hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32 */
33
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
38
39 #include "e1000.h"
40
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
44 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
45
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
47 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
48 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
49
50 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
51 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
52 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
53
54 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
55 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
56
57 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
58 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
59
60 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
61 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
62 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
63 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
64 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
65 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
66
67 /* PHY Specific Control Register 2 (Page 0, Register 26) */
68 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
69 /* 1=Reverse Auto-Negotiation */
70
71 /* MAC Specific Control Register (Page 2, Register 21) */
72 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
73 #define GG82563_MSCR_TX_CLK_MASK 0x0007
74 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
75 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
76 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
77
78 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
79
80 /* DSP Distance Register (Page 5, Register 26) */
81 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
82 1 = 50-80M
83 2 = 80-110M
84 3 = 110-140M
85 4 = >140M */
86
87 /* Kumeran Mode Control Register (Page 193, Register 16) */
88 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
89
90 /* Max number of times Kumeran read/write should be validated */
91 #define GG82563_MAX_KMRN_RETRY 0x5
92
93 /* Power Management Control Register (Page 193, Register 20) */
94 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
95 /* 1=Enable SERDES Electrical Idle */
96
97 /* In-Band Control Register (Page 194, Register 18) */
98 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
99
100 /*
101 * A table for the GG82563 cable length where the range is defined
102 * with a lower bound at "index" and the upper bound at
103 * "index + 5".
104 */
105 static const u16 e1000_gg82563_cable_length_table[] =
106 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
107
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117 u16 *data);
118 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119 u16 data);
120
121 /**
122 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
123 * @hw: pointer to the HW structure
124 *
125 * This is a function pointer entry point called by the api module.
126 **/
127 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
128 {
129 struct e1000_phy_info *phy = &hw->phy;
130 s32 ret_val;
131
132 if (hw->phy.media_type != e1000_media_type_copper) {
133 phy->type = e1000_phy_none;
134 return 0;
135 }
136
137 phy->addr = 1;
138 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
139 phy->reset_delay_us = 100;
140 phy->type = e1000_phy_gg82563;
141
142 /* This can only be done after all function pointers are setup. */
143 ret_val = e1000e_get_phy_id(hw);
144
145 /* Verify phy id */
146 if (phy->id != GG82563_E_PHY_ID)
147 return -E1000_ERR_PHY;
148
149 return ret_val;
150 }
151
152 /**
153 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
154 * @hw: pointer to the HW structure
155 *
156 * This is a function pointer entry point called by the api module.
157 **/
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160 struct e1000_nvm_info *nvm = &hw->nvm;
161 u32 eecd = er32(EECD);
162 u16 size;
163
164 nvm->opcode_bits = 8;
165 nvm->delay_usec = 1;
166 switch (nvm->override) {
167 case e1000_nvm_override_spi_large:
168 nvm->page_size = 32;
169 nvm->address_bits = 16;
170 break;
171 case e1000_nvm_override_spi_small:
172 nvm->page_size = 8;
173 nvm->address_bits = 8;
174 break;
175 default:
176 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178 break;
179 }
180
181 nvm->type = e1000_nvm_eeprom_spi;
182
183 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184 E1000_EECD_SIZE_EX_SHIFT);
185
186 /*
187 * Added to a constant, "size" becomes the left-shift value
188 * for setting word_size.
189 */
190 size += NVM_WORD_SIZE_BASE_SHIFT;
191
192 /* EEPROM access above 16k is unsupported */
193 if (size > 14)
194 size = 14;
195 nvm->word_size = 1 << size;
196
197 return 0;
198 }
199
200 /**
201 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202 * @hw: pointer to the HW structure
203 *
204 * This is a function pointer entry point called by the api module.
