e1000e: reset PHY after errors detected
[deliverable/linux.git] / drivers / net / e1000e / 82571.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
44 */
45
46 #include "e1000.h"
47
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
53
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define E1000_BASE1000T_STATUS 10
56 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
57 #define E1000_RECEIVE_ERROR_COUNTER 21
58 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
59
60 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
61
62 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
63 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
65 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
67 u16 words, u16 *data);
68 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
69 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
70 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
71 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
72 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
73 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
74 static s32 e1000_led_on_82574(struct e1000_hw *hw);
75 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
76 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
77
78 /**
79 * e1000_init_phy_params_82571 - Init PHY func ptrs.
80 * @hw: pointer to the HW structure
81 **/
82 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
83 {
84 struct e1000_phy_info *phy = &hw->phy;
85 s32 ret_val;
86
87 if (hw->phy.media_type != e1000_media_type_copper) {
88 phy->type = e1000_phy_none;
89 return 0;
90 }
91
92 phy->addr = 1;
93 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
94 phy->reset_delay_us = 100;
95
96 phy->ops.power_up = e1000_power_up_phy_copper;
97 phy->ops.power_down = e1000_power_down_phy_copper_82571;
98
99 switch (hw->mac.type) {
100 case e1000_82571:
101 case e1000_82572:
102 phy->type = e1000_phy_igp_2;
103 break;
104 case e1000_82573:
105 phy->type = e1000_phy_m88;
106 break;
107 case e1000_82574:
108 case e1000_82583:
109 phy->type = e1000_phy_bm;
110 break;
111 default:
112 return -E1000_ERR_PHY;
113 break;
114 }
115
116 /* This can only be done after all function pointers are setup. */
117 ret_val = e1000_get_phy_id_82571(hw);
118
119 /* Verify phy id */
120 switch (hw->mac.type) {
121 case e1000_82571:
122 case e1000_82572:
123 if (phy->id != IGP01E1000_I_PHY_ID)
124 return -E1000_ERR_PHY;
125 break;
126 case e1000_82573:
127 if (phy->id != M88E1111_I_PHY_ID)
128 return -E1000_ERR_PHY;
129 break;
130 case e1000_82574:
131 case e1000_82583:
132 if (phy->id != BME1000_E_PHY_ID_R2)
133 return -E1000_ERR_PHY;
134 break;
135 default:
136 return -E1000_ERR_PHY;
137 break;
138 }
139
140 return 0;
141 }
142
143 /**
144 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
145 * @hw: pointer to the HW structure
146 **/
147 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
148 {
149 struct e1000_nvm_info *nvm = &hw->nvm;
150 u32 eecd = er32(EECD);
151 u16 size;
152
153 nvm->opcode_bits = 8;
154 nvm->delay_usec = 1;
155 switch (nvm->override) {
156 case e1000_nvm_override_spi_large:
157 nvm->page_size = 32;
158 nvm->address_bits = 16;
159 break;
160 case e1000_nvm_override_spi_small:
161 nvm->page_size = 8;
162 nvm->address_bits = 8;
163 break;
164 default:
165 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
166 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
167 break;
168 }
169
170 switch (hw->mac.type) {
171 case e1000_82573:
172 case e1000_82574:
173 case e1000_82583:
174 if (((eecd >> 15) & 0x3) == 0x3) {
175 nvm->type = e1000_nvm_flash_hw;
176 nvm->word_size = 2048;
177 /*
178 * Autonomous Flash update bit must be cleared due
179 * to Flash update issue.
180 */
181 eecd &= ~E1000_EECD_AUPDEN;
182 ew32(EECD, eecd);
183 break;
184 }
185 /* Fall Through */
186 default:
187 nvm->type = e1000_nvm_eeprom_spi;
188 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
189 E1000_EECD_SIZE_EX_SHIFT);
190 /*
191 * Added to a constant, "size" becomes the left-shift value
192 * for setting word_size.
193 */
194 size += NVM_WORD_SIZE_BASE_SHIFT;
195
196 /* EEPROM access above 16k is unsupported */
197 if (size > 14)
198 size = 14;
199 nvm->word_size = 1 << size;
200 break;
201 }
202
203 return 0;
204 }
205
206 /**
207 * e1000_init_mac_params_82571 - Init MAC func ptrs.
208 * @hw: pointer to the HW structure
209 **/
210 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
211 {
212 struct e1000_hw *hw = &adapter->hw;
213 struct e1000_mac_info *mac = &hw->mac;
214 struct e1000_mac_operations *func = &mac->ops;
215 u32 swsm = 0;
216 u32 swsm2 = 0;
217 bool force_clear_smbi = false;
218
219 /* Set media type */
220 switch (adapter->pdev->device) {
221 case E1000_DEV_ID_82571EB_FIBER:
222 case E1000_DEV_ID_82572EI_FIBER:
223 case E1000_DEV_ID_82571EB_QUAD_FIBER:
224 hw->phy.media_type = e1000_media_type_fiber;
225 break;
226 case E1000_DEV_ID_82571EB_SERDES:
227 case E1000_DEV_ID_82572EI_SERDES:
228 case E1000_DEV_ID_82571EB_SERDES_DUAL:
229 case E1000_DEV_ID_82571EB_SERDES_QUAD:
230 hw->phy.media_type = e1000_media_type_internal_serdes;
231 break;
232 default:
233 hw->phy.media_type = e1000_media_type_copper;
234 break;
235 }
236
237 /* Set mta register count */
238 mac->mta_reg_count = 128;
239 /* Set rar entry count */
240 mac->rar_entry_count = E1000_RAR_ENTRIES;
241 /* Adaptive IFS supported */
242 mac->adaptive_ifs = true;
243
244 /* check for link */
245 switch (hw->phy.media_type) {
246 case e1000_media_type_copper:
247 func->setup_physical_interface = e1000_setup_copper_link_82571;
248 func->check_for_link = e1000e_check_for_copper_link;
249 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
250 break;
251 case e1000_media_type_fiber:
252 func->setup_physical_interface =
253 e1000_setup_fiber_serdes_link_82571;
254 func->check_for_link = e1000e_check_for_fiber_link;
255 func->get_link_up_info =
256 e1000e_get_speed_and_duplex_fiber_serdes;
257 break;
258 case e1000_media_type_internal_serdes:
259 func->setup_physical_interface =
260 e1000_setup_fiber_serdes_link_82571;
261 func->check_for_link = e1000_check_for_serdes_link_82571;
262 func->get_link_up_info =
263 e1000e_get_speed_and_duplex_fiber_serdes;
264 break;
265 default:
266 return -E1000_ERR_CONFIG;
267 break;
268 }
269
270 switch (hw->mac.type) {
271 case e1000_82573:
272 func->set_lan_id = e1000_set_lan_id_single_port;
273 func->check_mng_mode = e1000e_check_mng_mode_generic;
274 func->led_on = e1000e_led_on_generic;
275
276 /* FWSM register */
277 mac->has_fwsm = true;
278 /*
279 * ARC supported; valid only if manageability features are
280 * enabled.
