8666476cb9be4d723a3dc07f5feb66230aa86fb5
[deliverable/linux.git] / drivers / net / e1000e / phy.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/delay.h>
30
31 #include "e1000.h"
32
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
38 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
39 u16 *data, bool read, bool page_set);
40 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
41 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
42 u16 *data, bool read);
43
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table[] = {
46 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
49
50 static const u16 e1000_igp_2_cable_length_table[] = {
51 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
58 124};
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
61
62 #define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
68
69 #define HV_INTC_FC_PAGE_START 768
70 #define I82578_ADDR_REG 29
71 #define I82577_ADDR_REG 16
72 #define I82577_CFG_REG 22
73 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG 23
76
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2 18
79 #define I82577_PHY_STATUS_2 26
80 #define I82577_PHY_DIAG_STATUS 31
81
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84 #define I82577_PHY_STATUS2_MDIX 0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
87
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
91
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
95
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1 16
98
99 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
102
103 /**
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
106 *
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
110 **/
111 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
112 {
113 u32 manc;
114
115 manc = er32(MANC);
116
117 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
118 E1000_BLK_PHY_RESET : 0;
119 }
120
121 /**
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
124 *
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
127 **/
128 s32 e1000e_get_phy_id(struct e1000_hw *hw)
129 {
130 struct e1000_phy_info *phy = &hw->phy;
131 s32 ret_val = 0;
132 u16 phy_id;
133 u16 retry_count = 0;
134
135 if (!(phy->ops.read_reg))
136 goto out;
137
138 while (retry_count < 2) {
139 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
140 if (ret_val)
141 goto out;
142
143 phy->id = (u32)(phy_id << 16);
144 udelay(20);
145 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
146 if (ret_val)
147 goto out;
148
149 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
150 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
151
152 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
153 goto out;
154
155 retry_count++;
156 }
157 out:
158 return ret_val;
159 }
160
161 /**
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
164 *
165 * Reset the digital signal processor.
166 **/
167 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
168 {
169 s32 ret_val;
170
171 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
172 if (ret_val)
173 return ret_val;
174
175 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
176 }
177
178 /**
179 * e1000e_read_phy_reg_mdic - Read MDI control register
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
183 *
184 * Reads the MDI control register in the PHY at offset and stores the
185 * information read to data.
186 **/
187 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
188 {
189 struct e1000_phy_info *phy = &hw->phy;
190 u32 i, mdic = 0;
191
192 if (offset > MAX_PHY_REG_ADDRESS) {
193 e_dbg("PHY Address %d is out of range\n", offset);
194 return -E1000_ERR_PARAM;
195 }
196
197 /*
198 * Set up Op-code, Phy Address, and register offset in the MDI
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
201 */
202 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
203 (phy->addr << E1000_MDIC_PHY_SHIFT) |
204 (E1000_MDIC_OP_READ));
205
206 ew32(MDIC, mdic);
207
208 /*
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
211 * the lower time out
212 */
213 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
214 udelay(50);
215 mdic = er32(MDIC);
216 if (mdic & E1000_MDIC_READY)
217 break;
218 }
219 if (!(mdic & E1000_MDIC_READY)) {
220 e_dbg("MDI Read did not complete\n");
221 return -E1000_ERR_PHY;
222 }
223 if (mdic & E1000_MDIC_ERROR) {
224 e_dbg("MDI Error\n");
225 return -E1000_ERR_PHY;
226 }
227 *data = (u16) mdic;
228
229 /*
230 * Allow some time after each MDIC transaction to avoid
231 * reading duplicate data in the next MDIC transaction.
232 */
233 if (hw->mac.type == e1000_pch2lan)
234 udelay(100);
235
236 return 0;
237 }
238
239 /**
240 * e1000e_write_phy_reg_mdic - Write MDI control register
241 * @hw: pointer to the HW structure
242 * @offset: register offset to write to
243 * @data: data to write to register at offset
244 *
245 * Writes data to MDI control register in the PHY at offset.
246 **/
247 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
248 {
249 struct e1000_phy_info *phy = &hw->phy;
250 u32 i, mdic = 0;
251
252 if (offset > MAX_PHY_REG_ADDRESS) {
253 e_dbg("PHY Address %d is out of range\n", offset);
254 return -E1000_ERR_PARAM;
255 }
256
257 /*
258 * Set up Op-code, Phy Address, and register offset in the MDI
259 * Control register. The MAC will take care of interfacing with the
260 * PHY to retrieve the desired data.
261 */
262 mdic = (((u32)data) |
263 (offset << E1000_MDIC_REG_SHIFT) |
264 (phy->addr << E1000_MDIC_PHY_SHIFT) |
265 (E1000_MDIC_OP_WRITE));
266
267 ew32(MDIC, mdic);
268
269 /*
270 * Poll the ready bit to see if the MDI read completed
271 * Increasing the time out as testing showed failures with
272 * the lower time out
273 */
274 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
275 udelay(50);
276 mdic = er32(MDIC);
277 if (mdic & E1000_MDIC_READY)
278 break;
279 }
280 if (!(mdic & E1000_MDIC_READY)) {
281 e_dbg("MDI Write did not complete\n");
282 return -E1000_ERR_PHY;
283 }
284 if (mdic & E1000_MDIC_ERROR) {
285 e_dbg("MDI Error\n");
286 return -E1000_ERR_PHY;
287 }
288
289 /*
290 * Allow some time after each MDIC transaction to avoid
291 * reading duplicate data in the next MDIC transaction.
292 */
293 if (hw->mac.type == e1000_pch2lan)
294 udelay(100);
295
296 return 0;
297 }
298
299 /**
300 * e1000e_read_phy_reg_m88 - Read m88 PHY register
301 * @hw: pointer to the HW structure
302 * @offset: register offset to be read
303 * @data: pointer to the read data
304 *
305 * Acquires semaphore, if necessary, then reads the PHY register at offset
306 * and storing the retrieved information in data. Release any acquired
307 * semaphores before exiting.
308 **/
309 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
310 {
311 s32 ret_val;
312
313 ret_val = hw->phy.ops.acquire(hw);
314 if (ret_val)
315 return ret_val;
316
317 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
318 data);
319
320 hw->phy.ops.release(hw);
321
322 return ret_val;
323 }
324
325 /**
326 * e1000e_write_phy_reg_m88 - Write m88 PHY register
327 * @hw: pointer to the HW structure
328 * @offset: register offset to write to
329 * @data: data to write at register offset
330 *
331 * Acquires semaphore, if necessary, then writes the data to PHY register
332 * at the offset. Release any acquired semaphores before exiting.
333 **/
334 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
335 {
336 s32 ret_val;
337
338 ret_val = hw->phy.ops.acquire(hw);
339 if (ret_val)
340 return ret_val;
341
342 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
343 data);
344
345 hw->phy.ops.release(hw);
346
347 return ret_val;
348 }
349
350 /**
351 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
352 * @hw: pointer to the HW structure
353 * @page: page to set (shifted left when necessary)
354 *
355 * Sets PHY page required for PHY register access. Assumes semaphore is
356 * already acquired. Note, this function sets phy.addr to 1 so the caller
357 * must set it appropriately (if necessary) after this function returns.
358 **/
359 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
360 {
361 e_dbg("Setting page 0x%x\n", page);
362
363 hw->phy.addr = 1;
364
365 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
366 }
367
368 /**
369 * __e1000e_read_phy_reg_igp - Read igp PHY register
370 * @hw: pointer to the HW structure
371 * @offset: register offset to be read
372 * @data: pointer to the read data
373 * @locked: semaphore has already been acquired or not
374 *
375 * Acquires semaphore, if necessary, then reads the PHY register at offset
376 * and stores the retrieved information in data. Release any acquired
377 * semaphores before exiting.
378 **/
379 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
380 bool locked)
381 {
382 s32 ret_val = 0;
383
384 if (!locked) {
385 if (!(hw->phy.ops.acquire))
386 goto out;
387
388 ret_val = hw->phy.ops.acquire(hw);
389 if (ret_val)
390 goto out;
391 }
392
393 if (offset > MAX_PHY_MULTI_PAGE_REG) {
394 ret_val = e1000e_write_phy_reg_mdic(hw,
395 IGP01E1000_PHY_PAGE_SELECT,
396 (u16)offset);
397 if (ret_val)
398 goto release;
399 }
400
401 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402 data);
403
404 release:
405 if (!locked)
406 hw->phy.ops.release(hw);
407 out:
408 return ret_val;
409 }
410
411 /**
412 * e1000e_read_phy_reg_igp - Read igp PHY register
413 * @hw: pointer to the HW structure
414 * @offset: register offset to be read
415 * @data: pointer to the read data
416 *
417 * Acquires semaphore then reads the PHY register at offset and stores the
418 * retrieved information in data.
419 * Release the acquired semaphore before exiting.
420 **/
421 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
422 {
423 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
424 }
425
426 /**
427 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
428 * @hw: pointer to the HW structure
429 * @offset: register offset to be read
430 * @data: pointer to the read data
431 *
432 * Reads the PHY register at offset and stores the retrieved information
433 * in data. Assumes semaphore already acquired.
434 **/
435 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
436 {
437 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
438 }
439
440 /**
441 * e1000e_write_phy_reg_igp - Write igp PHY register
442 * @hw: pointer to the HW structure
443 * @offset: register offset to write to
444 * @data: data to write at register offset
445 * @locked: semaphore has already been acquired or not
446 *
447 * Acquires semaphore, if necessary, then writes the data to PHY register
448 * at the offset. Release any acquired semaphores before exiting.
449 **/
450 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
451 bool locked)
452 {
453 s32 ret_val = 0;
454
455 if (!locked) {
456 if (!(hw->phy.ops.acquire))
457 goto out;
458
459 ret_val = hw->phy.ops.acquire(hw);
460 if (ret_val)
461 goto out;
462 }
463
464 if (offset > MAX_PHY_MULTI_PAGE_REG) {
465 ret_val = e1000e_write_phy_reg_mdic(hw,
466 IGP01E1000_PHY_PAGE_SELECT,
467 (u16)offset);
468 if (ret_val)
469 goto release;
470 }
471
472 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
473 data);
474
475 release:
476 if (!locked)
477 hw->phy.ops.release(hw);
478
479 out:
480 return ret_val;
481 }
482
483 /**
484 * e1000e_write_phy_reg_igp - Write igp PHY register
485 * @hw: pointer to the HW structure
486 * @offset: register offset to write to
487 * @data: data to write at register offset
488 *
489 * Acquires semaphore then writes the data to PHY register
490 * at the offset. Release any acquired semaphores before exiting.
491 **/
492 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
493 {
494 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
495 }
496
497 /**
498 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
499 * @hw: pointer to the HW structure
500 * @offset: register offset to write to
501 * @data: data to write at register offset
502 *
503 * Writes the data to PHY register at the offset.
504 * Assumes semaphore already acquired.
505 **/
506 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
507 {
508 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
509 }
510
511 /**
512 * __e1000_read_kmrn_reg - Read kumeran register
513 * @hw: pointer to the HW structure
514 * @offset: register offset to be read
515 * @data: pointer to the read data
516 * @locked: semaphore has already been acquired or not
517 *
518 * Acquires semaphore, if necessary. Then reads the PHY register at offset
519 * using the kumeran interface. The information retrieved is stored in data.
520 * Release any acquired semaphores before exiting.
