e102332a6beed4e49588f2c37063a0429fef85f8
[deliverable/linux.git] / drivers / net / e1000e / phy.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/delay.h>
30
31 #include "e1000.h"
32
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table[] =
40 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
41
42 static const u16 e1000_igp_2_cable_length_table[] =
43 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
44 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
45 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
46 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
47 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
48 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
49 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
50 124};
51 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52 ARRAY_SIZE(e1000_igp_2_cable_length_table)
53
54 /**
55 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
56 * @hw: pointer to the HW structure
57 *
58 * Read the PHY management control register and check whether a PHY reset
59 * is blocked. If a reset is not blocked return 0, otherwise
60 * return E1000_BLK_PHY_RESET (12).
61 **/
62 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
63 {
64 u32 manc;
65
66 manc = er32(MANC);
67
68 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
69 E1000_BLK_PHY_RESET : 0;
70 }
71
72 /**
73 * e1000e_get_phy_id - Retrieve the PHY ID and revision
74 * @hw: pointer to the HW structure
75 *
76 * Reads the PHY registers and stores the PHY ID and possibly the PHY
77 * revision in the hardware structure.
78 **/
79 s32 e1000e_get_phy_id(struct e1000_hw *hw)
80 {
81 struct e1000_phy_info *phy = &hw->phy;
82 s32 ret_val;
83 u16 phy_id;
84
85 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
86 if (ret_val)
87 return ret_val;
88
89 phy->id = (u32)(phy_id << 16);
90 udelay(20);
91 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
92 if (ret_val)
93 return ret_val;
94
95 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
96 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
97
98 return 0;
99 }
100
101 /**
102 * e1000e_phy_reset_dsp - Reset PHY DSP
103 * @hw: pointer to the HW structure
104 *
105 * Reset the digital signal processor.
106 **/
107 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
108 {
109 s32 ret_val;
110
111 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
112 if (ret_val)
113 return ret_val;
114
115 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
116 }
117
118 /**
119 * e1000e_read_phy_reg_mdic - Read MDI control register
120 * @hw: pointer to the HW structure
121 * @offset: register offset to be read
122 * @data: pointer to the read data
123 *
124 * Reads the MDI control register in the PHY at offset and stores the
125 * information read to data.
126 **/
127 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
128 {
129 struct e1000_phy_info *phy = &hw->phy;
130 u32 i, mdic = 0;
131
132 if (offset > MAX_PHY_REG_ADDRESS) {
133 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
134 return -E1000_ERR_PARAM;
135 }
136
137 /*
138 * Set up Op-code, Phy Address, and register offset in the MDI
139 * Control register. The MAC will take care of interfacing with the
140 * PHY to retrieve the desired data.
141 */
142 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
143 (phy->addr << E1000_MDIC_PHY_SHIFT) |
144 (E1000_MDIC_OP_READ));
145
146 ew32(MDIC, mdic);
147
148 /*
149 * Poll the ready bit to see if the MDI read completed
150 * Increasing the time out as testing showed failures with
151 * the lower time out
152 */
153 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
154 udelay(50);
155 mdic = er32(MDIC);
156 if (mdic & E1000_MDIC_READY)
157 break;
158 }
159 if (!(mdic & E1000_MDIC_READY)) {
160 hw_dbg(hw, "MDI Read did not complete\n");
161 return -E1000_ERR_PHY;
162 }
163 if (mdic & E1000_MDIC_ERROR) {
164 hw_dbg(hw, "MDI Error\n");
165 return -E1000_ERR_PHY;
166 }
167 *data = (u16) mdic;
168
169 return 0;
170 }
171
172 /**
173 * e1000e_write_phy_reg_mdic - Write MDI control register
174 * @hw: pointer to the HW structure
175 * @offset: register offset to write to
176 * @data: data to write to register at offset
177 *
178 * Writes data to MDI control register in the PHY at offset.
179 **/
180 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
181 {
182 struct e1000_phy_info *phy = &hw->phy;
183 u32 i, mdic = 0;
184
185 if (offset > MAX_PHY_REG_ADDRESS) {
186 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
187 return -E1000_ERR_PARAM;
188 }
189
190 /*
191 * Set up Op-code, Phy Address, and register offset in the MDI
192 * Control register. The MAC will take care of interfacing with the
193 * PHY to retrieve the desired data.
194 */
195 mdic = (((u32)data) |
196 (offset << E1000_MDIC_REG_SHIFT) |
197 (phy->addr << E1000_MDIC_PHY_SHIFT) |
198 (E1000_MDIC_OP_WRITE));
199
200 ew32(MDIC, mdic);
201
202 /*
203 * Poll the ready bit to see if the MDI read completed
204 * Increasing the time out as testing showed failures with
205 * the lower time out
206 */
207 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
208 udelay(50);
209 mdic = er32(MDIC);
210 if (mdic & E1000_MDIC_READY)
211 break;
212 }
213 if (!(mdic & E1000_MDIC_READY)) {
214 hw_dbg(hw, "MDI Write did not complete\n");
215 return -E1000_ERR_PHY;
216 }
217 if (mdic & E1000_MDIC_ERROR) {
218 hw_dbg(hw, "MDI Error\n");
219 return -E1000_ERR_PHY;
220 }
221
222 return 0;
223 }
224
225 /**
226 * e1000e_read_phy_reg_m88 - Read m88 PHY register
227 * @hw: pointer to the HW structure
228 * @offset: register offset to be read
229 * @data: pointer to the read data
230 *
231 * Acquires semaphore, if necessary, then reads the PHY register at offset
232 * and storing the retrieved information in data. Release any acquired
233 * semaphores before exiting.
234 **/
235 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
236 {
237 s32 ret_val;
238
239 ret_val = hw->phy.ops.acquire_phy(hw);
240 if (ret_val)
241 return ret_val;
242
243 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
244 data);
245
246 hw->phy.ops.release_phy(hw);
247
248 return ret_val;
249 }
250
251 /**
252 * e1000e_write_phy_reg_m88 - Write m88 PHY register
253 * @hw: pointer to the HW structure
254 * @offset: register offset to write to
255 * @data: data to write at register offset
256 *
257 * Acquires semaphore, if necessary, then writes the data to PHY register
258 * at the offset. Release any acquired semaphores before exiting.