281 */
282 mac->arc_subsystem_valid =
283 (er32(FWSM) & E1000_FWSM_MODE_MASK)
284 ? true : false;
285 break;
286 case e1000_82574:
287 case e1000_82583:
288 func->set_lan_id = e1000_set_lan_id_single_port;
289 func->check_mng_mode = e1000_check_mng_mode_82574;
290 func->led_on = e1000_led_on_82574;
291 break;
292 default:
293 func->check_mng_mode = e1000e_check_mng_mode_generic;
294 func->led_on = e1000e_led_on_generic;
295
296 /* FWSM register */
297 mac->has_fwsm = true;
298 break;
299 }
300
301 /*
302 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
303 * first NVM or PHY acess. This should be done for single-port
304 * devices, and for one port only on dual-port devices so that
305 * for those devices we can still use the SMBI lock to synchronize
306 * inter-port accesses to the PHY & NVM.
307 */
308 switch (hw->mac.type) {
309 case e1000_82571:
310 case e1000_82572:
311 swsm2 = er32(SWSM2);
312
313 if (!(swsm2 & E1000_SWSM2_LOCK)) {
314 /* Only do this for the first interface on this card */
315 ew32(SWSM2,
316 swsm2 | E1000_SWSM2_LOCK);
317 force_clear_smbi = true;
318 } else
319 force_clear_smbi = false;
320 break;
321 default:
322 force_clear_smbi = true;
323 break;
324 }
325
326 if (force_clear_smbi) {
327 /* Make sure SWSM.SMBI is clear */
328 swsm = er32(SWSM);
329 if (swsm & E1000_SWSM_SMBI) {
330 /* This bit should not be set on a first interface, and
331 * indicates that the bootagent or EFI code has
332 * improperly left this bit enabled
333 */
334 e_dbg("Please update your 82571 Bootagent\n");
335 }
336 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
337 }
338
339 /*
340 * Initialize device specific counter of SMBI acquisition
341 * timeouts.
342 */
343 hw->dev_spec.e82571.smb_counter = 0;
344
345 return 0;
346 }
347
348 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
349 {
350 struct e1000_hw *hw = &adapter->hw;
351 static int global_quad_port_a; /* global port a indication */
352 struct pci_dev *pdev = adapter->pdev;
353 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
354 s32 rc;
355
356 rc = e1000_init_mac_params_82571(adapter);
357 if (rc)
358 return rc;
359
360 rc = e1000_init_nvm_params_82571(hw);
361 if (rc)
362 return rc;
363
364 rc = e1000_init_phy_params_82571(hw);
365 if (rc)
366 return rc;
367
368 /* tag quad port adapters first, it's used below */
369 switch (pdev->device) {
370 case E1000_DEV_ID_82571EB_QUAD_COPPER:
371 case E1000_DEV_ID_82571EB_QUAD_FIBER:
372 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
373 case E1000_DEV_ID_82571PT_QUAD_COPPER:
374 adapter->flags |= FLAG_IS_QUAD_PORT;
375 /* mark the first port */
376 if (global_quad_port_a == 0)
377 adapter->flags |= FLAG_IS_QUAD_PORT_A;
378 /* Reset for multiple quad port adapters */
379 global_quad_port_a++;
380 if (global_quad_port_a == 4)
381 global_quad_port_a = 0;
382 break;
383 default:
384 break;
385 }
386
387 switch (adapter->hw.mac.type) {
388 case e1000_82571:
389 /* these dual ports don't have WoL on port B at all */
390 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
391 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
392 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
393 (is_port_b))
394 adapter->flags &= ~FLAG_HAS_WOL;
395 /* quad ports only support WoL on port A */
396 if (adapter->flags & FLAG_IS_QUAD_PORT &&
397 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
398 adapter->flags &= ~FLAG_HAS_WOL;
399 /* Does not support WoL on any port */
400 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
401 adapter->flags &= ~FLAG_HAS_WOL;
402 break;
403 case e1000_82573:
404 case e1000_82574:
405 case e1000_82583:
406 /* Disable ASPM L0s due to hardware errata */
407 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
408
409 if (pdev->device == E1000_DEV_ID_82573L) {
410 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
411 adapter->max_hw_frame_size = DEFAULT_JUMBO;
412 }
413 break;
414 default:
415 break;
416 }
417
418 return 0;
419 }
420
421 /**
422 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
423 * @hw: pointer to the HW structure
424 *
425 * Reads the PHY registers and stores the PHY ID and possibly the PHY
426 * revision in the hardware structure.
427 **/
428 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
429 {
430 struct e1000_phy_info *phy = &hw->phy;
431 s32 ret_val;
432 u16 phy_id = 0;
433
434 switch (hw->mac.type) {
435 case e1000_82571:
436 case e1000_82572:
437 /*
438 * The 82571 firmware may still be configuring the PHY.
439 * In this case, we cannot access the PHY until the
440 * configuration is done. So we explicitly set the
441 * PHY ID.
442 */
443 phy->id = IGP01E1000_I_PHY_ID;
444 break;
445 case e1000_82573:
446 return e1000e_get_phy_id(hw);
447 break;
448 case e1000_82574:
449 case e1000_82583:
450 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
451 if (ret_val)
452 return ret_val;
453
454 phy->id = (u32)(phy_id << 16);
455 udelay(20);
456 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
457 if (ret_val)
458 return ret_val;
459
460 phy->id |= (u32)(phy_id);
461 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
462 break;
463 default:
464 return -E1000_ERR_PHY;
465 break;
466 }
467
468 return 0;
469 }
470
471 /**
472 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
473 * @hw: pointer to the HW structure
474 *
475 * Acquire the HW semaphore to access the PHY or NVM
476 **/
477 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
478 {
479 u32 swsm;
480 s32 sw_timeout = hw->nvm.word_size + 1;
481 s32 fw_timeout = hw->nvm.word_size + 1;
482 s32 i = 0;
483
484 /*
485 * If we have timedout 3 times on trying to acquire
486 * the inter-port SMBI semaphore, there is old code
487 * operating on the other port, and it is not
488 * releasing SMBI. Modify the number of times that
489 * we try for the semaphore to interwork with this
490 * older code.
491 */
492 if (hw->dev_spec.e82571.smb_counter > 2)
493 sw_timeout = 1;
494
495 /* Get the SW semaphore */
496 while (i < sw_timeout) {
497 swsm = er32(SWSM);
498 if (!(swsm & E1000_SWSM_SMBI))
499 break;
500
501 udelay(50);
502 i++;
503 }
504
505 if (i == sw_timeout) {
506 e_dbg("Driver can't access device - SMBI bit is set.\n");
507 hw->dev_spec.e82571.smb_counter++;
508 }
509 /* Get the FW semaphore. */
510 for (i = 0; i < fw_timeout; i++) {
511 swsm = er32(SWSM);
512 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
513
514 /* Semaphore acquired if bit latched */
515 if (er32(SWSM) & E1000_SWSM_SWESMBI)
516 break;
517
518 udelay(50);
519 }
520
521 if (i == fw_timeout) {
522 /* Release semaphores */
523 e1000_put_hw_semaphore_82571(hw);
524 e_dbg("Driver can't access the NVM\n");
525 return -E1000_ERR_NVM;
526 }
527
528 return 0;
529 }
530
531 /**
532 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
533 * @hw: pointer to the HW structure
534 *
535 * Release hardware semaphore used to access the PHY or NVM
536 **/
537 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
538 {
539 u32 swsm;
540
541 swsm = er32(SWSM);
542 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
543 ew32(SWSM, swsm);
544 }
545
546 /**
547 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
548 * @hw: pointer to the HW structure
549 *
550 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
551 * Then for non-82573 hardware, set the EEPROM access request bit and wait
552 * for EEPROM access grant bit. If the access grant bit is not set, release
553 * hardware semaphore.
