Merge git://git.infradead.org/battery-2.6
[deliverable/linux.git] / drivers / net / e1000e / phy.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/delay.h>
30
31 #include "e1000.h"
32
33 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
34 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
35 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
36 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
37
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table[] =
40 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
41
42 static const u16 e1000_igp_2_cable_length_table[] =
43 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
44 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
45 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
46 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
47 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
48 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
49 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
50 124};
51 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
52 (sizeof(e1000_igp_2_cable_length_table) / \
53 sizeof(e1000_igp_2_cable_length_table[0]))
54
55 /**
56 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
57 * @hw: pointer to the HW structure
58 *
59 * Read the PHY management control register and check whether a PHY reset
60 * is blocked. If a reset is not blocked return 0, otherwise
61 * return E1000_BLK_PHY_RESET (12).
62 **/
63 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
64 {
65 u32 manc;
66
67 manc = er32(MANC);
68
69 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
70 E1000_BLK_PHY_RESET : 0;
71 }
72
73 /**
74 * e1000e_get_phy_id - Retrieve the PHY ID and revision
75 * @hw: pointer to the HW structure
76 *
77 * Reads the PHY registers and stores the PHY ID and possibly the PHY
78 * revision in the hardware structure.
79 **/
80 s32 e1000e_get_phy_id(struct e1000_hw *hw)
81 {
82 struct e1000_phy_info *phy = &hw->phy;
83 s32 ret_val;
84 u16 phy_id;
85
86 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
87 if (ret_val)
88 return ret_val;
89
90 phy->id = (u32)(phy_id << 16);
91 udelay(20);
92 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
93 if (ret_val)
94 return ret_val;
95
96 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
97 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
98
99 return 0;
100 }
101
102 /**
103 * e1000e_phy_reset_dsp - Reset PHY DSP
104 * @hw: pointer to the HW structure
105 *
106 * Reset the digital signal processor.
107 **/
108 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
109 {
110 s32 ret_val;
111
112 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
113 if (ret_val)
114 return ret_val;
115
116 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
117 }
118
119 /**
120 * e1000_read_phy_reg_mdic - Read MDI control register
121 * @hw: pointer to the HW structure
122 * @offset: register offset to be read
123 * @data: pointer to the read data
124 *
125 * Reads the MDI control regsiter in the PHY at offset and stores the
126 * information read to data.
127 **/
128 static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
129 {
130 struct e1000_phy_info *phy = &hw->phy;
131 u32 i, mdic = 0;
132
133 if (offset > MAX_PHY_REG_ADDRESS) {
134 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
135 return -E1000_ERR_PARAM;
136 }
137
138 /* Set up Op-code, Phy Address, and register offset in the MDI
139 * Control register. The MAC will take care of interfacing with the
140 * PHY to retrieve the desired data.
141 */
142 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
143 (phy->addr << E1000_MDIC_PHY_SHIFT) |
144 (E1000_MDIC_OP_READ));
145
146 ew32(MDIC, mdic);
147
148 /* Poll the ready bit to see if the MDI read completed */
149 for (i = 0; i < 64; i++) {
150 udelay(50);
151 mdic = er32(MDIC);
152 if (mdic & E1000_MDIC_READY)
153 break;
154 }
155 if (!(mdic & E1000_MDIC_READY)) {
156 hw_dbg(hw, "MDI Read did not complete\n");
157 return -E1000_ERR_PHY;
158 }
159 if (mdic & E1000_MDIC_ERROR) {
160 hw_dbg(hw, "MDI Error\n");
161 return -E1000_ERR_PHY;
162 }
163 *data = (u16) mdic;
164
165 return 0;
166 }
167
168 /**
169 * e1000_write_phy_reg_mdic - Write MDI control register
170 * @hw: pointer to the HW structure
171 * @offset: register offset to write to
172 * @data: data to write to register at offset
173 *
174 * Writes data to MDI control register in the PHY at offset.
175 **/
176 static s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
177 {
178 struct e1000_phy_info *phy = &hw->phy;
179 u32 i, mdic = 0;
180
181 if (offset > MAX_PHY_REG_ADDRESS) {
182 hw_dbg(hw, "PHY Address %d is out of range\n", offset);
183 return -E1000_ERR_PARAM;
184 }
185
186 /* Set up Op-code, Phy Address, and register offset in the MDI
187 * Control register. The MAC will take care of interfacing with the
188 * PHY to retrieve the desired data.
189 */
190 mdic = (((u32)data) |
191 (offset << E1000_MDIC_REG_SHIFT) |
192 (phy->addr << E1000_MDIC_PHY_SHIFT) |
193 (E1000_MDIC_OP_WRITE));
194
195 ew32(MDIC, mdic);
196
197 /* Poll the ready bit to see if the MDI read completed */
198 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
199 udelay(5);
200 mdic = er32(MDIC);
201 if (mdic & E1000_MDIC_READY)
202 break;
203 }
204 if (!(mdic & E1000_MDIC_READY)) {
205 hw_dbg(hw, "MDI Write did not complete\n");
206 return -E1000_ERR_PHY;
207 }
208
209 return 0;
210 }
211
212 /**
213 * e1000e_read_phy_reg_m88 - Read m88 PHY register
214 * @hw: pointer to the HW structure
215 * @offset: register offset to be read
216 * @data: pointer to the read data
217 *
218 * Acquires semaphore, if necessary, then reads the PHY register at offset
219 * and storing the retrieved information in data. Release any acquired
220 * semaphores before exiting.
221 **/
222 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
223 {
224 s32 ret_val;
225
226 ret_val = hw->phy.ops.acquire_phy(hw);
227 if (ret_val)
228 return ret_val;
229
230 ret_val = e1000_read_phy_reg_mdic(hw,
231 MAX_PHY_REG_ADDRESS & offset,
232 data);
233
234 hw->phy.ops.release_phy(hw);
235
236 return ret_val;
237 }
238
239 /**
240 * e1000e_write_phy_reg_m88 - Write m88 PHY register
241 * @hw: pointer to the HW structure
242 * @offset: register offset to write to
243 * @data: data to write at register offset
244 *
245 * Acquires semaphore, if necessary, then writes the data to PHY register
246 * at the offset. Release any acquired semaphores before exiting.
