net: add skb frag size accessors
[deliverable/linux.git] / drivers / net / ethernet / adaptec / starfire.c
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
4
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
8
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
15
16 The information below comes from Donald Becker's original driver:
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
26
27 */
28
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
32
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h> /* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50
51 /*
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
54 */
55 #define HAS_BROKEN_FIRMWARE
56
57 /*
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
59 */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63
64 /*
65 * Define this if using the driver with the zero-copy patch
66 */
67 #define ZEROCOPY
68
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72
73 /* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
75
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79
80 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88
89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
90 /*
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
93 *
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
99 *
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
103 */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116
117 /* Used to pass the media type, etc.
118 Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119 The media type is usually passed in 'options[]'.
120 These variables are deprecated, use ethtool instead. -Ion
121 */
122 #define MAX_UNITS 8 /* More are supported, limit only on options */
123 static int options[MAX_UNITS] = {0, };
124 static int full_duplex[MAX_UNITS] = {0, };
125
126 /* Operational parameters that are set at compile time. */
127
128 /* The "native" ring sizes are either 256 or 2048.
129 However in some modes a descriptor may be marked to wrap the ring earlier.
130 */
131 #define RX_RING_SIZE 256
132 #define TX_RING_SIZE 32
133 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134 #define DONE_Q_SIZE 1024
135 /* All queues must be aligned on a 256-byte boundary */
136 #define QUEUE_ALIGN 256
137
138 #if RX_RING_SIZE > 256
139 #define RX_Q_ENTRIES Rx2048QEntries
140 #else
141 #define RX_Q_ENTRIES Rx256QEntries
142 #endif
143
144 /* Operational parameters that usually are not changed. */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT (2 * HZ)
147
148 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
149 /* 64-bit dma_addr_t */
150 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
151 #define netdrv_addr_t __le64
152 #define cpu_to_dma(x) cpu_to_le64(x)
153 #define dma_to_cpu(x) le64_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
159 #else /* 32-bit dma_addr_t */
160 #define netdrv_addr_t __le32
161 #define cpu_to_dma(x) cpu_to_le32(x)
162 #define dma_to_cpu(x) le32_to_cpu(x)
163 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
168 #endif
169
170 #define skb_first_frag_len(skb) skb_headlen(skb)
171 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
172
173 /* Firmware names */
174 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
175 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
176
177 /* These identify the driver base version and may not be removed. */
178 static const char version[] __devinitconst =
179 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
180 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
181
182 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_RX);
187 MODULE_FIRMWARE(FIRMWARE_TX);
188
189 module_param(max_interrupt_work, int, 0);
190 module_param(mtu, int, 0);
191 module_param(debug, int, 0);
192 module_param(rx_copybreak, int, 0);
193 module_param(intr_latency, int, 0);
194 module_param(small_frames, int, 0);
195 module_param_array(options, int, NULL, 0);
196 module_param_array(full_duplex, int, NULL, 0);
197 module_param(enable_hw_cksum, int, 0);
198 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199 MODULE_PARM_DESC(mtu, "MTU (all boards)");
200 MODULE_PARM_DESC(debug, "Debug level (0-6)");
201 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207
208 /*
209 Theory of Operation
210
211 I. Board Compatibility
212
213 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214
215 II. Board-specific settings
216
217 III. Driver operation
218
219 IIIa. Ring buffers
220
221 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
222 ring sizes are set fixed by the hardware, but may optionally be wrapped
223 earlier by the END bit in the descriptor.
224 This driver uses that hardware queue size for the Rx ring, where a large
225 number of entries has no ill effect beyond increases the potential backlog.
226 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227 disables the queue layer priority ordering and we have no mechanism to
228 utilize the hardware two-level priority queue. When modifying the
229 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230 levels.
231
232 IIIb/c. Transmit/Receive Structure
233
234 See the Adaptec manual for the many possible structures, and options for
235 each structure. There are far too many to document all of them here.
236
237 For transmit this driver uses type 0/1 transmit descriptors (depending
238 on the 32/64 bitness of the architecture), and relies on automatic
239 minimum-length padding. It does not use the completion queue
240 consumer index, but instead checks for non-zero status entries.