554 **/
555 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
556 {
557 s32 ret_val;
558
559 ret_val = e1000_get_hw_semaphore_82571(hw);
560 if (ret_val)
561 return ret_val;
562
563 switch (hw->mac.type) {
564 case e1000_82573:
565 case e1000_82574:
566 case e1000_82583:
567 break;
568 default:
569 ret_val = e1000e_acquire_nvm(hw);
570 break;
571 }
572
573 if (ret_val)
574 e1000_put_hw_semaphore_82571(hw);
575
576 return ret_val;
577 }
578
579 /**
580 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
581 * @hw: pointer to the HW structure
582 *
583 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
584 **/
585 static void e1000_release_nvm_82571(struct e1000_hw *hw)
586 {
587 e1000e_release_nvm(hw);
588 e1000_put_hw_semaphore_82571(hw);
589 }
590
591 /**
592 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
593 * @hw: pointer to the HW structure
594 * @offset: offset within the EEPROM to be written to
595 * @words: number of words to write
596 * @data: 16 bit word(s) to be written to the EEPROM
597 *
598 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
599 *
600 * If e1000e_update_nvm_checksum is not called after this function, the
601 * EEPROM will most likely contain an invalid checksum.
602 **/
603 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
604 u16 *data)
605 {
606 s32 ret_val;
607
608 switch (hw->mac.type) {
609 case e1000_82573:
610 case e1000_82574:
611 case e1000_82583:
612 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
613 break;
614 case e1000_82571:
615 case e1000_82572:
616 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
617 break;
618 default:
619 ret_val = -E1000_ERR_NVM;
620 break;
621 }
622
623 return ret_val;
624 }
625
626 /**
627 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
628 * @hw: pointer to the HW structure
629 *
630 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
631 * up to the checksum. Then calculates the EEPROM checksum and writes the
632 * value to the EEPROM.
633 **/
634 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
635 {
636 u32 eecd;
637 s32 ret_val;
638 u16 i;
639
640 ret_val = e1000e_update_nvm_checksum_generic(hw);
641 if (ret_val)
642 return ret_val;
643
644 /*
645 * If our nvm is an EEPROM, then we're done
646 * otherwise, commit the checksum to the flash NVM.
647 */
648 if (hw->nvm.type != e1000_nvm_flash_hw)
649 return ret_val;
650
651 /* Check for pending operations. */
652 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
653 msleep(1);
654 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
655 break;
656 }
657
658 if (i == E1000_FLASH_UPDATES)
659 return -E1000_ERR_NVM;
660
661 /* Reset the firmware if using STM opcode. */
662 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
663 /*
664 * The enabling of and the actual reset must be done
665 * in two write cycles.
666 */
667 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
668 e1e_flush();
669 ew32(HICR, E1000_HICR_FW_RESET);
670 }
671
672 /* Commit the write to flash */
673 eecd = er32(EECD) | E1000_EECD_FLUPD;
674 ew32(EECD, eecd);
675
676 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
677 msleep(1);
678 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
679 break;
680 }
681
682 if (i == E1000_FLASH_UPDATES)
683 return -E1000_ERR_NVM;
684
685 return 0;
686 }
687
688 /**
689 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
690 * @hw: pointer to the HW structure
691 *
692 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
693 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
694 **/
695 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
696 {
697 if (hw->nvm.type == e1000_nvm_flash_hw)
698 e1000_fix_nvm_checksum_82571(hw);
699
700 return e1000e_validate_nvm_checksum_generic(hw);
701 }
702
703 /**
704 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
705 * @hw: pointer to the HW structure
706 * @offset: offset within the EEPROM to be written to
707 * @words: number of words to write
708 * @data: 16 bit word(s) to be written to the EEPROM
709 *
710 * After checking for invalid values, poll the EEPROM to ensure the previous
711 * command has completed before trying to write the next word. After write
712 * poll for completion.
713 *
714 * If e1000e_update_nvm_checksum is not called after this function, the
715 * EEPROM will most likely contain an invalid checksum.
716 **/
717 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
718 u16 words, u16 *data)
719 {
720 struct e1000_nvm_info *nvm = &hw->nvm;
721 u32 i, eewr = 0;
722 s32 ret_val = 0;
723
724 /*
725 * A check for invalid values: offset too large, too many words,
726 * and not enough words.
727 */
728 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
729 (words == 0)) {
730 e_dbg("nvm parameter(s) out of bounds\n");
731 return -E1000_ERR_NVM;
732 }
733
734 for (i = 0; i < words; i++) {
735 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
736 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
737 E1000_NVM_RW_REG_START;
738
739 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
740 if (ret_val)
741 break;
742
743 ew32(EEWR, eewr);
744
745 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
746 if (ret_val)
747 break;
748 }
749
750 return ret_val;
751 }
752
753 /**
754 * e1000_get_cfg_done_82571 - Poll for configuration done
755 * @hw: pointer to the HW structure
756 *
757 * Reads the management control register for the config done bit to be set.
758 **/
759 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
760 {
761 s32 timeout = PHY_CFG_TIMEOUT;
762
763 while (timeout) {
764 if (er32(EEMNGCTL) &
765 E1000_NVM_CFG_DONE_PORT_0)
766 break;
767 msleep(1);
768 timeout--;
769 }
770 if (!timeout) {
771 e_dbg("MNG configuration cycle has not completed.\n");
772 return -E1000_ERR_RESET;
773 }
774
775 return 0;
776 }
777
778 /**
779 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
780 * @hw: pointer to the HW structure
781 * @active: true to enable LPLU, false to disable
782 *
783 * Sets the LPLU D0 state according to the active flag. When activating LPLU
784 * this function also disables smart speed and vice versa. LPLU will not be
785 * activated unless the device autonegotiation advertisement meets standards
786 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
787 * pointer entry point only called by PHY setup routines.
788 **/
789 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
790 {
791 struct e1000_phy_info *phy = &hw->phy;
792 s32 ret_val;
793 u16 data;
794
795 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
796 if (ret_val)
797 return ret_val;
798
799 if (active) {
800 data |= IGP02E1000_PM_D0_LPLU;
801 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
802 if (ret_val)
803 return ret_val;
804
805 /* When LPLU is enabled, we should disable SmartSpeed */
806 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
807 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
808 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
809 if (ret_val)
810 return ret_val;
811 } else {
812 data &= ~IGP02E1000_PM_D0_LPLU;
813 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
814 /*
815 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
816 * during Dx states where the power conservation is most
817 * important. During driver activity we should enable
818 * SmartSpeed, so performance is maintained.
