[NET] drivers/net: statistics cleanup #1 -- save memory and shrink code
[deliverable/linux.git] / drivers / net / eepro.c
1 /* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
2 /*
3 Written 1994, 1995,1996 by Bao C. Ha.
4
5 Copyright (C) 1994, 1995,1996 by Bao C. Ha.
6
7 This software may be used and distributed
8 according to the terms of the GNU General Public License,
9 incorporated herein by reference.
10
11 The author may be reached at bao.ha@srs.gov
12 or 418 Hastings Place, Martinez, GA 30907.
13
14 Things remaining to do:
15 Better record keeping of errors.
16 Eliminate transmit interrupt to reduce overhead.
17 Implement "concurrent processing". I won't be doing it!
18
19 Bugs:
20
21 If you have a problem of not detecting the 82595 during a
22 reboot (warm reset), disable the FLASH memory should fix it.
23 This is a compatibility hardware problem.
24
25 Versions:
26 0.13b basic ethtool support (aris, 09/13/2004)
27 0.13a in memory shortage, drop packets also in board
28 (Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
29 0.13 irq sharing, rewrote probe function, fixed a nasty bug in
30 hardware_send_packet and a major cleanup (aris, 11/08/2001)
31 0.12d fixing a problem with single card detected as eight eth devices
32 fixing a problem with sudden drop in card performance
33 (chris (asdn@go2.pl), 10/29/2001)
34 0.12c fixing some problems with old cards (aris, 01/08/2001)
35 0.12b misc fixes (aris, 06/26/2000)
36 0.12a port of version 0.12a of 2.2.x kernels to 2.3.x
37 (aris (aris@conectiva.com.br), 05/19/2000)
38 0.11e some tweaks about multiple cards support (PdP, jul/aug 1999)
39 0.11d added __initdata, __init stuff; call spin_lock_init
40 in eepro_probe1. Replaced "eepro" by dev->name. Augmented
41 the code protected by spin_lock in interrupt routine
42 (PdP, 12/12/1998)
43 0.11c minor cleanup (PdP, RMC, 09/12/1998)
44 0.11b Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
45 under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
46 avoid console flooding. Added locking at critical parts. Now
47 the dawn thing is SMP safe.
48 0.11a Attempt to get 2.1.xx support up (RMC)
49 0.11 Brian Candler added support for multiple cards. Tested as
50 a module, no idea if it works when compiled into kernel.
51
52 0.10e Rick Bressler notified me that ifconfig up;ifconfig down fails
53 because the irq is lost somewhere. Fixed that by moving
54 request_irq and free_irq to eepro_open and eepro_close respectively.
55 0.10d Ugh! Now Wakeup works. Was seriously broken in my first attempt.
56 I'll need to find a way to specify an ioport other than
57 the default one in the PnP case. PnP definitively sucks.
58 And, yes, this is not the only reason.
59 0.10c PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
60 to use.
61 0.10b Should work now with (some) Pro/10+. At least for
62 me (and my two cards) it does. _No_ guarantee for
63 function with non-Pro/10+ cards! (don't have any)
64 (RMC, 9/11/96)
65
66 0.10 Added support for the Etherexpress Pro/10+. The
67 IRQ map was changed significantly from the old
68 pro/10. The new interrupt map was provided by
69 Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
70 (BCH, 9/3/96)
71
72 0.09 Fixed a race condition in the transmit algorithm,
73 which causes crashes under heavy load with fast
74 pentium computers. The performance should also
75 improve a bit. The size of RX buffer, and hence
76 TX buffer, can also be changed via lilo or insmod.
77 (BCH, 7/31/96)
78
79 0.08 Implement 32-bit I/O for the 82595TX and 82595FX
80 based lan cards. Disable full-duplex mode if TPE
81 is not used. (BCH, 4/8/96)
82
83 0.07a Fix a stat report which counts every packet as a
84 heart-beat failure. (BCH, 6/3/95)
85
86 0.07 Modified to support all other 82595-based lan cards.
87 The IRQ vector of the EtherExpress Pro will be set
88 according to the value saved in the EEPROM. For other
89 cards, I will do autoirq_request() to grab the next
90 available interrupt vector. (BCH, 3/17/95)
91
92 0.06a,b Interim released. Minor changes in the comments and
93 print out format. (BCH, 3/9/95 and 3/14/95)
94
95 0.06 First stable release that I am comfortable with. (BCH,
96 3/2/95)
97
98 0.05 Complete testing of multicast. (BCH, 2/23/95)
99
100 0.04 Adding multicast support. (BCH, 2/14/95)
101
102 0.03 First widely alpha release for public testing.
103 (BCH, 2/14/95)
104
105 */
106
107 static const char version[] =
108 "eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
109
110 #include <linux/module.h>
111
112 /*
113 Sources:
114
115 This driver wouldn't have been written without the availability
116 of the Crynwr's Lan595 driver source code. It helps me to
117 familiarize with the 82595 chipset while waiting for the Intel
118 documentation. I also learned how to detect the 82595 using
119 the packet driver's technique.
120
121 This driver is written by cutting and pasting the skeleton.c driver
122 provided by Donald Becker. I also borrowed the EEPROM routine from
123 Donald Becker's 82586 driver.
124
125 Datasheet for the Intel 82595 (including the TX and FX version). It
126 provides just enough info that the casual reader might think that it
127 documents the i82595.
128
129 The User Manual for the 82595. It provides a lot of the missing
130 information.
