e1000: Remove Multiqueue code until we have support for MSI-X in our hardware
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32 * 6.3.9 12/16/2005
33 * o incorporate fix for recycled skbs from IBM LTC
34 * 6.3.7 11/18/2005
35 * o Honor eeprom setting for enabling/disabling Wake On Lan
36 * 6.3.5 11/17/2005
37 * o Fix memory leak in rx ring handling for PCI Express adapters
38 * 6.3.4 11/8/05
39 * o Patch from Jesper Juhl to remove redundant NULL checks for kfree
40 * 6.3.2 9/20/05
41 * o Render logic that sets/resets DRV_LOAD as inline functions to
42 * avoid code replication. If f/w is AMT then set DRV_LOAD only when
43 * network interface is open.
44 * o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
45 * o Adjust PBA partioning for Jumbo frames using MTU size and not
46 * rx_buffer_len
47 * 6.3.1 9/19/05
48 * o Use adapter->tx_timeout_factor in Tx Hung Detect logic
49 (e1000_clean_tx_irq)
50 * o Support for 8086:10B5 device (Quad Port)
51 * 6.2.14 9/15/05
52 * o In AMT enabled configurations, set/reset DRV_LOAD bit on interface
53 * open/close
54 * 6.2.13 9/14/05
55 * o Invoke e1000_check_mng_mode only for 8257x controllers since it
56 * accesses the FWSM that is not supported in other controllers
57 * 6.2.12 9/9/05
58 * o Add support for device id E1000_DEV_ID_82546GB_QUAD_COPPER
59 * o set RCTL:SECRC only for controllers newer than 82543.
60 * o When the n/w interface comes down reset DRV_LOAD bit to notify f/w.
61 * This code was moved from e1000_remove to e1000_close
62 * 6.2.10 9/6/05
63 * o Fix error in updating RDT in el1000_alloc_rx_buffers[_ps] -- one off.
64 * o Enable fc by default on 82573 controllers (do not read eeprom)
65 * o Fix rx_errors statistic not to include missed_packet_count
66 * o Fix rx_dropped statistic not to include missed_packet_count
67 (Padraig Brady)
68 * 6.2.9 8/30/05
69 * o Remove call to update statistics from the controller ib e1000_get_stats
70 * 6.2.8 8/30/05
71 * o Improved algorithm for rx buffer allocation/rdt update
72 * o Flow control watermarks relative to rx PBA size
73 * o Simplified 'Tx Hung' detect logic
74 * 6.2.7 8/17/05
75 * o Report rx buffer allocation failures and tx timeout counts in stats
76 * 6.2.6 8/16/05
77 * o Implement workaround for controller erratum -- linear non-tso packet
78 * following a TSO gets written back prematurely
79 * 6.2.5 8/15/05
80 * o Set netdev->tx_queue_len based on link speed/duplex settings.
81 * o Fix net_stats.rx_fifo_errors <p@draigBrady.com>
82 * o Do not power off PHY if SoL/IDER session is active
83 * 6.2.4 8/10/05
84 * o Fix loopback test setup/cleanup for 82571/3 controllers
85 * o Fix parsing of outgoing packets (e1000_transfer_dhcp_info) to treat
86 * all packets as raw
87 * o Prevent operations that will cause the PHY to be reset if SoL/IDER
88 * sessions are active and log a message
89 * 6.2.2 7/21/05
90 * o used fixed size descriptors for all MTU sizes, reduces memory load
91 * 6.1.2 4/13/05
92 * o Fixed ethtool diagnostics
93 * o Enabled flow control to take default eeprom settings
94 * o Added stats_lock around e1000_read_phy_reg commands to avoid concurrent
95 * calls, one from mii_ioctl and other from within update_stats while
96 * processing MIIREG ioctl.
97 */
98
99 char e1000_driver_name[] = "e1000";
100 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
101 #ifndef CONFIG_E1000_NAPI
102 #define DRIVERNAPI
103 #else
104 #define DRIVERNAPI "-NAPI"
105 #endif
106 #define DRV_VERSION "7.0.33-k2"DRIVERNAPI
107 char e1000_driver_version[] = DRV_VERSION;
108 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
109
110 /* e1000_pci_tbl - PCI Device ID Table
111 *
112 * Last entry must be all 0s
113 *
114 * Macro expands to...
115 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
116 */
117 static struct pci_device_id e1000_pci_tbl[] = {
118 INTEL_E1000_ETHERNET_DEVICE(0x1000),
119 INTEL_E1000_ETHERNET_DEVICE(0x1001),
120 INTEL_E1000_ETHERNET_DEVICE(0x1004),
121 INTEL_E1000_ETHERNET_DEVICE(0x1008),
122 INTEL_E1000_ETHERNET_DEVICE(0x1009),
123 INTEL_E1000_ETHERNET_DEVICE(0x100C),
124 INTEL_E1000_ETHERNET_DEVICE(0x100D),
125 INTEL_E1000_ETHERNET_DEVICE(0x100E),
126 INTEL_E1000_ETHERNET_DEVICE(0x100F),
127 INTEL_E1000_ETHERNET_DEVICE(0x1010),
128 INTEL_E1000_ETHERNET_DEVICE(0x1011),
129 INTEL_E1000_ETHERNET_DEVICE(0x1012),
130 INTEL_E1000_ETHERNET_DEVICE(0x1013),
131 INTEL_E1000_ETHERNET_DEVICE(0x1014),
132 INTEL_E1000_ETHERNET_DEVICE(0x1015),
133 INTEL_E1000_ETHERNET_DEVICE(0x1016),
134 INTEL_E1000_ETHERNET_DEVICE(0x1017),
135 INTEL_E1000_ETHERNET_DEVICE(0x1018),
136 INTEL_E1000_ETHERNET_DEVICE(0x1019),
137 INTEL_E1000_ETHERNET_DEVICE(0x101A),
138 INTEL_E1000_ETHERNET_DEVICE(0x101D),
139 INTEL_E1000_ETHERNET_DEVICE(0x101E),
140 INTEL_E1000_ETHERNET_DEVICE(0x1026),
141 INTEL_E1000_ETHERNET_DEVICE(0x1027),
142 INTEL_E1000_ETHERNET_DEVICE(0x1028),
143 INTEL_E1000_ETHERNET_DEVICE(0x105E),
144 INTEL_E1000_ETHERNET_DEVICE(0x105F),
145 INTEL_E1000_ETHERNET_DEVICE(0x1060),
146 INTEL_E1000_ETHERNET_DEVICE(0x1075),
147 INTEL_E1000_ETHERNET_DEVICE(0x1076),
148 INTEL_E1000_ETHERNET_DEVICE(0x1077),
149 INTEL_E1000_ETHERNET_DEVICE(0x1078),
150 INTEL_E1000_ETHERNET_DEVICE(0x1079),
151 INTEL_E1000_ETHERNET_DEVICE(0x107A),
152 INTEL_E1000_ETHERNET_DEVICE(0x107B),
153 INTEL_E1000_ETHERNET_DEVICE(0x107C),
154 INTEL_E1000_ETHERNET_DEVICE(0x107D),
155 INTEL_E1000_ETHERNET_DEVICE(0x107E),
156 INTEL_E1000_ETHERNET_DEVICE(0x107F),
157 INTEL_E1000_ETHERNET_DEVICE(0x108A),
158 INTEL_E1000_ETHERNET_DEVICE(0x108B),
159 INTEL_E1000_ETHERNET_DEVICE(0x108C),
160 INTEL_E1000_ETHERNET_DEVICE(0x1099),
161 INTEL_E1000_ETHERNET_DEVICE(0x109A),
162 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
163 /* required last entry */
164 {0,}
165 };
166
167 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
168
169 int e1000_up(struct e1000_adapter *adapter);
170 void e1000_down(struct e1000_adapter *adapter);
171 void e1000_reset(struct e1000_adapter *adapter);
172 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
173 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
174 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
175 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
176 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
177 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
178 struct e1000_tx_ring *txdr);
179 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
180 struct e1000_rx_ring *rxdr);
181 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
182 struct e1000_tx_ring *tx_ring);
183 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
184 struct e1000_rx_ring *rx_ring);
185 void e1000_update_stats(struct e1000_adapter *adapter);
186
187 /* Local Function Prototypes */
188
189 static int e1000_init_module(void);
190 static void e1000_exit_module(void);
191 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
192 static void __devexit e1000_remove(struct pci_dev *pdev);
193 static int e1000_alloc_queues(struct e1000_adapter *adapter);
194 static int e1000_sw_init(struct e1000_adapter *adapter);
195 static int e1000_open(struct net_device *netdev);
196 static int e1000_close(struct net_device *netdev);
197 static void e1000_configure_tx(struct e1000_adapter *adapter);
198 static void e1000_configure_rx(struct e1000_adapter *adapter);
199 static void e1000_setup_rctl(struct e1000_adapter *adapter);
200 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
201 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
202 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
203 struct e1000_tx_ring *tx_ring);
204 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
205 struct e1000_rx_ring *rx_ring);
206 static void e1000_set_multi(struct net_device *netdev);
207 static void e1000_update_phy_info(unsigned long data);
208 static void e1000_watchdog(unsigned long data);
209 static void e1000_watchdog_task(struct e1000_adapter *adapter);
210 static void e1000_82547_tx_fifo_stall(unsigned long data);
211 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
212 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
213 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
214 static int e1000_set_mac(struct net_device *netdev, void *p);
215 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
216 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
217 struct e1000_tx_ring *tx_ring);
218 #ifdef CONFIG_E1000_NAPI
219 static int e1000_clean(struct net_device *poll_dev, int *budget);
220 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
221 struct e1000_rx_ring *rx_ring,
222 int *work_done, int work_to_do);
223 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
224 struct e1000_rx_ring *rx_ring,
225 int *work_done, int work_to_do);
226 #else
227 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
228 struct e1000_rx_ring *rx_ring);
229 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
230 struct e1000_rx_ring *rx_ring);
231 #endif
232 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
233 struct e1000_rx_ring *rx_ring,
234 int cleaned_count);
235 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 struct e1000_rx_ring *rx_ring,
237 int cleaned_count);
238 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
239 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
240 int cmd);
241 void e1000_set_ethtool_ops(struct net_device *netdev);
242 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
243 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
244 static void e1000_tx_timeout(struct net_device *dev);
245 static void e1000_tx_timeout_task(struct net_device *dev);
246 static void e1000_smartspeed(struct e1000_adapter *adapter);
247 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
248 struct sk_buff *skb);
249
250 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
251 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
252 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
253 static void e1000_restore_vlan(struct e1000_adapter *adapter);
254
255 #ifdef CONFIG_PM
256 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
257 static int e1000_resume(struct pci_dev *pdev);
258 #endif
259
260 #ifdef CONFIG_NET_POLL_CONTROLLER
261 /* for netdump / net console */
262 static void e1000_netpoll (struct net_device *netdev);
263 #endif
264
265
266 /* Exported from other modules */
267
268 extern void e1000_check_options(struct e1000_adapter *adapter);
269
270 static struct pci_driver e1000_driver = {
271 .name = e1000_driver_name,
272 .id_table = e1000_pci_tbl,
273 .probe = e1000_probe,
274 .remove = __devexit_p(e1000_remove),
275 /* Power Managment Hooks */
276 #ifdef CONFIG_PM
277 .suspend = e1000_suspend,
278 .resume = e1000_resume
279 #endif
280 };
281
282 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
283 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
284 MODULE_LICENSE("GPL");
285 MODULE_VERSION(DRV_VERSION);
286
287 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
288 module_param(debug, int, 0);
289 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
290
291 /**
292 * e1000_init_module - Driver Registration Routine
293 *
294 * e1000_init_module is the first routine called when the driver is
295 * loaded. All it does is register with the PCI subsystem.
296 **/
297
298 static int __init
299 e1000_init_module(void)
300 {
301 int ret;
302 printk(KERN_INFO "%s - version %s\n",
303 e1000_driver_string, e1000_driver_version);
304
305 printk(KERN_INFO "%s\n", e1000_copyright);
306
307 ret = pci_module_init(&e1000_driver);
308
309 return ret;
310 }
311
312 module_init(e1000_init_module);
313
314 /**
315 * e1000_exit_module - Driver Exit Cleanup Routine
316 *
317 * e1000_exit_module is called just before the driver is removed
318 * from memory.
319 **/
320
321 static void __exit
322 e1000_exit_module(void)
323 {
324 pci_unregister_driver(&e1000_driver);
325 }
326
327 module_exit(e1000_exit_module);
328
329 /**
330 * e1000_irq_disable - Mask off interrupt generation on the NIC
331 * @adapter: board private structure
332 **/
333
334 static inline void
335 e1000_irq_disable(struct e1000_adapter *adapter)
336 {
337 atomic_inc(&adapter->irq_sem);
338 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
339 E1000_WRITE_FLUSH(&adapter->hw);
340 synchronize_irq(adapter->pdev->irq);
341 }
342
343 /**
344 * e1000_irq_enable - Enable default interrupt generation settings
345 * @adapter: board private structure
346 **/
347
348 static inline void
349 e1000_irq_enable(struct e1000_adapter *adapter)
350 {
351 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
352 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
353 E1000_WRITE_FLUSH(&adapter->hw);
354 }
355 }
356
357 static void
358 e1000_update_mng_vlan(struct e1000_adapter *adapter)
359 {
360 struct net_device *netdev = adapter->netdev;
361 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
362 uint16_t old_vid = adapter->mng_vlan_id;
363 if (adapter->vlgrp) {
364 if (!adapter->vlgrp->vlan_devices[vid]) {
365 if (adapter->hw.mng_cookie.status &
366 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
367 e1000_vlan_rx_add_vid(netdev, vid);
368 adapter->mng_vlan_id = vid;
369 } else
370 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
371
372 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
373 (vid != old_vid) &&
374 !adapter->vlgrp->vlan_devices[old_vid])
375 e1000_vlan_rx_kill_vid(netdev, old_vid);
376 }
377 }
378 }
379
380 /**
381 * e1000_release_hw_control - release control of the h/w to f/w
382 * @adapter: address of board private structure
383 *
384 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
385 * For ASF and Pass Through versions of f/w this means that the
386 * driver is no longer loaded. For AMT version (only with 82573) i
387 * of the f/w this means that the netowrk i/f is closed.
388 *
389 **/
390
391 static inline void
392 e1000_release_hw_control(struct e1000_adapter *adapter)
393 {
394 uint32_t ctrl_ext;
395 uint32_t swsm;
396
397 /* Let firmware taken over control of h/w */
398 switch (adapter->hw.mac_type) {
399 case e1000_82571:
400 case e1000_82572:
401 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
402 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
403 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
404 break;
405 case e1000_82573:
406 swsm = E1000_READ_REG(&adapter->hw, SWSM);
407 E1000_WRITE_REG(&adapter->hw, SWSM,
408 swsm & ~E1000_SWSM_DRV_LOAD);
409 default:
410 break;
411 }
412 }
413
414 /**
415 * e1000_get_hw_control - get control of the h/w from f/w
416 * @adapter: address of board private structure
417 *
418 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
419 * For ASF and Pass Through versions of f/w this means that
420 * the driver is loaded. For AMT version (only with 82573)
421 * of the f/w this means that the netowrk i/f is open.
422 *
423 **/
424
425 static inline void
426 e1000_get_hw_control(struct e1000_adapter *adapter)
427 {
428 uint32_t ctrl_ext;
429 uint32_t swsm;
430 /* Let firmware know the driver has taken over */
431 switch (adapter->hw.mac_type) {
432 case e1000_82571:
433 case e1000_82572:
434 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
435 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
436 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
437 break;
438 case e1000_82573:
439 swsm = E1000_READ_REG(&adapter->hw, SWSM);
440 E1000_WRITE_REG(&adapter->hw, SWSM,
441 swsm | E1000_SWSM_DRV_LOAD);
442 break;
443 default:
444 break;
445 }
446 }
447
448 int
449 e1000_up(struct e1000_adapter *adapter)
450 {
451 struct net_device *netdev = adapter->netdev;
452 int i, err;
453
454 /* hardware has been reset, we need to reload some things */
455
456 /* Reset the PHY if it was previously powered down */
457 if (adapter->hw.media_type == e1000_media_type_copper) {
458 uint16_t mii_reg;
459 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
460 if (mii_reg & MII_CR_POWER_DOWN)
461 e1000_phy_reset(&adapter->hw);
462 }
463
464 e1000_set_multi(netdev);
465
466 e1000_restore_vlan(adapter);
467
468 e1000_configure_tx(adapter);
469 e1000_setup_rctl(adapter);
470 e1000_configure_rx(adapter);
471 /* call E1000_DESC_UNUSED which always leaves
472 * at least 1 descriptor unused to make sure
473 * next_to_use != next_to_clean */
474 for (i = 0; i < adapter->num_rx_queues; i++) {
475 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
476 adapter->alloc_rx_buf(adapter, ring,
477 E1000_DESC_UNUSED(ring));
478 }
479
480 #ifdef CONFIG_PCI_MSI
481 if (adapter->hw.mac_type > e1000_82547_rev_2) {
482 adapter->have_msi = TRUE;
483 if ((err = pci_enable_msi(adapter->pdev))) {
484 DPRINTK(PROBE, ERR,
485 "Unable to allocate MSI interrupt Error: %d\n", err);
486 adapter->have_msi = FALSE;
487 }
488 }
489 #endif
490 if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
491 SA_SHIRQ | SA_SAMPLE_RANDOM,
492 netdev->name, netdev))) {
493 DPRINTK(PROBE, ERR,
494 "Unable to allocate interrupt Error: %d\n", err);
495 return err;
496 }
497
498 adapter->tx_queue_len = netdev->tx_queue_len;
499
500 mod_timer(&adapter->watchdog_timer, jiffies);
501
502 #ifdef CONFIG_E1000_NAPI
503 netif_poll_enable(netdev);
504 #endif
505 e1000_irq_enable(adapter);
506
507 return 0;
508 }
509
510 void
511 e1000_down(struct e1000_adapter *adapter)
512 {
513 struct net_device *netdev = adapter->netdev;
514 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
515 e1000_check_mng_mode(&adapter->hw);
516
517 e1000_irq_disable(adapter);
518
519 free_irq(adapter->pdev->irq, netdev);
520 #ifdef CONFIG_PCI_MSI
521 if (adapter->hw.mac_type > e1000_82547_rev_2 &&
522 adapter->have_msi == TRUE)
523 pci_disable_msi(adapter->pdev);
524 #endif
525 del_timer_sync(&adapter->tx_fifo_stall_timer);
526 del_timer_sync(&adapter->watchdog_timer);
527 del_timer_sync(&adapter->phy_info_timer);
528
529 #ifdef CONFIG_E1000_NAPI
530 netif_poll_disable(netdev);
531 #endif
532 netdev->tx_queue_len = adapter->tx_queue_len;
533 adapter->link_speed = 0;
534 adapter->link_duplex = 0;
535 netif_carrier_off(netdev);
536 netif_stop_queue(netdev);
537
538 e1000_reset(adapter);
539 e1000_clean_all_tx_rings(adapter);
540 e1000_clean_all_rx_rings(adapter);
541
542 /* Power down the PHY so no link is implied when interface is down *
543 * The PHY cannot be powered down if any of the following is TRUE *
544 * (a) WoL is enabled
545 * (b) AMT is active
546 * (c) SoL/IDER session is active */
547 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
548 adapter->hw.media_type == e1000_media_type_copper &&
549 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
550 !mng_mode_enabled &&
551 !e1000_check_phy_reset_block(&adapter->hw)) {
552 uint16_t mii_reg;
553 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
554 mii_reg |= MII_CR_POWER_DOWN;
555 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
556 mdelay(1);
557 }
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563 uint32_t pba, manc;
564 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566 /* Repartition Pba for greater than 9k mtu
567 * To take effect CTRL.RST is required.
