netdev: ARRAY_SIZE() cleanups
[deliverable/linux.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
109 {
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
113
114 if (hw->media_type == e1000_media_type_copper) {
115
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
126
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
131 }
132
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
136
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
141
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
145
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
148 }
149
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
158
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
166 }
167
168 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176 struct e1000_hw *hw = &adapter->hw;
177 u32 status;
178
179 status = er32(STATUS);
180 return (status & E1000_STATUS_LU);
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185 struct e1000_mac_info *mac = &adapter->hw.mac;
186
187 mac->autoneg = 0;
188
189 /* Fiber NICs only allow 1000 gbps Full duplex */
190 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
191 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
193 "configuration\n");
194 return -EINVAL;
195 }
196
197 switch (spddplx) {
198 case SPEED_10 + DUPLEX_HALF:
199 mac->forced_speed_duplex = ADVERTISE_10_HALF;
200 break;
201 case SPEED_10 + DUPLEX_FULL:
202 mac->forced_speed_duplex = ADVERTISE_10_FULL;
203 break;
204 case SPEED_100 + DUPLEX_HALF:
205 mac->forced_speed_duplex = ADVERTISE_100_HALF;
206 break;
207 case SPEED_100 + DUPLEX_FULL:
208 mac->forced_speed_duplex = ADVERTISE_100_FULL;
209 break;
210 case SPEED_1000 + DUPLEX_FULL:
211 mac->autoneg = 1;
212 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
213 break;
214 case SPEED_1000 + DUPLEX_HALF: /* not supported */
215 default:
216 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
217 "configuration\n");
218 return -EINVAL;
219 }
220 return 0;
221 }
222
223 static int e1000_set_settings(struct net_device *netdev,
224 struct ethtool_cmd *ecmd)
225 {
226 struct e1000_adapter *adapter = netdev_priv(netdev);
227 struct e1000_hw *hw = &adapter->hw;
228
229 /* When SoL/IDER sessions are active, autoneg/speed/duplex
230 * cannot be changed */
231 if (e1000_check_reset_block(hw)) {
232 ndev_err(netdev, "Cannot change link "
233 "characteristics when SoL/IDER is active.\n");
234 return -EINVAL;
235 }
236
237 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
238 msleep(1);
239
240 if (ecmd->autoneg == AUTONEG_ENABLE) {
241 hw->mac.autoneg = 1;
242 if (hw->media_type == e1000_media_type_fiber)
243 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
244 ADVERTISED_FIBRE |
245 ADVERTISED_Autoneg;
246 else
247 hw->phy.autoneg_advertised = ecmd->advertising |
248 ADVERTISED_TP |
249 ADVERTISED_Autoneg;
250 ecmd->advertising = hw->phy.autoneg_advertised;
251 } else {
252 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
253 clear_bit(__E1000_RESETTING, &adapter->state);
254 return -EINVAL;
255 }
256 }
257
258 /* reset the link */
259
260 if (netif_running(adapter->netdev)) {
261 e1000e_down(adapter);
262 e1000e_up(adapter);
263 } else {
264 e1000e_reset(adapter);
265 }
266
267 clear_bit(__E1000_RESETTING, &adapter->state);
268 return 0;
269 }
270
271 static void e1000_get_pauseparam(struct net_device *netdev,
272 struct ethtool_pauseparam *pause)
273 {
274 struct e1000_adapter *adapter = netdev_priv(netdev);
275 struct e1000_hw *hw = &adapter->hw;
276
277 pause->autoneg =
278 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
279
280 if (hw->mac.fc == e1000_fc_rx_pause) {
281 pause->rx_pause = 1;
282 } else if (hw->mac.fc == e1000_fc_tx_pause) {
283 pause->tx_pause = 1;
284 } else if (hw->mac.fc == e1000_fc_full) {
285 pause->rx_pause = 1;
286 pause->tx_pause = 1;
287 }
288 }
289
290 static int e1000_set_pauseparam(struct net_device *netdev,
291 struct ethtool_pauseparam *pause)
292 {
293 struct e1000_adapter *adapter = netdev_priv(netdev);
294 struct e1000_hw *hw = &adapter->hw;
295 int retval = 0;
296
297 adapter->fc_autoneg = pause->autoneg;
298
299 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
300 msleep(1);
301
302 if (pause->rx_pause && pause->tx_pause)
303 hw->mac.fc = e1000_fc_full;
304 else if (pause->rx_pause && !pause->tx_pause)
305 hw->mac.fc = e1000_fc_rx_pause;
306 else if (!pause->rx_pause && pause->tx_pause)
307 hw->mac.fc = e1000_fc_tx_pause;
308 else if (!pause->rx_pause && !pause->tx_pause)
309 hw->mac.fc = e1000_fc_none;
310
311 hw->mac.original_fc = hw->mac.fc;
312
313 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
314 hw->mac.fc = e1000_fc_default;
315 if (netif_running(adapter->netdev)) {
316 e1000e_down(adapter);
317 e1000e_up(adapter);
318 } else {
319 e1000e_reset(adapter);
320 }
321 } else {
322 retval = ((hw->media_type == e1000_media_type_fiber) ?