247 **/
248 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
249 {
250 s32 ret_val;
251
252 ret_val = hw->phy.ops.acquire_phy(hw);
253 if (ret_val)
254 return ret_val;
255
256 ret_val = e1000_write_phy_reg_mdic(hw,
257 MAX_PHY_REG_ADDRESS & offset,
258 data);
259
260 hw->phy.ops.release_phy(hw);
261
262 return ret_val;
263 }
264
265 /**
266 * e1000e_read_phy_reg_igp - Read igp PHY register
267 * @hw: pointer to the HW structure
268 * @offset: register offset to be read
269 * @data: pointer to the read data
270 *
271 * Acquires semaphore, if necessary, then reads the PHY register at offset
272 * and storing the retrieved information in data. Release any acquired
273 * semaphores before exiting.
274 **/
275 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
276 {
277 s32 ret_val;
278
279 ret_val = hw->phy.ops.acquire_phy(hw);
280 if (ret_val)
281 return ret_val;
282
283 if (offset > MAX_PHY_MULTI_PAGE_REG) {
284 ret_val = e1000_write_phy_reg_mdic(hw,
285 IGP01E1000_PHY_PAGE_SELECT,
286 (u16)offset);
287 if (ret_val) {
288 hw->phy.ops.release_phy(hw);
289 return ret_val;
290 }
291 }
292
293 ret_val = e1000_read_phy_reg_mdic(hw,
294 MAX_PHY_REG_ADDRESS & offset,
295 data);
296
297 hw->phy.ops.release_phy(hw);
298
299 return ret_val;
300 }
301
302 /**
303 * e1000e_write_phy_reg_igp - Write igp PHY register
304 * @hw: pointer to the HW structure
305 * @offset: register offset to write to
306 * @data: data to write at register offset
307 *
308 * Acquires semaphore, if necessary, then writes the data to PHY register
309 * at the offset. Release any acquired semaphores before exiting.
310 **/
311 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
312 {
313 s32 ret_val;
314
315 ret_val = hw->phy.ops.acquire_phy(hw);
316 if (ret_val)
317 return ret_val;
318
319 if (offset > MAX_PHY_MULTI_PAGE_REG) {
320 ret_val = e1000_write_phy_reg_mdic(hw,
321 IGP01E1000_PHY_PAGE_SELECT,
322 (u16)offset);
323 if (ret_val) {
324 hw->phy.ops.release_phy(hw);
325 return ret_val;
326 }
327 }
328
329 ret_val = e1000_write_phy_reg_mdic(hw,
330 MAX_PHY_REG_ADDRESS & offset,
331 data);
332
333 hw->phy.ops.release_phy(hw);
334
335 return ret_val;
336 }
337
338 /**
339 * e1000e_read_kmrn_reg - Read kumeran register
340 * @hw: pointer to the HW structure
341 * @offset: register offset to be read
342 * @data: pointer to the read data
343 *
344 * Acquires semaphore, if necessary. Then reads the PHY register at offset
345 * using the kumeran interface. The information retrieved is stored in data.
346 * Release any acquired semaphores before exiting.
347 **/
348 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
349 {
350 u32 kmrnctrlsta;
351 s32 ret_val;
352
353 ret_val = hw->phy.ops.acquire_phy(hw);
354 if (ret_val)
355 return ret_val;
356
357 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
358 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
359 ew32(KMRNCTRLSTA, kmrnctrlsta);
360
361 udelay(2);
362
363 kmrnctrlsta = er32(KMRNCTRLSTA);
364 *data = (u16)kmrnctrlsta;
365
366 hw->phy.ops.release_phy(hw);
367
368 return ret_val;
369 }
370
371 /**
372 * e1000e_write_kmrn_reg - Write kumeran register
373 * @hw: pointer to the HW structure
374 * @offset: register offset to write to
375 * @data: data to write at register offset
376 *
377 * Acquires semaphore, if necessary. Then write the data to PHY register
378 * at the offset using the kumeran interface. Release any acquired semaphores
379 * before exiting.
380 **/
381 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
382 {
383 u32 kmrnctrlsta;
384 s32 ret_val;
385
386 ret_val = hw->phy.ops.acquire_phy(hw);
387 if (ret_val)
388 return ret_val;
389
390 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
391 E1000_KMRNCTRLSTA_OFFSET) | data;
392 ew32(KMRNCTRLSTA, kmrnctrlsta);
393
394 udelay(2);
395 hw->phy.ops.release_phy(hw);
396
397 return ret_val;
398 }
399
400 /**
401 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
402 * @hw: pointer to the HW structure
403 *
404 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
405 * and downshift values are set also.
406 **/
407 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
408 {
409 struct e1000_phy_info *phy = &hw->phy;
410 s32 ret_val;
411 u16 phy_data;
412
413 /* Enable CRS on TX. This must be set for half-duplex operation. */
414 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415 if (ret_val)
416 return ret_val;
417
418 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
419
420 /* Options:
421 * MDI/MDI-X = 0 (default)
422 * 0 - Auto for all speeds
423 * 1 - MDI mode
424 * 2 - MDI-X mode
425 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
426 */
427 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
428
429 switch (phy->mdix) {
430 case 1:
431 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
432 break;
433 case 2:
434 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
435 break;
436 case 3:
437 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
438 break;
439 case 0:
440 default:
441 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
442 break;
443 }
444
445 /* Options:
446 * disable_polarity_correction = 0 (default)
447 * Automatic Correction for Reversed Cable Polarity
448 * 0 - Disabled
449 * 1 - Enabled
450 */
451 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
452 if (phy->disable_polarity_correction == 1)
453 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
454
455 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
456 if (ret_val)
457 return ret_val;
458
459 if (phy->revision < 4) {
460 /* Force TX_CLK in the Extended PHY Specific Control Register
461 * to 25MHz clock.
