drivers/net: Remove alloc_etherdev error messages
[deliverable/linux.git] / drivers / net / ethernet / adaptec / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
32
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h> /* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50
51 /*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55 #define HAS_BROKEN_FIRMWARE
56
57 /*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63
64 /*
65 * Define this if using the driver with the zero-copy patch
66 */
67 #define ZEROCOPY
68
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72
73 /* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79
80 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88
89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 /*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116
117 /* Used to pass the media type, etc.
118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119 The media type is usually passed in 'options[]'.
120 These variables are deprecated, use ethtool instead. -Ion
121 */
122 #define MAX_UNITS 8 /* More are supported, limit only on options */
123 static int options[MAX_UNITS] = {0, };
124 static int full_duplex[MAX_UNITS] = {0, };
125
126 /* Operational parameters that are set at compile time. */
127
128 /* The "native" ring sizes are either 256 or 2048.
129 However in some modes a descriptor may be marked to wrap the ring earlier.
130 */
131 #define RX_RING_SIZE 256
132 #define TX_RING_SIZE 32
133 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134 #define DONE_Q_SIZE 1024
135 /* All queues must be aligned on a 256-byte boundary */
136 #define QUEUE_ALIGN 256
137
138 #if RX_RING_SIZE > 256
139 #define RX_Q_ENTRIES Rx2048QEntries
140 #else
141 #define RX_Q_ENTRIES Rx256QEntries
142 #endif
143
144 /* Operational parameters that usually are not changed. */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT (2 * HZ)
147
148 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
149 /* 64-bit dma_addr_t */
150 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
151 #define netdrv_addr_t __le64
152 #define cpu_to_dma(x) cpu_to_le64(x)
153 #define dma_to_cpu(x) le64_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
159 #else /* 32-bit dma_addr_t */
160 #define netdrv_addr_t __le32
161 #define cpu_to_dma(x) cpu_to_le32(x)
162 #define dma_to_cpu(x) le32_to_cpu(x)
163 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
168 #endif
169
170 #define skb_first_frag_len(skb) skb_headlen(skb)
171 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
172
173 /* Firmware names */
174 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
175 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
176
177 /* These identify the driver base version and may not be removed. */
178 static const char version[] __devinitconst =
179 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
180 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
181
182 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_RX);
187 MODULE_FIRMWARE(FIRMWARE_TX);
188
189 module_param(max_interrupt_work, int, 0);
190 module_param(mtu, int, 0);
191 module_param(debug, int, 0);
192 module_param(rx_copybreak, int, 0);
193 module_param(intr_latency, int, 0);
194 module_param(small_frames, int, 0);
195 module_param_array(options, int, NULL, 0);
196 module_param_array(full_duplex, int, NULL, 0);
197 module_param(enable_hw_cksum, int, 0);
198 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199 MODULE_PARM_DESC(mtu, "MTU (all boards)");
200 MODULE_PARM_DESC(debug, "Debug level (0-6)");
201 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207
208 /*
209 Theory of Operation
210
211 I. Board Compatibility
212
213 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214
215 II. Board-specific settings
216
217 III. Driver operation
218
219 IIIa. Ring buffers
220
221 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
222 ring sizes are set fixed by the hardware, but may optionally be wrapped
223 earlier by the END bit in the descriptor.
224 This driver uses that hardware queue size for the Rx ring, where a large
225 number of entries has no ill effect beyond increases the potential backlog.
226 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227 disables the queue layer priority ordering and we have no mechanism to
228 utilize the hardware two-level priority queue. When modifying the
229 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230 levels.
231
232 IIIb/c. Transmit/Receive Structure
233
234 See the Adaptec manual for the many possible structures, and options for
235 each structure. There are far too many to document all of them here.
236
237 For transmit this driver uses type 0/1 transmit descriptors (depending
238 on the 32/64 bitness of the architecture), and relies on automatic
239 minimum-length padding. It does not use the completion queue
240 consumer index, but instead checks for non-zero status entries.
241
242 For receive this driver uses type 2/3 receive descriptors. The driver
243 allocates full frame size skbuffs for the Rx ring buffers, so all frames
244 should fit in a single descriptor. The driver does not use the completion
245 queue consumer index, but instead checks for non-zero status entries.
246
247 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248 is allocated and the frame is copied to the new skbuff. When the incoming
249 frame is larger, the skbuff is passed directly up the protocol stack.
250 Buffers consumed this way are replaced by newly allocated skbuffs in a later
251 phase of receive.
252
253 A notable aspect of operation is that unaligned buffers are not permitted by
254 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
255 isn't longword aligned, which may cause problems on some machine
256 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257 the frame into a new skbuff unconditionally. Copied frames are put into the
258 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259
260 IIId. Synchronization
261
262 The driver runs as two independent, single-threaded flows of control. One
263 is the send-packet routine, which enforces single-threaded use by the
264 dev->tbusy flag. The other thread is the interrupt handler, which is single
265 threaded by the hardware and interrupt handling software.
266
267 The send packet thread has partial control over the Tx ring and the netif_queue
268 status. If the number of free Tx slots in the ring falls below a certain number
269 (currently hardcoded to 4), it signals the upper layer to stop the queue.
270
271 The interrupt handler has exclusive control over the Rx ring and records stats
272 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
273 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274 number of free Tx slow is above the threshold, it signals the upper layer to
275 restart the queue.
276
277 IV. Notes
278
279 IVb. References
280
281 The Adaptec Starfire manuals, available only from Adaptec.
282 http://www.scyld.com/expert/100mbps.html
283 http://www.scyld.com/expert/NWay.html
284
285 IVc. Errata
286
287 - StopOnPerr is broken, don't enable
288 - Hardware ethernet padding exposes random data, perform software padding
289 instead (unverified -- works correctly for all the hardware I have)
290
291 */
292
293
294
295 enum chip_capability_flags {CanHaveMII=1, };
296
297 enum chipset {
298 CH_6915 = 0,
299 };
300
301 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
303 { 0, }
304 };
305 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306
307 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
308 static const struct chip_info {
309 const char *name;
310 int drv_flags;
311 } netdrv_tbl[] __devinitdata = {
312 { "Adaptec Starfire 6915", CanHaveMII },
313 };
314
315
316 /* Offsets to the device registers.
317 Unlike software-only systems, device drivers interact with complex hardware.
318 It's not useful to define symbolic names for every register bit in the
319 device. The name can only partially document the semantics and make
320 the driver longer and more difficult to read.
321 In general, only the important configuration values or bits changed
322 multiple times should be defined symbolically.
323 */
324 enum register_offsets {
325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 TxThreshold=0x500B0,
333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 TxMode=0x55000, VlanType=0x55064,
339 PerfFilterTable=0x56000, HashTable=0x56100,
340 TxGfpMem=0x58000, RxGfpMem=0x5a000,
341 };
342
343 /*
344 * Bits in the interrupt status/mask registers.
345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346 * enables all the interrupt sources that are or'ed into those status bits.