323 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
324 }
325
326 clear_bit(__E1000_RESETTING, &adapter->state);
327 return retval;
328 }
329
330 static u32 e1000_get_rx_csum(struct net_device *netdev)
331 {
332 struct e1000_adapter *adapter = netdev_priv(netdev);
333 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
334 }
335
336 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
337 {
338 struct e1000_adapter *adapter = netdev_priv(netdev);
339
340 if (data)
341 adapter->flags |= FLAG_RX_CSUM_ENABLED;
342 else
343 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
344
345 if (netif_running(netdev))
346 e1000e_reinit_locked(adapter);
347 else
348 e1000e_reset(adapter);
349 return 0;
350 }
351
352 static u32 e1000_get_tx_csum(struct net_device *netdev)
353 {
354 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
355 }
356
357 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
358 {
359 if (data)
360 netdev->features |= NETIF_F_HW_CSUM;
361 else
362 netdev->features &= ~NETIF_F_HW_CSUM;
363
364 return 0;
365 }
366
367 static int e1000_set_tso(struct net_device *netdev, u32 data)
368 {
369 struct e1000_adapter *adapter = netdev_priv(netdev);
370
371 if (data) {
372 netdev->features |= NETIF_F_TSO;
373 netdev->features |= NETIF_F_TSO6;
374 } else {
375 netdev->features &= ~NETIF_F_TSO;
376 netdev->features &= ~NETIF_F_TSO6;
377 }
378
379 ndev_info(netdev, "TSO is %s\n",
380 data ? "Enabled" : "Disabled");
381 adapter->flags |= FLAG_TSO_FORCE;
382 return 0;
383 }
384
385 static u32 e1000_get_msglevel(struct net_device *netdev)
386 {
387 struct e1000_adapter *adapter = netdev_priv(netdev);
388 return adapter->msg_enable;
389 }
390
391 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
392 {
393 struct e1000_adapter *adapter = netdev_priv(netdev);
394 adapter->msg_enable = data;
395 }
396
397 static int e1000_get_regs_len(struct net_device *netdev)
398 {
399 #define E1000_REGS_LEN 32 /* overestimate */
400 return E1000_REGS_LEN * sizeof(u32);
401 }
402
403 static void e1000_get_regs(struct net_device *netdev,
404 struct ethtool_regs *regs, void *p)
405 {
406 struct e1000_adapter *adapter = netdev_priv(netdev);
407 struct e1000_hw *hw = &adapter->hw;
408 u32 *regs_buff = p;
409 u16 phy_data;
410 u8 revision_id;
411
412 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
413
414 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
415
416 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
417
418 regs_buff[0] = er32(CTRL);
419 regs_buff[1] = er32(STATUS);
420
421 regs_buff[2] = er32(RCTL);
422 regs_buff[3] = er32(RDLEN);
423 regs_buff[4] = er32(RDH);
424 regs_buff[5] = er32(RDT);
425 regs_buff[6] = er32(RDTR);
426
427 regs_buff[7] = er32(TCTL);
428 regs_buff[8] = er32(TDLEN);
429 regs_buff[9] = er32(TDH);
430 regs_buff[10] = er32(TDT);
431 regs_buff[11] = er32(TIDV);
432
433 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
434 if (hw->phy.type == e1000_phy_m88) {
435 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
436 regs_buff[13] = (u32)phy_data; /* cable length */
437 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
438 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
439 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
441 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
442 regs_buff[18] = regs_buff[13]; /* cable polarity */
443 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
444 regs_buff[20] = regs_buff[17]; /* polarity correction */
445 /* phy receive errors */
446 regs_buff[22] = adapter->phy_stats.receive_errors;
447 regs_buff[23] = regs_buff[13]; /* mdix mode */
448 }
449 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
450 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
451 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
452 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
453 }
454
455 static int e1000_get_eeprom_len(struct net_device *netdev)
456 {
457 struct e1000_adapter *adapter = netdev_priv(netdev);
458 return adapter->hw.nvm.word_size * 2;
459 }
460
461 static int e1000_get_eeprom(struct net_device *netdev,
462 struct ethtool_eeprom *eeprom, u8 *bytes)
463 {
464 struct e1000_adapter *adapter = netdev_priv(netdev);
465 struct e1000_hw *hw = &adapter->hw;
466 u16 *eeprom_buff;
467 int first_word;
468 int last_word;
469 int ret_val = 0;
470 u16 i;
471
472 if (eeprom->len == 0)
473 return -EINVAL;
474
475 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
476
477 first_word = eeprom->offset >> 1;
478 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
479
480 eeprom_buff = kmalloc(sizeof(u16) *
481 (last_word - first_word + 1), GFP_KERNEL);
482 if (!eeprom_buff)
483 return -ENOMEM;
484
485 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
486 ret_val = e1000_read_nvm(hw, first_word,
487 last_word - first_word + 1,
488 eeprom_buff);
489 } else {
490 for (i = 0; i < last_word - first_word + 1; i++) {
491 ret_val = e1000_read_nvm(hw, first_word + i, 1,
492 &eeprom_buff[i]);
493 if (ret_val)
494 break;
495 }
496 }
497
498 /* Device's eeprom is always little-endian, word addressable */
499 for (i = 0; i < last_word - first_word + 1; i++)
500 le16_to_cpus(&eeprom_buff[i]);
501
502 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
503 kfree(eeprom_buff);
504
505 return ret_val;
506 }
507
508 static int e1000_set_eeprom(struct net_device *netdev,
509 struct ethtool_eeprom *eeprom, u8 *bytes)
510 {
511 struct e1000_adapter *adapter = netdev_priv(netdev);
512 struct e1000_hw *hw = &adapter->hw;
513 u16 *eeprom_buff;
514 void *ptr;
515 int max_len;
516 int first_word;
517 int last_word;
518 int ret_val = 0;
519 u16 i;
520
521 if (eeprom->len == 0)
522 return -EOPNOTSUPP;
523
524 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
525 return -EFAULT;
526
527 max_len = hw->nvm.word_size * 2;
528
529 first_word = eeprom->offset >> 1;
530 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
531 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
532 if (!eeprom_buff)
533 return -ENOMEM;
534
535 ptr = (void *)eeprom_buff;
536
537 if (eeprom->offset & 1) {
538 /* need read/modify/write of first changed EEPROM word */
539 /* only the second byte of the word is being modified */