819 */
820 if (phy->smart_speed == e1000_smart_speed_on) {
821 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
822 &data);
823 if (ret_val)
824 return ret_val;
825
826 data |= IGP01E1000_PSCFR_SMART_SPEED;
827 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
828 data);
829 if (ret_val)
830 return ret_val;
831 } else if (phy->smart_speed == e1000_smart_speed_off) {
832 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
833 &data);
834 if (ret_val)
835 return ret_val;
836
837 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
838 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
839 data);
840 if (ret_val)
841 return ret_val;
842 }
843 }
844
845 return 0;
846 }
847
848 /**
849 * e1000_reset_hw_82571 - Reset hardware
850 * @hw: pointer to the HW structure
851 *
852 * This resets the hardware into a known state.
853 **/
854 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
855 {
856 u32 ctrl, extcnf_ctrl, ctrl_ext, icr;
857 s32 ret_val;
858 u16 i = 0;
859
860 /*
861 * Prevent the PCI-E bus from sticking if there is no TLP connection
862 * on the last TLP read/write transaction when MAC is reset.
863 */
864 ret_val = e1000e_disable_pcie_master(hw);
865 if (ret_val)
866 e_dbg("PCI-E Master disable polling has failed.\n");
867
868 e_dbg("Masking off all interrupts\n");
869 ew32(IMC, 0xffffffff);
870
871 ew32(RCTL, 0);
872 ew32(TCTL, E1000_TCTL_PSP);
873 e1e_flush();
874
875 msleep(10);
876
877 /*
878 * Must acquire the MDIO ownership before MAC reset.
879 * Ownership defaults to firmware after a reset.
880 */
881 switch (hw->mac.type) {
882 case e1000_82573:
883 case e1000_82574:
884 case e1000_82583:
885 extcnf_ctrl = er32(EXTCNF_CTRL);
886 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
887
888 do {
889 ew32(EXTCNF_CTRL, extcnf_ctrl);
890 extcnf_ctrl = er32(EXTCNF_CTRL);
891
892 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
893 break;
894
895 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
896
897 msleep(2);
898 i++;
899 } while (i < MDIO_OWNERSHIP_TIMEOUT);
900 break;
901 default:
902 break;
903 }
904
905 ctrl = er32(CTRL);
906
907 e_dbg("Issuing a global reset to MAC\n");
908 ew32(CTRL, ctrl | E1000_CTRL_RST);
909
910 if (hw->nvm.type == e1000_nvm_flash_hw) {
911 udelay(10);
912 ctrl_ext = er32(CTRL_EXT);
913 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
914 ew32(CTRL_EXT, ctrl_ext);
915 e1e_flush();
916 }
917
918 ret_val = e1000e_get_auto_rd_done(hw);
919 if (ret_val)
920 /* We don't want to continue accessing MAC registers. */
921 return ret_val;
922
923 /*
924 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
925 * Need to wait for Phy configuration completion before accessing
926 * NVM and Phy.
927 */
928
929 switch (hw->mac.type) {
930 case e1000_82573:
931 case e1000_82574:
932 case e1000_82583:
933 msleep(25);
934 break;
935 default:
936 break;
937 }
938
939 /* Clear any pending interrupt events. */
940 ew32(IMC, 0xffffffff);
941 icr = er32(ICR);
942
943 if (hw->mac.type == e1000_82571) {
944 /* Install any alternate MAC address into RAR0 */
945 ret_val = e1000_check_alt_mac_addr_generic(hw);
946 if (ret_val)
947 return ret_val;
948
949 e1000e_set_laa_state_82571(hw, true);
950 }
951
952 /* Reinitialize the 82571 serdes link state machine */
953 if (hw->phy.media_type == e1000_media_type_internal_serdes)
954 hw->mac.serdes_link_state = e1000_serdes_link_down;
955
956 return 0;
957 }
958
959 /**
960 * e1000_init_hw_82571 - Initialize hardware
961 * @hw: pointer to the HW structure
962 *
963 * This inits the hardware readying it for operation.
964 **/
965 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
966 {
967 struct e1000_mac_info *mac = &hw->mac;
968 u32 reg_data;
969 s32 ret_val;
970 u16 i, rar_count = mac->rar_entry_count;
971
972 e1000_initialize_hw_bits_82571(hw);
973
974 /* Initialize identification LED */
975 ret_val = e1000e_id_led_init(hw);
976 if (ret_val)
977 e_dbg("Error initializing identification LED\n");
978 /* This is not fatal and we should not stop init due to this */
979
980 /* Disabling VLAN filtering */
981 e_dbg("Initializing the IEEE VLAN\n");
982 mac->ops.clear_vfta(hw);
983
984 /* Setup the receive address. */
985 /*
986 * If, however, a locally administered address was assigned to the
987 * 82571, we must reserve a RAR for it to work around an issue where
988 * resetting one port will reload the MAC on the other port.
989 */
990 if (e1000e_get_laa_state_82571(hw))
991 rar_count--;
992 e1000e_init_rx_addrs(hw, rar_count);
993
994 /* Zero out the Multicast HASH table */
995 e_dbg("Zeroing the MTA\n");
996 for (i = 0; i < mac->mta_reg_count; i++)
997 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
998
999 /* Setup link and flow control */
1000 ret_val = e1000_setup_link_82571(hw);
1001
1002 /* Set the transmit descriptor write-back policy */
1003 reg_data = er32(TXDCTL(0));
1004 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1005 E1000_TXDCTL_FULL_TX_DESC_WB |
1006 E1000_TXDCTL_COUNT_DESC;
1007 ew32(TXDCTL(0), reg_data);
1008
1009 /* ...for both queues. */
1010 switch (mac->type) {
1011 case e1000_82573:
1012 e1000e_enable_tx_pkt_filtering(hw);
1013 /* fall through */
1014 case e1000_82574:
1015 case e1000_82583:
1016 reg_data = er32(GCR);
1017 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1018 ew32(GCR, reg_data);
1019 break;
1020 default:
1021 reg_data = er32(TXDCTL(1));
1022 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1023 E1000_TXDCTL_FULL_TX_DESC_WB |
1024 E1000_TXDCTL_COUNT_DESC;
1025 ew32(TXDCTL(1), reg_data);
1026 break;
1027 }
1028
1029 /*
1030 * Clear all of the statistics registers (clear on read). It is
1031 * important that we do this after we have tried to establish link
1032 * because the symbol error count will increment wildly if there
1033 * is no link.
1034 */
1035 e1000_clear_hw_cntrs_82571(hw);
1036
1037 return ret_val;
1038 }
1039
1040 /**
1041 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1042 * @hw: pointer to the HW structure
1043 *
1044 * Initializes required hardware-dependent bits needed for normal operation.