131
132 */
133
134 #include <linux/kernel.h>
135 #include <linux/types.h>
136 #include <linux/fcntl.h>
137 #include <linux/interrupt.h>
138 #include <linux/ioport.h>
139 #include <linux/in.h>
140 #include <linux/slab.h>
141 #include <linux/string.h>
142 #include <linux/errno.h>
143 #include <linux/netdevice.h>
144 #include <linux/etherdevice.h>
145 #include <linux/skbuff.h>
146 #include <linux/spinlock.h>
147 #include <linux/init.h>
148 #include <linux/delay.h>
149 #include <linux/bitops.h>
150 #include <linux/ethtool.h>
151
152 #include <asm/system.h>
153 #include <asm/io.h>
154 #include <asm/dma.h>
155
156 #define DRV_NAME "eepro"
157 #define DRV_VERSION "0.13c"
158
159 #define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
160 /* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
161 #define SLOW_DOWN inb(0x80)
162 /* udelay(2) */
163 #define compat_init_data __initdata
164 enum iftype { AUI=0, BNC=1, TPE=2 };
165
166 /* First, a few definitions that the brave might change. */
167 /* A zero-terminated list of I/O addresses to be probed. */
168 static unsigned int eepro_portlist[] compat_init_data =
169 { 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
170 /* note: 0x300 is default, the 595FX supports ALL IO Ports
171 from 0x000 to 0x3F0, some of which are reserved in PCs */
172
173 /* To try the (not-really PnP Wakeup: */
174 /*
175 #define PnPWakeup
176 */
177
178 /* use 0 for production, 1 for verification, >2 for debug */
179 #ifndef NET_DEBUG
180 #define NET_DEBUG 0
181 #endif
182 static unsigned int net_debug = NET_DEBUG;
183
184 /* The number of low I/O ports used by the ethercard. */
185 #define EEPRO_IO_EXTENT 16
186
187 /* Different 82595 chips */
188 #define LAN595 0
189 #define LAN595TX 1
190 #define LAN595FX 2
191 #define LAN595FX_10ISA 3
192
193 /* Information that need to be kept for each board. */
194 struct eepro_local {
195 unsigned rx_start;
196 unsigned tx_start; /* start of the transmit chain */
197 int tx_last; /* pointer to last packet in the transmit chain */
198 unsigned tx_end; /* end of the transmit chain (plus 1) */
199 int eepro; /* 1 for the EtherExpress Pro/10,
200 2 for the EtherExpress Pro/10+,
201 3 for the EtherExpress 10 (blue cards),
202 0 for other 82595-based lan cards. */
203 int version; /* a flag to indicate if this is a TX or FX
204 version of the 82595 chip. */
205 int stepping;
206
207 spinlock_t lock; /* Serializing lock */
208
209 unsigned rcv_ram; /* pre-calculated space for rx */
210 unsigned xmt_ram; /* pre-calculated space for tx */
211 unsigned char xmt_bar;
212 unsigned char xmt_lower_limit_reg;
213 unsigned char xmt_upper_limit_reg;
214 short xmt_lower_limit;
215 short xmt_upper_limit;
216 short rcv_lower_limit;
217 short rcv_upper_limit;
218 unsigned char eeprom_reg;
219 unsigned short word[8];
220 };
221
222 /* The station (ethernet) address prefix, used for IDing the board. */
223 #define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
224 #define SA_ADDR1 0xaa
225 #define SA_ADDR2 0x00
226
227 #define GetBit(x,y) ((x & (1<<y))>>y)
228
229 /* EEPROM Word 0: */
230 #define ee_PnP 0 /* Plug 'n Play enable bit */
231 #define ee_Word1 1 /* Word 1? */
232 #define ee_BusWidth 2 /* 8/16 bit */
233 #define ee_FlashAddr 3 /* Flash Address */
234 #define ee_FlashMask 0x7 /* Mask */
235 #define ee_AutoIO 6 /* */
236 #define ee_reserved0 7 /* =0! */
237 #define ee_Flash 8 /* Flash there? */
238 #define ee_AutoNeg 9 /* Auto Negotiation enabled? */
239 #define ee_IO0 10 /* IO Address LSB */
240 #define ee_IO0Mask 0x /*...*/
241 #define ee_IO1 15 /* IO MSB */
242
243 /* EEPROM Word 1: */
244 #define ee_IntSel 0 /* Interrupt */
245 #define ee_IntMask 0x7
246 #define ee_LI 3 /* Link Integrity 0= enabled */
247 #define ee_PC 4 /* Polarity Correction 0= enabled */
248 #define ee_TPE_AUI 5 /* PortSelection 1=TPE */
249 #define ee_Jabber 6 /* Jabber prevention 0= enabled */
250 #define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
251 #define ee_SMOUT 8 /* SMout Pin Control 0= Input */
252 #define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
253 #define ee_reserved1 10 /* .. 12 =0! */
254 #define ee_AltReady 13 /* Alternate Ready, 0=normal */
255 #define ee_reserved2 14 /* =0! */
256 #define ee_Duplex 15
257
258 /* Word2,3,4: */
259 #define ee_IA5 0 /*bit start for individual Addr Byte 5 */
260 #define ee_IA4 8 /*bit start for individual Addr Byte 5 */
261 #define ee_IA3 0 /*bit start for individual Addr Byte 5 */
262 #define ee_IA2 8 /*bit start for individual Addr Byte 5 */
263 #define ee_IA1 0 /*bit start for individual Addr Byte 5 */
264 #define ee_IA0 8 /*bit start for individual Addr Byte 5 */
265
266 /* Word 5: */
267 #define ee_BNC_TPE 0 /* 0=TPE */
268 #define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
269 #define ee_BootTypeMask 0x3
270 #define ee_NumConn 3 /* Number of Connections 0= One or Two */
271 #define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
272 #define ee_PortTPE 5
273 #define ee_PortBNC 6
274 #define ee_PortAUI 7
275 #define ee_PowerMgt 10 /* 0= disabled */
276 #define ee_CP 13 /* Concurrent Processing */
277 #define ee_CPMask 0x7
278
279 /* Word 6: */
280 #define ee_Stepping 0 /* Stepping info */
281 #define ee_StepMask 0x0F
282 #define ee_BoardID 4 /* Manucaturer Board ID, reserved */
283 #define ee_BoardMask 0x0FFF
284
285 /* Word 7: */
286 #define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
287 #define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
288
289 /*..*/
290 #define ee_SIZE 0x40 /* total EEprom Size */
291 #define ee_Checksum 0xBABA /* initial and final value for adding checksum */
292
293
294 /* Card identification via EEprom: */
295 #define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
296 #define ee_addr_id 0x11 /* Word offset for Card ID */
297 #define ee_addr_SN 0x12 /* Serial Number */
298 #define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
299
300
301 #define ee_vendor_intel0 0x25 /* Vendor ID Intel */
302 #define ee_vendor_intel1 0xD4
303 #define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
304 #define ee_id_eepro10p1 0x31
305
306 #define TX_TIMEOUT 40
307
308 /* Index to functions, as function prototypes. */
309
310 static int eepro_probe1(struct net_device *dev, int autoprobe);
311 static int eepro_open(struct net_device *dev);
312 static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev);
313 static irqreturn_t eepro_interrupt(int irq, void *dev_id);
314 static void eepro_rx(struct net_device *dev);
315 static void eepro_transmit_interrupt(struct net_device *dev);
316 static int eepro_close(struct net_device *dev);
317 static void set_multicast_list(struct net_device *dev);
318 static void eepro_tx_timeout (struct net_device *dev);
319
320 static int read_eeprom(int ioaddr, int location, struct net_device *dev);
321 static int hardware_send_packet(struct net_device *dev, void *buf, short length);
322 static int eepro_grab_irq(struct net_device *dev);
323
324 /*
325 Details of the i82595.
326
327 You will need either the datasheet or the user manual to understand what
328 is going on here. The 82595 is very different from the 82586, 82593.
329
330 The receive algorithm in eepro_rx() is just an implementation of the
331 RCV ring structure that the Intel 82595 imposes at the hardware level.
332 The receive buffer is set at 24K, and the transmit buffer is 8K. I
333 am assuming that the total buffer memory is 32K, which is true for the
334 Intel EtherExpress Pro/10. If it is less than that on a generic card,
335 the driver will be broken.
336
337 The transmit algorithm in the hardware_send_packet() is similar to the
338 one in the eepro_rx(). The transmit buffer is a ring linked list.
339 I just queue the next available packet to the end of the list. In my
340 system, the 82595 is so fast that the list seems to always contain a
341 single packet. In other systems with faster computers and more congested
342 network traffics, the ring linked list should improve performance by
343 allowing up to 8K worth of packets to be queued.
344
345 The sizes of the receive and transmit buffers can now be changed via lilo
346 or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
347 where rx-buffer is in KB unit. Modules uses the parameter mem which is
348 also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
349 The receive buffer has to be more than 3K or less than 29K. Otherwise,
350 it is reset to the default of 24K, and, hence, 8K for the trasnmit
351 buffer (transmit-buffer = 32K - receive-buffer).