540 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
541 ptr++;
542 }
543 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
544 /* need read/modify/write of last changed EEPROM word */
545 /* only the first byte of the word is being modified */
546 ret_val = e1000_read_nvm(hw, last_word, 1,
547 &eeprom_buff[last_word - first_word]);
548
549 /* Device's eeprom is always little-endian, word addressable */
550 for (i = 0; i < last_word - first_word + 1; i++)
551 le16_to_cpus(&eeprom_buff[i]);
552
553 memcpy(ptr, bytes, eeprom->len);
554
555 for (i = 0; i < last_word - first_word + 1; i++)
556 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
557
558 ret_val = e1000_write_nvm(hw, first_word,
559 last_word - first_word + 1, eeprom_buff);
560
561 /* Update the checksum over the first part of the EEPROM if needed
562 * and flush shadow RAM for 82573 controllers */
563 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
564 (hw->mac.type == e1000_82573)))
565 e1000e_update_nvm_checksum(hw);
566
567 kfree(eeprom_buff);
568 return ret_val;
569 }
570
571 static void e1000_get_drvinfo(struct net_device *netdev,
572 struct ethtool_drvinfo *drvinfo)
573 {
574 struct e1000_adapter *adapter = netdev_priv(netdev);
575 char firmware_version[32];
576 u16 eeprom_data;
577
578 strncpy(drvinfo->driver, e1000e_driver_name, 32);
579 strncpy(drvinfo->version, e1000e_driver_version, 32);
580
581 /* EEPROM image version # is reported as firmware version # for
582 * PCI-E controllers */
583 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
584 sprintf(firmware_version, "%d.%d-%d",
585 (eeprom_data & 0xF000) >> 12,
586 (eeprom_data & 0x0FF0) >> 4,
587 eeprom_data & 0x000F);
588
589 strncpy(drvinfo->fw_version, firmware_version, 32);
590 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
591 drvinfo->regdump_len = e1000_get_regs_len(netdev);
592 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
593 }
594
595 static void e1000_get_ringparam(struct net_device *netdev,
596 struct ethtool_ringparam *ring)
597 {
598 struct e1000_adapter *adapter = netdev_priv(netdev);
599 struct e1000_ring *tx_ring = adapter->tx_ring;
600 struct e1000_ring *rx_ring = adapter->rx_ring;
601
602 ring->rx_max_pending = E1000_MAX_RXD;
603 ring->tx_max_pending = E1000_MAX_TXD;
604 ring->rx_mini_max_pending = 0;
605 ring->rx_jumbo_max_pending = 0;
606 ring->rx_pending = rx_ring->count;
607 ring->tx_pending = tx_ring->count;
608 ring->rx_mini_pending = 0;
609 ring->rx_jumbo_pending = 0;
610 }
611
612 static int e1000_set_ringparam(struct net_device *netdev,
613 struct ethtool_ringparam *ring)
614 {
615 struct e1000_adapter *adapter = netdev_priv(netdev);
616 struct e1000_ring *tx_ring, *tx_old;
617 struct e1000_ring *rx_ring, *rx_old;
618 int err;
619
620 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
621 return -EINVAL;
622
623 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
624 msleep(1);
625
626 if (netif_running(adapter->netdev))
627 e1000e_down(adapter);
628
629 tx_old = adapter->tx_ring;
630 rx_old = adapter->rx_ring;
631
632 err = -ENOMEM;
633 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
634 if (!tx_ring)
635 goto err_alloc_tx;
636
637 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
638 if (!rx_ring)
639 goto err_alloc_rx;
640
641 adapter->tx_ring = tx_ring;
642 adapter->rx_ring = rx_ring;
643
644 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
645 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
646 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
647
648 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
649 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
650 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
651
652 if (netif_running(adapter->netdev)) {
653 /* Try to get new resources before deleting old */
654 err = e1000e_setup_rx_resources(adapter);
655 if (err)
656 goto err_setup_rx;
657 err = e1000e_setup_tx_resources(adapter);
658 if (err)
659 goto err_setup_tx;
660
661 /* save the new, restore the old in order to free it,
662 * then restore the new back again */
663 adapter->rx_ring = rx_old;
664 adapter->tx_ring = tx_old;
665 e1000e_free_rx_resources(adapter);
666 e1000e_free_tx_resources(adapter);
667 kfree(tx_old);
668 kfree(rx_old);
669 adapter->rx_ring = rx_ring;
670 adapter->tx_ring = tx_ring;
671 err = e1000e_up(adapter);
672 if (err)
673 goto err_setup;
674 }
675
676 clear_bit(__E1000_RESETTING, &adapter->state);
677 return 0;
678 err_setup_tx:
679 e1000e_free_rx_resources(adapter);
680 err_setup_rx:
681 adapter->rx_ring = rx_old;
682 adapter->tx_ring = tx_old;
683 kfree(rx_ring);
684 err_alloc_rx:
685 kfree(tx_ring);
686 err_alloc_tx:
687 e1000e_up(adapter);
688 err_setup:
689 clear_bit(__E1000_RESETTING, &adapter->state);
690 return err;
691 }
692
693 #define REG_PATTERN_TEST(R, M, W) REG_PATTERN_TEST_ARRAY(R, 0, M, W)
694 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, writeable) \
695 { \
696 u32 _pat; \
697 u32 _value; \
698 u32 _test[] = {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
699 for (_pat = 0; _pat < ARRAY_SIZE(_test); _pat++) { \
700 E1000_WRITE_REG_ARRAY(hw, reg, offset, \
701 (_test[_pat] & writeable)); \
702 _value = E1000_READ_REG_ARRAY(hw, reg, offset); \
703 if (_value != (_test[_pat] & writeable & mask)) { \
704 ndev_err(netdev, "pattern test reg %04X " \
705 "failed: got 0x%08X expected 0x%08X\n", \
706 reg + offset, \
707 value, (_test[_pat] & writeable & mask)); \
708 *data = reg; \
709 return 1; \
710 } \
711 } \
712 }
713
714 #define REG_SET_AND_CHECK(R, M, W) \
715 { \
716 u32 _value; \
717 __ew32(hw, R, W & M); \
718 _value = __er32(hw, R); \
719 if ((W & M) != (_value & M)) { \
720 ndev_err(netdev, "set/check reg %04X test failed: " \
721 "got 0x%08X expected 0x%08X\n", R, (_value & M), \
722 (W & M)); \
723 *data = R; \
724 return 1; \
725 } \
726 }
727
728 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
729 {
730 struct e1000_hw *hw = &adapter->hw;
731 struct e1000_mac_info *mac = &adapter->hw.mac;
732 struct net_device *netdev = adapter->netdev;
733 u32 value;
734 u32 before;
735 u32 after;
736 u32 i;
737 u32 toggle;
738
739 /* The status register is Read Only, so a write should fail.
740 * Some bits that get toggled are ignored.