241
242 For receive this driver uses type 2/3 receive descriptors. The driver
243 allocates full frame size skbuffs for the Rx ring buffers, so all frames
244 should fit in a single descriptor. The driver does not use the completion
245 queue consumer index, but instead checks for non-zero status entries.
246
247 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248 is allocated and the frame is copied to the new skbuff. When the incoming
249 frame is larger, the skbuff is passed directly up the protocol stack.
250 Buffers consumed this way are replaced by newly allocated skbuffs in a later
251 phase of receive.
252
253 A notable aspect of operation is that unaligned buffers are not permitted by
254 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
255 isn't longword aligned, which may cause problems on some machine
256 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257 the frame into a new skbuff unconditionally. Copied frames are put into the
258 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259
260 IIId. Synchronization
261
262 The driver runs as two independent, single-threaded flows of control. One
263 is the send-packet routine, which enforces single-threaded use by the
264 dev->tbusy flag. The other thread is the interrupt handler, which is single
265 threaded by the hardware and interrupt handling software.
266
267 The send packet thread has partial control over the Tx ring and the netif_queue
268 status. If the number of free Tx slots in the ring falls below a certain number
269 (currently hardcoded to 4), it signals the upper layer to stop the queue.
270
271 The interrupt handler has exclusive control over the Rx ring and records stats
272 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
273 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274 number of free Tx slow is above the threshold, it signals the upper layer to
275 restart the queue.
276
277 IV. Notes
278
279 IVb. References
280
281 The Adaptec Starfire manuals, available only from Adaptec.
282 http://www.scyld.com/expert/100mbps.html
283 http://www.scyld.com/expert/NWay.html
284
285 IVc. Errata
286
287 - StopOnPerr is broken, don't enable
288 - Hardware ethernet padding exposes random data, perform software padding
289 instead (unverified -- works correctly for all the hardware I have)
290
291 */
292
293
294
295 enum chip_capability_flags {CanHaveMII=1, };
296
297 enum chipset {
298 CH_6915 = 0,
299 };
300
301 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
302 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
303 { 0, }
304 };
305 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306
307 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
308 static const struct chip_info {
309 const char *name;
310 int drv_flags;
311 } netdrv_tbl[] __devinitdata = {
312 { "Adaptec Starfire 6915", CanHaveMII },
313 };
314
315
316 /* Offsets to the device registers.
317 Unlike software-only systems, device drivers interact with complex hardware.
318 It's not useful to define symbolic names for every register bit in the
319 device. The name can only partially document the semantics and make
320 the driver longer and more difficult to read.
321 In general, only the important configuration values or bits changed
322 multiple times should be defined symbolically.
323 */
324 enum register_offsets {
325 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
331 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 TxThreshold=0x500B0,
333 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 TxMode=0x55000, VlanType=0x55064,
339 PerfFilterTable=0x56000, HashTable=0x56100,
340 TxGfpMem=0x58000, RxGfpMem=0x5a000,
341 };
342
343 /*
344 * Bits in the interrupt status/mask registers.
345 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346 * enables all the interrupt sources that are or'ed into those status bits.