462 */
463 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
464 if (ret_val)
465 return ret_val;
466
467 phy_data |= M88E1000_EPSCR_TX_CLK_25;
468
469 if ((phy->revision == 2) &&
470 (phy->id == M88E1111_I_PHY_ID)) {
471 /* 82573L PHY - set the downshift counter to 5x. */
472 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
473 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
474 } else {
475 /* Configure Master and Slave downshift values */
476 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
477 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
478 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
479 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
480 }
481 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
482 if (ret_val)
483 return ret_val;
484 }
485
486 /* Commit the changes. */
487 ret_val = e1000e_commit_phy(hw);
488 if (ret_val)
489 hw_dbg(hw, "Error committing the PHY changes\n");
490
491 return ret_val;
492 }
493
494 /**
495 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
496 * @hw: pointer to the HW structure
497 *
498 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
499 * igp PHY's.
500 **/
501 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
502 {
503 struct e1000_phy_info *phy = &hw->phy;
504 s32 ret_val;
505 u16 data;
506
507 ret_val = e1000_phy_hw_reset(hw);
508 if (ret_val) {
509 hw_dbg(hw, "Error resetting the PHY.\n");
510 return ret_val;
511 }
512
513 /* Wait 15ms for MAC to configure PHY from NVM settings. */
514 msleep(15);
515
516 /* disable lplu d0 during driver init */
517 ret_val = e1000_set_d0_lplu_state(hw, 0);
518 if (ret_val) {
519 hw_dbg(hw, "Error Disabling LPLU D0\n");
520 return ret_val;
521 }
522 /* Configure mdi-mdix settings */
523 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
524 if (ret_val)
525 return ret_val;
526
527 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
528
529 switch (phy->mdix) {
530 case 1:
531 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
532 break;
533 case 2:
534 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
535 break;
536 case 0:
537 default:
538 data |= IGP01E1000_PSCR_AUTO_MDIX;
539 break;
540 }
541 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
542 if (ret_val)
543 return ret_val;
544
545 /* set auto-master slave resolution settings */
546 if (hw->mac.autoneg) {
547 /* when autonegotiation advertisement is only 1000Mbps then we
548 * should disable SmartSpeed and enable Auto MasterSlave
549 * resolution as hardware default. */
550 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
551 /* Disable SmartSpeed */
552 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
553 &data);
554 if (ret_val)
555 return ret_val;
556
557 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
558 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
559 data);
560 if (ret_val)
561 return ret_val;
562
563 /* Set auto Master/Slave resolution process */
564 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
565 if (ret_val)
566 return ret_val;
567
568 data &= ~CR_1000T_MS_ENABLE;
569 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
570 if (ret_val)
571 return ret_val;
572 }
573
574 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
575 if (ret_val)
576 return ret_val;
577
578 /* load defaults for future use */
579 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
580 ((data & CR_1000T_MS_VALUE) ?
581 e1000_ms_force_master :
582 e1000_ms_force_slave) :
583 e1000_ms_auto;
584
585 switch (phy->ms_type) {
586 case e1000_ms_force_master:
587 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
588 break;
589 case e1000_ms_force_slave:
590 data |= CR_1000T_MS_ENABLE;
591 data &= ~(CR_1000T_MS_VALUE);
592 break;
593 case e1000_ms_auto:
594 data &= ~CR_1000T_MS_ENABLE;
595 default:
596 break;
597 }
598 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
599 }
600
601 return ret_val;
602 }
603
604 /**
605 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
606 * @hw: pointer to the HW structure
607 *
608 * Reads the MII auto-neg advertisement register and/or the 1000T control
609 * register and if the PHY is already setup for auto-negotiation, then
610 * return successful. Otherwise, setup advertisement and flow control to
611 * the appropriate values for the wanted auto-negotiation.
612 **/
613 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
614 {
615 struct e1000_phy_info *phy = &hw->phy;
616 s32 ret_val;
617 u16 mii_autoneg_adv_reg;
618 u16 mii_1000t_ctrl_reg = 0;
619
620 phy->autoneg_advertised &= phy->autoneg_mask;
621
622 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
623 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
624 if (ret_val)
625 return ret_val;
626
627 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
628 /* Read the MII 1000Base-T Control Register (Address 9). */
629 ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
630 if (ret_val)
631 return ret_val;
632 }
633
634 /* Need to parse both autoneg_advertised and fc and set up
635 * the appropriate PHY registers. First we will parse for
636 * autoneg_advertised software override. Since we can advertise
637 * a plethora of combinations, we need to check each bit
638 * individually.
639 */
640
641 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
642 * Advertisement Register (Address 4) and the 1000 mb speed bits in
643 * the 1000Base-T Control Register (Address 9).
644 */
645 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
646 NWAY_AR_100TX_HD_CAPS |
647 NWAY_AR_10T_FD_CAPS |
648 NWAY_AR_10T_HD_CAPS);
649 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
650
651 hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
652
653 /* Do we want to advertise 10 Mb Half Duplex? */
654 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
655 hw_dbg(hw, "Advertise 10mb Half duplex\n");
656 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
657 }
658
659 /* Do we want to advertise 10 Mb Full Duplex? */
660 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
661 hw_dbg(hw, "Advertise 10mb Full duplex\n");
662 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
663 }
664
665 /* Do we want to advertise 100 Mb Half Duplex? */
666 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
667 hw_dbg(hw, "Advertise 100mb Half duplex\n");
668 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
669 }
670
671 /* Do we want to advertise 100 Mb Full Duplex? */
672 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
673 hw_dbg(hw, "Advertise 100mb Full duplex\n");
674 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
675 }
676
677 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
678 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
679 hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
680
681 /* Do we want to advertise 1000 Mb Full Duplex? */
682 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
683 hw_dbg(hw, "Advertise 1000mb Full duplex\n");
684 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
685 }
686
687 /* Check for a software override of the flow control settings, and
688 * setup the PHY advertisement registers accordingly. If
689 * auto-negotiation is enabled, then software will have to set the
690 * "PAUSE" bits to the correct value in the Auto-Negotiation
691 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
692 * negotiation.
693 *
694 * The possible values of the "fc" parameter are:
695 * 0: Flow control is completely disabled
696 * 1: Rx flow control is enabled (we can receive pause frames
697 * but not send pause frames).
698 * 2: Tx flow control is enabled (we can send pause frames
699 * but we do not support receiving pause frames).