347 */
348 enum intr_status_bits {
349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 IntrTxGfp=0x02, IntrPCIPad=0x01,
363 /* not quite bits */
364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367 };
368
369 /* Bits in the RxFilterMode register. */
370 enum rx_mode_bits {
371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 WakeupOnGFP=0x0800,
375 };
376
377 /* Bits in the TxMode register */
378 enum tx_mode_bits {
379 MiiSoftReset=0x8000, MIILoopback=0x4000,
380 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382 };
383
384 /* Bits in the TxDescCtrl register. */
385 enum tx_ctrl_bits {
386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 TxDescSpace128=0x30, TxDescSpace256=0x40,
388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 TxDescType3=0x03, TxDescType4=0x04,
390 TxNoDMACompletion=0x08,
391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 TxDMABurstSizeShift=8,
394 };
395
396 /* Bits in the RxDescQCtrl register. */
397 enum rx_ctrl_bits {
398 RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 Rx2048QEntries=0x4000, Rx256QEntries=0,
401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 RxDescSpace4=0x000, RxDescSpace8=0x100,
404 RxDescSpace16=0x200, RxDescSpace32=0x300,
405 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 RxConsumerWrEn=0x80,
407 };
408
409 /* Bits in the RxDMACtrl register. */
410 enum rx_dmactrl_bits {
411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 RxChecksumRejectTCPOnly=0x01000000,
416 RxCompletionQ2Enable=0x800000,
417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 RxDMAQ2NonIP=0x400000,
420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 RxBurstSizeShift=0,
423 };
424
425 /* Bits in the RxCompletionAddr register */
426 enum rx_compl_bits {
427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 RxComplProducerWrEn=0x40,
429 RxComplType0=0x00, RxComplType1=0x10,
430 RxComplType2=0x20, RxComplType3=0x30,
431 RxComplThreshShift=0,
432 };
433
434 /* Bits in the TxCompletionAddr register */
435 enum tx_compl_bits {
436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 TxComplProducerWrEn=0x40,
438 TxComplIntrStatus=0x20,
439 CommonQueueMode=0x10,
440 TxComplThreshShift=0,
441 };
442
443 /* Bits in the GenCtrl register */
444 enum gen_ctrl_bits {
445 RxEnable=0x05, TxEnable=0x0a,
446 RxGFPEnable=0x10, TxGFPEnable=0x20,
447 };
448
449 /* Bits in the IntrTimerCtrl register */
450 enum intr_ctrl_bits {
451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 IntrLatencyMask=0x1f,
454 };
455
456 /* The Rx and Tx buffer descriptors. */
457 struct starfire_rx_desc {
458 netdrv_addr_t rxaddr;
459 };
460 enum rx_desc_bits {
461 RxDescValid=1, RxDescEndRing=2,
462 };
463
464 /* Completion queue entry. */
465 struct short_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
467 };
468 struct basic_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
470 __le16 vlanid;
471 __le16 status2;
472 };
473 struct csum_rx_done_desc {
474 __le32 status; /* Low 16 bits is length. */
475 __le16 csum; /* Partial checksum */
476 __le16 status2;
477 };
478 struct full_rx_done_desc {
479 __le32 status; /* Low 16 bits is length. */
480 __le16 status3;
481 __le16 status2;
482 __le16 vlanid;
483 __le16 csum; /* partial checksum */
484 __le32 timestamp;
485 };
486 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
487 #ifdef VLAN_SUPPORT
488 typedef struct full_rx_done_desc rx_done_desc;
489 #define RxComplType RxComplType3
490 #else /* not VLAN_SUPPORT */
491 typedef struct csum_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType2
493 #endif /* not VLAN_SUPPORT */
494
495 enum rx_done_bits {
496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497 };
498
499 /* Type 1 Tx descriptor. */
500 struct starfire_tx_desc_1 {
501 __le32 status; /* Upper bits are status, lower 16 length. */
502 __le32 addr;
503 };
504
505 /* Type 2 Tx descriptor. */
506 struct starfire_tx_desc_2 {
507 __le32 status; /* Upper bits are status, lower 16 length. */
508 __le32 reserved;
509 __le64 addr;
510 };
511
512 #ifdef ADDR_64BITS
513 typedef struct starfire_tx_desc_2 starfire_tx_desc;
514 #define TX_DESC_TYPE TxDescType2
515 #else /* not ADDR_64BITS */
516 typedef struct starfire_tx_desc_1 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType1
518 #endif /* not ADDR_64BITS */
519 #define TX_DESC_SPACING TxDescSpaceUnlim
520
521 enum tx_desc_bits {
522 TxDescID=0xB0000000,
523 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525 };
526 struct tx_done_desc {
527 __le32 status; /* timestamp, index. */
528 #if 0
529 __le32 intrstatus; /* interrupt status */
530 #endif
531 };
532
533 struct rx_ring_info {
534 struct sk_buff *skb;
535 dma_addr_t mapping;
536 };
537 struct tx_ring_info {
538 struct sk_buff *skb;
539 dma_addr_t mapping;
540 unsigned int used_slots;
541 };
542
543 #define PHY_CNT 2
544 struct netdev_private {
545 /* Descriptor rings first for alignment. */
546 struct starfire_rx_desc *rx_ring;
547 starfire_tx_desc *tx_ring;
548 dma_addr_t rx_ring_dma;
549 dma_addr_t tx_ring_dma;
550 /* The addresses of rx/tx-in-place skbuffs. */
551 struct rx_ring_info rx_info[RX_RING_SIZE];
552 struct tx_ring_info tx_info[TX_RING_SIZE];
553 /* Pointers to completion queues (full pages). */
554 rx_done_desc *rx_done_q;
555 dma_addr_t rx_done_q_dma;
556 unsigned int rx_done;
557 struct tx_done_desc *tx_done_q;
558 dma_addr_t tx_done_q_dma;
559 unsigned int tx_done;
560 struct napi_struct napi;
561 struct net_device *dev;
562 struct pci_dev *pci_dev;
563 #ifdef VLAN_SUPPORT
564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
565 #endif
566 void *queue_mem;
567 dma_addr_t queue_mem_dma;
568 size_t queue_mem_size;
569
570 /* Frequently used values: keep some adjacent for cache effect. */
571 spinlock_t lock;
572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
573 unsigned int cur_tx, dirty_tx, reap_tx;
574 unsigned int rx_buf_sz; /* Based on MTU+slack. */
575 /* These values keep track of the transceiver/media in use. */
576 int speed100; /* Set if speed == 100MBit. */
577 u32 tx_mode;
578 u32 intr_timer_ctrl;
579 u8 tx_threshold;
580 /* MII transceiver section. */
581 struct mii_if_info mii_if; /* MII lib hooks/info */
582 int phy_cnt; /* MII device addresses. */
583 unsigned char phys[PHY_CNT]; /* MII device addresses. */
584 void __iomem *base;
585 };
586
587
588 static int mdio_read(struct net_device *dev, int phy_id, int location);
589 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
590 static int netdev_open(struct net_device *dev);
591 static void check_duplex(struct net_device *dev);
592 static void tx_timeout(struct net_device *dev);
593 static void init_ring(struct net_device *dev);
594 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
595 static irqreturn_t intr_handler(int irq, void *dev_instance);
596 static void netdev_error(struct net_device *dev, int intr_status);
597 static int __netdev_rx(struct net_device *dev, int *quota);
598 static int netdev_poll(struct napi_struct *napi, int budget);
599 static void refill_rx_ring(struct net_device *dev);
600 static void netdev_error(struct net_device *dev, int intr_status);
601 static void set_rx_mode(struct net_device *dev);
602 static struct net_device_stats *get_stats(struct net_device *dev);
603 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604 static int netdev_close(struct net_device *dev);
605 static void netdev_media_change(struct net_device *dev);
606 static const struct ethtool_ops ethtool_ops;
607
608
609 #ifdef VLAN_SUPPORT
610 static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
611 {
612 struct netdev_private *np = netdev_priv(dev);
613
614 spin_lock(&np->lock);
615 if (debug > 1)
616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
617 set_bit(vid, np->active_vlans);
618 set_rx_mode(dev);
619 spin_unlock(&np->lock);
620
621 return 0;
622 }
623
624 static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
625 {