347 */
348 enum intr_status_bits {
349 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 IntrTxGfp=0x02, IntrPCIPad=0x01,
363 /* not quite bits */
364 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367 };
368
369 /* Bits in the RxFilterMode register. */
370 enum rx_mode_bits {
371 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 WakeupOnGFP=0x0800,
375 };
376
377 /* Bits in the TxMode register */
378 enum tx_mode_bits {
379 MiiSoftReset=0x8000, MIILoopback=0x4000,
380 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382 };
383
384 /* Bits in the TxDescCtrl register. */
385 enum tx_ctrl_bits {
386 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 TxDescSpace128=0x30, TxDescSpace256=0x40,
388 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 TxDescType3=0x03, TxDescType4=0x04,
390 TxNoDMACompletion=0x08,
391 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 TxDMABurstSizeShift=8,
394 };
395
396 /* Bits in the RxDescQCtrl register. */
397 enum rx_ctrl_bits {
398 RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 Rx2048QEntries=0x4000, Rx256QEntries=0,
401 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 RxDescSpace4=0x000, RxDescSpace8=0x100,
404 RxDescSpace16=0x200, RxDescSpace32=0x300,
405 RxDescSpace64=0x400, RxDescSpace128=0x500,
406 RxConsumerWrEn=0x80,
407 };
408
409 /* Bits in the RxDMACtrl register. */
410 enum rx_dmactrl_bits {
411 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 RxChecksumRejectTCPOnly=0x01000000,
416 RxCompletionQ2Enable=0x800000,
417 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 RxDMAQ2NonIP=0x400000,
420 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 RxBurstSizeShift=0,
423 };
424
425 /* Bits in the RxCompletionAddr register */
426 enum rx_compl_bits {
427 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 RxComplProducerWrEn=0x40,
429 RxComplType0=0x00, RxComplType1=0x10,
430 RxComplType2=0x20, RxComplType3=0x30,
431 RxComplThreshShift=0,
432 };
433
434 /* Bits in the TxCompletionAddr register */
435 enum tx_compl_bits {
436 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 TxComplProducerWrEn=0x40,
438 TxComplIntrStatus=0x20,
439 CommonQueueMode=0x10,
440 TxComplThreshShift=0,
441 };
442
443 /* Bits in the GenCtrl register */
444 enum gen_ctrl_bits {
445 RxEnable=0x05, TxEnable=0x0a,
446 RxGFPEnable=0x10, TxGFPEnable=0x20,
447 };
448
449 /* Bits in the IntrTimerCtrl register */
450 enum intr_ctrl_bits {
451 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 IntrLatencyMask=0x1f,
454 };
455
456 /* The Rx and Tx buffer descriptors. */
457 struct starfire_rx_desc {
458 netdrv_addr_t rxaddr;
459 };
460 enum rx_desc_bits {
461 RxDescValid=1, RxDescEndRing=2,
462 };
463
464 /* Completion queue entry. */
465 struct short_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
467 };
468 struct basic_rx_done_desc {
469 __le32 status; /* Low 16 bits is length. */
470 __le16 vlanid;
471 __le16 status2;
472 };
473 struct csum_rx_done_desc {
474 __le32 status; /* Low 16 bits is length. */
475 __le16 csum; /* Partial checksum */
476 __le16 status2;
477 };
478 struct full_rx_done_desc {
479 __le32 status; /* Low 16 bits is length. */
480 __le16 status3;
481 __le16 status2;
482 __le16 vlanid;
483 __le16 csum; /* partial checksum */
484 __le32 timestamp;
485 };
486 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
487 #ifdef VLAN_SUPPORT
488 typedef struct full_rx_done_desc rx_done_desc;
489 #define RxComplType RxComplType3
490 #else /* not VLAN_SUPPORT */
491 typedef struct csum_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType2
493 #endif /* not VLAN_SUPPORT */
494
495 enum rx_done_bits {
496 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497 };
498
499 /* Type 1 Tx descriptor. */
500 struct starfire_tx_desc_1 {
501 __le32 status; /* Upper bits are status, lower 16 length. */
502 __le32 addr;
503 };
504
505 /* Type 2 Tx descriptor. */
506 struct starfire_tx_desc_2 {
507 __le32 status; /* Upper bits are status, lower 16 length. */
508 __le32 reserved;
509 __le64 addr;
510 };
511
512 #ifdef ADDR_64BITS
513 typedef struct starfire_tx_desc_2 starfire_tx_desc;
514 #define TX_DESC_TYPE TxDescType2
515 #else /* not ADDR_64BITS */
516 typedef struct starfire_tx_desc_1 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType1
518 #endif /* not ADDR_64BITS */
519 #define TX_DESC_SPACING TxDescSpaceUnlim
520
521 enum tx_desc_bits {
522 TxDescID=0xB0000000,