259 **/
260 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
261 {
262 s32 ret_val;
263
264 ret_val = hw->phy.ops.acquire_phy(hw);
265 if (ret_val)
266 return ret_val;
267
268 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
269 data);
270
271 hw->phy.ops.release_phy(hw);
272
273 return ret_val;
274 }
275
276 /**
277 * e1000e_read_phy_reg_igp - Read igp PHY register
278 * @hw: pointer to the HW structure
279 * @offset: register offset to be read
280 * @data: pointer to the read data
281 *
282 * Acquires semaphore, if necessary, then reads the PHY register at offset
283 * and storing the retrieved information in data. Release any acquired
284 * semaphores before exiting.
285 **/
286 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
287 {
288 s32 ret_val;
289
290 ret_val = hw->phy.ops.acquire_phy(hw);
291 if (ret_val)
292 return ret_val;
293
294 if (offset > MAX_PHY_MULTI_PAGE_REG) {
295 ret_val = e1000e_write_phy_reg_mdic(hw,
296 IGP01E1000_PHY_PAGE_SELECT,
297 (u16)offset);
298 if (ret_val) {
299 hw->phy.ops.release_phy(hw);
300 return ret_val;
301 }
302 }
303
304 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
305 data);
306
307 hw->phy.ops.release_phy(hw);
308
309 return ret_val;
310 }
311
312 /**
313 * e1000e_write_phy_reg_igp - Write igp PHY register
314 * @hw: pointer to the HW structure
315 * @offset: register offset to write to
316 * @data: data to write at register offset
317 *
318 * Acquires semaphore, if necessary, then writes the data to PHY register
319 * at the offset. Release any acquired semaphores before exiting.
320 **/
321 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
322 {
323 s32 ret_val;
324
325 ret_val = hw->phy.ops.acquire_phy(hw);
326 if (ret_val)
327 return ret_val;
328
329 if (offset > MAX_PHY_MULTI_PAGE_REG) {
330 ret_val = e1000e_write_phy_reg_mdic(hw,
331 IGP01E1000_PHY_PAGE_SELECT,
332 (u16)offset);
333 if (ret_val) {
334 hw->phy.ops.release_phy(hw);
335 return ret_val;
336 }
337 }
338
339 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
340 data);
341
342 hw->phy.ops.release_phy(hw);
343
344 return ret_val;
345 }
346
347 /**
348 * e1000e_read_kmrn_reg - Read kumeran register
349 * @hw: pointer to the HW structure
350 * @offset: register offset to be read
351 * @data: pointer to the read data
352 *
353 * Acquires semaphore, if necessary. Then reads the PHY register at offset
354 * using the kumeran interface. The information retrieved is stored in data.
355 * Release any acquired semaphores before exiting.
356 **/
357 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
358 {
359 u32 kmrnctrlsta;
360 s32 ret_val;
361
362 ret_val = hw->phy.ops.acquire_phy(hw);
363 if (ret_val)
364 return ret_val;
365
366 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
367 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
368 ew32(KMRNCTRLSTA, kmrnctrlsta);
369
370 udelay(2);
371
372 kmrnctrlsta = er32(KMRNCTRLSTA);
373 *data = (u16)kmrnctrlsta;
374
375 hw->phy.ops.release_phy(hw);
376
377 return ret_val;
378 }
379
380 /**
381 * e1000e_write_kmrn_reg - Write kumeran register
382 * @hw: pointer to the HW structure
383 * @offset: register offset to write to
384 * @data: data to write at register offset
385 *
386 * Acquires semaphore, if necessary. Then write the data to PHY register
387 * at the offset using the kumeran interface. Release any acquired semaphores
388 * before exiting.
389 **/
390 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
391 {
392 u32 kmrnctrlsta;
393 s32 ret_val;
394
395 ret_val = hw->phy.ops.acquire_phy(hw);
396 if (ret_val)
397 return ret_val;
398
399 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
400 E1000_KMRNCTRLSTA_OFFSET) | data;
401 ew32(KMRNCTRLSTA, kmrnctrlsta);
402
403 udelay(2);
404 hw->phy.ops.release_phy(hw);
405
406 return ret_val;
407 }
408
409 /**
410 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
411 * @hw: pointer to the HW structure
412 *
413 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
414 * and downshift values are set also.
415 **/
416 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
417 {
418 struct e1000_phy_info *phy = &hw->phy;
419 s32 ret_val;
420 u16 phy_data;
421
422 /* Enable CRS on Tx. This must be set for half-duplex operation. */
423 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
424 if (ret_val)
425 return ret_val;
426
427 /* For newer PHYs this bit is downshift enable */
428 if (phy->type == e1000_phy_m88)
429 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
430
431 /*
432 * Options:
433 * MDI/MDI-X = 0 (default)
434 * 0 - Auto for all speeds
435 * 1 - MDI mode
436 * 2 - MDI-X mode
437 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
438 */
439 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
440
441 switch (phy->mdix) {
442 case 1:
443 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
444 break;
445 case 2:
446 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
447 break;
448 case 3:
449 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
450 break;
451 case 0:
452 default:
453 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
454 break;
455 }
456
457 /*
458 * Options:
459 * disable_polarity_correction = 0 (default)
460 * Automatic Correction for Reversed Cable Polarity
461 * 0 - Disabled
462 * 1 - Enabled
463 */
464 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
465 if (phy->disable_polarity_correction == 1)
466 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
467
468 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
469 if (ret_val)
470 return ret_val;
471
472 if ((phy->type == e1000_phy_m88) && (phy->revision < 4)) {
473 /*
474 * Force TX_CLK in the Extended PHY Specific Control Register
475 * to 25MHz clock.
