hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorc) },
50 { "tx_bytes", E1000_STAT(stats.gotc) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
109 {
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
113
114 if (hw->phy.media_type == e1000_media_type_copper) {
115
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
126
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
131 }
132
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
136
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
141
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
145
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
148 }
149
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
158
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
166 }
167
168 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176
177 return e1000_has_link(adapter);
178 }
179
180 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
181 {
182 struct e1000_mac_info *mac = &adapter->hw.mac;
183
184 mac->autoneg = 0;
185
186 /* Fiber NICs only allow 1000 gbps Full duplex */
187 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
188 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
189 e_err("Unsupported Speed/Duplex configuration\n");
190 return -EINVAL;
191 }
192
193 switch (spddplx) {
194 case SPEED_10 + DUPLEX_HALF:
195 mac->forced_speed_duplex = ADVERTISE_10_HALF;
196 break;
197 case SPEED_10 + DUPLEX_FULL:
198 mac->forced_speed_duplex = ADVERTISE_10_FULL;
199 break;
200 case SPEED_100 + DUPLEX_HALF:
201 mac->forced_speed_duplex = ADVERTISE_100_HALF;
202 break;
203 case SPEED_100 + DUPLEX_FULL:
204 mac->forced_speed_duplex = ADVERTISE_100_FULL;
205 break;
206 case SPEED_1000 + DUPLEX_FULL:
207 mac->autoneg = 1;
208 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
209 break;
210 case SPEED_1000 + DUPLEX_HALF: /* not supported */
211 default:
212 e_err("Unsupported Speed/Duplex configuration\n");
213 return -EINVAL;
214 }
215 return 0;
216 }
217
218 static int e1000_set_settings(struct net_device *netdev,
219 struct ethtool_cmd *ecmd)
220 {
221 struct e1000_adapter *adapter = netdev_priv(netdev);
222 struct e1000_hw *hw = &adapter->hw;
223
224 /*
225 * When SoL/IDER sessions are active, autoneg/speed/duplex
226 * cannot be changed
227 */
228 if (e1000_check_reset_block(hw)) {
229 e_err("Cannot change link characteristics when SoL/IDER is "
230 "active.\n");
231 return -EINVAL;
232 }
233
234 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
235 msleep(1);
236
237 if (ecmd->autoneg == AUTONEG_ENABLE) {
238 hw->mac.autoneg = 1;
239 if (hw->phy.media_type == e1000_media_type_fiber)
240 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
241 ADVERTISED_FIBRE |
242 ADVERTISED_Autoneg;
243 else
244 hw->phy.autoneg_advertised = ecmd->advertising |
245 ADVERTISED_TP |
246 ADVERTISED_Autoneg;
247 ecmd->advertising = hw->phy.autoneg_advertised;
248 if (adapter->fc_autoneg)
249 hw->fc.requested_mode = e1000_fc_default;
250 } else {
251 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
252 clear_bit(__E1000_RESETTING, &adapter->state);
253 return -EINVAL;
254 }
255 }
256
257 /* reset the link */
258
259 if (netif_running(adapter->netdev)) {
260 e1000e_down(adapter);
261 e1000e_up(adapter);
262 } else {
263 e1000e_reset(adapter);
264 }
265
266 clear_bit(__E1000_RESETTING, &adapter->state);
267 return 0;
268 }
269
270 static void e1000_get_pauseparam(struct net_device *netdev,
271 struct ethtool_pauseparam *pause)
272 {
273 struct e1000_adapter *adapter = netdev_priv(netdev);
274 struct e1000_hw *hw = &adapter->hw;
275
276 pause->autoneg =
277 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
278
279 if (hw->fc.current_mode == e1000_fc_rx_pause) {
280 pause->rx_pause = 1;
281 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
282 pause->tx_pause = 1;
283 } else if (hw->fc.current_mode == e1000_fc_full) {
284 pause->rx_pause = 1;
285 pause->tx_pause = 1;
286 }
287 }
288
289 static int e1000_set_pauseparam(struct net_device *netdev,
290 struct ethtool_pauseparam *pause)
291 {
292 struct e1000_adapter *adapter = netdev_priv(netdev);
293 struct e1000_hw *hw = &adapter->hw;
294 int retval = 0;
295
296 adapter->fc_autoneg = pause->autoneg;
297
298 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
299 msleep(1);
300
301 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
302 hw->fc.requested_mode = e1000_fc_default;
303 if (netif_running(adapter->netdev)) {
304 e1000e_down(adapter);
305 e1000e_up(adapter);
306 } else {
307 e1000e_reset(adapter);
308 }
309 } else {
310 if (pause->rx_pause && pause->tx_pause)
311 hw->fc.requested_mode = e1000_fc_full;
312 else if (pause->rx_pause && !pause->tx_pause)
313 hw->fc.requested_mode = e1000_fc_rx_pause;
314 else if (!pause->rx_pause && pause->tx_pause)
315 hw->fc.requested_mode = e1000_fc_tx_pause;
316 else if (!pause->rx_pause && !pause->tx_pause)
317 hw->fc.requested_mode = e1000_fc_none;
318
319 hw->fc.current_mode = hw->fc.requested_mode;
320
321 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
322 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
323 }
324
325 clear_bit(__E1000_RESETTING, &adapter->state);
326 return retval;
327 }
328
329 static u32 e1000_get_rx_csum(struct net_device *netdev)
330 {
331 struct e1000_adapter *adapter = netdev_priv(netdev);
332 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
333 }
334
335 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
336 {
337 struct e1000_adapter *adapter = netdev_priv(netdev);
338
339 if (data)
340 adapter->flags |= FLAG_RX_CSUM_ENABLED;
341 else
342 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
343
344 if (netif_running(netdev))
345 e1000e_reinit_locked(adapter);
346 else
347 e1000e_reset(adapter);
348 return 0;
349 }
350
351 static u32 e1000_get_tx_csum(struct net_device *netdev)
352 {
353 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
354 }
355
356 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
357 {
358 if (data)
359 netdev->features |= NETIF_F_HW_CSUM;
360 else
361 netdev->features &= ~NETIF_F_HW_CSUM;
362
363 return 0;
364 }
365
366 static int e1000_set_tso(struct net_device *netdev, u32 data)
367 {
368 struct e1000_adapter *adapter = netdev_priv(netdev);
369
370 if (data) {
371 netdev->features |= NETIF_F_TSO;
372 netdev->features |= NETIF_F_TSO6;
373 } else {
374 netdev->features &= ~NETIF_F_TSO;
375 netdev->features &= ~NETIF_F_TSO6;
376 }
377
378 e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
379 adapter->flags |= FLAG_TSO_FORCE;
380 return 0;
381 }
382
383 static u32 e1000_get_msglevel(struct net_device *netdev)
384 {
385 struct e1000_adapter *adapter = netdev_priv(netdev);
386 return adapter->msg_enable;
387 }
388
389 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
390 {
391 struct e1000_adapter *adapter = netdev_priv(netdev);
392 adapter->msg_enable = data;
393 }
394
395 static int e1000_get_regs_len(struct net_device *netdev)
396 {