700 * 3: Both Rx and TX flow control (symmetric) are enabled.
701 * other: No software override. The flow control configuration
702 * in the EEPROM is used.
703 */
704 switch (hw->mac.fc) {
705 case e1000_fc_none:
706 /* Flow control (RX & TX) is completely disabled by a
707 * software over-ride.
708 */
709 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
710 break;
711 case e1000_fc_rx_pause:
712 /* RX Flow control is enabled, and TX Flow control is
713 * disabled, by a software over-ride.
714 */
715 /* Since there really isn't a way to advertise that we are
716 * capable of RX Pause ONLY, we will advertise that we
717 * support both symmetric and asymmetric RX PAUSE. Later
718 * (in e1000e_config_fc_after_link_up) we will disable the
719 * hw's ability to send PAUSE frames.
720 */
721 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
722 break;
723 case e1000_fc_tx_pause:
724 /* TX Flow control is enabled, and RX Flow control is
725 * disabled, by a software over-ride.
726 */
727 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
728 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
729 break;
730 case e1000_fc_full:
731 /* Flow control (both RX and TX) is enabled by a software
732 * over-ride.
733 */
734 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
735 break;
736 default:
737 hw_dbg(hw, "Flow control param set incorrectly\n");
738 ret_val = -E1000_ERR_CONFIG;
739 return ret_val;
740 }
741
742 ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
743 if (ret_val)
744 return ret_val;
745
746 hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
747
748 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
749 ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
750 }
751
752 return ret_val;
753 }
754
755 /**
756 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
757 * @hw: pointer to the HW structure
758 *
759 * Performs initial bounds checking on autoneg advertisement parameter, then
760 * configure to advertise the full capability. Setup the PHY to autoneg
761 * and restart the negotiation process between the link partner. If
762 * wait_for_link, then wait for autoneg to complete before exiting.
763 **/
764 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
765 {
766 struct e1000_phy_info *phy = &hw->phy;
767 s32 ret_val;
768 u16 phy_ctrl;
769
770 /* Perform some bounds checking on the autoneg advertisement
771 * parameter.
772 */
773 phy->autoneg_advertised &= phy->autoneg_mask;
774
775 /* If autoneg_advertised is zero, we assume it was not defaulted
776 * by the calling code so we set to advertise full capability.
777 */
778 if (phy->autoneg_advertised == 0)
779 phy->autoneg_advertised = phy->autoneg_mask;
780
781 hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
782 ret_val = e1000_phy_setup_autoneg(hw);
783 if (ret_val) {
784 hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
785 return ret_val;
786 }
787 hw_dbg(hw, "Restarting Auto-Neg\n");
788
789 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
790 * the Auto Neg Restart bit in the PHY control register.
791 */
792 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
793 if (ret_val)
794 return ret_val;
795
796 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
797 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
798 if (ret_val)
799 return ret_val;
800
801 /* Does the user want to wait for Auto-Neg to complete here, or
802 * check at a later time (for example, callback routine).
803 */
804 if (phy->wait_for_link) {
805 ret_val = e1000_wait_autoneg(hw);
806 if (ret_val) {
807 hw_dbg(hw, "Error while waiting for "
808 "autoneg to complete\n");
809 return ret_val;
810 }
811 }
812
813 hw->mac.get_link_status = 1;
814
815 return ret_val;
816 }
817
818 /**
819 * e1000e_setup_copper_link - Configure copper link settings
820 * @hw: pointer to the HW structure
821 *
822 * Calls the appropriate function to configure the link for auto-neg or forced
823 * speed and duplex. Then we check for link, once link is established calls
824 * to configure collision distance and flow control are called. If link is
825 * not established, we return -E1000_ERR_PHY (-2).
826 **/
827 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
828 {
829 s32 ret_val;
830 bool link;
831
832 if (hw->mac.autoneg) {
833 /* Setup autoneg and flow control advertisement and perform
834 * autonegotiation. */
835 ret_val = e1000_copper_link_autoneg(hw);
836 if (ret_val)
837 return ret_val;
838 } else {
839 /* PHY will be set to 10H, 10F, 100H or 100F
840 * depending on user settings. */
841 hw_dbg(hw, "Forcing Speed and Duplex\n");
842 ret_val = e1000_phy_force_speed_duplex(hw);
843 if (ret_val) {
844 hw_dbg(hw, "Error Forcing Speed and Duplex\n");
845 return ret_val;
846 }
847 }
848
849 /* Check link status. Wait up to 100 microseconds for link to become
850 * valid.
851 */
852 ret_val = e1000e_phy_has_link_generic(hw,
853 COPPER_LINK_UP_LIMIT,
854 10,
855 &link);
856 if (ret_val)
857 return ret_val;
858
859 if (link) {
860 hw_dbg(hw, "Valid link established!!!\n");
861 e1000e_config_collision_dist(hw);
862 ret_val = e1000e_config_fc_after_link_up(hw);
863 } else {
864 hw_dbg(hw, "Unable to establish link!!!\n");
865 }
866
867 return ret_val;
868 }
869
870 /**
871 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
872 * @hw: pointer to the HW structure
873 *
874 * Calls the PHY setup function to force speed and duplex. Clears the
875 * auto-crossover to force MDI manually. Waits for link and returns
876 * successful if link up is successful, else -E1000_ERR_PHY (-2).
877 **/
878 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
879 {
880 struct e1000_phy_info *phy = &hw->phy;
881 s32 ret_val;
882 u16 phy_data;
883 bool link;
884
885 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
886 if (ret_val)
887 return ret_val;
888
889 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
890
891 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
892 if (ret_val)
893 return ret_val;
894
895 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
896 * forced whenever speed and duplex are forced.