352
353 */
354 #define RAM_SIZE 0x8000
355
356 #define RCV_HEADER 8
357 #define RCV_DEFAULT_RAM 0x6000
358
359 #define XMT_HEADER 8
360 #define XMT_DEFAULT_RAM (RAM_SIZE - RCV_DEFAULT_RAM)
361
362 #define XMT_START_PRO RCV_DEFAULT_RAM
363 #define XMT_START_10 0x0000
364 #define RCV_START_PRO 0x0000
365 #define RCV_START_10 XMT_DEFAULT_RAM
366
367 #define RCV_DONE 0x0008
368 #define RX_OK 0x2000
369 #define RX_ERROR 0x0d81
370
371 #define TX_DONE_BIT 0x0080
372 #define TX_OK 0x2000
373 #define CHAIN_BIT 0x8000
374 #define XMT_STATUS 0x02
375 #define XMT_CHAIN 0x04
376 #define XMT_COUNT 0x06
377
378 #define BANK0_SELECT 0x00
379 #define BANK1_SELECT 0x40
380 #define BANK2_SELECT 0x80
381
382 /* Bank 0 registers */
383 #define COMMAND_REG 0x00 /* Register 0 */
384 #define MC_SETUP 0x03
385 #define XMT_CMD 0x04
386 #define DIAGNOSE_CMD 0x07
387 #define RCV_ENABLE_CMD 0x08
388 #define RCV_DISABLE_CMD 0x0a
389 #define STOP_RCV_CMD 0x0b
390 #define RESET_CMD 0x0e
391 #define POWER_DOWN_CMD 0x18
392 #define RESUME_XMT_CMD 0x1c
393 #define SEL_RESET_CMD 0x1e
394 #define STATUS_REG 0x01 /* Register 1 */
395 #define RX_INT 0x02
396 #define TX_INT 0x04
397 #define EXEC_STATUS 0x30
398 #define ID_REG 0x02 /* Register 2 */
399 #define R_ROBIN_BITS 0xc0 /* round robin counter */
400 #define ID_REG_MASK 0x2c
401 #define ID_REG_SIG 0x24
402 #define AUTO_ENABLE 0x10
403 #define INT_MASK_REG 0x03 /* Register 3 */
404 #define RX_STOP_MASK 0x01
405 #define RX_MASK 0x02
406 #define TX_MASK 0x04
407 #define EXEC_MASK 0x08
408 #define ALL_MASK 0x0f
409 #define IO_32_BIT 0x10
410 #define RCV_BAR 0x04 /* The following are word (16-bit) registers */
411 #define RCV_STOP 0x06
412
413 #define XMT_BAR_PRO 0x0a
414 #define XMT_BAR_10 0x0b
415
416 #define HOST_ADDRESS_REG 0x0c
417 #define IO_PORT 0x0e
418 #define IO_PORT_32_BIT 0x0c
419
420 /* Bank 1 registers */
421 #define REG1 0x01
422 #define WORD_WIDTH 0x02
423 #define INT_ENABLE 0x80
424 #define INT_NO_REG 0x02
425 #define RCV_LOWER_LIMIT_REG 0x08
426 #define RCV_UPPER_LIMIT_REG 0x09
427
428 #define XMT_LOWER_LIMIT_REG_PRO 0x0a
429 #define XMT_UPPER_LIMIT_REG_PRO 0x0b
430 #define XMT_LOWER_LIMIT_REG_10 0x0b
431 #define XMT_UPPER_LIMIT_REG_10 0x0a
432
433 /* Bank 2 registers */
434 #define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
435 #define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
436 #define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
437 #define REG2 0x02
438 #define PRMSC_Mode 0x01
439 #define Multi_IA 0x20
440 #define REG3 0x03
441 #define TPE_BIT 0x04
442 #define BNC_BIT 0x20
443 #define REG13 0x0d
444 #define FDX 0x00
445 #define A_N_ENABLE 0x02
446
447 #define I_ADD_REG0 0x04
448 #define I_ADD_REG1 0x05
449 #define I_ADD_REG2 0x06
450 #define I_ADD_REG3 0x07
451 #define I_ADD_REG4 0x08
452 #define I_ADD_REG5 0x09
453
454 #define EEPROM_REG_PRO 0x0a
455 #define EEPROM_REG_10 0x0b
456
457 #define EESK 0x01
458 #define EECS 0x02
459 #define EEDI 0x04
460 #define EEDO 0x08
461
462 /* do a full reset */
463 #define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
464
465 /* do a nice reset */
466 #define eepro_sel_reset(ioaddr) { \
467 outb(SEL_RESET_CMD, ioaddr); \
468 SLOW_DOWN; \
469 SLOW_DOWN; \
470 }
471
472 /* disable all interrupts */
473 #define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
474
475 /* clear all interrupts */
476 #define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
477
478 /* enable tx/rx */
479 #define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
480 ioaddr + INT_MASK_REG)
481
482 /* enable exec event interrupt */
483 #define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
484
485 /* enable rx */
486 #define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
487
488 /* disable rx */
489 #define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
490
491 /* switch bank */
492 #define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
493 #define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
494 #define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
495
496 /* enable interrupt line */
497 #define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
498 ioaddr + REG1)
499
500 /* disable interrupt line */
501 #define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
502 ioaddr + REG1);
503
504 /* set diagnose flag */
505 #define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
506
507 /* ack for rx int */
508 #define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
509
510 /* ack for tx int */
511 #define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
512
513 /* a complete sel reset */
514 #define eepro_complete_selreset(ioaddr) { \
515 dev->stats.tx_errors++;\
516 eepro_sel_reset(ioaddr);\
517 lp->tx_end = \
518 lp->xmt_lower_limit;\
519 lp->tx_start = lp->tx_end;\
520 lp->tx_last = 0;\
521 dev->trans_start = jiffies;\
522 netif_wake_queue(dev);\
523 eepro_en_rx(ioaddr);\
524 }
525
526 /* Check for a network adaptor of this type, and return '0' if one exists.
527 If dev->base_addr == 0, probe all likely locations.
528 If dev->base_addr == 1, always return failure.
529 If dev->base_addr == 2, allocate space for the device and return success
530 (detachable devices only).