1045 **/
1046 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1047 {
1048 u32 reg;
1049
1050 /* Transmit Descriptor Control 0 */
1051 reg = er32(TXDCTL(0));
1052 reg |= (1 << 22);
1053 ew32(TXDCTL(0), reg);
1054
1055 /* Transmit Descriptor Control 1 */
1056 reg = er32(TXDCTL(1));
1057 reg |= (1 << 22);
1058 ew32(TXDCTL(1), reg);
1059
1060 /* Transmit Arbitration Control 0 */
1061 reg = er32(TARC(0));
1062 reg &= ~(0xF << 27); /* 30:27 */
1063 switch (hw->mac.type) {
1064 case e1000_82571:
1065 case e1000_82572:
1066 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1067 break;
1068 default:
1069 break;
1070 }
1071 ew32(TARC(0), reg);
1072
1073 /* Transmit Arbitration Control 1 */
1074 reg = er32(TARC(1));
1075 switch (hw->mac.type) {
1076 case e1000_82571:
1077 case e1000_82572:
1078 reg &= ~((1 << 29) | (1 << 30));
1079 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1080 if (er32(TCTL) & E1000_TCTL_MULR)
1081 reg &= ~(1 << 28);
1082 else
1083 reg |= (1 << 28);
1084 ew32(TARC(1), reg);
1085 break;
1086 default:
1087 break;
1088 }
1089
1090 /* Device Control */
1091 switch (hw->mac.type) {
1092 case e1000_82573:
1093 case e1000_82574:
1094 case e1000_82583:
1095 reg = er32(CTRL);
1096 reg &= ~(1 << 29);
1097 ew32(CTRL, reg);
1098 break;
1099 default:
1100 break;
1101 }
1102
1103 /* Extended Device Control */
1104 switch (hw->mac.type) {
1105 case e1000_82573:
1106 case e1000_82574:
1107 case e1000_82583:
1108 reg = er32(CTRL_EXT);
1109 reg &= ~(1 << 23);
1110 reg |= (1 << 22);
1111 ew32(CTRL_EXT, reg);
1112 break;
1113 default:
1114 break;
1115 }
1116
1117 if (hw->mac.type == e1000_82571) {
1118 reg = er32(PBA_ECC);
1119 reg |= E1000_PBA_ECC_CORR_EN;
1120 ew32(PBA_ECC, reg);
1121 }
1122 /*
1123 * Workaround for hardware errata.
1124 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1125 */
1126
1127 if ((hw->mac.type == e1000_82571) ||
1128 (hw->mac.type == e1000_82572)) {
1129 reg = er32(CTRL_EXT);
1130 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1131 ew32(CTRL_EXT, reg);
1132 }
1133
1134
1135 /* PCI-Ex Control Registers */
1136 switch (hw->mac.type) {
1137 case e1000_82574:
1138 case e1000_82583:
1139 reg = er32(GCR);
1140 reg |= (1 << 22);
1141 ew32(GCR, reg);
1142
1143 /*
1144 * Workaround for hardware errata.
1145 * apply workaround for hardware errata documented in errata
1146 * docs Fixes issue where some error prone or unreliable PCIe
1147 * completions are occurring, particularly with ASPM enabled.
1148 * Without fix, issue can cause tx timeouts.
1149 */
1150 reg = er32(GCR2);
1151 reg |= 1;
1152 ew32(GCR2, reg);
1153 break;
1154 default:
1155 break;
1156 }
1157 }
1158
1159 /**
1160 * e1000_clear_vfta_82571 - Clear VLAN filter table
1161 * @hw: pointer to the HW structure
1162 *
1163 * Clears the register array which contains the VLAN filter table by
1164 * setting all the values to 0.
1165 **/
1166 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1167 {
1168 u32 offset;
1169 u32 vfta_value = 0;
1170 u32 vfta_offset = 0;
1171 u32 vfta_bit_in_reg = 0;
1172
1173 switch (hw->mac.type) {
1174 case e1000_82573:
1175 case e1000_82574:
1176 case e1000_82583:
1177 if (hw->mng_cookie.vlan_id != 0) {
1178 /*
1179 * The VFTA is a 4096b bit-field, each identifying
1180 * a single VLAN ID. The following operations
1181 * determine which 32b entry (i.e. offset) into the
1182 * array we want to set the VLAN ID (i.e. bit) of
1183 * the manageability unit.
1184 */
1185 vfta_offset = (hw->mng_cookie.vlan_id >>
1186 E1000_VFTA_ENTRY_SHIFT) &
1187 E1000_VFTA_ENTRY_MASK;
1188 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1189 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1190 }
1191 break;
1192 default:
1193 break;
1194 }
1195 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1196 /*
1197 * If the offset we want to clear is the same offset of the
1198 * manageability VLAN ID, then clear all bits except that of
1199 * the manageability unit.
1200 */
1201 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1202 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1203 e1e_flush();
1204 }
1205 }
1206
1207 /**
1208 * e1000_check_mng_mode_82574 - Check manageability is enabled
1209 * @hw: pointer to the HW structure
1210 *
1211 * Reads the NVM Initialization Control Word 2 and returns true
1212 * (>0) if any manageability is enabled, else false (0).
1213 **/
1214 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1215 {
1216 u16 data;
1217
1218 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1219 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1220 }
1221
1222 /**
1223 * e1000_led_on_82574 - Turn LED on
1224 * @hw: pointer to the HW structure
1225 *
1226 * Turn LED on.
1227 **/
1228 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1229 {
1230 u32 ctrl;
1231 u32 i;
1232
1233 ctrl = hw->mac.ledctl_mode2;
1234 if (!(E1000_STATUS_LU & er32(STATUS))) {
1235 /*
1236 * If no link, then turn LED on by setting the invert bit
1237 * for each LED that's "on" (0x0E) in ledctl_mode2.
1238 */
1239 for (i = 0; i < 4; i++)
1240 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1241 E1000_LEDCTL_MODE_LED_ON)
1242 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1243 }
1244 ew32(LEDCTL, ctrl);
1245
1246 return 0;
1247 }
1248
1249 /**
1250 * e1000_check_phy_82574 - check 82574 phy hung state
1251 * @hw: pointer to the HW structure
1252 *
1253 * Returns whether phy is hung or not
1254 **/
1255 bool e1000_check_phy_82574(struct e1000_hw *hw)
1256 {
1257 u16 status_1kbt = 0;
1258 u16 receive_errors = 0;
1259 bool phy_hung = false;
1260 s32 ret_val = 0;
1261
1262 /*
1263 * Read PHY Receive Error counter first, if its is max - all F's then
1264 * read the Base1000T status register If both are max then PHY is hung.
1265 */
1266 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1267
1268 if (ret_val)
1269 goto out;
1270 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1271 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1272 if (ret_val)
1273 goto out;
1274 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1275 E1000_IDLE_ERROR_COUNT_MASK)
1276 phy_hung = true;
1277 }
1278 out:
1279 return phy_hung;
1280 }
1281
1282 /**
1283 * e1000_setup_link_82571 - Setup flow control and link settings
1284 * @hw: pointer to the HW structure
1285 *
1286 * Determines which flow control settings to use, then configures flow
1287 * control. Calls the appropriate media-specific link configuration
1288 * function. Assuming the adapter has a valid link partner, a valid link
1289 * should be established. Assumes the hardware has previously been reset
1290 * and the transmitter and receiver are not enabled.
1291 **/
1292 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1293 {
1294 /*
1295 * 82573 does not have a word in the NVM to determine
1296 * the default flow control setting, so we explicitly
1297 * set it to full.
1298 */
1299 switch (hw->mac.type) {
1300 case e1000_82573:
1301 case e1000_82574:
1302 case e1000_82583:
1303 if (hw->fc.requested_mode == e1000_fc_default)
1304 hw->fc.requested_mode = e1000_fc_full;
1305 break;
1306 default:
1307 break;
1308 }
1309
1310 return e1000e_setup_link(hw);
1311 }
1312
1313 /**
1314 * e1000_setup_copper_link_82571 - Configure copper link settings
1315 * @hw: pointer to the HW structure
1316 *
1317 * Configures the link for auto-neg or forced speed and duplex. Then we check
1318 * for link, once link is established calls to configure collision distance
1319 * and flow control are called.