626 struct netdev_private *np = netdev_priv(dev);
627
628 spin_lock(&np->lock);
629 if (debug > 1)
630 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
631 clear_bit(vid, np->active_vlans);
632 set_rx_mode(dev);
633 spin_unlock(&np->lock);
634
635 return 0;
636 }
637 #endif /* VLAN_SUPPORT */
638
639
640 static const struct net_device_ops netdev_ops = {
641 .ndo_open = netdev_open,
642 .ndo_stop = netdev_close,
643 .ndo_start_xmit = start_tx,
644 .ndo_tx_timeout = tx_timeout,
645 .ndo_get_stats = get_stats,
646 .ndo_set_rx_mode = set_rx_mode,
647 .ndo_do_ioctl = netdev_ioctl,
648 .ndo_change_mtu = eth_change_mtu,
649 .ndo_set_mac_address = eth_mac_addr,
650 .ndo_validate_addr = eth_validate_addr,
651 #ifdef VLAN_SUPPORT
652 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
653 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
654 #endif
655 };
656
657 static int __devinit starfire_init_one(struct pci_dev *pdev,
658 const struct pci_device_id *ent)
659 {
660 struct netdev_private *np;
661 int i, irq, option, chip_idx = ent->driver_data;
662 struct net_device *dev;
663 static int card_idx = -1;
664 long ioaddr;
665 void __iomem *base;
666 int drv_flags, io_size;
667 int boguscnt;
668
669 /* when built into the kernel, we only print version if device is found */
670 #ifndef MODULE
671 static int printed_version;
672 if (!printed_version++)
673 printk(version);
674 #endif
675
676 card_idx++;
677
678 if (pci_enable_device (pdev))
679 return -EIO;
680
681 ioaddr = pci_resource_start(pdev, 0);
682 io_size = pci_resource_len(pdev, 0);
683 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
684 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
685 return -ENODEV;
686 }
687
688 dev = alloc_etherdev(sizeof(*np));
689 if (!dev)
690 return -ENOMEM;
691
692 SET_NETDEV_DEV(dev, &pdev->dev);
693
694 irq = pdev->irq;
695
696 if (pci_request_regions (pdev, DRV_NAME)) {
697 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
698 goto err_out_free_netdev;
699 }
700
701 base = ioremap(ioaddr, io_size);
702 if (!base) {
703 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
704 card_idx, io_size, ioaddr);
705 goto err_out_free_res;
706 }
707
708 pci_set_master(pdev);
709
710 /* enable MWI -- it vastly improves Rx performance on sparc64 */
711 pci_try_set_mwi(pdev);
712
713 #ifdef ZEROCOPY
714 /* Starfire can do TCP/UDP checksumming */
715 if (enable_hw_cksum)
716 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
717 #endif /* ZEROCOPY */
718
719 #ifdef VLAN_SUPPORT
720 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
721 #endif /* VLAN_RX_KILL_VID */
722 #ifdef ADDR_64BITS
723 dev->features |= NETIF_F_HIGHDMA;
724 #endif /* ADDR_64BITS */
725
726 /* Serial EEPROM reads are hidden by the hardware. */
727 for (i = 0; i < 6; i++)
728 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
729
730 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
731 if (debug > 4)
732 for (i = 0; i < 0x20; i++)
733 printk("%2.2x%s",
734 (unsigned int)readb(base + EEPROMCtrl + i),
735 i % 16 != 15 ? " " : "\n");
736 #endif
737
738 /* Issue soft reset */
739 writel(MiiSoftReset, base + TxMode);
740 udelay(1000);
741 writel(0, base + TxMode);
742
743 /* Reset the chip to erase previous misconfiguration. */
744 writel(1, base + PCIDeviceConfig);
745 boguscnt = 1000;
746 while (--boguscnt > 0) {
747 udelay(10);
748 if ((readl(base + PCIDeviceConfig) & 1) == 0)
749 break;
750 }
751 if (boguscnt == 0)
752 printk("%s: chipset reset never completed!\n", dev->name);
753 /* wait a little longer */
754 udelay(1000);
755
756 dev->base_addr = (unsigned long)base;
757 dev->irq = irq;
758
759 np = netdev_priv(dev);
760 np->dev = dev;
761 np->base = base;
762 spin_lock_init(&np->lock);
763 pci_set_drvdata(pdev, dev);
764
765 np->pci_dev = pdev;
766
767 np->mii_if.dev = dev;
768 np->mii_if.mdio_read = mdio_read;
769 np->mii_if.mdio_write = mdio_write;
770 np->mii_if.phy_id_mask = 0x1f;
771 np->mii_if.reg_num_mask = 0x1f;
772
773 drv_flags = netdrv_tbl[chip_idx].drv_flags;
774
775 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
776 if (dev->mem_start)
777 option = dev->mem_start;
778
779 /* The lower four bits are the media type. */
780 if (option & 0x200)
781 np->mii_if.full_duplex = 1;
782
783 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
784 np->mii_if.full_duplex = 1;
785
786 if (np->mii_if.full_duplex)
787 np->mii_if.force_media = 1;
788 else
789 np->mii_if.force_media = 0;
790 np->speed100 = 1;
791
792 /* timer resolution is 128 * 0.8us */
793 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
794 Timer10X | EnableIntrMasking;
795
796 if (small_frames > 0) {
797 np->intr_timer_ctrl |= SmallFrameBypass;
798 switch (small_frames) {
799 case 1 ... 64:
800 np->intr_timer_ctrl |= SmallFrame64;
801 break;
802 case 65 ... 128:
803 np->intr_timer_ctrl |= SmallFrame128;
804 break;
805 case 129 ... 256:
806 np->intr_timer_ctrl |= SmallFrame256;
807 break;
808 default:
809 np->intr_timer_ctrl |= SmallFrame512;
810 if (small_frames > 512)
811 printk("Adjusting small_frames down to 512\n");
812 break;
813 }
814 }
815
816 dev->netdev_ops = &netdev_ops;
817 dev->watchdog_timeo = TX_TIMEOUT;
818 SET_ETHTOOL_OPS(dev, &ethtool_ops);
819
820 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
821
822 if (mtu)
823 dev->mtu = mtu;
824
825 if (register_netdev(dev))
826 goto err_out_cleardev;
827
828 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
829 dev->name, netdrv_tbl[chip_idx].name, base,
830 dev->dev_addr, irq);
831
832 if (drv_flags & CanHaveMII) {
833 int phy, phy_idx = 0;
834 int mii_status;
835 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
836 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
837 mdelay(100);
838 boguscnt = 1000;
839 while (--boguscnt > 0)
840 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
841 break;
842 if (boguscnt == 0) {
843 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
844 continue;
845 }
846 mii_status = mdio_read(dev, phy, MII_BMSR);
847 if (mii_status != 0) {
848 np->phys[phy_idx++] = phy;
849 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
850 printk(KERN_INFO "%s: MII PHY found at address %d, status "
851 "%#4.4x advertising %#4.4x.\n",
852 dev->name, phy, mii_status, np->mii_if.advertising);
853 /* there can be only one PHY on-board */
854 break;
855 }
856 }
857 np->phy_cnt = phy_idx;
858 if (np->phy_cnt > 0)
859 np->mii_if.phy_id = np->phys[0];
860 else
861 memset(&np->mii_if, 0, sizeof(np->mii_if));
862 }
863
864 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
865 dev->name, enable_hw_cksum ? "enabled" : "disabled");
866 return 0;
867
868 err_out_cleardev:
869 pci_set_drvdata(pdev, NULL);
870 iounmap(base);
871 err_out_free_res:
872 pci_release_regions (pdev);
873 err_out_free_netdev:
874 free_netdev(dev);
875 return -ENODEV;
876 }
877
878
879 /* Read the MII Management Data I/O (MDIO) interfaces. */
880 static int mdio_read(struct net_device *dev, int phy_id, int location)
881 {
882 struct netdev_private *np = netdev_priv(dev);
883 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
884 int result, boguscnt=1000;
885 /* ??? Should we add a busy-wait here? */
886 do {
887 result = readl(mdio_addr);
888 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
889 if (boguscnt == 0)
890 return 0;
891 if ((result & 0xffff) == 0xffff)
892 return 0;
893 return result & 0xffff;
894 }
895
896
897 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
898 {
899 struct netdev_private *np = netdev_priv(dev);
900 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
901 writel(value, mdio_addr);
902 /* The busy-wait will occur before a read. */
903 }
904
905
906 static int netdev_open(struct net_device *dev)
907 {
908 const struct firmware *fw_rx, *fw_tx;
909 const __be32 *fw_rx_data, *fw_tx_data;
910 struct netdev_private *np = netdev_priv(dev);
911 void __iomem *ioaddr = np->base;
912 int i, retval;
913 size_t tx_size, rx_size;