205 **/
206 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
207 {
208 struct e1000_hw *hw = &adapter->hw;
209 struct e1000_mac_info *mac = &hw->mac;
210 struct e1000_mac_operations *func = &mac->ops;
211
212 /* Set media type */
213 switch (adapter->pdev->device) {
214 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
215 hw->phy.media_type = e1000_media_type_internal_serdes;
216 break;
217 default:
218 hw->phy.media_type = e1000_media_type_copper;
219 break;
220 }
221
222 /* Set mta register count */
223 mac->mta_reg_count = 128;
224 /* Set rar entry count */
225 mac->rar_entry_count = E1000_RAR_ENTRIES;
226 /* Set if manageability features are enabled. */
227 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
228
229 /* check for link */
230 switch (hw->phy.media_type) {
231 case e1000_media_type_copper:
232 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
233 func->check_for_link = e1000e_check_for_copper_link;
234 break;
235 case e1000_media_type_fiber:
236 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
237 func->check_for_link = e1000e_check_for_fiber_link;
238 break;
239 case e1000_media_type_internal_serdes:
240 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
241 func->check_for_link = e1000e_check_for_serdes_link;
242 break;
243 default:
244 return -E1000_ERR_CONFIG;
245 break;
246 }
247
248 return 0;
249 }
250
251 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
252 {
253 struct e1000_hw *hw = &adapter->hw;
254 s32 rc;
255
256 rc = e1000_init_mac_params_80003es2lan(adapter);
257 if (rc)
258 return rc;
259
260 rc = e1000_init_nvm_params_80003es2lan(hw);
261 if (rc)
262 return rc;
263
264 rc = e1000_init_phy_params_80003es2lan(hw);
265 if (rc)
266 return rc;
267
268 return 0;
269 }
270
271 /**
272 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
273 * @hw: pointer to the HW structure
274 *
275 * A wrapper to acquire access rights to the correct PHY. This is a
276 * function pointer entry point called by the api module.
277 **/
278 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
279 {
280 u16 mask;
281
282 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
283 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
284 }
285
286 /**
287 * e1000_release_phy_80003es2lan - Release rights to access PHY
288 * @hw: pointer to the HW structure
289 *
290 * A wrapper to release access rights to the correct PHY. This is a
291 * function pointer entry point called by the api module.
292 **/
293 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
294 {
295 u16 mask;
296
297 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
298 e1000_release_swfw_sync_80003es2lan(hw, mask);
299 }
300
301 /**
302 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
303 * @hw: pointer to the HW structure
304 *
305 * Acquire the semaphore to access the Kumeran interface.
306 *
307 **/
308 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
309 {
310 u16 mask;
311
312 mask = E1000_SWFW_CSR_SM;
313
314 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
315 }
316
317 /**
318 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
319 * @hw: pointer to the HW structure
320 *
321 * Release the semaphore used to access the Kumeran interface
322 **/
323 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
324 {
325 u16 mask;
326
327 mask = E1000_SWFW_CSR_SM;
328
329 e1000_release_swfw_sync_80003es2lan(hw, mask);
330 }
331
332 /**
333 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
334 * @hw: pointer to the HW structure
335 *
336 * Acquire the semaphore to access the EEPROM. This is a function
337 * pointer entry point called by the api module.
338 **/
339 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
340 {
341 s32 ret_val;
342
343 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
344 if (ret_val)
345 return ret_val;
346
347 ret_val = e1000e_acquire_nvm(hw);
348
349 if (ret_val)
350 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
351
352 return ret_val;
353 }
354
355 /**
356 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
357 * @hw: pointer to the HW structure
358 *
359 * Release the semaphore used to access the EEPROM. This is a
360 * function pointer entry point called by the api module.
361 **/
362 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
363 {
364 e1000e_release_nvm(hw);
365 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
366 }
367
368 /**
369 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
370 * @hw: pointer to the HW structure
371 * @mask: specifies which semaphore to acquire
372 *
373 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
374 * will also specify which port we're acquiring the lock for.
375 **/
376 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
377 {
378 u32 swfw_sync;
379 u32 swmask = mask;
380 u32 fwmask = mask << 16;
381 s32 i = 0;
382 s32 timeout = 50;
383
384 while (i < timeout) {
385 if (e1000e_get_hw_semaphore(hw))
386 return -E1000_ERR_SWFW_SYNC;
387
388 swfw_sync = er32(SW_FW_SYNC);
389 if (!(swfw_sync & (fwmask | swmask)))
390 break;
391
392 /*
393 * Firmware currently using resource (fwmask)
394 * or other software thread using resource (swmask)
395 */
396 e1000e_put_hw_semaphore(hw);
397 mdelay(5);
398 i++;
399 }
400
401 if (i == timeout) {
402 hw_dbg(hw,
403 "Driver can't access resource, SW_FW_SYNC timeout.\n");
404 return -E1000_ERR_SWFW_SYNC;
405 }
406
407 swfw_sync |= swmask;
408 ew32(SW_FW_SYNC, swfw_sync);
409
410 e1000e_put_hw_semaphore(hw);
411
412 return 0;
413 }
414
415 /**
416 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
417 * @hw: pointer to the HW structure
418 * @mask: specifies which semaphore to acquire
419 *
420 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
421 * will also specify which port we're releasing the lock for.