397 #define E1000_REGS_LEN 32 /* overestimate */
398 return E1000_REGS_LEN * sizeof(u32);
399 }
400
401 static void e1000_get_regs(struct net_device *netdev,
402 struct ethtool_regs *regs, void *p)
403 {
404 struct e1000_adapter *adapter = netdev_priv(netdev);
405 struct e1000_hw *hw = &adapter->hw;
406 u32 *regs_buff = p;
407 u16 phy_data;
408 u8 revision_id;
409
410 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
411
412 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
413
414 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
415
416 regs_buff[0] = er32(CTRL);
417 regs_buff[1] = er32(STATUS);
418
419 regs_buff[2] = er32(RCTL);
420 regs_buff[3] = er32(RDLEN);
421 regs_buff[4] = er32(RDH);
422 regs_buff[5] = er32(RDT);
423 regs_buff[6] = er32(RDTR);
424
425 regs_buff[7] = er32(TCTL);
426 regs_buff[8] = er32(TDLEN);
427 regs_buff[9] = er32(TDH);
428 regs_buff[10] = er32(TDT);
429 regs_buff[11] = er32(TIDV);
430
431 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
432
433 /* ethtool doesn't use anything past this point, so all this
434 * code is likely legacy junk for apps that may or may not
435 * exist */
436 if (hw->phy.type == e1000_phy_m88) {
437 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
438 regs_buff[13] = (u32)phy_data; /* cable length */
439 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
442 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
443 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
444 regs_buff[18] = regs_buff[13]; /* cable polarity */
445 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
446 regs_buff[20] = regs_buff[17]; /* polarity correction */
447 /* phy receive errors */
448 regs_buff[22] = adapter->phy_stats.receive_errors;
449 regs_buff[23] = regs_buff[13]; /* mdix mode */
450 }
451 regs_buff[21] = 0; /* was idle_errors */
452 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
453 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
454 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
455 }
456
457 static int e1000_get_eeprom_len(struct net_device *netdev)
458 {
459 struct e1000_adapter *adapter = netdev_priv(netdev);
460 return adapter->hw.nvm.word_size * 2;
461 }
462
463 static int e1000_get_eeprom(struct net_device *netdev,
464 struct ethtool_eeprom *eeprom, u8 *bytes)
465 {
466 struct e1000_adapter *adapter = netdev_priv(netdev);
467 struct e1000_hw *hw = &adapter->hw;
468 u16 *eeprom_buff;
469 int first_word;
470 int last_word;
471 int ret_val = 0;
472 u16 i;
473
474 if (eeprom->len == 0)
475 return -EINVAL;
476
477 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
478
479 first_word = eeprom->offset >> 1;
480 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
481
482 eeprom_buff = kmalloc(sizeof(u16) *
483 (last_word - first_word + 1), GFP_KERNEL);
484 if (!eeprom_buff)
485 return -ENOMEM;
486
487 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
488 ret_val = e1000_read_nvm(hw, first_word,
489 last_word - first_word + 1,
490 eeprom_buff);
491 } else {
492 for (i = 0; i < last_word - first_word + 1; i++) {
493 ret_val = e1000_read_nvm(hw, first_word + i, 1,
494 &eeprom_buff[i]);
495 if (ret_val)
496 break;
497 }
498 }
499
500 if (ret_val) {
501 /* a read error occurred, throw away the result */
502 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
503 } else {
504 /* Device's eeprom is always little-endian, word addressable */
505 for (i = 0; i < last_word - first_word + 1; i++)
506 le16_to_cpus(&eeprom_buff[i]);
507 }
508
509 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
510 kfree(eeprom_buff);
511
512 return ret_val;
513 }
514
515 static int e1000_set_eeprom(struct net_device *netdev,
516 struct ethtool_eeprom *eeprom, u8 *bytes)
517 {
518 struct e1000_adapter *adapter = netdev_priv(netdev);
519 struct e1000_hw *hw = &adapter->hw;
520 u16 *eeprom_buff;
521 void *ptr;
522 int max_len;
523 int first_word;
524 int last_word;
525 int ret_val = 0;
526 u16 i;
527
528 if (eeprom->len == 0)
529 return -EOPNOTSUPP;
530
531 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
532 return -EFAULT;
533
534 if (adapter->flags & FLAG_READ_ONLY_NVM)
535 return -EINVAL;
536
537 max_len = hw->nvm.word_size * 2;
538
539 first_word = eeprom->offset >> 1;
540 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
541 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
542 if (!eeprom_buff)
543 return -ENOMEM;
544
545 ptr = (void *)eeprom_buff;
546
547 if (eeprom->offset & 1) {
548 /* need read/modify/write of first changed EEPROM word */
549 /* only the second byte of the word is being modified */
550 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
551 ptr++;
552 }
553 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
554 /* need read/modify/write of last changed EEPROM word */
555 /* only the first byte of the word is being modified */
556 ret_val = e1000_read_nvm(hw, last_word, 1,
557 &eeprom_buff[last_word - first_word]);
558
559 if (ret_val)
560 goto out;
561
562 /* Device's eeprom is always little-endian, word addressable */
563 for (i = 0; i < last_word - first_word + 1; i++)
564 le16_to_cpus(&eeprom_buff[i]);
565
566 memcpy(ptr, bytes, eeprom->len);
567
568 for (i = 0; i < last_word - first_word + 1; i++)
569 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
570
571 ret_val = e1000_write_nvm(hw, first_word,
572 last_word - first_word + 1, eeprom_buff);
573
574 if (ret_val)
575 goto out;
576
577 /*
578 * Update the checksum over the first part of the EEPROM if needed
579 * and flush shadow RAM for applicable controllers
580 */
581 if ((first_word <= NVM_CHECKSUM_REG) ||
582 (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
583 ret_val = e1000e_update_nvm_checksum(hw);
584
585 out:
586 kfree(eeprom_buff);
587 return ret_val;
588 }
589
590 static void e1000_get_drvinfo(struct net_device *netdev,
591 struct ethtool_drvinfo *drvinfo)
592 {
593 struct e1000_adapter *adapter = netdev_priv(netdev);
594 char firmware_version[32];
595
596 strncpy(drvinfo->driver, e1000e_driver_name, 32);
597 strncpy(drvinfo->version, e1000e_driver_version, 32);
598
599 /*
600 * EEPROM image version # is reported as firmware version # for
601 * PCI-E controllers
602 */
603 sprintf(firmware_version, "%d.%d-%d",
604 (adapter->eeprom_vers & 0xF000) >> 12,
605 (adapter->eeprom_vers & 0x0FF0) >> 4,
606 (adapter->eeprom_vers & 0x000F));
607
608 strncpy(drvinfo->fw_version, firmware_version, 32);
609 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
610 drvinfo->regdump_len = e1000_get_regs_len(netdev);
611 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
612 }
613
614 static void e1000_get_ringparam(struct net_device *netdev,
615 struct ethtool_ringparam *ring)
616 {
617 struct e1000_adapter *adapter = netdev_priv(netdev);
618 struct e1000_ring *tx_ring = adapter->tx_ring;
619 struct e1000_ring *rx_ring = adapter->rx_ring;
620
621 ring->rx_max_pending = E1000_MAX_RXD;
622 ring->tx_max_pending = E1000_MAX_TXD;