568 */
569
570 switch (adapter->hw.mac_type) {
571 case e1000_82547:
572 case e1000_82547_rev_2:
573 pba = E1000_PBA_30K;
574 break;
575 case e1000_82571:
576 case e1000_82572:
577 pba = E1000_PBA_38K;
578 break;
579 case e1000_82573:
580 pba = E1000_PBA_12K;
581 break;
582 default:
583 pba = E1000_PBA_48K;
584 break;
585 }
586
587 if ((adapter->hw.mac_type != e1000_82573) &&
588 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
589 pba -= 8; /* allocate more FIFO for Tx */
590
591
592 if (adapter->hw.mac_type == e1000_82547) {
593 adapter->tx_fifo_head = 0;
594 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
595 adapter->tx_fifo_size =
596 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
597 atomic_set(&adapter->tx_fifo_stall, 0);
598 }
599
600 E1000_WRITE_REG(&adapter->hw, PBA, pba);
601
602 /* flow control settings */
603 /* Set the FC high water mark to 90% of the FIFO size.
604 * Required to clear last 3 LSB */
605 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
606
607 adapter->hw.fc_high_water = fc_high_water_mark;
608 adapter->hw.fc_low_water = fc_high_water_mark - 8;
609 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
610 adapter->hw.fc_send_xon = 1;
611 adapter->hw.fc = adapter->hw.original_fc;
612
613 /* Allow time for pending master requests to run */
614 e1000_reset_hw(&adapter->hw);
615 if (adapter->hw.mac_type >= e1000_82544)
616 E1000_WRITE_REG(&adapter->hw, WUC, 0);
617 if (e1000_init_hw(&adapter->hw))
618 DPRINTK(PROBE, ERR, "Hardware Error\n");
619 e1000_update_mng_vlan(adapter);
620 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
621 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
622
623 e1000_reset_adaptive(&adapter->hw);
624 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
625 if (adapter->en_mng_pt) {
626 manc = E1000_READ_REG(&adapter->hw, MANC);
627 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
628 E1000_WRITE_REG(&adapter->hw, MANC, manc);
629 }
630 }
631
632 /**
633 * e1000_probe - Device Initialization Routine
634 * @pdev: PCI device information struct
635 * @ent: entry in e1000_pci_tbl
636 *
637 * Returns 0 on success, negative on failure
638 *
639 * e1000_probe initializes an adapter identified by a pci_dev structure.
640 * The OS initialization, configuring of the adapter private structure,
641 * and a hardware reset occur.
642 **/
643
644 static int __devinit
645 e1000_probe(struct pci_dev *pdev,
646 const struct pci_device_id *ent)
647 {
648 struct net_device *netdev;
649 struct e1000_adapter *adapter;
650 unsigned long mmio_start, mmio_len;
651
652 static int cards_found = 0;
653 int i, err, pci_using_dac;
654 uint16_t eeprom_data;
655 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
656 if ((err = pci_enable_device(pdev)))
657 return err;
658
659 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
660 pci_using_dac = 1;
661 } else {
662 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
663 E1000_ERR("No usable DMA configuration, aborting\n");
664 return err;
665 }
666 pci_using_dac = 0;
667 }
668
669 if ((err = pci_request_regions(pdev, e1000_driver_name)))
670 return err;
671
672 pci_set_master(pdev);
673
674 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
675 if (!netdev) {
676 err = -ENOMEM;
677 goto err_alloc_etherdev;
678 }
679
680 SET_MODULE_OWNER(netdev);
681 SET_NETDEV_DEV(netdev, &pdev->dev);
682
683 pci_set_drvdata(pdev, netdev);
684 adapter = netdev_priv(netdev);
685 adapter->netdev = netdev;
686 adapter->pdev = pdev;
687 adapter->hw.back = adapter;
688 adapter->msg_enable = (1 << debug) - 1;
689
690 mmio_start = pci_resource_start(pdev, BAR_0);
691 mmio_len = pci_resource_len(pdev, BAR_0);
692
693 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
694 if (!adapter->hw.hw_addr) {
695 err = -EIO;
696 goto err_ioremap;
697 }
698
699 for (i = BAR_1; i <= BAR_5; i++) {
700 if (pci_resource_len(pdev, i) == 0)
701 continue;
702 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
703 adapter->hw.io_base = pci_resource_start(pdev, i);
704 break;
705 }
706 }
707
708 netdev->open = &e1000_open;
709 netdev->stop = &e1000_close;
710 netdev->hard_start_xmit = &e1000_xmit_frame;
711 netdev->get_stats = &e1000_get_stats;
712 netdev->set_multicast_list = &e1000_set_multi;
713 netdev->set_mac_address = &e1000_set_mac;
714 netdev->change_mtu = &e1000_change_mtu;
715 netdev->do_ioctl = &e1000_ioctl;
716 e1000_set_ethtool_ops(netdev);
717 netdev->tx_timeout = &e1000_tx_timeout;
718 netdev->watchdog_timeo = 5 * HZ;
719 #ifdef CONFIG_E1000_NAPI
720 netdev->poll = &e1000_clean;
721 netdev->weight = 64;
722 #endif
723 netdev->vlan_rx_register = e1000_vlan_rx_register;
724 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
725 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
726 #ifdef CONFIG_NET_POLL_CONTROLLER
727 netdev->poll_controller = e1000_netpoll;
728 #endif
729 strcpy(netdev->name, pci_name(pdev));
730
731 netdev->mem_start = mmio_start;
732 netdev->mem_end = mmio_start + mmio_len;
733 netdev->base_addr = adapter->hw.io_base;
734
735 adapter->bd_number = cards_found;
736
737 /* setup the private structure */
738
739 if ((err = e1000_sw_init(adapter)))
740 goto err_sw_init;
741
742 if ((err = e1000_check_phy_reset_block(&adapter->hw)))
743 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
744
745 if (adapter->hw.mac_type >= e1000_82543) {
746 netdev->features = NETIF_F_SG |
747 NETIF_F_HW_CSUM |
748 NETIF_F_HW_VLAN_TX |
749 NETIF_F_HW_VLAN_RX |
750 NETIF_F_HW_VLAN_FILTER;
751 }
752
753 #ifdef NETIF_F_TSO
754 if ((adapter->hw.mac_type >= e1000_82544) &&
755 (adapter->hw.mac_type != e1000_82547))
756 netdev->features |= NETIF_F_TSO;
757
758 #ifdef NETIF_F_TSO_IPV6
759 if (adapter->hw.mac_type > e1000_82547_rev_2)
760 netdev->features |= NETIF_F_TSO_IPV6;
761 #endif
762 #endif
763 if (pci_using_dac)
764 netdev->features |= NETIF_F_HIGHDMA;
765
766 /* hard_start_xmit is safe against parallel locking */
767 netdev->features |= NETIF_F_LLTX;
768
769 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
770
771 /* before reading the EEPROM, reset the controller to
772 * put the device in a known good starting state */
773
774 e1000_reset_hw(&adapter->hw);
775
776 /* make sure the EEPROM is good */
777
778 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
779 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
780 err = -EIO;
781 goto err_eeprom;
782 }
783
784 /* copy the MAC address out of the EEPROM */
785
786 if (e1000_read_mac_addr(&adapter->hw))
787 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
788 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
789 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
790
791 if (!is_valid_ether_addr(netdev->perm_addr)) {
792 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
793 err = -EIO;
794 goto err_eeprom;
795 }
796
797 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
798
799 e1000_get_bus_info(&adapter->hw);
800
801 init_timer(&adapter->tx_fifo_stall_timer);
802 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
803 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
804
805 init_timer(&adapter->watchdog_timer);
806 adapter->watchdog_timer.function = &e1000_watchdog;
807 adapter->watchdog_timer.data = (unsigned long) adapter;
808
809 INIT_WORK(&adapter->watchdog_task,
810 (void (*)(void *))e1000_watchdog_task, adapter);
811
812 init_timer(&adapter->phy_info_timer);
813 adapter->phy_info_timer.function = &e1000_update_phy_info;
814 adapter->phy_info_timer.data = (unsigned long) adapter;
815
816 INIT_WORK(&adapter->tx_timeout_task,
817 (void (*)(void *))e1000_tx_timeout_task, netdev);
818
819 /* we're going to reset, so assume we have no link for now */
820
821 netif_carrier_off(netdev);
822 netif_stop_queue(netdev);
823
824 e1000_check_options(adapter);
825
826 /* Initial Wake on LAN setting
827 * If APM wake is enabled in the EEPROM,
828 * enable the ACPI Magic Packet filter
829 */
830
831 switch (adapter->hw.mac_type) {
832 case e1000_82542_rev2_0:
833 case e1000_82542_rev2_1:
834 case e1000_82543:
835 break;
836 case e1000_82544:
837 e1000_read_eeprom(&adapter->hw,
838 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
839 eeprom_apme_mask = E1000_EEPROM_82544_APM;
840 break;
841 case e1000_82546:
842 case e1000_82546_rev_3:
843 case e1000_82571:
844 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
845 e1000_read_eeprom(&adapter->hw,
846 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
847 break;
848 }
849 /* Fall Through */
850 default:
851 e1000_read_eeprom(&adapter->hw,
852 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
853 break;
854 }
855 if (eeprom_data & eeprom_apme_mask)
856 adapter->wol |= E1000_WUFC_MAG;
857
858 /* print bus type/speed/width info */
859 {
860 struct e1000_hw *hw = &adapter->hw;
861 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
862 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
863 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
864 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
865 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
866 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
867 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
868 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
869 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
870 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
871 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
872 "32-bit"));
873 }
874
875 for (i = 0; i < 6; i++)
876 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
877
878 /* reset the hardware with the new settings */
879 e1000_reset(adapter);
880
881 /* If the controller is 82573 and f/w is AMT, do not set
882 * DRV_LOAD until the interface is up. For all other cases,
883 * let the f/w know that the h/w is now under the control
884 * of the driver. */
885 if (adapter->hw.mac_type != e1000_82573 ||
886 !e1000_check_mng_mode(&adapter->hw))
887 e1000_get_hw_control(adapter);
888
889 strcpy(netdev->name, "eth%d");
890 if ((err = register_netdev(netdev)))
891 goto err_register;
892
893 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
894
895 cards_found++;
896 return 0;
897
898 err_register:
899 err_sw_init:
900 err_eeprom:
901 iounmap(adapter->hw.hw_addr);
902 err_ioremap:
903 free_netdev(netdev);
904 err_alloc_etherdev:
905 pci_release_regions(pdev);
906 return err;
907 }
908
909 /**
910 * e1000_remove - Device Removal Routine
911 * @pdev: PCI device information struct
912 *
913 * e1000_remove is called by the PCI subsystem to alert the driver
914 * that it should release a PCI device. The could be caused by a
915 * Hot-Plug event, or because the driver is going to be removed from
916 * memory.
917 **/
918
919 static void __devexit
920 e1000_remove(struct pci_dev *pdev)
921 {
922 struct net_device *netdev = pci_get_drvdata(pdev);
923 struct e1000_adapter *adapter = netdev_priv(netdev);
924 uint32_t manc;
925 #ifdef CONFIG_E1000_NAPI
926 int i;
927 #endif
928
929 flush_scheduled_work();
930
931 if (adapter->hw.mac_type >= e1000_82540 &&
932 adapter->hw.media_type == e1000_media_type_copper) {
933 manc = E1000_READ_REG(&adapter->hw, MANC);
934 if (manc & E1000_MANC_SMBUS_EN) {
935 manc |= E1000_MANC_ARP_EN;
936 E1000_WRITE_REG(&adapter->hw, MANC, manc);
937 }
938 }
939
940 /* Release control of h/w to f/w. If f/w is AMT enabled, this
941 * would have already happened in close and is redundant. */
942 e1000_release_hw_control(adapter);
943
944 unregister_netdev(netdev);
945 #ifdef CONFIG_E1000_NAPI
946 for (i = 0; i < adapter->num_rx_queues; i++)
947 __dev_put(&adapter->polling_netdev[i]);
948 #endif
949
950 if (!e1000_check_phy_reset_block(&adapter->hw))
951 e1000_phy_hw_reset(&adapter->hw);
952
953 kfree(adapter->tx_ring);
954 kfree(adapter->rx_ring);
955 #ifdef CONFIG_E1000_NAPI
956 kfree(adapter->polling_netdev);
957 #endif
958
959 iounmap(adapter->hw.hw_addr);
960 pci_release_regions(pdev);
961
962 free_netdev(netdev);
963
964 pci_disable_device(pdev);
965 }
966
967 /**
968 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
969 * @adapter: board private structure to initialize
970 *
971 * e1000_sw_init initializes the Adapter private data structure.
972 * Fields are initialized based on PCI device information and
973 * OS network device settings (MTU size).
974 **/
975
976 static int __devinit
977 e1000_sw_init(struct e1000_adapter *adapter)
978 {
979 struct e1000_hw *hw = &adapter->hw;
980 struct net_device *netdev = adapter->netdev;
981 struct pci_dev *pdev = adapter->pdev;
982 #ifdef CONFIG_E1000_NAPI
983 int i;
984 #endif
985
986 /* PCI config space info */
987
988 hw->vendor_id = pdev->vendor;
989 hw->device_id = pdev->device;
990 hw->subsystem_vendor_id = pdev->subsystem_vendor;
991 hw->subsystem_id = pdev->subsystem_device;
992
993 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
994
995 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
996
997 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
998 adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
999 hw->max_frame_size = netdev->mtu +
1000 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1001 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1002
1003 /* identify the MAC */
1004
1005 if (e1000_set_mac_type(hw)) {
1006 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1007 return -EIO;
1008 }
1009
1010 /* initialize eeprom parameters */
1011
1012 if (e1000_init_eeprom_params(hw)) {
1013 E1000_ERR("EEPROM initialization failed\n");
1014 return -EIO;
1015 }
1016
1017 switch (hw->mac_type) {
1018 default:
1019 break;
1020 case e1000_82541:
1021 case e1000_82547:
1022 case e1000_82541_rev_2:
1023 case e1000_82547_rev_2:
1024 hw->phy_init_script = 1;
1025 break;
1026 }
1027
1028 e1000_set_media_type(hw);
1029
1030 hw->wait_autoneg_complete = FALSE;
1031 hw->tbi_compatibility_en = TRUE;
1032 hw->adaptive_ifs = TRUE;
1033
1034 /* Copper options */
1035
1036 if (hw->media_type == e1000_media_type_copper) {
1037 hw->mdix = AUTO_ALL_MODES;
1038 hw->disable_polarity_correction = FALSE;
1039 hw->master_slave = E1000_MASTER_SLAVE;
1040 }
1041
1042 adapter->num_tx_queues = 1;
1043 adapter->num_rx_queues = 1;
1044
1045 if (e1000_alloc_queues(adapter)) {
1046 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1047 return -ENOMEM;
1048 }
1049
1050 #ifdef CONFIG_E1000_NAPI
1051 for (i = 0; i < adapter->num_rx_queues; i++) {
1052 adapter->polling_netdev[i].priv = adapter;
1053 adapter->polling_netdev[i].poll = &e1000_clean;
1054 adapter->polling_netdev[i].weight = 64;
1055 dev_hold(&adapter->polling_netdev[i]);
1056 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1057 }
1058 spin_lock_init(&adapter->tx_queue_lock);
1059 #endif
1060
1061 atomic_set(&adapter->irq_sem, 1);
1062 spin_lock_init(&adapter->stats_lock);
1063
1064 return 0;
1065 }
1066
1067 /**
1068 * e1000_alloc_queues - Allocate memory for all rings
1069 * @adapter: board private structure to initialize
1070 *
1071 * We allocate one ring per queue at run-time since we don't know the
1072 * number of queues at compile-time. The polling_netdev array is
1073 * intended for Multiqueue, but should work fine with a single queue.