897 */
898 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
899 if (ret_val)
900 return ret_val;
901
902 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
903 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
904
905 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
906 if (ret_val)
907 return ret_val;
908
909 hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
910
911 udelay(1);
912
913 if (phy->wait_for_link) {
914 hw_dbg(hw, "Waiting for forced speed/duplex link on IGP phy.\n");
915
916 ret_val = e1000e_phy_has_link_generic(hw,
917 PHY_FORCE_LIMIT,
918 100000,
919 &link);
920 if (ret_val)
921 return ret_val;
922
923 if (!link)
924 hw_dbg(hw, "Link taking longer than expected.\n");
925
926 /* Try once more */
927 ret_val = e1000e_phy_has_link_generic(hw,
928 PHY_FORCE_LIMIT,
929 100000,
930 &link);
931 if (ret_val)
932 return ret_val;
933 }
934
935 return ret_val;
936 }
937
938 /**
939 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
940 * @hw: pointer to the HW structure
941 *
942 * Calls the PHY setup function to force speed and duplex. Clears the
943 * auto-crossover to force MDI manually. Resets the PHY to commit the
944 * changes. If time expires while waiting for link up, we reset the DSP.
945 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
946 * successful completion, else return corresponding error code.
947 **/
948 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
949 {
950 struct e1000_phy_info *phy = &hw->phy;
951 s32 ret_val;
952 u16 phy_data;
953 bool link;
954
955 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
956 * forced whenever speed and duplex are forced.
957 */
958 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
959 if (ret_val)
960 return ret_val;
961
962 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
963 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
964 if (ret_val)
965 return ret_val;
966
967 hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
968
969 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
970 if (ret_val)
971 return ret_val;
972
973 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
974
975 /* Reset the phy to commit changes. */
976 phy_data |= MII_CR_RESET;
977
978 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
979 if (ret_val)
980 return ret_val;
981
982 udelay(1);
983
984 if (phy->wait_for_link) {
985 hw_dbg(hw, "Waiting for forced speed/duplex link on M88 phy.\n");
986
987 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
988 100000, &link);
989 if (ret_val)
990 return ret_val;
991
992 if (!link) {
993 /* We didn't get link.
994 * Reset the DSP and cross our fingers.
995 */
996 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, 0x001d);
997 if (ret_val)
998 return ret_val;
999 ret_val = e1000e_phy_reset_dsp(hw);
1000 if (ret_val)
1001 return ret_val;
1002 }
1003
1004 /* Try once more */
1005 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1006 100000, &link);
1007 if (ret_val)
1008 return ret_val;
1009 }
1010
1011 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1012 if (ret_val)
1013 return ret_val;
1014
1015 /* Resetting the phy means we need to re-force TX_CLK in the
1016 * Extended PHY Specific Control Register to 25MHz clock from
1017 * the reset value of 2.5MHz.
1018 */
1019 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1020 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1021 if (ret_val)
1022 return ret_val;
1023
1024 /* In addition, we must re-enable CRS on Tx for both half and full
1025 * duplex.
1026 */
1027 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1028 if (ret_val)
1029 return ret_val;
1030
1031 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1032 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1033
1034 return ret_val;
1035 }
1036
1037 /**
1038 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1039 * @hw: pointer to the HW structure
1040 * @phy_ctrl: pointer to current value of PHY_CONTROL
1041 *
1042 * Forces speed and duplex on the PHY by doing the following: disable flow
1043 * control, force speed/duplex on the MAC, disable auto speed detection,
1044 * disable auto-negotiation, configure duplex, configure speed, configure
1045 * the collision distance, write configuration to CTRL register. The
1046 * caller must write to the PHY_CONTROL register for these settings to
1047 * take affect.
1048 **/
1049 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1050 {
1051 struct e1000_mac_info *mac = &hw->mac;
1052 u32 ctrl;
1053
1054 /* Turn off flow control when forcing speed/duplex */
1055 mac->fc = e1000_fc_none;
1056
1057 /* Force speed/duplex on the mac */
1058 ctrl = er32(CTRL);
1059 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1060 ctrl &= ~E1000_CTRL_SPD_SEL;
1061
1062 /* Disable Auto Speed Detection */
1063 ctrl &= ~E1000_CTRL_ASDE;
1064
1065 /* Disable autoneg on the phy */
1066 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1067
1068 /* Forcing Full or Half Duplex? */
1069 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1070 ctrl &= ~E1000_CTRL_FD;
1071 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1072 hw_dbg(hw, "Half Duplex\n");
1073 } else {
1074 ctrl |= E1000_CTRL_FD;
1075 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1076 hw_dbg(hw, "Full Duplex\n");
1077 }
1078
1079 /* Forcing 10mb or 100mb? */
1080 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1081 ctrl |= E1000_CTRL_SPD_100;
1082 *phy_ctrl |= MII_CR_SPEED_100;
1083 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1084 hw_dbg(hw, "Forcing 100mb\n");
1085 } else {
1086 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1087 *phy_ctrl |= MII_CR_SPEED_10;
1088 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1089 hw_dbg(hw, "Forcing 10mb\n");
1090 }
1091
1092 e1000e_config_collision_dist(hw);
1093
1094 ew32(CTRL, ctrl);
1095 }
1096
1097 /**
1098 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1099 * @hw: pointer to the HW structure
1100 * @active: boolean used to enable/disable lplu
1101 *
1102 * Success returns 0, Failure returns 1
1103 *
1104 * The low power link up (lplu) state is set to the power management level D3
1105 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1106 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1107 * is used during Dx states where the power conservation is most important.
1108 * During driver activity, SmartSpeed should be enabled so performance is
1109 * maintained.
1110 **/
1111 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1112 {
1113 struct e1000_phy_info *phy = &hw->phy;
1114 s32 ret_val;
1115 u16 data;
1116
1117 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1118 if (ret_val)
1119 return ret_val;
1120
1121 if (!active) {
1122 data &= ~IGP02E1000_PM_D3_LPLU;
1123 ret_val = e1e_wphy(hw,
1124 IGP02E1000_PHY_POWER_MGMT,
1125 data);
1126 if (ret_val)
1127 return ret_val;
1128 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1129 * during Dx states where the power conservation is most
1130 * important. During driver activity we should enable
1131 * SmartSpeed, so performance is maintained. */
1132 if (phy->smart_speed == e1000_smart_speed_on) {
1133 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1134 &data);
1135 if (ret_val)
1136 return ret_val;
1137
1138 data |= IGP01E1000_PSCFR_SMART_SPEED;
1139 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1140 data);
1141 if (ret_val)
1142 return ret_val;
1143 } else if (phy->smart_speed == e1000_smart_speed_off) {
1144 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1145 &data);
1146 if (ret_val)
1147 return ret_val;
1148
1149 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1150 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1151 data);
1152 if (ret_val)
1153 return ret_val;
1154 }
1155 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1156 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1157 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1158 data |= IGP02E1000_PM_D3_LPLU;
1159 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1160 if (ret_val)
1161 return ret_val;
1162
1163 /* When LPLU is enabled, we should disable SmartSpeed */
1164 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1165 if (ret_val)
1166 return ret_val;
1167
1168 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1169 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1170 }
1171
1172 return ret_val;
1173 }
1174
1175 /**
1176 * e1000e_check_downshift - Checks whether a downshift in speed occured
1177 * @hw: pointer to the HW structure
1178 *
1179 * Success returns 0, Failure returns 1
1180 *
1181 * A downshift is detected by querying the PHY link health.