476 */
477 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
478 if (ret_val)
479 return ret_val;
480
481 phy_data |= M88E1000_EPSCR_TX_CLK_25;
482
483 if ((phy->revision == 2) &&
484 (phy->id == M88E1111_I_PHY_ID)) {
485 /* 82573L PHY - set the downshift counter to 5x. */
486 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
487 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
488 } else {
489 /* Configure Master and Slave downshift values */
490 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
491 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
492 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
493 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
494 }
495 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
496 if (ret_val)
497 return ret_val;
498 }
499
500 /* Commit the changes. */
501 ret_val = e1000e_commit_phy(hw);
502 if (ret_val)
503 hw_dbg(hw, "Error committing the PHY changes\n");
504
505 return ret_val;
506 }
507
508 /**
509 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
510 * @hw: pointer to the HW structure
511 *
512 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
513 * igp PHY's.
514 **/
515 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
516 {
517 struct e1000_phy_info *phy = &hw->phy;
518 s32 ret_val;
519 u16 data;
520
521 ret_val = e1000_phy_hw_reset(hw);
522 if (ret_val) {
523 hw_dbg(hw, "Error resetting the PHY.\n");
524 return ret_val;
525 }
526
527 /*
528 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
529 * timeout issues when LFS is enabled.
530 */
531 msleep(100);
532
533 /* disable lplu d0 during driver init */
534 ret_val = e1000_set_d0_lplu_state(hw, 0);
535 if (ret_val) {
536 hw_dbg(hw, "Error Disabling LPLU D0\n");
537 return ret_val;
538 }
539 /* Configure mdi-mdix settings */
540 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
541 if (ret_val)
542 return ret_val;
543
544 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
545
546 switch (phy->mdix) {
547 case 1:
548 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
549 break;
550 case 2:
551 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
552 break;
553 case 0:
554 default:
555 data |= IGP01E1000_PSCR_AUTO_MDIX;
556 break;
557 }
558 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
559 if (ret_val)
560 return ret_val;
561
562 /* set auto-master slave resolution settings */
563 if (hw->mac.autoneg) {
564 /*
565 * when autonegotiation advertisement is only 1000Mbps then we
566 * should disable SmartSpeed and enable Auto MasterSlave
567 * resolution as hardware default.
568 */
569 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
570 /* Disable SmartSpeed */
571 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
572 &data);
573 if (ret_val)
574 return ret_val;
575
576 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
577 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
578 data);
579 if (ret_val)
580 return ret_val;
581
582 /* Set auto Master/Slave resolution process */
583 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
584 if (ret_val)
585 return ret_val;
586
587 data &= ~CR_1000T_MS_ENABLE;
588 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
589 if (ret_val)
590 return ret_val;
591 }
592
593 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
594 if (ret_val)
595 return ret_val;
596
597 /* load defaults for future use */
598 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
599 ((data & CR_1000T_MS_VALUE) ?
600 e1000_ms_force_master :
601 e1000_ms_force_slave) :
602 e1000_ms_auto;
603
604 switch (phy->ms_type) {
605 case e1000_ms_force_master:
606 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
607 break;
608 case e1000_ms_force_slave:
609 data |= CR_1000T_MS_ENABLE;
610 data &= ~(CR_1000T_MS_VALUE);
611 break;
612 case e1000_ms_auto:
613 data &= ~CR_1000T_MS_ENABLE;
614 default:
615 break;
616 }
617 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
618 }
619
620 return ret_val;
621 }
622
623 /**
624 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
625 * @hw: pointer to the HW structure
626 *
627 * Reads the MII auto-neg advertisement register and/or the 1000T control
628 * register and if the PHY is already setup for auto-negotiation, then
629 * return successful. Otherwise, setup advertisement and flow control to
630 * the appropriate values for the wanted auto-negotiation.
631 **/
632 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
633 {
634 struct e1000_phy_info *phy = &hw->phy;
635 s32 ret_val;
636 u16 mii_autoneg_adv_reg;
637 u16 mii_1000t_ctrl_reg = 0;
638
639 phy->autoneg_advertised &= phy->autoneg_mask;
640
641 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
642 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
643 if (ret_val)
644 return ret_val;
645
646 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
647 /* Read the MII 1000Base-T Control Register (Address 9). */
648 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
649 if (ret_val)
650 return ret_val;
651 }
652
653 /*
654 * Need to parse both autoneg_advertised and fc and set up
655 * the appropriate PHY registers. First we will parse for
656 * autoneg_advertised software override. Since we can advertise
657 * a plethora of combinations, we need to check each bit
658 * individually.
659 */
660
661 /*
662 * First we clear all the 10/100 mb speed bits in the Auto-Neg
663 * Advertisement Register (Address 4) and the 1000 mb speed bits in
664 * the 1000Base-T Control Register (Address 9).
665 */
666 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
667 NWAY_AR_100TX_HD_CAPS |
668 NWAY_AR_10T_FD_CAPS |
669 NWAY_AR_10T_HD_CAPS);
670 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
671
672 hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
673
674 /* Do we want to advertise 10 Mb Half Duplex? */
675 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
676 hw_dbg(hw, "Advertise 10mb Half duplex\n");
677 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
678 }
679
680 /* Do we want to advertise 10 Mb Full Duplex? */
681 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
682 hw_dbg(hw, "Advertise 10mb Full duplex\n");
683 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
684 }
685
686 /* Do we want to advertise 100 Mb Half Duplex? */
687 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
688 hw_dbg(hw, "Advertise 100mb Half duplex\n");
689 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
690 }
691
692 /* Do we want to advertise 100 Mb Full Duplex? */
693 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
694 hw_dbg(hw, "Advertise 100mb Full duplex\n");
695 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
696 }
697
698 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
699 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
700 hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
701
702 /* Do we want to advertise 1000 Mb Full Duplex? */
703 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
704 hw_dbg(hw, "Advertise 1000mb Full duplex\n");
705 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
706 }
707
708 /*
709 * Check for a software override of the flow control settings, and
710 * setup the PHY advertisement registers accordingly. If
711 * auto-negotiation is enabled, then software will have to set the
712 * "PAUSE" bits to the correct value in the Auto-Negotiation
713 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
714 * negotiation.
715 *
716 * The possible values of the "fc" parameter are:
717 * 0: Flow control is completely disabled
718 * 1: Rx flow control is enabled (we can receive pause frames
719 * but not send pause frames).
720 * 2: Tx flow control is enabled (we can send pause frames
721 * but we do not support receiving pause frames).