741 */
742 switch (mac->type) {
743 /* there are several bits on newer hardware that are r/w */
744 case e1000_82571:
745 case e1000_82572:
746 case e1000_80003es2lan:
747 toggle = 0x7FFFF3FF;
748 break;
749 case e1000_82573:
750 case e1000_ich8lan:
751 case e1000_ich9lan:
752 toggle = 0x7FFFF033;
753 break;
754 default:
755 toggle = 0xFFFFF833;
756 break;
757 }
758
759 before = er32(STATUS);
760 value = (er32(STATUS) & toggle);
761 ew32(STATUS, toggle);
762 after = er32(STATUS) & toggle;
763 if (value != after) {
764 ndev_err(netdev, "failed STATUS register test got: "
765 "0x%08X expected: 0x%08X\n", after, value);
766 *data = 1;
767 return 1;
768 }
769 /* restore previous status */
770 ew32(STATUS, before);
771
772 if ((mac->type != e1000_ich8lan) &&
773 (mac->type != e1000_ich9lan)) {
774 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
775 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
777 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
778 }
779
780 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
781 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
782 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
783 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
784 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
785 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
786 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
787 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
788 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
789 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
790
791 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
792
793 before = (((mac->type == e1000_ich8lan) ||
794 (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
795 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
796 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
797
798 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
799 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
800 if ((mac->type != e1000_ich8lan) &&
801 (mac->type != e1000_ich9lan))
802 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
803 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
804 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
805 for (i = 0; i < mac->rar_entry_count; i++)
806 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
807 0x8003FFFF, 0xFFFFFFFF);
808
809 for (i = 0; i < mac->mta_reg_count; i++)
810 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
811
812 *data = 0;
813 return 0;
814 }
815
816 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
817 {
818 u16 temp;
819 u16 checksum = 0;
820 u16 i;
821
822 *data = 0;
823 /* Read and add up the contents of the EEPROM */
824 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
825 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
826 *data = 1;
827 break;
828 }
829 checksum += temp;
830 }
831
832 /* If Checksum is not Correct return error else test passed */
833 if ((checksum != (u16) NVM_SUM) && !(*data))
834 *data = 2;
835
836 return *data;
837 }
838
839 static irqreturn_t e1000_test_intr(int irq, void *data)
840 {
841 struct net_device *netdev = (struct net_device *) data;
842 struct e1000_adapter *adapter = netdev_priv(netdev);
843 struct e1000_hw *hw = &adapter->hw;
844
845 adapter->test_icr |= er32(ICR);
846
847 return IRQ_HANDLED;
848 }
849
850 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
851 {
852 struct net_device *netdev = adapter->netdev;
853 struct e1000_hw *hw = &adapter->hw;
854 u32 mask;
855 u32 shared_int = 1;
856 u32 irq = adapter->pdev->irq;
857 int i;
858
859 *data = 0;
860
861 /* NOTE: we don't test MSI interrupts here, yet */
862 /* Hook up test interrupt handler just for this test */
863 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
864 netdev)) {
865 shared_int = 0;
866 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
867 netdev->name, netdev)) {
868 *data = 1;
869 return -1;
870 }
871 ndev_info(netdev, "testing %s interrupt\n",
872 (shared_int ? "shared" : "unshared"));
873
874 /* Disable all the interrupts */
875 ew32(IMC, 0xFFFFFFFF);
876 msleep(10);
877
878 /* Test each interrupt */
879 for (i = 0; i < 10; i++) {
880
881 if (((adapter->hw.mac.type == e1000_ich8lan) ||
882 (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
883 continue;
884
885 /* Interrupt to test */
886 mask = 1 << i;
887
888 if (!shared_int) {
889 /* Disable the interrupt to be reported in
890 * the cause register and then force the same
891 * interrupt and see if one gets posted. If
892 * an interrupt was posted to the bus, the
893 * test failed.
894 */
895 adapter->test_icr = 0;
896 ew32(IMC, mask);
897 ew32(ICS, mask);
898 msleep(10);
899
900 if (adapter->test_icr & mask) {
901 *data = 3;
902 break;
903 }
904 }
905
906 /* Enable the interrupt to be reported in
907 * the cause register and then force the same
908 * interrupt and see if one gets posted. If
909 * an interrupt was not posted to the bus, the
910 * test failed.
911 */
912 adapter->test_icr = 0;
913 ew32(IMS, mask);
914 ew32(ICS, mask);
915 msleep(10);
916
917 if (!(adapter->test_icr & mask)) {
918 *data = 4;
919 break;
920 }
921
922 if (!shared_int) {
923 /* Disable the other interrupts to be reported in
924 * the cause register and then force the other
925 * interrupts and see if any get posted. If
926 * an interrupt was posted to the bus, the
927 * test failed.
928 */
929 adapter->test_icr = 0;
930 ew32(IMC, ~mask & 0x00007FFF);
931 ew32(ICS, ~mask & 0x00007FFF);
932 msleep(10);
933
934 if (adapter->test_icr) {
935 *data = 5;
936 break;
937 }
938 }
939 }
940
941 /* Disable all the interrupts */
942 ew32(IMC, 0xFFFFFFFF);
943 msleep(10);
944
945 /* Unhook test interrupt handler */
946 free_irq(irq, netdev);
947
948 return *data;
949 }
950
951 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
952 {
953 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
954 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
955 struct pci_dev *pdev = adapter->pdev;
956 int i;
957
958 if (tx_ring->desc && tx_ring->buffer_info) {
959 for (i = 0; i < tx_ring->count; i++) {
960 if (tx_ring->buffer_info[i].dma)
961 pci_unmap_single(pdev,
962 tx_ring->buffer_info[i].dma,
963 tx_ring->buffer_info[i].length,
