e1000e: cleanup functions that clear hardware statistics
[deliverable/linux.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32 */
33
34 #include "e1000.h"
35
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
40
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
44
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
48
49 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
50 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
51
52 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
53 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
54
55 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
56 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
57 #define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
58 #define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
59 #define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
60 #define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
61
62 /* PHY Specific Control Register 2 (Page 0, Register 26) */
63 #define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
64 /* 1=Reverse Auto-Negotiation */
65
66 /* MAC Specific Control Register (Page 2, Register 21) */
67 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
68 #define GG82563_MSCR_TX_CLK_MASK 0x0007
69 #define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
70 #define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
71 #define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
72
73 #define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
74
75 /* DSP Distance Register (Page 5, Register 26) */
76 #define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
77 1 = 50-80M
78 2 = 80-110M
79 3 = 110-140M
80 4 = >140M */
81
82 /* Kumeran Mode Control Register (Page 193, Register 16) */
83 #define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
84
85 /* Max number of times Kumeran read/write should be validated */
86 #define GG82563_MAX_KMRN_RETRY 0x5
87
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
90 /* 1=Enable SERDES Electrical Idle */
91
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
94
95 /*
96 * A table for the GG82563 cable length where the range is defined
97 * with a lower bound at "index" and the upper bound at
98 * "index + 5".
99 */
100 static const u16 e1000_gg82563_cable_length_table[] =
101 { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
102
103 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
104 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
106 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
107 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
110 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
111 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
112 u16 *data);
113 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
114 u16 data);
115
116 /**
117 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
118 * @hw: pointer to the HW structure
119 **/
120 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
121 {
122 struct e1000_phy_info *phy = &hw->phy;
123 s32 ret_val;
124
125 if (hw->phy.media_type != e1000_media_type_copper) {
126 phy->type = e1000_phy_none;
127 return 0;
128 }
129
130 phy->addr = 1;
131 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
132 phy->reset_delay_us = 100;
133 phy->type = e1000_phy_gg82563;
134
135 /* This can only be done after all function pointers are setup. */
136 ret_val = e1000e_get_phy_id(hw);
137
138 /* Verify phy id */
139 if (phy->id != GG82563_E_PHY_ID)
140 return -E1000_ERR_PHY;
141
142 return ret_val;
143 }
144
145 /**
146 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
147 * @hw: pointer to the HW structure
148 **/
149 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
150 {
151 struct e1000_nvm_info *nvm = &hw->nvm;
152 u32 eecd = er32(EECD);
153 u16 size;
154
155 nvm->opcode_bits = 8;
156 nvm->delay_usec = 1;
157 switch (nvm->override) {
158 case e1000_nvm_override_spi_large:
159 nvm->page_size = 32;
160 nvm->address_bits = 16;
161 break;
162 case e1000_nvm_override_spi_small:
163 nvm->page_size = 8;
164 nvm->address_bits = 8;
165 break;
166 default:
167 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
168 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
169 break;
170 }
171
172 nvm->type = e1000_nvm_eeprom_spi;
173
174 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
175 E1000_EECD_SIZE_EX_SHIFT);
176
177 /*
178 * Added to a constant, "size" becomes the left-shift value
179 * for setting word_size.