914 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
915
916 /* Do we ever need to reset the chip??? */
917
918 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
919 if (retval)
920 return retval;
921
922 /* Disable the Rx and Tx, and reset the chip. */
923 writel(0, ioaddr + GenCtrl);
924 writel(1, ioaddr + PCIDeviceConfig);
925 if (debug > 1)
926 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
927 dev->name, dev->irq);
928
929 /* Allocate the various queues. */
930 if (!np->queue_mem) {
931 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
932 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
933 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
934 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
935 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
936 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
937 if (np->queue_mem == NULL) {
938 free_irq(dev->irq, dev);
939 return -ENOMEM;
940 }
941
942 np->tx_done_q = np->queue_mem;
943 np->tx_done_q_dma = np->queue_mem_dma;
944 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
945 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
946 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
947 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
948 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
949 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
950 }
951
952 /* Start with no carrier, it gets adjusted later */
953 netif_carrier_off(dev);
954 init_ring(dev);
955 /* Set the size of the Rx buffers. */
956 writel((np->rx_buf_sz << RxBufferLenShift) |
957 (0 << RxMinDescrThreshShift) |
958 RxPrefetchMode | RxVariableQ |
959 RX_Q_ENTRIES |
960 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
961 RxDescSpace4,
962 ioaddr + RxDescQCtrl);
963
964 /* Set up the Rx DMA controller. */
965 writel(RxChecksumIgnore |
966 (0 << RxEarlyIntThreshShift) |
967 (6 << RxHighPrioThreshShift) |
968 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
969 ioaddr + RxDMACtrl);
970
971 /* Set Tx descriptor */
972 writel((2 << TxHiPriFIFOThreshShift) |
973 (0 << TxPadLenShift) |
974 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
975 TX_DESC_Q_ADDR_SIZE |
976 TX_DESC_SPACING | TX_DESC_TYPE,
977 ioaddr + TxDescCtrl);
978
979 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
980 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
981 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
982 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
983 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
984
985 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
986 writel(np->rx_done_q_dma |
987 RxComplType |
988 (0 << RxComplThreshShift),
989 ioaddr + RxCompletionAddr);
990
991 if (debug > 1)
992 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
993
994 /* Fill both the Tx SA register and the Rx perfect filter. */
995 for (i = 0; i < 6; i++)
996 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
997 /* The first entry is special because it bypasses the VLAN filter.
998 Don't use it. */
999 writew(0, ioaddr + PerfFilterTable);
1000 writew(0, ioaddr + PerfFilterTable + 4);
1001 writew(0, ioaddr + PerfFilterTable + 8);
1002 for (i = 1; i < 16; i++) {
1003 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1004 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1005 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1006 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1007 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1008 }
1009
1010 /* Initialize other registers. */
1011 /* Configure the PCI bus bursts and FIFO thresholds. */
1012 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1013 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1014 udelay(1000);
1015 writel(np->tx_mode, ioaddr + TxMode);
1016 np->tx_threshold = 4;
1017 writel(np->tx_threshold, ioaddr + TxThreshold);
1018
1019 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1020
1021 napi_enable(&np->napi);
1022
1023 netif_start_queue(dev);
1024
1025 if (debug > 1)
1026 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1027 set_rx_mode(dev);
1028
1029 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1030 check_duplex(dev);
1031
1032 /* Enable GPIO interrupts on link change */
1033 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1034
1035 /* Set the interrupt mask */
1036 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1037 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1038 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1039 ioaddr + IntrEnable);
1040 /* Enable PCI interrupts. */
1041 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1042 ioaddr + PCIDeviceConfig);
1043
1044 #ifdef VLAN_SUPPORT
1045 /* Set VLAN type to 802.1q */
1046 writel(ETH_P_8021Q, ioaddr + VlanType);
1047 #endif /* VLAN_SUPPORT */
1048
1049 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1050 if (retval) {
1051 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1052 FIRMWARE_RX);
1053 goto out_init;
1054 }
1055 if (fw_rx->size % 4) {
1056 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1057 fw_rx->size, FIRMWARE_RX);
1058 retval = -EINVAL;
1059 goto out_rx;
1060 }
1061 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1062 if (retval) {
1063 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1064 FIRMWARE_TX);
1065 goto out_rx;
1066 }
1067 if (fw_tx->size % 4) {
1068 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1069 fw_tx->size, FIRMWARE_TX);
1070 retval = -EINVAL;
1071 goto out_tx;
1072 }
1073 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1074 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1075 rx_size = fw_rx->size / 4;
1076 tx_size = fw_tx->size / 4;
1077
1078 /* Load Rx/Tx firmware into the frame processors */
1079 for (i = 0; i < rx_size; i++)
1080 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1081 for (i = 0; i < tx_size; i++)
1082 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1083 if (enable_hw_cksum)
1084 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1085 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1086 else
1087 /* Enable the Rx and Tx units only. */
1088 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1089
1090 if (debug > 1)
1091 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1092 dev->name);
1093
1094 out_tx:
1095 release_firmware(fw_tx);
1096 out_rx:
1097 release_firmware(fw_rx);
1098 out_init:
1099 if (retval)
1100 netdev_close(dev);
1101 return retval;
1102 }
1103
1104
1105 static void check_duplex(struct net_device *dev)
1106 {
1107 struct netdev_private *np = netdev_priv(dev);
1108 u16 reg0;
1109 int silly_count = 1000;
1110
1111 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1112 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1113 udelay(500);
1114 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1115 /* do nothing */;
1116 if (!silly_count) {
1117 printk("%s: MII reset failed!\n", dev->name);
1118 return;
1119 }
1120
1121 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1122
1123 if (!np->mii_if.force_media) {
1124 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1125 } else {
1126 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1127 if (np->speed100)
1128 reg0 |= BMCR_SPEED100;
1129 if (np->mii_if.full_duplex)
1130 reg0 |= BMCR_FULLDPLX;
1131 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1132 dev->name,
1133 np->speed100 ? "100" : "10",
1134 np->mii_if.full_duplex ? "full" : "half");
1135 }
1136 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1137 }
1138
1139
1140 static void tx_timeout(struct net_device *dev)
1141 {
1142 struct netdev_private *np = netdev_priv(dev);
1143 void __iomem *ioaddr = np->base;
1144 int old_debug;
1145
1146 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1147 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1148
1149 /* Perhaps we should reinitialize the hardware here. */
1150
1151 /*
1152 * Stop and restart the interface.