964 PCI_DMA_TODEVICE);
965 if (tx_ring->buffer_info[i].skb)
966 dev_kfree_skb(tx_ring->buffer_info[i].skb);
967 }
968 }
969
970 if (rx_ring->desc && rx_ring->buffer_info) {
971 for (i = 0; i < rx_ring->count; i++) {
972 if (rx_ring->buffer_info[i].dma)
973 pci_unmap_single(pdev,
974 rx_ring->buffer_info[i].dma,
975 2048, PCI_DMA_FROMDEVICE);
976 if (rx_ring->buffer_info[i].skb)
977 dev_kfree_skb(rx_ring->buffer_info[i].skb);
978 }
979 }
980
981 if (tx_ring->desc) {
982 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
983 tx_ring->dma);
984 tx_ring->desc = NULL;
985 }
986 if (rx_ring->desc) {
987 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
988 rx_ring->dma);
989 rx_ring->desc = NULL;
990 }
991
992 kfree(tx_ring->buffer_info);
993 tx_ring->buffer_info = NULL;
994 kfree(rx_ring->buffer_info);
995 rx_ring->buffer_info = NULL;
996 }
997
998 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
999 {
1000 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1001 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1002 struct pci_dev *pdev = adapter->pdev;
1003 struct e1000_hw *hw = &adapter->hw;
1004 u32 rctl;
1005 int size;
1006 int i;
1007 int ret_val;
1008
1009 /* Setup Tx descriptor ring and Tx buffers */
1010
1011 if (!tx_ring->count)
1012 tx_ring->count = E1000_DEFAULT_TXD;
1013
1014 size = tx_ring->count * sizeof(struct e1000_buffer);
1015 tx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1016 if (!tx_ring->buffer_info) {
1017 ret_val = 1;
1018 goto err_nomem;
1019 }
1020 memset(tx_ring->buffer_info, 0, size);
1021
1022 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1023 tx_ring->size = ALIGN(tx_ring->size, 4096);
1024 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1025 &tx_ring->dma, GFP_KERNEL);
1026 if (!tx_ring->desc) {
1027 ret_val = 2;
1028 goto err_nomem;
1029 }
1030 memset(tx_ring->desc, 0, tx_ring->size);
1031 tx_ring->next_to_use = 0;
1032 tx_ring->next_to_clean = 0;
1033
1034 ew32(TDBAL,
1035 ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1036 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1037 ew32(TDLEN,
1038 tx_ring->count * sizeof(struct e1000_tx_desc));
1039 ew32(TDH, 0);
1040 ew32(TDT, 0);
1041 ew32(TCTL,
1042 E1000_TCTL_PSP | E1000_TCTL_EN |
1043 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1044 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1045
1046 for (i = 0; i < tx_ring->count; i++) {
1047 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1048 struct sk_buff *skb;
1049 unsigned int skb_size = 1024;
1050
1051 skb = alloc_skb(skb_size, GFP_KERNEL);
1052 if (!skb) {
1053 ret_val = 3;
1054 goto err_nomem;
1055 }
1056 skb_put(skb, skb_size);
1057 tx_ring->buffer_info[i].skb = skb;
1058 tx_ring->buffer_info[i].length = skb->len;
1059 tx_ring->buffer_info[i].dma =
1060 pci_map_single(pdev, skb->data, skb->len,
1061 PCI_DMA_TODEVICE);
1062 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1063 ret_val = 4;
1064 goto err_nomem;
1065 }
1066 tx_desc->buffer_addr = cpu_to_le64(
1067 tx_ring->buffer_info[i].dma);
1068 tx_desc->lower.data = cpu_to_le32(skb->len);
1069 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1070 E1000_TXD_CMD_IFCS |
1071 E1000_TXD_CMD_RPS);
1072 tx_desc->upper.data = 0;
1073 }
1074
1075 /* Setup Rx descriptor ring and Rx buffers */
1076
1077 if (!rx_ring->count)
1078 rx_ring->count = E1000_DEFAULT_RXD;
1079
1080 size = rx_ring->count * sizeof(struct e1000_buffer);
1081 rx_ring->buffer_info = kmalloc(size, GFP_KERNEL);
1082 if (!rx_ring->buffer_info) {
1083 ret_val = 5;
1084 goto err_nomem;
1085 }
1086 memset(rx_ring->buffer_info, 0, size);
1087
1088 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1089 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1090 &rx_ring->dma, GFP_KERNEL);
1091 if (!rx_ring->desc) {
1092 ret_val = 6;
1093 goto err_nomem;
1094 }
1095 memset(rx_ring->desc, 0, rx_ring->size);
1096 rx_ring->next_to_use = 0;
1097 rx_ring->next_to_clean = 0;
1098
1099 rctl = er32(RCTL);
1100 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1101 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1102 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1103 ew32(RDLEN, rx_ring->size);
1104 ew32(RDH, 0);
1105 ew32(RDT, 0);
1106 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1107 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1108 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1109 ew32(RCTL, rctl);
1110
1111 for (i = 0; i < rx_ring->count; i++) {
1112 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1113 struct sk_buff *skb;
1114
1115 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1116 if (!skb) {
1117 ret_val = 7;
1118 goto err_nomem;
1119 }
1120 skb_reserve(skb, NET_IP_ALIGN);
1121 rx_ring->buffer_info[i].skb = skb;
1122 rx_ring->buffer_info[i].dma =
1123 pci_map_single(pdev, skb->data, 2048,
1124 PCI_DMA_FROMDEVICE);
1125 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1126 ret_val = 8;
1127 goto err_nomem;
1128 }
1129 rx_desc->buffer_addr =
1130 cpu_to_le64(rx_ring->buffer_info[i].dma);
1131 memset(skb->data, 0x00, skb->len);
1132 }
1133
1134 return 0;
1135
1136 err_nomem:
1137 e1000_free_desc_rings(adapter);
1138 return ret_val;
1139 }
1140
1141 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1142 {
1143 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1144 e1e_wphy(&adapter->hw, 29, 0x001F);
1145 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1146 e1e_wphy(&adapter->hw, 29, 0x001A);
1147 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1148 }
1149
1150 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1151 {
1152 struct e1000_hw *hw = &adapter->hw;
1153 u32 ctrl_reg = 0;
1154 u32 stat_reg = 0;
1155
1156 adapter->hw.mac.autoneg = 0;
1157
1158 if (adapter->hw.phy.type == e1000_phy_m88) {
1159 /* Auto-MDI/MDIX Off */
1160 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1161 /* reset to update Auto-MDI/MDIX */
1162 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1163 /* autoneg off */
1164 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1165 } else if (adapter->hw.phy.type == e1000_phy_gg82563)
1166 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1167
1168 ctrl_reg = er32(CTRL);
