dma-mapping: add the device argument to dma_mapping_error()
[deliverable/linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorc) },
50 { "tx_bytes", E1000_STAT(stats.gotc) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
109 {
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
113
114 if (hw->phy.media_type == e1000_media_type_copper) {
115
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
126
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
131 }
132
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
136
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
141
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
145
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
148 }
149
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
158
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
166 }
167
168 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176 struct e1000_hw *hw = &adapter->hw;
177 u32 status;
178
179 status = er32(STATUS);
180 return (status & E1000_STATUS_LU);
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185 struct e1000_mac_info *mac = &adapter->hw.mac;
186
187 mac->autoneg = 0;
188
189 /* Fiber NICs only allow 1000 gbps Full duplex */
190 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
193 "configuration\n");
194 return -EINVAL;
195 }
196
197 switch (spddplx) {
198 case SPEED_10 + DUPLEX_HALF:
199 mac->forced_speed_duplex = ADVERTISE_10_HALF;
200 break;
201 case SPEED_10 + DUPLEX_FULL:
202 mac->forced_speed_duplex = ADVERTISE_10_FULL;
203 break;
204 case SPEED_100 + DUPLEX_HALF:
205 mac->forced_speed_duplex = ADVERTISE_100_HALF;
206 break;
207 case SPEED_100 + DUPLEX_FULL:
208 mac->forced_speed_duplex = ADVERTISE_100_FULL;
209 break;
210 case SPEED_1000 + DUPLEX_FULL:
211 mac->autoneg = 1;
212 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
213 break;
214 case SPEED_1000 + DUPLEX_HALF: /* not supported */
215 default:
216 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
217 "configuration\n");
218 return -EINVAL;
219 }
220 return 0;
221 }
222
223 static int e1000_set_settings(struct net_device *netdev,
224 struct ethtool_cmd *ecmd)
225 {
226 struct e1000_adapter *adapter = netdev_priv(netdev);
227 struct e1000_hw *hw = &adapter->hw;
228
229 /*
230 * When SoL/IDER sessions are active, autoneg/speed/duplex
231 * cannot be changed
232 */
233 if (e1000_check_reset_block(hw)) {
234 ndev_err(netdev, "Cannot change link "
235 "characteristics when SoL/IDER is active.\n");
236 return -EINVAL;
237 }
238
239 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
240 msleep(1);
241
242 if (ecmd->autoneg == AUTONEG_ENABLE) {
243 hw->mac.autoneg = 1;
244 if (hw->phy.media_type == e1000_media_type_fiber)
245 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
246 ADVERTISED_FIBRE |
247 ADVERTISED_Autoneg;
248 else
249 hw->phy.autoneg_advertised = ecmd->advertising |
250 ADVERTISED_TP |
251 ADVERTISED_Autoneg;
252 ecmd->advertising = hw->phy.autoneg_advertised;
253 if (adapter->fc_autoneg)
254 hw->fc.original_type = e1000_fc_default;
255 } else {
256 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
257 clear_bit(__E1000_RESETTING, &adapter->state);
258 return -EINVAL;
259 }
260 }
261
262 /* reset the link */
263
264 if (netif_running(adapter->netdev)) {
265 e1000e_down(adapter);
266 e1000e_up(adapter);
267 } else {
268 e1000e_reset(adapter);
269 }
270
271 clear_bit(__E1000_RESETTING, &adapter->state);
272 return 0;
273 }
274
275 static void e1000_get_pauseparam(struct net_device *netdev,
276 struct ethtool_pauseparam *pause)
277 {
278 struct e1000_adapter *adapter = netdev_priv(netdev);
279 struct e1000_hw *hw = &adapter->hw;
280
281 pause->autoneg =
282 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
283
284 if (hw->fc.type == e1000_fc_rx_pause) {
285 pause->rx_pause = 1;
286 } else if (hw->fc.type == e1000_fc_tx_pause) {
287 pause->tx_pause = 1;
288 } else if (hw->fc.type == e1000_fc_full) {
289 pause->rx_pause = 1;
290 pause->tx_pause = 1;
291 }
292 }
293
294 static int e1000_set_pauseparam(struct net_device *netdev,
295 struct ethtool_pauseparam *pause)
296 {
297 struct e1000_adapter *adapter = netdev_priv(netdev);
298 struct e1000_hw *hw = &adapter->hw;
299 int retval = 0;
300
301 adapter->fc_autoneg = pause->autoneg;
302
303 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
304 msleep(1);
305
306 if (pause->rx_pause && pause->tx_pause)
307 hw->fc.type = e1000_fc_full;
308 else if (pause->rx_pause && !pause->tx_pause)
309 hw->fc.type = e1000_fc_rx_pause;
310 else if (!pause->rx_pause && pause->tx_pause)
311 hw->fc.type = e1000_fc_tx_pause;
312 else if (!pause->rx_pause && !pause->tx_pause)
313 hw->fc.type = e1000_fc_none;
314
315 hw->fc.original_type = hw->fc.type;
316
317 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
318 hw->fc.type = e1000_fc_default;
319 if (netif_running(adapter->netdev)) {
320 e1000e_down(adapter);
321 e1000e_up(adapter);
322 } else {
323 e1000e_reset(adapter);
324 }
325 } else {
326 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
327 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
328 }
329
330 clear_bit(__E1000_RESETTING, &adapter->state);
331 return retval;
332 }
333
334 static u32 e1000_get_rx_csum(struct net_device *netdev)
335 {
336 struct e1000_adapter *adapter = netdev_priv(netdev);
337 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
338 }
339
340 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
341 {
342 struct e1000_adapter *adapter = netdev_priv(netdev);
343
344 if (data)
345 adapter->flags |= FLAG_RX_CSUM_ENABLED;
346 else
347 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
348
349 if (netif_running(netdev))
350 e1000e_reinit_locked(adapter);
351 else
352 e1000e_reset(adapter);
353 return 0;
354 }
355
356 static u32 e1000_get_tx_csum(struct net_device *netdev)
357 {
358 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
359 }
360
361 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
362 {
363 if (data)
364 netdev->features |= NETIF_F_HW_CSUM;
365 else
366 netdev->features &= ~NETIF_F_HW_CSUM;
367
368 return 0;
369 }
370
371 static int e1000_set_tso(struct net_device *netdev, u32 data)