521 **/
522 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
523 bool locked)
524 {
525 u32 kmrnctrlsta;
526 s32 ret_val = 0;
527
528 if (!locked) {
529 if (!(hw->phy.ops.acquire))
530 goto out;
531
532 ret_val = hw->phy.ops.acquire(hw);
533 if (ret_val)
534 goto out;
535 }
536
537 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
538 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
539 ew32(KMRNCTRLSTA, kmrnctrlsta);
540 e1e_flush();
541
542 udelay(2);
543
544 kmrnctrlsta = er32(KMRNCTRLSTA);
545 *data = (u16)kmrnctrlsta;
546
547 if (!locked)
548 hw->phy.ops.release(hw);
549
550 out:
551 return ret_val;
552 }
553
554 /**
555 * e1000e_read_kmrn_reg - Read kumeran register
556 * @hw: pointer to the HW structure
557 * @offset: register offset to be read
558 * @data: pointer to the read data
559 *
560 * Acquires semaphore then reads the PHY register at offset using the
561 * kumeran interface. The information retrieved is stored in data.
562 * Release the acquired semaphore before exiting.
563 **/
564 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
565 {
566 return __e1000_read_kmrn_reg(hw, offset, data, false);
567 }
568
569 /**
570 * e1000e_read_kmrn_reg_locked - Read kumeran register
571 * @hw: pointer to the HW structure
572 * @offset: register offset to be read
573 * @data: pointer to the read data
574 *
575 * Reads the PHY register at offset using the kumeran interface. The
576 * information retrieved is stored in data.
577 * Assumes semaphore already acquired.
578 **/
579 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
580 {
581 return __e1000_read_kmrn_reg(hw, offset, data, true);
582 }
583
584 /**
585 * __e1000_write_kmrn_reg - Write kumeran register
586 * @hw: pointer to the HW structure
587 * @offset: register offset to write to
588 * @data: data to write at register offset
589 * @locked: semaphore has already been acquired or not
590 *
591 * Acquires semaphore, if necessary. Then write the data to PHY register
592 * at the offset using the kumeran interface. Release any acquired semaphores
593 * before exiting.
594 **/
595 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
596 bool locked)
597 {
598 u32 kmrnctrlsta;
599 s32 ret_val = 0;
600
601 if (!locked) {
602 if (!(hw->phy.ops.acquire))
603 goto out;
604
605 ret_val = hw->phy.ops.acquire(hw);
606 if (ret_val)
607 goto out;
608 }
609
610 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
611 E1000_KMRNCTRLSTA_OFFSET) | data;
612 ew32(KMRNCTRLSTA, kmrnctrlsta);
613 e1e_flush();
614
615 udelay(2);
616
617 if (!locked)
618 hw->phy.ops.release(hw);
619
620 out:
621 return ret_val;
622 }
623
624 /**
625 * e1000e_write_kmrn_reg - Write kumeran register
626 * @hw: pointer to the HW structure
627 * @offset: register offset to write to
628 * @data: data to write at register offset
629 *
630 * Acquires semaphore then writes the data to the PHY register at the offset
631 * using the kumeran interface. Release the acquired semaphore before exiting.
632 **/
633 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
634 {
635 return __e1000_write_kmrn_reg(hw, offset, data, false);
636 }
637
638 /**
639 * e1000e_write_kmrn_reg_locked - Write kumeran register
640 * @hw: pointer to the HW structure
641 * @offset: register offset to write to
642 * @data: data to write at register offset
643 *
644 * Write the data to PHY register at the offset using the kumeran interface.
645 * Assumes semaphore already acquired.
646 **/
647 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
648 {
649 return __e1000_write_kmrn_reg(hw, offset, data, true);
650 }
651
652 /**
653 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
654 * @hw: pointer to the HW structure
655 *
656 * Sets up Carrier-sense on Transmit and downshift values.
657 **/
658 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
659 {
660 s32 ret_val;
661 u16 phy_data;
662
663 /* Enable CRS on Tx. This must be set for half-duplex operation. */
664 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
665 if (ret_val)
666 goto out;
667
668 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
669
670 /* Enable downshift */
671 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
672
673 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
674
675 out:
676 return ret_val;
677 }
678
679 /**
680 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
681 * @hw: pointer to the HW structure
682 *
683 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
684 * and downshift values are set also.
685 **/
686 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
687 {
688 struct e1000_phy_info *phy = &hw->phy;
689 s32 ret_val;
690 u16 phy_data;
691
692 /* Enable CRS on Tx. This must be set for half-duplex operation. */
693 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
694 if (ret_val)
695 return ret_val;
696
697 /* For BM PHY this bit is downshift enable */
698 if (phy->type != e1000_phy_bm)
699 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
700
701 /*
702 * Options:
703 * MDI/MDI-X = 0 (default)
704 * 0 - Auto for all speeds
705 * 1 - MDI mode
706 * 2 - MDI-X mode
707 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
708 */
709 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
710
711 switch (phy->mdix) {
712 case 1:
713 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
714 break;
715 case 2:
716 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
717 break;
718 case 3:
719 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
720 break;
721 case 0:
722 default:
723 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
724 break;
725 }
726
727 /*
728 * Options:
729 * disable_polarity_correction = 0 (default)
730 * Automatic Correction for Reversed Cable Polarity
731 * 0 - Disabled
732 * 1 - Enabled
733 */
734 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
735 if (phy->disable_polarity_correction == 1)
736 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
737
738 /* Enable downshift on BM (disabled by default) */
739 if (phy->type == e1000_phy_bm)
740 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
741
742 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
743 if (ret_val)
744 return ret_val;
745
746 if ((phy->type == e1000_phy_m88) &&
747 (phy->revision < E1000_REVISION_4) &&
748 (phy->id != BME1000_E_PHY_ID_R2)) {
749 /*
750 * Force TX_CLK in the Extended PHY Specific Control Register
751 * to 25MHz clock.
752 */
753 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
754 if (ret_val)
755 return ret_val;
756
757 phy_data |= M88E1000_EPSCR_TX_CLK_25;
758
759 if ((phy->revision == 2) &&
760 (phy->id == M88E1111_I_PHY_ID)) {
761 /* 82573L PHY - set the downshift counter to 5x. */
762 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
763 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
764 } else {
765 /* Configure Master and Slave downshift values */
766 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
767 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
768 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
769 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
770 }
771 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
772 if (ret_val)
773 return ret_val;
774 }
775
776 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
777 /* Set PHY page 0, register 29 to 0x0003 */
778 ret_val = e1e_wphy(hw, 29, 0x0003);
779 if (ret_val)
780 return ret_val;
781
782 /* Set PHY page 0, register 30 to 0x0000 */
783 ret_val = e1e_wphy(hw, 30, 0x0000);
784 if (ret_val)
785 return ret_val;
786 }
787
788 /* Commit the changes. */
789 ret_val = e1000e_commit_phy(hw);
790 if (ret_val) {
791 e_dbg("Error committing the PHY changes\n");
792 return ret_val;
793 }
794
795 if (phy->type == e1000_phy_82578) {
796 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
797 if (ret_val)
798 return ret_val;
799
800 /* 82578 PHY - set the downshift count to 1x. */
801 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
802 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
803 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
804 if (ret_val)
805 return ret_val;
806 }
807
808 return 0;
809 }
810
811 /**
812 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
813 * @hw: pointer to the HW structure
814 *
815 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
816 * igp PHY's.
817 **/
818 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
819 {
820 struct e1000_phy_info *phy = &hw->phy;
821 s32 ret_val;
822 u16 data;
823
824 ret_val = e1000_phy_hw_reset(hw);
825 if (ret_val) {
826 e_dbg("Error resetting the PHY.\n");
827 return ret_val;
828 }
829
830 /*
831 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
832 * timeout issues when LFS is enabled.
833 */
834 msleep(100);
835
836 /* disable lplu d0 during driver init */
837 ret_val = e1000_set_d0_lplu_state(hw, false);
838 if (ret_val) {
839 e_dbg("Error Disabling LPLU D0\n");
840 return ret_val;
841 }
842 /* Configure mdi-mdix settings */
843 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
844 if (ret_val)
845 return ret_val;
846
847 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
848
849 switch (phy->mdix) {
850 case 1:
851 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
852 break;
853 case 2:
854 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
855 break;
856 case 0:
857 default:
858 data |= IGP01E1000_PSCR_AUTO_MDIX;
859 break;
860 }
861 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
862 if (ret_val)
863 return ret_val;
864
865 /* set auto-master slave resolution settings */
866 if (hw->mac.autoneg) {
867 /*
868 * when autonegotiation advertisement is only 1000Mbps then we
869 * should disable SmartSpeed and enable Auto MasterSlave
870 * resolution as hardware default.
871 */
872 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
873 /* Disable SmartSpeed */
874 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
875 &data);
876 if (ret_val)
877 return ret_val;
878
879 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
880 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
881 data);
882 if (ret_val)
883 return ret_val;
884
885 /* Set auto Master/Slave resolution process */
886 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
887 if (ret_val)
888 return ret_val;
889
890 data &= ~CR_1000T_MS_ENABLE;
891 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
892 if (ret_val)
893 return ret_val;
894 }
895
896 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
897 if (ret_val)
898 return ret_val;
899
900 /* load defaults for future use */
901 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
902 ((data & CR_1000T_MS_VALUE) ?
903 e1000_ms_force_master :
904 e1000_ms_force_slave) :
905 e1000_ms_auto;
906
907 switch (phy->ms_type) {
908 case e1000_ms_force_master:
909 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
910 break;
911 case e1000_ms_force_slave:
912 data |= CR_1000T_MS_ENABLE;
913 data &= ~(CR_1000T_MS_VALUE);
914 break;
915 case e1000_ms_auto:
916 data &= ~CR_1000T_MS_ENABLE;
917 default:
918 break;
919 }
920 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
921 }
922
923 return ret_val;
924 }
925
926 /**
927 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928 * @hw: pointer to the HW structure
929 *
930 * Reads the MII auto-neg advertisement register and/or the 1000T control
931 * register and if the PHY is already setup for auto-negotiation, then
932 * return successful. Otherwise, setup advertisement and flow control to
933 * the appropriate values for the wanted auto-negotiation.
934 **/
935 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
936 {
937 struct e1000_phy_info *phy = &hw->phy;
938 s32 ret_val;
939 u16 mii_autoneg_adv_reg;
940 u16 mii_1000t_ctrl_reg = 0;
941
942 phy->autoneg_advertised &= phy->autoneg_mask;
943
944 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
946 if (ret_val)
947 return ret_val;
948
949 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
950 /* Read the MII 1000Base-T Control Register (Address 9). */
951 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
952 if (ret_val)
953 return ret_val;
954 }
955
956 /*
957 * Need to parse both autoneg_advertised and fc and set up
958 * the appropriate PHY registers. First we will parse for
959 * autoneg_advertised software override. Since we can advertise
960 * a plethora of combinations, we need to check each bit
961 * individually.
962 */
963
964 /*
965 * First we clear all the 10/100 mb speed bits in the Auto-Neg
966 * Advertisement Register (Address 4) and the 1000 mb speed bits in
967 * the 1000Base-T Control Register (Address 9).