1153 * Cheat and increase the debug level temporarily.
1154 */
1155 old_debug = debug;
1156 debug = 2;
1157 netdev_close(dev);
1158 netdev_open(dev);
1159 debug = old_debug;
1160
1161 /* Trigger an immediate transmit demand. */
1162
1163 dev->trans_start = jiffies; /* prevent tx timeout */
1164 dev->stats.tx_errors++;
1165 netif_wake_queue(dev);
1166 }
1167
1168
1169 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1170 static void init_ring(struct net_device *dev)
1171 {
1172 struct netdev_private *np = netdev_priv(dev);
1173 int i;
1174
1175 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1176 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1177
1178 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1179
1180 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1181 for (i = 0; i < RX_RING_SIZE; i++) {
1182 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1183 np->rx_info[i].skb = skb;
1184 if (skb == NULL)
1185 break;
1186 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1187 skb->dev = dev; /* Mark as being used by this device. */
1188 /* Grrr, we cannot offset to correctly align the IP header. */
1189 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1190 }
1191 writew(i - 1, np->base + RxDescQIdx);
1192 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1193
1194 /* Clear the remainder of the Rx buffer ring. */
1195 for ( ; i < RX_RING_SIZE; i++) {
1196 np->rx_ring[i].rxaddr = 0;
1197 np->rx_info[i].skb = NULL;
1198 np->rx_info[i].mapping = 0;
1199 }
1200 /* Mark the last entry as wrapping the ring. */
1201 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1202
1203 /* Clear the completion rings. */
1204 for (i = 0; i < DONE_Q_SIZE; i++) {
1205 np->rx_done_q[i].status = 0;
1206 np->tx_done_q[i].status = 0;
1207 }
1208
1209 for (i = 0; i < TX_RING_SIZE; i++)
1210 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1211 }
1212
1213
1214 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1215 {
1216 struct netdev_private *np = netdev_priv(dev);
1217 unsigned int entry;
1218 u32 status;
1219 int i;
1220
1221 /*
1222 * be cautious here, wrapping the queue has weird semantics
1223 * and we may not have enough slots even when it seems we do.
1224 */
1225 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1226 netif_stop_queue(dev);
1227 return NETDEV_TX_BUSY;
1228 }
1229
1230 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1231 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1232 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1233 return NETDEV_TX_OK;
1234 }
1235 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1236
1237 entry = np->cur_tx % TX_RING_SIZE;
1238 for (i = 0; i < skb_num_frags(skb); i++) {
1239 int wrap_ring = 0;
1240 status = TxDescID;
1241
1242 if (i == 0) {
1243 np->tx_info[entry].skb = skb;
1244 status |= TxCRCEn;
1245 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1246 status |= TxRingWrap;
1247 wrap_ring = 1;
1248 }
1249 if (np->reap_tx) {
1250 status |= TxDescIntr;
1251 np->reap_tx = 0;
1252 }
1253 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1254 status |= TxCalTCP;
1255 dev->stats.tx_compressed++;
1256 }
1257 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1258
1259 np->tx_info[entry].mapping =
1260 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1261 } else {
1262 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1263 status |= skb_frag_size(this_frag);
1264 np->tx_info[entry].mapping =
1265 pci_map_single(np->pci_dev,
1266 skb_frag_address(this_frag),
1267 skb_frag_size(this_frag),
1268 PCI_DMA_TODEVICE);
1269 }
1270
1271 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1272 np->tx_ring[entry].status = cpu_to_le32(status);
1273 if (debug > 3)
1274 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1275 dev->name, np->cur_tx, np->dirty_tx,
1276 entry, status);
1277 if (wrap_ring) {
1278 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1279 np->cur_tx += np->tx_info[entry].used_slots;
1280 entry = 0;
1281 } else {
1282 np->tx_info[entry].used_slots = 1;
1283 np->cur_tx += np->tx_info[entry].used_slots;
1284 entry++;
1285 }
1286 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1287 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1288 np->reap_tx = 1;
1289 }
1290
1291 /* Non-x86: explicitly flush descriptor cache lines here. */
1292 /* Ensure all descriptors are written back before the transmit is
1293 initiated. - Jes */
1294 wmb();
1295
1296 /* Update the producer index. */
1297 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1298
1299 /* 4 is arbitrary, but should be ok */
1300 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1301 netif_stop_queue(dev);
1302
1303 return NETDEV_TX_OK;
1304 }
1305
1306
1307 /* The interrupt handler does all of the Rx thread work and cleans up
1308 after the Tx thread. */
1309 static irqreturn_t intr_handler(int irq, void *dev_instance)
1310 {
1311 struct net_device *dev = dev_instance;
1312 struct netdev_private *np = netdev_priv(dev);
1313 void __iomem *ioaddr = np->base;
1314 int boguscnt = max_interrupt_work;
1315 int consumer;
1316 int tx_status;
1317 int handled = 0;
1318
1319 do {
1320 u32 intr_status = readl(ioaddr + IntrClear);
1321
1322 if (debug > 4)
1323 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1324 dev->name, intr_status);
1325
1326 if (intr_status == 0 || intr_status == (u32) -1)
1327 break;
1328
1329 handled = 1;
1330
1331 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1332 u32 enable;
1333
1334 if (likely(napi_schedule_prep(&np->napi))) {
1335 __napi_schedule(&np->napi);
1336 enable = readl(ioaddr + IntrEnable);
1337 enable &= ~(IntrRxDone | IntrRxEmpty);
1338 writel(enable, ioaddr + IntrEnable);
1339 /* flush PCI posting buffers */
1340 readl(ioaddr + IntrEnable);
1341 } else {
1342 /* Paranoia check */
1343 enable = readl(ioaddr + IntrEnable);
1344 if (enable & (IntrRxDone | IntrRxEmpty)) {
1345 printk(KERN_INFO
1346 "%s: interrupt while in poll!\n",
1347 dev->name);
1348 enable &= ~(IntrRxDone | IntrRxEmpty);
1349 writel(enable, ioaddr + IntrEnable);
1350 }
1351 }
1352 }
1353
1354 /* Scavenge the skbuff list based on the Tx-done queue.