1169
1170 if (adapter->hw.phy.type == e1000_phy_ife) {
1171 /* force 100, set loopback */
1172 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1173
1174 /* Now set up the MAC to the same speed/duplex as the PHY. */
1175 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1176 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1177 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1178 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1179 E1000_CTRL_FD); /* Force Duplex to FULL */
1180 } else {
1181 /* force 1000, set loopback */
1182 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1183
1184 /* Now set up the MAC to the same speed/duplex as the PHY. */
1185 ctrl_reg = er32(CTRL);
1186 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1187 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1188 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1189 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1190 E1000_CTRL_FD); /* Force Duplex to FULL */
1191 }
1192
1193 if (adapter->hw.media_type == e1000_media_type_copper &&
1194 adapter->hw.phy.type == e1000_phy_m88) {
1195 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1196 } else {
1197 /* Set the ILOS bit on the fiber Nic if half duplex link is
1198 * detected. */
1199 stat_reg = er32(STATUS);
1200 if ((stat_reg & E1000_STATUS_FD) == 0)
1201 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1202 }
1203
1204 ew32(CTRL, ctrl_reg);
1205
1206 /* Disable the receiver on the PHY so when a cable is plugged in, the
1207 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1208 */
1209 if (adapter->hw.phy.type == e1000_phy_m88)
1210 e1000_phy_disable_receiver(adapter);
1211
1212 udelay(500);
1213
1214 return 0;
1215 }
1216
1217 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1218 {
1219 struct e1000_hw *hw = &adapter->hw;
1220 u32 ctrl = er32(CTRL);
1221 int link = 0;
1222
1223 /* special requirements for 82571/82572 fiber adapters */
1224
1225 /* jump through hoops to make sure link is up because serdes
1226 * link is hardwired up */
1227 ctrl |= E1000_CTRL_SLU;
1228 ew32(CTRL, ctrl);
1229
1230 /* disable autoneg */
1231 ctrl = er32(TXCW);
1232 ctrl &= ~(1 << 31);
1233 ew32(TXCW, ctrl);
1234
1235 link = (er32(STATUS) & E1000_STATUS_LU);
1236
1237 if (!link) {
1238 /* set invert loss of signal */
1239 ctrl = er32(CTRL);
1240 ctrl |= E1000_CTRL_ILOS;
1241 ew32(CTRL, ctrl);
1242 }
1243
1244 /* special write to serdes control register to enable SerDes analog
1245 * loopback */
1246 #define E1000_SERDES_LB_ON 0x410
1247 ew32(SCTL, E1000_SERDES_LB_ON);
1248 msleep(10);
1249
1250 return 0;
1251 }
1252
1253 /* only call this for fiber/serdes connections to es2lan */
1254 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1255 {
1256 struct e1000_hw *hw = &adapter->hw;
1257 u32 ctrlext = er32(CTRL_EXT);
1258 u32 ctrl = er32(CTRL);
1259
1260 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1261 on mac_type 80003es2lan) */
1262 adapter->tx_fifo_head = ctrlext;
1263
1264 /* clear the serdes mode bits, putting the device into mac loopback */
1265 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1266 ew32(CTRL_EXT, ctrlext);
1267
1268 /* force speed to 1000/FD, link up */
1269 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1270 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1271 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1272 ew32(CTRL, ctrl);
1273
1274 /* set mac loopback */
1275 ctrl = er32(RCTL);
1276 ctrl |= E1000_RCTL_LBM_MAC;
1277 ew32(RCTL, ctrl);
1278
1279 /* set testing mode parameters (no need to reset later) */
1280 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1281 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1282 ew32(KMRNCTRLSTA,
1283 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1284
1285 return 0;
1286 }
1287
1288 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1289 {
1290 struct e1000_hw *hw = &adapter->hw;
1291 u32 rctl;
1292
1293 if (hw->media_type == e1000_media_type_fiber ||
1294 hw->media_type == e1000_media_type_internal_serdes) {
1295 switch (hw->mac.type) {
1296 case e1000_80003es2lan:
1297 return e1000_set_es2lan_mac_loopback(adapter);
1298 break;
1299 case e1000_82571:
1300 case e1000_82572:
1301 return e1000_set_82571_fiber_loopback(adapter);
1302 break;
1303 default:
1304 rctl = er32(RCTL);
1305 rctl |= E1000_RCTL_LBM_TCVR;
1306 ew32(RCTL, rctl);
1307 return 0;
1308 }
1309 } else if (hw->media_type == e1000_media_type_copper) {
1310 return e1000_integrated_phy_loopback(adapter);
1311 }
1312
1313 return 7;
1314 }
1315
1316 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1317 {
1318 struct e1000_hw *hw = &adapter->hw;
1319 u32 rctl;
1320 u16 phy_reg;
1321
1322 rctl = er32(RCTL);
1323 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1324 ew32(RCTL, rctl);
1325
1326 switch (hw->mac.type) {
1327 case e1000_80003es2lan:
1328 if (hw->media_type == e1000_media_type_fiber ||
1329 hw->media_type == e1000_media_type_internal_serdes) {
1330 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1331 ew32(CTRL_EXT,
1332 adapter->tx_fifo_head);
1333 adapter->tx_fifo_head = 0;
1334 }
1335 /* fall through */
1336 case e1000_82571:
1337 case e1000_82572:
1338 if (hw->media_type == e1000_media_type_fiber ||
1339 hw->media_type == e1000_media_type_internal_serdes) {
1340 #define E1000_SERDES_LB_OFF 0x400
1341 ew32(SCTL, E1000_SERDES_LB_OFF);
1342 msleep(10);
1343 break;
1344 }
1345 /* Fall Through */
1346 default:
1347 hw->mac.autoneg = 1;
1348 if (hw->phy.type == e1000_phy_gg82563)
1349 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1350 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1351 if (phy_reg & MII_CR_LOOPBACK) {
1352 phy_reg &= ~MII_CR_LOOPBACK;
1353 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1354 e1000e_commit_phy(hw);
1355 }
1356 break;
1357 }
1358 }
1359
1360 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1361 unsigned int frame_size)
1362 {
1363 memset(skb->data, 0xFF, frame_size);
1364 frame_size &= ~1;
1365 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1366 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1367 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1368 }
1369