623 ring->rx_mini_max_pending = 0;
624 ring->rx_jumbo_max_pending = 0;
625 ring->rx_pending = rx_ring->count;
626 ring->tx_pending = tx_ring->count;
627 ring->rx_mini_pending = 0;
628 ring->rx_jumbo_pending = 0;
629 }
630
631 static int e1000_set_ringparam(struct net_device *netdev,
632 struct ethtool_ringparam *ring)
633 {
634 struct e1000_adapter *adapter = netdev_priv(netdev);
635 struct e1000_ring *tx_ring, *tx_old;
636 struct e1000_ring *rx_ring, *rx_old;
637 int err;
638
639 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
640 return -EINVAL;
641
642 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
643 msleep(1);
644
645 if (netif_running(adapter->netdev))
646 e1000e_down(adapter);
647
648 tx_old = adapter->tx_ring;
649 rx_old = adapter->rx_ring;
650
651 err = -ENOMEM;
652 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
653 if (!tx_ring)
654 goto err_alloc_tx;
655 /*
656 * use a memcpy to save any previously configured
657 * items like napi structs from having to be
658 * reinitialized
659 */
660 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
661
662 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
663 if (!rx_ring)
664 goto err_alloc_rx;
665 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
666
667 adapter->tx_ring = tx_ring;
668 adapter->rx_ring = rx_ring;
669
670 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
671 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
672 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
673
674 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
675 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
676 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
677
678 if (netif_running(adapter->netdev)) {
679 /* Try to get new resources before deleting old */
680 err = e1000e_setup_rx_resources(adapter);
681 if (err)
682 goto err_setup_rx;
683 err = e1000e_setup_tx_resources(adapter);
684 if (err)
685 goto err_setup_tx;
686
687 /*
688 * restore the old in order to free it,
689 * then add in the new
690 */
691 adapter->rx_ring = rx_old;
692 adapter->tx_ring = tx_old;
693 e1000e_free_rx_resources(adapter);
694 e1000e_free_tx_resources(adapter);
695 kfree(tx_old);
696 kfree(rx_old);
697 adapter->rx_ring = rx_ring;
698 adapter->tx_ring = tx_ring;
699 err = e1000e_up(adapter);
700 if (err)
701 goto err_setup;
702 }
703
704 clear_bit(__E1000_RESETTING, &adapter->state);
705 return 0;
706 err_setup_tx:
707 e1000e_free_rx_resources(adapter);
708 err_setup_rx:
709 adapter->rx_ring = rx_old;
710 adapter->tx_ring = tx_old;
711 kfree(rx_ring);
712 err_alloc_rx:
713 kfree(tx_ring);
714 err_alloc_tx:
715 e1000e_up(adapter);
716 err_setup:
717 clear_bit(__E1000_RESETTING, &adapter->state);
718 return err;
719 }
720
721 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
722 int reg, int offset, u32 mask, u32 write)
723 {
724 u32 pat, val;
725 static const u32 test[] =
726 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
727 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
728 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
729 (test[pat] & write));
730 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
731 if (val != (test[pat] & write & mask)) {
732 e_err("pattern test reg %04X failed: got 0x%08X "
733 "expected 0x%08X\n", reg + offset, val,
734 (test[pat] & write & mask));
735 *data = reg;
736 return 1;
737 }
738 }
739 return 0;
740 }
741
742 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
743 int reg, u32 mask, u32 write)
744 {
745 u32 val;
746 __ew32(&adapter->hw, reg, write & mask);
747 val = __er32(&adapter->hw, reg);
748 if ((write & mask) != (val & mask)) {
749 e_err("set/check reg %04X test failed: got 0x%08X "
750 "expected 0x%08X\n", reg, (val & mask), (write & mask));
751 *data = reg;
752 return 1;
753 }
754 return 0;
755 }
756 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
757 do { \
758 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
759 return 1; \
760 } while (0)
761 #define REG_PATTERN_TEST(reg, mask, write) \
762 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
763
764 #define REG_SET_AND_CHECK(reg, mask, write) \
765 do { \
766 if (reg_set_and_check(adapter, data, reg, mask, write)) \
767 return 1; \
768 } while (0)
769
770 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
771 {
772 struct e1000_hw *hw = &adapter->hw;
773 struct e1000_mac_info *mac = &adapter->hw.mac;
774 u32 value;
775 u32 before;
776 u32 after;
777 u32 i;
778 u32 toggle;
779
780 /*
781 * The status register is Read Only, so a write should fail.
782 * Some bits that get toggled are ignored.
783 */
784 switch (mac->type) {
785 /* there are several bits on newer hardware that are r/w */
786 case e1000_82571:
787 case e1000_82572:
788 case e1000_80003es2lan:
789 toggle = 0x7FFFF3FF;
790 break;
791 case e1000_82573:
792 case e1000_82574:
793 case e1000_82583:
794 case e1000_ich8lan:
795 case e1000_ich9lan:
796 case e1000_ich10lan:
797 toggle = 0x7FFFF033;
798 break;
799 default:
800 toggle = 0xFFFFF833;
801 break;
802 }
803
804 before = er32(STATUS);
805 value = (er32(STATUS) & toggle);
806 ew32(STATUS, toggle);
807 after = er32(STATUS) & toggle;
808 if (value != after) {
809 e_err("failed STATUS register test got: 0x%08X expected: "
810 "0x%08X\n", after, value);
811 *data = 1;
812 return 1;
813 }
814 /* restore previous status */
815 ew32(STATUS, before);
816
817 if (!(adapter->flags & FLAG_IS_ICH)) {
818 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
819 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
820 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
821 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
822 }
823
824 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
825 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
826 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
827 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
828 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
829 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
830 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
831 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
832 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
833 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
834
835 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
836
837 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
838 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
839 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
840
841 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
842 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
843 if (!(adapter->flags & FLAG_IS_ICH))
844 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
845 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
846 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
847 for (i = 0; i < mac->rar_entry_count; i++)
848 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
849 ((mac->type == e1000_ich10lan) ?