180 */
181 size += NVM_WORD_SIZE_BASE_SHIFT;
182
183 /* EEPROM access above 16k is unsupported */
184 if (size > 14)
185 size = 14;
186 nvm->word_size = 1 << size;
187
188 return 0;
189 }
190
191 /**
192 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
193 * @hw: pointer to the HW structure
194 **/
195 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
196 {
197 struct e1000_hw *hw = &adapter->hw;
198 struct e1000_mac_info *mac = &hw->mac;
199 struct e1000_mac_operations *func = &mac->ops;
200
201 /* Set media type */
202 switch (adapter->pdev->device) {
203 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
204 hw->phy.media_type = e1000_media_type_internal_serdes;
205 break;
206 default:
207 hw->phy.media_type = e1000_media_type_copper;
208 break;
209 }
210
211 /* Set mta register count */
212 mac->mta_reg_count = 128;
213 /* Set rar entry count */
214 mac->rar_entry_count = E1000_RAR_ENTRIES;
215 /* Set if manageability features are enabled. */
216 mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK)
217 ? true : false;
218
219 /* check for link */
220 switch (hw->phy.media_type) {
221 case e1000_media_type_copper:
222 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
223 func->check_for_link = e1000e_check_for_copper_link;
224 break;
225 case e1000_media_type_fiber:
226 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
227 func->check_for_link = e1000e_check_for_fiber_link;
228 break;
229 case e1000_media_type_internal_serdes:
230 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
231 func->check_for_link = e1000e_check_for_serdes_link;
232 break;
233 default:
234 return -E1000_ERR_CONFIG;
235 break;
236 }
237
238 return 0;
239 }
240
241 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
242 {
243 struct e1000_hw *hw = &adapter->hw;
244 s32 rc;
245
246 rc = e1000_init_mac_params_80003es2lan(adapter);
247 if (rc)
248 return rc;
249
250 rc = e1000_init_nvm_params_80003es2lan(hw);
251 if (rc)
252 return rc;
253
254 rc = e1000_init_phy_params_80003es2lan(hw);
255 if (rc)
256 return rc;
257
258 return 0;
259 }
260
261 /**
262 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
263 * @hw: pointer to the HW structure
264 *
265 * A wrapper to acquire access rights to the correct PHY.
266 **/
267 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
268 {
269 u16 mask;
270
271 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
272 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
273 }
274
275 /**
276 * e1000_release_phy_80003es2lan - Release rights to access PHY
277 * @hw: pointer to the HW structure
278 *
279 * A wrapper to release access rights to the correct PHY.
280 **/
281 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
282 {
283 u16 mask;
284
285 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
286 e1000_release_swfw_sync_80003es2lan(hw, mask);
287 }
288
289 /**
290 * e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
291 * @hw: pointer to the HW structure
292 *
293 * Acquire the semaphore to access the Kumeran interface.
294 *
295 **/
296 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
297 {
298 u16 mask;
299
300 mask = E1000_SWFW_CSR_SM;
301
302 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
303 }
304
305 /**
306 * e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
307 * @hw: pointer to the HW structure
308 *
309 * Release the semaphore used to access the Kumeran interface
310 **/
311 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
312 {
313 u16 mask;
314
315 mask = E1000_SWFW_CSR_SM;
316
317 e1000_release_swfw_sync_80003es2lan(hw, mask);
318 }
319
320 /**
321 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
322 * @hw: pointer to the HW structure
323 *
324 * Acquire the semaphore to access the EEPROM.
325 **/
326 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
327 {
328 s32 ret_val;
329
330 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
331 if (ret_val)
332 return ret_val;
333
334 ret_val = e1000e_acquire_nvm(hw);
335
336 if (ret_val)
337 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
338
339 return ret_val;
340 }
341
342 /**
343 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
344 * @hw: pointer to the HW structure
345 *
346 * Release the semaphore used to access the EEPROM.
347 **/
348 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
349 {
350 e1000e_release_nvm(hw);
351 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
352 }
353
354 /**
355 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
356 * @hw: pointer to the HW structure
357 * @mask: specifies which semaphore to acquire
358 *
359 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
360 * will also specify which port we're acquiring the lock for.
361 **/
362 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
363 {
364 u32 swfw_sync;
365 u32 swmask = mask;
366 u32 fwmask = mask << 16;
367 s32 i = 0;
368 s32 timeout = 50;
369
370 while (i < timeout) {
371 if (e1000e_get_hw_semaphore(hw))
372 return -E1000_ERR_SWFW_SYNC;
373
374 swfw_sync = er32(SW_FW_SYNC);
375 if (!(swfw_sync & (fwmask | swmask)))
376 break;
377
378 /*
379 * Firmware currently using resource (fwmask)
380 * or other software thread using resource (swmask)
381 */
382 e1000e_put_hw_semaphore(hw);
383 mdelay(5);
384 i++;
385 }
386
387 if (i == timeout) {
388 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
389 return -E1000_ERR_SWFW_SYNC;
390 }
391
392 swfw_sync |= swmask;
393 ew32(SW_FW_SYNC, swfw_sync);
394
395 e1000e_put_hw_semaphore(hw);
396
397 return 0;
398 }
399
400 /**
401 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
402 * @hw: pointer to the HW structure
403 * @mask: specifies which semaphore to acquire
404 *
405 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
406 * will also specify which port we're releasing the lock for.