531 */
532 static int __init do_eepro_probe(struct net_device *dev)
533 {
534 int i;
535 int base_addr = dev->base_addr;
536 int irq = dev->irq;
537
538 #ifdef PnPWakeup
539 /* XXXX for multiple cards should this only be run once? */
540
541 /* Wakeup: */
542 #define WakeupPort 0x279
543 #define WakeupSeq {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
544 0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
545 0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
546 0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
547
548 {
549 unsigned short int WS[32]=WakeupSeq;
550
551 if (request_region(WakeupPort, 2, "eepro wakeup")) {
552 if (net_debug>5)
553 printk(KERN_DEBUG "Waking UP\n");
554
555 outb_p(0,WakeupPort);
556 outb_p(0,WakeupPort);
557 for (i=0; i<32; i++) {
558 outb_p(WS[i],WakeupPort);
559 if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
560 }
561
562 release_region(WakeupPort, 2);
563 } else
564 printk(KERN_WARNING "PnP wakeup region busy!\n");
565 }
566 #endif
567
568 if (base_addr > 0x1ff) /* Check a single specified location. */
569 return eepro_probe1(dev, 0);
570
571 else if (base_addr != 0) /* Don't probe at all. */
572 return -ENXIO;
573
574 for (i = 0; eepro_portlist[i]; i++) {
575 dev->base_addr = eepro_portlist[i];
576 dev->irq = irq;
577 if (eepro_probe1(dev, 1) == 0)
578 return 0;
579 }
580
581 return -ENODEV;
582 }
583
584 #ifndef MODULE
585 struct net_device * __init eepro_probe(int unit)
586 {
587 struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
588 int err;
589
590 if (!dev)
591 return ERR_PTR(-ENODEV);
592
593 sprintf(dev->name, "eth%d", unit);
594 netdev_boot_setup_check(dev);
595
596 err = do_eepro_probe(dev);
597 if (err)
598 goto out;
599 return dev;
600 out:
601 free_netdev(dev);
602 return ERR_PTR(err);
603 }
604 #endif
605
606 static void __init printEEPROMInfo(struct net_device *dev)
607 {
608 struct eepro_local *lp = (struct eepro_local *)dev->priv;
609 int ioaddr = dev->base_addr;
610 unsigned short Word;
611 int i,j;
612
613 j = ee_Checksum;
614 for (i = 0; i < 8; i++)
615 j += lp->word[i];
616 for ( ; i < ee_SIZE; i++)
617 j += read_eeprom(ioaddr, i, dev);
618
619 printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
620
621 Word = lp->word[0];
622 printk(KERN_DEBUG "Word0:\n");
623 printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
624 printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
625 printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
626 printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
627
628 if (net_debug>4) {
629 Word = lp->word[1];
630 printk(KERN_DEBUG "Word1:\n");
631 printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
632 printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
633 printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
634 printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
635 printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
636 printk(KERN_DEBUG " AutoPort: %d\n", GetBit(!Word,ee_Jabber));
637 printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
638 }
639
640 Word = lp->word[5];
641 printk(KERN_DEBUG "Word5:\n");
642 printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
643 printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
644 printk(KERN_DEBUG " Has ");
645 if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
646 if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
647 if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
648 printk(KERN_DEBUG "port(s) \n");
649
650 Word = lp->word[6];
651 printk(KERN_DEBUG "Word6:\n");
652 printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
653 printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
654
655 Word = lp->word[7];
656 printk(KERN_DEBUG "Word7:\n");
657 printk(KERN_DEBUG " INT to IRQ:\n");
658
659 for (i=0, j=0; i<15; i++)
660 if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
661
662 printk(KERN_DEBUG "\n");
663 }
664
665 /* function to recalculate the limits of buffer based on rcv_ram */
666 static void eepro_recalc (struct net_device *dev)
667 {
668 struct eepro_local * lp;
669
670 lp = netdev_priv(dev);
671 lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
672
673 if (lp->eepro == LAN595FX_10ISA) {
674 lp->xmt_lower_limit = XMT_START_10;
675 lp->xmt_upper_limit = (lp->xmt_ram - 2);
676 lp->rcv_lower_limit = lp->xmt_ram;
677 lp->rcv_upper_limit = (RAM_SIZE - 2);
678 }
679 else {
680 lp->rcv_lower_limit = RCV_START_PRO;
681 lp->rcv_upper_limit = (lp->rcv_ram - 2);
682 lp->xmt_lower_limit = lp->rcv_ram;
683 lp->xmt_upper_limit = (RAM_SIZE - 2);
684 }
685 }
686
687 /* prints boot-time info */
688 static void __init eepro_print_info (struct net_device *dev)
689 {
690 struct eepro_local * lp = netdev_priv(dev);
691 int i;
692 const char * ifmap[] = {"AUI", "10Base2", "10BaseT"};
693
694 i = inb(dev->base_addr + ID_REG);
695 printk(KERN_DEBUG " id: %#x ",i);
696 printk(" io: %#x ", (unsigned)dev->base_addr);
697
698 switch (lp->eepro) {
699 case LAN595FX_10ISA:
700 printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
701 dev->name, (unsigned)dev->base_addr);
702 break;
703 case LAN595FX:
704 printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
705 dev->name, (unsigned)dev->base_addr);
706 break;
707 case LAN595TX:
708 printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
709 dev->name, (unsigned)dev->base_addr);
710 break;
711 case LAN595:
712 printk("%s: Intel 82595-based lan card at %#x,",
713 dev->name, (unsigned)dev->base_addr);
714 }
715
716 for (i=0; i < 6; i++)
717 printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]);
718
719 if (net_debug > 3)
720 printk(KERN_DEBUG ", %dK RCV buffer",
721 (int)(lp->rcv_ram)/1024);
722
723 if (dev->irq > 2)
724 printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
725 else
726 printk(", %s.\n", ifmap[dev->if_port]);
727
728 if (net_debug > 3) {
729 i = lp->word[5];
730 if (i & 0x2000) /* bit 13 of EEPROM word 5 */
731 printk(KERN_DEBUG "%s: Concurrent Processing is "
732 "enabled but not used!\n", dev->name);
733 }
734
735 /* Check the station address for the manufacturer's code */
736 if (net_debug>3)
737 printEEPROMInfo(dev);
738 }
739
740 static const struct ethtool_ops eepro_ethtool_ops;
741
742 /* This is the real probe routine. Linux has a history of friendly device
743 probes on the ISA bus. A good device probe avoids doing writes, and
744 verifies that the correct device exists and functions. */
745
746 static int __init eepro_probe1(struct net_device *dev, int autoprobe)
747 {
748 unsigned short station_addr[3], id, counter;
749 int i;
750 struct eepro_local *lp;
751 int ioaddr = dev->base_addr;
752 int err;
753
754 /* Grab the region so we can find another board if autoIRQ fails. */
755 if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
756 if (!autoprobe)
757 printk(KERN_WARNING "EEPRO: io-port 0x%04x in use \n",
758 ioaddr);
759 return -EBUSY;
760 }
761
762 /* Now, we are going to check for the signature of the
763 ID_REG (register 2 of bank 0) */
764
765 id = inb(ioaddr + ID_REG);
766
767 if ((id & ID_REG_MASK) != ID_REG_SIG)
768 goto exit;
769
770 /* We seem to have the 82595 signature, let's
771 play with its counter (last 2 bits of
772 register 2 of bank 0) to be sure. */
773
774 counter = id & R_ROBIN_BITS;
775
776 if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
777 goto exit;
778
779 lp = netdev_priv(dev);
780 memset(lp, 0, sizeof(struct eepro_local));
781 lp->xmt_bar = XMT_BAR_PRO;
782 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
783 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
784 lp->eeprom_reg = EEPROM_REG_PRO;
785 spin_lock_init(&lp->lock);
786
787 /* Now, get the ethernet hardware address from
788 the EEPROM */
789 station_addr[0] = read_eeprom(ioaddr, 2, dev);
790
791 /* FIXME - find another way to know that we've found
792 * an Etherexpress 10
793 */
794 if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
795 lp->eepro = LAN595FX_10ISA;
796 lp->eeprom_reg = EEPROM_REG_10;
797 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
798 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
799 lp->xmt_bar = XMT_BAR_10;
800 station_addr[0] = read_eeprom(ioaddr, 2, dev);
801 }
802
803 /* get all words at once. will be used here and for ethtool */
804 for (i = 0; i < 8; i++) {
805 lp->word[i] = read_eeprom(ioaddr, i, dev);
806 }
807 station_addr[1] = lp->word[3];
808 station_addr[2] = lp->word[4];
809
810 if (!lp->eepro) {
811 if (lp->word[7] == ee_FX_INT2IRQ)
812 lp->eepro = 2;
813 else if (station_addr[2] == SA_ADDR1)
814 lp->eepro = 1;
815 }
816
817 /* Fill in the 'dev' fields. */
818 for (i=0; i < 6; i++)
819 dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
820
821 /* RX buffer must be more than 3K and less than 29K */
822 if (dev->mem_end < 3072 || dev->mem_end > 29696)
823 lp->rcv_ram = RCV_DEFAULT_RAM;
824
825 /* calculate {xmt,rcv}_{lower,upper}_limit */
826 eepro_recalc(dev);
827
828 if (GetBit(lp->word[5], ee_BNC_TPE))
829 dev->if_port = BNC;
830 else
831 dev->if_port = TPE;
832
833 if (dev->irq < 2 && lp->eepro != 0) {
834 /* Mask off INT number */
835 int count = lp->word[1] & 7;
836 unsigned irqMask = lp->word[7];
837
838 while (count--)
839 irqMask &= irqMask - 1;
840
841 count = ffs(irqMask);
842
843 if (count)
844 dev->irq = count - 1;
845
846 if (dev->irq < 2) {
847 printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
848 goto exit;
849 } else if (dev->irq == 2) {
850 dev->irq = 9;
851 }
852 }
853
854 dev->open = eepro_open;
855 dev->stop = eepro_close;
856 dev->hard_start_xmit = eepro_send_packet;
857 dev->set_multicast_list = &set_multicast_list;
858 dev->tx_timeout = eepro_tx_timeout;
859 dev->watchdog_timeo = TX_TIMEOUT;
860 dev->ethtool_ops = &eepro_ethtool_ops;
861
862 /* print boot time info */
863 eepro_print_info(dev);
864
865 /* reset 82595 */
866 eepro_reset(ioaddr);
867
868 err = register_netdev(dev);
869 if (err)
870 goto err;
871 return 0;
872 exit:
873 err = -ENODEV;
874 err:
875 release_region(dev->base_addr, EEPRO_IO_EXTENT);
876 return err;
877 }
878
879 /* Open/initialize the board. This is called (in the current kernel)
880 sometime after booting when the 'ifconfig' program is run.