968 */
969 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
970 NWAY_AR_100TX_HD_CAPS |
971 NWAY_AR_10T_FD_CAPS |
972 NWAY_AR_10T_HD_CAPS);
973 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
974
975 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
976
977 /* Do we want to advertise 10 Mb Half Duplex? */
978 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
979 e_dbg("Advertise 10mb Half duplex\n");
980 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
981 }
982
983 /* Do we want to advertise 10 Mb Full Duplex? */
984 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
985 e_dbg("Advertise 10mb Full duplex\n");
986 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
987 }
988
989 /* Do we want to advertise 100 Mb Half Duplex? */
990 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
991 e_dbg("Advertise 100mb Half duplex\n");
992 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
993 }
994
995 /* Do we want to advertise 100 Mb Full Duplex? */
996 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
997 e_dbg("Advertise 100mb Full duplex\n");
998 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
999 }
1000
1001 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1002 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1003 e_dbg("Advertise 1000mb Half duplex request denied!\n");
1004
1005 /* Do we want to advertise 1000 Mb Full Duplex? */
1006 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1007 e_dbg("Advertise 1000mb Full duplex\n");
1008 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1009 }
1010
1011 /*
1012 * Check for a software override of the flow control settings, and
1013 * setup the PHY advertisement registers accordingly. If
1014 * auto-negotiation is enabled, then software will have to set the
1015 * "PAUSE" bits to the correct value in the Auto-Negotiation
1016 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1017 * negotiation.
1018 *
1019 * The possible values of the "fc" parameter are:
1020 * 0: Flow control is completely disabled
1021 * 1: Rx flow control is enabled (we can receive pause frames
1022 * but not send pause frames).
1023 * 2: Tx flow control is enabled (we can send pause frames
1024 * but we do not support receiving pause frames).
1025 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1026 * other: No software override. The flow control configuration
1027 * in the EEPROM is used.
1028 */
1029 switch (hw->fc.current_mode) {
1030 case e1000_fc_none:
1031 /*
1032 * Flow control (Rx & Tx) is completely disabled by a
1033 * software over-ride.
1034 */
1035 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036 break;
1037 case e1000_fc_rx_pause:
1038 /*
1039 * Rx Flow control is enabled, and Tx Flow control is
1040 * disabled, by a software over-ride.
1041 *
1042 * Since there really isn't a way to advertise that we are
1043 * capable of Rx Pause ONLY, we will advertise that we
1044 * support both symmetric and asymmetric Rx PAUSE. Later
1045 * (in e1000e_config_fc_after_link_up) we will disable the
1046 * hw's ability to send PAUSE frames.
1047 */
1048 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1049 break;
1050 case e1000_fc_tx_pause:
1051 /*
1052 * Tx Flow control is enabled, and Rx Flow control is
1053 * disabled, by a software over-ride.
1054 */
1055 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1056 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1057 break;
1058 case e1000_fc_full:
1059 /*
1060 * Flow control (both Rx and Tx) is enabled by a software
1061 * over-ride.
1062 */
1063 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1064 break;
1065 default:
1066 e_dbg("Flow control param set incorrectly\n");
1067 ret_val = -E1000_ERR_CONFIG;
1068 return ret_val;
1069 }
1070
1071 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1072 if (ret_val)
1073 return ret_val;
1074
1075 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1076
1077 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1078 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1079
1080 return ret_val;
1081 }
1082
1083 /**
1084 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1085 * @hw: pointer to the HW structure
1086 *
1087 * Performs initial bounds checking on autoneg advertisement parameter, then
1088 * configure to advertise the full capability. Setup the PHY to autoneg
1089 * and restart the negotiation process between the link partner. If
1090 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1091 **/
1092 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1093 {
1094 struct e1000_phy_info *phy = &hw->phy;
1095 s32 ret_val;
1096 u16 phy_ctrl;
1097
1098 /*
1099 * Perform some bounds checking on the autoneg advertisement
1100 * parameter.
1101 */
1102 phy->autoneg_advertised &= phy->autoneg_mask;
1103
1104 /*
1105 * If autoneg_advertised is zero, we assume it was not defaulted
1106 * by the calling code so we set to advertise full capability.
1107 */
1108 if (phy->autoneg_advertised == 0)
1109 phy->autoneg_advertised = phy->autoneg_mask;
1110
1111 e_dbg("Reconfiguring auto-neg advertisement params\n");
1112 ret_val = e1000_phy_setup_autoneg(hw);
1113 if (ret_val) {
1114 e_dbg("Error Setting up Auto-Negotiation\n");
1115 return ret_val;
1116 }
1117 e_dbg("Restarting Auto-Neg\n");
1118
1119 /*
1120 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1121 * the Auto Neg Restart bit in the PHY control register.
1122 */
1123 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1124 if (ret_val)
1125 return ret_val;
1126
1127 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1128 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1129 if (ret_val)
1130 return ret_val;
1131
1132 /*
1133 * Does the user want to wait for Auto-Neg to complete here, or
1134 * check at a later time (for example, callback routine).
1135 */
1136 if (phy->autoneg_wait_to_complete) {
1137 ret_val = e1000_wait_autoneg(hw);
1138 if (ret_val) {
1139 e_dbg("Error while waiting for "
1140 "autoneg to complete\n");
1141 return ret_val;
1142 }
1143 }
1144
1145 hw->mac.get_link_status = 1;
1146
1147 return ret_val;
1148 }
1149
1150 /**
1151 * e1000e_setup_copper_link - Configure copper link settings
1152 * @hw: pointer to the HW structure
1153 *
1154 * Calls the appropriate function to configure the link for auto-neg or forced
1155 * speed and duplex. Then we check for link, once link is established calls
1156 * to configure collision distance and flow control are called. If link is
1157 * not established, we return -E1000_ERR_PHY (-2).
1158 **/
1159 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1160 {
1161 s32 ret_val;
1162 bool link;
1163
1164 if (hw->mac.autoneg) {
1165 /*
1166 * Setup autoneg and flow control advertisement and perform
1167 * autonegotiation.
1168 */
1169 ret_val = e1000_copper_link_autoneg(hw);
1170 if (ret_val)
1171 return ret_val;
1172 } else {
1173 /*
1174 * PHY will be set to 10H, 10F, 100H or 100F
1175 * depending on user settings.
1176 */
1177 e_dbg("Forcing Speed and Duplex\n");
1178 ret_val = e1000_phy_force_speed_duplex(hw);
1179 if (ret_val) {
1180 e_dbg("Error Forcing Speed and Duplex\n");
1181 return ret_val;
1182 }
1183 }
1184
1185 /*
1186 * Check link status. Wait up to 100 microseconds for link to become
1187 * valid.
1188 */
1189 ret_val = e1000e_phy_has_link_generic(hw,
1190 COPPER_LINK_UP_LIMIT,
1191 10,
1192 &link);
1193 if (ret_val)
1194 return ret_val;
1195
1196 if (link) {
1197 e_dbg("Valid link established!!!\n");
1198 e1000e_config_collision_dist(hw);
1199 ret_val = e1000e_config_fc_after_link_up(hw);
1200 } else {
1201 e_dbg("Unable to establish link!!!\n");
1202 }
1203
1204 return ret_val;
1205 }
1206
1207 /**
1208 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1209 * @hw: pointer to the HW structure
1210 *
1211 * Calls the PHY setup function to force speed and duplex. Clears the
1212 * auto-crossover to force MDI manually. Waits for link and returns
1213 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1214 **/
1215 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1216 {
1217 struct e1000_phy_info *phy = &hw->phy;
1218 s32 ret_val;
1219 u16 phy_data;
1220 bool link;
1221
1222 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1223 if (ret_val)
1224 return ret_val;
1225
1226 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1227
1228 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1229 if (ret_val)
1230 return ret_val;
1231
1232 /*
1233 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1234 * forced whenever speed and duplex are forced.
1235 */
1236 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1237 if (ret_val)
1238 return ret_val;
1239
1240 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1241 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1242
1243 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1244 if (ret_val)
1245 return ret_val;
1246
1247 e_dbg("IGP PSCR: %X\n", phy_data);
1248
1249 udelay(1);
1250
1251 if (phy->autoneg_wait_to_complete) {
1252 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1253
1254 ret_val = e1000e_phy_has_link_generic(hw,
1255 PHY_FORCE_LIMIT,
1256 100000,
1257 &link);
1258 if (ret_val)
1259 return ret_val;
1260
1261 if (!link)
1262 e_dbg("Link taking longer than expected.\n");
1263
1264 /* Try once more */
1265 ret_val = e1000e_phy_has_link_generic(hw,
1266 PHY_FORCE_LIMIT,
1267 100000,
1268 &link);
1269 if (ret_val)
1270 return ret_val;
1271 }
1272
1273 return ret_val;
1274 }
1275
1276 /**
1277 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1278 * @hw: pointer to the HW structure
1279 *
1280 * Calls the PHY setup function to force speed and duplex. Clears the
1281 * auto-crossover to force MDI manually. Resets the PHY to commit the
1282 * changes. If time expires while waiting for link up, we reset the DSP.
1283 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1284 * successful completion, else return corresponding error code.
1285 **/
1286 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1287 {
1288 struct e1000_phy_info *phy = &hw->phy;
1289 s32 ret_val;
1290 u16 phy_data;
1291 bool link;
1292
1293 /*
1294 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1295 * forced whenever speed and duplex are forced.
1296 */
1297 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1298 if (ret_val)
1299 return ret_val;
1300
1301 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1302 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1303 if (ret_val)
1304 return ret_val;
1305
1306 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1307
1308 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1309 if (ret_val)
1310 return ret_val;
1311
1312 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1313
1314 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1315 if (ret_val)
1316 return ret_val;
1317
1318 /* Reset the phy to commit changes. */
1319 ret_val = e1000e_commit_phy(hw);
1320 if (ret_val)
1321 return ret_val;
1322
1323 if (phy->autoneg_wait_to_complete) {
1324 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1325
1326 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1327 100000, &link);
1328 if (ret_val)
1329 return ret_val;
1330
1331 if (!link) {
1332 if (hw->phy.type != e1000_phy_m88) {
1333 e_dbg("Link taking longer than expected.\n");
1334 } else {
1335 /*
1336 * We didn't get link.
1337 * Reset the DSP and cross our fingers.
1338 */
1339 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1340 0x001d);
1341 if (ret_val)
1342 return ret_val;
1343 ret_val = e1000e_phy_reset_dsp(hw);
1344 if (ret_val)
1345 return ret_val;
1346 }
1347 }
1348
1349 /* Try once more */
1350 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1351 100000, &link);
1352 if (ret_val)
1353 return ret_val;
1354 }
1355
1356 if (hw->phy.type != e1000_phy_m88)
1357 return 0;
1358
1359 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1360 if (ret_val)
1361 return ret_val;
1362
1363 /*
1364 * Resetting the phy means we need to re-force TX_CLK in the
1365 * Extended PHY Specific Control Register to 25MHz clock from
1366 * the reset value of 2.5MHz.
1367 */
1368 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1369 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1370 if (ret_val)
1371 return ret_val;
1372
1373 /*
1374 * In addition, we must re-enable CRS on Tx for both half and full
1375 * duplex.
1376 */
1377 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1378 if (ret_val)
1379 return ret_val;
1380
1381 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1382 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1383
1384 return ret_val;
1385 }
1386
1387 /**
1388 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1389 * @hw: pointer to the HW structure
1390 *
1391 * Forces the speed and duplex settings of the PHY.
1392 * This is a function pointer entry point only called by
1393 * PHY setup routines.