1074 **/
1075
1076 static int __devinit
1077 e1000_alloc_queues(struct e1000_adapter *adapter)
1078 {
1079 int size;
1080
1081 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1082 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1083 if (!adapter->tx_ring)
1084 return -ENOMEM;
1085 memset(adapter->tx_ring, 0, size);
1086
1087 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1088 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1089 if (!adapter->rx_ring) {
1090 kfree(adapter->tx_ring);
1091 return -ENOMEM;
1092 }
1093 memset(adapter->rx_ring, 0, size);
1094
1095 #ifdef CONFIG_E1000_NAPI
1096 size = sizeof(struct net_device) * adapter->num_rx_queues;
1097 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1098 if (!adapter->polling_netdev) {
1099 kfree(adapter->tx_ring);
1100 kfree(adapter->rx_ring);
1101 return -ENOMEM;
1102 }
1103 memset(adapter->polling_netdev, 0, size);
1104 #endif
1105
1106 return E1000_SUCCESS;
1107 }
1108
1109 /**
1110 * e1000_open - Called when a network interface is made active
1111 * @netdev: network interface device structure
1112 *
1113 * Returns 0 on success, negative value on failure
1114 *
1115 * The open entry point is called when a network interface is made
1116 * active by the system (IFF_UP). At this point all resources needed
1117 * for transmit and receive operations are allocated, the interrupt
1118 * handler is registered with the OS, the watchdog timer is started,
1119 * and the stack is notified that the interface is ready.
1120 **/
1121
1122 static int
1123 e1000_open(struct net_device *netdev)
1124 {
1125 struct e1000_adapter *adapter = netdev_priv(netdev);
1126 int err;
1127
1128 /* allocate transmit descriptors */
1129
1130 if ((err = e1000_setup_all_tx_resources(adapter)))
1131 goto err_setup_tx;
1132
1133 /* allocate receive descriptors */
1134
1135 if ((err = e1000_setup_all_rx_resources(adapter)))
1136 goto err_setup_rx;
1137
1138 if ((err = e1000_up(adapter)))
1139 goto err_up;
1140 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1141 if ((adapter->hw.mng_cookie.status &
1142 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1143 e1000_update_mng_vlan(adapter);
1144 }
1145
1146 /* If AMT is enabled, let the firmware know that the network
1147 * interface is now open */
1148 if (adapter->hw.mac_type == e1000_82573 &&
1149 e1000_check_mng_mode(&adapter->hw))
1150 e1000_get_hw_control(adapter);
1151
1152 return E1000_SUCCESS;
1153
1154 err_up:
1155 e1000_free_all_rx_resources(adapter);
1156 err_setup_rx:
1157 e1000_free_all_tx_resources(adapter);
1158 err_setup_tx:
1159 e1000_reset(adapter);
1160
1161 return err;
1162 }
1163
1164 /**
1165 * e1000_close - Disables a network interface
1166 * @netdev: network interface device structure
1167 *
1168 * Returns 0, this is not allowed to fail
1169 *
1170 * The close entry point is called when an interface is de-activated
1171 * by the OS. The hardware is still under the drivers control, but
1172 * needs to be disabled. A global MAC reset is issued to stop the
1173 * hardware, and all transmit and receive resources are freed.
1174 **/
1175
1176 static int
1177 e1000_close(struct net_device *netdev)
1178 {
1179 struct e1000_adapter *adapter = netdev_priv(netdev);
1180
1181 e1000_down(adapter);
1182
1183 e1000_free_all_tx_resources(adapter);
1184 e1000_free_all_rx_resources(adapter);
1185
1186 if ((adapter->hw.mng_cookie.status &
1187 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1188 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1189 }
1190
1191 /* If AMT is enabled, let the firmware know that the network
1192 * interface is now closed */
1193 if (adapter->hw.mac_type == e1000_82573 &&
1194 e1000_check_mng_mode(&adapter->hw))
1195 e1000_release_hw_control(adapter);
1196
1197 return 0;
1198 }
1199
1200 /**
1201 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1202 * @adapter: address of board private structure
1203 * @start: address of beginning of memory
1204 * @len: length of memory
1205 **/
1206 static inline boolean_t
1207 e1000_check_64k_bound(struct e1000_adapter *adapter,
1208 void *start, unsigned long len)
1209 {
1210 unsigned long begin = (unsigned long) start;
1211 unsigned long end = begin + len;
1212
1213 /* First rev 82545 and 82546 need to not allow any memory
1214 * write location to cross 64k boundary due to errata 23 */
1215 if (adapter->hw.mac_type == e1000_82545 ||
1216 adapter->hw.mac_type == e1000_82546) {
1217 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1218 }
1219
1220 return TRUE;
1221 }
1222
1223 /**
1224 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1225 * @adapter: board private structure
1226 * @txdr: tx descriptor ring (for a specific queue) to setup
1227 *
1228 * Return 0 on success, negative on failure
1229 **/
1230
1231 static int
1232 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1233 struct e1000_tx_ring *txdr)
1234 {
1235 struct pci_dev *pdev = adapter->pdev;
1236 int size;
1237
1238 size = sizeof(struct e1000_buffer) * txdr->count;
1239
1240 txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1241 if (!txdr->buffer_info) {
1242 DPRINTK(PROBE, ERR,
1243 "Unable to allocate memory for the transmit descriptor ring\n");
1244 return -ENOMEM;
1245 }
1246 memset(txdr->buffer_info, 0, size);
1247
1248 /* round up to nearest 4K */
1249
1250 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1251 E1000_ROUNDUP(txdr->size, 4096);
1252
1253 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1254 if (!txdr->desc) {
1255 setup_tx_desc_die:
1256 vfree(txdr->buffer_info);
1257 DPRINTK(PROBE, ERR,
1258 "Unable to allocate memory for the transmit descriptor ring\n");
1259 return -ENOMEM;
1260 }
1261
1262 /* Fix for errata 23, can't cross 64kB boundary */
1263 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1264 void *olddesc = txdr->desc;
1265 dma_addr_t olddma = txdr->dma;
1266 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1267 "at %p\n", txdr->size, txdr->desc);
1268 /* Try again, without freeing the previous */
1269 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1270 /* Failed allocation, critical failure */
1271 if (!txdr->desc) {
1272 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1273 goto setup_tx_desc_die;
1274 }
1275
1276 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1277 /* give up */
1278 pci_free_consistent(pdev, txdr->size, txdr->desc,
1279 txdr->dma);
1280 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1281 DPRINTK(PROBE, ERR,
1282 "Unable to allocate aligned memory "
1283 "for the transmit descriptor ring\n");
1284 vfree(txdr->buffer_info);
1285 return -ENOMEM;
1286 } else {
1287 /* Free old allocation, new allocation was successful */
1288 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1289 }
1290 }
1291 memset(txdr->desc, 0, txdr->size);
1292
1293 txdr->next_to_use = 0;
1294 txdr->next_to_clean = 0;
1295 spin_lock_init(&txdr->tx_lock);
1296
1297 return 0;
1298 }
1299
1300 /**
1301 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1302 * (Descriptors) for all queues
1303 * @adapter: board private structure
1304 *
1305 * If this function returns with an error, then it's possible one or
1306 * more of the rings is populated (while the rest are not). It is the
1307 * callers duty to clean those orphaned rings.
1308 *
1309 * Return 0 on success, negative on failure
1310 **/
1311
1312 int
1313 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1314 {
1315 int i, err = 0;
1316
1317 for (i = 0; i < adapter->num_tx_queues; i++) {
1318 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1319 if (err) {
1320 DPRINTK(PROBE, ERR,
1321 "Allocation for Tx Queue %u failed\n", i);
1322 break;
1323 }
1324 }
1325
1326 return err;
1327 }
1328
1329 /**
1330 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1331 * @adapter: board private structure
1332 *
1333 * Configure the Tx unit of the MAC after a reset.
1334 **/
1335
1336 static void
1337 e1000_configure_tx(struct e1000_adapter *adapter)
1338 {
1339 uint64_t tdba;
1340 struct e1000_hw *hw = &adapter->hw;
1341 uint32_t tdlen, tctl, tipg, tarc;
1342 uint32_t ipgr1, ipgr2;
1343
1344 /* Setup the HW Tx Head and Tail descriptor pointers */
1345
1346 switch (adapter->num_tx_queues) {
1347 case 1:
1348 default:
1349 tdba = adapter->tx_ring[0].dma;
1350 tdlen = adapter->tx_ring[0].count *
1351 sizeof(struct e1000_tx_desc);
1352 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1353 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1354 E1000_WRITE_REG(hw, TDLEN, tdlen);
1355 E1000_WRITE_REG(hw, TDH, 0);
1356 E1000_WRITE_REG(hw, TDT, 0);
1357 adapter->tx_ring[0].tdh = E1000_TDH;
1358 adapter->tx_ring[0].tdt = E1000_TDT;
1359 break;
1360 }
1361
1362 /* Set the default values for the Tx Inter Packet Gap timer */
1363
1364 if (hw->media_type == e1000_media_type_fiber ||
1365 hw->media_type == e1000_media_type_internal_serdes)
1366 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1367 else
1368 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1369
1370 switch (hw->mac_type) {
1371 case e1000_82542_rev2_0:
1372 case e1000_82542_rev2_1:
1373 tipg = DEFAULT_82542_TIPG_IPGT;
1374 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1375 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1376 break;
1377 default:
1378 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1379 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1380 break;
1381 }
1382 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1383 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1384 E1000_WRITE_REG(hw, TIPG, tipg);
1385
1386 /* Set the Tx Interrupt Delay register */
1387
1388 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1389 if (hw->mac_type >= e1000_82540)
1390 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1391
1392 /* Program the Transmit Control Register */
1393
1394 tctl = E1000_READ_REG(hw, TCTL);
1395
1396 tctl &= ~E1000_TCTL_CT;
1397 tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1398 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1399
1400 E1000_WRITE_REG(hw, TCTL, tctl);
1401
1402 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1403 tarc = E1000_READ_REG(hw, TARC0);
1404 tarc |= ((1 << 25) | (1 << 21));
1405 E1000_WRITE_REG(hw, TARC0, tarc);
1406 tarc = E1000_READ_REG(hw, TARC1);
1407 tarc |= (1 << 25);
1408 if (tctl & E1000_TCTL_MULR)
1409 tarc &= ~(1 << 28);
1410 else
1411 tarc |= (1 << 28);
1412 E1000_WRITE_REG(hw, TARC1, tarc);
1413 }
1414
1415 e1000_config_collision_dist(hw);
1416
1417 /* Setup Transmit Descriptor Settings for eop descriptor */
1418 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1419 E1000_TXD_CMD_IFCS;
1420
1421 if (hw->mac_type < e1000_82543)
1422 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1423 else
1424 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1425
1426 /* Cache if we're 82544 running in PCI-X because we'll
1427 * need this to apply a workaround later in the send path. */
1428 if (hw->mac_type == e1000_82544 &&
1429 hw->bus_type == e1000_bus_type_pcix)
1430 adapter->pcix_82544 = 1;
1431 }
1432
1433 /**
1434 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1435 * @adapter: board private structure
1436 * @rxdr: rx descriptor ring (for a specific queue) to setup
1437 *
1438 * Returns 0 on success, negative on failure
1439 **/
1440
1441 static int
1442 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1443 struct e1000_rx_ring *rxdr)
1444 {
1445 struct pci_dev *pdev = adapter->pdev;
1446 int size, desc_len;
1447
1448 size = sizeof(struct e1000_buffer) * rxdr->count;
1449 rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1450 if (!rxdr->buffer_info) {
1451 DPRINTK(PROBE, ERR,
1452 "Unable to allocate memory for the receive descriptor ring\n");
1453 return -ENOMEM;
1454 }
1455 memset(rxdr->buffer_info, 0, size);
1456
1457 size = sizeof(struct e1000_ps_page) * rxdr->count;
1458 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1459 if (!rxdr->ps_page) {
1460 vfree(rxdr->buffer_info);
1461 DPRINTK(PROBE, ERR,
1462 "Unable to allocate memory for the receive descriptor ring\n");
1463 return -ENOMEM;
1464 }
1465 memset(rxdr->ps_page, 0, size);
1466
1467 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1468 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1469 if (!rxdr->ps_page_dma) {
1470 vfree(rxdr->buffer_info);
1471 kfree(rxdr->ps_page);
1472 DPRINTK(PROBE, ERR,
1473 "Unable to allocate memory for the receive descriptor ring\n");
1474 return -ENOMEM;
1475 }
1476 memset(rxdr->ps_page_dma, 0, size);
1477
1478 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1479 desc_len = sizeof(struct e1000_rx_desc);
1480 else
1481 desc_len = sizeof(union e1000_rx_desc_packet_split);
1482
1483 /* Round up to nearest 4K */
1484
1485 rxdr->size = rxdr->count * desc_len;
1486 E1000_ROUNDUP(rxdr->size, 4096);
1487
1488 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1489
1490 if (!rxdr->desc) {
1491 DPRINTK(PROBE, ERR,
1492 "Unable to allocate memory for the receive descriptor ring\n");
1493 setup_rx_desc_die:
1494 vfree(rxdr->buffer_info);
1495 kfree(rxdr->ps_page);
1496 kfree(rxdr->ps_page_dma);
1497 return -ENOMEM;
1498 }
1499
1500 /* Fix for errata 23, can't cross 64kB boundary */
1501 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1502 void *olddesc = rxdr->desc;
1503 dma_addr_t olddma = rxdr->dma;
1504 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1505 "at %p\n", rxdr->size, rxdr->desc);
1506 /* Try again, without freeing the previous */
1507 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1508 /* Failed allocation, critical failure */
1509 if (!rxdr->desc) {
1510 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1511 DPRINTK(PROBE, ERR,
1512 "Unable to allocate memory "
1513 "for the receive descriptor ring\n");
1514 goto setup_rx_desc_die;
1515 }
1516
1517 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1518 /* give up */
1519 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1520 rxdr->dma);
1521 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1522 DPRINTK(PROBE, ERR,
1523 "Unable to allocate aligned memory "
1524 "for the receive descriptor ring\n");
1525 goto setup_rx_desc_die;
1526 } else {
1527 /* Free old allocation, new allocation was successful */
1528 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1529 }
1530 }
1531 memset(rxdr->desc, 0, rxdr->size);
1532
1533 rxdr->next_to_clean = 0;
1534 rxdr->next_to_use = 0;
1535
1536 return 0;
1537 }
1538
1539 /**
1540 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1541 * (Descriptors) for all queues
1542 * @adapter: board private structure
1543 *
1544 * If this function returns with an error, then it's possible one or
1545 * more of the rings is populated (while the rest are not). It is the
1546 * callers duty to clean those orphaned rings.
1547 *
1548 * Return 0 on success, negative on failure
1549 **/
1550
1551 int
1552 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1553 {
1554 int i, err = 0;
1555
1556 for (i = 0; i < adapter->num_rx_queues; i++) {
1557 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1558 if (err) {
1559 DPRINTK(PROBE, ERR,
1560 "Allocation for Rx Queue %u failed\n", i);
1561 break;
1562 }
1563 }
1564
1565 return err;
1566 }
1567
1568 /**
1569 * e1000_setup_rctl - configure the receive control registers
1570 * @adapter: Board private structure
1571 **/
1572 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1573 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1574 static void
1575 e1000_setup_rctl(struct e1000_adapter *adapter)
1576 {
1577 uint32_t rctl, rfctl;
1578 uint32_t psrctl = 0;
1579 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1580 uint32_t pages = 0;
1581 #endif
1582
1583 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1584
1585 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1586
1587 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1588 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1589 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1590
1591 if (adapter->hw.mac_type > e1000_82543)
1592 rctl |= E1000_RCTL_SECRC;
1593
1594 if (adapter->hw.tbi_compatibility_on == 1)
1595 rctl |= E1000_RCTL_SBP;
1596 else
1597 rctl &= ~E1000_RCTL_SBP;
1598
1599 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1600 rctl &= ~E1000_RCTL_LPE;
1601 else
1602 rctl |= E1000_RCTL_LPE;
1603
1604 /* Setup buffer sizes */
1605 if (adapter->hw.mac_type >= e1000_82571) {
1606 /* We can now specify buffers in 1K increments.
1607 * BSIZE and BSEX are ignored in this case. */
1608 rctl |= adapter->rx_buffer_len << 0x11;
1609 } else {
1610 rctl &= ~E1000_RCTL_SZ_4096;
1611 rctl |= E1000_RCTL_BSEX;
1612 switch (adapter->rx_buffer_len) {
1613 case E1000_RXBUFFER_2048:
1614 default:
1615 rctl |= E1000_RCTL_SZ_2048;
1616 rctl &= ~E1000_RCTL_BSEX;
1617 break;
1618 case E1000_RXBUFFER_4096:
1619 rctl |= E1000_RCTL_SZ_4096;
1620 break;
1621 case E1000_RXBUFFER_8192:
1622 rctl |= E1000_RCTL_SZ_8192;
1623 break;
1624 case E1000_RXBUFFER_16384:
1625 rctl |= E1000_RCTL_SZ_16384;
1626 break;
1627 }
1628 }
1629
1630 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1631 /* 82571 and greater support packet-split where the protocol
1632 * header is placed in skb->data and the packet data is
1633 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1634 * In the case of a non-split, skb->data is linearly filled,
1635 * followed by the page buffers. Therefore, skb->data is
1636 * sized to hold the largest protocol header.