881
882 This routine should set everything up anew at each open, even
883 registers that "should" only need to be set once at boot, so that
884 there is non-reboot way to recover if something goes wrong.
885 */
886
887 static char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
888 static char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
889 static int eepro_grab_irq(struct net_device *dev)
890 {
891 int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
892 int *irqp = irqlist, temp_reg, ioaddr = dev->base_addr;
893
894 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
895
896 /* Enable the interrupt line. */
897 eepro_en_intline(ioaddr);
898
899 /* be CAREFUL, BANK 0 now */
900 eepro_sw2bank0(ioaddr);
901
902 /* clear all interrupts */
903 eepro_clear_int(ioaddr);
904
905 /* Let EXEC event to interrupt */
906 eepro_en_intexec(ioaddr);
907
908 do {
909 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
910
911 temp_reg = inb(ioaddr + INT_NO_REG);
912 outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
913
914 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
915
916 if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
917 unsigned long irq_mask;
918 /* Twinkle the interrupt, and check if it's seen */
919 irq_mask = probe_irq_on();
920
921 eepro_diag(ioaddr); /* RESET the 82595 */
922 mdelay(20);
923
924 if (*irqp == probe_irq_off(irq_mask)) /* It's a good IRQ line */
925 break;
926
927 /* clear all interrupts */
928 eepro_clear_int(ioaddr);
929 }
930 } while (*++irqp);
931
932 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
933
934 /* Disable the physical interrupt line. */
935 eepro_dis_intline(ioaddr);
936
937 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
938
939 /* Mask all the interrupts. */
940 eepro_dis_int(ioaddr);
941
942 /* clear all interrupts */
943 eepro_clear_int(ioaddr);
944
945 return dev->irq;
946 }
947
948 static int eepro_open(struct net_device *dev)
949 {
950 unsigned short temp_reg, old8, old9;
951 int irqMask;
952 int i, ioaddr = dev->base_addr;
953 struct eepro_local *lp = netdev_priv(dev);
954
955 if (net_debug > 3)
956 printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
957
958 irqMask = lp->word[7];
959
960 if (lp->eepro == LAN595FX_10ISA) {
961 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
962 }
963 else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
964 {
965 lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
966 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
967 }
968
969 else if ((dev->dev_addr[0] == SA_ADDR0 &&
970 dev->dev_addr[1] == SA_ADDR1 &&
971 dev->dev_addr[2] == SA_ADDR2))
972 {
973 lp->eepro = 1;
974 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
975 } /* Yes, an Intel EtherExpress Pro/10 */
976
977 else lp->eepro = 0; /* No, it is a generic 82585 lan card */
978
979 /* Get the interrupt vector for the 82595 */
980 if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
981 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
982 return -EAGAIN;
983 }
984
985 if (request_irq(dev->irq , &eepro_interrupt, 0, dev->name, dev)) {
986 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
987 return -EAGAIN;
988 }
989
990 /* Initialize the 82595. */
991
992 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
993 temp_reg = inb(ioaddr + lp->eeprom_reg);
994
995 lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */
996
997 if (net_debug > 3)
998 printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
999
1000 if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
1001 outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
1002 for (i=0; i < 6; i++)
1003 outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
1004
1005 temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */
1006 outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
1007 | RCV_Discard_BadFrame, ioaddr + REG1);
1008
1009 temp_reg = inb(ioaddr + REG2); /* Match broadcast */
1010 outb(temp_reg | 0x14, ioaddr + REG2);
1011
1012 temp_reg = inb(ioaddr + REG3);
1013 outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
1014
1015 /* Set the receiving mode */
1016 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
1017
1018 /* Set the interrupt vector */
1019 temp_reg = inb(ioaddr + INT_NO_REG);
1020 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1021 outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
1022 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1023
1024
1025 temp_reg = inb(ioaddr + INT_NO_REG);
1026 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1027 outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
1028 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1029
1030 if (net_debug > 3)
1031 printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
1032
1033
1034 /* Initialize the RCV and XMT upper and lower limits */
1035 outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
1036 outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
1037 outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
1038 outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
1039
1040 /* Enable the interrupt line. */
1041 eepro_en_intline(ioaddr);
1042
1043 /* Switch back to Bank 0 */
1044 eepro_sw2bank0(ioaddr);
1045
1046 /* Let RX and TX events to interrupt */
1047 eepro_en_int(ioaddr);
1048
1049 /* clear all interrupts */
1050 eepro_clear_int(ioaddr);
1051
1052 /* Initialize RCV */
1053 outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
1054 lp->rx_start = lp->rcv_lower_limit;
1055 outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
1056
1057 /* Initialize XMT */
1058 outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
1059 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1060 lp->tx_last = 0;
1061
1062 /* Check for the i82595TX and i82595FX */
1063 old8 = inb(ioaddr + 8);
1064 outb(~old8, ioaddr + 8);
1065
1066 if ((temp_reg = inb(ioaddr + 8)) == old8) {
1067 if (net_debug > 3)
1068 printk(KERN_DEBUG "i82595 detected!\n");
1069 lp->version = LAN595;
1070 }
1071 else {
1072 lp->version = LAN595TX;
1073 outb(old8, ioaddr + 8);
1074 old9 = inb(ioaddr + 9);
1075
1076 if (irqMask==ee_FX_INT2IRQ) {
1077 if (net_debug > 3) {
1078 printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
1079 printk(KERN_DEBUG "i82595FX detected!\n");
1080 }
1081 lp->version = LAN595FX;
1082 outb(old9, ioaddr + 9);
1083 if (dev->if_port != TPE) { /* Hopefully, this will fix the
1084 problem of using Pentiums and
1085 pro/10 w/ BNC. */
1086 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1087 temp_reg = inb(ioaddr + REG13);
1088 /* disable the full duplex mode since it is not
1089 applicable with the 10Base2 cable. */
1090 outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
1091 eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
1092 }
1093 }
1094 else if (net_debug > 3) {
1095 printk(KERN_DEBUG "temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff));