1394 **/
1395 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1396 {
1397 struct e1000_phy_info *phy = &hw->phy;
1398 s32 ret_val;
1399 u16 data;
1400 bool link;
1401
1402 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1403 if (ret_val)
1404 goto out;
1405
1406 e1000e_phy_force_speed_duplex_setup(hw, &data);
1407
1408 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1409 if (ret_val)
1410 goto out;
1411
1412 /* Disable MDI-X support for 10/100 */
1413 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1414 if (ret_val)
1415 goto out;
1416
1417 data &= ~IFE_PMC_AUTO_MDIX;
1418 data &= ~IFE_PMC_FORCE_MDIX;
1419
1420 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1421 if (ret_val)
1422 goto out;
1423
1424 e_dbg("IFE PMC: %X\n", data);
1425
1426 udelay(1);
1427
1428 if (phy->autoneg_wait_to_complete) {
1429 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1430
1431 ret_val = e1000e_phy_has_link_generic(hw,
1432 PHY_FORCE_LIMIT,
1433 100000,
1434 &link);
1435 if (ret_val)
1436 goto out;
1437
1438 if (!link)
1439 e_dbg("Link taking longer than expected.\n");
1440
1441 /* Try once more */
1442 ret_val = e1000e_phy_has_link_generic(hw,
1443 PHY_FORCE_LIMIT,
1444 100000,
1445 &link);
1446 if (ret_val)
1447 goto out;
1448 }
1449
1450 out:
1451 return ret_val;
1452 }
1453
1454 /**
1455 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1456 * @hw: pointer to the HW structure
1457 * @phy_ctrl: pointer to current value of PHY_CONTROL
1458 *
1459 * Forces speed and duplex on the PHY by doing the following: disable flow
1460 * control, force speed/duplex on the MAC, disable auto speed detection,
1461 * disable auto-negotiation, configure duplex, configure speed, configure
1462 * the collision distance, write configuration to CTRL register. The
1463 * caller must write to the PHY_CONTROL register for these settings to
1464 * take affect.
1465 **/
1466 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1467 {
1468 struct e1000_mac_info *mac = &hw->mac;
1469 u32 ctrl;
1470
1471 /* Turn off flow control when forcing speed/duplex */
1472 hw->fc.current_mode = e1000_fc_none;
1473
1474 /* Force speed/duplex on the mac */
1475 ctrl = er32(CTRL);
1476 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1477 ctrl &= ~E1000_CTRL_SPD_SEL;
1478
1479 /* Disable Auto Speed Detection */
1480 ctrl &= ~E1000_CTRL_ASDE;
1481
1482 /* Disable autoneg on the phy */
1483 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1484
1485 /* Forcing Full or Half Duplex? */
1486 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1487 ctrl &= ~E1000_CTRL_FD;
1488 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1489 e_dbg("Half Duplex\n");
1490 } else {
1491 ctrl |= E1000_CTRL_FD;
1492 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1493 e_dbg("Full Duplex\n");
1494 }
1495
1496 /* Forcing 10mb or 100mb? */
1497 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1498 ctrl |= E1000_CTRL_SPD_100;
1499 *phy_ctrl |= MII_CR_SPEED_100;
1500 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1501 e_dbg("Forcing 100mb\n");
1502 } else {
1503 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1504 *phy_ctrl |= MII_CR_SPEED_10;
1505 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1506 e_dbg("Forcing 10mb\n");
1507 }
1508
1509 e1000e_config_collision_dist(hw);
1510
1511 ew32(CTRL, ctrl);
1512 }
1513
1514 /**
1515 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 * @hw: pointer to the HW structure
1517 * @active: boolean used to enable/disable lplu
1518 *
1519 * Success returns 0, Failure returns 1
1520 *
1521 * The low power link up (lplu) state is set to the power management level D3
1522 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1524 * is used during Dx states where the power conservation is most important.
1525 * During driver activity, SmartSpeed should be enabled so performance is
1526 * maintained.
1527 **/
1528 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529 {
1530 struct e1000_phy_info *phy = &hw->phy;
1531 s32 ret_val;
1532 u16 data;
1533
1534 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535 if (ret_val)
1536 return ret_val;
1537
1538 if (!active) {
1539 data &= ~IGP02E1000_PM_D3_LPLU;
1540 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541 if (ret_val)
1542 return ret_val;
1543 /*
1544 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1545 * during Dx states where the power conservation is most
1546 * important. During driver activity we should enable
1547 * SmartSpeed, so performance is maintained.
1548 */
1549 if (phy->smart_speed == e1000_smart_speed_on) {
1550 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1551 &data);
1552 if (ret_val)
1553 return ret_val;
1554
1555 data |= IGP01E1000_PSCFR_SMART_SPEED;
1556 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557 data);
1558 if (ret_val)
1559 return ret_val;
1560 } else if (phy->smart_speed == e1000_smart_speed_off) {
1561 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1562 &data);
1563 if (ret_val)
1564 return ret_val;
1565
1566 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1567 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568 data);
1569 if (ret_val)
1570 return ret_val;
1571 }
1572 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1573 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1574 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1575 data |= IGP02E1000_PM_D3_LPLU;
1576 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1577 if (ret_val)
1578 return ret_val;
1579
1580 /* When LPLU is enabled, we should disable SmartSpeed */
1581 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1582 if (ret_val)
1583 return ret_val;
1584
1585 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1586 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1587 }
1588
1589 return ret_val;
1590 }
1591
1592 /**
1593 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1594 * @hw: pointer to the HW structure
1595 *
1596 * Success returns 0, Failure returns 1
1597 *
1598 * A downshift is detected by querying the PHY link health.
1599 **/
1600 s32 e1000e_check_downshift(struct e1000_hw *hw)
1601 {
1602 struct e1000_phy_info *phy = &hw->phy;
1603 s32 ret_val;
1604 u16 phy_data, offset, mask;
1605
1606 switch (phy->type) {
1607 case e1000_phy_m88:
1608 case e1000_phy_gg82563:
1609 case e1000_phy_bm:
1610 case e1000_phy_82578:
1611 offset = M88E1000_PHY_SPEC_STATUS;
1612 mask = M88E1000_PSSR_DOWNSHIFT;
1613 break;
1614 case e1000_phy_igp_2:
1615 case e1000_phy_igp_3:
1616 offset = IGP01E1000_PHY_LINK_HEALTH;
1617 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1618 break;
1619 default:
1620 /* speed downshift not supported */
1621 phy->speed_downgraded = false;
1622 return 0;
1623 }
1624
1625 ret_val = e1e_rphy(hw, offset, &phy_data);
1626
1627 if (!ret_val)
1628 phy->speed_downgraded = (phy_data & mask);
1629
1630 return ret_val;
1631 }
1632
1633 /**
1634 * e1000_check_polarity_m88 - Checks the polarity.
1635 * @hw: pointer to the HW structure
1636 *
1637 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1638 *
1639 * Polarity is determined based on the PHY specific status register.
1640 **/
1641 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1642 {
1643 struct e1000_phy_info *phy = &hw->phy;
1644 s32 ret_val;
1645 u16 data;
1646
1647 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1648
1649 if (!ret_val)
1650 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1651 ? e1000_rev_polarity_reversed
1652 : e1000_rev_polarity_normal;
1653
1654 return ret_val;
1655 }
1656
1657 /**
1658 * e1000_check_polarity_igp - Checks the polarity.
1659 * @hw: pointer to the HW structure
1660 *
1661 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1662 *
1663 * Polarity is determined based on the PHY port status register, and the
1664 * current speed (since there is no polarity at 100Mbps).
1665 **/
1666 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1667 {
1668 struct e1000_phy_info *phy = &hw->phy;
1669 s32 ret_val;
1670 u16 data, offset, mask;
1671
1672 /*
1673 * Polarity is determined based on the speed of
1674 * our connection.
1675 */
1676 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1677 if (ret_val)
1678 return ret_val;
1679
1680 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1681 IGP01E1000_PSSR_SPEED_1000MBPS) {
1682 offset = IGP01E1000_PHY_PCS_INIT_REG;
1683 mask = IGP01E1000_PHY_POLARITY_MASK;
1684 } else {
1685 /*
1686 * This really only applies to 10Mbps since
1687 * there is no polarity for 100Mbps (always 0).
1688 */
1689 offset = IGP01E1000_PHY_PORT_STATUS;
1690 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1691 }
1692
1693 ret_val = e1e_rphy(hw, offset, &data);
1694
1695 if (!ret_val)
1696 phy->cable_polarity = (data & mask)
1697 ? e1000_rev_polarity_reversed
1698 : e1000_rev_polarity_normal;
1699
1700 return ret_val;
1701 }
1702
1703 /**
1704 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1705 * @hw: pointer to the HW structure
1706 *
1707 * Polarity is determined on the polarity reversal feature being enabled.
1708 **/
1709 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1710 {
1711 struct e1000_phy_info *phy = &hw->phy;
1712 s32 ret_val;
1713 u16 phy_data, offset, mask;
1714
1715 /*
1716 * Polarity is determined based on the reversal feature being enabled.
1717 */
1718 if (phy->polarity_correction) {
1719 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1720 mask = IFE_PESC_POLARITY_REVERSED;
1721 } else {
1722 offset = IFE_PHY_SPECIAL_CONTROL;
1723 mask = IFE_PSC_FORCE_POLARITY;
1724 }
1725
1726 ret_val = e1e_rphy(hw, offset, &phy_data);
1727
1728 if (!ret_val)
1729 phy->cable_polarity = (phy_data & mask)
1730 ? e1000_rev_polarity_reversed
1731 : e1000_rev_polarity_normal;
1732
1733 return ret_val;
1734 }
1735
1736 /**
1737 * e1000_wait_autoneg - Wait for auto-neg completion
1738 * @hw: pointer to the HW structure
1739 *
1740 * Waits for auto-negotiation to complete or for the auto-negotiation time
1741 * limit to expire, which ever happens first.
1742 **/
1743 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1744 {
1745 s32 ret_val = 0;
1746 u16 i, phy_status;
1747
1748 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1749 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1750 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1751 if (ret_val)
1752 break;
1753 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1754 if (ret_val)
1755 break;
1756 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1757 break;
1758 msleep(100);
1759 }
1760
1761 /*
1762 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1763 * has completed.
1764 */
1765 return ret_val;
1766 }
1767
1768 /**
1769 * e1000e_phy_has_link_generic - Polls PHY for link
1770 * @hw: pointer to the HW structure
1771 * @iterations: number of times to poll for link
1772 * @usec_interval: delay between polling attempts
1773 * @success: pointer to whether polling was successful or not
1774 *
1775 * Polls the PHY status register for link, 'iterations' number of times.
1776 **/
1777 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1778 u32 usec_interval, bool *success)
1779 {
1780 s32 ret_val = 0;
1781 u16 i, phy_status;
1782
1783 for (i = 0; i < iterations; i++) {
1784 /*
1785 * Some PHYs require the PHY_STATUS register to be read
1786 * twice due to the link bit being sticky. No harm doing
1787 * it across the board.
1788 */
1789 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1790 if (ret_val)
1791 /*
1792 * If the first read fails, another entity may have
1793 * ownership of the resources, wait and try again to
1794 * see if they have relinquished the resources yet.