422 **/
423 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
424 {
425 u32 swfw_sync;
426
427 while (e1000e_get_hw_semaphore(hw) != 0);
428 /* Empty */
429
430 swfw_sync = er32(SW_FW_SYNC);
431 swfw_sync &= ~mask;
432 ew32(SW_FW_SYNC, swfw_sync);
433
434 e1000e_put_hw_semaphore(hw);
435 }
436
437 /**
438 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
439 * @hw: pointer to the HW structure
440 * @offset: offset of the register to read
441 * @data: pointer to the data returned from the operation
442 *
443 * Read the GG82563 PHY register. This is a function pointer entry
444 * point called by the api module.
445 **/
446 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
447 u32 offset, u16 *data)
448 {
449 s32 ret_val;
450 u32 page_select;
451 u16 temp;
452
453 ret_val = e1000_acquire_phy_80003es2lan(hw);
454 if (ret_val)
455 return ret_val;
456
457 /* Select Configuration Page */
458 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
459 page_select = GG82563_PHY_PAGE_SELECT;
460 } else {
461 /*
462 * Use Alternative Page Select register to access
463 * registers 30 and 31
464 */
465 page_select = GG82563_PHY_PAGE_SELECT_ALT;
466 }
467
468 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
469 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
470 if (ret_val) {
471 e1000_release_phy_80003es2lan(hw);
472 return ret_val;
473 }
474
475 /*
476 * The "ready" bit in the MDIC register may be incorrectly set
477 * before the device has completed the "Page Select" MDI
478 * transaction. So we wait 200us after each MDI command...
479 */
480 udelay(200);
481
482 /* ...and verify the command was successful. */
483 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
484
485 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
486 ret_val = -E1000_ERR_PHY;
487 e1000_release_phy_80003es2lan(hw);
488 return ret_val;
489 }
490
491 udelay(200);
492
493 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
494 data);
495
496 udelay(200);
497 e1000_release_phy_80003es2lan(hw);
498
499 return ret_val;
500 }
501
502 /**
503 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
504 * @hw: pointer to the HW structure
505 * @offset: offset of the register to read
506 * @data: value to write to the register
507 *
508 * Write to the GG82563 PHY register. This is a function pointer entry
509 * point called by the api module.
510 **/
511 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
512 u32 offset, u16 data)
513 {
514 s32 ret_val;
515 u32 page_select;
516 u16 temp;
517
518 ret_val = e1000_acquire_phy_80003es2lan(hw);
519 if (ret_val)
520 return ret_val;
521
522 /* Select Configuration Page */
523 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
524 page_select = GG82563_PHY_PAGE_SELECT;
525 } else {
526 /*
527 * Use Alternative Page Select register to access
528 * registers 30 and 31
529 */
530 page_select = GG82563_PHY_PAGE_SELECT_ALT;
531 }
532
533 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
534 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
535 if (ret_val) {
536 e1000_release_phy_80003es2lan(hw);
537 return ret_val;
538 }
539
540
541 /*
542 * The "ready" bit in the MDIC register may be incorrectly set
543 * before the device has completed the "Page Select" MDI
544 * transaction. So we wait 200us after each MDI command...
545 */
546 udelay(200);
547
548 /* ...and verify the command was successful. */
549 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
550
551 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
552 e1000_release_phy_80003es2lan(hw);
553 return -E1000_ERR_PHY;
554 }
555
556 udelay(200);
557
558 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
559 data);
560
561 udelay(200);
562 e1000_release_phy_80003es2lan(hw);
563
564 return ret_val;
565 }
566
567 /**
568 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
569 * @hw: pointer to the HW structure
570 * @offset: offset of the register to read
571 * @words: number of words to write
572 * @data: buffer of data to write to the NVM
573 *
574 * Write "words" of data to the ESB2 NVM. This is a function
575 * pointer entry point called by the api module.
576 **/
577 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
578 u16 words, u16 *data)
579 {
580 return e1000e_write_nvm_spi(hw, offset, words, data);
581 }
582
583 /**
584 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
585 * @hw: pointer to the HW structure
586 *
587 * Wait a specific amount of time for manageability processes to complete.
588 * This is a function pointer entry point called by the phy module.