1096 printk(KERN_DEBUG "i82595TX detected!\n");
1097 }
1098 }
1099
1100 eepro_sel_reset(ioaddr);
1101
1102 netif_start_queue(dev);
1103
1104 if (net_debug > 3)
1105 printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
1106
1107 /* enabling rx */
1108 eepro_en_rx(ioaddr);
1109
1110 return 0;
1111 }
1112
1113 static void eepro_tx_timeout (struct net_device *dev)
1114 {
1115 struct eepro_local *lp = netdev_priv(dev);
1116 int ioaddr = dev->base_addr;
1117
1118 /* if (net_debug > 1) */
1119 printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
1120 "network cable problem");
1121 /* This is not a duplicate. One message for the console,
1122 one for the log file */
1123 printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
1124 "network cable problem");
1125 eepro_complete_selreset(ioaddr);
1126 }
1127
1128
1129 static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev)
1130 {
1131 struct eepro_local *lp = netdev_priv(dev);
1132 unsigned long flags;
1133 int ioaddr = dev->base_addr;
1134 short length = skb->len;
1135
1136 if (net_debug > 5)
1137 printk(KERN_DEBUG "%s: entering eepro_send_packet routine.\n", dev->name);
1138
1139 if (length < ETH_ZLEN) {
1140 if (skb_padto(skb, ETH_ZLEN))
1141 return 0;
1142 length = ETH_ZLEN;
1143 }
1144 netif_stop_queue (dev);
1145
1146 eepro_dis_int(ioaddr);
1147 spin_lock_irqsave(&lp->lock, flags);
1148
1149 {
1150 unsigned char *buf = skb->data;
1151
1152 if (hardware_send_packet(dev, buf, length))
1153 /* we won't wake queue here because we're out of space */
1154 dev->stats.tx_dropped++;
1155 else {
1156 dev->stats.tx_bytes+=skb->len;
1157 dev->trans_start = jiffies;
1158 netif_wake_queue(dev);
1159 }
1160
1161 }
1162
1163 dev_kfree_skb (skb);
1164
1165 /* You might need to clean up and record Tx statistics here. */
1166 /* dev->stats.tx_aborted_errors++; */
1167
1168 if (net_debug > 5)
1169 printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
1170
1171 eepro_en_int(ioaddr);
1172 spin_unlock_irqrestore(&lp->lock, flags);
1173
1174 return 0;
1175 }
1176
1177
1178 /* The typical workload of the driver:
1179 Handle the network interface interrupts. */
1180
1181 static irqreturn_t
1182 eepro_interrupt(int irq, void *dev_id)
1183 {
1184 struct net_device *dev = dev_id;
1185 struct eepro_local *lp;
1186 int ioaddr, status, boguscount = 20;
1187 int handled = 0;
1188
1189 lp = netdev_priv(dev);
1190
1191 spin_lock(&lp->lock);
1192
1193 if (net_debug > 5)
1194 printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
1195
1196 ioaddr = dev->base_addr;
1197
1198 while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
1199 {
1200 handled = 1;
1201 if (status & RX_INT) {
1202 if (net_debug > 4)
1203 printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
1204
1205 eepro_dis_int(ioaddr);
1206
1207 /* Get the received packets */
1208 eepro_ack_rx(ioaddr);
1209 eepro_rx(dev);
1210
1211 eepro_en_int(ioaddr);
1212 }
1213 if (status & TX_INT) {
1214 if (net_debug > 4)
1215 printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
1216
1217
1218 eepro_dis_int(ioaddr);
1219
1220 /* Process the status of transmitted packets */
1221 eepro_ack_tx(ioaddr);
1222 eepro_transmit_interrupt(dev);
1223
1224 eepro_en_int(ioaddr);
1225 }
1226 }
1227
1228 if (net_debug > 5)
1229 printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
1230
1231 spin_unlock(&lp->lock);
1232 return IRQ_RETVAL(handled);
1233 }
1234
1235 static int eepro_close(struct net_device *dev)
1236 {
1237 struct eepro_local *lp = netdev_priv(dev);
1238 int ioaddr = dev->base_addr;
1239 short temp_reg;
1240
1241 netif_stop_queue(dev);
1242
1243 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
1244
1245 /* Disable the physical interrupt line. */
1246 temp_reg = inb(ioaddr + REG1);
1247 outb(temp_reg & 0x7f, ioaddr + REG1);
1248
1249 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
1250
1251 /* Flush the Tx and disable Rx. */
1252 outb(STOP_RCV_CMD, ioaddr);
1253 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1254 lp->tx_last = 0;
1255
1256 /* Mask all the interrupts. */
1257 eepro_dis_int(ioaddr);
1258
1259 /* clear all interrupts */
1260 eepro_clear_int(ioaddr);
1261
1262 /* Reset the 82595 */
1263 eepro_reset(ioaddr);
1264
1265 /* release the interrupt */
1266 free_irq(dev->irq, dev);
1267
1268 /* Update the statistics here. What statistics? */
1269
1270 return 0;
1271 }
1272
1273 /* Set or clear the multicast filter for this adaptor.
1274 */
1275 static void
1276 set_multicast_list(struct net_device *dev)
1277 {
1278 struct eepro_local *lp = netdev_priv(dev);
1279 short ioaddr = dev->base_addr;
1280 unsigned short mode;
1281 struct dev_mc_list *dmi=dev->mc_list;
1282
1283 if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || dev->mc_count > 63)
1284 {
1285 /*
1286 * We must make the kernel realise we had to move
1287 * into promisc mode or we start all out war on
1288 * the cable. If it was a promisc request the
1289 * flag is already set. If not we assert it.
1290 */
1291 dev->flags|=IFF_PROMISC;
1292
1293 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1294 mode = inb(ioaddr + REG2);
1295 outb(mode | PRMSC_Mode, ioaddr + REG2);
1296 mode = inb(ioaddr + REG3);
1297 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1298 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1299 }
1300
1301 else if (dev->mc_count==0 )
1302 {
1303 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1304 mode = inb(ioaddr + REG2);
1305 outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
1306 mode = inb(ioaddr + REG3);
1307 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1308 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1309 }
1310
1311 else
1312 {
1313 unsigned short status, *eaddrs;
1314 int i, boguscount = 0;
1315
1316 /* Disable RX and TX interrupts. Necessary to avoid
1317 corruption of the HOST_ADDRESS_REG by interrupt
1318 service routines. */
1319 eepro_dis_int(ioaddr);
1320
1321 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1322 mode = inb(ioaddr + REG2);
1323 outb(mode | Multi_IA, ioaddr + REG2);
1324 mode = inb(ioaddr + REG3);
1325 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1326 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1327 outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
1328 outw(MC_SETUP, ioaddr + IO_PORT);
1329 outw(0, ioaddr + IO_PORT);
1330 outw(0, ioaddr + IO_PORT);
1331 outw(6*(dev->mc_count + 1), ioaddr + IO_PORT);
1332
1333 for (i = 0; i < dev->mc_count; i++)
1334 {
1335 eaddrs=(unsigned short *)dmi->dmi_addr;
1336 dmi=dmi->next;
1337 outw(*eaddrs++, ioaddr + IO_PORT);
1338 outw(*eaddrs++, ioaddr + IO_PORT);
1339 outw(*eaddrs++, ioaddr + IO_PORT);
1340 }
1341
1342 eaddrs = (unsigned short *) dev->dev_addr;
1343 outw(eaddrs[0], ioaddr + IO_PORT);
1344 outw(eaddrs[1], ioaddr + IO_PORT);
1345 outw(eaddrs[2], ioaddr + IO_PORT);
1346 outw(lp->tx_end, ioaddr + lp->xmt_bar);
1347 outb(MC_SETUP, ioaddr);
1348
1349 /* Update the transmit queue */