1320 **/
1321 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1322 {
1323 u32 ctrl;
1324 s32 ret_val;
1325
1326 ctrl = er32(CTRL);
1327 ctrl |= E1000_CTRL_SLU;
1328 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1329 ew32(CTRL, ctrl);
1330
1331 switch (hw->phy.type) {
1332 case e1000_phy_m88:
1333 case e1000_phy_bm:
1334 ret_val = e1000e_copper_link_setup_m88(hw);
1335 break;
1336 case e1000_phy_igp_2:
1337 ret_val = e1000e_copper_link_setup_igp(hw);
1338 break;
1339 default:
1340 return -E1000_ERR_PHY;
1341 break;
1342 }
1343
1344 if (ret_val)
1345 return ret_val;
1346
1347 ret_val = e1000e_setup_copper_link(hw);
1348
1349 return ret_val;
1350 }
1351
1352 /**
1353 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1354 * @hw: pointer to the HW structure
1355 *
1356 * Configures collision distance and flow control for fiber and serdes links.
1357 * Upon successful setup, poll for link.
1358 **/
1359 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1360 {
1361 switch (hw->mac.type) {
1362 case e1000_82571:
1363 case e1000_82572:
1364 /*
1365 * If SerDes loopback mode is entered, there is no form
1366 * of reset to take the adapter out of that mode. So we
1367 * have to explicitly take the adapter out of loopback
1368 * mode. This prevents drivers from twiddling their thumbs
1369 * if another tool failed to take it out of loopback mode.
1370 */
1371 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1372 break;
1373 default:
1374 break;
1375 }
1376
1377 return e1000e_setup_fiber_serdes_link(hw);
1378 }
1379
1380 /**
1381 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1382 * @hw: pointer to the HW structure
1383 *
1384 * Reports the link state as up or down.
1385 *
1386 * If autonegotiation is supported by the link partner, the link state is
1387 * determined by the result of autonegotiation. This is the most likely case.
1388 * If autonegotiation is not supported by the link partner, and the link
1389 * has a valid signal, force the link up.
1390 *
1391 * The link state is represented internally here by 4 states:
1392 *
1393 * 1) down
1394 * 2) autoneg_progress
1395 * 3) autoneg_complete (the link successfully autonegotiated)
1396 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1397 *
1398 **/
1399 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1400 {
1401 struct e1000_mac_info *mac = &hw->mac;
1402 u32 rxcw;
1403 u32 ctrl;
1404 u32 status;
1405 s32 ret_val = 0;
1406
1407 ctrl = er32(CTRL);
1408 status = er32(STATUS);
1409 rxcw = er32(RXCW);
1410
1411 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1412
1413 /* Receiver is synchronized with no invalid bits. */
1414 switch (mac->serdes_link_state) {
1415 case e1000_serdes_link_autoneg_complete:
1416 if (!(status & E1000_STATUS_LU)) {
1417 /*
1418 * We have lost link, retry autoneg before
1419 * reporting link failure
1420 */
1421 mac->serdes_link_state =
1422 e1000_serdes_link_autoneg_progress;
1423 mac->serdes_has_link = false;
1424 e_dbg("AN_UP -> AN_PROG\n");
1425 }
1426 break;
1427
1428 case e1000_serdes_link_forced_up:
1429 /*
1430 * If we are receiving /C/ ordered sets, re-enable
1431 * auto-negotiation in the TXCW register and disable
1432 * forced link in the Device Control register in an
1433 * attempt to auto-negotiate with our link partner.
1434 */
1435 if (rxcw & E1000_RXCW_C) {
1436 /* Enable autoneg, and unforce link up */
1437 ew32(TXCW, mac->txcw);
1438 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1439 mac->serdes_link_state =
1440 e1000_serdes_link_autoneg_progress;
1441 mac->serdes_has_link = false;
1442 e_dbg("FORCED_UP -> AN_PROG\n");
1443 }
1444 break;
1445
1446 case e1000_serdes_link_autoneg_progress:
1447 if (rxcw & E1000_RXCW_C) {
1448 /*
1449 * We received /C/ ordered sets, meaning the
1450 * link partner has autonegotiated, and we can
1451 * trust the Link Up (LU) status bit.
1452 */
1453 if (status & E1000_STATUS_LU) {
1454 mac->serdes_link_state =
1455 e1000_serdes_link_autoneg_complete;
1456 e_dbg("AN_PROG -> AN_UP\n");
1457 mac->serdes_has_link = true;
1458 } else {
1459 /* Autoneg completed, but failed. */
1460 mac->serdes_link_state =
1461 e1000_serdes_link_down;
1462 e_dbg("AN_PROG -> DOWN\n");
1463 }
1464 } else {
1465 /*
1466 * The link partner did not autoneg.
1467 * Force link up and full duplex, and change
1468 * state to forced.
1469 */
1470 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1471 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1472 ew32(CTRL, ctrl);
1473
1474 /* Configure Flow Control after link up. */
1475 ret_val = e1000e_config_fc_after_link_up(hw);
1476 if (ret_val) {
1477 e_dbg("Error config flow control\n");
1478 break;
1479 }
1480 mac->serdes_link_state =
1481 e1000_serdes_link_forced_up;
1482 mac->serdes_has_link = true;
1483 e_dbg("AN_PROG -> FORCED_UP\n");
1484 }
1485 break;
1486
1487 case e1000_serdes_link_down:
1488 default:
1489 /*
1490 * The link was down but the receiver has now gained
1491 * valid sync, so lets see if we can bring the link
1492 * up.
1493 */
1494 ew32(TXCW, mac->txcw);
1495 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1496 mac->serdes_link_state =
1497 e1000_serdes_link_autoneg_progress;
1498 e_dbg("DOWN -> AN_PROG\n");
1499 break;
1500 }
1501 } else {
1502 if (!(rxcw & E1000_RXCW_SYNCH)) {
1503 mac->serdes_has_link = false;
1504 mac->serdes_link_state = e1000_serdes_link_down;
1505 e_dbg("ANYSTATE -> DOWN\n");
1506 } else {
1507 /*
1508 * We have sync, and can tolerate one invalid (IV)
1509 * codeword before declaring link down, so reread
1510 * to look again.
1511 */
1512 udelay(10);
1513 rxcw = er32(RXCW);
1514 if (rxcw & E1000_RXCW_IV) {
1515 mac->serdes_link_state = e1000_serdes_link_down;
1516 mac->serdes_has_link = false;
1517 e_dbg("ANYSTATE -> DOWN\n");
1518 }
1519 }
1520 }
1521
1522 return ret_val;
1523 }
1524
1525 /**
1526 * e1000_valid_led_default_82571 - Verify a valid default LED config
1527 * @hw: pointer to the HW structure
1528 * @data: pointer to the NVM (EEPROM)
1529 *
1530 * Read the EEPROM for the current default LED configuration. If the
1531 * LED configuration is not valid, set to a valid LED configuration.