589 **/
590 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
591 {
592 s32 timeout = PHY_CFG_TIMEOUT;
593 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
594
595 if (hw->bus.func == 1)
596 mask = E1000_NVM_CFG_DONE_PORT_1;
597
598 while (timeout) {
599 if (er32(EEMNGCTL) & mask)
600 break;
601 msleep(1);
602 timeout--;
603 }
604 if (!timeout) {
605 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
606 return -E1000_ERR_RESET;
607 }
608
609 return 0;
610 }
611
612 /**
613 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
614 * @hw: pointer to the HW structure
615 *
616 * Force the speed and duplex settings onto the PHY. This is a
617 * function pointer entry point called by the phy module.
618 **/
619 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
620 {
621 s32 ret_val;
622 u16 phy_data;
623 bool link;
624
625 /*
626 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
627 * forced whenever speed and duplex are forced.
628 */
629 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
630 if (ret_val)
631 return ret_val;
632
633 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
634 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
635 if (ret_val)
636 return ret_val;
637
638 hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
639
640 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
641 if (ret_val)
642 return ret_val;
643
644 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
645
646 /* Reset the phy to commit changes. */
647 phy_data |= MII_CR_RESET;
648
649 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
650 if (ret_val)
651 return ret_val;
652
653 udelay(1);
654
655 if (hw->phy.autoneg_wait_to_complete) {
656 hw_dbg(hw, "Waiting for forced speed/duplex link "
657 "on GG82563 phy.\n");
658
659 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
660 100000, &link);
661 if (ret_val)
662 return ret_val;
663
664 if (!link) {
665 /*
666 * We didn't get link.
667 * Reset the DSP and cross our fingers.
668 */
669 ret_val = e1000e_phy_reset_dsp(hw);
670 if (ret_val)
671 return ret_val;
672 }
673
674 /* Try once more */
675 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
676 100000, &link);
677 if (ret_val)
678 return ret_val;
679 }
680
681 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
682 if (ret_val)
683 return ret_val;
684
685 /*
686 * Resetting the phy means we need to verify the TX_CLK corresponds
687 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
688 */
689 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
690 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
691 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
692 else
693 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
694
695 /*
696 * In addition, we must re-enable CRS on Tx for both half and full
697 * duplex.
698 */
699 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
700 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
701
702 return ret_val;
703 }
704
705 /**
706 * e1000_get_cable_length_80003es2lan - Set approximate cable length
707 * @hw: pointer to the HW structure
708 *
709 * Find the approximate cable length as measured by the GG82563 PHY.
710 * This is a function pointer entry point called by the phy module.
711 **/
712 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
713 {
714 struct e1000_phy_info *phy = &hw->phy;
715 s32 ret_val;
716 u16 phy_data;
717 u16 index;
718
719 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
720 if (ret_val)
721 return ret_val;
722
723 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
724 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
725 phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
726
727 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
728
729 return 0;
730 }
731
732 /**
733 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
734 * @hw: pointer to the HW structure
735 * @speed: pointer to speed buffer
736 * @duplex: pointer to duplex buffer
737 *
738 * Retrieve the current speed and duplex configuration.
739 * This is a function pointer entry point called by the api module.
740 **/
741 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
742 u16 *duplex)
743 {
744 s32 ret_val;
745
746 if (hw->phy.media_type == e1000_media_type_copper) {
747 ret_val = e1000e_get_speed_and_duplex_copper(hw,
748 speed,
749 duplex);
750 hw->phy.ops.cfg_on_link_up(hw);
751 } else {
752 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
753 speed,
754 duplex);
755 }
756
757 return ret_val;
758 }
759
760 /**
761 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
762 * @hw: pointer to the HW structure
763 *
764 * Perform a global reset to the ESB2 controller.
765 * This is a function pointer entry point called by the api module.
766 **/
767 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
768 {
769 u32 ctrl;
770 u32 icr;
771 s32 ret_val;
772
773 /*
774 * Prevent the PCI-E bus from sticking if there is no TLP connection
775 * on the last TLP read/write transaction when MAC is reset.