1370 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1371 unsigned int frame_size)
1372 {
1373 frame_size &= ~1;
1374 if (*(skb->data + 3) == 0xFF)
1375 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1376 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1377 return 0;
1378 return 13;
1379 }
1380
1381 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1382 {
1383 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1384 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1385 struct pci_dev *pdev = adapter->pdev;
1386 struct e1000_hw *hw = &adapter->hw;
1387 int i, j, k, l;
1388 int lc;
1389 int good_cnt;
1390 int ret_val = 0;
1391 unsigned long time;
1392
1393 ew32(RDT, rx_ring->count - 1);
1394
1395 /* Calculate the loop count based on the largest descriptor ring
1396 * The idea is to wrap the largest ring a number of times using 64
1397 * send/receive pairs during each loop
1398 */
1399
1400 if (rx_ring->count <= tx_ring->count)
1401 lc = ((tx_ring->count / 64) * 2) + 1;
1402 else
1403 lc = ((rx_ring->count / 64) * 2) + 1;
1404
1405 k = 0;
1406 l = 0;
1407 for (j = 0; j <= lc; j++) { /* loop count loop */
1408 for (i = 0; i < 64; i++) { /* send the packets */
1409 e1000_create_lbtest_frame(
1410 tx_ring->buffer_info[i].skb, 1024);
1411 pci_dma_sync_single_for_device(pdev,
1412 tx_ring->buffer_info[k].dma,
1413 tx_ring->buffer_info[k].length,
1414 PCI_DMA_TODEVICE);
1415 k++;
1416 if (k == tx_ring->count)
1417 k = 0;
1418 }
1419 ew32(TDT, k);
1420 msleep(200);
1421 time = jiffies; /* set the start time for the receive */
1422 good_cnt = 0;
1423 do { /* receive the sent packets */
1424 pci_dma_sync_single_for_cpu(pdev,
1425 rx_ring->buffer_info[l].dma, 2048,
1426 PCI_DMA_FROMDEVICE);
1427
1428 ret_val = e1000_check_lbtest_frame(
1429 rx_ring->buffer_info[l].skb, 1024);
1430 if (!ret_val)
1431 good_cnt++;
1432 l++;
1433 if (l == rx_ring->count)
1434 l = 0;
1435 /* time + 20 msecs (200 msecs on 2.4) is more than
1436 * enough time to complete the receives, if it's
1437 * exceeded, break and error off
1438 */
1439 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1440 if (good_cnt != 64) {
1441 ret_val = 13; /* ret_val is the same as mis-compare */
1442 break;
1443 }
1444 if (jiffies >= (time + 2)) {
1445 ret_val = 14; /* error code for time out error */
1446 break;
1447 }
1448 } /* end loop count loop */
1449 return ret_val;
1450 }
1451
1452 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1453 {
1454 /* PHY loopback cannot be performed if SoL/IDER
1455 * sessions are active */
1456 if (e1000_check_reset_block(&adapter->hw)) {
1457 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1458 "when SoL/IDER is active.\n");
1459 *data = 0;
1460 goto out;
1461 }
1462
1463 *data = e1000_setup_desc_rings(adapter);
1464 if (*data)
1465 goto out;
1466
1467 *data = e1000_setup_loopback_test(adapter);
1468 if (*data)
1469 goto err_loopback;
1470
1471 *data = e1000_run_loopback_test(adapter);
1472 e1000_loopback_cleanup(adapter);
1473
1474 err_loopback:
1475 e1000_free_desc_rings(adapter);
1476 out:
1477 return *data;
1478 }
1479
1480 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1481 {
1482 struct e1000_hw *hw = &adapter->hw;
1483
1484 *data = 0;
1485 if (hw->media_type == e1000_media_type_internal_serdes) {
1486 int i = 0;
1487 hw->mac.serdes_has_link = 0;
1488
1489 /* On some blade server designs, link establishment
1490 * could take as long as 2-3 minutes */
1491 do {
1492 hw->mac.ops.check_for_link(hw);
1493 if (hw->mac.serdes_has_link)
1494 return *data;
1495 msleep(20);
1496 } while (i++ < 3750);
1497
1498 *data = 1;
1499 } else {
1500 hw->mac.ops.check_for_link(hw);
1501 if (hw->mac.autoneg)
1502 msleep(4000);
1503
1504 if (!(er32(STATUS) &
1505 E1000_STATUS_LU))
1506 *data = 1;
1507 }
1508 return *data;
1509 }
1510
1511 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1512 {
1513 switch (sset) {
1514 case ETH_SS_TEST:
1515 return E1000_TEST_LEN;
1516 case ETH_SS_STATS:
1517 return E1000_STATS_LEN;
1518 default:
1519 return -EOPNOTSUPP;
1520 }
1521 }
1522
1523 static void e1000_diag_test(struct net_device *netdev,
1524 struct ethtool_test *eth_test, u64 *data)
1525 {
1526 struct e1000_adapter *adapter = netdev_priv(netdev);
1527 u16 autoneg_advertised;
1528 u8 forced_speed_duplex;
1529 u8 autoneg;
1530 bool if_running = netif_running(netdev);
1531
1532 set_bit(__E1000_TESTING, &adapter->state);
1533 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1534 /* Offline tests */
1535
1536 /* save speed, duplex, autoneg settings */
1537 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1538 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1539 autoneg = adapter->hw.mac.autoneg;
1540
1541 ndev_info(netdev, "offline testing starting\n");
1542
1543 /* Link test performed before hardware reset so autoneg doesn't
1544 * interfere with test result */
1545 if (e1000_link_test(adapter, &data[4]))
1546 eth_test->flags |= ETH_TEST_FL_FAILED;
1547
1548 if (if_running)
1549 /* indicate we're in test mode */
1550 dev_close(netdev);
1551 else
1552 e1000e_reset(adapter);
1553
1554 if (e1000_reg_test(adapter, &data[0]))
1555 eth_test->flags |= ETH_TEST_FL_FAILED;
1556
1557 e1000e_reset(adapter);
1558 if (e1000_eeprom_test(adapter, &data[1]))
1559 eth_test->flags |= ETH_TEST_FL_FAILED;
1560
1561 e1000e_reset(adapter);
1562 if (e1000_intr_test(adapter, &data[2]))
1563 eth_test->flags |= ETH_TEST_FL_FAILED;
1564
1565 e1000e_reset(adapter);
1566 /* make sure the phy is powered up */
1567 e1000e_power_up_phy(adapter);
1568 if (e1000_loopback_test(adapter, &data[3]))
1569 eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571 /* restore speed, duplex, autoneg settings */
1572 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1573 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1574 adapter->hw.mac.autoneg = autoneg;
1575
1576 /* force this routine to wait until autoneg complete/timeout */
1577 adapter->hw.phy.wait_for_link = 1;
1578 e1000e_reset(adapter);
1579 adapter->hw.phy.wait_for_link = 0;
1580
1581 clear_bit(__E1000_TESTING, &adapter->state);
1582 if (if_running)
1583 dev_open(netdev);
1584 } else {
1585 ndev_info(netdev, "online testing starting\n");
1586 /* Online tests */