1182 **/
1183 s32 e1000e_check_downshift(struct e1000_hw *hw)
1184 {
1185 struct e1000_phy_info *phy = &hw->phy;
1186 s32 ret_val;
1187 u16 phy_data, offset, mask;
1188
1189 switch (phy->type) {
1190 case e1000_phy_m88:
1191 case e1000_phy_gg82563:
1192 offset = M88E1000_PHY_SPEC_STATUS;
1193 mask = M88E1000_PSSR_DOWNSHIFT;
1194 break;
1195 case e1000_phy_igp_2:
1196 case e1000_phy_igp_3:
1197 offset = IGP01E1000_PHY_LINK_HEALTH;
1198 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1199 break;
1200 default:
1201 /* speed downshift not supported */
1202 phy->speed_downgraded = 0;
1203 return 0;
1204 }
1205
1206 ret_val = e1e_rphy(hw, offset, &phy_data);
1207
1208 if (!ret_val)
1209 phy->speed_downgraded = (phy_data & mask);
1210
1211 return ret_val;
1212 }
1213
1214 /**
1215 * e1000_check_polarity_m88 - Checks the polarity.
1216 * @hw: pointer to the HW structure
1217 *
1218 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1219 *
1220 * Polarity is determined based on the PHY specific status register.
1221 **/
1222 static s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1223 {
1224 struct e1000_phy_info *phy = &hw->phy;
1225 s32 ret_val;
1226 u16 data;
1227
1228 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1229
1230 if (!ret_val)
1231 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1232 ? e1000_rev_polarity_reversed
1233 : e1000_rev_polarity_normal;
1234
1235 return ret_val;
1236 }
1237
1238 /**
1239 * e1000_check_polarity_igp - Checks the polarity.
1240 * @hw: pointer to the HW structure
1241 *
1242 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1243 *
1244 * Polarity is determined based on the PHY port status register, and the
1245 * current speed (since there is no polarity at 100Mbps).
1246 **/
1247 static s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1248 {
1249 struct e1000_phy_info *phy = &hw->phy;
1250 s32 ret_val;
1251 u16 data, offset, mask;
1252
1253 /* Polarity is determined based on the speed of
1254 * our connection. */
1255 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1256 if (ret_val)
1257 return ret_val;
1258
1259 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1260 IGP01E1000_PSSR_SPEED_1000MBPS) {
1261 offset = IGP01E1000_PHY_PCS_INIT_REG;
1262 mask = IGP01E1000_PHY_POLARITY_MASK;
1263 } else {
1264 /* This really only applies to 10Mbps since
1265 * there is no polarity for 100Mbps (always 0).
1266 */
1267 offset = IGP01E1000_PHY_PORT_STATUS;
1268 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1269 }
1270
1271 ret_val = e1e_rphy(hw, offset, &data);
1272
1273 if (!ret_val)
1274 phy->cable_polarity = (data & mask)
1275 ? e1000_rev_polarity_reversed
1276 : e1000_rev_polarity_normal;
1277
1278 return ret_val;
1279 }
1280
1281 /**
1282 * e1000_wait_autoneg - Wait for auto-neg compeletion
1283 * @hw: pointer to the HW structure
1284 *
1285 * Waits for auto-negotiation to complete or for the auto-negotiation time
1286 * limit to expire, which ever happens first.
1287 **/
1288 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1289 {
1290 s32 ret_val = 0;
1291 u16 i, phy_status;
1292
1293 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1294 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1295 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1296 if (ret_val)
1297 break;
1298 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1299 if (ret_val)
1300 break;
1301 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1302 break;
1303 msleep(100);
1304 }
1305
1306 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1307 * has completed.
1308 */
1309 return ret_val;
1310 }
1311
1312 /**
1313 * e1000e_phy_has_link_generic - Polls PHY for link
1314 * @hw: pointer to the HW structure
1315 * @iterations: number of times to poll for link
1316 * @usec_interval: delay between polling attempts
1317 * @success: pointer to whether polling was successful or not
1318 *
1319 * Polls the PHY status register for link, 'iterations' number of times.
1320 **/
1321 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1322 u32 usec_interval, bool *success)
1323 {
1324 s32 ret_val = 0;
1325 u16 i, phy_status;
1326
1327 for (i = 0; i < iterations; i++) {
1328 /* Some PHYs require the PHY_STATUS register to be read
1329 * twice due to the link bit being sticky. No harm doing
1330 * it across the board.