407 **/
408 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
409 {
410 u32 swfw_sync;
411
412 while (e1000e_get_hw_semaphore(hw) != 0);
413 /* Empty */
414
415 swfw_sync = er32(SW_FW_SYNC);
416 swfw_sync &= ~mask;
417 ew32(SW_FW_SYNC, swfw_sync);
418
419 e1000e_put_hw_semaphore(hw);
420 }
421
422 /**
423 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
424 * @hw: pointer to the HW structure
425 * @offset: offset of the register to read
426 * @data: pointer to the data returned from the operation
427 *
428 * Read the GG82563 PHY register.
429 **/
430 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
431 u32 offset, u16 *data)
432 {
433 s32 ret_val;
434 u32 page_select;
435 u16 temp;
436
437 ret_val = e1000_acquire_phy_80003es2lan(hw);
438 if (ret_val)
439 return ret_val;
440
441 /* Select Configuration Page */
442 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
443 page_select = GG82563_PHY_PAGE_SELECT;
444 } else {
445 /*
446 * Use Alternative Page Select register to access
447 * registers 30 and 31
448 */
449 page_select = GG82563_PHY_PAGE_SELECT_ALT;
450 }
451
452 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
453 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
454 if (ret_val) {
455 e1000_release_phy_80003es2lan(hw);
456 return ret_val;
457 }
458
459 /*
460 * The "ready" bit in the MDIC register may be incorrectly set
461 * before the device has completed the "Page Select" MDI
462 * transaction. So we wait 200us after each MDI command...
463 */
464 udelay(200);
465
466 /* ...and verify the command was successful. */
467 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
468
469 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
470 ret_val = -E1000_ERR_PHY;
471 e1000_release_phy_80003es2lan(hw);
472 return ret_val;
473 }
474
475 udelay(200);
476
477 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
478 data);
479
480 udelay(200);
481 e1000_release_phy_80003es2lan(hw);
482
483 return ret_val;
484 }
485
486 /**
487 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
488 * @hw: pointer to the HW structure
489 * @offset: offset of the register to read
490 * @data: value to write to the register
491 *
492 * Write to the GG82563 PHY register.
493 **/
494 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
495 u32 offset, u16 data)
496 {
497 s32 ret_val;
498 u32 page_select;
499 u16 temp;
500
501 ret_val = e1000_acquire_phy_80003es2lan(hw);
502 if (ret_val)
503 return ret_val;
504
505 /* Select Configuration Page */
506 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
507 page_select = GG82563_PHY_PAGE_SELECT;
508 } else {
509 /*
510 * Use Alternative Page Select register to access
511 * registers 30 and 31
512 */
513 page_select = GG82563_PHY_PAGE_SELECT_ALT;
514 }
515
516 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
517 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
518 if (ret_val) {
519 e1000_release_phy_80003es2lan(hw);
520 return ret_val;
521 }
522
523
524 /*
525 * The "ready" bit in the MDIC register may be incorrectly set
526 * before the device has completed the "Page Select" MDI
527 * transaction. So we wait 200us after each MDI command...
528 */
529 udelay(200);
530
531 /* ...and verify the command was successful. */
532 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
533
534 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
535 e1000_release_phy_80003es2lan(hw);
536 return -E1000_ERR_PHY;
537 }
538
539 udelay(200);
540
541 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
542 data);
543
544 udelay(200);
545 e1000_release_phy_80003es2lan(hw);
546
547 return ret_val;
548 }
549
550 /**
551 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
552 * @hw: pointer to the HW structure
553 * @offset: offset of the register to read
554 * @words: number of words to write
555 * @data: buffer of data to write to the NVM
556 *
557 * Write "words" of data to the ESB2 NVM.
558 **/
559 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
560 u16 words, u16 *data)
561 {
562 return e1000e_write_nvm_spi(hw, offset, words, data);
563 }
564
565 /**
566 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
567 * @hw: pointer to the HW structure
568 *
569 * Wait a specific amount of time for manageability processes to complete.
570 * This is a function pointer entry point called by the phy module.
571 **/
572 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
573 {
574 s32 timeout = PHY_CFG_TIMEOUT;
575 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
576
577 if (hw->bus.func == 1)
578 mask = E1000_NVM_CFG_DONE_PORT_1;
579
580 while (timeout) {
581 if (er32(EEMNGCTL) & mask)
582 break;
583 msleep(1);
584 timeout--;
585 }
586 if (!timeout) {
587 e_dbg("MNG configuration cycle has not completed.\n");
588 return -E1000_ERR_RESET;
589 }
590
591 return 0;
592 }
593
594 /**
595 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
596 * @hw: pointer to the HW structure
597 *
598 * Force the speed and duplex settings onto the PHY. This is a
599 * function pointer entry point called by the phy module.