850 0x8007FFFF : 0x8003FFFF),
851 0xFFFFFFFF);
852
853 for (i = 0; i < mac->mta_reg_count; i++)
854 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
855
856 *data = 0;
857 return 0;
858 }
859
860 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
861 {
862 u16 temp;
863 u16 checksum = 0;
864 u16 i;
865
866 *data = 0;
867 /* Read and add up the contents of the EEPROM */
868 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
869 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
870 *data = 1;
871 return *data;
872 }
873 checksum += temp;
874 }
875
876 /* If Checksum is not Correct return error else test passed */
877 if ((checksum != (u16) NVM_SUM) && !(*data))
878 *data = 2;
879
880 return *data;
881 }
882
883 static irqreturn_t e1000_test_intr(int irq, void *data)
884 {
885 struct net_device *netdev = (struct net_device *) data;
886 struct e1000_adapter *adapter = netdev_priv(netdev);
887 struct e1000_hw *hw = &adapter->hw;
888
889 adapter->test_icr |= er32(ICR);
890
891 return IRQ_HANDLED;
892 }
893
894 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
895 {
896 struct net_device *netdev = adapter->netdev;
897 struct e1000_hw *hw = &adapter->hw;
898 u32 mask;
899 u32 shared_int = 1;
900 u32 irq = adapter->pdev->irq;
901 int i;
902 int ret_val = 0;
903 int int_mode = E1000E_INT_MODE_LEGACY;
904
905 *data = 0;
906
907 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
908 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
909 int_mode = adapter->int_mode;
910 e1000e_reset_interrupt_capability(adapter);
911 adapter->int_mode = E1000E_INT_MODE_LEGACY;
912 e1000e_set_interrupt_capability(adapter);
913 }
914 /* Hook up test interrupt handler just for this test */
915 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
916 netdev)) {
917 shared_int = 0;
918 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
919 netdev->name, netdev)) {
920 *data = 1;
921 ret_val = -1;
922 goto out;
923 }
924 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
925
926 /* Disable all the interrupts */
927 ew32(IMC, 0xFFFFFFFF);
928 msleep(10);
929
930 /* Test each interrupt */
931 for (i = 0; i < 10; i++) {
932 /* Interrupt to test */
933 mask = 1 << i;
934
935 if (adapter->flags & FLAG_IS_ICH) {
936 switch (mask) {
937 case E1000_ICR_RXSEQ:
938 continue;
939 case 0x00000100:
940 if (adapter->hw.mac.type == e1000_ich8lan ||
941 adapter->hw.mac.type == e1000_ich9lan)
942 continue;
943 break;
944 default:
945 break;
946 }
947 }
948
949 if (!shared_int) {
950 /*
951 * Disable the interrupt to be reported in
952 * the cause register and then force the same
953 * interrupt and see if one gets posted. If
954 * an interrupt was posted to the bus, the
955 * test failed.
956 */
957 adapter->test_icr = 0;
958 ew32(IMC, mask);
959 ew32(ICS, mask);
960 msleep(10);
961
962 if (adapter->test_icr & mask) {
963 *data = 3;
964 break;
965 }
966 }
967
968 /*
969 * Enable the interrupt to be reported in
970 * the cause register and then force the same
971 * interrupt and see if one gets posted. If
972 * an interrupt was not posted to the bus, the
973 * test failed.
974 */
975 adapter->test_icr = 0;
976 ew32(IMS, mask);
977 ew32(ICS, mask);
978 msleep(10);
979
980 if (!(adapter->test_icr & mask)) {
981 *data = 4;
982 break;
983 }
984
985 if (!shared_int) {
986 /*
987 * Disable the other interrupts to be reported in
988 * the cause register and then force the other
989 * interrupts and see if any get posted. If
990 * an interrupt was posted to the bus, the
991 * test failed.
992 */
993 adapter->test_icr = 0;
994 ew32(IMC, ~mask & 0x00007FFF);
995 ew32(ICS, ~mask & 0x00007FFF);
996 msleep(10);
997
998 if (adapter->test_icr) {
999 *data = 5;
1000 break;
1001 }
1002 }
1003 }
1004
1005 /* Disable all the interrupts */
1006 ew32(IMC, 0xFFFFFFFF);
1007 msleep(10);
1008
1009 /* Unhook test interrupt handler */
1010 free_irq(irq, netdev);
1011
1012 out:
1013 if (int_mode == E1000E_INT_MODE_MSIX) {
1014 e1000e_reset_interrupt_capability(adapter);
1015 adapter->int_mode = int_mode;
1016 e1000e_set_interrupt_capability(adapter);
1017 }
1018
1019 return ret_val;
1020 }
1021
1022 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1023 {
1024 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1025 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1026 struct pci_dev *pdev = adapter->pdev;
1027 int i;
1028
1029 if (tx_ring->desc && tx_ring->buffer_info) {
1030 for (i = 0; i < tx_ring->count; i++) {
1031 if (tx_ring->buffer_info[i].dma)
1032 pci_unmap_single(pdev,
1033 tx_ring->buffer_info[i].dma,
1034 tx_ring->buffer_info[i].length,
1035 PCI_DMA_TODEVICE);
1036 if (tx_ring->buffer_info[i].skb)
1037 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1038 }
1039 }
1040
1041 if (rx_ring->desc && rx_ring->buffer_info) {
1042 for (i = 0; i < rx_ring->count; i++) {
1043 if (rx_ring->buffer_info[i].dma)
1044 pci_unmap_single(pdev,
1045 rx_ring->buffer_info[i].dma,
1046 2048, PCI_DMA_FROMDEVICE);
1047 if (rx_ring->buffer_info[i].skb)
1048 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1049 }
1050 }
1051
1052 if (tx_ring->desc) {
1053 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1054 tx_ring->dma);
1055 tx_ring->desc = NULL;
1056 }
1057 if (rx_ring->desc) {
1058 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1059 rx_ring->dma);
1060 rx_ring->desc = NULL;
1061 }
1062
1063 kfree(tx_ring->buffer_info);
1064 tx_ring->buffer_info = NULL;
1065 kfree(rx_ring->buffer_info);
1066 rx_ring->buffer_info = NULL;
1067 }
1068
1069 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1070 {
1071 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1072 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1073 struct pci_dev *pdev = adapter->pdev;
1074 struct e1000_hw *hw = &adapter->hw;
1075 u32 rctl;
1076 int i;
1077 int ret_val;
1078
1079 /* Setup Tx descriptor ring and Tx buffers */
1080
1081 if (!tx_ring->count)
1082 tx_ring->count = E1000_DEFAULT_TXD;
1083
1084 tx_ring->buffer_info = kcalloc(tx_ring->count,
1085 sizeof(struct e1000_buffer),
1086 GFP_KERNEL);
1087 if (!(tx_ring->buffer_info)) {
1088 ret_val = 1;
1089 goto err_nomem;
1090 }
1091
1092 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1093 tx_ring->size = ALIGN(tx_ring->size, 4096);
1094 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1095 &tx_ring->dma, GFP_KERNEL);
1096 if (!tx_ring->desc) {
1097 ret_val = 2;
1098 goto err_nomem;
1099 }
1100 tx_ring->next_to_use = 0;
1101 tx_ring->next_to_clean = 0;
1102