1331 */
1332 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1333 if (ret_val)
1334 break;
1335 ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1336 if (ret_val)
1337 break;
1338 if (phy_status & MII_SR_LINK_STATUS)
1339 break;
1340 if (usec_interval >= 1000)
1341 mdelay(usec_interval/1000);
1342 else
1343 udelay(usec_interval);
1344 }
1345
1346 *success = (i < iterations);
1347
1348 return ret_val;
1349 }
1350
1351 /**
1352 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1353 * @hw: pointer to the HW structure
1354 *
1355 * Reads the PHY specific status register to retrieve the cable length
1356 * information. The cable length is determined by averaging the minimum and
1357 * maximum values to get the "average" cable length. The m88 PHY has four
1358 * possible cable length values, which are:
1359 * Register Value Cable Length
1360 * 0 < 50 meters
1361 * 1 50 - 80 meters
1362 * 2 80 - 110 meters
1363 * 3 110 - 140 meters
1364 * 4 > 140 meters
1365 **/
1366 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1367 {
1368 struct e1000_phy_info *phy = &hw->phy;
1369 s32 ret_val;
1370 u16 phy_data, index;
1371
1372 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1373 if (ret_val)
1374 return ret_val;
1375
1376 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1377 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1378 phy->min_cable_length = e1000_m88_cable_length_table[index];
1379 phy->max_cable_length = e1000_m88_cable_length_table[index+1];
1380
1381 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1382
1383 return ret_val;
1384 }
1385
1386 /**
1387 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1388 * @hw: pointer to the HW structure
1389 *
1390 * The automatic gain control (agc) normalizes the amplitude of the
1391 * received signal, adjusting for the attenuation produced by the
1392 * cable. By reading the AGC registers, which reperesent the
1393 * cobination of course and fine gain value, the value can be put
1394 * into a lookup table to obtain the approximate cable length
1395 * for each channel.
1396 **/
1397 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1398 {
1399 struct e1000_phy_info *phy = &hw->phy;
1400 s32 ret_val;
1401 u16 phy_data, i, agc_value = 0;
1402 u16 cur_agc_index, max_agc_index = 0;
1403 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1404 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1405 {IGP02E1000_PHY_AGC_A,
1406 IGP02E1000_PHY_AGC_B,
1407 IGP02E1000_PHY_AGC_C,
1408 IGP02E1000_PHY_AGC_D};
1409
1410 /* Read the AGC registers for all channels */
1411 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1412 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1413 if (ret_val)
1414 return ret_val;
1415
1416 /* Getting bits 15:9, which represent the combination of
1417 * course and fine gain values. The result is a number
1418 * that can be put into the lookup table to obtain the
1419 * approximate cable length. */
1420 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1421 IGP02E1000_AGC_LENGTH_MASK;
1422
1423 /* Array index bound check. */
1424 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1425 (cur_agc_index == 0))
1426 return -E1000_ERR_PHY;
1427
1428 /* Remove min & max AGC values from calculation. */
1429 if (e1000_igp_2_cable_length_table[min_agc_index] >
1430 e1000_igp_2_cable_length_table[cur_agc_index])
1431 min_agc_index = cur_agc_index;
1432 if (e1000_igp_2_cable_length_table[max_agc_index] <
1433 e1000_igp_2_cable_length_table[cur_agc_index])
1434 max_agc_index = cur_agc_index;
1435
1436 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1437 }
1438
1439 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1440 e1000_igp_2_cable_length_table[max_agc_index]);
1441 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1442
1443 /* Calculate cable length with the error range of +/- 10 meters. */
1444 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1445 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1446 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1447
1448 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1449
1450 return ret_val;
1451 }
1452
1453 /**
1454 * e1000e_get_phy_info_m88 - Retrieve PHY information
1455 * @hw: pointer to the HW structure
1456 *
1457 * Valid for only copper links. Read the PHY status register (sticky read)
1458 * to verify that link is up. Read the PHY special control register to
1459 * determine the polarity and 10base-T extended distance. Read the PHY
1460 * special status register to determine MDI/MDIx and current speed. If
1461 * speed is 1000, then determine cable length, local and remote receiver.
1462 **/
1463 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1464 {
1465 struct e1000_phy_info *phy = &hw->phy;
1466 s32 ret_val;
1467 u16 phy_data;
1468 bool link;
1469
1470 if (hw->media_type != e1000_media_type_copper) {
1471 hw_dbg(hw, "Phy info is only valid for copper media\n");
1472 return -E1000_ERR_CONFIG;
1473 }
1474
1475 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1476 if (ret_val)
1477 return ret_val;
1478
1479 if (!link) {
1480 hw_dbg(hw, "Phy info is only valid if link is up\n");
1481 return -E1000_ERR_CONFIG;
1482 }
1483
1484 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1485 if (ret_val)
1486 return ret_val;
1487
1488 phy->polarity_correction = (phy_data &
1489 M88E1000_PSCR_POLARITY_REVERSAL);
1490
1491 ret_val = e1000_check_polarity_m88(hw);
1492 if (ret_val)
1493 return ret_val;
1494
1495 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1496 if (ret_val)
1497 return ret_val;
1498
1499 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1500
1501 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1502 ret_val = e1000_get_cable_length(hw);
1503 if (ret_val)
1504 return ret_val;
1505
1506 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1507 if (ret_val)
1508 return ret_val;
1509
1510 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1511 ? e1000_1000t_rx_status_ok
1512 : e1000_1000t_rx_status_not_ok;
1513
1514 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1515 ? e1000_1000t_rx_status_ok
1516 : e1000_1000t_rx_status_not_ok;
1517 } else {
1518 /* Set values to "undefined" */
1519 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1520 phy->local_rx = e1000_1000t_rx_status_undefined;
1521 phy->remote_rx = e1000_1000t_rx_status_undefined;
1522 }
1523
1524 return ret_val;
1525 }
1526
1527 /**
1528 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1529 * @hw: pointer to the HW structure
1530 *
1531 * Read PHY status to determine if link is up. If link is up, then
1532 * set/determine 10base-T extended distance and polarity correction. Read
1533 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1534 * determine on the cable length, local and remote receiver.
1535 **/
1536 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1537 {
1538 struct e1000_phy_info *phy = &hw->phy;
1539 s32 ret_val;
1540 u16 data;
1541 bool link;
1542
1543 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1544 if (ret_val)
1545 return ret_val;
1546
1547 if (!link) {
1548 hw_dbg(hw, "Phy info is only valid if link is up\n");
1549 return -E1000_ERR_CONFIG;
1550 }
1551
1552 phy->polarity_correction = 1;
1553
1554 ret_val = e1000_check_polarity_igp(hw);
1555 if (ret_val)
1556 return ret_val;
1557
1558 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1559 if (ret_val)
1560 return ret_val;
1561
1562 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
1563
1564 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1565 IGP01E1000_PSSR_SPEED_1000MBPS) {
1566 ret_val = e1000_get_cable_length(hw);
1567 if (ret_val)
1568 return ret_val;
1569
1570 ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
1571 if (ret_val)
1572 return ret_val;
1573
1574 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1575 ? e1000_1000t_rx_status_ok
1576 : e1000_1000t_rx_status_not_ok;
1577
1578 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1579 ? e1000_1000t_rx_status_ok
1580 : e1000_1000t_rx_status_not_ok;
1581 } else {
1582 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1583 phy->local_rx = e1000_1000t_rx_status_undefined;
1584 phy->remote_rx = e1000_1000t_rx_status_undefined;
1585 }
1586
1587 return ret_val;
1588 }
1589
1590 /**
1591 * e1000e_phy_sw_reset - PHY software reset
1592 * @hw: pointer to the HW structure
1593 *
1594 * Does a software reset of the PHY by reading the PHY control register and
1595 * setting/write the control register reset bit to the PHY.