600 **/
601 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
602 {
603 s32 ret_val;
604 u16 phy_data;
605 bool link;
606
607 /*
608 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
609 * forced whenever speed and duplex are forced.
610 */
611 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
612 if (ret_val)
613 return ret_val;
614
615 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
616 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
617 if (ret_val)
618 return ret_val;
619
620 e_dbg("GG82563 PSCR: %X\n", phy_data);
621
622 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
623 if (ret_val)
624 return ret_val;
625
626 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
627
628 /* Reset the phy to commit changes. */
629 phy_data |= MII_CR_RESET;
630
631 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
632 if (ret_val)
633 return ret_val;
634
635 udelay(1);
636
637 if (hw->phy.autoneg_wait_to_complete) {
638 e_dbg("Waiting for forced speed/duplex link "
639 "on GG82563 phy.\n");
640
641 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
642 100000, &link);
643 if (ret_val)
644 return ret_val;
645
646 if (!link) {
647 /*
648 * We didn't get link.
649 * Reset the DSP and cross our fingers.
650 */
651 ret_val = e1000e_phy_reset_dsp(hw);
652 if (ret_val)
653 return ret_val;
654 }
655
656 /* Try once more */
657 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
658 100000, &link);
659 if (ret_val)
660 return ret_val;
661 }
662
663 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
664 if (ret_val)
665 return ret_val;
666
667 /*
668 * Resetting the phy means we need to verify the TX_CLK corresponds
669 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
670 */
671 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
672 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
673 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
674 else
675 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
676
677 /*
678 * In addition, we must re-enable CRS on Tx for both half and full
679 * duplex.
680 */
681 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
682 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
683
684 return ret_val;
685 }
686
687 /**
688 * e1000_get_cable_length_80003es2lan - Set approximate cable length
689 * @hw: pointer to the HW structure
690 *
691 * Find the approximate cable length as measured by the GG82563 PHY.
692 * This is a function pointer entry point called by the phy module.
693 **/
694 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
695 {
696 struct e1000_phy_info *phy = &hw->phy;
697 s32 ret_val;
698 u16 phy_data;
699 u16 index;
700
701 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
702 if (ret_val)
703 return ret_val;
704
705 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
706 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
707 phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
708
709 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
710
711 return 0;
712 }
713
714 /**
715 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
716 * @hw: pointer to the HW structure
717 * @speed: pointer to speed buffer
718 * @duplex: pointer to duplex buffer
719 *
720 * Retrieve the current speed and duplex configuration.
721 **/
722 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
723 u16 *duplex)
724 {
725 s32 ret_val;
726
727 if (hw->phy.media_type == e1000_media_type_copper) {
728 ret_val = e1000e_get_speed_and_duplex_copper(hw,
729 speed,
730 duplex);
731 hw->phy.ops.cfg_on_link_up(hw);
732 } else {
733 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
734 speed,
735 duplex);
736 }
737
738 return ret_val;
739 }
740
741 /**
742 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
743 * @hw: pointer to the HW structure
744 *
745 * Perform a global reset to the ESB2 controller.
746 **/
747 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
748 {
749 u32 ctrl;
750 u32 icr;
751 s32 ret_val;
752
753 /*
754 * Prevent the PCI-E bus from sticking if there is no TLP connection
755 * on the last TLP read/write transaction when MAC is reset.