1103 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1104 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1105 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1106 ew32(TDH, 0);
1107 ew32(TDT, 0);
1108 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1109 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1110 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1111
1112 for (i = 0; i < tx_ring->count; i++) {
1113 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1114 struct sk_buff *skb;
1115 unsigned int skb_size = 1024;
1116
1117 skb = alloc_skb(skb_size, GFP_KERNEL);
1118 if (!skb) {
1119 ret_val = 3;
1120 goto err_nomem;
1121 }
1122 skb_put(skb, skb_size);
1123 tx_ring->buffer_info[i].skb = skb;
1124 tx_ring->buffer_info[i].length = skb->len;
1125 tx_ring->buffer_info[i].dma =
1126 pci_map_single(pdev, skb->data, skb->len,
1127 PCI_DMA_TODEVICE);
1128 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1129 ret_val = 4;
1130 goto err_nomem;
1131 }
1132 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1133 tx_desc->lower.data = cpu_to_le32(skb->len);
1134 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1135 E1000_TXD_CMD_IFCS |
1136 E1000_TXD_CMD_RS);
1137 tx_desc->upper.data = 0;
1138 }
1139
1140 /* Setup Rx descriptor ring and Rx buffers */
1141
1142 if (!rx_ring->count)
1143 rx_ring->count = E1000_DEFAULT_RXD;
1144
1145 rx_ring->buffer_info = kcalloc(rx_ring->count,
1146 sizeof(struct e1000_buffer),
1147 GFP_KERNEL);
1148 if (!(rx_ring->buffer_info)) {
1149 ret_val = 5;
1150 goto err_nomem;
1151 }
1152
1153 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1154 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1155 &rx_ring->dma, GFP_KERNEL);
1156 if (!rx_ring->desc) {
1157 ret_val = 6;
1158 goto err_nomem;
1159 }
1160 rx_ring->next_to_use = 0;
1161 rx_ring->next_to_clean = 0;
1162
1163 rctl = er32(RCTL);
1164 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1165 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1166 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1167 ew32(RDLEN, rx_ring->size);
1168 ew32(RDH, 0);
1169 ew32(RDT, 0);
1170 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1171 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1172 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1173 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1174 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1175 ew32(RCTL, rctl);
1176
1177 for (i = 0; i < rx_ring->count; i++) {
1178 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1179 struct sk_buff *skb;
1180
1181 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1182 if (!skb) {
1183 ret_val = 7;
1184 goto err_nomem;
1185 }
1186 skb_reserve(skb, NET_IP_ALIGN);
1187 rx_ring->buffer_info[i].skb = skb;
1188 rx_ring->buffer_info[i].dma =
1189 pci_map_single(pdev, skb->data, 2048,
1190 PCI_DMA_FROMDEVICE);
1191 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1192 ret_val = 8;
1193 goto err_nomem;
1194 }
1195 rx_desc->buffer_addr =
1196 cpu_to_le64(rx_ring->buffer_info[i].dma);
1197 memset(skb->data, 0x00, skb->len);
1198 }
1199
1200 return 0;
1201
1202 err_nomem:
1203 e1000_free_desc_rings(adapter);
1204 return ret_val;
1205 }
1206
1207 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1208 {
1209 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1210 e1e_wphy(&adapter->hw, 29, 0x001F);
1211 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1212 e1e_wphy(&adapter->hw, 29, 0x001A);
1213 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1214 }
1215
1216 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1217 {
1218 struct e1000_hw *hw = &adapter->hw;
1219 u32 ctrl_reg = 0;
1220 u32 stat_reg = 0;
1221 u16 phy_reg = 0;
1222
1223 hw->mac.autoneg = 0;
1224
1225 if (hw->phy.type == e1000_phy_m88) {
1226 /* Auto-MDI/MDIX Off */
1227 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1228 /* reset to update Auto-MDI/MDIX */
1229 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1230 /* autoneg off */
1231 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1232 } else if (hw->phy.type == e1000_phy_gg82563)
1233 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1234
1235 ctrl_reg = er32(CTRL);
1236
1237 switch (hw->phy.type) {
1238 case e1000_phy_ife:
1239 /* force 100, set loopback */
1240 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1241
1242 /* Now set up the MAC to the same speed/duplex as the PHY. */
1243 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1244 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1245 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1246 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1247 E1000_CTRL_FD); /* Force Duplex to FULL */
1248 break;
1249 case e1000_phy_bm:
1250 /* Set Default MAC Interface speed to 1GB */
1251 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1252 phy_reg &= ~0x0007;
1253 phy_reg |= 0x006;
1254 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1255 /* Assert SW reset for above settings to take effect */
1256 e1000e_commit_phy(hw);
1257 mdelay(1);
1258 /* Force Full Duplex */
1259 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1260 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1261 /* Set Link Up (in force link) */
1262 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1263 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1264 /* Force Link */
1265 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1266 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1267 /* Set Early Link Enable */
1268 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1269 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1270 /* fall through */
1271 default:
1272 /* force 1000, set loopback */
1273 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1274 mdelay(250);
1275
1276 /* Now set up the MAC to the same speed/duplex as the PHY. */
1277 ctrl_reg = er32(CTRL);
1278 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1279 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1280 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1281 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1282 E1000_CTRL_FD); /* Force Duplex to FULL */
1283
1284 if (adapter->flags & FLAG_IS_ICH)
1285 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1286 }
1287
1288 if (hw->phy.media_type == e1000_media_type_copper &&
1289 hw->phy.type == e1000_phy_m88) {
1290 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1291 } else {
1292 /*
1293 * Set the ILOS bit on the fiber Nic if half duplex link is
1294 * detected.