1795 */
1796 udelay(usec_interval);
1797 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1798 if (ret_val)
1799 break;
1800 if (phy_status & MII_SR_LINK_STATUS)
1801 break;
1802 if (usec_interval >= 1000)
1803 mdelay(usec_interval/1000);
1804 else
1805 udelay(usec_interval);
1806 }
1807
1808 *success = (i < iterations);
1809
1810 return ret_val;
1811 }
1812
1813 /**
1814 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1815 * @hw: pointer to the HW structure
1816 *
1817 * Reads the PHY specific status register to retrieve the cable length
1818 * information. The cable length is determined by averaging the minimum and
1819 * maximum values to get the "average" cable length. The m88 PHY has four
1820 * possible cable length values, which are:
1821 * Register Value Cable Length
1822 * 0 < 50 meters
1823 * 1 50 - 80 meters
1824 * 2 80 - 110 meters
1825 * 3 110 - 140 meters
1826 * 4 > 140 meters
1827 **/
1828 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1829 {
1830 struct e1000_phy_info *phy = &hw->phy;
1831 s32 ret_val;
1832 u16 phy_data, index;
1833
1834 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1835 if (ret_val)
1836 goto out;
1837
1838 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1839 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1840 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1841 ret_val = -E1000_ERR_PHY;
1842 goto out;
1843 }
1844
1845 phy->min_cable_length = e1000_m88_cable_length_table[index];
1846 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1847
1848 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1849
1850 out:
1851 return ret_val;
1852 }
1853
1854 /**
1855 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1856 * @hw: pointer to the HW structure
1857 *
1858 * The automatic gain control (agc) normalizes the amplitude of the
1859 * received signal, adjusting for the attenuation produced by the
1860 * cable. By reading the AGC registers, which represent the
1861 * combination of coarse and fine gain value, the value can be put
1862 * into a lookup table to obtain the approximate cable length
1863 * for each channel.
1864 **/
1865 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1866 {
1867 struct e1000_phy_info *phy = &hw->phy;
1868 s32 ret_val;
1869 u16 phy_data, i, agc_value = 0;
1870 u16 cur_agc_index, max_agc_index = 0;
1871 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1872 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1873 IGP02E1000_PHY_AGC_A,
1874 IGP02E1000_PHY_AGC_B,
1875 IGP02E1000_PHY_AGC_C,
1876 IGP02E1000_PHY_AGC_D
1877 };
1878
1879 /* Read the AGC registers for all channels */
1880 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1881 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1882 if (ret_val)
1883 return ret_val;
1884
1885 /*
1886 * Getting bits 15:9, which represent the combination of
1887 * coarse and fine gain values. The result is a number
1888 * that can be put into the lookup table to obtain the
1889 * approximate cable length.
1890 */
1891 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1892 IGP02E1000_AGC_LENGTH_MASK;
1893
1894 /* Array index bound check. */
1895 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1896 (cur_agc_index == 0))
1897 return -E1000_ERR_PHY;
1898
1899 /* Remove min & max AGC values from calculation. */
1900 if (e1000_igp_2_cable_length_table[min_agc_index] >
1901 e1000_igp_2_cable_length_table[cur_agc_index])
1902 min_agc_index = cur_agc_index;
1903 if (e1000_igp_2_cable_length_table[max_agc_index] <
1904 e1000_igp_2_cable_length_table[cur_agc_index])
1905 max_agc_index = cur_agc_index;
1906
1907 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1908 }
1909
1910 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1911 e1000_igp_2_cable_length_table[max_agc_index]);
1912 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1913
1914 /* Calculate cable length with the error range of +/- 10 meters. */
1915 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1916 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1917 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1918
1919 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1920
1921 return ret_val;
1922 }
1923
1924 /**
1925 * e1000e_get_phy_info_m88 - Retrieve PHY information
1926 * @hw: pointer to the HW structure
1927 *
1928 * Valid for only copper links. Read the PHY status register (sticky read)
1929 * to verify that link is up. Read the PHY special control register to
1930 * determine the polarity and 10base-T extended distance. Read the PHY
1931 * special status register to determine MDI/MDIx and current speed. If
1932 * speed is 1000, then determine cable length, local and remote receiver.
1933 **/
1934 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1935 {
1936 struct e1000_phy_info *phy = &hw->phy;
1937 s32 ret_val;
1938 u16 phy_data;
1939 bool link;
1940
1941 if (phy->media_type != e1000_media_type_copper) {
1942 e_dbg("Phy info is only valid for copper media\n");
1943 return -E1000_ERR_CONFIG;
1944 }
1945
1946 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1947 if (ret_val)
1948 return ret_val;
1949
1950 if (!link) {
1951 e_dbg("Phy info is only valid if link is up\n");
1952 return -E1000_ERR_CONFIG;
1953 }
1954
1955 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1956 if (ret_val)
1957 return ret_val;
1958
1959 phy->polarity_correction = (phy_data &
1960 M88E1000_PSCR_POLARITY_REVERSAL);
1961
1962 ret_val = e1000_check_polarity_m88(hw);
1963 if (ret_val)
1964 return ret_val;
1965
1966 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1967 if (ret_val)
1968 return ret_val;
1969
1970 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1971
1972 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1973 ret_val = e1000_get_cable_length(hw);
1974 if (ret_val)
1975 return ret_val;
1976
1977 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1978 if (ret_val)
1979 return ret_val;
1980
1981 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1982 ? e1000_1000t_rx_status_ok
1983 : e1000_1000t_rx_status_not_ok;
1984
1985 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1986 ? e1000_1000t_rx_status_ok
1987 : e1000_1000t_rx_status_not_ok;
1988 } else {
1989 /* Set values to "undefined" */
1990 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1991 phy->local_rx = e1000_1000t_rx_status_undefined;
1992 phy->remote_rx = e1000_1000t_rx_status_undefined;
1993 }
1994
1995 return ret_val;
1996 }
1997
1998 /**
1999 * e1000e_get_phy_info_igp - Retrieve igp PHY information
2000 * @hw: pointer to the HW structure
2001 *
2002 * Read PHY status to determine if link is up. If link is up, then
2003 * set/determine 10base-T extended distance and polarity correction. Read
2004 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2005 * determine on the cable length, local and remote receiver.
2006 **/
2007 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2008 {
2009 struct e1000_phy_info *phy = &hw->phy;
2010 s32 ret_val;
2011 u16 data;
2012 bool link;
2013
2014 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2015 if (ret_val)
2016 return ret_val;
2017
2018 if (!link) {
2019 e_dbg("Phy info is only valid if link is up\n");
2020 return -E1000_ERR_CONFIG;
2021 }
2022
2023 phy->polarity_correction = true;
2024
2025 ret_val = e1000_check_polarity_igp(hw);
2026 if (ret_val)
2027 return ret_val;
2028
2029 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2030 if (ret_val)
2031 return ret_val;
2032
2033 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2034
2035 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2036 IGP01E1000_PSSR_SPEED_1000MBPS) {
2037 ret_val = e1000_get_cable_length(hw);
2038 if (ret_val)
2039 return ret_val;
2040
2041 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2042 if (ret_val)
2043 return ret_val;
2044
2045 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2046 ? e1000_1000t_rx_status_ok
2047 : e1000_1000t_rx_status_not_ok;
2048
2049 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2050 ? e1000_1000t_rx_status_ok
2051 : e1000_1000t_rx_status_not_ok;
2052 } else {
2053 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2054 phy->local_rx = e1000_1000t_rx_status_undefined;
2055 phy->remote_rx = e1000_1000t_rx_status_undefined;
2056 }
2057
2058 return ret_val;
2059 }
2060
2061 /**
2062 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2063 * @hw: pointer to the HW structure
2064 *
2065 * Populates "phy" structure with various feature states.
2066 **/
2067 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2068 {
2069 struct e1000_phy_info *phy = &hw->phy;
2070 s32 ret_val;
2071 u16 data;
2072 bool link;
2073
2074 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2075 if (ret_val)
2076 goto out;
2077
2078 if (!link) {
2079 e_dbg("Phy info is only valid if link is up\n");
2080 ret_val = -E1000_ERR_CONFIG;
2081 goto out;
2082 }
2083
2084 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2085 if (ret_val)
2086 goto out;
2087 phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2088 ? false : true;
2089
2090 if (phy->polarity_correction) {
2091 ret_val = e1000_check_polarity_ife(hw);
2092 if (ret_val)
2093 goto out;
2094 } else {
2095 /* Polarity is forced */
2096 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2097 ? e1000_rev_polarity_reversed
2098 : e1000_rev_polarity_normal;
2099 }
2100
2101 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2102 if (ret_val)
2103 goto out;
2104
2105 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2106
2107 /* The following parameters are undefined for 10/100 operation. */
2108 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2109 phy->local_rx = e1000_1000t_rx_status_undefined;
2110 phy->remote_rx = e1000_1000t_rx_status_undefined;
2111
2112 out:
2113 return ret_val;
2114 }
2115
2116 /**
2117 * e1000e_phy_sw_reset - PHY software reset
2118 * @hw: pointer to the HW structure
2119 *
2120 * Does a software reset of the PHY by reading the PHY control register and
2121 * setting/write the control register reset bit to the PHY.
2122 **/
2123 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2124 {
2125 s32 ret_val;
2126 u16 phy_ctrl;
2127
2128 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2129 if (ret_val)
2130 return ret_val;
2131
2132 phy_ctrl |= MII_CR_RESET;
2133 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2134 if (ret_val)
2135 return ret_val;
2136
2137 udelay(1);
2138
2139 return ret_val;
2140 }
2141
2142 /**
2143 * e1000e_phy_hw_reset_generic - PHY hardware reset
2144 * @hw: pointer to the HW structure
2145 *
2146 * Verify the reset block is not blocking us from resetting. Acquire
2147 * semaphore (if necessary) and read/set/write the device control reset
2148 * bit in the PHY. Wait the appropriate delay time for the device to
2149 * reset and release the semaphore (if necessary).
2150 **/
2151 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2152 {
2153 struct e1000_phy_info *phy = &hw->phy;
2154 s32 ret_val;
2155 u32 ctrl;
2156
2157 ret_val = e1000_check_reset_block(hw);
2158 if (ret_val)
2159 return 0;
2160
2161 ret_val = phy->ops.acquire(hw);
2162 if (ret_val)
2163 return ret_val;
2164
2165 ctrl = er32(CTRL);
2166 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2167 e1e_flush();
2168
2169 udelay(phy->reset_delay_us);
2170
2171 ew32(CTRL, ctrl);
2172 e1e_flush();
2173
2174 udelay(150);
2175
2176 phy->ops.release(hw);
2177
2178 return e1000_get_phy_cfg_done(hw);
2179 }
2180
2181 /**
2182 * e1000e_get_cfg_done - Generic configuration done
2183 * @hw: pointer to the HW structure
2184 *
2185 * Generic function to wait 10 milli-seconds for configuration to complete
2186 * and return success.