756 */
757 ret_val = e1000e_disable_pcie_master(hw);
758 if (ret_val)
759 e_dbg("PCI-E Master disable polling has failed.\n");
760
761 e_dbg("Masking off all interrupts\n");
762 ew32(IMC, 0xffffffff);
763
764 ew32(RCTL, 0);
765 ew32(TCTL, E1000_TCTL_PSP);
766 e1e_flush();
767
768 msleep(10);
769
770 ctrl = er32(CTRL);
771
772 ret_val = e1000_acquire_phy_80003es2lan(hw);
773 e_dbg("Issuing a global reset to MAC\n");
774 ew32(CTRL, ctrl | E1000_CTRL_RST);
775 e1000_release_phy_80003es2lan(hw);
776
777 ret_val = e1000e_get_auto_rd_done(hw);
778 if (ret_val)
779 /* We don't want to continue accessing MAC registers. */
780 return ret_val;
781
782 /* Clear any pending interrupt events. */
783 ew32(IMC, 0xffffffff);
784 icr = er32(ICR);
785
786 return 0;
787 }
788
789 /**
790 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
791 * @hw: pointer to the HW structure
792 *
793 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
794 **/
795 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
796 {
797 struct e1000_mac_info *mac = &hw->mac;
798 u32 reg_data;
799 s32 ret_val;
800 u16 i;
801
802 e1000_initialize_hw_bits_80003es2lan(hw);
803
804 /* Initialize identification LED */
805 ret_val = e1000e_id_led_init(hw);
806 if (ret_val) {
807 e_dbg("Error initializing identification LED\n");
808 return ret_val;
809 }
810
811 /* Disabling VLAN filtering */
812 e_dbg("Initializing the IEEE VLAN\n");
813 e1000e_clear_vfta(hw);
814
815 /* Setup the receive address. */
816 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
817
818 /* Zero out the Multicast HASH table */
819 e_dbg("Zeroing the MTA\n");
820 for (i = 0; i < mac->mta_reg_count; i++)
821 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
822
823 /* Setup link and flow control */
824 ret_val = e1000e_setup_link(hw);
825
826 /* Set the transmit descriptor write-back policy */
827 reg_data = er32(TXDCTL(0));
828 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
829 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
830 ew32(TXDCTL(0), reg_data);
831
832 /* ...for both queues. */
833 reg_data = er32(TXDCTL(1));
834 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
835 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
836 ew32(TXDCTL(1), reg_data);
837
838 /* Enable retransmit on late collisions */
839 reg_data = er32(TCTL);
840 reg_data |= E1000_TCTL_RTLC;
841 ew32(TCTL, reg_data);
842
843 /* Configure Gigabit Carry Extend Padding */
844 reg_data = er32(TCTL_EXT);
845 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
846 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
847 ew32(TCTL_EXT, reg_data);
848
849 /* Configure Transmit Inter-Packet Gap */
850 reg_data = er32(TIPG);
851 reg_data &= ~E1000_TIPG_IPGT_MASK;
852 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
853 ew32(TIPG, reg_data);
854
855 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
856 reg_data &= ~0x00100000;
857 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
858
859 /*
860 * Clear all of the statistics registers (clear on read). It is
861 * important that we do this after we have tried to establish link
862 * because the symbol error count will increment wildly if there
863 * is no link.
864 */
865 e1000_clear_hw_cntrs_80003es2lan(hw);
866
867 return ret_val;
868 }
869
870 /**
871 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
872 * @hw: pointer to the HW structure
873 *
874 * Initializes required hardware-dependent bits needed for normal operation.
875 **/
876 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
877 {
878 u32 reg;
879
880 /* Transmit Descriptor Control 0 */
881 reg = er32(TXDCTL(0));
882 reg |= (1 << 22);
883 ew32(TXDCTL(0), reg);
884
885 /* Transmit Descriptor Control 1 */
886 reg = er32(TXDCTL(1));
887 reg |= (1 << 22);
888 ew32(TXDCTL(1), reg);
889
890 /* Transmit Arbitration Control 0 */
891 reg = er32(TARC(0));
892 reg &= ~(0xF << 27); /* 30:27 */
893 if (hw->phy.media_type != e1000_media_type_copper)
894 reg &= ~(1 << 20);
895 ew32(TARC(0), reg);
896
897 /* Transmit Arbitration Control 1 */
898 reg = er32(TARC(1));
899 if (er32(TCTL) & E1000_TCTL_MULR)
900 reg &= ~(1 << 28);
901 else
902 reg |= (1 << 28);
903 ew32(TARC(1), reg);
904 }
905
906 /**
907 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
908 * @hw: pointer to the HW structure
909 *
910 * Setup some GG82563 PHY registers for obtaining link
911 **/
912 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
913 {
914 struct e1000_phy_info *phy = &hw->phy;
915 s32 ret_val;
916 u32 ctrl_ext;
917 u16 data;
918
919 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
920 if (ret_val)
921 return ret_val;
922
923 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
924 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
925 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
926
927 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
928 if (ret_val)
929 return ret_val;
930
931 /*
932 * Options:
933 * MDI/MDI-X = 0 (default)
934 * 0 - Auto for all speeds
935 * 1 - MDI mode
936 * 2 - MDI-X mode
937 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
938 */
939 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
940 if (ret_val)
941 return ret_val;