523 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525 };
526 struct tx_done_desc {
527 __le32 status; /* timestamp, index. */
528 #if 0
529 __le32 intrstatus; /* interrupt status */
530 #endif
531 };
532
533 struct rx_ring_info {
534 struct sk_buff *skb;
535 dma_addr_t mapping;
536 };
537 struct tx_ring_info {
538 struct sk_buff *skb;
539 dma_addr_t mapping;
540 unsigned int used_slots;
541 };
542
543 #define PHY_CNT 2
544 struct netdev_private {
545 /* Descriptor rings first for alignment. */
546 struct starfire_rx_desc *rx_ring;
547 starfire_tx_desc *tx_ring;
548 dma_addr_t rx_ring_dma;
549 dma_addr_t tx_ring_dma;
550 /* The addresses of rx/tx-in-place skbuffs. */
551 struct rx_ring_info rx_info[RX_RING_SIZE];
552 struct tx_ring_info tx_info[TX_RING_SIZE];
553 /* Pointers to completion queues (full pages). */
554 rx_done_desc *rx_done_q;
555 dma_addr_t rx_done_q_dma;
556 unsigned int rx_done;
557 struct tx_done_desc *tx_done_q;
558 dma_addr_t tx_done_q_dma;
559 unsigned int tx_done;
560 struct napi_struct napi;
561 struct net_device *dev;
562 struct pci_dev *pci_dev;
563 #ifdef VLAN_SUPPORT
564 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
565 #endif
566 void *queue_mem;
567 dma_addr_t queue_mem_dma;
568 size_t queue_mem_size;
569
570 /* Frequently used values: keep some adjacent for cache effect. */
571 spinlock_t lock;
572 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
573 unsigned int cur_tx, dirty_tx, reap_tx;
574 unsigned int rx_buf_sz; /* Based on MTU+slack. */
575 /* These values keep track of the transceiver/media in use. */
576 int speed100; /* Set if speed == 100MBit. */
577 u32 tx_mode;
578 u32 intr_timer_ctrl;
579 u8 tx_threshold;
580 /* MII transceiver section. */
581 struct mii_if_info mii_if; /* MII lib hooks/info */
582 int phy_cnt; /* MII device addresses. */
583 unsigned char phys[PHY_CNT]; /* MII device addresses. */
584 void __iomem *base;
585 };
586
587
588 static int mdio_read(struct net_device *dev, int phy_id, int location);
589 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
590 static int netdev_open(struct net_device *dev);
591 static void check_duplex(struct net_device *dev);
592 static void tx_timeout(struct net_device *dev);
593 static void init_ring(struct net_device *dev);
594 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
595 static irqreturn_t intr_handler(int irq, void *dev_instance);
596 static void netdev_error(struct net_device *dev, int intr_status);
597 static int __netdev_rx(struct net_device *dev, int *quota);
598 static int netdev_poll(struct napi_struct *napi, int budget);
599 static void refill_rx_ring(struct net_device *dev);
600 static void netdev_error(struct net_device *dev, int intr_status);
601 static void set_rx_mode(struct net_device *dev);
602 static struct net_device_stats *get_stats(struct net_device *dev);
603 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604 static int netdev_close(struct net_device *dev);
605 static void netdev_media_change(struct net_device *dev);
606 static const struct ethtool_ops ethtool_ops;
607
608
609 #ifdef VLAN_SUPPORT
610 static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
611 {
612 struct netdev_private *np = netdev_priv(dev);
613
614 spin_lock(&np->lock);
615 if (debug > 1)
616 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
617 set_bit(vid, np->active_vlans);
618 set_rx_mode(dev);
619 spin_unlock(&np->lock);
620 }
621
622 static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
623 {
624 struct netdev_private *np = netdev_priv(dev);
625
626 spin_lock(&np->lock);
627 if (debug > 1)
628 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
629 clear_bit(vid, np->active_vlans);
630 set_rx_mode(dev);
631 spin_unlock(&np->lock);
632 }
633 #endif /* VLAN_SUPPORT */
634
635
636 static const struct net_device_ops netdev_ops = {
637 .ndo_open = netdev_open,
638 .ndo_stop = netdev_close,
639 .ndo_start_xmit = start_tx,
640 .ndo_tx_timeout = tx_timeout,
641 .ndo_get_stats = get_stats,
642 .ndo_set_rx_mode = set_rx_mode,
643 .ndo_do_ioctl = netdev_ioctl,
644 .ndo_change_mtu = eth_change_mtu,
645 .ndo_set_mac_address = eth_mac_addr,
646 .ndo_validate_addr = eth_validate_addr,
647 #ifdef VLAN_SUPPORT
648 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
649 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
650 #endif
651 };
652
653 static int __devinit starfire_init_one(struct pci_dev *pdev,
654 const struct pci_device_id *ent)