776 */
777 ret_val = e1000e_disable_pcie_master(hw);
778 if (ret_val)
779 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
780
781 hw_dbg(hw, "Masking off all interrupts\n");
782 ew32(IMC, 0xffffffff);
783
784 ew32(RCTL, 0);
785 ew32(TCTL, E1000_TCTL_PSP);
786 e1e_flush();
787
788 msleep(10);
789
790 ctrl = er32(CTRL);
791
792 ret_val = e1000_acquire_phy_80003es2lan(hw);
793 hw_dbg(hw, "Issuing a global reset to MAC\n");
794 ew32(CTRL, ctrl | E1000_CTRL_RST);
795 e1000_release_phy_80003es2lan(hw);
796
797 ret_val = e1000e_get_auto_rd_done(hw);
798 if (ret_val)
799 /* We don't want to continue accessing MAC registers. */
800 return ret_val;
801
802 /* Clear any pending interrupt events. */
803 ew32(IMC, 0xffffffff);
804 icr = er32(ICR);
805
806 return 0;
807 }
808
809 /**
810 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
811 * @hw: pointer to the HW structure
812 *
813 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
814 * This is a function pointer entry point called by the api module.
815 **/
816 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
817 {
818 struct e1000_mac_info *mac = &hw->mac;
819 u32 reg_data;
820 s32 ret_val;
821 u16 i;
822
823 e1000_initialize_hw_bits_80003es2lan(hw);
824
825 /* Initialize identification LED */
826 ret_val = e1000e_id_led_init(hw);
827 if (ret_val) {
828 hw_dbg(hw, "Error initializing identification LED\n");
829 return ret_val;
830 }
831
832 /* Disabling VLAN filtering */
833 hw_dbg(hw, "Initializing the IEEE VLAN\n");
834 e1000e_clear_vfta(hw);
835
836 /* Setup the receive address. */
837 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
838
839 /* Zero out the Multicast HASH table */
840 hw_dbg(hw, "Zeroing the MTA\n");
841 for (i = 0; i < mac->mta_reg_count; i++)
842 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
843
844 /* Setup link and flow control */
845 ret_val = e1000e_setup_link(hw);
846
847 /* Set the transmit descriptor write-back policy */
848 reg_data = er32(TXDCTL(0));
849 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
850 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
851 ew32(TXDCTL(0), reg_data);
852
853 /* ...for both queues. */
854 reg_data = er32(TXDCTL(1));
855 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
856 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
857 ew32(TXDCTL(1), reg_data);
858
859 /* Enable retransmit on late collisions */
860 reg_data = er32(TCTL);
861 reg_data |= E1000_TCTL_RTLC;
862 ew32(TCTL, reg_data);
863
864 /* Configure Gigabit Carry Extend Padding */
865 reg_data = er32(TCTL_EXT);
866 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
867 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
868 ew32(TCTL_EXT, reg_data);
869
870 /* Configure Transmit Inter-Packet Gap */
871 reg_data = er32(TIPG);
872 reg_data &= ~E1000_TIPG_IPGT_MASK;
873 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
874 ew32(TIPG, reg_data);
875
876 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
877 reg_data &= ~0x00100000;
878 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
879
880 /*
881 * Clear all of the statistics registers (clear on read). It is
882 * important that we do this after we have tried to establish link
883 * because the symbol error count will increment wildly if there
884 * is no link.
885 */
886 e1000_clear_hw_cntrs_80003es2lan(hw);
887
888 return ret_val;
889 }
890
891 /**
892 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
893 * @hw: pointer to the HW structure
894 *
895 * Initializes required hardware-dependent bits needed for normal operation.