942
943 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
944
945 switch (phy->mdix) {
946 case 1:
947 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
948 break;
949 case 2:
950 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
951 break;
952 case 0:
953 default:
954 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
955 break;
956 }
957
958 /*
959 * Options:
960 * disable_polarity_correction = 0 (default)
961 * Automatic Correction for Reversed Cable Polarity
962 * 0 - Disabled
963 * 1 - Enabled
964 */
965 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
966 if (phy->disable_polarity_correction)
967 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
968
969 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
970 if (ret_val)
971 return ret_val;
972
973 /* SW Reset the PHY so all changes take effect */
974 ret_val = e1000e_commit_phy(hw);
975 if (ret_val) {
976 e_dbg("Error Resetting the PHY\n");
977 return ret_val;
978 }
979
980 /* Bypass Rx and Tx FIFO's */
981 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
982 E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
983 E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
984 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
985 if (ret_val)
986 return ret_val;
987
988 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
989 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
990 &data);
991 if (ret_val)
992 return ret_val;
993 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
994 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
995 E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
996 data);
997 if (ret_val)
998 return ret_val;
999
1000 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1001 if (ret_val)
1002 return ret_val;
1003
1004 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1005 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1006 if (ret_val)
1007 return ret_val;
1008
1009 ctrl_ext = er32(CTRL_EXT);
1010 ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1011 ew32(CTRL_EXT, ctrl_ext);
1012
1013 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1014 if (ret_val)
1015 return ret_val;
1016
1017 /*
1018 * Do not init these registers when the HW is in IAMT mode, since the
1019 * firmware will have already initialized them. We only initialize
1020 * them if the HW is not in IAMT mode.
1021 */
1022 if (!e1000e_check_mng_mode(hw)) {
1023 /* Enable Electrical Idle on the PHY */
1024 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1025 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1026 if (ret_val)
1027 return ret_val;
1028
1029 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1030 if (ret_val)
1031 return ret_val;
1032
1033 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1034 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1035 if (ret_val)
1036 return ret_val;
1037 }
1038
1039 /*
1040 * Workaround: Disable padding in Kumeran interface in the MAC
1041 * and in the PHY to avoid CRC errors.
1042 */
1043 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1044 if (ret_val)
1045 return ret_val;
1046
1047 data |= GG82563_ICR_DIS_PADDING;
1048 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1049 if (ret_val)
1050 return ret_val;
1051
1052 return 0;
1053 }
1054
1055 /**
1056 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1057 * @hw: pointer to the HW structure
1058 *
1059 * Essentially a wrapper for setting up all things "copper" related.
1060 * This is a function pointer entry point called by the mac module.
1061 **/
1062 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1063 {
1064 u32 ctrl;
1065 s32 ret_val;
1066 u16 reg_data;
1067
1068 ctrl = er32(CTRL);
1069 ctrl |= E1000_CTRL_SLU;
1070 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1071 ew32(CTRL, ctrl);
1072
1073 /*
1074 * Set the mac to wait the maximum time between each
1075 * iteration and increase the max iterations when
1076 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1077 */
1078 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1079 0xFFFF);
1080 if (ret_val)
1081 return ret_val;
1082 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1083 &reg_data);
1084 if (ret_val)
1085 return ret_val;
1086 reg_data |= 0x3F;
1087 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1088 reg_data);
1089 if (ret_val)
1090 return ret_val;
1091 ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1092 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1093 &reg_data);
1094 if (ret_val)
1095 return ret_val;
1096 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1097 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1098 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1099 reg_data);
1100 if (ret_val)
1101 return ret_val;
1102
1103 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1104 if (ret_val)
1105 return ret_val;
1106
1107 ret_val = e1000e_setup_copper_link(hw);
1108
1109 return 0;
1110 }
1111
1112 /**
1113 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1114 * @hw: pointer to the HW structure
1115 * @duplex: current duplex setting
1116 *
1117 * Configure the KMRN interface by applying last minute quirks for
1118 * 10/100 operation.