1532 **/
1533 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1534 {
1535 s32 ret_val;
1536
1537 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1538 if (ret_val) {
1539 e_dbg("NVM Read Error\n");
1540 return ret_val;
1541 }
1542
1543 switch (hw->mac.type) {
1544 case e1000_82573:
1545 case e1000_82574:
1546 case e1000_82583:
1547 if (*data == ID_LED_RESERVED_F746)
1548 *data = ID_LED_DEFAULT_82573;
1549 break;
1550 default:
1551 if (*data == ID_LED_RESERVED_0000 ||
1552 *data == ID_LED_RESERVED_FFFF)
1553 *data = ID_LED_DEFAULT;
1554 break;
1555 }
1556
1557 return 0;
1558 }
1559
1560 /**
1561 * e1000e_get_laa_state_82571 - Get locally administered address state
1562 * @hw: pointer to the HW structure
1563 *
1564 * Retrieve and return the current locally administered address state.
1565 **/
1566 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1567 {
1568 if (hw->mac.type != e1000_82571)
1569 return false;
1570
1571 return hw->dev_spec.e82571.laa_is_present;
1572 }
1573
1574 /**
1575 * e1000e_set_laa_state_82571 - Set locally administered address state
1576 * @hw: pointer to the HW structure
1577 * @state: enable/disable locally administered address
1578 *
1579 * Enable/Disable the current locally administered address state.
1580 **/
1581 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1582 {
1583 if (hw->mac.type != e1000_82571)
1584 return;
1585
1586 hw->dev_spec.e82571.laa_is_present = state;
1587
1588 /* If workaround is activated... */
1589 if (state)
1590 /*
1591 * Hold a copy of the LAA in RAR[14] This is done so that
1592 * between the time RAR[0] gets clobbered and the time it
1593 * gets fixed, the actual LAA is in one of the RARs and no
1594 * incoming packets directed to this port are dropped.
1595 * Eventually the LAA will be in RAR[0] and RAR[14].
1596 */
1597 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1598 }
1599
1600 /**
1601 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1602 * @hw: pointer to the HW structure
1603 *
1604 * Verifies that the EEPROM has completed the update. After updating the
1605 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1606 * the checksum fix is not implemented, we need to set the bit and update
1607 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1608 * we need to return bad checksum.
1609 **/
1610 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1611 {
1612 struct e1000_nvm_info *nvm = &hw->nvm;
1613 s32 ret_val;
1614 u16 data;
1615
1616 if (nvm->type != e1000_nvm_flash_hw)
1617 return 0;
1618
1619 /*
1620 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1621 * 10h-12h. Checksum may need to be fixed.
1622 */
1623 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1624 if (ret_val)
1625 return ret_val;
1626
1627 if (!(data & 0x10)) {
1628 /*
1629 * Read 0x23 and check bit 15. This bit is a 1
1630 * when the checksum has already been fixed. If
1631 * the checksum is still wrong and this bit is a
1632 * 1, we need to return bad checksum. Otherwise,
1633 * we need to set this bit to a 1 and update the
1634 * checksum.
1635 */
1636 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1637 if (ret_val)
1638 return ret_val;
1639
1640 if (!(data & 0x8000)) {
1641 data |= 0x8000;
1642 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1643 if (ret_val)
1644 return ret_val;
1645 ret_val = e1000e_update_nvm_checksum(hw);
1646 }
1647 }
1648
1649 return 0;
1650 }
1651
1652 /**
1653 * e1000_read_mac_addr_82571 - Read device MAC address
1654 * @hw: pointer to the HW structure
1655 **/
1656 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1657 {
1658 s32 ret_val = 0;
1659
1660 if (hw->mac.type == e1000_82571) {
1661 /*
1662 * If there's an alternate MAC address place it in RAR0
1663 * so that it will override the Si installed default perm
1664 * address.
1665 */
1666 ret_val = e1000_check_alt_mac_addr_generic(hw);
1667 if (ret_val)
1668 goto out;
1669 }
1670
1671 ret_val = e1000_read_mac_addr_generic(hw);
1672
1673 out:
1674 return ret_val;
1675 }
1676
1677 /**
1678 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1679 * @hw: pointer to the HW structure
1680 *
1681 * In the case of a PHY power down to save power, or to turn off link during a
1682 * driver unload, or wake on lan is not enabled, remove the link.
1683 **/
1684 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1685 {
1686 struct e1000_phy_info *phy = &hw->phy;
1687 struct e1000_mac_info *mac = &hw->mac;
1688
1689 if (!(phy->ops.check_reset_block))
1690 return;
1691
1692 /* If the management interface is not enabled, then power down */
1693 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1694 e1000_power_down_phy_copper(hw);
1695 }
1696
1697 /**
1698 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1699 * @hw: pointer to the HW structure
1700 *
1701 * Clears the hardware counters by reading the counter registers.
1702 **/
1703 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1704 {
1705 e1000e_clear_hw_cntrs_base(hw);
1706
1707 er32(PRC64);
1708 er32(PRC127);
1709 er32(PRC255);
1710 er32(PRC511);
1711 er32(PRC1023);
1712 er32(PRC1522);
1713 er32(PTC64);
1714 er32(PTC127);
1715 er32(PTC255);
1716 er32(PTC511);
1717 er32(PTC1023);
1718 er32(PTC1522);
1719
1720 er32(ALGNERRC);
1721 er32(RXERRC);
1722 er32(TNCRS);
1723 er32(CEXTERR);
1724 er32(TSCTC);
1725 er32(TSCTFC);
1726
1727 er32(MGTPRC);
1728 er32(MGTPDC);
1729 er32(MGTPTC);
1730
1731 er32(IAC);
1732 er32(ICRXOC);
1733
1734 er32(ICRXPTC);
1735 er32(ICRXATC);
1736 er32(ICTXPTC);
1737 er32(ICTXATC);
1738 er32(ICTXQEC);
1739 er32(ICTXQMTC);
1740 er32(ICRXDMTC);
1741 }
1742
1743 static struct e1000_mac_operations e82571_mac_ops = {
1744 /* .check_mng_mode: mac type dependent */
1745 /* .check_for_link: media type dependent */
1746 .id_led_init = e1000e_id_led_init,
1747 .cleanup_led = e1000e_cleanup_led_generic,
1748 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1749 .get_bus_info = e1000e_get_bus_info_pcie,
1750 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1751 /* .get_link_up_info: media type dependent */
1752 /* .led_on: mac type dependent */
1753 .led_off = e1000e_led_off_generic,