1637 */
1638 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1639 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1640 PAGE_SIZE <= 16384)
1641 adapter->rx_ps_pages = pages;
1642 else
1643 adapter->rx_ps_pages = 0;
1644 #endif
1645 if (adapter->rx_ps_pages) {
1646 /* Configure extra packet-split registers */
1647 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1648 rfctl |= E1000_RFCTL_EXTEN;
1649 /* disable IPv6 packet split support */
1650 rfctl |= E1000_RFCTL_IPV6_DIS;
1651 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1652
1653 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1654
1655 psrctl |= adapter->rx_ps_bsize0 >>
1656 E1000_PSRCTL_BSIZE0_SHIFT;
1657
1658 switch (adapter->rx_ps_pages) {
1659 case 3:
1660 psrctl |= PAGE_SIZE <<
1661 E1000_PSRCTL_BSIZE3_SHIFT;
1662 case 2:
1663 psrctl |= PAGE_SIZE <<
1664 E1000_PSRCTL_BSIZE2_SHIFT;
1665 case 1:
1666 psrctl |= PAGE_SIZE >>
1667 E1000_PSRCTL_BSIZE1_SHIFT;
1668 break;
1669 }
1670
1671 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1672 }
1673
1674 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1675 }
1676
1677 /**
1678 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1679 * @adapter: board private structure
1680 *
1681 * Configure the Rx unit of the MAC after a reset.
1682 **/
1683
1684 static void
1685 e1000_configure_rx(struct e1000_adapter *adapter)
1686 {
1687 uint64_t rdba;
1688 struct e1000_hw *hw = &adapter->hw;
1689 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1690
1691 if (adapter->rx_ps_pages) {
1692 rdlen = adapter->rx_ring[0].count *
1693 sizeof(union e1000_rx_desc_packet_split);
1694 adapter->clean_rx = e1000_clean_rx_irq_ps;
1695 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1696 } else {
1697 rdlen = adapter->rx_ring[0].count *
1698 sizeof(struct e1000_rx_desc);
1699 adapter->clean_rx = e1000_clean_rx_irq;
1700 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1701 }
1702
1703 /* disable receives while setting up the descriptors */
1704 rctl = E1000_READ_REG(hw, RCTL);
1705 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1706
1707 /* set the Receive Delay Timer Register */
1708 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1709
1710 if (hw->mac_type >= e1000_82540) {
1711 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1712 if (adapter->itr > 1)
1713 E1000_WRITE_REG(hw, ITR,
1714 1000000000 / (adapter->itr * 256));
1715 }
1716
1717 if (hw->mac_type >= e1000_82571) {
1718 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1719 /* Reset delay timers after every interrupt */
1720 ctrl_ext |= E1000_CTRL_EXT_CANC;
1721 #ifdef CONFIG_E1000_NAPI
1722 /* Auto-Mask interrupts upon ICR read. */
1723 ctrl_ext |= E1000_CTRL_EXT_IAME;
1724 #endif
1725 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1726 E1000_WRITE_REG(hw, IAM, ~0);
1727 E1000_WRITE_FLUSH(hw);
1728 }
1729
1730 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1731 * the Base and Length of the Rx Descriptor Ring */
1732 switch (adapter->num_rx_queues) {
1733 case 1:
1734 default:
1735 rdba = adapter->rx_ring[0].dma;
1736 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1737 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1738 E1000_WRITE_REG(hw, RDLEN, rdlen);
1739 E1000_WRITE_REG(hw, RDH, 0);
1740 E1000_WRITE_REG(hw, RDT, 0);
1741 adapter->rx_ring[0].rdh = E1000_RDH;
1742 adapter->rx_ring[0].rdt = E1000_RDT;
1743 break;
1744 }
1745
1746 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1747 if (hw->mac_type >= e1000_82543) {
1748 rxcsum = E1000_READ_REG(hw, RXCSUM);
1749 if (adapter->rx_csum == TRUE) {
1750 rxcsum |= E1000_RXCSUM_TUOFL;
1751
1752 /* Enable 82571 IPv4 payload checksum for UDP fragments
1753 * Must be used in conjunction with packet-split. */
1754 if ((hw->mac_type >= e1000_82571) &&
1755 (adapter->rx_ps_pages)) {
1756 rxcsum |= E1000_RXCSUM_IPPCSE;
1757 }
1758 } else {
1759 rxcsum &= ~E1000_RXCSUM_TUOFL;
1760 /* don't need to clear IPPCSE as it defaults to 0 */
1761 }
1762 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1763 }
1764
1765 if (hw->mac_type == e1000_82573)
1766 E1000_WRITE_REG(hw, ERT, 0x0100);
1767
1768 /* Enable Receives */
1769 E1000_WRITE_REG(hw, RCTL, rctl);
1770 }
1771
1772 /**
1773 * e1000_free_tx_resources - Free Tx Resources per Queue
1774 * @adapter: board private structure
1775 * @tx_ring: Tx descriptor ring for a specific queue
1776 *
1777 * Free all transmit software resources
1778 **/
1779
1780 static void
1781 e1000_free_tx_resources(struct e1000_adapter *adapter,
1782 struct e1000_tx_ring *tx_ring)
1783 {
1784 struct pci_dev *pdev = adapter->pdev;
1785
1786 e1000_clean_tx_ring(adapter, tx_ring);
1787
1788 vfree(tx_ring->buffer_info);
1789 tx_ring->buffer_info = NULL;
1790
1791 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1792
1793 tx_ring->desc = NULL;
1794 }
1795
1796 /**
1797 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1798 * @adapter: board private structure
1799 *
1800 * Free all transmit software resources
1801 **/
1802
1803 void
1804 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1805 {
1806 int i;
1807
1808 for (i = 0; i < adapter->num_tx_queues; i++)
1809 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1810 }
1811
1812 static inline void
1813 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1814 struct e1000_buffer *buffer_info)
1815 {
1816 if (buffer_info->dma) {
1817 pci_unmap_page(adapter->pdev,
1818 buffer_info->dma,
1819 buffer_info->length,
1820 PCI_DMA_TODEVICE);
1821 }
1822 if (buffer_info->skb)
1823 dev_kfree_skb_any(buffer_info->skb);
1824 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1825 }
1826
1827 /**
1828 * e1000_clean_tx_ring - Free Tx Buffers
1829 * @adapter: board private structure
1830 * @tx_ring: ring to be cleaned
1831 **/
1832
1833 static void
1834 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1835 struct e1000_tx_ring *tx_ring)
1836 {
1837 struct e1000_buffer *buffer_info;
1838 unsigned long size;
1839 unsigned int i;
1840
1841 /* Free all the Tx ring sk_buffs */
1842
1843 for (i = 0; i < tx_ring->count; i++) {
1844 buffer_info = &tx_ring->buffer_info[i];
1845 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1846 }
1847
1848 size = sizeof(struct e1000_buffer) * tx_ring->count;
1849 memset(tx_ring->buffer_info, 0, size);
1850
1851 /* Zero out the descriptor ring */
1852
1853 memset(tx_ring->desc, 0, tx_ring->size);
1854
1855 tx_ring->next_to_use = 0;
1856 tx_ring->next_to_clean = 0;
1857 tx_ring->last_tx_tso = 0;
1858
1859 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1860 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1861 }
1862
1863 /**
1864 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1865 * @adapter: board private structure
1866 **/
1867
1868 static void
1869 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1870 {
1871 int i;
1872
1873 for (i = 0; i < adapter->num_tx_queues; i++)
1874 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1875 }
1876
1877 /**
1878 * e1000_free_rx_resources - Free Rx Resources
1879 * @adapter: board private structure
1880 * @rx_ring: ring to clean the resources from
1881 *
1882 * Free all receive software resources
1883 **/
1884
1885 static void
1886 e1000_free_rx_resources(struct e1000_adapter *adapter,
1887 struct e1000_rx_ring *rx_ring)
1888 {
1889 struct pci_dev *pdev = adapter->pdev;
1890
1891 e1000_clean_rx_ring(adapter, rx_ring);
1892
1893 vfree(rx_ring->buffer_info);
1894 rx_ring->buffer_info = NULL;
1895 kfree(rx_ring->ps_page);
1896 rx_ring->ps_page = NULL;
1897 kfree(rx_ring->ps_page_dma);
1898 rx_ring->ps_page_dma = NULL;
1899
1900 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1901
1902 rx_ring->desc = NULL;
1903 }
1904
1905 /**
1906 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1907 * @adapter: board private structure
1908 *
1909 * Free all receive software resources
1910 **/
1911
1912 void
1913 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1914 {
1915 int i;
1916
1917 for (i = 0; i < adapter->num_rx_queues; i++)
1918 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1919 }
1920
1921 /**
1922 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1923 * @adapter: board private structure
1924 * @rx_ring: ring to free buffers from
1925 **/
1926
1927 static void
1928 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1929 struct e1000_rx_ring *rx_ring)
1930 {
1931 struct e1000_buffer *buffer_info;
1932 struct e1000_ps_page *ps_page;
1933 struct e1000_ps_page_dma *ps_page_dma;
1934 struct pci_dev *pdev = adapter->pdev;
1935 unsigned long size;
1936 unsigned int i, j;
1937
1938 /* Free all the Rx ring sk_buffs */
1939 for (i = 0; i < rx_ring->count; i++) {
1940 buffer_info = &rx_ring->buffer_info[i];
1941 if (buffer_info->skb) {
1942 pci_unmap_single(pdev,
1943 buffer_info->dma,
1944 buffer_info->length,
1945 PCI_DMA_FROMDEVICE);
1946
1947 dev_kfree_skb(buffer_info->skb);
1948 buffer_info->skb = NULL;
1949 }
1950 ps_page = &rx_ring->ps_page[i];
1951 ps_page_dma = &rx_ring->ps_page_dma[i];
1952 for (j = 0; j < adapter->rx_ps_pages; j++) {
1953 if (!ps_page->ps_page[j]) break;
1954 pci_unmap_page(pdev,
1955 ps_page_dma->ps_page_dma[j],
1956 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1957 ps_page_dma->ps_page_dma[j] = 0;
1958 put_page(ps_page->ps_page[j]);
1959 ps_page->ps_page[j] = NULL;
1960 }
1961 }
1962
1963 size = sizeof(struct e1000_buffer) * rx_ring->count;
1964 memset(rx_ring->buffer_info, 0, size);
1965 size = sizeof(struct e1000_ps_page) * rx_ring->count;
1966 memset(rx_ring->ps_page, 0, size);
1967 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1968 memset(rx_ring->ps_page_dma, 0, size);
1969
1970 /* Zero out the descriptor ring */
1971
1972 memset(rx_ring->desc, 0, rx_ring->size);
1973
1974 rx_ring->next_to_clean = 0;
1975 rx_ring->next_to_use = 0;
1976
1977 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1978 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1979 }
1980
1981 /**
1982 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1983 * @adapter: board private structure
1984 **/
1985
1986 static void
1987 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1988 {
1989 int i;
1990
1991 for (i = 0; i < adapter->num_rx_queues; i++)
1992 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1993 }
1994
1995 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1996 * and memory write and invalidate disabled for certain operations
1997 */
1998 static void
1999 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2000 {
2001 struct net_device *netdev = adapter->netdev;
2002 uint32_t rctl;
2003
2004 e1000_pci_clear_mwi(&adapter->hw);
2005
2006 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2007 rctl |= E1000_RCTL_RST;
2008 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2009 E1000_WRITE_FLUSH(&adapter->hw);
2010 mdelay(5);
2011
2012 if (netif_running(netdev))
2013 e1000_clean_all_rx_rings(adapter);
2014 }
2015
2016 static void
2017 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2018 {
2019 struct net_device *netdev = adapter->netdev;
2020 uint32_t rctl;
2021
2022 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2023 rctl &= ~E1000_RCTL_RST;
2024 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2025 E1000_WRITE_FLUSH(&adapter->hw);
2026 mdelay(5);
2027
2028 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2029 e1000_pci_set_mwi(&adapter->hw);
2030
2031 if (netif_running(netdev)) {
2032 /* No need to loop, because 82542 supports only 1 queue */
2033 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2034 e1000_configure_rx(adapter);
2035 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2036 }
2037 }
2038
2039 /**
2040 * e1000_set_mac - Change the Ethernet Address of the NIC
2041 * @netdev: network interface device structure
2042 * @p: pointer to an address structure
2043 *
2044 * Returns 0 on success, negative on failure
2045 **/
2046
2047 static int
2048 e1000_set_mac(struct net_device *netdev, void *p)
2049 {
2050 struct e1000_adapter *adapter = netdev_priv(netdev);
2051 struct sockaddr *addr = p;
2052
2053 if (!is_valid_ether_addr(addr->sa_data))
2054 return -EADDRNOTAVAIL;
2055
2056 /* 82542 2.0 needs to be in reset to write receive address registers */
2057
2058 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2059 e1000_enter_82542_rst(adapter);
2060
2061 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2062 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2063
2064 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2065
2066 /* With 82571 controllers, LAA may be overwritten (with the default)
2067 * due to controller reset from the other port. */
2068 if (adapter->hw.mac_type == e1000_82571) {
2069 /* activate the work around */
2070 adapter->hw.laa_is_present = 1;
2071
2072 /* Hold a copy of the LAA in RAR[14] This is done so that
2073 * between the time RAR[0] gets clobbered and the time it
2074 * gets fixed (in e1000_watchdog), the actual LAA is in one
2075 * of the RARs and no incoming packets directed to this port
2076 * are dropped. Eventaully the LAA will be in RAR[0] and
2077 * RAR[14] */
2078 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2079 E1000_RAR_ENTRIES - 1);
2080 }
2081
2082 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2083 e1000_leave_82542_rst(adapter);
2084
2085 return 0;
2086 }
2087
2088 /**
2089 * e1000_set_multi - Multicast and Promiscuous mode set
2090 * @netdev: network interface device structure
2091 *
2092 * The set_multi entry point is called whenever the multicast address
2093 * list or the network interface flags are updated. This routine is
2094 * responsible for configuring the hardware for proper multicast,
2095 * promiscuous mode, and all-multi behavior.
2096 **/
2097
2098 static void
2099 e1000_set_multi(struct net_device *netdev)
2100 {
2101 struct e1000_adapter *adapter = netdev_priv(netdev);
2102 struct e1000_hw *hw = &adapter->hw;
2103 struct dev_mc_list *mc_ptr;
2104 uint32_t rctl;
2105 uint32_t hash_value;
2106 int i, rar_entries = E1000_RAR_ENTRIES;
2107
2108 /* reserve RAR[14] for LAA over-write work-around */
2109 if (adapter->hw.mac_type == e1000_82571)
2110 rar_entries--;
2111
2112 /* Check for Promiscuous and All Multicast modes */
2113
2114 rctl = E1000_READ_REG(hw, RCTL);
2115
2116 if (netdev->flags & IFF_PROMISC) {
2117 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2118 } else if (netdev->flags & IFF_ALLMULTI) {
2119 rctl |= E1000_RCTL_MPE;
2120 rctl &= ~E1000_RCTL_UPE;
2121 } else {
2122 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2123 }
2124
2125 E1000_WRITE_REG(hw, RCTL, rctl);
2126
2127 /* 82542 2.0 needs to be in reset to write receive address registers */
2128
2129 if (hw->mac_type == e1000_82542_rev2_0)
2130 e1000_enter_82542_rst(adapter);
2131
2132 /* load the first 14 multicast address into the exact filters 1-14
2133 * RAR 0 is used for the station MAC adddress
2134 * if there are not 14 addresses, go ahead and clear the filters
2135 * -- with 82571 controllers only 0-13 entries are filled here
2136 */
2137 mc_ptr = netdev->mc_list;
2138
2139 for (i = 1; i < rar_entries; i++) {
2140 if (mc_ptr) {
2141 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2142 mc_ptr = mc_ptr->next;
2143 } else {
2144 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2145 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2146 }
2147 }
2148
2149 /* clear the old settings from the multicast hash table */
2150
2151 for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2152 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2153
2154 /* load any remaining addresses into the hash table */
2155
2156 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2157 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2158 e1000_mta_set(hw, hash_value);
2159 }
2160
2161 if (hw->mac_type == e1000_82542_rev2_0)
2162 e1000_leave_82542_rst(adapter);
2163 }
2164
2165 /* Need to wait a few seconds after link up to get diagnostic information from
2166 * the phy */
2167
2168 static void
2169 e1000_update_phy_info(unsigned long data)
2170 {
2171 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2172 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2173 }
2174
2175 /**
2176 * e1000_82547_tx_fifo_stall - Timer Call-back
2177 * @data: pointer to adapter cast into an unsigned long
2178 **/
2179
2180 static void
2181 e1000_82547_tx_fifo_stall(unsigned long data)
2182 {
2183 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2184 struct net_device *netdev = adapter->netdev;
2185 uint32_t tctl;
2186
2187 if (atomic_read(&adapter->tx_fifo_stall)) {
2188 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2189 E1000_READ_REG(&adapter->hw, TDH)) &&
2190 (E1000_READ_REG(&adapter->hw, TDFT) ==
2191 E1000_READ_REG(&adapter->hw, TDFH)) &&
2192 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2193 E1000_READ_REG(&adapter->hw, TDFHS))) {
2194 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2195 E1000_WRITE_REG(&adapter->hw, TCTL,
2196 tctl & ~E1000_TCTL_EN);
2197 E1000_WRITE_REG(&adapter->hw, TDFT,
2198 adapter->tx_head_addr);
2199 E1000_WRITE_REG(&adapter->hw, TDFH,
2200 adapter->tx_head_addr);
2201 E1000_WRITE_REG(&adapter->hw, TDFTS,
2202 adapter->tx_head_addr);
2203 E1000_WRITE_REG(&adapter->hw, TDFHS,
2204 adapter->tx_head_addr);
2205 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2206 E1000_WRITE_FLUSH(&adapter->hw);
2207
2208 adapter->tx_fifo_head = 0;
2209 atomic_set(&adapter->tx_fifo_stall, 0);
2210 netif_wake_queue(netdev);
2211 } else {
2212 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2213 }
2214 }
2215 }
2216
2217 /**
2218 * e1000_watchdog - Timer Call-back
2219 * @data: pointer to adapter cast into an unsigned long
2220 **/
2221 static void
2222 e1000_watchdog(unsigned long data)
2223 {
2224 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2225
2226 /* Do the rest outside of interrupt context */
2227 schedule_work(&adapter->watchdog_task);
2228 }
2229
2230 static void
2231 e1000_watchdog_task(struct e1000_adapter *adapter)
2232 {
2233 struct net_device *netdev = adapter->netdev;
2234 struct e1000_tx_ring *txdr = adapter->tx_ring;
2235 uint32_t link;
2236
2237 e1000_check_for_link(&adapter->hw);
2238 if (adapter->hw.mac_type == e1000_82573) {
2239 e1000_enable_tx_pkt_filtering(&adapter->hw);
2240 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2241 e1000_update_mng_vlan(adapter);
2242 }
2243
2244 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2245 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2246 link = !adapter->hw.serdes_link_down;
2247 else
2248 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2249
2250 if (link) {
2251 if (!netif_carrier_ok(netdev)) {
2252 e1000_get_speed_and_duplex(&adapter->hw,
2253 &adapter->link_speed,
2254 &adapter->link_duplex);
2255
2256 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2257 adapter->link_speed,
2258 adapter->link_duplex == FULL_DUPLEX ?