2187 **/
2188 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2189 {
2190 mdelay(10);
2191 return 0;
2192 }
2193
2194 /**
2195 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2196 * @hw: pointer to the HW structure
2197 *
2198 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2199 **/
2200 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2201 {
2202 e_dbg("Running IGP 3 PHY init script\n");
2203
2204 /* PHY init IGP 3 */
2205 /* Enable rise/fall, 10-mode work in class-A */
2206 e1e_wphy(hw, 0x2F5B, 0x9018);
2207 /* Remove all caps from Replica path filter */
2208 e1e_wphy(hw, 0x2F52, 0x0000);
2209 /* Bias trimming for ADC, AFE and Driver (Default) */
2210 e1e_wphy(hw, 0x2FB1, 0x8B24);
2211 /* Increase Hybrid poly bias */
2212 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2213 /* Add 4% to Tx amplitude in Gig mode */
2214 e1e_wphy(hw, 0x2010, 0x10B0);
2215 /* Disable trimming (TTT) */
2216 e1e_wphy(hw, 0x2011, 0x0000);
2217 /* Poly DC correction to 94.6% + 2% for all channels */
2218 e1e_wphy(hw, 0x20DD, 0x249A);
2219 /* ABS DC correction to 95.9% */
2220 e1e_wphy(hw, 0x20DE, 0x00D3);
2221 /* BG temp curve trim */
2222 e1e_wphy(hw, 0x28B4, 0x04CE);
2223 /* Increasing ADC OPAMP stage 1 currents to max */
2224 e1e_wphy(hw, 0x2F70, 0x29E4);
2225 /* Force 1000 ( required for enabling PHY regs configuration) */
2226 e1e_wphy(hw, 0x0000, 0x0140);
2227 /* Set upd_freq to 6 */
2228 e1e_wphy(hw, 0x1F30, 0x1606);
2229 /* Disable NPDFE */
2230 e1e_wphy(hw, 0x1F31, 0xB814);
2231 /* Disable adaptive fixed FFE (Default) */
2232 e1e_wphy(hw, 0x1F35, 0x002A);
2233 /* Enable FFE hysteresis */
2234 e1e_wphy(hw, 0x1F3E, 0x0067);
2235 /* Fixed FFE for short cable lengths */
2236 e1e_wphy(hw, 0x1F54, 0x0065);
2237 /* Fixed FFE for medium cable lengths */
2238 e1e_wphy(hw, 0x1F55, 0x002A);
2239 /* Fixed FFE for long cable lengths */
2240 e1e_wphy(hw, 0x1F56, 0x002A);
2241 /* Enable Adaptive Clip Threshold */
2242 e1e_wphy(hw, 0x1F72, 0x3FB0);
2243 /* AHT reset limit to 1 */
2244 e1e_wphy(hw, 0x1F76, 0xC0FF);
2245 /* Set AHT master delay to 127 msec */
2246 e1e_wphy(hw, 0x1F77, 0x1DEC);
2247 /* Set scan bits for AHT */
2248 e1e_wphy(hw, 0x1F78, 0xF9EF);
2249 /* Set AHT Preset bits */
2250 e1e_wphy(hw, 0x1F79, 0x0210);
2251 /* Change integ_factor of channel A to 3 */
2252 e1e_wphy(hw, 0x1895, 0x0003);
2253 /* Change prop_factor of channels BCD to 8 */
2254 e1e_wphy(hw, 0x1796, 0x0008);
2255 /* Change cg_icount + enable integbp for channels BCD */
2256 e1e_wphy(hw, 0x1798, 0xD008);
2257 /*
2258 * Change cg_icount + enable integbp + change prop_factor_master
2259 * to 8 for channel A
2260 */
2261 e1e_wphy(hw, 0x1898, 0xD918);
2262 /* Disable AHT in Slave mode on channel A */
2263 e1e_wphy(hw, 0x187A, 0x0800);
2264 /*
2265 * Enable LPLU and disable AN to 1000 in non-D0a states,
2266 * Enable SPD+B2B
2267 */
2268 e1e_wphy(hw, 0x0019, 0x008D);
2269 /* Enable restart AN on an1000_dis change */
2270 e1e_wphy(hw, 0x001B, 0x2080);
2271 /* Enable wh_fifo read clock in 10/100 modes */
2272 e1e_wphy(hw, 0x0014, 0x0045);
2273 /* Restart AN, Speed selection is 1000 */
2274 e1e_wphy(hw, 0x0000, 0x1340);
2275
2276 return 0;
2277 }
2278
2279 /* Internal function pointers */
2280
2281 /**
2282 * e1000_get_phy_cfg_done - Generic PHY configuration done
2283 * @hw: pointer to the HW structure
2284 *
2285 * Return success if silicon family did not implement a family specific
2286 * get_cfg_done function.
2287 **/
2288 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2289 {
2290 if (hw->phy.ops.get_cfg_done)
2291 return hw->phy.ops.get_cfg_done(hw);
2292
2293 return 0;
2294 }
2295
2296 /**
2297 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2298 * @hw: pointer to the HW structure
2299 *
2300 * When the silicon family has not implemented a forced speed/duplex
2301 * function for the PHY, simply return 0.
2302 **/
2303 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2304 {
2305 if (hw->phy.ops.force_speed_duplex)
2306 return hw->phy.ops.force_speed_duplex(hw);
2307
2308 return 0;
2309 }
2310
2311 /**
2312 * e1000e_get_phy_type_from_id - Get PHY type from id
2313 * @phy_id: phy_id read from the phy
2314 *
2315 * Returns the phy type from the id.
2316 **/
2317 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2318 {
2319 enum e1000_phy_type phy_type = e1000_phy_unknown;
2320
2321 switch (phy_id) {
2322 case M88E1000_I_PHY_ID:
2323 case M88E1000_E_PHY_ID:
2324 case M88E1111_I_PHY_ID:
2325 case M88E1011_I_PHY_ID:
2326 phy_type = e1000_phy_m88;
2327 break;
2328 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2329 phy_type = e1000_phy_igp_2;
2330 break;
2331 case GG82563_E_PHY_ID:
2332 phy_type = e1000_phy_gg82563;
2333 break;
2334 case IGP03E1000_E_PHY_ID:
2335 phy_type = e1000_phy_igp_3;
2336 break;
2337 case IFE_E_PHY_ID:
2338 case IFE_PLUS_E_PHY_ID:
2339 case IFE_C_E_PHY_ID:
2340 phy_type = e1000_phy_ife;
2341 break;
2342 case BME1000_E_PHY_ID:
2343 case BME1000_E_PHY_ID_R2:
2344 phy_type = e1000_phy_bm;
2345 break;
2346 case I82578_E_PHY_ID:
2347 phy_type = e1000_phy_82578;
2348 break;
2349 case I82577_E_PHY_ID:
2350 phy_type = e1000_phy_82577;
2351 break;
2352 case I82579_E_PHY_ID:
2353 phy_type = e1000_phy_82579;
2354 break;
2355 default:
2356 phy_type = e1000_phy_unknown;
2357 break;
2358 }
2359 return phy_type;
2360 }
2361
2362 /**
2363 * e1000e_determine_phy_address - Determines PHY address.
2364 * @hw: pointer to the HW structure
2365 *
2366 * This uses a trial and error method to loop through possible PHY
2367 * addresses. It tests each by reading the PHY ID registers and
2368 * checking for a match.
2369 **/
2370 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2371 {
2372 s32 ret_val = -E1000_ERR_PHY_TYPE;
2373 u32 phy_addr = 0;
2374 u32 i;
2375 enum e1000_phy_type phy_type = e1000_phy_unknown;
2376
2377 hw->phy.id = phy_type;
2378
2379 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2380 hw->phy.addr = phy_addr;
2381 i = 0;
2382
2383 do {
2384 e1000e_get_phy_id(hw);
2385 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2386
2387 /*
2388 * If phy_type is valid, break - we found our
2389 * PHY address
2390 */
2391 if (phy_type != e1000_phy_unknown) {
2392 ret_val = 0;
2393 goto out;
2394 }
2395 usleep_range(1000, 2000);
2396 i++;
2397 } while (i < 10);
2398 }
2399
2400 out:
2401 return ret_val;
2402 }
2403
2404 /**
2405 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2406 * @page: page to access
2407 *
2408 * Returns the phy address for the page requested.
2409 **/
2410 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2411 {
2412 u32 phy_addr = 2;
2413
2414 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2415 phy_addr = 1;
2416
2417 return phy_addr;
2418 }
2419
2420 /**
2421 * e1000e_write_phy_reg_bm - Write BM PHY register
2422 * @hw: pointer to the HW structure
2423 * @offset: register offset to write to
2424 * @data: data to write at register offset
2425 *
2426 * Acquires semaphore, if necessary, then writes the data to PHY register
2427 * at the offset. Release any acquired semaphores before exiting.
2428 **/
2429 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2430 {
2431 s32 ret_val;
2432 u32 page = offset >> IGP_PAGE_SHIFT;
2433
2434 ret_val = hw->phy.ops.acquire(hw);
2435 if (ret_val)
2436 return ret_val;
2437
2438 /* Page 800 works differently than the rest so it has its own func */
2439 if (page == BM_WUC_PAGE) {
2440 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2441 false, false);
2442 goto out;
2443 }
2444
2445 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2446
2447 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2448 u32 page_shift, page_select;
2449
2450 /*
2451 * Page select is register 31 for phy address 1 and 22 for
2452 * phy address 2 and 3. Page select is shifted only for
2453 * phy address 1.
2454 */
2455 if (hw->phy.addr == 1) {
2456 page_shift = IGP_PAGE_SHIFT;
2457 page_select = IGP01E1000_PHY_PAGE_SELECT;
2458 } else {
2459 page_shift = 0;
2460 page_select = BM_PHY_PAGE_SELECT;
2461 }
2462
2463 /* Page is shifted left, PHY expects (page x 32) */
2464 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2465 (page << page_shift));
2466 if (ret_val)
2467 goto out;
2468 }
2469
2470 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2471 data);
2472
2473 out:
2474 hw->phy.ops.release(hw);
2475 return ret_val;
2476 }
2477
2478 /**
2479 * e1000e_read_phy_reg_bm - Read BM PHY register
2480 * @hw: pointer to the HW structure
2481 * @offset: register offset to be read
2482 * @data: pointer to the read data
2483 *
2484 * Acquires semaphore, if necessary, then reads the PHY register at offset
2485 * and storing the retrieved information in data. Release any acquired
2486 * semaphores before exiting.
2487 **/
2488 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2489 {
2490 s32 ret_val;
2491 u32 page = offset >> IGP_PAGE_SHIFT;
2492
2493 ret_val = hw->phy.ops.acquire(hw);
2494 if (ret_val)
2495 return ret_val;
2496
2497 /* Page 800 works differently than the rest so it has its own func */
2498 if (page == BM_WUC_PAGE) {
2499 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2500 true, false);
2501 goto out;
2502 }
2503
2504 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2505
2506 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2507 u32 page_shift, page_select;
2508
2509 /*
2510 * Page select is register 31 for phy address 1 and 22 for
2511 * phy address 2 and 3. Page select is shifted only for
2512 * phy address 1.
2513 */
2514 if (hw->phy.addr == 1) {
2515 page_shift = IGP_PAGE_SHIFT;
2516 page_select = IGP01E1000_PHY_PAGE_SELECT;
2517 } else {
2518 page_shift = 0;
2519 page_select = BM_PHY_PAGE_SELECT;
2520 }
2521
2522 /* Page is shifted left, PHY expects (page x 32) */
2523 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2524 (page << page_shift));
2525 if (ret_val)
2526 goto out;
2527 }
2528
2529 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2530 data);
2531 out:
2532 hw->phy.ops.release(hw);
2533 return ret_val;
2534 }
2535
2536 /**
2537 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2538 * @hw: pointer to the HW structure
2539 * @offset: register offset to be read
2540 * @data: pointer to the read data
2541 *
2542 * Acquires semaphore, if necessary, then reads the PHY register at offset
2543 * and storing the retrieved information in data. Release any acquired
2544 * semaphores before exiting.