1754 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1755 .write_vfta = e1000_write_vfta_generic,
1756 .clear_vfta = e1000_clear_vfta_82571,
1757 .reset_hw = e1000_reset_hw_82571,
1758 .init_hw = e1000_init_hw_82571,
1759 .setup_link = e1000_setup_link_82571,
1760 /* .setup_physical_interface: media type dependent */
1761 .setup_led = e1000e_setup_led_generic,
1762 .read_mac_addr = e1000_read_mac_addr_82571,
1763 };
1764
1765 static struct e1000_phy_operations e82_phy_ops_igp = {
1766 .acquire = e1000_get_hw_semaphore_82571,
1767 .check_polarity = e1000_check_polarity_igp,
1768 .check_reset_block = e1000e_check_reset_block_generic,
1769 .commit = NULL,
1770 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1771 .get_cfg_done = e1000_get_cfg_done_82571,
1772 .get_cable_length = e1000e_get_cable_length_igp_2,
1773 .get_info = e1000e_get_phy_info_igp,
1774 .read_reg = e1000e_read_phy_reg_igp,
1775 .release = e1000_put_hw_semaphore_82571,
1776 .reset = e1000e_phy_hw_reset_generic,
1777 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1778 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1779 .write_reg = e1000e_write_phy_reg_igp,
1780 .cfg_on_link_up = NULL,
1781 };
1782
1783 static struct e1000_phy_operations e82_phy_ops_m88 = {
1784 .acquire = e1000_get_hw_semaphore_82571,
1785 .check_polarity = e1000_check_polarity_m88,
1786 .check_reset_block = e1000e_check_reset_block_generic,
1787 .commit = e1000e_phy_sw_reset,
1788 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1789 .get_cfg_done = e1000e_get_cfg_done,
1790 .get_cable_length = e1000e_get_cable_length_m88,
1791 .get_info = e1000e_get_phy_info_m88,
1792 .read_reg = e1000e_read_phy_reg_m88,
1793 .release = e1000_put_hw_semaphore_82571,
1794 .reset = e1000e_phy_hw_reset_generic,
1795 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1796 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1797 .write_reg = e1000e_write_phy_reg_m88,
1798 .cfg_on_link_up = NULL,
1799 };
1800
1801 static struct e1000_phy_operations e82_phy_ops_bm = {
1802 .acquire = e1000_get_hw_semaphore_82571,
1803 .check_polarity = e1000_check_polarity_m88,
1804 .check_reset_block = e1000e_check_reset_block_generic,
1805 .commit = e1000e_phy_sw_reset,
1806 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1807 .get_cfg_done = e1000e_get_cfg_done,
1808 .get_cable_length = e1000e_get_cable_length_m88,
1809 .get_info = e1000e_get_phy_info_m88,
1810 .read_reg = e1000e_read_phy_reg_bm2,
1811 .release = e1000_put_hw_semaphore_82571,
1812 .reset = e1000e_phy_hw_reset_generic,
1813 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1814 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1815 .write_reg = e1000e_write_phy_reg_bm2,
1816 .cfg_on_link_up = NULL,
1817 };
1818
1819 static struct e1000_nvm_operations e82571_nvm_ops = {
1820 .acquire = e1000_acquire_nvm_82571,
1821 .read = e1000e_read_nvm_eerd,
1822 .release = e1000_release_nvm_82571,
1823 .update = e1000_update_nvm_checksum_82571,
1824 .valid_led_default = e1000_valid_led_default_82571,
1825 .validate = e1000_validate_nvm_checksum_82571,
1826 .write = e1000_write_nvm_82571,
1827 };
1828
1829 struct e1000_info e1000_82571_info = {
1830 .mac = e1000_82571,
1831 .flags = FLAG_HAS_HW_VLAN_FILTER
1832 | FLAG_HAS_JUMBO_FRAMES
1833 | FLAG_HAS_WOL
1834 | FLAG_APME_IN_CTRL3
1835 | FLAG_RX_CSUM_ENABLED
1836 | FLAG_HAS_CTRLEXT_ON_LOAD
1837 | FLAG_HAS_SMART_POWER_DOWN
1838 | FLAG_RESET_OVERWRITES_LAA /* errata */
1839 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1840 | FLAG_APME_CHECK_PORT_B,
1841 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1842 | FLAG2_DMA_BURST,
1843 .pba = 38,
1844 .max_hw_frame_size = DEFAULT_JUMBO,
1845 .get_variants = e1000_get_variants_82571,
1846 .mac_ops = &e82571_mac_ops,
1847 .phy_ops = &e82_phy_ops_igp,
1848 .nvm_ops = &e82571_nvm_ops,
1849 };
1850
1851 struct e1000_info e1000_82572_info = {
1852 .mac = e1000_82572,
1853 .flags = FLAG_HAS_HW_VLAN_FILTER
1854 | FLAG_HAS_JUMBO_FRAMES
1855 | FLAG_HAS_WOL
1856 | FLAG_APME_IN_CTRL3
1857 | FLAG_RX_CSUM_ENABLED
1858 | FLAG_HAS_CTRLEXT_ON_LOAD
1859 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1860 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1861 | FLAG2_DMA_BURST,
1862 .pba = 38,
1863 .max_hw_frame_size = DEFAULT_JUMBO,
1864 .get_variants = e1000_get_variants_82571,
1865 .mac_ops = &e82571_mac_ops,
1866 .phy_ops = &e82_phy_ops_igp,
1867 .nvm_ops = &e82571_nvm_ops,
1868 };
1869
1870 struct e1000_info e1000_82573_info = {
1871 .mac = e1000_82573,
1872 .flags = FLAG_HAS_HW_VLAN_FILTER
1873 | FLAG_HAS_WOL
1874 | FLAG_APME_IN_CTRL3
1875 | FLAG_RX_CSUM_ENABLED
1876 | FLAG_HAS_SMART_POWER_DOWN
1877 | FLAG_HAS_AMT
1878 | FLAG_HAS_SWSM_ON_LOAD,
1879 .flags2 = FLAG2_DISABLE_ASPM_L1,
1880 .pba = 20,
1881 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1882 .get_variants = e1000_get_variants_82571,
1883 .mac_ops = &e82571_mac_ops,
1884 .phy_ops = &e82_phy_ops_m88,
1885 .nvm_ops = &e82571_nvm_ops,
1886 };
1887
1888 struct e1000_info e1000_82574_info = {
1889 .mac = e1000_82574,
1890 .flags = FLAG_HAS_HW_VLAN_FILTER
1891 | FLAG_HAS_MSIX
1892 | FLAG_HAS_JUMBO_FRAMES
1893 | FLAG_HAS_WOL
1894 | FLAG_APME_IN_CTRL3
1895 | FLAG_RX_CSUM_ENABLED
1896 | FLAG_HAS_SMART_POWER_DOWN
1897 | FLAG_HAS_AMT
1898 | FLAG_HAS_CTRLEXT_ON_LOAD,
1899 .flags2 = FLAG2_CHECK_PHY_HANG,
1900 .pba = 36,
1901 .max_hw_frame_size = DEFAULT_JUMBO,
1902 .get_variants = e1000_get_variants_82571,
1903 .mac_ops = &e82571_mac_ops,
1904 .phy_ops = &e82_phy_ops_bm,
1905 .nvm_ops = &e82571_nvm_ops,
1906 };
1907
1908 struct e1000_info e1000_82583_info = {
1909 .mac = e1000_82583,
1910 .flags = FLAG_HAS_HW_VLAN_FILTER
1911 | FLAG_HAS_WOL
1912 | FLAG_APME_IN_CTRL3
1913 | FLAG_RX_CSUM_ENABLED
1914 | FLAG_HAS_SMART_POWER_DOWN
1915 | FLAG_HAS_AMT
1916 | FLAG_HAS_CTRLEXT_ON_LOAD,
1917 .pba = 36,
1918 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
1919 .get_variants = e1000_get_variants_82571,
1920 .mac_ops = &e82571_mac_ops,
1921 .phy_ops = &e82_phy_ops_bm,
1922 .nvm_ops = &e82571_nvm_ops,
1923 };
1924
This page took 0.11356 seconds and 6 git commands to generate.