2259 "Full Duplex" : "Half Duplex");
2260
2261 /* tweak tx_queue_len according to speed/duplex */
2262 netdev->tx_queue_len = adapter->tx_queue_len;
2263 adapter->tx_timeout_factor = 1;
2264 if (adapter->link_duplex == HALF_DUPLEX) {
2265 switch (adapter->link_speed) {
2266 case SPEED_10:
2267 netdev->tx_queue_len = 10;
2268 adapter->tx_timeout_factor = 8;
2269 break;
2270 case SPEED_100:
2271 netdev->tx_queue_len = 100;
2272 break;
2273 }
2274 }
2275
2276 netif_carrier_on(netdev);
2277 netif_wake_queue(netdev);
2278 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2279 adapter->smartspeed = 0;
2280 }
2281 } else {
2282 if (netif_carrier_ok(netdev)) {
2283 adapter->link_speed = 0;
2284 adapter->link_duplex = 0;
2285 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2286 netif_carrier_off(netdev);
2287 netif_stop_queue(netdev);
2288 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2289 }
2290
2291 e1000_smartspeed(adapter);
2292 }
2293
2294 e1000_update_stats(adapter);
2295
2296 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2297 adapter->tpt_old = adapter->stats.tpt;
2298 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2299 adapter->colc_old = adapter->stats.colc;
2300
2301 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2302 adapter->gorcl_old = adapter->stats.gorcl;
2303 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2304 adapter->gotcl_old = adapter->stats.gotcl;
2305
2306 e1000_update_adaptive(&adapter->hw);
2307
2308 if (!netif_carrier_ok(netdev)) {
2309 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2310 /* We've lost link, so the controller stops DMA,
2311 * but we've got queued Tx work that's never going
2312 * to get done, so reset controller to flush Tx.
2313 * (Do the reset outside of interrupt context). */
2314 schedule_work(&adapter->tx_timeout_task);
2315 }
2316 }
2317
2318 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2319 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2320 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2321 * asymmetrical Tx or Rx gets ITR=8000; everyone
2322 * else is between 2000-8000. */
2323 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2324 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2325 adapter->gotcl - adapter->gorcl :
2326 adapter->gorcl - adapter->gotcl) / 10000;
2327 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2328 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2329 }
2330
2331 /* Cause software interrupt to ensure rx ring is cleaned */
2332 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2333
2334 /* Force detection of hung controller every watchdog period */
2335 adapter->detect_tx_hung = TRUE;
2336
2337 /* With 82571 controllers, LAA may be overwritten due to controller
2338 * reset from the other port. Set the appropriate LAA in RAR[0] */
2339 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2340 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2341
2342 /* Reset the timer */
2343 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2344 }
2345
2346 #define E1000_TX_FLAGS_CSUM 0x00000001
2347 #define E1000_TX_FLAGS_VLAN 0x00000002
2348 #define E1000_TX_FLAGS_TSO 0x00000004
2349 #define E1000_TX_FLAGS_IPV4 0x00000008
2350 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2351 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2352
2353 static inline int
2354 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2355 struct sk_buff *skb)
2356 {
2357 #ifdef NETIF_F_TSO
2358 struct e1000_context_desc *context_desc;
2359 struct e1000_buffer *buffer_info;
2360 unsigned int i;
2361 uint32_t cmd_length = 0;
2362 uint16_t ipcse = 0, tucse, mss;
2363 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2364 int err;
2365
2366 if (skb_shinfo(skb)->tso_size) {
2367 if (skb_header_cloned(skb)) {
2368 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2369 if (err)
2370 return err;
2371 }
2372
2373 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2374 mss = skb_shinfo(skb)->tso_size;
2375 if (skb->protocol == ntohs(ETH_P_IP)) {
2376 skb->nh.iph->tot_len = 0;
2377 skb->nh.iph->check = 0;
2378 skb->h.th->check =
2379 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2380 skb->nh.iph->daddr,
2381 0,
2382 IPPROTO_TCP,
2383 0);
2384 cmd_length = E1000_TXD_CMD_IP;
2385 ipcse = skb->h.raw - skb->data - 1;
2386 #ifdef NETIF_F_TSO_IPV6
2387 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2388 skb->nh.ipv6h->payload_len = 0;
2389 skb->h.th->check =
2390 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2391 &skb->nh.ipv6h->daddr,
2392 0,
2393 IPPROTO_TCP,
2394 0);
2395 ipcse = 0;
2396 #endif
2397 }
2398 ipcss = skb->nh.raw - skb->data;
2399 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2400 tucss = skb->h.raw - skb->data;
2401 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2402 tucse = 0;
2403
2404 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2405 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2406
2407 i = tx_ring->next_to_use;
2408 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2409 buffer_info = &tx_ring->buffer_info[i];
2410
2411 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2412 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2413 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2414 context_desc->upper_setup.tcp_fields.tucss = tucss;
2415 context_desc->upper_setup.tcp_fields.tucso = tucso;
2416 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2417 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2418 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2419 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2420
2421 buffer_info->time_stamp = jiffies;
2422
2423 if (++i == tx_ring->count) i = 0;
2424 tx_ring->next_to_use = i;
2425
2426 return TRUE;
2427 }
2428 #endif
2429
2430 return FALSE;
2431 }
2432
2433 static inline boolean_t
2434 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2435 struct sk_buff *skb)
2436 {
2437 struct e1000_context_desc *context_desc;
2438 struct e1000_buffer *buffer_info;
2439 unsigned int i;
2440 uint8_t css;
2441
2442 if (likely(skb->ip_summed == CHECKSUM_HW)) {
2443 css = skb->h.raw - skb->data;
2444
2445 i = tx_ring->next_to_use;
2446 buffer_info = &tx_ring->buffer_info[i];
2447 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2448
2449 context_desc->upper_setup.tcp_fields.tucss = css;
2450 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2451 context_desc->upper_setup.tcp_fields.tucse = 0;
2452 context_desc->tcp_seg_setup.data = 0;
2453 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2454
2455 buffer_info->time_stamp = jiffies;
2456
2457 if (unlikely(++i == tx_ring->count)) i = 0;
2458 tx_ring->next_to_use = i;
2459
2460 return TRUE;
2461 }
2462
2463 return FALSE;
2464 }
2465
2466 #define E1000_MAX_TXD_PWR 12
2467 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2468
2469 static inline int
2470 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2471 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2472 unsigned int nr_frags, unsigned int mss)
2473 {
2474 struct e1000_buffer *buffer_info;
2475 unsigned int len = skb->len;
2476 unsigned int offset = 0, size, count = 0, i;
2477 unsigned int f;
2478 len -= skb->data_len;
2479
2480 i = tx_ring->next_to_use;
2481
2482 while (len) {
2483 buffer_info = &tx_ring->buffer_info[i];
2484 size = min(len, max_per_txd);
2485 #ifdef NETIF_F_TSO
2486 /* Workaround for Controller erratum --
2487 * descriptor for non-tso packet in a linear SKB that follows a
2488 * tso gets written back prematurely before the data is fully
2489 * DMAd to the controller */
2490 if (!skb->data_len && tx_ring->last_tx_tso &&
2491 !skb_shinfo(skb)->tso_size) {
2492 tx_ring->last_tx_tso = 0;
2493 size -= 4;
2494 }
2495
2496 /* Workaround for premature desc write-backs
2497 * in TSO mode. Append 4-byte sentinel desc */
2498 if (unlikely(mss && !nr_frags && size == len && size > 8))
2499 size -= 4;
2500 #endif
2501 /* work-around for errata 10 and it applies
2502 * to all controllers in PCI-X mode
2503 * The fix is to make sure that the first descriptor of a
2504 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2505 */
2506 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2507 (size > 2015) && count == 0))
2508 size = 2015;
2509
2510 /* Workaround for potential 82544 hang in PCI-X. Avoid
2511 * terminating buffers within evenly-aligned dwords. */
2512 if (unlikely(adapter->pcix_82544 &&
2513 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2514 size > 4))
2515 size -= 4;
2516
2517 buffer_info->length = size;
2518 buffer_info->dma =
2519 pci_map_single(adapter->pdev,
2520 skb->data + offset,
2521 size,
2522 PCI_DMA_TODEVICE);
2523 buffer_info->time_stamp = jiffies;
2524
2525 len -= size;
2526 offset += size;
2527 count++;
2528 if (unlikely(++i == tx_ring->count)) i = 0;
2529 }
2530
2531 for (f = 0; f < nr_frags; f++) {
2532 struct skb_frag_struct *frag;
2533
2534 frag = &skb_shinfo(skb)->frags[f];
2535 len = frag->size;
2536 offset = frag->page_offset;
2537
2538 while (len) {
2539 buffer_info = &tx_ring->buffer_info[i];
2540 size = min(len, max_per_txd);
2541 #ifdef NETIF_F_TSO
2542 /* Workaround for premature desc write-backs
2543 * in TSO mode. Append 4-byte sentinel desc */
2544 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2545 size -= 4;
2546 #endif
2547 /* Workaround for potential 82544 hang in PCI-X.
2548 * Avoid terminating buffers within evenly-aligned
2549 * dwords. */
2550 if (unlikely(adapter->pcix_82544 &&
2551 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2552 size > 4))
2553 size -= 4;
2554
2555 buffer_info->length = size;
2556 buffer_info->dma =
2557 pci_map_page(adapter->pdev,
2558 frag->page,
2559 offset,
2560 size,
2561 PCI_DMA_TODEVICE);
2562 buffer_info->time_stamp = jiffies;
2563
2564 len -= size;
2565 offset += size;
2566 count++;
2567 if (unlikely(++i == tx_ring->count)) i = 0;
2568 }
2569 }
2570
2571 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2572 tx_ring->buffer_info[i].skb = skb;
2573 tx_ring->buffer_info[first].next_to_watch = i;
2574
2575 return count;
2576 }
2577
2578 static inline void
2579 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2580 int tx_flags, int count)
2581 {
2582 struct e1000_tx_desc *tx_desc = NULL;
2583 struct e1000_buffer *buffer_info;
2584 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2585 unsigned int i;
2586
2587 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2588 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2589 E1000_TXD_CMD_TSE;
2590 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2591
2592 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2593 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2594 }
2595
2596 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2597 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2598 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2599 }
2600
2601 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2602 txd_lower |= E1000_TXD_CMD_VLE;
2603 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2604 }
2605
2606 i = tx_ring->next_to_use;
2607
2608 while (count--) {
2609 buffer_info = &tx_ring->buffer_info[i];
2610 tx_desc = E1000_TX_DESC(*tx_ring, i);
2611 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2612 tx_desc->lower.data =
2613 cpu_to_le32(txd_lower | buffer_info->length);
2614 tx_desc->upper.data = cpu_to_le32(txd_upper);
2615 if (unlikely(++i == tx_ring->count)) i = 0;
2616 }
2617
2618 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2619
2620 /* Force memory writes to complete before letting h/w
2621 * know there are new descriptors to fetch. (Only
2622 * applicable for weak-ordered memory model archs,
2623 * such as IA-64). */
2624 wmb();
2625
2626 tx_ring->next_to_use = i;
2627 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2628 }
2629
2630 /**
2631 * 82547 workaround to avoid controller hang in half-duplex environment.
2632 * The workaround is to avoid queuing a large packet that would span
2633 * the internal Tx FIFO ring boundary by notifying the stack to resend
2634 * the packet at a later time. This gives the Tx FIFO an opportunity to
2635 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2636 * to the beginning of the Tx FIFO.
2637 **/
2638
2639 #define E1000_FIFO_HDR 0x10
2640 #define E1000_82547_PAD_LEN 0x3E0
2641
2642 static inline int
2643 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2644 {
2645 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2646 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2647
2648 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2649
2650 if (adapter->link_duplex != HALF_DUPLEX)
2651 goto no_fifo_stall_required;
2652
2653 if (atomic_read(&adapter->tx_fifo_stall))
2654 return 1;
2655
2656 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2657 atomic_set(&adapter->tx_fifo_stall, 1);
2658 return 1;
2659 }
2660
2661 no_fifo_stall_required:
2662 adapter->tx_fifo_head += skb_fifo_len;
2663 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2664 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2665 return 0;
2666 }
2667
2668 #define MINIMUM_DHCP_PACKET_SIZE 282
2669 static inline int
2670 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2671 {
2672 struct e1000_hw *hw = &adapter->hw;
2673 uint16_t length, offset;
2674 if (vlan_tx_tag_present(skb)) {
2675 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2676 ( adapter->hw.mng_cookie.status &
2677 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2678 return 0;
2679 }
2680 if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2681 struct ethhdr *eth = (struct ethhdr *) skb->data;
2682 if ((htons(ETH_P_IP) == eth->h_proto)) {
2683 const struct iphdr *ip =
2684 (struct iphdr *)((uint8_t *)skb->data+14);
2685 if (IPPROTO_UDP == ip->protocol) {
2686 struct udphdr *udp =
2687 (struct udphdr *)((uint8_t *)ip +
2688 (ip->ihl << 2));
2689 if (ntohs(udp->dest) == 67) {
2690 offset = (uint8_t *)udp + 8 - skb->data;
2691 length = skb->len - offset;
2692
2693 return e1000_mng_write_dhcp_info(hw,
2694 (uint8_t *)udp + 8,
2695 length);
2696 }
2697 }
2698 }
2699 }
2700 return 0;
2701 }
2702
2703 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2704 static int
2705 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2706 {
2707 struct e1000_adapter *adapter = netdev_priv(netdev);
2708 struct e1000_tx_ring *tx_ring;
2709 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2710 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2711 unsigned int tx_flags = 0;
2712 unsigned int len = skb->len;
2713 unsigned long flags;
2714 unsigned int nr_frags = 0;
2715 unsigned int mss = 0;
2716 int count = 0;
2717 int tso;
2718 unsigned int f;
2719 len -= skb->data_len;
2720
2721 tx_ring = adapter->tx_ring;
2722
2723 if (unlikely(skb->len <= 0)) {
2724 dev_kfree_skb_any(skb);
2725 return NETDEV_TX_OK;
2726 }
2727
2728 #ifdef NETIF_F_TSO
2729 mss = skb_shinfo(skb)->tso_size;
2730 /* The controller does a simple calculation to
2731 * make sure there is enough room in the FIFO before
2732 * initiating the DMA for each buffer. The calc is:
2733 * 4 = ceil(buffer len/mss). To make sure we don't
2734 * overrun the FIFO, adjust the max buffer len if mss
2735 * drops. */
2736 if (mss) {
2737 uint8_t hdr_len;
2738 max_per_txd = min(mss << 2, max_per_txd);
2739 max_txd_pwr = fls(max_per_txd) - 1;
2740
2741 /* TSO Workaround for 82571/2 Controllers -- if skb->data
2742 * points to just header, pull a few bytes of payload from
2743 * frags into skb->data */
2744 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2745 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2746 (adapter->hw.mac_type == e1000_82571 ||
2747 adapter->hw.mac_type == e1000_82572)) {
2748 unsigned int pull_size;
2749 pull_size = min((unsigned int)4, skb->data_len);
2750 if (!__pskb_pull_tail(skb, pull_size)) {
2751 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2752 dev_kfree_skb_any(skb);
2753 return -EFAULT;
2754 }
2755 len = skb->len - skb->data_len;
2756 }
2757 }
2758
2759 /* reserve a descriptor for the offload context */
2760 if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2761 count++;
2762 count++;
2763 #else
2764 if (skb->ip_summed == CHECKSUM_HW)
2765 count++;
2766 #endif
2767
2768 #ifdef NETIF_F_TSO
2769 /* Controller Erratum workaround */
2770 if (!skb->data_len && tx_ring->last_tx_tso &&
2771 !skb_shinfo(skb)->tso_size)
2772 count++;
2773 #endif
2774
2775 count += TXD_USE_COUNT(len, max_txd_pwr);
2776
2777 if (adapter->pcix_82544)
2778 count++;
2779
2780 /* work-around for errata 10 and it applies to all controllers
2781 * in PCI-X mode, so add one more descriptor to the count
2782 */
2783 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2784 (len > 2015)))
2785 count++;
2786
2787 nr_frags = skb_shinfo(skb)->nr_frags;
2788 for (f = 0; f < nr_frags; f++)
2789 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2790 max_txd_pwr);
2791 if (adapter->pcix_82544)
2792 count += nr_frags;
2793
2794 if (adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2795 e1000_transfer_dhcp_info(adapter, skb);
2796
2797 local_irq_save(flags);
2798 if (!spin_trylock(&tx_ring->tx_lock)) {
2799 /* Collision - tell upper layer to requeue */
2800 local_irq_restore(flags);
2801 return NETDEV_TX_LOCKED;
2802 }
2803
2804 /* need: count + 2 desc gap to keep tail from touching
2805 * head, otherwise try next time */
2806 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2807 netif_stop_queue(netdev);
2808 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2809 return NETDEV_TX_BUSY;
2810 }
2811
2812 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2813 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2814 netif_stop_queue(netdev);
2815 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2816 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2817 return NETDEV_TX_BUSY;
2818 }
2819 }
2820
2821 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2822 tx_flags |= E1000_TX_FLAGS_VLAN;
2823 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2824 }
2825
2826 first = tx_ring->next_to_use;
2827
2828 tso = e1000_tso(adapter, tx_ring, skb);
2829 if (tso < 0) {
2830 dev_kfree_skb_any(skb);
2831 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2832 return NETDEV_TX_OK;
2833 }
2834
2835 if (likely(tso)) {
2836 tx_ring->last_tx_tso = 1;
2837 tx_flags |= E1000_TX_FLAGS_TSO;
2838 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2839 tx_flags |= E1000_TX_FLAGS_CSUM;
2840
2841 /* Old method was to assume IPv4 packet by default if TSO was enabled.