372 {
373 struct e1000_adapter *adapter = netdev_priv(netdev);
374
375 if (data) {
376 netdev->features |= NETIF_F_TSO;
377 netdev->features |= NETIF_F_TSO6;
378 } else {
379 netdev->features &= ~NETIF_F_TSO;
380 netdev->features &= ~NETIF_F_TSO6;
381 }
382
383 ndev_info(netdev, "TSO is %s\n",
384 data ? "Enabled" : "Disabled");
385 adapter->flags |= FLAG_TSO_FORCE;
386 return 0;
387 }
388
389 static u32 e1000_get_msglevel(struct net_device *netdev)
390 {
391 struct e1000_adapter *adapter = netdev_priv(netdev);
392 return adapter->msg_enable;
393 }
394
395 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
396 {
397 struct e1000_adapter *adapter = netdev_priv(netdev);
398 adapter->msg_enable = data;
399 }
400
401 static int e1000_get_regs_len(struct net_device *netdev)
402 {
403 #define E1000_REGS_LEN 32 /* overestimate */
404 return E1000_REGS_LEN * sizeof(u32);
405 }
406
407 static void e1000_get_regs(struct net_device *netdev,
408 struct ethtool_regs *regs, void *p)
409 {
410 struct e1000_adapter *adapter = netdev_priv(netdev);
411 struct e1000_hw *hw = &adapter->hw;
412 u32 *regs_buff = p;
413 u16 phy_data;
414 u8 revision_id;
415
416 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
417
418 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
419
420 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
421
422 regs_buff[0] = er32(CTRL);
423 regs_buff[1] = er32(STATUS);
424
425 regs_buff[2] = er32(RCTL);
426 regs_buff[3] = er32(RDLEN);
427 regs_buff[4] = er32(RDH);
428 regs_buff[5] = er32(RDT);
429 regs_buff[6] = er32(RDTR);
430
431 regs_buff[7] = er32(TCTL);
432 regs_buff[8] = er32(TDLEN);
433 regs_buff[9] = er32(TDH);
434 regs_buff[10] = er32(TDT);
435 regs_buff[11] = er32(TIDV);
436
437 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
438 if (hw->phy.type == e1000_phy_m88) {
439 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
440 regs_buff[13] = (u32)phy_data; /* cable length */
441 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
442 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
443 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
444 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
445 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
446 regs_buff[18] = regs_buff[13]; /* cable polarity */
447 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
448 regs_buff[20] = regs_buff[17]; /* polarity correction */
449 /* phy receive errors */
450 regs_buff[22] = adapter->phy_stats.receive_errors;
451 regs_buff[23] = regs_buff[13]; /* mdix mode */
452 }
453 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
454 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
455 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
456 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
457 }
458
459 static int e1000_get_eeprom_len(struct net_device *netdev)
460 {
461 struct e1000_adapter *adapter = netdev_priv(netdev);
462 return adapter->hw.nvm.word_size * 2;
463 }
464
465 static int e1000_get_eeprom(struct net_device *netdev,
466 struct ethtool_eeprom *eeprom, u8 *bytes)
467 {
468 struct e1000_adapter *adapter = netdev_priv(netdev);
469 struct e1000_hw *hw = &adapter->hw;
470 u16 *eeprom_buff;
471 int first_word;
472 int last_word;
473 int ret_val = 0;
474 u16 i;
475
476 if (eeprom->len == 0)
477 return -EINVAL;
478
479 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
480
481 first_word = eeprom->offset >> 1;
482 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
483
484 eeprom_buff = kmalloc(sizeof(u16) *
485 (last_word - first_word + 1), GFP_KERNEL);
486 if (!eeprom_buff)
487 return -ENOMEM;
488
489 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
490 ret_val = e1000_read_nvm(hw, first_word,
491 last_word - first_word + 1,
492 eeprom_buff);
493 } else {
494 for (i = 0; i < last_word - first_word + 1; i++) {
495 ret_val = e1000_read_nvm(hw, first_word + i, 1,
496 &eeprom_buff[i]);
497 if (ret_val) {
498 /* a read error occurred, throw away the
499 * result */
500 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
501 break;
502 }
503 }
504 }
505
506 /* Device's eeprom is always little-endian, word addressable */
507 for (i = 0; i < last_word - first_word + 1; i++)
508 le16_to_cpus(&eeprom_buff[i]);
509
510 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
511 kfree(eeprom_buff);
512
513 return ret_val;
514 }
515
516 static int e1000_set_eeprom(struct net_device *netdev,
517 struct ethtool_eeprom *eeprom, u8 *bytes)
518 {
519 struct e1000_adapter *adapter = netdev_priv(netdev);
520 struct e1000_hw *hw = &adapter->hw;
521 u16 *eeprom_buff;
522 void *ptr;
523 int max_len;
524 int first_word;
525 int last_word;
526 int ret_val = 0;
527 u16 i;
528
529 if (eeprom->len == 0)
530 return -EOPNOTSUPP;
531
532 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
533 return -EFAULT;
534
535 max_len = hw->nvm.word_size * 2;
536
537 first_word = eeprom->offset >> 1;
538 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
539 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
540 if (!eeprom_buff)
541 return -ENOMEM;
542
543 ptr = (void *)eeprom_buff;
544
545 if (eeprom->offset & 1) {
546 /* need read/modify/write of first changed EEPROM word */
547 /* only the second byte of the word is being modified */
548 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
549 ptr++;
550 }
551 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
552 /* need read/modify/write of last changed EEPROM word */
553 /* only the first byte of the word is being modified */
554 ret_val = e1000_read_nvm(hw, last_word, 1,
555 &eeprom_buff[last_word - first_word]);
556
557 /* Device's eeprom is always little-endian, word addressable */
558 for (i = 0; i < last_word - first_word + 1; i++)
559 le16_to_cpus(&eeprom_buff[i]);
560
561 memcpy(ptr, bytes, eeprom->len);
562
563 for (i = 0; i < last_word - first_word + 1; i++)
564 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
565
566 ret_val = e1000_write_nvm(hw, first_word,
567 last_word - first_word + 1, eeprom_buff);
568
569 /*
570 * Update the checksum over the first part of the EEPROM if needed