722 * 3: Both Rx and Tx flow control (symmetric) are enabled.
723 * other: No software override. The flow control configuration
724 * in the EEPROM is used.
725 */
726 switch (hw->fc.type) {
727 case e1000_fc_none:
728 /*
729 * Flow control (Rx & Tx) is completely disabled by a
730 * software over-ride.
731 */
732 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
733 break;
734 case e1000_fc_rx_pause:
735 /*
736 * Rx Flow control is enabled, and Tx Flow control is
737 * disabled, by a software over-ride.
738 *
739 * Since there really isn't a way to advertise that we are
740 * capable of Rx Pause ONLY, we will advertise that we
741 * support both symmetric and asymmetric Rx PAUSE. Later
742 * (in e1000e_config_fc_after_link_up) we will disable the
743 * hw's ability to send PAUSE frames.
744 */
745 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
746 break;
747 case e1000_fc_tx_pause:
748 /*
749 * Tx Flow control is enabled, and Rx Flow control is
750 * disabled, by a software over-ride.
751 */
752 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
753 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
754 break;
755 case e1000_fc_full:
756 /*
757 * Flow control (both Rx and Tx) is enabled by a software
758 * over-ride.
759 */
760 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
761 break;
762 default:
763 hw_dbg(hw, "Flow control param set incorrectly\n");
764 ret_val = -E1000_ERR_CONFIG;
765 return ret_val;
766 }
767
768 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
769 if (ret_val)
770 return ret_val;
771
772 hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
773
774 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
775 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
776 }
777
778 return ret_val;
779 }
780
781 /**
782 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
783 * @hw: pointer to the HW structure
784 *
785 * Performs initial bounds checking on autoneg advertisement parameter, then
786 * configure to advertise the full capability. Setup the PHY to autoneg
787 * and restart the negotiation process between the link partner. If
788 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
789 **/
790 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
791 {
792 struct e1000_phy_info *phy = &hw->phy;
793 s32 ret_val;
794 u16 phy_ctrl;
795
796 /*
797 * Perform some bounds checking on the autoneg advertisement
798 * parameter.
799 */
800 phy->autoneg_advertised &= phy->autoneg_mask;
801
802 /*
803 * If autoneg_advertised is zero, we assume it was not defaulted
804 * by the calling code so we set to advertise full capability.
805 */
806 if (phy->autoneg_advertised == 0)
807 phy->autoneg_advertised = phy->autoneg_mask;
808
809 hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
810 ret_val = e1000_phy_setup_autoneg(hw);
811 if (ret_val) {
812 hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
813 return ret_val;
814 }
815 hw_dbg(hw, "Restarting Auto-Neg\n");
816
817 /*
818 * Restart auto-negotiation by setting the Auto Neg Enable bit and
819 * the Auto Neg Restart bit in the PHY control register.
820 */
821 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
822 if (ret_val)
823 return ret_val;
824
825 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
826 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
827 if (ret_val)
828 return ret_val;
829
830 /*
831 * Does the user want to wait for Auto-Neg to complete here, or
832 * check at a later time (for example, callback routine).
833 */
834 if (phy->autoneg_wait_to_complete) {
835 ret_val = e1000_wait_autoneg(hw);
836 if (ret_val) {
837 hw_dbg(hw, "Error while waiting for "
838 "autoneg to complete\n");
839 return ret_val;
840 }
841 }
842
843 hw->mac.get_link_status = 1;
844
845 return ret_val;
846 }
847
848 /**
849 * e1000e_setup_copper_link - Configure copper link settings
850 * @hw: pointer to the HW structure
851 *
852 * Calls the appropriate function to configure the link for auto-neg or forced
853 * speed and duplex. Then we check for link, once link is established calls
854 * to configure collision distance and flow control are called. If link is
855 * not established, we return -E1000_ERR_PHY (-2).
856 **/
857 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
858 {
859 s32 ret_val;
860 bool link;
861
862 if (hw->mac.autoneg) {
863 /*
864 * Setup autoneg and flow control advertisement and perform
865 * autonegotiation.
866 */
867 ret_val = e1000_copper_link_autoneg(hw);
868 if (ret_val)
869 return ret_val;
870 } else {
871 /*
872 * PHY will be set to 10H, 10F, 100H or 100F
873 * depending on user settings.
874 */
875 hw_dbg(hw, "Forcing Speed and Duplex\n");
876 ret_val = e1000_phy_force_speed_duplex(hw);
877 if (ret_val) {
878 hw_dbg(hw, "Error Forcing Speed and Duplex\n");
879 return ret_val;
880 }
881 }
882
883 /*
884 * Check link status. Wait up to 100 microseconds for link to become
885 * valid.
886 */
887 ret_val = e1000e_phy_has_link_generic(hw,
888 COPPER_LINK_UP_LIMIT,
889 10,
890 &link);
891 if (ret_val)
892 return ret_val;
893
894 if (link) {
895 hw_dbg(hw, "Valid link established!!!\n");
896 e1000e_config_collision_dist(hw);
897 ret_val = e1000e_config_fc_after_link_up(hw);
898 } else {
899 hw_dbg(hw, "Unable to establish link!!!\n");
900 }
901
902 return ret_val;
903 }
904
905 /**
906 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
907 * @hw: pointer to the HW structure
908 *
909 * Calls the PHY setup function to force speed and duplex. Clears the
910 * auto-crossover to force MDI manually. Waits for link and returns
911 * successful if link up is successful, else -E1000_ERR_PHY (-2).
912 **/
913 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
914 {
915 struct e1000_phy_info *phy = &hw->phy;
916 s32 ret_val;
917 u16 phy_data;
918 bool link;
919
920 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
921 if (ret_val)
922 return ret_val;
923
924 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
925
926 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
927 if (ret_val)
928 return ret_val;
929
930 /*
931 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
932 * forced whenever speed and duplex are forced.