2842 * 82571 hardware supports TSO capabilities for IPv6 as well...
2843 * no longer assume, we must. */
2844 if (likely(skb->protocol == ntohs(ETH_P_IP)))
2845 tx_flags |= E1000_TX_FLAGS_IPV4;
2846
2847 e1000_tx_queue(adapter, tx_ring, tx_flags,
2848 e1000_tx_map(adapter, tx_ring, skb, first,
2849 max_per_txd, nr_frags, mss));
2850
2851 netdev->trans_start = jiffies;
2852
2853 /* Make sure there is space in the ring for the next send. */
2854 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2855 netif_stop_queue(netdev);
2856
2857 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2858 return NETDEV_TX_OK;
2859 }
2860
2861 /**
2862 * e1000_tx_timeout - Respond to a Tx Hang
2863 * @netdev: network interface device structure
2864 **/
2865
2866 static void
2867 e1000_tx_timeout(struct net_device *netdev)
2868 {
2869 struct e1000_adapter *adapter = netdev_priv(netdev);
2870
2871 /* Do the reset outside of interrupt context */
2872 schedule_work(&adapter->tx_timeout_task);
2873 }
2874
2875 static void
2876 e1000_tx_timeout_task(struct net_device *netdev)
2877 {
2878 struct e1000_adapter *adapter = netdev_priv(netdev);
2879
2880 adapter->tx_timeout_count++;
2881 e1000_down(adapter);
2882 e1000_up(adapter);
2883 }
2884
2885 /**
2886 * e1000_get_stats - Get System Network Statistics
2887 * @netdev: network interface device structure
2888 *
2889 * Returns the address of the device statistics structure.
2890 * The statistics are actually updated from the timer callback.
2891 **/
2892
2893 static struct net_device_stats *
2894 e1000_get_stats(struct net_device *netdev)
2895 {
2896 struct e1000_adapter *adapter = netdev_priv(netdev);
2897
2898 /* only return the current stats */
2899 return &adapter->net_stats;
2900 }
2901
2902 /**
2903 * e1000_change_mtu - Change the Maximum Transfer Unit
2904 * @netdev: network interface device structure
2905 * @new_mtu: new value for maximum frame size
2906 *
2907 * Returns 0 on success, negative on failure
2908 **/
2909
2910 static int
2911 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2912 {
2913 struct e1000_adapter *adapter = netdev_priv(netdev);
2914 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2915
2916 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2917 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2918 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2919 return -EINVAL;
2920 }
2921
2922 /* Adapter-specific max frame size limits. */
2923 switch (adapter->hw.mac_type) {
2924 case e1000_82542_rev2_0:
2925 case e1000_82542_rev2_1:
2926 case e1000_82573:
2927 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2928 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2929 return -EINVAL;
2930 }
2931 break;
2932 case e1000_82571:
2933 case e1000_82572:
2934 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2935 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2936 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
2937 return -EINVAL;
2938 }
2939 break;
2940 default:
2941 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
2942 break;
2943 }
2944
2945
2946 if (adapter->hw.mac_type > e1000_82547_rev_2) {
2947 adapter->rx_buffer_len = max_frame;
2948 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2949 } else {
2950 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2951 (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2952 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2953 "on 82542\n");
2954 return -EINVAL;
2955 } else {
2956 if(max_frame <= E1000_RXBUFFER_2048)
2957 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2958 else if(max_frame <= E1000_RXBUFFER_4096)
2959 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2960 else if(max_frame <= E1000_RXBUFFER_8192)
2961 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2962 else if(max_frame <= E1000_RXBUFFER_16384)
2963 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2964 }
2965 }
2966
2967 netdev->mtu = new_mtu;
2968
2969 if (netif_running(netdev)) {
2970 e1000_down(adapter);
2971 e1000_up(adapter);
2972 }
2973
2974 adapter->hw.max_frame_size = max_frame;
2975
2976 return 0;
2977 }
2978
2979 /**
2980 * e1000_update_stats - Update the board statistics counters
2981 * @adapter: board private structure
2982 **/
2983
2984 void
2985 e1000_update_stats(struct e1000_adapter *adapter)
2986 {
2987 struct e1000_hw *hw = &adapter->hw;
2988 unsigned long flags;
2989 uint16_t phy_tmp;
2990
2991 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2992
2993 spin_lock_irqsave(&adapter->stats_lock, flags);
2994
2995 /* these counters are modified from e1000_adjust_tbi_stats,
2996 * called from the interrupt context, so they must only
2997 * be written while holding adapter->stats_lock
2998 */
2999
3000 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3001 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3002 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3003 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3004 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3005 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3006 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3007 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3008 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3009 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3010 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3011 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3012 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3013
3014 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3015 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3016 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3017 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3018 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3019 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3020 adapter->stats.dc += E1000_READ_REG(hw, DC);
3021 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3022 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3023 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3024 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3025 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3026 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3027 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3028 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3029 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3030 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3031 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3032 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3033 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3034 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3035 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3036 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3037 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3038 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3039 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3040 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3041 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3042 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3043 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3044 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3045 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3046 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3047 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3048
3049 /* used for adaptive IFS */
3050
3051 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3052 adapter->stats.tpt += hw->tx_packet_delta;
3053 hw->collision_delta = E1000_READ_REG(hw, COLC);
3054 adapter->stats.colc += hw->collision_delta;
3055
3056 if (hw->mac_type >= e1000_82543) {
3057 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3058 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3059 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3060 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3061 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3062 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3063 }
3064 if (hw->mac_type > e1000_82547_rev_2) {
3065 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3066 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3067 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3068 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3069 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3070 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3071 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3072 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3073 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3074 }
3075
3076 /* Fill out the OS statistics structure */
3077
3078 adapter->net_stats.rx_packets = adapter->stats.gprc;
3079 adapter->net_stats.tx_packets = adapter->stats.gptc;
3080 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3081 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3082 adapter->net_stats.multicast = adapter->stats.mprc;
3083 adapter->net_stats.collisions = adapter->stats.colc;
3084
3085 /* Rx Errors */
3086
3087 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3088 adapter->stats.crcerrs + adapter->stats.algnerrc +
3089 adapter->stats.rlec + adapter->stats.cexterr;
3090 adapter->net_stats.rx_dropped = 0;
3091 adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3092 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3093 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3094 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3095
3096 /* Tx Errors */
3097
3098 adapter->net_stats.tx_errors = adapter->stats.ecol +
3099 adapter->stats.latecol;
3100 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3101 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3102 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3103
3104 /* Tx Dropped needs to be maintained elsewhere */
3105
3106 /* Phy Stats */
3107
3108 if (hw->media_type == e1000_media_type_copper) {
3109 if ((adapter->link_speed == SPEED_1000) &&
3110 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3111 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3112 adapter->phy_stats.idle_errors += phy_tmp;
3113 }
3114
3115 if ((hw->mac_type <= e1000_82546) &&
3116 (hw->phy_type == e1000_phy_m88) &&
3117 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3118 adapter->phy_stats.receive_errors += phy_tmp;
3119 }
3120
3121 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3122 }
3123
3124 /**
3125 * e1000_intr - Interrupt Handler
3126 * @irq: interrupt number
3127 * @data: pointer to a network interface device structure
3128 * @pt_regs: CPU registers structure
3129 **/
3130
3131 static irqreturn_t
3132 e1000_intr(int irq, void *data, struct pt_regs *regs)
3133 {
3134 struct net_device *netdev = data;
3135 struct e1000_adapter *adapter = netdev_priv(netdev);
3136 struct e1000_hw *hw = &adapter->hw;
3137 uint32_t icr = E1000_READ_REG(hw, ICR);
3138 #ifndef CONFIG_E1000_NAPI
3139 int i;
3140 #else
3141 /* Interrupt Auto-Mask...upon reading ICR,
3142 * interrupts are masked. No need for the
3143 * IMC write, but it does mean we should
3144 * account for it ASAP. */
3145 if (likely(hw->mac_type >= e1000_82571))
3146 atomic_inc(&adapter->irq_sem);
3147 #endif
3148
3149 if (unlikely(!icr)) {
3150 #ifdef CONFIG_E1000_NAPI
3151 if (hw->mac_type >= e1000_82571)
3152 e1000_irq_enable(adapter);
3153 #endif
3154 return IRQ_NONE; /* Not our interrupt */
3155 }
3156
3157 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3158 hw->get_link_status = 1;
3159 mod_timer(&adapter->watchdog_timer, jiffies);
3160 }
3161
3162 #ifdef CONFIG_E1000_NAPI
3163 if (unlikely(hw->mac_type < e1000_82571)) {
3164 atomic_inc(&adapter->irq_sem);
3165 E1000_WRITE_REG(hw, IMC, ~0);
3166 E1000_WRITE_FLUSH(hw);
3167 }
3168 if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3169 __netif_rx_schedule(&adapter->polling_netdev[0]);
3170 else
3171 e1000_irq_enable(adapter);
3172 #else
3173 /* Writing IMC and IMS is needed for 82547.
3174 * Due to Hub Link bus being occupied, an interrupt
3175 * de-assertion message is not able to be sent.
3176 * When an interrupt assertion message is generated later,
3177 * two messages are re-ordered and sent out.
3178 * That causes APIC to think 82547 is in de-assertion
3179 * state, while 82547 is in assertion state, resulting
3180 * in dead lock. Writing IMC forces 82547 into
3181 * de-assertion state.
3182 */
3183 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3184 atomic_inc(&adapter->irq_sem);
3185 E1000_WRITE_REG(hw, IMC, ~0);
3186 }
3187
3188 for (i = 0; i < E1000_MAX_INTR; i++)
3189 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3190 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3191 break;
3192
3193 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3194 e1000_irq_enable(adapter);
3195
3196 #endif
3197
3198 return IRQ_HANDLED;
3199 }
3200
3201 #ifdef CONFIG_E1000_NAPI
3202 /**
3203 * e1000_clean - NAPI Rx polling callback
3204 * @adapter: board private structure
3205 **/
3206
3207 static int
3208 e1000_clean(struct net_device *poll_dev, int *budget)
3209 {
3210 struct e1000_adapter *adapter;
3211 int work_to_do = min(*budget, poll_dev->quota);
3212 int tx_cleaned = 0, i = 0, work_done = 0;
3213
3214 /* Must NOT use netdev_priv macro here. */
3215 adapter = poll_dev->priv;
3216
3217 /* Keep link state information with original netdev */
3218 if (!netif_carrier_ok(adapter->netdev))
3219 goto quit_polling;
3220
3221 while (poll_dev != &adapter->polling_netdev[i]) {
3222 i++;
3223 if (unlikely(i == adapter->num_rx_queues))
3224 BUG();
3225 }
3226
3227 if (likely(adapter->num_tx_queues == 1)) {
3228 /* e1000_clean is called per-cpu. This lock protects
3229 * tx_ring[0] from being cleaned by multiple cpus
3230 * simultaneously. A failure obtaining the lock means
3231 * tx_ring[0] is currently being cleaned anyway. */
3232 if (spin_trylock(&adapter->tx_queue_lock)) {
3233 tx_cleaned = e1000_clean_tx_irq(adapter,
3234 &adapter->tx_ring[0]);
3235 spin_unlock(&adapter->tx_queue_lock);
3236 }
3237 } else
3238 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3239
3240 adapter->clean_rx(adapter, &adapter->rx_ring[i],
3241 &work_done, work_to_do);
3242
3243 *budget -= work_done;
3244 poll_dev->quota -= work_done;
3245
3246 /* If no Tx and not enough Rx work done, exit the polling mode */
3247 if ((!tx_cleaned && (work_done == 0)) ||
3248 !netif_running(adapter->netdev)) {
3249 quit_polling:
3250 netif_rx_complete(poll_dev);
3251 e1000_irq_enable(adapter);
3252 return 0;
3253 }
3254
3255 return 1;
3256 }
3257
3258 #endif
3259 /**
3260 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3261 * @adapter: board private structure
3262 **/
3263
3264 static boolean_t
3265 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3266 struct e1000_tx_ring *tx_ring)
3267 {
3268 struct net_device *netdev = adapter->netdev;
3269 struct e1000_tx_desc *tx_desc, *eop_desc;
3270 struct e1000_buffer *buffer_info;
3271 unsigned int i, eop;
3272 boolean_t cleaned = FALSE;
3273
3274 i = tx_ring->next_to_clean;
3275 eop = tx_ring->buffer_info[i].next_to_watch;
3276 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3277
3278 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3279 for (cleaned = FALSE; !cleaned; ) {
3280 tx_desc = E1000_TX_DESC(*tx_ring, i);
3281 buffer_info = &tx_ring->buffer_info[i];
3282 cleaned = (i == eop);
3283
3284 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3285 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3286
3287 if (unlikely(++i == tx_ring->count)) i = 0;
3288 }
3289
3290
3291 eop = tx_ring->buffer_info[i].next_to_watch;
3292 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3293 }
3294
3295 tx_ring->next_to_clean = i;
3296
3297 spin_lock(&tx_ring->tx_lock);
3298
3299 if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3300 netif_carrier_ok(netdev)))
3301 netif_wake_queue(netdev);
3302
3303 spin_unlock(&tx_ring->tx_lock);
3304
3305 if (adapter->detect_tx_hung) {
3306 /* Detect a transmit hang in hardware, this serializes the
3307 * check with the clearing of time_stamp and movement of i */
3308 adapter->detect_tx_hung = FALSE;
3309 if (tx_ring->buffer_info[eop].dma &&
3310 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3311 adapter->tx_timeout_factor * HZ)
3312 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3313 E1000_STATUS_TXOFF)) {
3314
3315 /* detected Tx unit hang */
3316 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3317 " Tx Queue <%lu>\n"
3318 " TDH <%x>\n"
3319 " TDT <%x>\n"
3320 " next_to_use <%x>\n"
3321 " next_to_clean <%x>\n"
3322 "buffer_info[next_to_clean]\n"
3323 " time_stamp <%lx>\n"
3324 " next_to_watch <%x>\n"
3325 " jiffies <%lx>\n"
3326 " next_to_watch.status <%x>\n",
3327 (unsigned long)((tx_ring - adapter->tx_ring) /
3328 sizeof(struct e1000_tx_ring)),
3329 readl(adapter->hw.hw_addr + tx_ring->tdh),
3330 readl(adapter->hw.hw_addr + tx_ring->tdt),
3331 tx_ring->next_to_use,
3332 tx_ring->next_to_clean,
3333 tx_ring->buffer_info[eop].time_stamp,
3334 eop,
3335 jiffies,
3336 eop_desc->upper.fields.status);
3337 netif_stop_queue(netdev);
3338 }
3339 }
3340 return cleaned;
3341 }
3342
3343 /**
3344 * e1000_rx_checksum - Receive Checksum Offload for 82543
3345 * @adapter: board private structure
3346 * @status_err: receive descriptor status and error fields
3347 * @csum: receive descriptor csum field
3348 * @sk_buff: socket buffer with received data
3349 **/
3350
3351 static inline void
3352 e1000_rx_checksum(struct e1000_adapter *adapter,
3353 uint32_t status_err, uint32_t csum,
3354 struct sk_buff *skb)
3355 {
3356 uint16_t status = (uint16_t)status_err;
3357 uint8_t errors = (uint8_t)(status_err >> 24);
3358 skb->ip_summed = CHECKSUM_NONE;
3359
3360 /* 82543 or newer only */
3361 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3362 /* Ignore Checksum bit is set */
3363 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3364 /* TCP/UDP checksum error bit is set */
3365 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3366 /* let the stack verify checksum errors */
3367 adapter->hw_csum_err++;
3368 return;
3369 }
3370 /* TCP/UDP Checksum has not been calculated */
3371 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3372 if (!(status & E1000_RXD_STAT_TCPCS))
3373 return;
3374 } else {
3375 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3376 return;
3377 }
3378 /* It must be a TCP or UDP packet with a valid checksum */
3379 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3380 /* TCP checksum is good */
3381 skb->ip_summed = CHECKSUM_UNNECESSARY;
3382 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3383 /* IP fragment with UDP payload */
3384 /* Hardware complements the payload checksum, so we undo it
3385 * and then put the value in host order for further stack use.