571 * and flush shadow RAM for 82573 controllers
572 */
573 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
574 (hw->mac.type == e1000_82573)))
575 e1000e_update_nvm_checksum(hw);
576
577 kfree(eeprom_buff);
578 return ret_val;
579 }
580
581 static void e1000_get_drvinfo(struct net_device *netdev,
582 struct ethtool_drvinfo *drvinfo)
583 {
584 struct e1000_adapter *adapter = netdev_priv(netdev);
585 char firmware_version[32];
586 u16 eeprom_data;
587
588 strncpy(drvinfo->driver, e1000e_driver_name, 32);
589 strncpy(drvinfo->version, e1000e_driver_version, 32);
590
591 /*
592 * EEPROM image version # is reported as firmware version # for
593 * PCI-E controllers
594 */
595 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
596 sprintf(firmware_version, "%d.%d-%d",
597 (eeprom_data & 0xF000) >> 12,
598 (eeprom_data & 0x0FF0) >> 4,
599 eeprom_data & 0x000F);
600
601 strncpy(drvinfo->fw_version, firmware_version, 32);
602 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603 drvinfo->regdump_len = e1000_get_regs_len(netdev);
604 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
605 }
606
607 static void e1000_get_ringparam(struct net_device *netdev,
608 struct ethtool_ringparam *ring)
609 {
610 struct e1000_adapter *adapter = netdev_priv(netdev);
611 struct e1000_ring *tx_ring = adapter->tx_ring;
612 struct e1000_ring *rx_ring = adapter->rx_ring;
613
614 ring->rx_max_pending = E1000_MAX_RXD;
615 ring->tx_max_pending = E1000_MAX_TXD;
616 ring->rx_mini_max_pending = 0;
617 ring->rx_jumbo_max_pending = 0;
618 ring->rx_pending = rx_ring->count;
619 ring->tx_pending = tx_ring->count;
620 ring->rx_mini_pending = 0;
621 ring->rx_jumbo_pending = 0;
622 }
623
624 static int e1000_set_ringparam(struct net_device *netdev,
625 struct ethtool_ringparam *ring)
626 {
627 struct e1000_adapter *adapter = netdev_priv(netdev);
628 struct e1000_ring *tx_ring, *tx_old;
629 struct e1000_ring *rx_ring, *rx_old;
630 int err;
631
632 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
633 return -EINVAL;
634
635 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
636 msleep(1);
637
638 if (netif_running(adapter->netdev))
639 e1000e_down(adapter);
640
641 tx_old = adapter->tx_ring;
642 rx_old = adapter->rx_ring;
643
644 err = -ENOMEM;
645 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
646 if (!tx_ring)
647 goto err_alloc_tx;
648 /*
649 * use a memcpy to save any previously configured
650 * items like napi structs from having to be
651 * reinitialized
652 */
653 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
654
655 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
656 if (!rx_ring)
657 goto err_alloc_rx;
658 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
659
660 adapter->tx_ring = tx_ring;
661 adapter->rx_ring = rx_ring;
662
663 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
664 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
665 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
666
667 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
668 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
669 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
670
671 if (netif_running(adapter->netdev)) {
672 /* Try to get new resources before deleting old */
673 err = e1000e_setup_rx_resources(adapter);
674 if (err)
675 goto err_setup_rx;
676 err = e1000e_setup_tx_resources(adapter);
677 if (err)
678 goto err_setup_tx;
679
680 /*
681 * restore the old in order to free it,
682 * then add in the new
683 */
684 adapter->rx_ring = rx_old;
685 adapter->tx_ring = tx_old;
686 e1000e_free_rx_resources(adapter);
687 e1000e_free_tx_resources(adapter);
688 kfree(tx_old);
689 kfree(rx_old);
690 adapter->rx_ring = rx_ring;
691 adapter->tx_ring = tx_ring;
692 err = e1000e_up(adapter);
693 if (err)
694 goto err_setup;
695 }
696
697 clear_bit(__E1000_RESETTING, &adapter->state);
698 return 0;
699 err_setup_tx:
700 e1000e_free_rx_resources(adapter);
701 err_setup_rx:
702 adapter->rx_ring = rx_old;
703 adapter->tx_ring = tx_old;
704 kfree(rx_ring);
705 err_alloc_rx:
706 kfree(tx_ring);
707 err_alloc_tx:
708 e1000e_up(adapter);
709 err_setup:
710 clear_bit(__E1000_RESETTING, &adapter->state);
711 return err;
712 }
713
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
715 int reg, int offset, u32 mask, u32 write)
716 {
717 u32 pat, val;
718 static const u32 test[] =
719 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
720 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
721 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
722 (test[pat] & write));
723 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
724 if (val != (test[pat] & write & mask)) {
725 ndev_err(adapter->netdev, "pattern test reg %04X "
726 "failed: got 0x%08X expected 0x%08X\n",
727 reg + offset,
728 val, (test[pat] & write & mask));
729 *data = reg;
730 return 1;
731 }
732 }
733 return 0;
734 }
735
736 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
737 int reg, u32 mask, u32 write)
738 {
739 u32 val;
740 __ew32(&adapter->hw, reg, write & mask);
741 val = __er32(&adapter->hw, reg);
742 if ((write & mask) != (val & mask)) {
743 ndev_err(adapter->netdev, "set/check reg %04X test failed: "
744 "got 0x%08X expected 0x%08X\n", reg, (val & mask),
745 (write & mask));
746 *data = reg;
747 return 1;
748 }
749 return 0;
750 }
751 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
752 do { \
753 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
754 return 1; \
755 } while (0)
756 #define REG_PATTERN_TEST(reg, mask, write) \
757 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
758
759 #define REG_SET_AND_CHECK(reg, mask, write) \
760 do { \
761 if (reg_set_and_check(adapter, data, reg, mask, write)) \
762 return 1; \
763 } while (0)
764
765 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
766 {
767 struct e1000_hw *hw = &adapter->hw;
768 struct e1000_mac_info *mac = &adapter->hw.mac;
769 struct net_device *netdev = adapter->netdev;
770 u32 value;
771 u32 before;
772 u32 after;
773 u32 i;
774 u32 toggle;
775
776 /*
777 * The status register is Read Only, so a write should fail.
778 * Some bits that get toggled are ignored.