1355 There are redundant checks here that may be cleaned up
1356 after the driver has proven to be reliable. */
1357 consumer = readl(ioaddr + TxConsumerIdx);
1358 if (debug > 3)
1359 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1360 dev->name, consumer);
1361
1362 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1363 if (debug > 3)
1364 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1365 dev->name, np->dirty_tx, np->tx_done, tx_status);
1366 if ((tx_status & 0xe0000000) == 0xa0000000) {
1367 dev->stats.tx_packets++;
1368 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1369 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1370 struct sk_buff *skb = np->tx_info[entry].skb;
1371 np->tx_info[entry].skb = NULL;
1372 pci_unmap_single(np->pci_dev,
1373 np->tx_info[entry].mapping,
1374 skb_first_frag_len(skb),
1375 PCI_DMA_TODEVICE);
1376 np->tx_info[entry].mapping = 0;
1377 np->dirty_tx += np->tx_info[entry].used_slots;
1378 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1379 {
1380 int i;
1381 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1382 pci_unmap_single(np->pci_dev,
1383 np->tx_info[entry].mapping,
1384 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1385 PCI_DMA_TODEVICE);
1386 np->dirty_tx++;
1387 entry++;
1388 }
1389 }
1390
1391 dev_kfree_skb_irq(skb);
1392 }
1393 np->tx_done_q[np->tx_done].status = 0;
1394 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1395 }
1396 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1397
1398 if (netif_queue_stopped(dev) &&
1399 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1400 /* The ring is no longer full, wake the queue. */
1401 netif_wake_queue(dev);
1402 }
1403
1404 /* Stats overflow */
1405 if (intr_status & IntrStatsMax)
1406 get_stats(dev);
1407
1408 /* Media change interrupt. */
1409 if (intr_status & IntrLinkChange)
1410 netdev_media_change(dev);
1411
1412 /* Abnormal error summary/uncommon events handlers. */
1413 if (intr_status & IntrAbnormalSummary)
1414 netdev_error(dev, intr_status);
1415
1416 if (--boguscnt < 0) {
1417 if (debug > 1)
1418 printk(KERN_WARNING "%s: Too much work at interrupt, "
1419 "status=%#8.8x.\n",
1420 dev->name, intr_status);
1421 break;
1422 }
1423 } while (1);
1424
1425 if (debug > 4)
1426 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1427 dev->name, (int) readl(ioaddr + IntrStatus));
1428 return IRQ_RETVAL(handled);
1429 }
1430
1431
1432 /*
1433 * This routine is logically part of the interrupt/poll handler, but separated
1434 * for clarity and better register allocation.
1435 */
1436 static int __netdev_rx(struct net_device *dev, int *quota)
1437 {
1438 struct netdev_private *np = netdev_priv(dev);
1439 u32 desc_status;
1440 int retcode = 0;
1441
1442 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1443 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1444 struct sk_buff *skb;
1445 u16 pkt_len;
1446 int entry;
1447 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1448
1449 if (debug > 4)
1450 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1451 if (!(desc_status & RxOK)) {
1452 /* There was an error. */
1453 if (debug > 2)
1454 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1455 dev->stats.rx_errors++;
1456 if (desc_status & RxFIFOErr)
1457 dev->stats.rx_fifo_errors++;
1458 goto next_rx;
1459 }
1460
1461 if (*quota <= 0) { /* out of rx quota */
1462 retcode = 1;
1463 goto out;
1464 }
1465 (*quota)--;
1466
1467 pkt_len = desc_status; /* Implicitly Truncate */
1468 entry = (desc_status >> 16) & 0x7ff;
1469
1470 if (debug > 4)
1471 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1472 /* Check if the packet is long enough to accept without copying
1473 to a minimally-sized skbuff. */
1474 if (pkt_len < rx_copybreak &&
1475 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1476 skb_reserve(skb, 2); /* 16 byte align the IP header */
1477 pci_dma_sync_single_for_cpu(np->pci_dev,
1478 np->rx_info[entry].mapping,
1479 pkt_len, PCI_DMA_FROMDEVICE);
1480 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1481 pci_dma_sync_single_for_device(np->pci_dev,
1482 np->rx_info[entry].mapping,
1483 pkt_len, PCI_DMA_FROMDEVICE);
1484 skb_put(skb, pkt_len);
1485 } else {
1486 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1487 skb = np->rx_info[entry].skb;
1488 skb_put(skb, pkt_len);
1489 np->rx_info[entry].skb = NULL;
1490 np->rx_info[entry].mapping = 0;
1491 }
1492 #ifndef final_version /* Remove after testing. */
1493 /* You will want this info for the initial debug. */
1494 if (debug > 5) {
1495 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1496 skb->data, skb->data + 6,
1497 skb->data[12], skb->data[13]);
1498 }
1499 #endif
1500
1501 skb->protocol = eth_type_trans(skb, dev);
1502 #ifdef VLAN_SUPPORT
1503 if (debug > 4)
1504 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1505 #endif
1506 if (le16_to_cpu(desc->status2) & 0x0100) {
1507 skb->ip_summed = CHECKSUM_UNNECESSARY;
1508 dev->stats.rx_compressed++;
1509 }
1510 /*
1511 * This feature doesn't seem to be working, at least
1512 * with the two firmware versions I have. If the GFP sees
1513 * an IP fragment, it either ignores it completely, or reports
1514 * "bad checksum" on it.
1515 *
1516 * Maybe I missed something -- corrections are welcome.
1517 * Until then, the printk stays. :-) -Ion
1518 */
1519 else if (le16_to_cpu(desc->status2) & 0x0040) {
1520 skb->ip_summed = CHECKSUM_COMPLETE;
1521 skb->csum = le16_to_cpu(desc->csum);
1522 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1523 }
1524 #ifdef VLAN_SUPPORT
1525 if (le16_to_cpu(desc->status2) & 0x0200) {
1526 u16 vlid = le16_to_cpu(desc->vlanid);
1527
1528 if (debug > 4) {
1529 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1530 vlid);
1531 }
1532 __vlan_hwaccel_put_tag(skb, vlid);
1533 }
1534 #endif /* VLAN_SUPPORT */
1535 netif_receive_skb(skb);
1536 dev->stats.rx_packets++;
1537
1538 next_rx:
1539 np->cur_rx++;
1540 desc->status = 0;
1541 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1542 }
1543
1544 if (*quota == 0) { /* out of rx quota */
1545 retcode = 1;
1546 goto out;
1547 }
1548 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1549
1550 out:
1551 refill_rx_ring(dev);
1552 if (debug > 5)
1553 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1554 retcode, np->rx_done, desc_status);
1555 return retcode;
1556 }
1557
1558 static int netdev_poll(struct napi_struct *napi, int budget)
1559 {
1560 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1561 struct net_device *dev = np->dev;
1562 u32 intr_status;
1563 void __iomem *ioaddr = np->base;
1564 int quota = budget;
1565
1566 do {
1567 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1568
1569 if (__netdev_rx(dev, &quota))
1570 goto out;
1571
1572 intr_status = readl(ioaddr + IntrStatus);
1573 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1574
1575 napi_complete(napi);
1576 intr_status = readl(ioaddr + IntrEnable);
1577 intr_status |= IntrRxDone | IntrRxEmpty;
1578 writel(intr_status, ioaddr + IntrEnable);
1579
1580 out:
1581 if (debug > 5)
1582 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1583 budget - quota);
1584
1585 /* Restart Rx engine if stopped. */
1586 return budget - quota;
1587 }
1588
1589 static void refill_rx_ring(struct net_device *dev)
1590 {
1591 struct netdev_private *np = netdev_priv(dev);
1592 struct sk_buff *skb;
1593 int entry = -1;
1594
1595 /* Refill the Rx ring buffers. */