655 {
656 struct netdev_private *np;
657 int i, irq, option, chip_idx = ent->driver_data;
658 struct net_device *dev;
659 static int card_idx = -1;
660 long ioaddr;
661 void __iomem *base;
662 int drv_flags, io_size;
663 int boguscnt;
664
665 /* when built into the kernel, we only print version if device is found */
666 #ifndef MODULE
667 static int printed_version;
668 if (!printed_version++)
669 printk(version);
670 #endif
671
672 card_idx++;
673
674 if (pci_enable_device (pdev))
675 return -EIO;
676
677 ioaddr = pci_resource_start(pdev, 0);
678 io_size = pci_resource_len(pdev, 0);
679 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
680 printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
681 return -ENODEV;
682 }
683
684 dev = alloc_etherdev(sizeof(*np));
685 if (!dev) {
686 printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
687 return -ENOMEM;
688 }
689 SET_NETDEV_DEV(dev, &pdev->dev);
690
691 irq = pdev->irq;
692
693 if (pci_request_regions (pdev, DRV_NAME)) {
694 printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
695 goto err_out_free_netdev;
696 }
697
698 base = ioremap(ioaddr, io_size);
699 if (!base) {
700 printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
701 card_idx, io_size, ioaddr);
702 goto err_out_free_res;
703 }
704
705 pci_set_master(pdev);
706
707 /* enable MWI -- it vastly improves Rx performance on sparc64 */
708 pci_try_set_mwi(pdev);
709
710 #ifdef ZEROCOPY
711 /* Starfire can do TCP/UDP checksumming */
712 if (enable_hw_cksum)
713 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
714 #endif /* ZEROCOPY */
715
716 #ifdef VLAN_SUPPORT
717 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
718 #endif /* VLAN_RX_KILL_VID */
719 #ifdef ADDR_64BITS
720 dev->features |= NETIF_F_HIGHDMA;
721 #endif /* ADDR_64BITS */
722
723 /* Serial EEPROM reads are hidden by the hardware. */
724 for (i = 0; i < 6; i++)
725 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
726
727 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
728 if (debug > 4)
729 for (i = 0; i < 0x20; i++)
730 printk("%2.2x%s",
731 (unsigned int)readb(base + EEPROMCtrl + i),
732 i % 16 != 15 ? " " : "\n");
733 #endif
734
735 /* Issue soft reset */
736 writel(MiiSoftReset, base + TxMode);
737 udelay(1000);
738 writel(0, base + TxMode);
739
740 /* Reset the chip to erase previous misconfiguration. */
741 writel(1, base + PCIDeviceConfig);
742 boguscnt = 1000;
743 while (--boguscnt > 0) {
744 udelay(10);
745 if ((readl(base + PCIDeviceConfig) & 1) == 0)
746 break;
747 }
748 if (boguscnt == 0)
749 printk("%s: chipset reset never completed!\n", dev->name);
750 /* wait a little longer */
751 udelay(1000);
752
753 dev->base_addr = (unsigned long)base;
754 dev->irq = irq;
755
756 np = netdev_priv(dev);
757 np->dev = dev;
758 np->base = base;
759 spin_lock_init(&np->lock);
760 pci_set_drvdata(pdev, dev);
761
762 np->pci_dev = pdev;
763
764 np->mii_if.dev = dev;
765 np->mii_if.mdio_read = mdio_read;
766 np->mii_if.mdio_write = mdio_write;
767 np->mii_if.phy_id_mask = 0x1f;
768 np->mii_if.reg_num_mask = 0x1f;
769
770 drv_flags = netdrv_tbl[chip_idx].drv_flags;
771
772 option = card_idx < MAX_UNITS ? options[card_idx] : 0;
773 if (dev->mem_start)
774 option = dev->mem_start;
775
776 /* The lower four bits are the media type. */
777 if (option & 0x200)
778 np->mii_if.full_duplex = 1;
779
780 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
781 np->mii_if.full_duplex = 1;
782
783 if (np->mii_if.full_duplex)
784 np->mii_if.force_media = 1;
785 else
786 np->mii_if.force_media = 0;
787 np->speed100 = 1;
788
789 /* timer resolution is 128 * 0.8us */
790 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
791 Timer10X | EnableIntrMasking;
792
793 if (small_frames > 0) {
794 np->intr_timer_ctrl |= SmallFrameBypass;
795 switch (small_frames) {
796 case 1 ... 64:
797 np->intr_timer_ctrl |= SmallFrame64;
798 break;
799 case 65 ... 128:
800 np->intr_timer_ctrl |= SmallFrame128;
801 break;
802 case 129 ... 256:
803 np->intr_timer_ctrl |= SmallFrame256;
804 break;
805 default:
806 np->intr_timer_ctrl |= SmallFrame512;
807 if (small_frames > 512)
808 printk("Adjusting small_frames down to 512\n");
809 break;
810 }
811 }
812
813 dev->netdev_ops = &netdev_ops;
814 dev->watchdog_timeo = TX_TIMEOUT;
815 SET_ETHTOOL_OPS(dev, &ethtool_ops);
816
817 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
818
819 if (mtu)
820 dev->mtu = mtu;
821
822 if (register_netdev(dev))