896 **/
897 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
898 {
899 u32 reg;
900
901 /* Transmit Descriptor Control 0 */
902 reg = er32(TXDCTL(0));
903 reg |= (1 << 22);
904 ew32(TXDCTL(0), reg);
905
906 /* Transmit Descriptor Control 1 */
907 reg = er32(TXDCTL(1));
908 reg |= (1 << 22);
909 ew32(TXDCTL(1), reg);
910
911 /* Transmit Arbitration Control 0 */
912 reg = er32(TARC(0));
913 reg &= ~(0xF << 27); /* 30:27 */
914 if (hw->phy.media_type != e1000_media_type_copper)
915 reg &= ~(1 << 20);
916 ew32(TARC(0), reg);
917
918 /* Transmit Arbitration Control 1 */
919 reg = er32(TARC(1));
920 if (er32(TCTL) & E1000_TCTL_MULR)
921 reg &= ~(1 << 28);
922 else
923 reg |= (1 << 28);
924 ew32(TARC(1), reg);
925 }
926
927 /**
928 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
929 * @hw: pointer to the HW structure
930 *
931 * Setup some GG82563 PHY registers for obtaining link
932 **/
933 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
934 {
935 struct e1000_phy_info *phy = &hw->phy;
936 s32 ret_val;
937 u32 ctrl_ext;
938 u16 data;
939
940 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
941 if (ret_val)
942 return ret_val;
943
944 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
945 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
946 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
947
948 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
949 if (ret_val)
950 return ret_val;
951
952 /*
953 * Options:
954 * MDI/MDI-X = 0 (default)
955 * 0 - Auto for all speeds
956 * 1 - MDI mode
957 * 2 - MDI-X mode
958 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
959 */
960 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
961 if (ret_val)
962 return ret_val;
963
964 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
965
966 switch (phy->mdix) {
967 case 1:
968 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
969 break;
970 case 2:
971 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
972 break;
973 case 0:
974 default:
975 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
976 break;
977 }
978
979 /*
980 * Options:
981 * disable_polarity_correction = 0 (default)
982 * Automatic Correction for Reversed Cable Polarity
983 * 0 - Disabled
984 * 1 - Enabled
985 */
986 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
987 if (phy->disable_polarity_correction)
988 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
989
990 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
991 if (ret_val)
992 return ret_val;
993
994 /* SW Reset the PHY so all changes take effect */
995 ret_val = e1000e_commit_phy(hw);
996 if (ret_val) {
997 hw_dbg(hw, "Error Resetting the PHY\n");
998 return ret_val;
999 }
1000
1001 /* Bypass Rx and Tx FIFO's */
1002 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1003 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1004 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1005 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1006 if (ret_val)
1007 return ret_val;
1008
1009 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1010 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1011 &data);
1012 if (ret_val)
1013 return ret_val;
1014 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1015 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1016 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1017 data);
1018 if (ret_val)
1019 return ret_val;
1020
1021 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1022 if (ret_val)
1023 return ret_val;
1024
1025 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1026 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1027 if (ret_val)
1028 return ret_val;
1029
1030 ctrl_ext = er32(CTRL_EXT);
1031 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1032 ew32(CTRL_EXT, ctrl_ext);
1033
1034 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1035 if (ret_val)
1036 return ret_val;
1037
1038 /*
1039 * Do not init these registers when the HW is in IAMT mode, since the
1040 * firmware will have already initialized them. We only initialize
1041 * them if the HW is not in IAMT mode.
1042 */
1043 if (!e1000e_check_mng_mode(hw)) {
1044 /* Enable Electrical Idle on the PHY */
1045 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1046 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1047 if (ret_val)
1048 return ret_val;
1049
1050 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1051 if (ret_val)
1052 return ret_val;
1053
1054 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1055 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1056 if (ret_val)
1057 return ret_val;
1058 }
1059
1060 /*
1061 * Workaround: Disable padding in Kumeran interface in the MAC
1062 * and in the PHY to avoid CRC errors.
1063 */
1064 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1065 if (ret_val)
1066 return ret_val;
1067
1068 data |= GG82563_ICR_DIS_PADDING;
1069 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1070 if (ret_val)
1071 return ret_val;
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1078 * @hw: pointer to the HW structure
1079 *
1080 * Essentially a wrapper for setting up all things "copper" related.
1081 * This is a function pointer entry point called by the mac module.
1082 **/
1083 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1084 {
1085 u32 ctrl;
1086 s32 ret_val;
1087 u16 reg_data;
1088
1089 ctrl = er32(CTRL);
1090 ctrl |= E1000_CTRL_SLU;
1091 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1092 ew32(CTRL, ctrl);
1093
1094 /*
1095 * Set the mac to wait the maximum time between each
1096 * iteration and increase the max iterations when
1097 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1098 */
1099 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1100 0xFFFF);
1101 if (ret_val)
1102 return ret_val;
1103 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1104 &reg_data);
1105 if (ret_val)
1106 return ret_val;
1107 reg_data |= 0x3F;
1108 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1109 reg_data);
1110 if (ret_val)
1111 return ret_val;
1112 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1113 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1114 &reg_data);
1115 if (ret_val)
1116 return ret_val;
1117 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1118 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1119 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1120 reg_data);
1121 if (ret_val)
1122 return ret_val;
1123
1124 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1125 if (ret_val)
1126 return ret_val;
1127
1128 ret_val = e1000e_setup_copper_link(hw);
1129
1130 return 0;
1131 }
1132
1133 /**
1134 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1135 * @hw: pointer to the HW structure
1136 * @duplex: current duplex setting
1137 *
1138 * Configure the KMRN interface by applying last minute quirks for
1139 * 10/100 operation.