1596 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1597 entry = np->dirty_rx % RX_RING_SIZE;
1598 if (np->rx_info[entry].skb == NULL) {
1599 skb = dev_alloc_skb(np->rx_buf_sz);
1600 np->rx_info[entry].skb = skb;
1601 if (skb == NULL)
1602 break; /* Better luck next round. */
1603 np->rx_info[entry].mapping =
1604 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1605 skb->dev = dev; /* Mark as being used by this device. */
1606 np->rx_ring[entry].rxaddr =
1607 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1608 }
1609 if (entry == RX_RING_SIZE - 1)
1610 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1611 }
1612 if (entry >= 0)
1613 writew(entry, np->base + RxDescQIdx);
1614 }
1615
1616
1617 static void netdev_media_change(struct net_device *dev)
1618 {
1619 struct netdev_private *np = netdev_priv(dev);
1620 void __iomem *ioaddr = np->base;
1621 u16 reg0, reg1, reg4, reg5;
1622 u32 new_tx_mode;
1623 u32 new_intr_timer_ctrl;
1624
1625 /* reset status first */
1626 mdio_read(dev, np->phys[0], MII_BMCR);
1627 mdio_read(dev, np->phys[0], MII_BMSR);
1628
1629 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1630 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1631
1632 if (reg1 & BMSR_LSTATUS) {
1633 /* link is up */
1634 if (reg0 & BMCR_ANENABLE) {
1635 /* autonegotiation is enabled */
1636 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1637 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1638 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1639 np->speed100 = 1;
1640 np->mii_if.full_duplex = 1;
1641 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1642 np->speed100 = 1;
1643 np->mii_if.full_duplex = 0;
1644 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1645 np->speed100 = 0;
1646 np->mii_if.full_duplex = 1;
1647 } else {
1648 np->speed100 = 0;
1649 np->mii_if.full_duplex = 0;
1650 }
1651 } else {
1652 /* autonegotiation is disabled */
1653 if (reg0 & BMCR_SPEED100)
1654 np->speed100 = 1;
1655 else
1656 np->speed100 = 0;
1657 if (reg0 & BMCR_FULLDPLX)
1658 np->mii_if.full_duplex = 1;
1659 else
1660 np->mii_if.full_duplex = 0;
1661 }
1662 netif_carrier_on(dev);
1663 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1664 dev->name,
1665 np->speed100 ? "100" : "10",
1666 np->mii_if.full_duplex ? "full" : "half");
1667
1668 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1669 if (np->mii_if.full_duplex)
1670 new_tx_mode |= FullDuplex;
1671 if (np->tx_mode != new_tx_mode) {
1672 np->tx_mode = new_tx_mode;
1673 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1674 udelay(1000);
1675 writel(np->tx_mode, ioaddr + TxMode);
1676 }
1677
1678 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1679 if (np->speed100)
1680 new_intr_timer_ctrl |= Timer10X;
1681 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1682 np->intr_timer_ctrl = new_intr_timer_ctrl;
1683 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1684 }
1685 } else {
1686 netif_carrier_off(dev);
1687 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1688 }
1689 }
1690
1691
1692 static void netdev_error(struct net_device *dev, int intr_status)
1693 {
1694 struct netdev_private *np = netdev_priv(dev);
1695
1696 /* Came close to underrunning the Tx FIFO, increase threshold. */
1697 if (intr_status & IntrTxDataLow) {
1698 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1699 writel(++np->tx_threshold, np->base + TxThreshold);
1700 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1701 dev->name, np->tx_threshold * 16);
1702 } else
1703 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1704 }
1705 if (intr_status & IntrRxGFPDead) {
1706 dev->stats.rx_fifo_errors++;
1707 dev->stats.rx_errors++;
1708 }
1709 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1710 dev->stats.tx_fifo_errors++;
1711 dev->stats.tx_errors++;
1712 }
1713 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1714 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1715 dev->name, intr_status);
1716 }
1717
1718
1719 static struct net_device_stats *get_stats(struct net_device *dev)
1720 {
1721 struct netdev_private *np = netdev_priv(dev);
1722 void __iomem *ioaddr = np->base;
1723
1724 /* This adapter architecture needs no SMP locks. */
1725 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1726 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1727 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1728 dev->stats.tx_aborted_errors =
1729 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1730 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1731 dev->stats.collisions =
1732 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1733
1734 /* The chip only need report frame silently dropped. */
1735 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1736 writew(0, ioaddr + RxDMAStatus);
1737 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1738 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1739 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1740 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1741
1742 return &dev->stats;
1743 }
1744
1745 #ifdef VLAN_SUPPORT
1746 static u32 set_vlan_mode(struct netdev_private *np)
1747 {
1748 u32 ret = VlanMode;
1749 u16 vid;
1750 void __iomem *filter_addr = np->base + HashTable + 8;
1751 int vlan_count = 0;
1752
1753 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1754 if (vlan_count == 32)
1755 break;
1756 writew(vid, filter_addr);
1757 filter_addr += 16;
1758 vlan_count++;
1759 }
1760 if (vlan_count == 32) {
1761 ret |= PerfectFilterVlan;
1762 while (vlan_count < 32) {
1763 writew(0, filter_addr);
1764 filter_addr += 16;
1765 vlan_count++;
1766 }
1767 }
1768 return ret;
1769 }
1770 #endif /* VLAN_SUPPORT */
1771
1772 static void set_rx_mode(struct net_device *dev)
1773 {
1774 struct netdev_private *np = netdev_priv(dev);
1775 void __iomem *ioaddr = np->base;
1776 u32 rx_mode = MinVLANPrio;
1777 struct netdev_hw_addr *ha;
1778 int i;
1779
1780 #ifdef VLAN_SUPPORT
1781 rx_mode |= set_vlan_mode(np);
1782 #endif /* VLAN_SUPPORT */
1783
1784 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1785 rx_mode |= AcceptAll;
1786 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1787 (dev->flags & IFF_ALLMULTI)) {
1788 /* Too many to match, or accept all multicasts. */
1789 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1790 } else if (netdev_mc_count(dev) <= 14) {
1791 /* Use the 16 element perfect filter, skip first two entries. */
1792 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1793 __be16 *eaddrs;
1794 netdev_for_each_mc_addr(ha, dev) {
1795 eaddrs = (__be16 *) ha->addr;
1796 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1797 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1798 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1799 }
1800 eaddrs = (__be16 *)dev->dev_addr;
1801 i = netdev_mc_count(dev) + 2;
1802 while (i++ < 16) {
1803 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1806 }
1807 rx_mode |= AcceptBroadcast|PerfectFilter;
1808 } else {
1809 /* Must use a multicast hash table. */
1810 void __iomem *filter_addr;
1811 __be16 *eaddrs;
1812 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1813
1814 memset(mc_filter, 0, sizeof(mc_filter));
1815 netdev_for_each_mc_addr(ha, dev) {
1816 /* The chip uses the upper 9 CRC bits
1817 as index into the hash table */
1818 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1819 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1820
1821 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1822 }