823 goto err_out_cleardev;
824
825 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
826 dev->name, netdrv_tbl[chip_idx].name, base,
827 dev->dev_addr, irq);
828
829 if (drv_flags & CanHaveMII) {
830 int phy, phy_idx = 0;
831 int mii_status;
832 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
833 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
834 mdelay(100);
835 boguscnt = 1000;
836 while (--boguscnt > 0)
837 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
838 break;
839 if (boguscnt == 0) {
840 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
841 continue;
842 }
843 mii_status = mdio_read(dev, phy, MII_BMSR);
844 if (mii_status != 0) {
845 np->phys[phy_idx++] = phy;
846 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
847 printk(KERN_INFO "%s: MII PHY found at address %d, status "
848 "%#4.4x advertising %#4.4x.\n",
849 dev->name, phy, mii_status, np->mii_if.advertising);
850 /* there can be only one PHY on-board */
851 break;
852 }
853 }
854 np->phy_cnt = phy_idx;
855 if (np->phy_cnt > 0)
856 np->mii_if.phy_id = np->phys[0];
857 else
858 memset(&np->mii_if, 0, sizeof(np->mii_if));
859 }
860
861 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
862 dev->name, enable_hw_cksum ? "enabled" : "disabled");
863 return 0;
864
865 err_out_cleardev:
866 pci_set_drvdata(pdev, NULL);
867 iounmap(base);
868 err_out_free_res:
869 pci_release_regions (pdev);
870 err_out_free_netdev:
871 free_netdev(dev);
872 return -ENODEV;
873 }
874
875
876 /* Read the MII Management Data I/O (MDIO) interfaces. */
877 static int mdio_read(struct net_device *dev, int phy_id, int location)
878 {
879 struct netdev_private *np = netdev_priv(dev);
880 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
881 int result, boguscnt=1000;
882 /* ??? Should we add a busy-wait here? */
883 do {
884 result = readl(mdio_addr);
885 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
886 if (boguscnt == 0)
887 return 0;
888 if ((result & 0xffff) == 0xffff)
889 return 0;
890 return result & 0xffff;
891 }
892
893
894 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
895 {
896 struct netdev_private *np = netdev_priv(dev);
897 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
898 writel(value, mdio_addr);
899 /* The busy-wait will occur before a read. */
900 }
901
902
903 static int netdev_open(struct net_device *dev)
904 {
905 const struct firmware *fw_rx, *fw_tx;
906 const __be32 *fw_rx_data, *fw_tx_data;
907 struct netdev_private *np = netdev_priv(dev);
908 void __iomem *ioaddr = np->base;
909 int i, retval;
910 size_t tx_size, rx_size;
911 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
912
913 /* Do we ever need to reset the chip??? */
914
915 retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
916 if (retval)
917 return retval;
918
919 /* Disable the Rx and Tx, and reset the chip. */
920 writel(0, ioaddr + GenCtrl);
921 writel(1, ioaddr + PCIDeviceConfig);
922 if (debug > 1)
923 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
924 dev->name, dev->irq);
925
926 /* Allocate the various queues. */
927 if (!np->queue_mem) {
928 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
929 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
930 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
931 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
932 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
933 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
934 if (np->queue_mem == NULL) {
935 free_irq(dev->irq, dev);
936 return -ENOMEM;
937 }
938
939 np->tx_done_q = np->queue_mem;
940 np->tx_done_q_dma = np->queue_mem_dma;
941 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
942 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
943 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
944 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
945 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
946 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
947 }
948
949 /* Start with no carrier, it gets adjusted later */
950 netif_carrier_off(dev);
951 init_ring(dev);
952 /* Set the size of the Rx buffers. */
953 writel((np->rx_buf_sz << RxBufferLenShift) |
954 (0 << RxMinDescrThreshShift) |
955 RxPrefetchMode | RxVariableQ |
956 RX_Q_ENTRIES |
957 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
958 RxDescSpace4,
959 ioaddr + RxDescQCtrl);
960
961 /* Set up the Rx DMA controller. */
962 writel(RxChecksumIgnore |