1350 i = lp->tx_end + XMT_HEADER + 6*(dev->mc_count + 1);
1351
1352 if (lp->tx_start != lp->tx_end)
1353 {
1354 /* update the next address and the chain bit in the
1355 last packet */
1356 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1357 outw(i, ioaddr + IO_PORT);
1358 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1359 status = inw(ioaddr + IO_PORT);
1360 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1361 lp->tx_end = i ;
1362 }
1363 else {
1364 lp->tx_start = lp->tx_end = i ;
1365 }
1366
1367 /* Acknowledge that the MC setup is done */
1368 do { /* We should be doing this in the eepro_interrupt()! */
1369 SLOW_DOWN;
1370 SLOW_DOWN;
1371 if (inb(ioaddr + STATUS_REG) & 0x08)
1372 {
1373 i = inb(ioaddr);
1374 outb(0x08, ioaddr + STATUS_REG);
1375
1376 if (i & 0x20) { /* command ABORTed */
1377 printk(KERN_NOTICE "%s: multicast setup failed.\n",
1378 dev->name);
1379 break;
1380 } else if ((i & 0x0f) == 0x03) { /* MC-Done */
1381 printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
1382 dev->name, dev->mc_count,
1383 dev->mc_count > 1 ? "es":"");
1384 break;
1385 }
1386 }
1387 } while (++boguscount < 100);
1388
1389 /* Re-enable RX and TX interrupts */
1390 eepro_en_int(ioaddr);
1391 }
1392 if (lp->eepro == LAN595FX_10ISA) {
1393 eepro_complete_selreset(ioaddr);
1394 }
1395 else
1396 eepro_en_rx(ioaddr);
1397 }
1398
1399 /* The horrible routine to read a word from the serial EEPROM. */
1400 /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
1401
1402 /* The delay between EEPROM clock transitions. */
1403 #define eeprom_delay() { udelay(40); }
1404 #define EE_READ_CMD (6 << 6)
1405
1406 int
1407 read_eeprom(int ioaddr, int location, struct net_device *dev)
1408 {
1409 int i;
1410 unsigned short retval = 0;
1411 struct eepro_local *lp = netdev_priv(dev);
1412 short ee_addr = ioaddr + lp->eeprom_reg;
1413 int read_cmd = location | EE_READ_CMD;
1414 short ctrl_val = EECS ;
1415
1416 /* XXXX - black magic */
1417 eepro_sw2bank1(ioaddr);
1418 outb(0x00, ioaddr + STATUS_REG);
1419 /* XXXX - black magic */
1420
1421 eepro_sw2bank2(ioaddr);
1422 outb(ctrl_val, ee_addr);
1423
1424 /* Shift the read command bits out. */
1425 for (i = 8; i >= 0; i--) {
1426 short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
1427 : ctrl_val;
1428 outb(outval, ee_addr);
1429 outb(outval | EESK, ee_addr); /* EEPROM clock tick. */
1430 eeprom_delay();
1431 outb(outval, ee_addr); /* Finish EEPROM a clock tick. */
1432 eeprom_delay();
1433 }
1434 outb(ctrl_val, ee_addr);
1435
1436 for (i = 16; i > 0; i--) {
1437 outb(ctrl_val | EESK, ee_addr); eeprom_delay();
1438 retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
1439 outb(ctrl_val, ee_addr); eeprom_delay();
1440 }
1441
1442 /* Terminate the EEPROM access. */
1443 ctrl_val &= ~EECS;
1444 outb(ctrl_val | EESK, ee_addr);
1445 eeprom_delay();
1446 outb(ctrl_val, ee_addr);
1447 eeprom_delay();
1448 eepro_sw2bank0(ioaddr);
1449 return retval;
1450 }
1451
1452 static int
1453 hardware_send_packet(struct net_device *dev, void *buf, short length)
1454 {
1455 struct eepro_local *lp = netdev_priv(dev);
1456 short ioaddr = dev->base_addr;
1457 unsigned status, tx_available, last, end;
1458
1459 if (net_debug > 5)
1460 printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
1461
1462 /* determine how much of the transmit buffer space is available */
1463 if (lp->tx_end > lp->tx_start)
1464 tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
1465 else if (lp->tx_end < lp->tx_start)
1466 tx_available = lp->tx_start - lp->tx_end;
1467 else tx_available = lp->xmt_ram;
1468
1469 if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
1470 /* No space available ??? */
1471 return 1;
1472 }
1473
1474 last = lp->tx_end;
1475 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1476
1477 if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
1478 if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
1479 /* Arrrr!!!, must keep the xmt header together,
1480 several days were lost to chase this one down. */
1481 last = lp->xmt_lower_limit;
1482 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1483 }
1484 else end = lp->xmt_lower_limit + (end -
1485 lp->xmt_upper_limit + 2);
1486 }
1487
1488 outw(last, ioaddr + HOST_ADDRESS_REG);
1489 outw(XMT_CMD, ioaddr + IO_PORT);
1490 outw(0, ioaddr + IO_PORT);
1491 outw(end, ioaddr + IO_PORT);
1492 outw(length, ioaddr + IO_PORT);
1493
1494 if (lp->version == LAN595)
1495 outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
1496 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1497 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1498 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1499 outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
1500 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1501 }
1502
1503 /* A dummy read to flush the DRAM write pipeline */
1504 status = inw(ioaddr + IO_PORT);
1505
1506 if (lp->tx_start == lp->tx_end) {
1507 outw(last, ioaddr + lp->xmt_bar);
1508 outb(XMT_CMD, ioaddr);
1509 lp->tx_start = last; /* I don't like to change tx_start here */
1510 }
1511 else {
1512 /* update the next address and the chain bit in the
1513 last packet */
1514
1515 if (lp->tx_end != last) {
1516 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1517 outw(last, ioaddr + IO_PORT);
1518 }
1519
1520 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1521 status = inw(ioaddr + IO_PORT);
1522 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1523
1524 /* Continue the transmit command */
1525 outb(RESUME_XMT_CMD, ioaddr);
1526 }
1527
1528 lp->tx_last = last;
1529 lp->tx_end = end;
1530
1531 if (net_debug > 5)
1532 printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
1533
1534 return 0;
1535 }
1536
1537 static void
1538 eepro_rx(struct net_device *dev)
1539 {
1540 struct eepro_local *lp = netdev_priv(dev);
1541 short ioaddr = dev->base_addr;
1542 short boguscount = 20;
1543 short rcv_car = lp->rx_start;
1544 unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
1545
1546 if (net_debug > 5)
1547 printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
1548
1549 /* Set the read pointer to the start of the RCV */
1550 outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
1551
1552 rcv_event = inw(ioaddr + IO_PORT);
1553
1554 while (rcv_event == RCV_DONE) {
1555
1556 rcv_status = inw(ioaddr + IO_PORT);
1557 rcv_next_frame = inw(ioaddr + IO_PORT);
1558 rcv_size = inw(ioaddr + IO_PORT);
1559
1560 if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
1561
1562 /* Malloc up new buffer. */
1563 struct sk_buff *skb;
1564
1565 dev->stats.rx_bytes+=rcv_size;
1566 rcv_size &= 0x3fff;
1567 skb = dev_alloc_skb(rcv_size+5);
1568 if (skb == NULL) {
1569 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1570 dev->stats.rx_dropped++;
1571 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1572 lp->rx_start = rcv_next_frame;
1573 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1574