933 */
934 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
935 if (ret_val)
936 return ret_val;
937
938 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
939 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
940
941 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
942 if (ret_val)
943 return ret_val;
944
945 hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
946
947 udelay(1);
948
949 if (phy->autoneg_wait_to_complete) {
950 hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
951
952 ret_val = e1000e_phy_has_link_generic(hw,
953 PHY_FORCE_LIMIT,
954 100000,
955 &link);
956 if (ret_val)
957 return ret_val;
958
959 if (!link)
960 hw_dbg(hw, "Link taking longer than expected.\n");
961
962 /* Try once more */
963 ret_val = e1000e_phy_has_link_generic(hw,
964 PHY_FORCE_LIMIT,
965 100000,
966 &link);
967 if (ret_val)
968 return ret_val;
969 }
970
971 return ret_val;
972 }
973
974 /**
975 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
976 * @hw: pointer to the HW structure
977 *
978 * Calls the PHY setup function to force speed and duplex. Clears the
979 * auto-crossover to force MDI manually. Resets the PHY to commit the
980 * changes. If time expires while waiting for link up, we reset the DSP.
981 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
982 * successful completion, else return corresponding error code.
983 **/
984 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
985 {
986 struct e1000_phy_info *phy = &hw->phy;
987 s32 ret_val;
988 u16 phy_data;
989 bool link;
990
991 /*
992 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
993 * forced whenever speed and duplex are forced.
994 */
995 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
996 if (ret_val)
997 return ret_val;
998
999 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1000 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1001 if (ret_val)
1002 return ret_val;
1003
1004 hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
1005
1006 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1007 if (ret_val)
1008 return ret_val;
1009
1010 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1011
1012 /* Reset the phy to commit changes. */
1013 phy_data |= MII_CR_RESET;
1014
1015 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1016 if (ret_val)
1017 return ret_val;
1018
1019 udelay(1);
1020
1021 if (phy->autoneg_wait_to_complete) {
1022 hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
1023
1024 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1025 100000, &link);
1026 if (ret_val)
1027 return ret_val;
1028
1029 if (!link) {
1030 /*
1031 * We didn't get link.
1032 * Reset the DSP and cross our fingers.
1033 */
1034 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1035 0x001d);
1036 if (ret_val)
1037 return ret_val;
1038 ret_val = e1000e_phy_reset_dsp(hw);
1039 if (ret_val)
1040 return ret_val;
1041 }
1042
1043 /* Try once more */
1044 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1045 100000, &link);
1046 if (ret_val)
1047 return ret_val;
1048 }
1049
1050 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1051 if (ret_val)
1052 return ret_val;
1053
1054 /*
1055 * Resetting the phy means we need to re-force TX_CLK in the
1056 * Extended PHY Specific Control Register to 25MHz clock from
1057 * the reset value of 2.5MHz.
1058 */
1059 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1060 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1061 if (ret_val)
1062 return ret_val;
1063
1064 /*
1065 * In addition, we must re-enable CRS on Tx for both half and full
1066 * duplex.
1067 */
1068 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1069 if (ret_val)
1070 return ret_val;
1071
1072 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1073 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1074
1075 return ret_val;
1076 }
1077
1078 /**
1079 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1080 * @hw: pointer to the HW structure
1081 * @phy_ctrl: pointer to current value of PHY_CONTROL
1082 *
1083 * Forces speed and duplex on the PHY by doing the following: disable flow
1084 * control, force speed/duplex on the MAC, disable auto speed detection,
1085 * disable auto-negotiation, configure duplex, configure speed, configure
1086 * the collision distance, write configuration to CTRL register. The
1087 * caller must write to the PHY_CONTROL register for these settings to
1088 * take affect.
1089 **/
1090 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1091 {
1092 struct e1000_mac_info *mac = &hw->mac;
1093 u32 ctrl;
1094
1095 /* Turn off flow control when forcing speed/duplex */
1096 hw->fc.type = e1000_fc_none;
1097
1098 /* Force speed/duplex on the mac */
1099 ctrl = er32(CTRL);
1100 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1101 ctrl &= ~E1000_CTRL_SPD_SEL;
1102
1103 /* Disable Auto Speed Detection */
1104 ctrl &= ~E1000_CTRL_ASDE;
1105
1106 /* Disable autoneg on the phy */
1107 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1108
1109 /* Forcing Full or Half Duplex? */
1110 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1111 ctrl &= ~E1000_CTRL_FD;
1112 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1113 hw_dbg(hw, "Half Duplex\n");
1114 } else {
1115 ctrl |= E1000_CTRL_FD;
1116 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1117 hw_dbg(hw, "Full Duplex\n");
1118 }
1119
1120 /* Forcing 10mb or 100mb? */
1121 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1122 ctrl |= E1000_CTRL_SPD_100;
1123 *phy_ctrl |= MII_CR_SPEED_100;
1124 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1125 hw_dbg(hw, "Forcing 100mb\n");
1126 } else {
1127 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1128 *phy_ctrl |= MII_CR_SPEED_10;
1129 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1130 hw_dbg(hw, "Forcing 10mb\n");
1131 }
1132
1133 e1000e_config_collision_dist(hw);
1134
1135 ew32(CTRL, ctrl);
1136 }
1137
1138 /**
1139 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1140 * @hw: pointer to the HW structure
1141 * @active: boolean used to enable/disable lplu
1142 *
1143 * Success returns 0, Failure returns 1
1144 *
1145 * The low power link up (lplu) state is set to the power management level D3
1146 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1147 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1148 * is used during Dx states where the power conservation is most important.
1149 * During driver activity, SmartSpeed should be enabled so performance is
1150 * maintained.
1151 **/
1152 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1153 {
1154 struct e1000_phy_info *phy = &hw->phy;
1155 s32 ret_val;
1156 u16 data;
1157
1158 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1159 if (ret_val)
1160 return ret_val;
1161
1162 if (!active) {
1163 data &= ~IGP02E1000_PM_D3_LPLU;
1164 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1165 if (ret_val)
1166 return ret_val;
1167 /*
1168 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1169 * during Dx states where the power conservation is most
1170 * important. During driver activity we should enable
1171 * SmartSpeed, so performance is maintained.