779 */
780 switch (mac->type) {
781 /* there are several bits on newer hardware that are r/w */
782 case e1000_82571:
783 case e1000_82572:
784 case e1000_80003es2lan:
785 toggle = 0x7FFFF3FF;
786 break;
787 case e1000_82573:
788 case e1000_ich8lan:
789 case e1000_ich9lan:
790 toggle = 0x7FFFF033;
791 break;
792 default:
793 toggle = 0xFFFFF833;
794 break;
795 }
796
797 before = er32(STATUS);
798 value = (er32(STATUS) & toggle);
799 ew32(STATUS, toggle);
800 after = er32(STATUS) & toggle;
801 if (value != after) {
802 ndev_err(netdev, "failed STATUS register test got: "
803 "0x%08X expected: 0x%08X\n", after, value);
804 *data = 1;
805 return 1;
806 }
807 /* restore previous status */
808 ew32(STATUS, before);
809
810 if (!(adapter->flags & FLAG_IS_ICH)) {
811 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
813 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
814 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
815 }
816
817 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
818 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
819 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
820 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
821 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
822 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
823 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
824 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
825 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
826 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
827
828 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
829
830 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
831 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
832 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
833
834 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
835 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
836 if (!(adapter->flags & FLAG_IS_ICH))
837 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
838 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
839 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
840 for (i = 0; i < mac->rar_entry_count; i++)
841 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
842 0x8003FFFF, 0xFFFFFFFF);
843
844 for (i = 0; i < mac->mta_reg_count; i++)
845 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
846
847 *data = 0;
848 return 0;
849 }
850
851 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
852 {
853 u16 temp;
854 u16 checksum = 0;
855 u16 i;
856
857 *data = 0;
858 /* Read and add up the contents of the EEPROM */
859 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
860 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
861 *data = 1;
862 break;
863 }
864 checksum += temp;
865 }
866
867 /* If Checksum is not Correct return error else test passed */
868 if ((checksum != (u16) NVM_SUM) && !(*data))
869 *data = 2;
870
871 return *data;
872 }
873
874 static irqreturn_t e1000_test_intr(int irq, void *data)
875 {
876 struct net_device *netdev = (struct net_device *) data;
877 struct e1000_adapter *adapter = netdev_priv(netdev);
878 struct e1000_hw *hw = &adapter->hw;
879
880 adapter->test_icr |= er32(ICR);
881
882 return IRQ_HANDLED;
883 }
884
885 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
886 {
887 struct net_device *netdev = adapter->netdev;
888 struct e1000_hw *hw = &adapter->hw;
889 u32 mask;
890 u32 shared_int = 1;
891 u32 irq = adapter->pdev->irq;
892 int i;
893
894 *data = 0;
895
896 /* NOTE: we don't test MSI interrupts here, yet */
897 /* Hook up test interrupt handler just for this test */
898 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
899 netdev)) {
900 shared_int = 0;
901 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
902 netdev->name, netdev)) {
903 *data = 1;
904 return -1;
905 }
906 ndev_info(netdev, "testing %s interrupt\n",
907 (shared_int ? "shared" : "unshared"));
908
909 /* Disable all the interrupts */
910 ew32(IMC, 0xFFFFFFFF);
911 msleep(10);
912
913 /* Test each interrupt */
914 for (i = 0; i < 10; i++) {
915 if ((adapter->flags & FLAG_IS_ICH) && (i == 8))
916 continue;
917
918 /* Interrupt to test */
919 mask = 1 << i;
920
921 if (!shared_int) {
922 /*
923 * Disable the interrupt to be reported in
924 * the cause register and then force the same
925 * interrupt and see if one gets posted. If
926 * an interrupt was posted to the bus, the
927 * test failed.
928 */
929 adapter->test_icr = 0;
930 ew32(IMC, mask);
931 ew32(ICS, mask);
932 msleep(10);
933
934 if (adapter->test_icr & mask) {
935 *data = 3;
936 break;
937 }
938 }
939
940 /*
941 * Enable the interrupt to be reported in
942 * the cause register and then force the same
943 * interrupt and see if one gets posted. If
944 * an interrupt was not posted to the bus, the
945 * test failed.
946 */
947 adapter->test_icr = 0;
948 ew32(IMS, mask);
949 ew32(ICS, mask);
950 msleep(10);
951
952 if (!(adapter->test_icr & mask)) {
953 *data = 4;
954 break;
955 }
956
957 if (!shared_int) {
958 /*
959 * Disable the other interrupts to be reported in
960 * the cause register and then force the other
961 * interrupts and see if any get posted. If
962 * an interrupt was posted to the bus, the
963 * test failed.
964 */
965 adapter->test_icr = 0;
966 ew32(IMC, ~mask & 0x00007FFF);
967 ew32(ICS, ~mask & 0x00007FFF);
968 msleep(10);
969
970 if (adapter->test_icr) {
971 *data = 5;
972 break;
973 }
974 }
975 }
976
977 /* Disable all the interrupts */
978 ew32(IMC, 0xFFFFFFFF);
979 msleep(10);
980
981 /* Unhook test interrupt handler */
982 free_irq(irq, netdev);
983
984 return *data;
985 }
986
987 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
988 {
989 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
990 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
991 struct pci_dev *pdev = adapter->pdev;
992 int i;
993
994 if (tx_ring->desc && tx_ring->buffer_info) {
995 for (i = 0; i < tx_ring->count; i++) {
996 if (tx_ring->buffer_info[i].dma)
997 pci_unmap_single(pdev,
998 tx_ring->buffer_info[i].dma,
999 tx_ring->buffer_info[i].length,
1000 PCI_DMA_TODEVICE);
1001 if (tx_ring->buffer_info[i].skb)
1002 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1003 }
1004 }
1005
1006 if (rx_ring->desc && rx_ring->buffer_info) {
1007 for (i = 0; i < rx_ring->count; i++) {
1008 if (rx_ring->buffer_info[i].dma)
1009 pci_unmap_single(pdev,
1010 rx_ring->buffer_info[i].dma,
1011 2048, PCI_DMA_FROMDEVICE);
1012 if (rx_ring->buffer_info[i].skb)
1013 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1014 }
1015 }
1016
1017 if (tx_ring->desc) {
1018 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1019 tx_ring->dma);
1020 tx_ring->desc = NULL;
1021 }
1022 if (rx_ring->desc) {
1023 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1024 rx_ring->dma);
1025 rx_ring->desc = NULL;
1026 }
1027
1028 kfree(tx_ring->buffer_info);
1029 tx_ring->buffer_info = NULL;
1030 kfree(rx_ring->buffer_info);
1031 rx_ring->buffer_info = NULL;
1032 }
1033
1034 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1035 {
1036 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1037 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1038 struct pci_dev *pdev = adapter->pdev;
1039 struct e1000_hw *hw = &adapter->hw;
1040 u32 rctl;