1140 **/
1141 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1142 {
1143 s32 ret_val = 0;
1144 u16 speed;
1145 u16 duplex;
1146
1147 if (hw->phy.media_type == e1000_media_type_copper) {
1148 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1149 &duplex);
1150 if (ret_val)
1151 return ret_val;
1152
1153 if (speed == SPEED_1000)
1154 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1155 else
1156 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1157 }
1158
1159 return ret_val;
1160 }
1161
1162 /**
1163 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1164 * @hw: pointer to the HW structure
1165 * @duplex: current duplex setting
1166 *
1167 * Configure the KMRN interface by applying last minute quirks for
1168 * 10/100 operation.
1169 **/
1170 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1171 {
1172 s32 ret_val;
1173 u32 tipg;
1174 u32 i = 0;
1175 u16 reg_data, reg_data2;
1176
1177 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1178 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1179 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1180 reg_data);
1181 if (ret_val)
1182 return ret_val;
1183
1184 /* Configure Transmit Inter-Packet Gap */
1185 tipg = er32(TIPG);
1186 tipg &= ~E1000_TIPG_IPGT_MASK;
1187 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1188 ew32(TIPG, tipg);
1189
1190 do {
1191 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1192 if (ret_val)
1193 return ret_val;
1194
1195 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1196 if (ret_val)
1197 return ret_val;
1198 i++;
1199 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1200
1201 if (duplex == HALF_DUPLEX)
1202 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1203 else
1204 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1205
1206 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1207
1208 return 0;
1209 }
1210
1211 /**
1212 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1213 * @hw: pointer to the HW structure
1214 *
1215 * Configure the KMRN interface by applying last minute quirks for
1216 * gigabit operation.
1217 **/
1218 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1219 {
1220 s32 ret_val;
1221 u16 reg_data, reg_data2;
1222 u32 tipg;
1223 u32 i = 0;
1224
1225 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1226 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1227 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1228 reg_data);
1229 if (ret_val)
1230 return ret_val;
1231
1232 /* Configure Transmit Inter-Packet Gap */
1233 tipg = er32(TIPG);
1234 tipg &= ~E1000_TIPG_IPGT_MASK;
1235 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1236 ew32(TIPG, tipg);
1237
1238 do {
1239 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1240 if (ret_val)
1241 return ret_val;
1242
1243 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1244 if (ret_val)
1245 return ret_val;
1246 i++;
1247 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1248
1249 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1250 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1251
1252 return ret_val;
1253 }
1254
1255 /**
1256 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1257 * @hw: pointer to the HW structure
1258 * @offset: register offset to be read
1259 * @data: pointer to the read data
1260 *
1261 * Acquire semaphore, then read the PHY register at offset
1262 * using the kumeran interface. The information retrieved is stored in data.
1263 * Release the semaphore before exiting.
1264 **/
1265 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1266 u16 *data)
1267 {
1268 u32 kmrnctrlsta;
1269 s32 ret_val = 0;
1270
1271 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1272 if (ret_val)
1273 return ret_val;
1274
1275 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1276 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1277 ew32(KMRNCTRLSTA, kmrnctrlsta);
1278
1279 udelay(2);
1280
1281 kmrnctrlsta = er32(KMRNCTRLSTA);
1282 *data = (u16)kmrnctrlsta;
1283
1284 e1000_release_mac_csr_80003es2lan(hw);
1285
1286 return ret_val;
1287 }
1288
1289 /**
1290 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1291 * @hw: pointer to the HW structure
1292 * @offset: register offset to write to
1293 * @data: data to write at register offset
1294 *
1295 * Acquire semaphore, then write the data to PHY register
1296 * at the offset using the kumeran interface. Release semaphore
1297 * before exiting.
1298 **/
1299 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1300 u16 data)
1301 {
1302 u32 kmrnctrlsta;
1303 s32 ret_val = 0;
1304
1305 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1306 if (ret_val)
1307 return ret_val;
1308
1309 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1310 E1000_KMRNCTRLSTA_OFFSET) | data;
1311 ew32(KMRNCTRLSTA, kmrnctrlsta);
1312
1313 udelay(2);
1314
1315 e1000_release_mac_csr_80003es2lan(hw);
1316
1317 return ret_val;
1318 }
1319
1320 /**
1321 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1322 * @hw: pointer to the HW structure
1323 *
1324 * Clears the hardware counters by reading the counter registers.