3386 */
3387 csum = ntohl(csum ^ 0xFFFF);
3388 skb->csum = csum;
3389 skb->ip_summed = CHECKSUM_HW;
3390 }
3391 adapter->hw_csum_good++;
3392 }
3393
3394 /**
3395 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3396 * @adapter: board private structure
3397 **/
3398
3399 static boolean_t
3400 #ifdef CONFIG_E1000_NAPI
3401 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3402 struct e1000_rx_ring *rx_ring,
3403 int *work_done, int work_to_do)
3404 #else
3405 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3406 struct e1000_rx_ring *rx_ring)
3407 #endif
3408 {
3409 struct net_device *netdev = adapter->netdev;
3410 struct pci_dev *pdev = adapter->pdev;
3411 struct e1000_rx_desc *rx_desc, *next_rxd;
3412 struct e1000_buffer *buffer_info, *next_buffer;
3413 unsigned long flags;
3414 uint32_t length;
3415 uint8_t last_byte;
3416 unsigned int i;
3417 int cleaned_count = 0;
3418 boolean_t cleaned = FALSE;
3419
3420 i = rx_ring->next_to_clean;
3421 rx_desc = E1000_RX_DESC(*rx_ring, i);
3422 buffer_info = &rx_ring->buffer_info[i];
3423
3424 while (rx_desc->status & E1000_RXD_STAT_DD) {
3425 struct sk_buff *skb, *next_skb;
3426 u8 status;
3427 #ifdef CONFIG_E1000_NAPI
3428 if (*work_done >= work_to_do)
3429 break;
3430 (*work_done)++;
3431 #endif
3432 status = rx_desc->status;
3433 skb = buffer_info->skb;
3434 buffer_info->skb = NULL;
3435
3436 if (++i == rx_ring->count) i = 0;
3437 next_rxd = E1000_RX_DESC(*rx_ring, i);
3438 next_buffer = &rx_ring->buffer_info[i];
3439 next_skb = next_buffer->skb;
3440
3441 cleaned = TRUE;
3442 cleaned_count++;
3443 pci_unmap_single(pdev,
3444 buffer_info->dma,
3445 buffer_info->length,
3446 PCI_DMA_FROMDEVICE);
3447
3448 length = le16_to_cpu(rx_desc->length);
3449
3450 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3451 /* All receives must fit into a single buffer */
3452 E1000_DBG("%s: Receive packet consumed multiple"
3453 " buffers\n", netdev->name);
3454 dev_kfree_skb_irq(skb);
3455 goto next_desc;
3456 }
3457
3458 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3459 last_byte = *(skb->data + length - 1);
3460 if (TBI_ACCEPT(&adapter->hw, status,
3461 rx_desc->errors, length, last_byte)) {
3462 spin_lock_irqsave(&adapter->stats_lock, flags);
3463 e1000_tbi_adjust_stats(&adapter->hw,
3464 &adapter->stats,
3465 length, skb->data);
3466 spin_unlock_irqrestore(&adapter->stats_lock,
3467 flags);
3468 length--;
3469 } else {
3470 dev_kfree_skb_irq(skb);
3471 goto next_desc;
3472 }
3473 }
3474
3475 /* code added for copybreak, this should improve
3476 * performance for small packets with large amounts
3477 * of reassembly being done in the stack */
3478 #define E1000_CB_LENGTH 256
3479 if (length < E1000_CB_LENGTH) {
3480 struct sk_buff *new_skb =
3481 dev_alloc_skb(length + NET_IP_ALIGN);
3482 if (new_skb) {
3483 skb_reserve(new_skb, NET_IP_ALIGN);
3484 new_skb->dev = netdev;
3485 memcpy(new_skb->data - NET_IP_ALIGN,
3486 skb->data - NET_IP_ALIGN,
3487 length + NET_IP_ALIGN);
3488 /* save the skb in buffer_info as good */
3489 buffer_info->skb = skb;
3490 skb = new_skb;
3491 skb_put(skb, length);
3492 }
3493 } else
3494 skb_put(skb, length);
3495
3496 /* end copybreak code */
3497
3498 /* Receive Checksum Offload */
3499 e1000_rx_checksum(adapter,
3500 (uint32_t)(status) |
3501 ((uint32_t)(rx_desc->errors) << 24),
3502 rx_desc->csum, skb);
3503
3504 skb->protocol = eth_type_trans(skb, netdev);
3505 #ifdef CONFIG_E1000_NAPI
3506 if (unlikely(adapter->vlgrp &&
3507 (status & E1000_RXD_STAT_VP))) {
3508 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3509 le16_to_cpu(rx_desc->special) &
3510 E1000_RXD_SPC_VLAN_MASK);
3511 } else {
3512 netif_receive_skb(skb);
3513 }
3514 #else /* CONFIG_E1000_NAPI */
3515 if (unlikely(adapter->vlgrp &&
3516 (status & E1000_RXD_STAT_VP))) {
3517 vlan_hwaccel_rx(skb, adapter->vlgrp,
3518 le16_to_cpu(rx_desc->special) &
3519 E1000_RXD_SPC_VLAN_MASK);
3520 } else {
3521 netif_rx(skb);
3522 }
3523 #endif /* CONFIG_E1000_NAPI */
3524 netdev->last_rx = jiffies;
3525
3526 next_desc:
3527 rx_desc->status = 0;
3528
3529 /* return some buffers to hardware, one at a time is too slow */
3530 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3531 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3532 cleaned_count = 0;
3533 }
3534
3535 rx_desc = next_rxd;
3536 buffer_info = next_buffer;
3537 }
3538 rx_ring->next_to_clean = i;
3539
3540 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3541 if (cleaned_count)
3542 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3543
3544 return cleaned;
3545 }
3546
3547 /**
3548 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3549 * @adapter: board private structure
3550 **/
3551
3552 static boolean_t
3553 #ifdef CONFIG_E1000_NAPI
3554 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3555 struct e1000_rx_ring *rx_ring,
3556 int *work_done, int work_to_do)
3557 #else
3558 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3559 struct e1000_rx_ring *rx_ring)
3560 #endif
3561 {
3562 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3563 struct net_device *netdev = adapter->netdev;
3564 struct pci_dev *pdev = adapter->pdev;
3565 struct e1000_buffer *buffer_info, *next_buffer;
3566 struct e1000_ps_page *ps_page;
3567 struct e1000_ps_page_dma *ps_page_dma;
3568 struct sk_buff *skb, *next_skb;
3569 unsigned int i, j;
3570 uint32_t length, staterr;
3571 int cleaned_count = 0;
3572 boolean_t cleaned = FALSE;
3573
3574 i = rx_ring->next_to_clean;
3575 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3576 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3577 buffer_info = &rx_ring->buffer_info[i];
3578
3579 while (staterr & E1000_RXD_STAT_DD) {
3580 ps_page = &rx_ring->ps_page[i];
3581 ps_page_dma = &rx_ring->ps_page_dma[i];
3582 #ifdef CONFIG_E1000_NAPI
3583 if (unlikely(*work_done >= work_to_do))
3584 break;
3585 (*work_done)++;
3586 #endif
3587 skb = buffer_info->skb;
3588
3589 if (++i == rx_ring->count) i = 0;
3590 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3591 next_buffer = &rx_ring->buffer_info[i];
3592 next_skb = next_buffer->skb;
3593
3594 cleaned = TRUE;
3595 cleaned_count++;
3596 pci_unmap_single(pdev, buffer_info->dma,
3597 buffer_info->length,
3598 PCI_DMA_FROMDEVICE);
3599
3600 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3601 E1000_DBG("%s: Packet Split buffers didn't pick up"
3602 " the full packet\n", netdev->name);
3603 dev_kfree_skb_irq(skb);
3604 goto next_desc;
3605 }
3606
3607 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3608 dev_kfree_skb_irq(skb);
3609 goto next_desc;
3610 }
3611
3612 length = le16_to_cpu(rx_desc->wb.middle.length0);
3613
3614 if (unlikely(!length)) {
3615 E1000_DBG("%s: Last part of the packet spanning"
3616 " multiple descriptors\n", netdev->name);
3617 dev_kfree_skb_irq(skb);
3618 goto next_desc;
3619 }
3620
3621 /* Good Receive */
3622 skb_put(skb, length);
3623
3624 for (j = 0; j < adapter->rx_ps_pages; j++) {
3625 if (!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3626 break;
3627
3628 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3629 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3630 ps_page_dma->ps_page_dma[j] = 0;
3631 skb_shinfo(skb)->frags[j].page =
3632 ps_page->ps_page[j];
3633 ps_page->ps_page[j] = NULL;
3634 skb_shinfo(skb)->frags[j].page_offset = 0;
3635 skb_shinfo(skb)->frags[j].size = length;
3636 skb_shinfo(skb)->nr_frags++;
3637 skb->len += length;
3638 skb->data_len += length;
3639 }
3640
3641 e1000_rx_checksum(adapter, staterr,
3642 rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3643 skb->protocol = eth_type_trans(skb, netdev);
3644
3645 if (likely(rx_desc->wb.upper.header_status &
3646 E1000_RXDPS_HDRSTAT_HDRSP))
3647 adapter->rx_hdr_split++;
3648 #ifdef CONFIG_E1000_NAPI
3649 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3650 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3651 le16_to_cpu(rx_desc->wb.middle.vlan) &
3652 E1000_RXD_SPC_VLAN_MASK);
3653 } else {
3654 netif_receive_skb(skb);
3655 }
3656 #else /* CONFIG_E1000_NAPI */
3657 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3658 vlan_hwaccel_rx(skb, adapter->vlgrp,
3659 le16_to_cpu(rx_desc->wb.middle.vlan) &
3660 E1000_RXD_SPC_VLAN_MASK);
3661 } else {
3662 netif_rx(skb);
3663 }
3664 #endif /* CONFIG_E1000_NAPI */
3665 netdev->last_rx = jiffies;
3666
3667 next_desc:
3668 rx_desc->wb.middle.status_error &= ~0xFF;
3669 buffer_info->skb = NULL;
3670
3671 /* return some buffers to hardware, one at a time is too slow */
3672 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3673 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3674 cleaned_count = 0;
3675 }
3676
3677 rx_desc = next_rxd;
3678 buffer_info = next_buffer;
3679
3680 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3681 }
3682 rx_ring->next_to_clean = i;
3683
3684 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3685 if (cleaned_count)
3686 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3687
3688 return cleaned;
3689 }
3690
3691 /**
3692 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3693 * @adapter: address of board private structure
3694 **/
3695
3696 static void
3697 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3698 struct e1000_rx_ring *rx_ring,
3699 int cleaned_count)
3700 {
3701 struct net_device *netdev = adapter->netdev;
3702 struct pci_dev *pdev = adapter->pdev;
3703 struct e1000_rx_desc *rx_desc;
3704 struct e1000_buffer *buffer_info;
3705 struct sk_buff *skb;
3706 unsigned int i;
3707 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3708
3709 i = rx_ring->next_to_use;
3710 buffer_info = &rx_ring->buffer_info[i];
3711
3712 while (cleaned_count--) {
3713 if (!(skb = buffer_info->skb))
3714 skb = dev_alloc_skb(bufsz);
3715 else {
3716 skb_trim(skb, 0);
3717 goto map_skb;
3718 }
3719
3720
3721 if (unlikely(!skb)) {
3722 /* Better luck next round */
3723 adapter->alloc_rx_buff_failed++;
3724 break;
3725 }
3726
3727 /* Fix for errata 23, can't cross 64kB boundary */
3728 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3729 struct sk_buff *oldskb = skb;
3730 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3731 "at %p\n", bufsz, skb->data);
3732 /* Try again, without freeing the previous */
3733 skb = dev_alloc_skb(bufsz);
3734 /* Failed allocation, critical failure */
3735 if (!skb) {
3736 dev_kfree_skb(oldskb);
3737 break;
3738 }
3739
3740 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3741 /* give up */
3742 dev_kfree_skb(skb);
3743 dev_kfree_skb(oldskb);
3744 break; /* while !buffer_info->skb */
3745 } else {
3746 /* Use new allocation */
3747 dev_kfree_skb(oldskb);
3748 }
3749 }
3750 /* Make buffer alignment 2 beyond a 16 byte boundary
3751 * this will result in a 16 byte aligned IP header after
3752 * the 14 byte MAC header is removed
3753 */
3754 skb_reserve(skb, NET_IP_ALIGN);
3755
3756 skb->dev = netdev;
3757
3758 buffer_info->skb = skb;
3759 buffer_info->length = adapter->rx_buffer_len;
3760 map_skb:
3761 buffer_info->dma = pci_map_single(pdev,
3762 skb->data,
3763 adapter->rx_buffer_len,
3764 PCI_DMA_FROMDEVICE);
3765
3766 /* Fix for errata 23, can't cross 64kB boundary */
3767 if (!e1000_check_64k_bound(adapter,
3768 (void *)(unsigned long)buffer_info->dma,
3769 adapter->rx_buffer_len)) {
3770 DPRINTK(RX_ERR, ERR,
3771 "dma align check failed: %u bytes at %p\n",
3772 adapter->rx_buffer_len,
3773 (void *)(unsigned long)buffer_info->dma);
3774 dev_kfree_skb(skb);
3775 buffer_info->skb = NULL;
3776
3777 pci_unmap_single(pdev, buffer_info->dma,
3778 adapter->rx_buffer_len,
3779 PCI_DMA_FROMDEVICE);
3780
3781 break; /* while !buffer_info->skb */
3782 }
3783 rx_desc = E1000_RX_DESC(*rx_ring, i);
3784 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3785
3786 if (unlikely(++i == rx_ring->count))
3787 i = 0;
3788 buffer_info = &rx_ring->buffer_info[i];
3789 }
3790
3791 if (likely(rx_ring->next_to_use != i)) {
3792 rx_ring->next_to_use = i;
3793 if (unlikely(i-- == 0))
3794 i = (rx_ring->count - 1);
3795
3796 /* Force memory writes to complete before letting h/w
3797 * know there are new descriptors to fetch. (Only
3798 * applicable for weak-ordered memory model archs,
3799 * such as IA-64). */
3800 wmb();
3801 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3802 }
3803 }
3804
3805 /**
3806 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3807 * @adapter: address of board private structure
3808 **/
3809
3810 static void
3811 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3812 struct e1000_rx_ring *rx_ring,
3813 int cleaned_count)
3814 {
3815 struct net_device *netdev = adapter->netdev;
3816 struct pci_dev *pdev = adapter->pdev;
3817 union e1000_rx_desc_packet_split *rx_desc;
3818 struct e1000_buffer *buffer_info;
3819 struct e1000_ps_page *ps_page;
3820 struct e1000_ps_page_dma *ps_page_dma;
3821 struct sk_buff *skb;
3822 unsigned int i, j;
3823
3824 i = rx_ring->next_to_use;
3825 buffer_info = &rx_ring->buffer_info[i];
3826 ps_page = &rx_ring->ps_page[i];
3827 ps_page_dma = &rx_ring->ps_page_dma[i];
3828
3829 while (cleaned_count--) {
3830 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3831
3832 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3833 if (j < adapter->rx_ps_pages) {
3834 if (likely(!ps_page->ps_page[j])) {
3835 ps_page->ps_page[j] =
3836 alloc_page(GFP_ATOMIC);
3837 if (unlikely(!ps_page->ps_page[j])) {
3838 adapter->alloc_rx_buff_failed++;
3839 goto no_buffers;
3840 }
3841 ps_page_dma->ps_page_dma[j] =
3842 pci_map_page(pdev,
3843 ps_page->ps_page[j],
3844 0, PAGE_SIZE,
3845 PCI_DMA_FROMDEVICE);
3846 }
3847 /* Refresh the desc even if buffer_addrs didn't
3848 * change because each write-back erases
3849 * this info.
3850 */
3851 rx_desc->read.buffer_addr[j+1] =
3852 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3853 } else
3854 rx_desc->read.buffer_addr[j+1] = ~0;
3855 }
3856
3857 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3858
3859 if (unlikely(!skb)) {
3860 adapter->alloc_rx_buff_failed++;
3861 break;
3862 }
3863
3864 /* Make buffer alignment 2 beyond a 16 byte boundary
3865 * this will result in a 16 byte aligned IP header after
3866 * the 14 byte MAC header is removed
3867 */
3868 skb_reserve(skb, NET_IP_ALIGN);
3869
3870 skb->dev = netdev;
3871
3872 buffer_info->skb = skb;
3873 buffer_info->length = adapter->rx_ps_bsize0;
3874 buffer_info->dma = pci_map_single(pdev, skb->data,
3875 adapter->rx_ps_bsize0,
3876 PCI_DMA_FROMDEVICE);
3877
3878 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3879
3880 if (unlikely(++i == rx_ring->count)) i = 0;
3881 buffer_info = &rx_ring->buffer_info[i];
3882 ps_page = &rx_ring->ps_page[i];
3883 ps_page_dma = &rx_ring->ps_page_dma[i];
3884 }
3885
3886 no_buffers:
3887 if (likely(rx_ring->next_to_use != i)) {
3888 rx_ring->next_to_use = i;
3889 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
3890
3891 /* Force memory writes to complete before letting h/w
3892 * know there are new descriptors to fetch. (Only
3893 * applicable for weak-ordered memory model archs,
3894 * such as IA-64). */
3895 wmb();
3896 /* Hardware increments by 16 bytes, but packet split
3897 * descriptors are 32 bytes...so we increment tail
3898 * twice as much.