2545 **/
2546 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2547 {
2548 s32 ret_val;
2549 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2550
2551 ret_val = hw->phy.ops.acquire(hw);
2552 if (ret_val)
2553 return ret_val;
2554
2555 /* Page 800 works differently than the rest so it has its own func */
2556 if (page == BM_WUC_PAGE) {
2557 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2558 true, false);
2559 goto out;
2560 }
2561
2562 hw->phy.addr = 1;
2563
2564 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2565
2566 /* Page is shifted left, PHY expects (page x 32) */
2567 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2568 page);
2569
2570 if (ret_val)
2571 goto out;
2572 }
2573
2574 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2575 data);
2576 out:
2577 hw->phy.ops.release(hw);
2578 return ret_val;
2579 }
2580
2581 /**
2582 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2583 * @hw: pointer to the HW structure
2584 * @offset: register offset to write to
2585 * @data: data to write at register offset
2586 *
2587 * Acquires semaphore, if necessary, then writes the data to PHY register
2588 * at the offset. Release any acquired semaphores before exiting.
2589 **/
2590 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2591 {
2592 s32 ret_val;
2593 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2594
2595 ret_val = hw->phy.ops.acquire(hw);
2596 if (ret_val)
2597 return ret_val;
2598
2599 /* Page 800 works differently than the rest so it has its own func */
2600 if (page == BM_WUC_PAGE) {
2601 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2602 false, false);
2603 goto out;
2604 }
2605
2606 hw->phy.addr = 1;
2607
2608 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2609 /* Page is shifted left, PHY expects (page x 32) */
2610 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2611 page);
2612
2613 if (ret_val)
2614 goto out;
2615 }
2616
2617 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2618 data);
2619
2620 out:
2621 hw->phy.ops.release(hw);
2622 return ret_val;
2623 }
2624
2625 /**
2626 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2627 * @hw: pointer to the HW structure
2628 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2629 *
2630 * Assumes semaphore already acquired and phy_reg points to a valid memory
2631 * address to store contents of the BM_WUC_ENABLE_REG register.
2632 **/
2633 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2634 {
2635 s32 ret_val;
2636 u16 temp;
2637
2638 /* All page select, port ctrl and wakeup registers use phy address 1 */
2639 hw->phy.addr = 1;
2640
2641 /* Select Port Control Registers page */
2642 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2643 if (ret_val) {
2644 e_dbg("Could not set Port Control page\n");
2645 goto out;
2646 }
2647
2648 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2649 if (ret_val) {
2650 e_dbg("Could not read PHY register %d.%d\n",
2651 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2652 goto out;
2653 }
2654
2655 /*
2656 * Enable both PHY wakeup mode and Wakeup register page writes.
2657 * Prevent a power state change by disabling ME and Host PHY wakeup.
2658 */
2659 temp = *phy_reg;
2660 temp |= BM_WUC_ENABLE_BIT;
2661 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2662
2663 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2664 if (ret_val) {
2665 e_dbg("Could not write PHY register %d.%d\n",
2666 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2667 goto out;
2668 }
2669
2670 /* Select Host Wakeup Registers page */
2671 ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2672
2673 /* caller now able to write registers on the Wakeup registers page */
2674 out:
2675 return ret_val;
2676 }
2677
2678 /**
2679 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2680 * @hw: pointer to the HW structure
2681 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2682 *
2683 * Restore BM_WUC_ENABLE_REG to its original value.
2684 *
2685 * Assumes semaphore already acquired and *phy_reg is the contents of the
2686 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2687 * caller.
2688 **/
2689 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2690 {
2691 s32 ret_val = 0;
2692
2693 /* Select Port Control Registers page */
2694 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2695 if (ret_val) {
2696 e_dbg("Could not set Port Control page\n");
2697 goto out;
2698 }
2699
2700 /* Restore 769.17 to its original value */
2701 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2702 if (ret_val)
2703 e_dbg("Could not restore PHY register %d.%d\n",
2704 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2705 out:
2706 return ret_val;
2707 }
2708
2709 /**
2710 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2711 * @hw: pointer to the HW structure
2712 * @offset: register offset to be read or written
2713 * @data: pointer to the data to read or write
2714 * @read: determines if operation is read or write
2715 * @page_set: BM_WUC_PAGE already set and access enabled
2716 *
2717 * Read the PHY register at offset and store the retrieved information in
2718 * data, or write data to PHY register at offset. Note the procedure to
2719 * access the PHY wakeup registers is different than reading the other PHY
2720 * registers. It works as such:
2721 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2722 * 2) Set page to 800 for host (801 if we were manageability)
2723 * 3) Write the address using the address opcode (0x11)
2724 * 4) Read or write the data using the data opcode (0x12)
2725 * 5) Restore 769.17.2 to its original value
2726 *
2727 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2728 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2729 *
2730 * Assumes semaphore is already acquired. When page_set==true, assumes
2731 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2732 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2733 **/
2734 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2735 u16 *data, bool read, bool page_set)
2736 {
2737 s32 ret_val;
2738 u16 reg = BM_PHY_REG_NUM(offset);
2739 u16 page = BM_PHY_REG_PAGE(offset);
2740 u16 phy_reg = 0;
2741
2742 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2743 if ((hw->mac.type == e1000_pchlan) &&
2744 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2745 e_dbg("Attempting to access page %d while gig enabled.\n",
2746 page);
2747
2748 if (!page_set) {
2749 /* Enable access to PHY wakeup registers */
2750 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2751 if (ret_val) {
2752 e_dbg("Could not enable PHY wakeup reg access\n");
2753 goto out;
2754 }
2755 }
2756
2757 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2758
2759 /* Write the Wakeup register page offset value using opcode 0x11 */
2760 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2761 if (ret_val) {
2762 e_dbg("Could not write address opcode to page %d\n", page);
2763 goto out;
2764 }
2765
2766 if (read) {
2767 /* Read the Wakeup register page value using opcode 0x12 */
2768 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2769 data);
2770 } else {
2771 /* Write the Wakeup register page value using opcode 0x12 */
2772 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2773 *data);
2774 }
2775
2776 if (ret_val) {
2777 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2778 goto out;
2779 }
2780
2781 if (!page_set)
2782 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2783
2784 out:
2785 return ret_val;
2786 }
2787
2788 /**
2789 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2790 * @hw: pointer to the HW structure
2791 *
2792 * In the case of a PHY power down to save power, or to turn off link during a
2793 * driver unload, or wake on lan is not enabled, restore the link to previous
2794 * settings.
2795 **/
2796 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2797 {
2798 u16 mii_reg = 0;
2799
2800 /* The PHY will retain its settings across a power down/up cycle */
2801 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2802 mii_reg &= ~MII_CR_POWER_DOWN;
2803 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2804 }
2805
2806 /**
2807 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2808 * @hw: pointer to the HW structure
2809 *
2810 * In the case of a PHY power down to save power, or to turn off link during a
2811 * driver unload, or wake on lan is not enabled, restore the link to previous
2812 * settings.
2813 **/
2814 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2815 {
2816 u16 mii_reg = 0;
2817
2818 /* The PHY will retain its settings across a power down/up cycle */
2819 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2820 mii_reg |= MII_CR_POWER_DOWN;
2821 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2822 usleep_range(1000, 2000);
2823 }
2824
2825 /**
2826 * e1000e_commit_phy - Soft PHY reset
2827 * @hw: pointer to the HW structure
2828 *
2829 * Performs a soft PHY reset on those that apply. This is a function pointer
2830 * entry point called by drivers.
2831 **/
2832 s32 e1000e_commit_phy(struct e1000_hw *hw)
2833 {
2834 if (hw->phy.ops.commit)
2835 return hw->phy.ops.commit(hw);
2836
2837 return 0;
2838 }
2839
2840 /**
2841 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2842 * @hw: pointer to the HW structure
2843 * @active: boolean used to enable/disable lplu
2844 *
2845 * Success returns 0, Failure returns 1
2846 *
2847 * The low power link up (lplu) state is set to the power management level D0
2848 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2849 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2850 * is used during Dx states where the power conservation is most important.
2851 * During driver activity, SmartSpeed should be enabled so performance is
2852 * maintained. This is a function pointer entry point called by drivers.
2853 **/
2854 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2855 {
2856 if (hw->phy.ops.set_d0_lplu_state)
2857 return hw->phy.ops.set_d0_lplu_state(hw, active);
2858
2859 return 0;
2860 }
2861
2862 /**
2863 * __e1000_read_phy_reg_hv - Read HV PHY register
2864 * @hw: pointer to the HW structure
2865 * @offset: register offset to be read
2866 * @data: pointer to the read data
2867 * @locked: semaphore has already been acquired or not
2868 *
2869 * Acquires semaphore, if necessary, then reads the PHY register at offset
2870 * and stores the retrieved information in data. Release any acquired
2871 * semaphore before exiting.
2872 **/
2873 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2874 bool locked, bool page_set)
2875 {
2876 s32 ret_val;
2877 u16 page = BM_PHY_REG_PAGE(offset);
2878 u16 reg = BM_PHY_REG_NUM(offset);
2879 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2880
2881 if (!locked) {
2882 ret_val = hw->phy.ops.acquire(hw);
2883 if (ret_val)
2884 return ret_val;
2885 }
2886
2887 /* Page 800 works differently than the rest so it has its own func */
2888 if (page == BM_WUC_PAGE) {
2889 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2890 true, page_set);
2891 goto out;
2892 }
2893
2894 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2895 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2896 data, true);
2897 goto out;
2898 }
2899
2900 if (!page_set) {
2901 if (page == HV_INTC_FC_PAGE_START)
2902 page = 0;
2903
2904 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2905 /* Page is shifted left, PHY expects (page x 32) */
2906 ret_val = e1000_set_page_igp(hw,
2907 (page << IGP_PAGE_SHIFT));
2908
2909 hw->phy.addr = phy_addr;
2910
2911 if (ret_val)
2912 goto out;
2913 }
2914 }
2915
2916 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2917 page << IGP_PAGE_SHIFT, reg);
2918
2919 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2920 data);
2921 out:
2922 if (!locked)
2923 hw->phy.ops.release(hw);
2924
2925 return ret_val;
2926 }
2927
2928 /**
2929 * e1000_read_phy_reg_hv - Read HV PHY register
2930 * @hw: pointer to the HW structure
2931 * @offset: register offset to be read
2932 * @data: pointer to the read data
2933 *
2934 * Acquires semaphore then reads the PHY register at offset and stores
2935 * the retrieved information in data. Release the acquired semaphore
2936 * before exiting.
2937 **/
2938 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2939 {
2940 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2941 }
2942
2943 /**
2944 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2945 * @hw: pointer to the HW structure
2946 * @offset: register offset to be read
2947 * @data: pointer to the read data
2948 *
2949 * Reads the PHY register at offset and stores the retrieved information
2950 * in data. Assumes semaphore already acquired.
2951 **/
2952 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2953 {
2954 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2955 }
2956
2957 /**
2958 * e1000_read_phy_reg_page_hv - Read HV PHY register
2959 * @hw: pointer to the HW structure
2960 * @offset: register offset to write to
2961 * @data: data to write at register offset
2962 *
2963 * Reads the PHY register at offset and stores the retrieved information
2964 * in data. Assumes semaphore already acquired and page already set.