1041 int i;
1042 int ret_val;
1043
1044 /* Setup Tx descriptor ring and Tx buffers */
1045
1046 if (!tx_ring->count)
1047 tx_ring->count = E1000_DEFAULT_TXD;
1048
1049 tx_ring->buffer_info = kcalloc(tx_ring->count,
1050 sizeof(struct e1000_buffer),
1051 GFP_KERNEL);
1052 if (!(tx_ring->buffer_info)) {
1053 ret_val = 1;
1054 goto err_nomem;
1055 }
1056
1057 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1058 tx_ring->size = ALIGN(tx_ring->size, 4096);
1059 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1060 &tx_ring->dma, GFP_KERNEL);
1061 if (!tx_ring->desc) {
1062 ret_val = 2;
1063 goto err_nomem;
1064 }
1065 tx_ring->next_to_use = 0;
1066 tx_ring->next_to_clean = 0;
1067
1068 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1069 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1070 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1071 ew32(TDH, 0);
1072 ew32(TDT, 0);
1073 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1074 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1075 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1076
1077 for (i = 0; i < tx_ring->count; i++) {
1078 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1079 struct sk_buff *skb;
1080 unsigned int skb_size = 1024;
1081
1082 skb = alloc_skb(skb_size, GFP_KERNEL);
1083 if (!skb) {
1084 ret_val = 3;
1085 goto err_nomem;
1086 }
1087 skb_put(skb, skb_size);
1088 tx_ring->buffer_info[i].skb = skb;
1089 tx_ring->buffer_info[i].length = skb->len;
1090 tx_ring->buffer_info[i].dma =
1091 pci_map_single(pdev, skb->data, skb->len,
1092 PCI_DMA_TODEVICE);
1093 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1094 ret_val = 4;
1095 goto err_nomem;
1096 }
1097 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1098 tx_desc->lower.data = cpu_to_le32(skb->len);
1099 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1100 E1000_TXD_CMD_IFCS |
1101 E1000_TXD_CMD_RS);
1102 tx_desc->upper.data = 0;
1103 }
1104
1105 /* Setup Rx descriptor ring and Rx buffers */
1106
1107 if (!rx_ring->count)
1108 rx_ring->count = E1000_DEFAULT_RXD;
1109
1110 rx_ring->buffer_info = kcalloc(rx_ring->count,
1111 sizeof(struct e1000_buffer),
1112 GFP_KERNEL);
1113 if (!(rx_ring->buffer_info)) {
1114 ret_val = 5;
1115 goto err_nomem;
1116 }
1117
1118 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1119 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1120 &rx_ring->dma, GFP_KERNEL);
1121 if (!rx_ring->desc) {
1122 ret_val = 6;
1123 goto err_nomem;
1124 }
1125 rx_ring->next_to_use = 0;
1126 rx_ring->next_to_clean = 0;
1127
1128 rctl = er32(RCTL);
1129 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1130 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1131 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1132 ew32(RDLEN, rx_ring->size);
1133 ew32(RDH, 0);
1134 ew32(RDT, 0);
1135 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1136 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1137 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1138 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1139 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1140 ew32(RCTL, rctl);
1141
1142 for (i = 0; i < rx_ring->count; i++) {
1143 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1144 struct sk_buff *skb;
1145
1146 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1147 if (!skb) {
1148 ret_val = 7;
1149 goto err_nomem;
1150 }
1151 skb_reserve(skb, NET_IP_ALIGN);
1152 rx_ring->buffer_info[i].skb = skb;
1153 rx_ring->buffer_info[i].dma =
1154 pci_map_single(pdev, skb->data, 2048,
1155 PCI_DMA_FROMDEVICE);
1156 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1157 ret_val = 8;
1158 goto err_nomem;
1159 }
1160 rx_desc->buffer_addr =
1161 cpu_to_le64(rx_ring->buffer_info[i].dma);
1162 memset(skb->data, 0x00, skb->len);
1163 }
1164
1165 return 0;
1166
1167 err_nomem:
1168 e1000_free_desc_rings(adapter);
1169 return ret_val;
1170 }
1171
1172 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1173 {
1174 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1175 e1e_wphy(&adapter->hw, 29, 0x001F);
1176 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1177 e1e_wphy(&adapter->hw, 29, 0x001A);
1178 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1179 }
1180
1181 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1182 {
1183 struct e1000_hw *hw = &adapter->hw;
1184 u32 ctrl_reg = 0;
1185 u32 stat_reg = 0;
1186 u16 phy_reg = 0;
1187
1188 hw->mac.autoneg = 0;
1189
1190 if (hw->phy.type == e1000_phy_m88) {
1191 /* Auto-MDI/MDIX Off */
1192 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1193 /* reset to update Auto-MDI/MDIX */
1194 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1195 /* autoneg off */
1196 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1197 } else if (hw->phy.type == e1000_phy_gg82563)
1198 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1199
1200 ctrl_reg = er32(CTRL);
1201
1202 switch (hw->phy.type) {
1203 case e1000_phy_ife:
1204 /* force 100, set loopback */
1205 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1206
1207 /* Now set up the MAC to the same speed/duplex as the PHY. */
1208 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1209 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1210 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1211 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1212 E1000_CTRL_FD); /* Force Duplex to FULL */
1213 break;
1214 case e1000_phy_bm:
1215 /* Set Default MAC Interface speed to 1GB */
1216 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1217 phy_reg &= ~0x0007;
1218 phy_reg |= 0x006;
1219 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1220 /* Assert SW reset for above settings to take effect */
1221 e1000e_commit_phy(hw);
1222 mdelay(1);
1223 /* Force Full Duplex */
1224 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1225 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1226 /* Set Link Up (in force link) */
1227 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1228 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1229 /* Force Link */
1230 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1231 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1232 /* Set Early Link Enable */
1233 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1234 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1235 /* fall through */
1236 default:
1237 /* force 1000, set loopback */
1238 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1239 mdelay(250);
1240
1241 /* Now set up the MAC to the same speed/duplex as the PHY. */
1242 ctrl_reg = er32(CTRL);
1243 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1244 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1245 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1246 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1247 E1000_CTRL_FD); /* Force Duplex to FULL */
1248
1249 if (adapter->flags & FLAG_IS_ICH)
1250 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1251 }
1252
1253 if (hw->phy.media_type == e1000_media_type_copper &&
1254 hw->phy.type == e1000_phy_m88) {
1255 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1256 } else {
1257 /*
1258 * Set the ILOS bit on the fiber Nic if half duplex link is
1259 * detected.