1172 */
1173 if (phy->smart_speed == e1000_smart_speed_on) {
1174 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1175 &data);
1176 if (ret_val)
1177 return ret_val;
1178
1179 data |= IGP01E1000_PSCFR_SMART_SPEED;
1180 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1181 data);
1182 if (ret_val)
1183 return ret_val;
1184 } else if (phy->smart_speed == e1000_smart_speed_off) {
1185 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1186 &data);
1187 if (ret_val)
1188 return ret_val;
1189
1190 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1191 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1192 data);
1193 if (ret_val)
1194 return ret_val;
1195 }
1196 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1197 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1198 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1199 data |= IGP02E1000_PM_D3_LPLU;
1200 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1201 if (ret_val)
1202 return ret_val;
1203
1204 /* When LPLU is enabled, we should disable SmartSpeed */
1205 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1206 if (ret_val)
1207 return ret_val;
1208
1209 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1210 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1211 }
1212
1213 return ret_val;
1214 }
1215
1216 /**
1217 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1218 * @hw: pointer to the HW structure
1219 *
1220 * Success returns 0, Failure returns 1
1221 *
1222 * A downshift is detected by querying the PHY link health.
1223 **/
1224 s32 e1000e_check_downshift(struct e1000_hw *hw)
1225 {
1226 struct e1000_phy_info *phy = &hw->phy;
1227 s32 ret_val;
1228 u16 phy_data, offset, mask;
1229
1230 switch (phy->type) {
1231 case e1000_phy_m88:
1232 case e1000_phy_gg82563:
1233 offset = M88E1000_PHY_SPEC_STATUS;
1234 mask = M88E1000_PSSR_DOWNSHIFT;
1235 break;
1236 case e1000_phy_igp_2:
1237 case e1000_phy_igp_3:
1238 offset = IGP01E1000_PHY_LINK_HEALTH;
1239 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1240 break;
1241 default:
1242 /* speed downshift not supported */
1243 phy->speed_downgraded = 0;
1244 return 0;
1245 }
1246
1247 ret_val = e1e_rphy(hw, offset, &phy_data);
1248
1249 if (!ret_val)
1250 phy->speed_downgraded = (phy_data & mask);
1251
1252 return ret_val;
1253 }
1254
1255 /**
1256 * e1000_check_polarity_m88 - Checks the polarity.
1257 * @hw: pointer to the HW structure
1258 *
1259 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1260 *
1261 * Polarity is determined based on the PHY specific status register.
1262 **/
1263 static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1264 {
1265 struct e1000_phy_info *phy = &hw->phy;
1266 s32 ret_val;
1267 u16 data;
1268
1269 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1270
1271 if (!ret_val)
1272 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1273 ? e1000_rev_polarity_reversed
1274 : e1000_rev_polarity_normal;
1275
1276 return ret_val;
1277 }
1278
1279 /**
1280 * e1000_check_polarity_igp - Checks the polarity.
1281 * @hw: pointer to the HW structure
1282 *
1283 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1284 *
1285 * Polarity is determined based on the PHY port status register, and the
1286 * current speed (since there is no polarity at 100Mbps).
1287 **/
1288 static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1289 {
1290 struct e1000_phy_info *phy = &hw->phy;
1291 s32 ret_val;
1292 u16 data, offset, mask;
1293
1294 /*
1295 * Polarity is determined based on the speed of
1296 * our connection.
1297 */
1298 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1299 if (ret_val)
1300 return ret_val;
1301
1302 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1303 IGP01E1000_PSSR_SPEED_1000MBPS) {
1304 offset = IGP01E1000_PHY_PCS_INIT_REG;
1305 mask = IGP01E1000_PHY_POLARITY_MASK;
1306 } else {
1307 /*
1308 * This really only applies to 10Mbps since
1309 * there is no polarity for 100Mbps (always 0).
1310 */
1311 offset = IGP01E1000_PHY_PORT_STATUS;
1312 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1313 }
1314
1315 ret_val = e1e_rphy(hw, offset, &data);
1316
1317 if (!ret_val)
1318 phy->cable_polarity = (data & mask)
1319 ? e1000_rev_polarity_reversed
1320 : e1000_rev_polarity_normal;
1321
1322 return ret_val;
1323 }
1324
1325 /**
1326 * e1000_wait_autoneg - Wait for auto-neg completion
1327 * @hw: pointer to the HW structure
1328 *
1329 * Waits for auto-negotiation to complete or for the auto-negotiation time
1330 * limit to expire, which ever happens first.
1331 **/
1332 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1333 {
1334 s32 ret_val = 0;
1335 u16 i, phy_status;
1336
1337 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1338 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1339 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1340 if (ret_val)
1341 break;
1342 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1343 if (ret_val)
1344 break;
1345 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1346 break;
1347 msleep(100);
1348 }
1349
1350 /*
1351 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1352 * has completed.
1353 */
1354 return ret_val;
1355 }
1356
1357 /**
1358 * e1000e_phy_has_link_generic - Polls PHY for link
1359 * @hw: pointer to the HW structure
1360 * @iterations: number of times to poll for link
1361 * @usec_interval: delay between polling attempts
1362 * @success: pointer to whether polling was successful or not
1363 *
1364 * Polls the PHY status register for link, 'iterations' number of times.
1365 **/
1366 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1367 u32 usec_interval, bool *success)
1368 {
1369 s32 ret_val = 0;
1370 u16 i, phy_status;
1371
1372 for (i = 0; i < iterations; i++) {
1373 /*
1374 * Some PHYs require the PHY_STATUS register to be read
1375 * twice due to the link bit being sticky. No harm doing
1376 * it across the board.