1596 **/
1597 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
1598 {
1599 s32 ret_val;
1600 u16 phy_ctrl;
1601
1602 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1603 if (ret_val)
1604 return ret_val;
1605
1606 phy_ctrl |= MII_CR_RESET;
1607 ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1608 if (ret_val)
1609 return ret_val;
1610
1611 udelay(1);
1612
1613 return ret_val;
1614 }
1615
1616 /**
1617 * e1000e_phy_hw_reset_generic - PHY hardware reset
1618 * @hw: pointer to the HW structure
1619 *
1620 * Verify the reset block is not blocking us from resetting. Acquire
1621 * semaphore (if necessary) and read/set/write the device control reset
1622 * bit in the PHY. Wait the appropriate delay time for the device to
1623 * reset and relase the semaphore (if necessary).
1624 **/
1625 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
1626 {
1627 struct e1000_phy_info *phy = &hw->phy;
1628 s32 ret_val;
1629 u32 ctrl;
1630
1631 ret_val = e1000_check_reset_block(hw);
1632 if (ret_val)
1633 return 0;
1634
1635 ret_val = phy->ops.acquire_phy(hw);
1636 if (ret_val)
1637 return ret_val;
1638
1639 ctrl = er32(CTRL);
1640 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
1641 e1e_flush();
1642
1643 udelay(phy->reset_delay_us);
1644
1645 ew32(CTRL, ctrl);
1646 e1e_flush();
1647
1648 udelay(150);
1649
1650 phy->ops.release_phy(hw);
1651
1652 return e1000_get_phy_cfg_done(hw);
1653 }
1654
1655 /**
1656 * e1000e_get_cfg_done - Generic configuration done
1657 * @hw: pointer to the HW structure
1658 *
1659 * Generic function to wait 10 milli-seconds for configuration to complete
1660 * and return success.
1661 **/
1662 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
1663 {
1664 mdelay(10);
1665 return 0;
1666 }
1667
1668 /* Internal function pointers */
1669
1670 /**
1671 * e1000_get_phy_cfg_done - Generic PHY configuration done
1672 * @hw: pointer to the HW structure
1673 *
1674 * Return success if silicon family did not implement a family specific
1675 * get_cfg_done function.
1676 **/
1677 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
1678 {
1679 if (hw->phy.ops.get_cfg_done)
1680 return hw->phy.ops.get_cfg_done(hw);
1681
1682 return 0;
1683 }
1684
1685 /**
1686 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
1687 * @hw: pointer to the HW structure
1688 *
1689 * When the silicon family has not implemented a forced speed/duplex
1690 * function for the PHY, simply return 0.
1691 **/
1692 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1693 {
1694 if (hw->phy.ops.force_speed_duplex)
1695 return hw->phy.ops.force_speed_duplex(hw);
1696
1697 return 0;
1698 }
1699
1700 /**
1701 * e1000e_get_phy_type_from_id - Get PHY type from id
1702 * @phy_id: phy_id read from the phy
1703 *
1704 * Returns the phy type from the id.
1705 **/
1706 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
1707 {
1708 enum e1000_phy_type phy_type = e1000_phy_unknown;
1709
1710 switch (phy_id) {
1711 case M88E1000_I_PHY_ID:
1712 case M88E1000_E_PHY_ID:
1713 case M88E1111_I_PHY_ID:
1714 case M88E1011_I_PHY_ID:
1715 phy_type = e1000_phy_m88;
1716 break;
1717 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
1718 phy_type = e1000_phy_igp_2;
1719 break;
1720 case GG82563_E_PHY_ID:
1721 phy_type = e1000_phy_gg82563;
1722 break;
1723 case IGP03E1000_E_PHY_ID:
1724 phy_type = e1000_phy_igp_3;
1725 break;
1726 case IFE_E_PHY_ID:
1727 case IFE_PLUS_E_PHY_ID:
1728 case IFE_C_E_PHY_ID:
1729 phy_type = e1000_phy_ife;
1730 break;
1731 default:
1732 phy_type = e1000_phy_unknown;
1733 break;
1734 }
1735 return phy_type;
1736 }
1737
1738 /**
1739 * e1000e_commit_phy - Soft PHY reset
1740 * @hw: pointer to the HW structure
1741 *
1742 * Performs a soft PHY reset on those that apply. This is a function pointer
1743 * entry point called by drivers.
1744 **/
1745 s32 e1000e_commit_phy(struct e1000_hw *hw)
1746 {
1747 if (hw->phy.ops.commit_phy)
1748 return hw->phy.ops.commit_phy(hw);
1749
1750 return 0;
1751 }
1752
1753 /**
1754 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1755 * @hw: pointer to the HW structure
1756 * @active: boolean used to enable/disable lplu
1757 *
1758 * Success returns 0, Failure returns 1
1759 *
1760 * The low power link up (lplu) state is set to the power management level D0
1761 * and SmartSpeed is disabled when active is true, else clear lplu for D0
1762 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1763 * is used during Dx states where the power conservation is most important.
1764 * During driver activity, SmartSpeed should be enabled so performance is
1765 * maintained. This is a function pointer entry point called by drivers.
1766 **/
1767 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1768 {
1769 if (hw->phy.ops.set_d0_lplu_state)
1770 return hw->phy.ops.set_d0_lplu_state(hw, active);
1771
1772 return 0;
1773 }
This page took 0.065189 seconds and 6 git commands to generate.