1260 */
1261 stat_reg = er32(STATUS);
1262 if ((stat_reg & E1000_STATUS_FD) == 0)
1263 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1264 }
1265
1266 ew32(CTRL, ctrl_reg);
1267
1268 /*
1269 * Disable the receiver on the PHY so when a cable is plugged in, the
1270 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271 */
1272 if (hw->phy.type == e1000_phy_m88)
1273 e1000_phy_disable_receiver(adapter);
1274
1275 udelay(500);
1276
1277 return 0;
1278 }
1279
1280 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1281 {
1282 struct e1000_hw *hw = &adapter->hw;
1283 u32 ctrl = er32(CTRL);
1284 int link = 0;
1285
1286 /* special requirements for 82571/82572 fiber adapters */
1287
1288 /*
1289 * jump through hoops to make sure link is up because serdes
1290 * link is hardwired up
1291 */
1292 ctrl |= E1000_CTRL_SLU;
1293 ew32(CTRL, ctrl);
1294
1295 /* disable autoneg */
1296 ctrl = er32(TXCW);
1297 ctrl &= ~(1 << 31);
1298 ew32(TXCW, ctrl);
1299
1300 link = (er32(STATUS) & E1000_STATUS_LU);
1301
1302 if (!link) {
1303 /* set invert loss of signal */
1304 ctrl = er32(CTRL);
1305 ctrl |= E1000_CTRL_ILOS;
1306 ew32(CTRL, ctrl);
1307 }
1308
1309 /*
1310 * special write to serdes control register to enable SerDes analog
1311 * loopback
1312 */
1313 #define E1000_SERDES_LB_ON 0x410
1314 ew32(SCTL, E1000_SERDES_LB_ON);
1315 msleep(10);
1316
1317 return 0;
1318 }
1319
1320 /* only call this for fiber/serdes connections to es2lan */
1321 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1322 {
1323 struct e1000_hw *hw = &adapter->hw;
1324 u32 ctrlext = er32(CTRL_EXT);
1325 u32 ctrl = er32(CTRL);
1326
1327 /*
1328 * save CTRL_EXT to restore later, reuse an empty variable (unused
1329 * on mac_type 80003es2lan)
1330 */
1331 adapter->tx_fifo_head = ctrlext;
1332
1333 /* clear the serdes mode bits, putting the device into mac loopback */
1334 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1335 ew32(CTRL_EXT, ctrlext);
1336
1337 /* force speed to 1000/FD, link up */
1338 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1339 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1340 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1341 ew32(CTRL, ctrl);
1342
1343 /* set mac loopback */
1344 ctrl = er32(RCTL);
1345 ctrl |= E1000_RCTL_LBM_MAC;
1346 ew32(RCTL, ctrl);
1347
1348 /* set testing mode parameters (no need to reset later) */
1349 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1350 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1351 ew32(KMRNCTRLSTA,
1352 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1353
1354 return 0;
1355 }
1356
1357 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1358 {
1359 struct e1000_hw *hw = &adapter->hw;
1360 u32 rctl;
1361
1362 if (hw->phy.media_type == e1000_media_type_fiber ||
1363 hw->phy.media_type == e1000_media_type_internal_serdes) {
1364 switch (hw->mac.type) {
1365 case e1000_80003es2lan:
1366 return e1000_set_es2lan_mac_loopback(adapter);
1367 break;
1368 case e1000_82571:
1369 case e1000_82572:
1370 return e1000_set_82571_fiber_loopback(adapter);
1371 break;
1372 default:
1373 rctl = er32(RCTL);
1374 rctl |= E1000_RCTL_LBM_TCVR;
1375 ew32(RCTL, rctl);
1376 return 0;
1377 }
1378 } else if (hw->phy.media_type == e1000_media_type_copper) {
1379 return e1000_integrated_phy_loopback(adapter);
1380 }
1381
1382 return 7;
1383 }
1384
1385 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1386 {
1387 struct e1000_hw *hw = &adapter->hw;
1388 u32 rctl;
1389 u16 phy_reg;
1390
1391 rctl = er32(RCTL);
1392 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1393 ew32(RCTL, rctl);
1394
1395 switch (hw->mac.type) {
1396 case e1000_80003es2lan:
1397 if (hw->phy.media_type == e1000_media_type_fiber ||
1398 hw->phy.media_type == e1000_media_type_internal_serdes) {
1399 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1400 ew32(CTRL_EXT, adapter->tx_fifo_head);
1401 adapter->tx_fifo_head = 0;
1402 }
1403 /* fall through */
1404 case e1000_82571:
1405 case e1000_82572:
1406 if (hw->phy.media_type == e1000_media_type_fiber ||
1407 hw->phy.media_type == e1000_media_type_internal_serdes) {
1408 #define E1000_SERDES_LB_OFF 0x400
1409 ew32(SCTL, E1000_SERDES_LB_OFF);
1410 msleep(10);
1411 break;
1412 }
1413 /* Fall Through */
1414 default:
1415 hw->mac.autoneg = 1;
1416 if (hw->phy.type == e1000_phy_gg82563)
1417 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1418 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1419 if (phy_reg & MII_CR_LOOPBACK) {
1420 phy_reg &= ~MII_CR_LOOPBACK;
1421 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1422 e1000e_commit_phy(hw);
1423 }
1424 break;
1425 }
1426 }
1427
1428 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1429 unsigned int frame_size)
1430 {
1431 memset(skb->data, 0xFF, frame_size);
1432 frame_size &= ~1;
1433 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1434 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1435 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1436 }
1437
1438 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1439 unsigned int frame_size)
1440 {
1441 frame_size &= ~1;
1442 if (*(skb->data + 3) == 0xFF)
1443 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1444 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1445 return 0;
1446 return 13;
1447 }
1448
1449 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1450 {
1451 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1452 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1453 struct pci_dev *pdev = adapter->pdev;
1454 struct e1000_hw *hw = &adapter->hw;
1455 int i, j, k, l;
1456 int lc;
1457 int good_cnt;
1458 int ret_val = 0;
1459 unsigned long time;
1460
1461 ew32(RDT, rx_ring->count - 1);
1462
1463 /*
1464 * Calculate the loop count based on the largest descriptor ring
1465 * The idea is to wrap the largest ring a number of times using 64
1466 * send/receive pairs during each loop
1467 */
1468
1469 if (rx_ring->count <= tx_ring->count)
1470 lc = ((tx_ring->count / 64) * 2) + 1;
1471 else
1472 lc = ((rx_ring->count / 64) * 2) + 1;
1473
1474 k = 0;
1475 l = 0;
1476 for (j = 0; j <= lc; j++) { /* loop count loop */
1477 for (i = 0; i < 64; i++) { /* send the packets */
1478 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1479 1024);
1480 pci_dma_sync_single_for_device(pdev,
1481 tx_ring->buffer_info[k].dma,