1377 */
1378 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1379 if (ret_val)
1380 break;
1381 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1382 if (ret_val)
1383 break;
1384 if (phy_status & MII_SR_LINK_STATUS)
1385 break;
1386 if (usec_interval >= 1000)
1387 mdelay(usec_interval/1000);
1388 else
1389 udelay(usec_interval);
1390 }
1391
1392 *success = (i < iterations);
1393
1394 return ret_val;
1395 }
1396
1397 /**
1398 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1399 * @hw: pointer to the HW structure
1400 *
1401 * Reads the PHY specific status register to retrieve the cable length
1402 * information. The cable length is determined by averaging the minimum and
1403 * maximum values to get the "average" cable length. The m88 PHY has four
1404 * possible cable length values, which are:
1405 * Register Value Cable Length
1406 * 0 < 50 meters
1407 * 1 50 - 80 meters
1408 * 2 80 - 110 meters
1409 * 3 110 - 140 meters
1410 * 4 > 140 meters
1411 **/
1412 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1413 {
1414 struct e1000_phy_info *phy = &hw->phy;
1415 s32 ret_val;
1416 u16 phy_data, index;
1417
1418 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1419 if (ret_val)
1420 return ret_val;
1421
1422 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1423 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1424 phy->min_cable_length = e1000_m88_cable_length_table[index];
1425 phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1426
1427 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1428
1429 return ret_val;
1430 }
1431
1432 /**
1433 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1434 * @hw: pointer to the HW structure
1435 *
1436 * The automatic gain control (agc) normalizes the amplitude of the
1437 * received signal, adjusting for the attenuation produced by the
1438 * cable. By reading the AGC registers, which represent the
1439 * combination of course and fine gain value, the value can be put
1440 * into a lookup table to obtain the approximate cable length
1441 * for each channel.
1442 **/
1443 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1444 {
1445 struct e1000_phy_info *phy = &hw->phy;
1446 s32 ret_val;
1447 u16 phy_data, i, agc_value = 0;
1448 u16 cur_agc_index, max_agc_index = 0;
1449 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1450 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1451 {IGP02E1000_PHY_AGC_A,
1452 IGP02E1000_PHY_AGC_B,
1453 IGP02E1000_PHY_AGC_C,
1454 IGP02E1000_PHY_AGC_D};
1455
1456 /* Read the AGC registers for all channels */
1457 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1458 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1459 if (ret_val)
1460 return ret_val;
1461
1462 /*
1463 * Getting bits 15:9, which represent the combination of
1464 * course and fine gain values. The result is a number
1465 * that can be put into the lookup table to obtain the
1466 * approximate cable length.
1467 */
1468 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1469 IGP02E1000_AGC_LENGTH_MASK;
1470
1471 /* Array index bound check. */
1472 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1473 (cur_agc_index == 0))
1474 return -E1000_ERR_PHY;
1475
1476 /* Remove min & max AGC values from calculation. */
1477 if (e1000_igp_2_cable_length_table[min_agc_index] >
1478 e1000_igp_2_cable_length_table[cur_agc_index])
1479 min_agc_index = cur_agc_index;
1480 if (e1000_igp_2_cable_length_table[max_agc_index] <
1481 e1000_igp_2_cable_length_table[cur_agc_index])
1482 max_agc_index = cur_agc_index;
1483
1484 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1485 }
1486
1487 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1488 e1000_igp_2_cable_length_table[max_agc_index]);
1489 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1490
1491 /* Calculate cable length with the error range of +/- 10 meters. */
1492 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1493 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1494 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1495
1496 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1497
1498 return ret_val;
1499 }
1500
1501 /**
1502 * e1000e_get_phy_info_m88 - Retrieve PHY information
1503 * @hw: pointer to the HW structure
1504 *
1505 * Valid for only copper links. Read the PHY status register (sticky read)
1506 * to verify that link is up. Read the PHY special control register to
1507 * determine the polarity and 10base-T extended distance. Read the PHY
1508 * special status register to determine MDI/MDIx and current speed. If
1509 * speed is 1000, then determine cable length, local and remote receiver.
1510 **/
1511 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1512 {
1513 struct e1000_phy_info *phy = &hw->phy;
1514 s32 ret_val;
1515 u16 phy_data;
1516 bool link;
1517
1518 if (hw->phy.media_type != e1000_media_type_copper) {
1519 hw_dbg(hw, "Phy info is only valid for copper media\n");
1520 return -E1000_ERR_CONFIG;
1521 }
1522
1523 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1524 if (ret_val)
1525 return ret_val;
1526
1527 if (!link) {
1528 hw_dbg(hw, "Phy info is only valid if link is up\n");
1529 return -E1000_ERR_CONFIG;
1530 }
1531
1532 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1533 if (ret_val)
1534 return ret_val;
1535
1536 phy->polarity_correction = (phy_data &
1537 M88E1000_PSCR_POLARITY_REVERSAL);
1538
1539 ret_val = e1000_check_polarity_m88(hw);
1540 if (ret_val)
1541 return ret_val;
1542
1543 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1544 if (ret_val)
1545 return ret_val;
1546
1547 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1548
1549 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1550 ret_val = e1000_get_cable_length(hw);
1551 if (ret_val)
1552 return ret_val;
1553
1554 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1555 if (ret_val)
1556 return ret_val;
1557
1558 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1559 ? e1000_1000t_rx_status_ok
1560 : e1000_1000t_rx_status_not_ok;
1561
1562 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1563 ? e1000_1000t_rx_status_ok
1564 : e1000_1000t_rx_status_not_ok;
1565 } else {
1566 /* Set values to "undefined" */
1567 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1568 phy->local_rx = e1000_1000t_rx_status_undefined;
1569 phy->remote_rx = e1000_1000t_rx_status_undefined;
1570 }
1571
1572 return ret_val;
1573 }
1574
1575 /**
1576 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1577 * @hw: pointer to the HW structure
1578 *
1579 * Read PHY status to determine if link is up. If link is up, then
1580 * set/determine 10base-T extended distance and polarity correction. Read
1581 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1582 * determine on the cable length, local and remote receiver.
1583 **/
1584 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1585 {
1586 struct e1000_phy_info *phy = &hw->phy;
1587 s32 ret_val;
1588 u16 data;
1589 bool link;
1590
1591 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1592 if (ret_val)
1593 return ret_val;
1594
1595 if (!link) {
1596 hw_dbg(hw, "Phy info is only valid if link is up\n");
1597 return -E1000_ERR_CONFIG;
1598 }
1599
1600 phy->polarity_correction = 1;
1601
1602 ret_val = e1000_check_polarity_igp(hw);
1603 if (ret_val)
1604 return ret_val;
1605
1606 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1607 if (ret_val)
1608 return ret_val;
1609
1610 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
1611
1612 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1613 IGP01E1000_PSSR_SPEED_1000MBPS) {
1614 ret_val = e1000_get_cable_length(hw);
1615 if (ret_val)
1616 return ret_val;
1617
1618 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
1619 if (ret_val)
1620 return ret_val;
1621
1622 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1623 ? e1000_1000t_rx_status_ok
1624 : e1000_1000t_rx_status_not_ok;
1625
1626 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1627 ? e1000_1000t_rx_status_ok
1628 : e1000_1000t_rx_status_not_ok;
1629 } else {
1630 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1631 phy->local_rx = e1000_1000t_rx_status_undefined;
1632 phy->remote_rx = e1000_1000t_rx_status_undefined;
1633 }
1634
1635 return ret_val;
1636 }
1637
1638 /**
1639 * e1000e_phy_sw_reset - PHY software reset
1640 * @hw: pointer to the HW structure
1641 *
1642 * Does a software reset of the PHY by reading the PHY control register and
1643 * setting/write the control register reset bit to the PHY.