1119 **/
1120 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1121 {
1122 s32 ret_val = 0;
1123 u16 speed;
1124 u16 duplex;
1125
1126 if (hw->phy.media_type == e1000_media_type_copper) {
1127 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1128 &duplex);
1129 if (ret_val)
1130 return ret_val;
1131
1132 if (speed == SPEED_1000)
1133 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1134 else
1135 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1136 }
1137
1138 return ret_val;
1139 }
1140
1141 /**
1142 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1143 * @hw: pointer to the HW structure
1144 * @duplex: current duplex setting
1145 *
1146 * Configure the KMRN interface by applying last minute quirks for
1147 * 10/100 operation.
1148 **/
1149 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1150 {
1151 s32 ret_val;
1152 u32 tipg;
1153 u32 i = 0;
1154 u16 reg_data, reg_data2;
1155
1156 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1157 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1158 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1159 reg_data);
1160 if (ret_val)
1161 return ret_val;
1162
1163 /* Configure Transmit Inter-Packet Gap */
1164 tipg = er32(TIPG);
1165 tipg &= ~E1000_TIPG_IPGT_MASK;
1166 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1167 ew32(TIPG, tipg);
1168
1169 do {
1170 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1171 if (ret_val)
1172 return ret_val;
1173
1174 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1175 if (ret_val)
1176 return ret_val;
1177 i++;
1178 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1179
1180 if (duplex == HALF_DUPLEX)
1181 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1182 else
1183 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1184
1185 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1186
1187 return 0;
1188 }
1189
1190 /**
1191 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1192 * @hw: pointer to the HW structure
1193 *
1194 * Configure the KMRN interface by applying last minute quirks for
1195 * gigabit operation.
1196 **/
1197 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1198 {
1199 s32 ret_val;
1200 u16 reg_data, reg_data2;
1201 u32 tipg;
1202 u32 i = 0;
1203
1204 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1205 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1206 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1207 reg_data);
1208 if (ret_val)
1209 return ret_val;
1210
1211 /* Configure Transmit Inter-Packet Gap */
1212 tipg = er32(TIPG);
1213 tipg &= ~E1000_TIPG_IPGT_MASK;
1214 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1215 ew32(TIPG, tipg);
1216
1217 do {
1218 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1219 if (ret_val)
1220 return ret_val;
1221
1222 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1223 if (ret_val)
1224 return ret_val;
1225 i++;
1226 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1227
1228 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1229 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1230
1231 return ret_val;
1232 }
1233
1234 /**
1235 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1236 * @hw: pointer to the HW structure
1237 * @offset: register offset to be read
1238 * @data: pointer to the read data
1239 *
1240 * Acquire semaphore, then read the PHY register at offset
1241 * using the kumeran interface. The information retrieved is stored in data.
1242 * Release the semaphore before exiting.
1243 **/
1244 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1245 u16 *data)
1246 {
1247 u32 kmrnctrlsta;
1248 s32 ret_val = 0;
1249
1250 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1251 if (ret_val)
1252 return ret_val;
1253
1254 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1255 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1256 ew32(KMRNCTRLSTA, kmrnctrlsta);
1257
1258 udelay(2);
1259
1260 kmrnctrlsta = er32(KMRNCTRLSTA);
1261 *data = (u16)kmrnctrlsta;
1262
1263 e1000_release_mac_csr_80003es2lan(hw);
1264
1265 return ret_val;
1266 }
1267
1268 /**
1269 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1270 * @hw: pointer to the HW structure
1271 * @offset: register offset to write to
1272 * @data: data to write at register offset
1273 *
1274 * Acquire semaphore, then write the data to PHY register
1275 * at the offset using the kumeran interface. Release semaphore
1276 * before exiting.
1277 **/
1278 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1279 u16 data)
1280 {
1281 u32 kmrnctrlsta;
1282 s32 ret_val = 0;
1283
1284 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1285 if (ret_val)
1286 return ret_val;
1287
1288 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1289 E1000_KMRNCTRLSTA_OFFSET) | data;
1290 ew32(KMRNCTRLSTA, kmrnctrlsta);
1291
1292 udelay(2);
1293
1294 e1000_release_mac_csr_80003es2lan(hw);
1295
1296 return ret_val;
1297 }
1298
1299 /**
1300 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1301 * @hw: pointer to the HW structure
1302 *
1303 * Clears the hardware counters by reading the counter registers.