3899 */
3900 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3901 }
3902 }
3903
3904 /**
3905 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3906 * @adapter:
3907 **/
3908
3909 static void
3910 e1000_smartspeed(struct e1000_adapter *adapter)
3911 {
3912 uint16_t phy_status;
3913 uint16_t phy_ctrl;
3914
3915 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3916 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3917 return;
3918
3919 if (adapter->smartspeed == 0) {
3920 /* If Master/Slave config fault is asserted twice,
3921 * we assume back-to-back */
3922 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3923 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3924 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3925 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3926 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3927 if (phy_ctrl & CR_1000T_MS_ENABLE) {
3928 phy_ctrl &= ~CR_1000T_MS_ENABLE;
3929 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3930 phy_ctrl);
3931 adapter->smartspeed++;
3932 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
3933 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3934 &phy_ctrl)) {
3935 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3936 MII_CR_RESTART_AUTO_NEG);
3937 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3938 phy_ctrl);
3939 }
3940 }
3941 return;
3942 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3943 /* If still no link, perhaps using 2/3 pair cable */
3944 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3945 phy_ctrl |= CR_1000T_MS_ENABLE;
3946 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3947 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
3948 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3949 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3950 MII_CR_RESTART_AUTO_NEG);
3951 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3952 }
3953 }
3954 /* Restart process after E1000_SMARTSPEED_MAX iterations */
3955 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3956 adapter->smartspeed = 0;
3957 }
3958
3959 /**
3960 * e1000_ioctl -
3961 * @netdev:
3962 * @ifreq:
3963 * @cmd:
3964 **/
3965
3966 static int
3967 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3968 {
3969 switch (cmd) {
3970 case SIOCGMIIPHY:
3971 case SIOCGMIIREG:
3972 case SIOCSMIIREG:
3973 return e1000_mii_ioctl(netdev, ifr, cmd);
3974 default:
3975 return -EOPNOTSUPP;
3976 }
3977 }
3978
3979 /**
3980 * e1000_mii_ioctl -
3981 * @netdev:
3982 * @ifreq:
3983 * @cmd:
3984 **/
3985
3986 static int
3987 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3988 {
3989 struct e1000_adapter *adapter = netdev_priv(netdev);
3990 struct mii_ioctl_data *data = if_mii(ifr);
3991 int retval;
3992 uint16_t mii_reg;
3993 uint16_t spddplx;
3994 unsigned long flags;
3995
3996 if (adapter->hw.media_type != e1000_media_type_copper)
3997 return -EOPNOTSUPP;
3998
3999 switch (cmd) {
4000 case SIOCGMIIPHY:
4001 data->phy_id = adapter->hw.phy_addr;
4002 break;
4003 case SIOCGMIIREG:
4004 if (!capable(CAP_NET_ADMIN))
4005 return -EPERM;
4006 spin_lock_irqsave(&adapter->stats_lock, flags);
4007 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4008 &data->val_out)) {
4009 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4010 return -EIO;
4011 }
4012 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4013 break;
4014 case SIOCSMIIREG:
4015 if (!capable(CAP_NET_ADMIN))
4016 return -EPERM;
4017 if (data->reg_num & ~(0x1F))
4018 return -EFAULT;
4019 mii_reg = data->val_in;
4020 spin_lock_irqsave(&adapter->stats_lock, flags);
4021 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4022 mii_reg)) {
4023 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4024 return -EIO;
4025 }
4026 if (adapter->hw.phy_type == e1000_phy_m88) {
4027 switch (data->reg_num) {
4028 case PHY_CTRL:
4029 if (mii_reg & MII_CR_POWER_DOWN)
4030 break;
4031 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4032 adapter->hw.autoneg = 1;
4033 adapter->hw.autoneg_advertised = 0x2F;
4034 } else {
4035 if (mii_reg & 0x40)
4036 spddplx = SPEED_1000;
4037 else if (mii_reg & 0x2000)
4038 spddplx = SPEED_100;
4039 else
4040 spddplx = SPEED_10;
4041 spddplx += (mii_reg & 0x100)
4042 ? FULL_DUPLEX :
4043 HALF_DUPLEX;
4044 retval = e1000_set_spd_dplx(adapter,
4045 spddplx);
4046 if (retval) {
4047 spin_unlock_irqrestore(
4048 &adapter->stats_lock,
4049 flags);
4050 return retval;
4051 }
4052 }
4053 if (netif_running(adapter->netdev)) {
4054 e1000_down(adapter);
4055 e1000_up(adapter);
4056 } else
4057 e1000_reset(adapter);
4058 break;
4059 case M88E1000_PHY_SPEC_CTRL:
4060 case M88E1000_EXT_PHY_SPEC_CTRL:
4061 if (e1000_phy_reset(&adapter->hw)) {
4062 spin_unlock_irqrestore(
4063 &adapter->stats_lock, flags);
4064 return -EIO;
4065 }
4066 break;
4067 }
4068 } else {
4069 switch (data->reg_num) {
4070 case PHY_CTRL:
4071 if (mii_reg & MII_CR_POWER_DOWN)
4072 break;
4073 if (netif_running(adapter->netdev)) {
4074 e1000_down(adapter);
4075 e1000_up(adapter);
4076 } else
4077 e1000_reset(adapter);
4078 break;
4079 }
4080 }
4081 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4082 break;
4083 default:
4084 return -EOPNOTSUPP;
4085 }
4086 return E1000_SUCCESS;
4087 }
4088
4089 void
4090 e1000_pci_set_mwi(struct e1000_hw *hw)
4091 {
4092 struct e1000_adapter *adapter = hw->back;
4093 int ret_val = pci_set_mwi(adapter->pdev);
4094
4095 if (ret_val)
4096 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4097 }
4098
4099 void
4100 e1000_pci_clear_mwi(struct e1000_hw *hw)
4101 {
4102 struct e1000_adapter *adapter = hw->back;
4103
4104 pci_clear_mwi(adapter->pdev);
4105 }
4106
4107 void
4108 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4109 {
4110 struct e1000_adapter *adapter = hw->back;
4111
4112 pci_read_config_word(adapter->pdev, reg, value);
4113 }
4114
4115 void
4116 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4117 {
4118 struct e1000_adapter *adapter = hw->back;
4119
4120 pci_write_config_word(adapter->pdev, reg, *value);
4121 }
4122
4123 uint32_t
4124 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4125 {
4126 return inl(port);
4127 }
4128
4129 void
4130 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4131 {
4132 outl(value, port);
4133 }
4134
4135 static void
4136 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4137 {
4138 struct e1000_adapter *adapter = netdev_priv(netdev);
4139 uint32_t ctrl, rctl;
4140
4141 e1000_irq_disable(adapter);
4142 adapter->vlgrp = grp;
4143
4144 if (grp) {
4145 /* enable VLAN tag insert/strip */
4146 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4147 ctrl |= E1000_CTRL_VME;
4148 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4149
4150 /* enable VLAN receive filtering */
4151 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4152 rctl |= E1000_RCTL_VFE;
4153 rctl &= ~E1000_RCTL_CFIEN;
4154 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4155 e1000_update_mng_vlan(adapter);
4156 } else {
4157 /* disable VLAN tag insert/strip */
4158 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4159 ctrl &= ~E1000_CTRL_VME;
4160 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4161
4162 /* disable VLAN filtering */
4163 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4164 rctl &= ~E1000_RCTL_VFE;
4165 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4166 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4167 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4168 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4169 }
4170 }
4171
4172 e1000_irq_enable(adapter);
4173 }
4174
4175 static void
4176 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4177 {
4178 struct e1000_adapter *adapter = netdev_priv(netdev);
4179 uint32_t vfta, index;
4180
4181 if ((adapter->hw.mng_cookie.status &
4182 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4183 (vid == adapter->mng_vlan_id))
4184 return;
4185 /* add VID to filter table */
4186 index = (vid >> 5) & 0x7F;
4187 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4188 vfta |= (1 << (vid & 0x1F));
4189 e1000_write_vfta(&adapter->hw, index, vfta);
4190 }
4191
4192 static void
4193 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4194 {
4195 struct e1000_adapter *adapter = netdev_priv(netdev);
4196 uint32_t vfta, index;
4197
4198 e1000_irq_disable(adapter);
4199
4200 if (adapter->vlgrp)
4201 adapter->vlgrp->vlan_devices[vid] = NULL;
4202
4203 e1000_irq_enable(adapter);
4204
4205 if ((adapter->hw.mng_cookie.status &
4206 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4207 (vid == adapter->mng_vlan_id)) {
4208 /* release control to f/w */
4209 e1000_release_hw_control(adapter);
4210 return;
4211 }
4212
4213 /* remove VID from filter table */
4214 index = (vid >> 5) & 0x7F;
4215 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4216 vfta &= ~(1 << (vid & 0x1F));
4217 e1000_write_vfta(&adapter->hw, index, vfta);
4218 }
4219
4220 static void
4221 e1000_restore_vlan(struct e1000_adapter *adapter)
4222 {
4223 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4224
4225 if (adapter->vlgrp) {
4226 uint16_t vid;
4227 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4228 if (!adapter->vlgrp->vlan_devices[vid])
4229 continue;
4230 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4231 }
4232 }
4233 }
4234
4235 int
4236 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4237 {
4238 adapter->hw.autoneg = 0;
4239
4240 /* Fiber NICs only allow 1000 gbps Full duplex */
4241 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4242 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4243 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4244 return -EINVAL;
4245 }
4246
4247 switch (spddplx) {
4248 case SPEED_10 + DUPLEX_HALF:
4249 adapter->hw.forced_speed_duplex = e1000_10_half;
4250 break;
4251 case SPEED_10 + DUPLEX_FULL:
4252 adapter->hw.forced_speed_duplex = e1000_10_full;
4253 break;
4254 case SPEED_100 + DUPLEX_HALF:
4255 adapter->hw.forced_speed_duplex = e1000_100_half;
4256 break;
4257 case SPEED_100 + DUPLEX_FULL:
4258 adapter->hw.forced_speed_duplex = e1000_100_full;
4259 break;
4260 case SPEED_1000 + DUPLEX_FULL:
4261 adapter->hw.autoneg = 1;
4262 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4263 break;
4264 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4265 default:
4266 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4267 return -EINVAL;
4268 }
4269 return 0;
4270 }
4271
4272 #ifdef CONFIG_PM
4273 /* these functions save and restore 16 or 64 dwords (64-256 bytes) of config
4274 * space versus the 64 bytes that pci_[save|restore]_state handle
4275 */
4276 #define PCIE_CONFIG_SPACE_LEN 256
4277 #define PCI_CONFIG_SPACE_LEN 64
4278 static int
4279 e1000_pci_save_state(struct e1000_adapter *adapter)
4280 {
4281 struct pci_dev *dev = adapter->pdev;
4282 int size;
4283 int i;
4284 if (adapter->hw.mac_type >= e1000_82571)
4285 size = PCIE_CONFIG_SPACE_LEN;
4286 else
4287 size = PCI_CONFIG_SPACE_LEN;
4288
4289 WARN_ON(adapter->config_space != NULL);
4290
4291 adapter->config_space = kmalloc(size, GFP_KERNEL);
4292 if (!adapter->config_space) {
4293 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4294 return -ENOMEM;
4295 }
4296 for (i = 0; i < (size / 4); i++)
4297 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4298 return 0;
4299 }
4300
4301 static void
4302 e1000_pci_restore_state(struct e1000_adapter *adapter)
4303 {
4304 struct pci_dev *dev = adapter->pdev;
4305 int size;
4306 int i;
4307 if (adapter->config_space == NULL)
4308 return;
4309 if (adapter->hw.mac_type >= e1000_82571)
4310 size = PCIE_CONFIG_SPACE_LEN;
4311 else
4312 size = PCI_CONFIG_SPACE_LEN;
4313 for (i = 0; i < (size / 4); i++)
4314 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4315 kfree(adapter->config_space);
4316 adapter->config_space = NULL;
4317 return;
4318 }
4319 #endif /* CONFIG_PM */
4320
4321 static int
4322 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4323 {
4324 struct net_device *netdev = pci_get_drvdata(pdev);
4325 struct e1000_adapter *adapter = netdev_priv(netdev);
4326 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4327 uint32_t wufc = adapter->wol;
4328 int retval = 0;
4329
4330 netif_device_detach(netdev);
4331
4332 if (netif_running(netdev))
4333 e1000_down(adapter);
4334
4335 #ifdef CONFIG_PM
4336 /* implement our own version of pci_save_state(pdev) because pci
4337 * express adapters have larger 256 byte config spaces */
4338 retval = e1000_pci_save_state(adapter);
4339 if (retval)
4340 return retval;
4341 #endif
4342
4343 status = E1000_READ_REG(&adapter->hw, STATUS);
4344 if (status & E1000_STATUS_LU)
4345 wufc &= ~E1000_WUFC_LNKC;
4346
4347 if (wufc) {
4348 e1000_setup_rctl(adapter);
4349 e1000_set_multi(netdev);
4350
4351 /* turn on all-multi mode if wake on multicast is enabled */
4352 if (adapter->wol & E1000_WUFC_MC) {
4353 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4354 rctl |= E1000_RCTL_MPE;
4355 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4356 }
4357
4358 if (adapter->hw.mac_type >= e1000_82540) {
4359 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4360 /* advertise wake from D3Cold */
4361 #define E1000_CTRL_ADVD3WUC 0x00100000
4362 /* phy power management enable */
4363 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4364 ctrl |= E1000_CTRL_ADVD3WUC |
4365 E1000_CTRL_EN_PHY_PWR_MGMT;
4366 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4367 }
4368
4369 if (adapter->hw.media_type == e1000_media_type_fiber ||
4370 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4371 /* keep the laser running in D3 */
4372 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4373 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4374 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4375 }
4376
4377 /* Allow time for pending master requests to run */
4378 e1000_disable_pciex_master(&adapter->hw);
4379
4380 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4381 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4382 retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4383 if (retval)
4384 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4385 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4386 if (retval)
4387 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4388 } else {
4389 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4390 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4391 retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4392 if (retval)
4393 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4394 retval = pci_enable_wake(pdev, PCI_D3cold, 0); /* 4 == D3 cold */
4395 if (retval)
4396 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4397 }
4398
4399 if (adapter->hw.mac_type >= e1000_82540 &&
4400 adapter->hw.media_type == e1000_media_type_copper) {
4401 manc = E1000_READ_REG(&adapter->hw, MANC);
4402 if (manc & E1000_MANC_SMBUS_EN) {
4403 manc |= E1000_MANC_ARP_EN;
4404 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4405 retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4406 if (retval)
4407 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4408 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4409 if (retval)
4410 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4411 }
4412 }
4413
4414 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4415 * would have already happened in close and is redundant. */
4416 e1000_release_hw_control(adapter);
4417
4418 pci_disable_device(pdev);
4419
4420 retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
4421 if (retval)
4422 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4423
4424 return 0;
4425 }
4426
4427 #ifdef CONFIG_PM
4428 static int
4429 e1000_resume(struct pci_dev *pdev)
4430 {
4431 struct net_device *netdev = pci_get_drvdata(pdev);
4432 struct e1000_adapter *adapter = netdev_priv(netdev);
4433 int retval;
4434 uint32_t manc, ret_val;
4435
4436 retval = pci_set_power_state(pdev, PCI_D0);
4437 if (retval)
4438 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4439 e1000_pci_restore_state(adapter);
4440 ret_val = pci_enable_device(pdev);
4441 pci_set_master(pdev);
4442
4443 retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4444 if (retval)
4445 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4446 retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4447 if (retval)
4448 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4449
4450 e1000_reset(adapter);
4451 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4452
4453 if (netif_running(netdev))
4454 e1000_up(adapter);
4455
4456 netif_device_attach(netdev);
4457
4458 if (adapter->hw.mac_type >= e1000_82540 &&
4459 adapter->hw.media_type == e1000_media_type_copper) {
4460 manc = E1000_READ_REG(&adapter->hw, MANC);
4461 manc &= ~(E1000_MANC_ARP_EN);
4462 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4463 }
4464
4465 /* If the controller is 82573 and f/w is AMT, do not set
4466 * DRV_LOAD until the interface is up. For all other cases,
4467 * let the f/w know that the h/w is now under the control
4468 * of the driver. */
4469 if (adapter->hw.mac_type != e1000_82573 ||
4470 !e1000_check_mng_mode(&adapter->hw))
4471 e1000_get_hw_control(adapter);
4472
4473 return 0;
4474 }
4475 #endif
4476 #ifdef CONFIG_NET_POLL_CONTROLLER
4477 /*
4478 * Polling 'interrupt' - used by things like netconsole to send skbs
4479 * without having to re-enable interrupts. It's not called while
4480 * the interrupt routine is executing.
4481 */
4482 static void
4483 e1000_netpoll(struct net_device *netdev)
4484 {
4485 struct e1000_adapter *adapter = netdev_priv(netdev);
4486 disable_irq(adapter->pdev->irq);
4487 e1000_intr(adapter->pdev->irq, netdev, NULL);
4488 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4489 #ifndef CONFIG_E1000_NAPI
4490 adapter->clean_rx(adapter, adapter->rx_ring);
4491 #endif
4492 enable_irq(adapter->pdev->irq);
4493 }
4494 #endif
4495
4496 /* e1000_main.c */
This page took 0.122047 seconds and 6 git commands to generate.