1482 tx_ring->buffer_info[k].length,
1483 PCI_DMA_TODEVICE);
1484 k++;
1485 if (k == tx_ring->count)
1486 k = 0;
1487 }
1488 ew32(TDT, k);
1489 msleep(200);
1490 time = jiffies; /* set the start time for the receive */
1491 good_cnt = 0;
1492 do { /* receive the sent packets */
1493 pci_dma_sync_single_for_cpu(pdev,
1494 rx_ring->buffer_info[l].dma, 2048,
1495 PCI_DMA_FROMDEVICE);
1496
1497 ret_val = e1000_check_lbtest_frame(
1498 rx_ring->buffer_info[l].skb, 1024);
1499 if (!ret_val)
1500 good_cnt++;
1501 l++;
1502 if (l == rx_ring->count)
1503 l = 0;
1504 /*
1505 * time + 20 msecs (200 msecs on 2.4) is more than
1506 * enough time to complete the receives, if it's
1507 * exceeded, break and error off
1508 */
1509 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1510 if (good_cnt != 64) {
1511 ret_val = 13; /* ret_val is the same as mis-compare */
1512 break;
1513 }
1514 if (jiffies >= (time + 20)) {
1515 ret_val = 14; /* error code for time out error */
1516 break;
1517 }
1518 } /* end loop count loop */
1519 return ret_val;
1520 }
1521
1522 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1523 {
1524 /*
1525 * PHY loopback cannot be performed if SoL/IDER
1526 * sessions are active
1527 */
1528 if (e1000_check_reset_block(&adapter->hw)) {
1529 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1530 "when SoL/IDER is active.\n");
1531 *data = 0;
1532 goto out;
1533 }
1534
1535 *data = e1000_setup_desc_rings(adapter);
1536 if (*data)
1537 goto out;
1538
1539 *data = e1000_setup_loopback_test(adapter);
1540 if (*data)
1541 goto err_loopback;
1542
1543 *data = e1000_run_loopback_test(adapter);
1544 e1000_loopback_cleanup(adapter);
1545
1546 err_loopback:
1547 e1000_free_desc_rings(adapter);
1548 out:
1549 return *data;
1550 }
1551
1552 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1553 {
1554 struct e1000_hw *hw = &adapter->hw;
1555
1556 *data = 0;
1557 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1558 int i = 0;
1559 hw->mac.serdes_has_link = 0;
1560
1561 /*
1562 * On some blade server designs, link establishment
1563 * could take as long as 2-3 minutes
1564 */
1565 do {
1566 hw->mac.ops.check_for_link(hw);
1567 if (hw->mac.serdes_has_link)
1568 return *data;
1569 msleep(20);
1570 } while (i++ < 3750);
1571
1572 *data = 1;
1573 } else {
1574 hw->mac.ops.check_for_link(hw);
1575 if (hw->mac.autoneg)
1576 msleep(4000);
1577
1578 if (!(er32(STATUS) &
1579 E1000_STATUS_LU))
1580 *data = 1;
1581 }
1582 return *data;
1583 }
1584
1585 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1586 {
1587 switch (sset) {
1588 case ETH_SS_TEST:
1589 return E1000_TEST_LEN;
1590 case ETH_SS_STATS:
1591 return E1000_STATS_LEN;
1592 default:
1593 return -EOPNOTSUPP;
1594 }
1595 }
1596
1597 static void e1000_diag_test(struct net_device *netdev,
1598 struct ethtool_test *eth_test, u64 *data)
1599 {
1600 struct e1000_adapter *adapter = netdev_priv(netdev);
1601 u16 autoneg_advertised;
1602 u8 forced_speed_duplex;
1603 u8 autoneg;
1604 bool if_running = netif_running(netdev);
1605
1606 set_bit(__E1000_TESTING, &adapter->state);
1607 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1608 /* Offline tests */
1609
1610 /* save speed, duplex, autoneg settings */
1611 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1612 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1613 autoneg = adapter->hw.mac.autoneg;
1614
1615 ndev_info(netdev, "offline testing starting\n");
1616
1617 /*
1618 * Link test performed before hardware reset so autoneg doesn't
1619 * interfere with test result
1620 */
1621 if (e1000_link_test(adapter, &data[4]))
1622 eth_test->flags |= ETH_TEST_FL_FAILED;
1623
1624 if (if_running)
1625 /* indicate we're in test mode */
1626 dev_close(netdev);
1627 else
1628 e1000e_reset(adapter);
1629
1630 if (e1000_reg_test(adapter, &data[0]))
1631 eth_test->flags |= ETH_TEST_FL_FAILED;
1632
1633 e1000e_reset(adapter);
1634 if (e1000_eeprom_test(adapter, &data[1]))
1635 eth_test->flags |= ETH_TEST_FL_FAILED;
1636
1637 e1000e_reset(adapter);
1638 if (e1000_intr_test(adapter, &data[2]))
1639 eth_test->flags |= ETH_TEST_FL_FAILED;
1640
1641 e1000e_reset(adapter);
1642 /* make sure the phy is powered up */
1643 e1000e_power_up_phy(adapter);
1644 if (e1000_loopback_test(adapter, &data[3]))
1645 eth_test->flags |= ETH_TEST_FL_FAILED;
1646
1647 /* restore speed, duplex, autoneg settings */
1648 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1649 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1650 adapter->hw.mac.autoneg = autoneg;
1651
1652 /* force this routine to wait until autoneg complete/timeout */
1653 adapter->hw.phy.autoneg_wait_to_complete = 1;
1654 e1000e_reset(adapter);
1655 adapter->hw.phy.autoneg_wait_to_complete = 0;
1656
1657 clear_bit(__E1000_TESTING, &adapter->state);
1658 if (if_running)
1659 dev_open(netdev);
1660 } else {
1661 ndev_info(netdev, "online testing starting\n");
1662 /* Online tests */
1663 if (e1000_link_test(adapter, &data[4]))
1664 eth_test->flags |= ETH_TEST_FL_FAILED;
1665
1666 /* Online tests aren't run; pass by default */
1667 data[0] = 0;
1668 data[1] = 0;
1669 data[2] = 0;
1670 data[3] = 0;
1671
1672 clear_bit(__E1000_TESTING, &adapter->state);
1673 }
1674 msleep_interruptible(4 * 1000);
1675 }
1676
1677 static void e1000_get_wol(struct net_device *netdev,
1678 struct ethtool_wolinfo *wol)
1679 {
1680 struct e1000_adapter *adapter = netdev_priv(netdev);
1681
1682 wol->supported = 0;
1683 wol->wolopts = 0;
1684
1685 if (!(adapter->flags & FLAG_HAS_WOL))
1686 return;
1687
1688 wol->supported = WAKE_UCAST | WAKE_MCAST |
1689 WAKE_BCAST | WAKE_MAGIC |
1690 WAKE_PHY | WAKE_ARP;
1691
1692 /* apply any specific unsupported masks here */
1693 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1694 wol->supported &= ~WAKE_UCAST;
1695
1696 if (adapter->wol & E1000_WUFC_EX)
1697 ndev_err(netdev, "Interface does not support "
1698 "directed (unicast) frame wake-up packets\n");
1699 }
1700
1701 if (adapter->wol & E1000_WUFC_EX)
1702 wol->wolopts |= WAKE_UCAST;
1703 if (adapter->wol & E1000_WUFC_MC)
1704 wol->wolopts |= WAKE_MCAST;
1705 if (adapter->wol & E1000_WUFC_BC)
1706 wol->wolopts |= WAKE_BCAST;
1707 if (adapter->wol & E1000_WUFC_MAG)
1708 wol->wolopts |= WAKE_MAGIC;
1709 if (adapter->wol & E1000_WUFC_LNKC)
1710 wol->wolopts |= WAKE_PHY;
1711 if (adapter->wol & E1000_WUFC_ARP)