1575 break;
1576 }
1577 skb_reserve(skb,2);
1578
1579 if (lp->version == LAN595)
1580 insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
1581 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1582 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1583 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1584 insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
1585 (rcv_size + 3) >> 2);
1586 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1587 }
1588
1589 skb->protocol = eth_type_trans(skb,dev);
1590 netif_rx(skb);
1591 dev->last_rx = jiffies;
1592 dev->stats.rx_packets++;
1593 }
1594
1595 else { /* Not sure will ever reach here,
1596 I set the 595 to discard bad received frames */
1597 dev->stats.rx_errors++;
1598
1599 if (rcv_status & 0x0100)
1600 dev->stats.rx_over_errors++;
1601
1602 else if (rcv_status & 0x0400)
1603 dev->stats.rx_frame_errors++;
1604
1605 else if (rcv_status & 0x0800)
1606 dev->stats.rx_crc_errors++;
1607
1608 printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
1609 dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
1610 }
1611
1612 if (rcv_status & 0x1000)
1613 dev->stats.rx_length_errors++;
1614
1615 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1616 lp->rx_start = rcv_next_frame;
1617
1618 if (--boguscount == 0)
1619 break;
1620
1621 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1622 rcv_event = inw(ioaddr + IO_PORT);
1623
1624 }
1625 if (rcv_car == 0)
1626 rcv_car = lp->rcv_upper_limit | 0xff;
1627
1628 outw(rcv_car - 1, ioaddr + RCV_STOP);
1629
1630 if (net_debug > 5)
1631 printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
1632 }
1633
1634 static void
1635 eepro_transmit_interrupt(struct net_device *dev)
1636 {
1637 struct eepro_local *lp = netdev_priv(dev);
1638 short ioaddr = dev->base_addr;
1639 short boguscount = 25;
1640 short xmt_status;
1641
1642 while ((lp->tx_start != lp->tx_end) && boguscount--) {
1643
1644 outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
1645 xmt_status = inw(ioaddr+IO_PORT);
1646
1647 if (!(xmt_status & TX_DONE_BIT))
1648 break;
1649
1650 xmt_status = inw(ioaddr+IO_PORT);
1651 lp->tx_start = inw(ioaddr+IO_PORT);
1652
1653 netif_wake_queue (dev);
1654
1655 if (xmt_status & TX_OK)
1656 dev->stats.tx_packets++;
1657 else {
1658 dev->stats.tx_errors++;
1659 if (xmt_status & 0x0400) {
1660 dev->stats.tx_carrier_errors++;
1661 printk(KERN_DEBUG "%s: carrier error\n",
1662 dev->name);
1663 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1664 dev->name, xmt_status);
1665 }
1666 else {
1667 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1668 dev->name, xmt_status);
1669 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1670 dev->name, xmt_status);
1671 }
1672 }
1673 if (xmt_status & 0x000f) {
1674 dev->stats.collisions += (xmt_status & 0x000f);
1675 }
1676
1677 if ((xmt_status & 0x0040) == 0x0) {
1678 dev->stats.tx_heartbeat_errors++;
1679 }
1680 }
1681 }
1682
1683 static int eepro_ethtool_get_settings(struct net_device *dev,
1684 struct ethtool_cmd *cmd)
1685 {
1686 struct eepro_local *lp = (struct eepro_local *)dev->priv;
1687
1688 cmd->supported = SUPPORTED_10baseT_Half |
1689 SUPPORTED_10baseT_Full |
1690 SUPPORTED_Autoneg;
1691 cmd->advertising = ADVERTISED_10baseT_Half |
1692 ADVERTISED_10baseT_Full |
1693 ADVERTISED_Autoneg;
1694
1695 if (GetBit(lp->word[5], ee_PortTPE)) {
1696 cmd->supported |= SUPPORTED_TP;
1697 cmd->advertising |= ADVERTISED_TP;
1698 }
1699 if (GetBit(lp->word[5], ee_PortBNC)) {
1700 cmd->supported |= SUPPORTED_BNC;
1701 cmd->advertising |= ADVERTISED_BNC;
1702 }
1703 if (GetBit(lp->word[5], ee_PortAUI)) {
1704 cmd->supported |= SUPPORTED_AUI;
1705 cmd->advertising |= ADVERTISED_AUI;
1706 }
1707
1708 cmd->speed = SPEED_10;
1709
1710 if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
1711 cmd->duplex = DUPLEX_FULL;
1712 }
1713 else {
1714 cmd->duplex = DUPLEX_HALF;
1715 }
1716
1717 cmd->port = dev->if_port;
1718 cmd->phy_address = dev->base_addr;
1719 cmd->transceiver = XCVR_INTERNAL;
1720
1721 if (lp->word[0] & ee_AutoNeg) {
1722 cmd->autoneg = 1;
1723 }
1724
1725 return 0;
1726 }
1727
1728 static void eepro_ethtool_get_drvinfo(struct net_device *dev,
1729 struct ethtool_drvinfo *drvinfo)
1730 {
1731 strcpy(drvinfo->driver, DRV_NAME);
1732 strcpy(drvinfo->version, DRV_VERSION);
1733 sprintf(drvinfo->bus_info, "ISA 0x%lx", dev->base_addr);
1734 }
1735
1736 static const struct ethtool_ops eepro_ethtool_ops = {
1737 .get_settings = eepro_ethtool_get_settings,
1738 .get_drvinfo = eepro_ethtool_get_drvinfo,
1739 };
1740
1741 #ifdef MODULE
1742
1743 #define MAX_EEPRO 8
1744 static struct net_device *dev_eepro[MAX_EEPRO];
1745
1746 static int io[MAX_EEPRO] = {
1747 [0 ... MAX_EEPRO-1] = -1
1748 };
1749 static int irq[MAX_EEPRO];
1750 static int mem[MAX_EEPRO] = { /* Size of the rx buffer in KB */
1751 [0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
1752 };
1753 static int autodetect;
1754
1755 static int n_eepro;
1756 /* For linux 2.1.xx */
1757
1758 MODULE_AUTHOR("Pascal Dupuis and others");
1759 MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
1760 MODULE_LICENSE("GPL");
1761
1762 module_param_array(io, int, NULL, 0);
1763 module_param_array(irq, int, NULL, 0);
1764 module_param_array(mem, int, NULL, 0);
1765 module_param(autodetect, int, 0);
1766 MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base addres(es)");
1767 MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
1768 MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
1769 MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
1770
1771 int __init init_module(void)
1772 {
1773 struct net_device *dev;
1774 int i;
1775 if (io[0] == -1 && autodetect == 0) {
1776 printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
1777 printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
1778 return -ENODEV;
1779 }
1780 else if (autodetect) {
1781 /* if autodetect is set then we must force detection */
1782 for (i = 0; i < MAX_EEPRO; i++) {
1783 io[i] = 0;
1784 }
1785
1786 printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
1787 }
1788
1789 for (i = 0; io[i] != -1 && i < MAX_EEPRO; i++) {
1790 dev = alloc_etherdev(sizeof(struct eepro_local));
1791 if (!dev)
1792 break;
1793
1794 dev->mem_end = mem[i];
1795 dev->base_addr = io[i];
1796 dev->irq = irq[i];
1797
1798 if (do_eepro_probe(dev) == 0) {
1799 dev_eepro[n_eepro++] = dev;
1800 continue;
1801 }
1802 free_netdev(dev);
1803 break;
1804 }
1805
1806 if (n_eepro)
1807 printk(KERN_INFO "%s", version);
1808
1809 return n_eepro ? 0 : -ENODEV;
1810 }
1811
1812 void __exit
1813 cleanup_module(void)
1814 {
1815 int i;
1816
1817 for (i=0; i<n_eepro; i++) {
1818 struct net_device *dev = dev_eepro[i];
1819 unregister_netdev(dev);
1820 release_region(dev->base_addr, EEPRO_IO_EXTENT);
1821 free_netdev(dev);
1822 }
1823 }
1824 #endif /* MODULE */
This page took 0.069477 seconds and 5 git commands to generate.