1644 **/
1645 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
1646 {
1647 s32 ret_val;
1648 u16 phy_ctrl;
1649
1650 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1651 if (ret_val)
1652 return ret_val;
1653
1654 phy_ctrl |= MII_CR_RESET;
1655 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1656 if (ret_val)
1657 return ret_val;
1658
1659 udelay(1);
1660
1661 return ret_val;
1662 }
1663
1664 /**
1665 * e1000e_phy_hw_reset_generic - PHY hardware reset
1666 * @hw: pointer to the HW structure
1667 *
1668 * Verify the reset block is not blocking us from resetting. Acquire
1669 * semaphore (if necessary) and read/set/write the device control reset
1670 * bit in the PHY. Wait the appropriate delay time for the device to
1671 * reset and release the semaphore (if necessary).
1672 **/
1673 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
1674 {
1675 struct e1000_phy_info *phy = &hw->phy;
1676 s32 ret_val;
1677 u32 ctrl;
1678
1679 ret_val = e1000_check_reset_block(hw);
1680 if (ret_val)
1681 return 0;
1682
1683 ret_val = phy->ops.acquire_phy(hw);
1684 if (ret_val)
1685 return ret_val;
1686
1687 ctrl = er32(CTRL);
1688 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
1689 e1e_flush();
1690
1691 udelay(phy->reset_delay_us);
1692
1693 ew32(CTRL, ctrl);
1694 e1e_flush();
1695
1696 udelay(150);
1697
1698 phy->ops.release_phy(hw);
1699
1700 return e1000_get_phy_cfg_done(hw);
1701 }
1702
1703 /**
1704 * e1000e_get_cfg_done - Generic configuration done
1705 * @hw: pointer to the HW structure
1706 *
1707 * Generic function to wait 10 milli-seconds for configuration to complete
1708 * and return success.
1709 **/
1710 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
1711 {
1712 mdelay(10);
1713 return 0;
1714 }
1715
1716 /* Internal function pointers */
1717
1718 /**
1719 * e1000_get_phy_cfg_done - Generic PHY configuration done
1720 * @hw: pointer to the HW structure
1721 *
1722 * Return success if silicon family did not implement a family specific
1723 * get_cfg_done function.
1724 **/
1725 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
1726 {
1727 if (hw->phy.ops.get_cfg_done)
1728 return hw->phy.ops.get_cfg_done(hw);
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1735 * @hw: pointer to the HW structure
1736 *
1737 * When the silicon family has not implemented a forced speed/duplex
1738 * function for the PHY, simply return 0.
1739 **/
1740 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1741 {
1742 if (hw->phy.ops.force_speed_duplex)
1743 return hw->phy.ops.force_speed_duplex(hw);
1744
1745 return 0;
1746 }
1747
1748 /**
1749 * e1000e_get_phy_type_from_id - Get PHY type from id
1750 * @phy_id: phy_id read from the phy
1751 *
1752 * Returns the phy type from the id.
1753 **/
1754 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
1755 {
1756 enum e1000_phy_type phy_type = e1000_phy_unknown;
1757
1758 switch (phy_id) {
1759 case M88E1000_I_PHY_ID:
1760 case M88E1000_E_PHY_ID:
1761 case M88E1111_I_PHY_ID:
1762 case M88E1011_I_PHY_ID:
1763 phy_type = e1000_phy_m88;
1764 break;
1765 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
1766 phy_type = e1000_phy_igp_2;
1767 break;
1768 case GG82563_E_PHY_ID:
1769 phy_type = e1000_phy_gg82563;
1770 break;
1771 case IGP03E1000_E_PHY_ID:
1772 phy_type = e1000_phy_igp_3;
1773 break;
1774 case IFE_E_PHY_ID:
1775 case IFE_PLUS_E_PHY_ID:
1776 case IFE_C_E_PHY_ID:
1777 phy_type = e1000_phy_ife;
1778 break;
1779 default:
1780 phy_type = e1000_phy_unknown;
1781 break;
1782 }
1783 return phy_type;
1784 }
1785
1786 /**
1787 * e1000e_commit_phy - Soft PHY reset
1788 * @hw: pointer to the HW structure
1789 *
1790 * Performs a soft PHY reset on those that apply. This is a function pointer
1791 * entry point called by drivers.
1792 **/
1793 s32 e1000e_commit_phy(struct e1000_hw *hw)
1794 {
1795 if (hw->phy.ops.commit_phy)
1796 return hw->phy.ops.commit_phy(hw);
1797
1798 return 0;
1799 }
1800
1801 /**
1802 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1803 * @hw: pointer to the HW structure
1804 * @active: boolean used to enable/disable lplu
1805 *
1806 * Success returns 0, Failure returns 1
1807 *
1808 * The low power link up (lplu) state is set to the power management level D0
1809 * and SmartSpeed is disabled when active is true, else clear lplu for D0
1810 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1811 * is used during Dx states where the power conservation is most important.
1812 * During driver activity, SmartSpeed should be enabled so performance is
1813 * maintained. This is a function pointer entry point called by drivers.
1814 **/
1815 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1816 {
1817 if (hw->phy.ops.set_d0_lplu_state)
1818 return hw->phy.ops.set_d0_lplu_state(hw, active);
1819
1820 return 0;
1821 }
This page took 0.101195 seconds and 5 git commands to generate.