1295 */
1296 stat_reg = er32(STATUS);
1297 if ((stat_reg & E1000_STATUS_FD) == 0)
1298 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1299 }
1300
1301 ew32(CTRL, ctrl_reg);
1302
1303 /*
1304 * Disable the receiver on the PHY so when a cable is plugged in, the
1305 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1306 */
1307 if (hw->phy.type == e1000_phy_m88)
1308 e1000_phy_disable_receiver(adapter);
1309
1310 udelay(500);
1311
1312 return 0;
1313 }
1314
1315 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1316 {
1317 struct e1000_hw *hw = &adapter->hw;
1318 u32 ctrl = er32(CTRL);
1319 int link = 0;
1320
1321 /* special requirements for 82571/82572 fiber adapters */
1322
1323 /*
1324 * jump through hoops to make sure link is up because serdes
1325 * link is hardwired up
1326 */
1327 ctrl |= E1000_CTRL_SLU;
1328 ew32(CTRL, ctrl);
1329
1330 /* disable autoneg */
1331 ctrl = er32(TXCW);
1332 ctrl &= ~(1 << 31);
1333 ew32(TXCW, ctrl);
1334
1335 link = (er32(STATUS) & E1000_STATUS_LU);
1336
1337 if (!link) {
1338 /* set invert loss of signal */
1339 ctrl = er32(CTRL);
1340 ctrl |= E1000_CTRL_ILOS;
1341 ew32(CTRL, ctrl);
1342 }
1343
1344 /*
1345 * special write to serdes control register to enable SerDes analog
1346 * loopback
1347 */
1348 #define E1000_SERDES_LB_ON 0x410
1349 ew32(SCTL, E1000_SERDES_LB_ON);
1350 msleep(10);
1351
1352 return 0;
1353 }
1354
1355 /* only call this for fiber/serdes connections to es2lan */
1356 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1357 {
1358 struct e1000_hw *hw = &adapter->hw;
1359 u32 ctrlext = er32(CTRL_EXT);
1360 u32 ctrl = er32(CTRL);
1361
1362 /*
1363 * save CTRL_EXT to restore later, reuse an empty variable (unused
1364 * on mac_type 80003es2lan)
1365 */
1366 adapter->tx_fifo_head = ctrlext;
1367
1368 /* clear the serdes mode bits, putting the device into mac loopback */
1369 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1370 ew32(CTRL_EXT, ctrlext);
1371
1372 /* force speed to 1000/FD, link up */
1373 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1374 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1375 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1376 ew32(CTRL, ctrl);
1377
1378 /* set mac loopback */
1379 ctrl = er32(RCTL);
1380 ctrl |= E1000_RCTL_LBM_MAC;
1381 ew32(RCTL, ctrl);
1382
1383 /* set testing mode parameters (no need to reset later) */
1384 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1385 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1386 ew32(KMRNCTRLSTA,
1387 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1388
1389 return 0;
1390 }
1391
1392 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1393 {
1394 struct e1000_hw *hw = &adapter->hw;
1395 u32 rctl;
1396
1397 if (hw->phy.media_type == e1000_media_type_fiber ||
1398 hw->phy.media_type == e1000_media_type_internal_serdes) {
1399 switch (hw->mac.type) {
1400 case e1000_80003es2lan:
1401 return e1000_set_es2lan_mac_loopback(adapter);
1402 break;
1403 case e1000_82571:
1404 case e1000_82572:
1405 return e1000_set_82571_fiber_loopback(adapter);
1406 break;
1407 default:
1408 rctl = er32(RCTL);
1409 rctl |= E1000_RCTL_LBM_TCVR;
1410 ew32(RCTL, rctl);
1411 return 0;
1412 }
1413 } else if (hw->phy.media_type == e1000_media_type_copper) {
1414 return e1000_integrated_phy_loopback(adapter);
1415 }
1416
1417 return 7;
1418 }
1419
1420 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1421 {
1422 struct e1000_hw *hw = &adapter->hw;
1423 u32 rctl;
1424 u16 phy_reg;
1425
1426 rctl = er32(RCTL);
1427 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1428 ew32(RCTL, rctl);
1429
1430 switch (hw->mac.type) {
1431 case e1000_80003es2lan:
1432 if (hw->phy.media_type == e1000_media_type_fiber ||
1433 hw->phy.media_type == e1000_media_type_internal_serdes) {
1434 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1435 ew32(CTRL_EXT, adapter->tx_fifo_head);
1436 adapter->tx_fifo_head = 0;
1437 }
1438 /* fall through */
1439 case e1000_82571:
1440 case e1000_82572:
1441 if (hw->phy.media_type == e1000_media_type_fiber ||
1442 hw->phy.media_type == e1000_media_type_internal_serdes) {
1443 #define E1000_SERDES_LB_OFF 0x400
1444 ew32(SCTL, E1000_SERDES_LB_OFF);
1445 msleep(10);
1446 break;
1447 }
1448 /* Fall Through */
1449 default:
1450 hw->mac.autoneg = 1;
1451 if (hw->phy.type == e1000_phy_gg82563)
1452 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1453 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1454 if (phy_reg & MII_CR_LOOPBACK) {
1455 phy_reg &= ~MII_CR_LOOPBACK;
1456 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1457 e1000e_commit_phy(hw);
1458 }
1459 break;
1460 }
1461 }
1462
1463 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1464 unsigned int frame_size)
1465 {
1466 memset(skb->data, 0xFF, frame_size);
1467 frame_size &= ~1;
1468 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1469 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1470 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1471 }
1472
1473 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1474 unsigned int frame_size)
1475 {
1476 frame_size &= ~1;
1477 if (*(skb->data + 3) == 0xFF)
1478 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1479 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1480 return 0;
1481 return 13;
1482 }
1483
1484 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1485 {
1486 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1487 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1488 struct pci_dev *pdev = adapter->pdev;
1489 struct e1000_hw *hw = &adapter->hw;
1490 int i, j, k, l;
1491 int lc;
1492 int good_cnt;
1493 int ret_val = 0;
1494 unsigned long time;
1495
1496 ew32(RDT, rx_ring->count - 1);
1497
1498 /*
1499 * Calculate the loop count based on the largest descriptor ring
1500 * The idea is to wrap the largest ring a number of times using 64
1501 * send/receive pairs during each loop
1502 */
1503
1504 if (rx_ring->count <= tx_ring->count)
1505 lc = ((tx_ring->count / 64) * 2) + 1;
1506 else
1507 lc = ((rx_ring->count / 64) * 2) + 1;
1508
1509 k = 0;
1510 l = 0;
1511 for (j = 0; j <= lc; j++) { /* loop count loop */
1512 for (i = 0; i < 64; i++) { /* send the packets */
1513 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1514 1024);
1515 pci_dma_sync_single_for_device(pdev,
1516 tx_ring->buffer_info[k].dma,
1517 tx_ring->buffer_info[k].length,