1304 **/
1305 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1306 {
1307 e1000e_clear_hw_cntrs_base(hw);
1308
1309 er32(PRC64);
1310 er32(PRC127);
1311 er32(PRC255);
1312 er32(PRC511);
1313 er32(PRC1023);
1314 er32(PRC1522);
1315 er32(PTC64);
1316 er32(PTC127);
1317 er32(PTC255);
1318 er32(PTC511);
1319 er32(PTC1023);
1320 er32(PTC1522);
1321
1322 er32(ALGNERRC);
1323 er32(RXERRC);
1324 er32(TNCRS);
1325 er32(CEXTERR);
1326 er32(TSCTC);
1327 er32(TSCTFC);
1328
1329 er32(MGTPRC);
1330 er32(MGTPDC);
1331 er32(MGTPTC);
1332
1333 er32(IAC);
1334 er32(ICRXOC);
1335
1336 er32(ICRXPTC);
1337 er32(ICRXATC);
1338 er32(ICTXPTC);
1339 er32(ICTXATC);
1340 er32(ICTXQEC);
1341 er32(ICTXQMTC);
1342 er32(ICRXDMTC);
1343 }
1344
1345 static struct e1000_mac_operations es2_mac_ops = {
1346 .id_led_init = e1000e_id_led_init,
1347 .check_mng_mode = e1000e_check_mng_mode_generic,
1348 /* check_for_link dependent on media type */
1349 .cleanup_led = e1000e_cleanup_led_generic,
1350 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1351 .get_bus_info = e1000e_get_bus_info_pcie,
1352 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1353 .led_on = e1000e_led_on_generic,
1354 .led_off = e1000e_led_off_generic,
1355 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1356 .reset_hw = e1000_reset_hw_80003es2lan,
1357 .init_hw = e1000_init_hw_80003es2lan,
1358 .setup_link = e1000e_setup_link,
1359 /* setup_physical_interface dependent on media type */
1360 .setup_led = e1000e_setup_led_generic,
1361 };
1362
1363 static struct e1000_phy_operations es2_phy_ops = {
1364 .acquire = e1000_acquire_phy_80003es2lan,
1365 .check_reset_block = e1000e_check_reset_block_generic,
1366 .commit = e1000e_phy_sw_reset,
1367 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1368 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1369 .get_cable_length = e1000_get_cable_length_80003es2lan,
1370 .get_info = e1000e_get_phy_info_m88,
1371 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1372 .release = e1000_release_phy_80003es2lan,
1373 .reset = e1000e_phy_hw_reset_generic,
1374 .set_d0_lplu_state = NULL,
1375 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1376 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1377 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1378 };
1379
1380 static struct e1000_nvm_operations es2_nvm_ops = {
1381 .acquire = e1000_acquire_nvm_80003es2lan,
1382 .read = e1000e_read_nvm_eerd,
1383 .release = e1000_release_nvm_80003es2lan,
1384 .update = e1000e_update_nvm_checksum_generic,
1385 .valid_led_default = e1000e_valid_led_default,
1386 .validate = e1000e_validate_nvm_checksum_generic,
1387 .write = e1000_write_nvm_80003es2lan,
1388 };
1389
1390 struct e1000_info e1000_es2_info = {
1391 .mac = e1000_80003es2lan,
1392 .flags = FLAG_HAS_HW_VLAN_FILTER
1393 | FLAG_HAS_JUMBO_FRAMES
1394 | FLAG_HAS_WOL
1395 | FLAG_APME_IN_CTRL3
1396 | FLAG_RX_CSUM_ENABLED
1397 | FLAG_HAS_CTRLEXT_ON_LOAD
1398 | FLAG_RX_NEEDS_RESTART /* errata */
1399 | FLAG_TARC_SET_BIT_ZERO /* errata */
1400 | FLAG_APME_CHECK_PORT_B
1401 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1402 | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1403 .pba = 38,
1404 .max_hw_frame_size = DEFAULT_JUMBO,
1405 .get_variants = e1000_get_variants_80003es2lan,
1406 .mac_ops = &es2_mac_ops,
1407 .phy_ops = &es2_phy_ops,
1408 .nvm_ops = &es2_nvm_ops,
1409 };
1410
This page took 0.119095 seconds and 5 git commands to generate.