1325 **/
1326 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1327 {
1328 u32 temp;
1329
1330 e1000e_clear_hw_cntrs_base(hw);
1331
1332 temp = er32(PRC64);
1333 temp = er32(PRC127);
1334 temp = er32(PRC255);
1335 temp = er32(PRC511);
1336 temp = er32(PRC1023);
1337 temp = er32(PRC1522);
1338 temp = er32(PTC64);
1339 temp = er32(PTC127);
1340 temp = er32(PTC255);
1341 temp = er32(PTC511);
1342 temp = er32(PTC1023);
1343 temp = er32(PTC1522);
1344
1345 temp = er32(ALGNERRC);
1346 temp = er32(RXERRC);
1347 temp = er32(TNCRS);
1348 temp = er32(CEXTERR);
1349 temp = er32(TSCTC);
1350 temp = er32(TSCTFC);
1351
1352 temp = er32(MGTPRC);
1353 temp = er32(MGTPDC);
1354 temp = er32(MGTPTC);
1355
1356 temp = er32(IAC);
1357 temp = er32(ICRXOC);
1358
1359 temp = er32(ICRXPTC);
1360 temp = er32(ICRXATC);
1361 temp = er32(ICTXPTC);
1362 temp = er32(ICTXATC);
1363 temp = er32(ICTXQEC);
1364 temp = er32(ICTXQMTC);
1365 temp = er32(ICRXDMTC);
1366 }
1367
1368 static struct e1000_mac_operations es2_mac_ops = {
1369 .check_mng_mode = e1000e_check_mng_mode_generic,
1370 /* check_for_link dependent on media type */
1371 .cleanup_led = e1000e_cleanup_led_generic,
1372 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1373 .get_bus_info = e1000e_get_bus_info_pcie,
1374 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1375 .led_on = e1000e_led_on_generic,
1376 .led_off = e1000e_led_off_generic,
1377 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1378 .reset_hw = e1000_reset_hw_80003es2lan,
1379 .init_hw = e1000_init_hw_80003es2lan,
1380 .setup_link = e1000e_setup_link,
1381 /* setup_physical_interface dependent on media type */
1382 };
1383
1384 static struct e1000_phy_operations es2_phy_ops = {
1385 .acquire_phy = e1000_acquire_phy_80003es2lan,
1386 .check_reset_block = e1000e_check_reset_block_generic,
1387 .commit_phy = e1000e_phy_sw_reset,
1388 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1389 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1390 .get_cable_length = e1000_get_cable_length_80003es2lan,
1391 .get_phy_info = e1000e_get_phy_info_m88,
1392 .read_phy_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1393 .release_phy = e1000_release_phy_80003es2lan,
1394 .reset_phy = e1000e_phy_hw_reset_generic,
1395 .set_d0_lplu_state = NULL,
1396 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1397 .write_phy_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1398 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1399 };
1400
1401 static struct e1000_nvm_operations es2_nvm_ops = {
1402 .acquire_nvm = e1000_acquire_nvm_80003es2lan,
1403 .read_nvm = e1000e_read_nvm_eerd,
1404 .release_nvm = e1000_release_nvm_80003es2lan,
1405 .update_nvm = e1000e_update_nvm_checksum_generic,
1406 .valid_led_default = e1000e_valid_led_default,
1407 .validate_nvm = e1000e_validate_nvm_checksum_generic,
1408 .write_nvm = e1000_write_nvm_80003es2lan,
1409 };
1410
1411 struct e1000_info e1000_es2_info = {
1412 .mac = e1000_80003es2lan,
1413 .flags = FLAG_HAS_HW_VLAN_FILTER
1414 | FLAG_HAS_JUMBO_FRAMES
1415 | FLAG_HAS_WOL
1416 | FLAG_APME_IN_CTRL3
1417 | FLAG_RX_CSUM_ENABLED
1418 | FLAG_HAS_CTRLEXT_ON_LOAD
1419 | FLAG_RX_NEEDS_RESTART /* errata */
1420 | FLAG_TARC_SET_BIT_ZERO /* errata */
1421 | FLAG_APME_CHECK_PORT_B
1422 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1423 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1424 .pba = 38,
1425 .get_variants = e1000_get_variants_80003es2lan,
1426 .mac_ops = &es2_mac_ops,
1427 .phy_ops = &es2_phy_ops,
1428 .nvm_ops = &es2_nvm_ops,
1429 };
1430
This page took 0.058643 seconds and 5 git commands to generate.