1518 PCI_DMA_TODEVICE);
1519 k++;
1520 if (k == tx_ring->count)
1521 k = 0;
1522 }
1523 ew32(TDT, k);
1524 msleep(200);
1525 time = jiffies; /* set the start time for the receive */
1526 good_cnt = 0;
1527 do { /* receive the sent packets */
1528 pci_dma_sync_single_for_cpu(pdev,
1529 rx_ring->buffer_info[l].dma, 2048,
1530 PCI_DMA_FROMDEVICE);
1531
1532 ret_val = e1000_check_lbtest_frame(
1533 rx_ring->buffer_info[l].skb, 1024);
1534 if (!ret_val)
1535 good_cnt++;
1536 l++;
1537 if (l == rx_ring->count)
1538 l = 0;
1539 /*
1540 * time + 20 msecs (200 msecs on 2.4) is more than
1541 * enough time to complete the receives, if it's
1542 * exceeded, break and error off
1543 */
1544 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1545 if (good_cnt != 64) {
1546 ret_val = 13; /* ret_val is the same as mis-compare */
1547 break;
1548 }
1549 if (jiffies >= (time + 20)) {
1550 ret_val = 14; /* error code for time out error */
1551 break;
1552 }
1553 } /* end loop count loop */
1554 return ret_val;
1555 }
1556
1557 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1558 {
1559 /*
1560 * PHY loopback cannot be performed if SoL/IDER
1561 * sessions are active
1562 */
1563 if (e1000_check_reset_block(&adapter->hw)) {
1564 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1565 *data = 0;
1566 goto out;
1567 }
1568
1569 *data = e1000_setup_desc_rings(adapter);
1570 if (*data)
1571 goto out;
1572
1573 *data = e1000_setup_loopback_test(adapter);
1574 if (*data)
1575 goto err_loopback;
1576
1577 *data = e1000_run_loopback_test(adapter);
1578 e1000_loopback_cleanup(adapter);
1579
1580 err_loopback:
1581 e1000_free_desc_rings(adapter);
1582 out:
1583 return *data;
1584 }
1585
1586 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1587 {
1588 struct e1000_hw *hw = &adapter->hw;
1589
1590 *data = 0;
1591 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1592 int i = 0;
1593 hw->mac.serdes_has_link = false;
1594
1595 /*
1596 * On some blade server designs, link establishment
1597 * could take as long as 2-3 minutes
1598 */
1599 do {
1600 hw->mac.ops.check_for_link(hw);
1601 if (hw->mac.serdes_has_link)
1602 return *data;
1603 msleep(20);
1604 } while (i++ < 3750);
1605
1606 *data = 1;
1607 } else {
1608 hw->mac.ops.check_for_link(hw);
1609 if (hw->mac.autoneg)
1610 msleep(4000);
1611
1612 if (!(er32(STATUS) &
1613 E1000_STATUS_LU))
1614 *data = 1;
1615 }
1616 return *data;
1617 }
1618
1619 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1620 {
1621 switch (sset) {
1622 case ETH_SS_TEST:
1623 return E1000_TEST_LEN;
1624 case ETH_SS_STATS:
1625 return E1000_STATS_LEN;
1626 default:
1627 return -EOPNOTSUPP;
1628 }
1629 }
1630
1631 static void e1000_diag_test(struct net_device *netdev,
1632 struct ethtool_test *eth_test, u64 *data)
1633 {
1634 struct e1000_adapter *adapter = netdev_priv(netdev);
1635 u16 autoneg_advertised;
1636 u8 forced_speed_duplex;
1637 u8 autoneg;
1638 bool if_running = netif_running(netdev);
1639
1640 set_bit(__E1000_TESTING, &adapter->state);
1641 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1642 /* Offline tests */
1643
1644 /* save speed, duplex, autoneg settings */
1645 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1646 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1647 autoneg = adapter->hw.mac.autoneg;
1648
1649 e_info("offline testing starting\n");
1650
1651 /*
1652 * Link test performed before hardware reset so autoneg doesn't
1653 * interfere with test result
1654 */
1655 if (e1000_link_test(adapter, &data[4]))
1656 eth_test->flags |= ETH_TEST_FL_FAILED;
1657
1658 if (if_running)
1659 /* indicate we're in test mode */
1660 dev_close(netdev);
1661 else
1662 e1000e_reset(adapter);
1663
1664 if (e1000_reg_test(adapter, &data[0]))
1665 eth_test->flags |= ETH_TEST_FL_FAILED;
1666
1667 e1000e_reset(adapter);
1668 if (e1000_eeprom_test(adapter, &data[1]))
1669 eth_test->flags |= ETH_TEST_FL_FAILED;
1670
1671 e1000e_reset(adapter);
1672 if (e1000_intr_test(adapter, &data[2]))
1673 eth_test->flags |= ETH_TEST_FL_FAILED;
1674
1675 e1000e_reset(adapter);
1676 /* make sure the phy is powered up */
1677 e1000e_power_up_phy(adapter);
1678 if (e1000_loopback_test(adapter, &data[3]))
1679 eth_test->flags |= ETH_TEST_FL_FAILED;
1680
1681 /* restore speed, duplex, autoneg settings */
1682 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1683 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1684 adapter->hw.mac.autoneg = autoneg;
1685
1686 /* force this routine to wait until autoneg complete/timeout */
1687 adapter->hw.phy.autoneg_wait_to_complete = 1;
1688 e1000e_reset(adapter);
1689 adapter->hw.phy.autoneg_wait_to_complete = 0;
1690
1691 clear_bit(__E1000_TESTING, &adapter->state);
1692 if (if_running)
1693 dev_open(netdev);
1694 } else {
1695 e_info("online testing starting\n");
1696 /* Online tests */
1697 if (e1000_link_test(adapter, &data[4]))
1698 eth_test->flags |= ETH_TEST_FL_FAILED;
1699
1700 /* Online tests aren't run; pass by default */
1701 data[0] = 0;
1702 data[1] = 0;
1703 data[2] = 0;
1704 data[3] = 0;
1705
1706 clear_bit(__E1000_TESTING, &adapter->state);
1707 }
1708 msleep_interruptible(4 * 1000);
1709 }
1710
1711 static void e1000_get_wol(struct net_device *netdev,
1712 struct ethtool_wolinfo *wol)
1713 {
1714 struct e1000_adapter *adapter = netdev_priv(netdev);
1715
1716 wol->supported = 0;
1717 wol->wolopts = 0;
1718
1719 if (!(adapter->flags & FLAG_HAS_WOL) ||
1720 !device_can_wakeup(&adapter->pdev->dev))
1721 return;
1722
1723 wol->supported = WAKE_UCAST | WAKE_MCAST |
1724 WAKE_BCAST | WAKE_MAGIC |
1725 WAKE_PHY | WAKE_ARP;
1726
1727 /* apply any specific unsupported masks here */
1728 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1729 wol->supported &= ~WAKE_UCAST;
1730
1731 if (adapter->wol & E1000_WUFC_EX)
1732 e_err("Interface does not support directed (unicast) "
1733 "frame wake-up packets\n");
1734 }
1735
1736 if (adapter->wol & E1000_WUFC_EX)
1737 wol->wolopts |= WAKE_UCAST;
1738 if (adapter->wol & E1000_WUFC_MC)
1739 wol->wolopts |= WAKE_MCAST;
1740 if (adapter->wol & E1000_WUFC_BC)
1741 wol->wolopts |= WAKE_BCAST;
1742 if (adapter->wol & E1000_WUFC_MAG)
1743 wol->wolopts |= WAKE_MAGIC;
1744 if (adapter->wol & E1000_WUFC_LNKC)
1745 wol->wolopts |= WAKE_PHY;
1746 if (adapter->wol & E1000_WUFC_ARP)
1747 wol->wolopts |= WAKE_ARP;
1748 }
1749
1750 static int e1000_set_wol(struct net_device *netdev,