1823 /* Clear the perfect filter list, skip first two entries. */
1824 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1825 eaddrs = (__be16 *)dev->dev_addr;
1826 for (i = 2; i < 16; i++) {
1827 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1828 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1829 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1830 }
1831 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1832 writew(mc_filter[i], filter_addr);
1833 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1834 }
1835 writel(rx_mode, ioaddr + RxFilterMode);
1836 }
1837
1838 static int check_if_running(struct net_device *dev)
1839 {
1840 if (!netif_running(dev))
1841 return -EINVAL;
1842 return 0;
1843 }
1844
1845 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1846 {
1847 struct netdev_private *np = netdev_priv(dev);
1848 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1849 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1850 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1851 }
1852
1853 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1854 {
1855 struct netdev_private *np = netdev_priv(dev);
1856 spin_lock_irq(&np->lock);
1857 mii_ethtool_gset(&np->mii_if, ecmd);
1858 spin_unlock_irq(&np->lock);
1859 return 0;
1860 }
1861
1862 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1863 {
1864 struct netdev_private *np = netdev_priv(dev);
1865 int res;
1866 spin_lock_irq(&np->lock);
1867 res = mii_ethtool_sset(&np->mii_if, ecmd);
1868 spin_unlock_irq(&np->lock);
1869 check_duplex(dev);
1870 return res;
1871 }
1872
1873 static int nway_reset(struct net_device *dev)
1874 {
1875 struct netdev_private *np = netdev_priv(dev);
1876 return mii_nway_restart(&np->mii_if);
1877 }
1878
1879 static u32 get_link(struct net_device *dev)
1880 {
1881 struct netdev_private *np = netdev_priv(dev);
1882 return mii_link_ok(&np->mii_if);
1883 }
1884
1885 static u32 get_msglevel(struct net_device *dev)
1886 {
1887 return debug;
1888 }
1889
1890 static void set_msglevel(struct net_device *dev, u32 val)
1891 {
1892 debug = val;
1893 }
1894
1895 static const struct ethtool_ops ethtool_ops = {
1896 .begin = check_if_running,
1897 .get_drvinfo = get_drvinfo,
1898 .get_settings = get_settings,
1899 .set_settings = set_settings,
1900 .nway_reset = nway_reset,
1901 .get_link = get_link,
1902 .get_msglevel = get_msglevel,
1903 .set_msglevel = set_msglevel,
1904 };
1905
1906 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1907 {
1908 struct netdev_private *np = netdev_priv(dev);
1909 struct mii_ioctl_data *data = if_mii(rq);
1910 int rc;
1911
1912 if (!netif_running(dev))
1913 return -EINVAL;
1914
1915 spin_lock_irq(&np->lock);
1916 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1917 spin_unlock_irq(&np->lock);
1918
1919 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1920 check_duplex(dev);
1921
1922 return rc;
1923 }
1924
1925 static int netdev_close(struct net_device *dev)
1926 {
1927 struct netdev_private *np = netdev_priv(dev);
1928 void __iomem *ioaddr = np->base;
1929 int i;
1930
1931 netif_stop_queue(dev);
1932
1933 napi_disable(&np->napi);
1934
1935 if (debug > 1) {
1936 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937 dev->name, (int) readl(ioaddr + IntrStatus));
1938 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939 dev->name, np->cur_tx, np->dirty_tx,
1940 np->cur_rx, np->dirty_rx);
1941 }
1942
1943 /* Disable interrupts by clearing the interrupt mask. */
1944 writel(0, ioaddr + IntrEnable);
1945
1946 /* Stop the chip's Tx and Rx processes. */
1947 writel(0, ioaddr + GenCtrl);
1948 readl(ioaddr + GenCtrl);
1949
1950 if (debug > 5) {
1951 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1952 (long long) np->tx_ring_dma);
1953 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1954 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955 i, le32_to_cpu(np->tx_ring[i].status),
1956 (long long) dma_to_cpu(np->tx_ring[i].addr),
1957 le32_to_cpu(np->tx_done_q[i].status));
1958 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1959 (long long) np->rx_ring_dma, np->rx_done_q);
1960 if (np->rx_done_q)
1961 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1962 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1964 }
1965 }
1966
1967 free_irq(dev->irq, dev);
1968
1969 /* Free all the skbuffs in the Rx queue. */
1970 for (i = 0; i < RX_RING_SIZE; i++) {
1971 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1972 if (np->rx_info[i].skb != NULL) {
1973 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1974 dev_kfree_skb(np->rx_info[i].skb);
1975 }
1976 np->rx_info[i].skb = NULL;
1977 np->rx_info[i].mapping = 0;
1978 }
1979 for (i = 0; i < TX_RING_SIZE; i++) {
1980 struct sk_buff *skb = np->tx_info[i].skb;
1981 if (skb == NULL)
1982 continue;
1983 pci_unmap_single(np->pci_dev,
1984 np->tx_info[i].mapping,
1985 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1986 np->tx_info[i].mapping = 0;
1987 dev_kfree_skb(skb);
1988 np->tx_info[i].skb = NULL;
1989 }
1990
1991 return 0;
1992 }
1993
1994 #ifdef CONFIG_PM
1995 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1996 {
1997 struct net_device *dev = pci_get_drvdata(pdev);
1998
1999 if (netif_running(dev)) {
2000 netif_device_detach(dev);
2001 netdev_close(dev);
2002 }
2003
2004 pci_save_state(pdev);
2005 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2006
2007 return 0;
2008 }
2009
2010 static int starfire_resume(struct pci_dev *pdev)
2011 {
2012 struct net_device *dev = pci_get_drvdata(pdev);
2013
2014 pci_set_power_state(pdev, PCI_D0);
2015 pci_restore_state(pdev);
2016
2017 if (netif_running(dev)) {
2018 netdev_open(dev);
2019 netif_device_attach(dev);
2020 }
2021
2022 return 0;
2023 }
2024 #endif /* CONFIG_PM */
2025
2026
2027 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2028 {
2029 struct net_device *dev = pci_get_drvdata(pdev);
2030 struct netdev_private *np = netdev_priv(dev);
2031
2032 BUG_ON(!dev);
2033
2034 unregister_netdev(dev);
2035
2036 if (np->queue_mem)
2037 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2038
2039
2040 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2041 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2042 pci_disable_device(pdev);
2043
2044 iounmap(np->base);
2045 pci_release_regions(pdev);
2046
2047 pci_set_drvdata(pdev, NULL);
2048 free_netdev(dev); /* Will also free np!! */
2049 }
2050
2051
2052 static struct pci_driver starfire_driver = {
2053 .name = DRV_NAME,
2054 .probe = starfire_init_one,
2055 .remove = __devexit_p(starfire_remove_one),
2056 #ifdef CONFIG_PM
2057 .suspend = starfire_suspend,
2058 .resume = starfire_resume,
2059 #endif /* CONFIG_PM */
2060 .id_table = starfire_pci_tbl,
2061 };
2062
2063
2064 static int __init starfire_init (void)
2065 {
2066 /* when a module, this is printed whether or not devices are found in probe */
2067 #ifdef MODULE
2068 printk(version);
2069
2070 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2071 #endif
2072
2073 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2074
2075 return pci_register_driver(&starfire_driver);
2076 }
2077
2078
2079 static void __exit starfire_cleanup (void)
2080 {
2081 pci_unregister_driver (&starfire_driver);
2082 }
2083
2084
2085 module_init(starfire_init);
2086 module_exit(starfire_cleanup);
2087
2088
2089 /*
2090 * Local variables:
2091 * c-basic-offset: 8
2092 * tab-width: 8
2093 * End:
2094 */
This page took 0.307064 seconds and 5 git commands to generate.