1587 if (e1000_link_test(adapter, &data[4]))
1588 eth_test->flags |= ETH_TEST_FL_FAILED;
1589
1590 /* Online tests aren't run; pass by default */
1591 data[0] = 0;
1592 data[1] = 0;
1593 data[2] = 0;
1594 data[3] = 0;
1595
1596 clear_bit(__E1000_TESTING, &adapter->state);
1597 }
1598 msleep_interruptible(4 * 1000);
1599 }
1600
1601 static void e1000_get_wol(struct net_device *netdev,
1602 struct ethtool_wolinfo *wol)
1603 {
1604 struct e1000_adapter *adapter = netdev_priv(netdev);
1605
1606 wol->supported = 0;
1607 wol->wolopts = 0;
1608
1609 if (!(adapter->flags & FLAG_HAS_WOL))
1610 return;
1611
1612 wol->supported = WAKE_UCAST | WAKE_MCAST |
1613 WAKE_BCAST | WAKE_MAGIC;
1614
1615 /* apply any specific unsupported masks here */
1616 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1617 wol->supported &= ~WAKE_UCAST;
1618
1619 if (adapter->wol & E1000_WUFC_EX)
1620 ndev_err(netdev, "Interface does not support "
1621 "directed (unicast) frame wake-up packets\n");
1622 }
1623
1624 if (adapter->wol & E1000_WUFC_EX)
1625 wol->wolopts |= WAKE_UCAST;
1626 if (adapter->wol & E1000_WUFC_MC)
1627 wol->wolopts |= WAKE_MCAST;
1628 if (adapter->wol & E1000_WUFC_BC)
1629 wol->wolopts |= WAKE_BCAST;
1630 if (adapter->wol & E1000_WUFC_MAG)
1631 wol->wolopts |= WAKE_MAGIC;
1632 }
1633
1634 static int e1000_set_wol(struct net_device *netdev,
1635 struct ethtool_wolinfo *wol)
1636 {
1637 struct e1000_adapter *adapter = netdev_priv(netdev);
1638
1639 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1640 return -EOPNOTSUPP;
1641
1642 if (!(adapter->flags & FLAG_HAS_WOL))
1643 return wol->wolopts ? -EOPNOTSUPP : 0;
1644
1645 /* these settings will always override what we currently have */
1646 adapter->wol = 0;
1647
1648 if (wol->wolopts & WAKE_UCAST)
1649 adapter->wol |= E1000_WUFC_EX;
1650 if (wol->wolopts & WAKE_MCAST)
1651 adapter->wol |= E1000_WUFC_MC;
1652 if (wol->wolopts & WAKE_BCAST)
1653 adapter->wol |= E1000_WUFC_BC;
1654 if (wol->wolopts & WAKE_MAGIC)
1655 adapter->wol |= E1000_WUFC_MAG;
1656
1657 return 0;
1658 }
1659
1660 /* toggle LED 4 times per second = 2 "blinks" per second */
1661 #define E1000_ID_INTERVAL (HZ/4)
1662
1663 /* bit defines for adapter->led_status */
1664 #define E1000_LED_ON 0
1665
1666 static void e1000_led_blink_callback(unsigned long data)
1667 {
1668 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1669
1670 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1671 adapter->hw.mac.ops.led_off(&adapter->hw);
1672 else
1673 adapter->hw.mac.ops.led_on(&adapter->hw);
1674
1675 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1676 }
1677
1678 static int e1000_phys_id(struct net_device *netdev, u32 data)
1679 {
1680 struct e1000_adapter *adapter = netdev_priv(netdev);
1681
1682 if (!data)
1683 data = INT_MAX;
1684
1685 if (adapter->hw.phy.type == e1000_phy_ife) {
1686 if (!adapter->blink_timer.function) {
1687 init_timer(&adapter->blink_timer);
1688 adapter->blink_timer.function =
1689 e1000_led_blink_callback;
1690 adapter->blink_timer.data = (unsigned long) adapter;
1691 }
1692 mod_timer(&adapter->blink_timer, jiffies);
1693 msleep_interruptible(data * 1000);
1694 del_timer_sync(&adapter->blink_timer);
1695 e1e_wphy(&adapter->hw,
1696 IFE_PHY_SPECIAL_CONTROL_LED, 0);
1697 } else {
1698 e1000e_blink_led(&adapter->hw);
1699 msleep_interruptible(data * 1000);
1700 }
1701
1702 adapter->hw.mac.ops.led_off(&adapter->hw);
1703 clear_bit(E1000_LED_ON, &adapter->led_status);
1704 adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1705
1706 return 0;
1707 }
1708
1709 static int e1000_nway_reset(struct net_device *netdev)
1710 {
1711 struct e1000_adapter *adapter = netdev_priv(netdev);
1712 if (netif_running(netdev))
1713 e1000e_reinit_locked(adapter);
1714 return 0;
1715 }
1716
1717 static void e1000_get_ethtool_stats(struct net_device *netdev,
1718 struct ethtool_stats *stats,
1719 u64 *data)
1720 {
1721 struct e1000_adapter *adapter = netdev_priv(netdev);
1722 int i;
1723
1724 e1000e_update_stats(adapter);
1725 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1726 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1727 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1728 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1729 }
1730 }
1731
1732 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1733 u8 *data)
1734 {
1735 u8 *p = data;
1736 int i;
1737
1738 switch (stringset) {
1739 case ETH_SS_TEST:
1740 memcpy(data, *e1000_gstrings_test,
1741 sizeof(e1000_gstrings_test));
1742 break;
1743 case ETH_SS_STATS:
1744 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1745 memcpy(p, e1000_gstrings_stats[i].stat_string,
1746 ETH_GSTRING_LEN);
1747 p += ETH_GSTRING_LEN;
1748 }
1749 break;
1750 }
1751 }
1752
1753 static const struct ethtool_ops e1000_ethtool_ops = {
1754 .get_settings = e1000_get_settings,
1755 .set_settings = e1000_set_settings,
1756 .get_drvinfo = e1000_get_drvinfo,
1757 .get_regs_len = e1000_get_regs_len,
1758 .get_regs = e1000_get_regs,
1759 .get_wol = e1000_get_wol,
1760 .set_wol = e1000_set_wol,
1761 .get_msglevel = e1000_get_msglevel,
1762 .set_msglevel = e1000_set_msglevel,
1763 .nway_reset = e1000_nway_reset,
1764 .get_link = e1000_get_link,
1765 .get_eeprom_len = e1000_get_eeprom_len,
1766 .get_eeprom = e1000_get_eeprom,
1767 .set_eeprom = e1000_set_eeprom,
1768 .get_ringparam = e1000_get_ringparam,
1769 .set_ringparam = e1000_set_ringparam,
1770 .get_pauseparam = e1000_get_pauseparam,
1771 .set_pauseparam = e1000_set_pauseparam,
1772 .get_rx_csum = e1000_get_rx_csum,
1773 .set_rx_csum = e1000_set_rx_csum,
1774 .get_tx_csum = e1000_get_tx_csum,
1775 .set_tx_csum = e1000_set_tx_csum,
1776 .get_sg = ethtool_op_get_sg,
1777 .set_sg = ethtool_op_set_sg,
1778 .get_tso = ethtool_op_get_tso,
1779 .set_tso = e1000_set_tso,
1780 .self_test = e1000_diag_test,
1781 .get_strings = e1000_get_strings,
1782 .phys_id = e1000_phys_id,
1783 .get_ethtool_stats = e1000_get_ethtool_stats,
1784 .get_sset_count = e1000e_get_sset_count,
1785 };
1786
1787 void e1000e_set_ethtool_ops(struct net_device *netdev)
1788 {
1789 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1790 }
This page took 0.075705 seconds and 5 git commands to generate.