3620 adapter->hw.forced_speed_duplex = e1000_10_half;
3621 break;
3622 case SPEED_10 + DUPLEX_FULL:
3623 adapter->hw.forced_speed_duplex = e1000_10_full;
3624 break;
3625 case SPEED_100 + DUPLEX_HALF:
3626 adapter->hw.forced_speed_duplex = e1000_100_half;
3627 break;
3628 case SPEED_100 + DUPLEX_FULL:
3629 adapter->hw.forced_speed_duplex = e1000_100_full;
3630 break;
3631 case SPEED_1000 + DUPLEX_FULL:
3632 adapter->hw.autoneg = 1;
3633 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
3634 break;
3635 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3636 default:
3637 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
3638 return -EINVAL;
3639 }
3640 return 0;
3641 }
3642
3643 static int
3644 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3645 {
3646 struct net_device *netdev = pci_get_drvdata(pdev);
3647 struct e1000_adapter *adapter = netdev_priv(netdev);
3648 uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
3649 uint32_t wufc = adapter->wol;
3650
3651 netif_device_detach(netdev);
3652
3653 if(netif_running(netdev))
3654 e1000_down(adapter);
3655
3656 status = E1000_READ_REG(&adapter->hw, STATUS);
3657 if(status & E1000_STATUS_LU)
3658 wufc &= ~E1000_WUFC_LNKC;
3659
3660 if(wufc) {
3661 e1000_setup_rctl(adapter);
3662 e1000_set_multi(netdev);
3663
3664 /* turn on all-multi mode if wake on multicast is enabled */
3665 if(adapter->wol & E1000_WUFC_MC) {
3666 rctl = E1000_READ_REG(&adapter->hw, RCTL);
3667 rctl |= E1000_RCTL_MPE;
3668 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
3669 }
3670
3671 if(adapter->hw.mac_type >= e1000_82540) {
3672 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3673 /* advertise wake from D3Cold */
3674 #define E1000_CTRL_ADVD3WUC 0x00100000
3675 /* phy power management enable */
3676 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3677 ctrl |= E1000_CTRL_ADVD3WUC |
3678 E1000_CTRL_EN_PHY_PWR_MGMT;
3679 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3680 }
3681
3682 if(adapter->hw.media_type == e1000_media_type_fiber ||
3683 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3684 /* keep the laser running in D3 */
3685 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
3686 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3687 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
3688 }
3689
3690 /* Allow time for pending master requests to run */
3691 e1000_disable_pciex_master(&adapter->hw);
3692
3693 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
3694 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
3695 pci_enable_wake(pdev, 3, 1);
3696 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3697 } else {
3698 E1000_WRITE_REG(&adapter->hw, WUC, 0);
3699 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
3700 pci_enable_wake(pdev, 3, 0);
3701 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
3702 }
3703
3704 pci_save_state(pdev);
3705
3706 if(adapter->hw.mac_type >= e1000_82540 &&
3707 adapter->hw.media_type == e1000_media_type_copper) {
3708 manc = E1000_READ_REG(&adapter->hw, MANC);
3709 if(manc & E1000_MANC_SMBUS_EN) {
3710 manc |= E1000_MANC_ARP_EN;
3711 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3712 pci_enable_wake(pdev, 3, 1);
3713 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
3714 }
3715 }
3716
3717 switch(adapter->hw.mac_type) {
3718 case e1000_82573:
3719 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3720 E1000_WRITE_REG(&adapter->hw, SWSM,
3721 swsm & ~E1000_SWSM_DRV_LOAD);
3722 break;
3723 default:
3724 break;
3725 }
3726
3727 pci_disable_device(pdev);
3728 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3729
3730 return 0;
3731 }
3732
3733 #ifdef CONFIG_PM
3734 static int
3735 e1000_resume(struct pci_dev *pdev)
3736 {
3737 struct net_device *netdev = pci_get_drvdata(pdev);
3738 struct e1000_adapter *adapter = netdev_priv(netdev);
3739 uint32_t manc, ret_val, swsm;
3740
3741 pci_set_power_state(pdev, PCI_D0);
3742 pci_restore_state(pdev);
3743 ret_val = pci_enable_device(pdev);
3744 pci_set_master(pdev);
3745
3746 pci_enable_wake(pdev, PCI_D3hot, 0);
3747 pci_enable_wake(pdev, PCI_D3cold, 0);
3748
3749 e1000_reset(adapter);
3750 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
3751
3752 if(netif_running(netdev))
3753 e1000_up(adapter);
3754
3755 netif_device_attach(netdev);
3756
3757 if(adapter->hw.mac_type >= e1000_82540 &&
3758 adapter->hw.media_type == e1000_media_type_copper) {
3759 manc = E1000_READ_REG(&adapter->hw, MANC);
3760 manc &= ~(E1000_MANC_ARP_EN);
3761 E1000_WRITE_REG(&adapter->hw, MANC, manc);
3762 }
3763
3764 switch(adapter->hw.mac_type) {
3765 case e1000_82573:
3766 swsm = E1000_READ_REG(&adapter->hw, SWSM);
3767 E1000_WRITE_REG(&adapter->hw, SWSM,
3768 swsm | E1000_SWSM_DRV_LOAD);
3769 break;
3770 default:
3771 break;
3772 }
3773
3774 return 0;
3775 }
3776 #endif
3777 #ifdef CONFIG_NET_POLL_CONTROLLER
3778 /*
3779 * Polling 'interrupt' - used by things like netconsole to send skbs
3780 * without having to re-enable interrupts. It's not called while
3781 * the interrupt routine is executing.
3782 */
3783 static void
3784 e1000_netpoll(struct net_device *netdev)
3785 {
3786 struct e1000_adapter *adapter = netdev_priv(netdev);
3787 disable_irq(adapter->pdev->irq);
3788 e1000_intr(adapter->pdev->irq, netdev, NULL);
3789 e1000_clean_tx_irq(adapter);
3790 enable_irq(adapter->pdev->irq);
3791 }
3792 #endif
3793
3794 /* e1000_main.c */
This page took 0.226869 seconds and 5 git commands to generate.