2965 **/
2966 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2967 {
2968 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2969 }
2970
2971 /**
2972 * __e1000_write_phy_reg_hv - Write HV PHY register
2973 * @hw: pointer to the HW structure
2974 * @offset: register offset to write to
2975 * @data: data to write at register offset
2976 * @locked: semaphore has already been acquired or not
2977 *
2978 * Acquires semaphore, if necessary, then writes the data to PHY register
2979 * at the offset. Release any acquired semaphores before exiting.
2980 **/
2981 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2982 bool locked, bool page_set)
2983 {
2984 s32 ret_val;
2985 u16 page = BM_PHY_REG_PAGE(offset);
2986 u16 reg = BM_PHY_REG_NUM(offset);
2987 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2988
2989 if (!locked) {
2990 ret_val = hw->phy.ops.acquire(hw);
2991 if (ret_val)
2992 return ret_val;
2993 }
2994
2995 /* Page 800 works differently than the rest so it has its own func */
2996 if (page == BM_WUC_PAGE) {
2997 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2998 false, page_set);
2999 goto out;
3000 }
3001
3002 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3003 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3004 &data, false);
3005 goto out;
3006 }
3007
3008 if (!page_set) {
3009 if (page == HV_INTC_FC_PAGE_START)
3010 page = 0;
3011
3012 /*
3013 * Workaround MDIO accesses being disabled after entering IEEE
3014 * Power Down (when bit 11 of the PHY Control register is set)
3015 */
3016 if ((hw->phy.type == e1000_phy_82578) &&
3017 (hw->phy.revision >= 1) &&
3018 (hw->phy.addr == 2) &&
3019 ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
3020 u16 data2 = 0x7EFF;
3021 ret_val = e1000_access_phy_debug_regs_hv(hw,
3022 (1 << 6) | 0x3,
3023 &data2, false);
3024 if (ret_val)
3025 goto out;
3026 }
3027
3028 if (reg > MAX_PHY_MULTI_PAGE_REG) {
3029 /* Page is shifted left, PHY expects (page x 32) */
3030 ret_val = e1000_set_page_igp(hw,
3031 (page << IGP_PAGE_SHIFT));
3032
3033 hw->phy.addr = phy_addr;
3034
3035 if (ret_val)
3036 goto out;
3037 }
3038 }
3039
3040 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3041 page << IGP_PAGE_SHIFT, reg);
3042
3043 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3044 data);
3045
3046 out:
3047 if (!locked)
3048 hw->phy.ops.release(hw);
3049
3050 return ret_val;
3051 }
3052
3053 /**
3054 * e1000_write_phy_reg_hv - Write HV PHY register
3055 * @hw: pointer to the HW structure
3056 * @offset: register offset to write to
3057 * @data: data to write at register offset
3058 *
3059 * Acquires semaphore then writes the data to PHY register at the offset.
3060 * Release the acquired semaphores before exiting.
3061 **/
3062 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3063 {
3064 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3065 }
3066
3067 /**
3068 * e1000_write_phy_reg_hv_locked - Write HV PHY register
3069 * @hw: pointer to the HW structure
3070 * @offset: register offset to write to
3071 * @data: data to write at register offset
3072 *
3073 * Writes the data to PHY register at the offset. Assumes semaphore
3074 * already acquired.
3075 **/
3076 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3077 {
3078 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3079 }
3080
3081 /**
3082 * e1000_write_phy_reg_page_hv - Write HV PHY register
3083 * @hw: pointer to the HW structure
3084 * @offset: register offset to write to
3085 * @data: data to write at register offset
3086 *
3087 * Writes the data to PHY register at the offset. Assumes semaphore
3088 * already acquired and page already set.
3089 **/
3090 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3091 {
3092 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3093 }
3094
3095 /**
3096 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3097 * @page: page to be accessed
3098 **/
3099 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3100 {
3101 u32 phy_addr = 2;
3102
3103 if (page >= HV_INTC_FC_PAGE_START)
3104 phy_addr = 1;
3105
3106 return phy_addr;
3107 }
3108
3109 /**
3110 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3111 * @hw: pointer to the HW structure
3112 * @offset: register offset to be read or written
3113 * @data: pointer to the data to be read or written
3114 * @read: determines if operation is read or write
3115 *
3116 * Reads the PHY register at offset and stores the retreived information
3117 * in data. Assumes semaphore already acquired. Note that the procedure
3118 * to access these regs uses the address port and data port to read/write.
3119 * These accesses done with PHY address 2 and without using pages.
3120 **/
3121 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3122 u16 *data, bool read)
3123 {
3124 s32 ret_val;
3125 u32 addr_reg = 0;
3126 u32 data_reg = 0;
3127
3128 /* This takes care of the difference with desktop vs mobile phy */
3129 addr_reg = (hw->phy.type == e1000_phy_82578) ?
3130 I82578_ADDR_REG : I82577_ADDR_REG;
3131 data_reg = addr_reg + 1;
3132
3133 /* All operations in this function are phy address 2 */
3134 hw->phy.addr = 2;
3135
3136 /* masking with 0x3F to remove the page from offset */
3137 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3138 if (ret_val) {
3139 e_dbg("Could not write the Address Offset port register\n");
3140 goto out;
3141 }
3142
3143 /* Read or write the data value next */
3144 if (read)
3145 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3146 else
3147 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3148
3149 if (ret_val) {
3150 e_dbg("Could not access the Data port register\n");
3151 goto out;
3152 }
3153
3154 out:
3155 return ret_val;
3156 }
3157
3158 /**
3159 * e1000_link_stall_workaround_hv - Si workaround
3160 * @hw: pointer to the HW structure
3161 *
3162 * This function works around a Si bug where the link partner can get
3163 * a link up indication before the PHY does. If small packets are sent
3164 * by the link partner they can be placed in the packet buffer without
3165 * being properly accounted for by the PHY and will stall preventing
3166 * further packets from being received. The workaround is to clear the
3167 * packet buffer after the PHY detects link up.
3168 **/
3169 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3170 {
3171 s32 ret_val = 0;
3172 u16 data;
3173
3174 if (hw->phy.type != e1000_phy_82578)
3175 goto out;
3176
3177 /* Do not apply workaround if in PHY loopback bit 14 set */
3178 e1e_rphy(hw, PHY_CONTROL, &data);
3179 if (data & PHY_CONTROL_LB)
3180 goto out;
3181
3182 /* check if link is up and at 1Gbps */
3183 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3184 if (ret_val)
3185 goto out;
3186
3187 data &= BM_CS_STATUS_LINK_UP |
3188 BM_CS_STATUS_RESOLVED |
3189 BM_CS_STATUS_SPEED_MASK;
3190
3191 if (data != (BM_CS_STATUS_LINK_UP |
3192 BM_CS_STATUS_RESOLVED |
3193 BM_CS_STATUS_SPEED_1000))
3194 goto out;
3195
3196 mdelay(200);
3197
3198 /* flush the packets in the fifo buffer */
3199 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3200 HV_MUX_DATA_CTRL_FORCE_SPEED);
3201 if (ret_val)
3202 goto out;
3203
3204 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3205
3206 out:
3207 return ret_val;
3208 }
3209
3210 /**
3211 * e1000_check_polarity_82577 - Checks the polarity.
3212 * @hw: pointer to the HW structure
3213 *
3214 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3215 *
3216 * Polarity is determined based on the PHY specific status register.
3217 **/
3218 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3219 {
3220 struct e1000_phy_info *phy = &hw->phy;
3221 s32 ret_val;
3222 u16 data;
3223
3224 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3225
3226 if (!ret_val)
3227 phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3228 ? e1000_rev_polarity_reversed
3229 : e1000_rev_polarity_normal;
3230
3231 return ret_val;
3232 }
3233
3234 /**
3235 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3236 * @hw: pointer to the HW structure
3237 *
3238 * Calls the PHY setup function to force speed and duplex.
3239 **/
3240 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3241 {
3242 struct e1000_phy_info *phy = &hw->phy;
3243 s32 ret_val;
3244 u16 phy_data;
3245 bool link;
3246
3247 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3248 if (ret_val)
3249 goto out;
3250
3251 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3252
3253 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3254 if (ret_val)
3255 goto out;
3256
3257 udelay(1);
3258
3259 if (phy->autoneg_wait_to_complete) {
3260 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3261
3262 ret_val = e1000e_phy_has_link_generic(hw,
3263 PHY_FORCE_LIMIT,
3264 100000,
3265 &link);
3266 if (ret_val)
3267 goto out;
3268
3269 if (!link)
3270 e_dbg("Link taking longer than expected.\n");
3271
3272 /* Try once more */
3273 ret_val = e1000e_phy_has_link_generic(hw,
3274 PHY_FORCE_LIMIT,
3275 100000,
3276 &link);
3277 if (ret_val)
3278 goto out;
3279 }
3280
3281 out:
3282 return ret_val;
3283 }
3284
3285 /**
3286 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3287 * @hw: pointer to the HW structure
3288 *
3289 * Read PHY status to determine if link is up. If link is up, then
3290 * set/determine 10base-T extended distance and polarity correction. Read
3291 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3292 * determine on the cable length, local and remote receiver.
3293 **/
3294 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3295 {
3296 struct e1000_phy_info *phy = &hw->phy;
3297 s32 ret_val;
3298 u16 data;
3299 bool link;
3300
3301 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3302 if (ret_val)
3303 goto out;
3304
3305 if (!link) {
3306 e_dbg("Phy info is only valid if link is up\n");
3307 ret_val = -E1000_ERR_CONFIG;
3308 goto out;
3309 }
3310
3311 phy->polarity_correction = true;
3312
3313 ret_val = e1000_check_polarity_82577(hw);
3314 if (ret_val)
3315 goto out;
3316
3317 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3318 if (ret_val)
3319 goto out;
3320
3321 phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3322
3323 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3324 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3325 ret_val = hw->phy.ops.get_cable_length(hw);
3326 if (ret_val)
3327 goto out;
3328
3329 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3330 if (ret_val)
3331 goto out;
3332
3333 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3334 ? e1000_1000t_rx_status_ok
3335 : e1000_1000t_rx_status_not_ok;
3336
3337 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3338 ? e1000_1000t_rx_status_ok
3339 : e1000_1000t_rx_status_not_ok;
3340 } else {
3341 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3342 phy->local_rx = e1000_1000t_rx_status_undefined;
3343 phy->remote_rx = e1000_1000t_rx_status_undefined;
3344 }
3345
3346 out:
3347 return ret_val;
3348 }
3349
3350 /**
3351 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3352 * @hw: pointer to the HW structure
3353 *
3354 * Reads the diagnostic status register and verifies result is valid before
3355 * placing it in the phy_cable_length field.
3356 **/
3357 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3358 {
3359 struct e1000_phy_info *phy = &hw->phy;
3360 s32 ret_val;
3361 u16 phy_data, length;
3362
3363 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3364 if (ret_val)
3365 goto out;
3366
3367 length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3368 I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3369
3370 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3371 ret_val = -E1000_ERR_PHY;
3372
3373 phy->cable_length = length;
3374
3375 out:
3376 return ret_val;
3377 }
This page took 0.155933 seconds and 5 git commands to generate.