1712 wol->wolopts |= WAKE_ARP;
1713 }
1714
1715 static int e1000_set_wol(struct net_device *netdev,
1716 struct ethtool_wolinfo *wol)
1717 {
1718 struct e1000_adapter *adapter = netdev_priv(netdev);
1719
1720 if (wol->wolopts & WAKE_MAGICSECURE)
1721 return -EOPNOTSUPP;
1722
1723 if (!(adapter->flags & FLAG_HAS_WOL))
1724 return wol->wolopts ? -EOPNOTSUPP : 0;
1725
1726 /* these settings will always override what we currently have */
1727 adapter->wol = 0;
1728
1729 if (wol->wolopts & WAKE_UCAST)
1730 adapter->wol |= E1000_WUFC_EX;
1731 if (wol->wolopts & WAKE_MCAST)
1732 adapter->wol |= E1000_WUFC_MC;
1733 if (wol->wolopts & WAKE_BCAST)
1734 adapter->wol |= E1000_WUFC_BC;
1735 if (wol->wolopts & WAKE_MAGIC)
1736 adapter->wol |= E1000_WUFC_MAG;
1737 if (wol->wolopts & WAKE_PHY)
1738 adapter->wol |= E1000_WUFC_LNKC;
1739 if (wol->wolopts & WAKE_ARP)
1740 adapter->wol |= E1000_WUFC_ARP;
1741
1742 return 0;
1743 }
1744
1745 /* toggle LED 4 times per second = 2 "blinks" per second */
1746 #define E1000_ID_INTERVAL (HZ/4)
1747
1748 /* bit defines for adapter->led_status */
1749 #define E1000_LED_ON 0
1750
1751 static void e1000_led_blink_callback(unsigned long data)
1752 {
1753 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1754
1755 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1756 adapter->hw.mac.ops.led_off(&adapter->hw);
1757 else
1758 adapter->hw.mac.ops.led_on(&adapter->hw);
1759
1760 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1761 }
1762
1763 static int e1000_phys_id(struct net_device *netdev, u32 data)
1764 {
1765 struct e1000_adapter *adapter = netdev_priv(netdev);
1766
1767 if (!data)
1768 data = INT_MAX;
1769
1770 if (adapter->hw.phy.type == e1000_phy_ife) {
1771 if (!adapter->blink_timer.function) {
1772 init_timer(&adapter->blink_timer);
1773 adapter->blink_timer.function =
1774 e1000_led_blink_callback;
1775 adapter->blink_timer.data = (unsigned long) adapter;
1776 }
1777 mod_timer(&adapter->blink_timer, jiffies);
1778 msleep_interruptible(data * 1000);
1779 del_timer_sync(&adapter->blink_timer);
1780 e1e_wphy(&adapter->hw,
1781 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1782 } else {
1783 e1000e_blink_led(&adapter->hw);
1784 msleep_interruptible(data * 1000);
1785 }
1786
1787 adapter->hw.mac.ops.led_off(&adapter->hw);
1788 clear_bit(E1000_LED_ON, &adapter->led_status);
1789 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1790
1791 return 0;
1792 }
1793
1794 static int e1000_get_coalesce(struct net_device *netdev,
1795 struct ethtool_coalesce *ec)
1796 {
1797 struct e1000_adapter *adapter = netdev_priv(netdev);
1798
1799 if (adapter->itr_setting <= 3)
1800 ec->rx_coalesce_usecs = adapter->itr_setting;
1801 else
1802 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1803
1804 return 0;
1805 }
1806
1807 static int e1000_set_coalesce(struct net_device *netdev,
1808 struct ethtool_coalesce *ec)
1809 {
1810 struct e1000_adapter *adapter = netdev_priv(netdev);
1811 struct e1000_hw *hw = &adapter->hw;
1812
1813 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1814 ((ec->rx_coalesce_usecs > 3) &&
1815 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1816 (ec->rx_coalesce_usecs == 2))
1817 return -EINVAL;
1818
1819 if (ec->rx_coalesce_usecs <= 3) {
1820 adapter->itr = 20000;
1821 adapter->itr_setting = ec->rx_coalesce_usecs;
1822 } else {
1823 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1824 adapter->itr_setting = adapter->itr & ~3;
1825 }
1826
1827 if (adapter->itr_setting != 0)
1828 ew32(ITR, 1000000000 / (adapter->itr * 256));
1829 else
1830 ew32(ITR, 0);
1831
1832 return 0;
1833 }
1834
1835 static int e1000_nway_reset(struct net_device *netdev)
1836 {
1837 struct e1000_adapter *adapter = netdev_priv(netdev);
1838 if (netif_running(netdev))
1839 e1000e_reinit_locked(adapter);
1840 return 0;
1841 }
1842
1843 static void e1000_get_ethtool_stats(struct net_device *netdev,
1844 struct ethtool_stats *stats,
1845 u64 *data)
1846 {
1847 struct e1000_adapter *adapter = netdev_priv(netdev);
1848 int i;
1849
1850 e1000e_update_stats(adapter);
1851 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1852 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1853 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1854 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1855 }
1856 }
1857
1858 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1859 u8 *data)
1860 {
1861 u8 *p = data;
1862 int i;
1863
1864 switch (stringset) {
1865 case ETH_SS_TEST:
1866 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1867 break;
1868 case ETH_SS_STATS:
1869 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1870 memcpy(p, e1000_gstrings_stats[i].stat_string,
1871 ETH_GSTRING_LEN);
1872 p += ETH_GSTRING_LEN;
1873 }
1874 break;
1875 }
1876 }
1877
1878 static const struct ethtool_ops e1000_ethtool_ops = {
1879 .get_settings = e1000_get_settings,
1880 .set_settings = e1000_set_settings,
1881 .get_drvinfo = e1000_get_drvinfo,
1882 .get_regs_len = e1000_get_regs_len,
1883 .get_regs = e1000_get_regs,
1884 .get_wol = e1000_get_wol,
1885 .set_wol = e1000_set_wol,
1886 .get_msglevel = e1000_get_msglevel,
1887 .set_msglevel = e1000_set_msglevel,
1888 .nway_reset = e1000_nway_reset,
1889 .get_link = e1000_get_link,
1890 .get_eeprom_len = e1000_get_eeprom_len,
1891 .get_eeprom = e1000_get_eeprom,
1892 .set_eeprom = e1000_set_eeprom,
1893 .get_ringparam = e1000_get_ringparam,
1894 .set_ringparam = e1000_set_ringparam,
1895 .get_pauseparam = e1000_get_pauseparam,
1896 .set_pauseparam = e1000_set_pauseparam,
1897 .get_rx_csum = e1000_get_rx_csum,
1898 .set_rx_csum = e1000_set_rx_csum,
1899 .get_tx_csum = e1000_get_tx_csum,
1900 .set_tx_csum = e1000_set_tx_csum,
1901 .get_sg = ethtool_op_get_sg,
1902 .set_sg = ethtool_op_set_sg,
1903 .get_tso = ethtool_op_get_tso,
1904 .set_tso = e1000_set_tso,
1905 .self_test = e1000_diag_test,
1906 .get_strings = e1000_get_strings,
1907 .phys_id = e1000_phys_id,
1908 .get_ethtool_stats = e1000_get_ethtool_stats,
1909 .get_sset_count = e1000e_get_sset_count,
1910 .get_coalesce = e1000_get_coalesce,
1911 .set_coalesce = e1000_set_coalesce,
1912 };
1913
1914 void e1000e_set_ethtool_ops(struct net_device *netdev)
1915 {
1916 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1917 }
This page took 0.096768 seconds and 5 git commands to generate.