1751 struct ethtool_wolinfo *wol)
1752 {
1753 struct e1000_adapter *adapter = netdev_priv(netdev);
1754
1755 if (wol->wolopts & WAKE_MAGICSECURE)
1756 return -EOPNOTSUPP;
1757
1758 if (!(adapter->flags & FLAG_HAS_WOL) ||
1759 !device_can_wakeup(&adapter->pdev->dev))
1760 return wol->wolopts ? -EOPNOTSUPP : 0;
1761
1762 /* these settings will always override what we currently have */
1763 adapter->wol = 0;
1764
1765 if (wol->wolopts & WAKE_UCAST)
1766 adapter->wol |= E1000_WUFC_EX;
1767 if (wol->wolopts & WAKE_MCAST)
1768 adapter->wol |= E1000_WUFC_MC;
1769 if (wol->wolopts & WAKE_BCAST)
1770 adapter->wol |= E1000_WUFC_BC;
1771 if (wol->wolopts & WAKE_MAGIC)
1772 adapter->wol |= E1000_WUFC_MAG;
1773 if (wol->wolopts & WAKE_PHY)
1774 adapter->wol |= E1000_WUFC_LNKC;
1775 if (wol->wolopts & WAKE_ARP)
1776 adapter->wol |= E1000_WUFC_ARP;
1777
1778 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1779
1780 return 0;
1781 }
1782
1783 /* toggle LED 4 times per second = 2 "blinks" per second */
1784 #define E1000_ID_INTERVAL (HZ/4)
1785
1786 /* bit defines for adapter->led_status */
1787 #define E1000_LED_ON 0
1788
1789 static void e1000_led_blink_callback(unsigned long data)
1790 {
1791 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1792
1793 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1794 adapter->hw.mac.ops.led_off(&adapter->hw);
1795 else
1796 adapter->hw.mac.ops.led_on(&adapter->hw);
1797
1798 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1799 }
1800
1801 static int e1000_phys_id(struct net_device *netdev, u32 data)
1802 {
1803 struct e1000_adapter *adapter = netdev_priv(netdev);
1804 struct e1000_hw *hw = &adapter->hw;
1805
1806 if (!data)
1807 data = INT_MAX;
1808
1809 if ((hw->phy.type == e1000_phy_ife) ||
1810 (hw->mac.type == e1000_82574)) {
1811 if (!adapter->blink_timer.function) {
1812 init_timer(&adapter->blink_timer);
1813 adapter->blink_timer.function =
1814 e1000_led_blink_callback;
1815 adapter->blink_timer.data = (unsigned long) adapter;
1816 }
1817 mod_timer(&adapter->blink_timer, jiffies);
1818 msleep_interruptible(data * 1000);
1819 del_timer_sync(&adapter->blink_timer);
1820 if (hw->phy.type == e1000_phy_ife)
1821 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1822 } else {
1823 e1000e_blink_led(hw);
1824 msleep_interruptible(data * 1000);
1825 }
1826
1827 hw->mac.ops.led_off(hw);
1828 clear_bit(E1000_LED_ON, &adapter->led_status);
1829 hw->mac.ops.cleanup_led(hw);
1830
1831 return 0;
1832 }
1833
1834 static int e1000_get_coalesce(struct net_device *netdev,
1835 struct ethtool_coalesce *ec)
1836 {
1837 struct e1000_adapter *adapter = netdev_priv(netdev);
1838
1839 if (adapter->itr_setting <= 3)
1840 ec->rx_coalesce_usecs = adapter->itr_setting;
1841 else
1842 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1843
1844 return 0;
1845 }
1846
1847 static int e1000_set_coalesce(struct net_device *netdev,
1848 struct ethtool_coalesce *ec)
1849 {
1850 struct e1000_adapter *adapter = netdev_priv(netdev);
1851 struct e1000_hw *hw = &adapter->hw;
1852
1853 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1854 ((ec->rx_coalesce_usecs > 3) &&
1855 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1856 (ec->rx_coalesce_usecs == 2))
1857 return -EINVAL;
1858
1859 if (ec->rx_coalesce_usecs <= 3) {
1860 adapter->itr = 20000;
1861 adapter->itr_setting = ec->rx_coalesce_usecs;
1862 } else {
1863 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1864 adapter->itr_setting = adapter->itr & ~3;
1865 }
1866
1867 if (adapter->itr_setting != 0)
1868 ew32(ITR, 1000000000 / (adapter->itr * 256));
1869 else
1870 ew32(ITR, 0);
1871
1872 return 0;
1873 }
1874
1875 static int e1000_nway_reset(struct net_device *netdev)
1876 {
1877 struct e1000_adapter *adapter = netdev_priv(netdev);
1878 if (netif_running(netdev))
1879 e1000e_reinit_locked(adapter);
1880 return 0;
1881 }
1882
1883 static void e1000_get_ethtool_stats(struct net_device *netdev,
1884 struct ethtool_stats *stats,
1885 u64 *data)
1886 {
1887 struct e1000_adapter *adapter = netdev_priv(netdev);
1888 int i;
1889
1890 e1000e_update_stats(adapter);
1891 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1892 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1893 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1894 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1895 }
1896 }
1897
1898 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1899 u8 *data)
1900 {
1901 u8 *p = data;
1902 int i;
1903
1904 switch (stringset) {
1905 case ETH_SS_TEST:
1906 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1907 break;
1908 case ETH_SS_STATS:
1909 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1910 memcpy(p, e1000_gstrings_stats[i].stat_string,
1911 ETH_GSTRING_LEN);
1912 p += ETH_GSTRING_LEN;
1913 }
1914 break;
1915 }
1916 }
1917
1918 static const struct ethtool_ops e1000_ethtool_ops = {
1919 .get_settings = e1000_get_settings,
1920 .set_settings = e1000_set_settings,
1921 .get_drvinfo = e1000_get_drvinfo,
1922 .get_regs_len = e1000_get_regs_len,
1923 .get_regs = e1000_get_regs,
1924 .get_wol = e1000_get_wol,
1925 .set_wol = e1000_set_wol,
1926 .get_msglevel = e1000_get_msglevel,
1927 .set_msglevel = e1000_set_msglevel,
1928 .nway_reset = e1000_nway_reset,
1929 .get_link = e1000_get_link,
1930 .get_eeprom_len = e1000_get_eeprom_len,
1931 .get_eeprom = e1000_get_eeprom,
1932 .set_eeprom = e1000_set_eeprom,
1933 .get_ringparam = e1000_get_ringparam,
1934 .set_ringparam = e1000_set_ringparam,
1935 .get_pauseparam = e1000_get_pauseparam,
1936 .set_pauseparam = e1000_set_pauseparam,
1937 .get_rx_csum = e1000_get_rx_csum,
1938 .set_rx_csum = e1000_set_rx_csum,
1939 .get_tx_csum = e1000_get_tx_csum,
1940 .set_tx_csum = e1000_set_tx_csum,
1941 .get_sg = ethtool_op_get_sg,
1942 .set_sg = ethtool_op_set_sg,
1943 .get_tso = ethtool_op_get_tso,
1944 .set_tso = e1000_set_tso,
1945 .self_test = e1000_diag_test,
1946 .get_strings = e1000_get_strings,
1947 .phys_id = e1000_phys_id,
1948 .get_ethtool_stats = e1000_get_ethtool_stats,
1949 .get_sset_count = e1000e_get_sset_count,
1950 .get_coalesce = e1000_get_coalesce,
1951 .set_coalesce = e1000_set_coalesce,
1952 };
1953
1954 void e1000e_set_ethtool_ops(struct net_device *netdev)
1955 {
1956 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1957 }
This page took 0.098917 seconds and 5 git commands to generate.