963 (0 << RxEarlyIntThreshShift) |
964 (6 << RxHighPrioThreshShift) |
965 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
966 ioaddr + RxDMACtrl);
967
968 /* Set Tx descriptor */
969 writel((2 << TxHiPriFIFOThreshShift) |
970 (0 << TxPadLenShift) |
971 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
972 TX_DESC_Q_ADDR_SIZE |
973 TX_DESC_SPACING | TX_DESC_TYPE,
974 ioaddr + TxDescCtrl);
975
976 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
977 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
978 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
979 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
980 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
981
982 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
983 writel(np->rx_done_q_dma |
984 RxComplType |
985 (0 << RxComplThreshShift),
986 ioaddr + RxCompletionAddr);
987
988 if (debug > 1)
989 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
990
991 /* Fill both the Tx SA register and the Rx perfect filter. */
992 for (i = 0; i < 6; i++)
993 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
994 /* The first entry is special because it bypasses the VLAN filter.
995 Don't use it. */
996 writew(0, ioaddr + PerfFilterTable);
997 writew(0, ioaddr + PerfFilterTable + 4);
998 writew(0, ioaddr + PerfFilterTable + 8);
999 for (i = 1; i < 16; i++) {
1000 __be16 *eaddrs = (__be16 *)dev->dev_addr;
1001 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1002 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1003 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1004 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1005 }
1006
1007 /* Initialize other registers. */
1008 /* Configure the PCI bus bursts and FIFO thresholds. */
1009 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
1010 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1011 udelay(1000);
1012 writel(np->tx_mode, ioaddr + TxMode);
1013 np->tx_threshold = 4;
1014 writel(np->tx_threshold, ioaddr + TxThreshold);
1015
1016 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1017
1018 napi_enable(&np->napi);
1019
1020 netif_start_queue(dev);
1021
1022 if (debug > 1)
1023 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1024 set_rx_mode(dev);
1025
1026 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1027 check_duplex(dev);
1028
1029 /* Enable GPIO interrupts on link change */
1030 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1031
1032 /* Set the interrupt mask */
1033 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1034 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1035 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1036 ioaddr + IntrEnable);
1037 /* Enable PCI interrupts. */
1038 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1039 ioaddr + PCIDeviceConfig);
1040
1041 #ifdef VLAN_SUPPORT
1042 /* Set VLAN type to 802.1q */
1043 writel(ETH_P_8021Q, ioaddr + VlanType);
1044 #endif /* VLAN_SUPPORT */
1045
1046 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1047 if (retval) {
1048 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1049 FIRMWARE_RX);
1050 goto out_init;
1051 }
1052 if (fw_rx->size % 4) {
1053 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1054 fw_rx->size, FIRMWARE_RX);
1055 retval = -EINVAL;
1056 goto out_rx;
1057 }
1058 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1059 if (retval) {
1060 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1061 FIRMWARE_TX);
1062 goto out_rx;
1063 }
1064 if (fw_tx->size % 4) {
1065 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1066 fw_tx->size, FIRMWARE_TX);
1067 retval = -EINVAL;
1068 goto out_tx;
1069 }
1070 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1071 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1072 rx_size = fw_rx->size / 4;
1073 tx_size = fw_tx->size / 4;
1074
1075 /* Load Rx/Tx firmware into the frame processors */
1076 for (i = 0; i < rx_size; i++)
1077 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1078 for (i = 0; i < tx_size; i++)
1079 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1080 if (enable_hw_cksum)
1081 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1082 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1083 else
1084 /* Enable the Rx and Tx units only. */
1085 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1086
1087 if (debug > 1)
1088 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1089 dev->name);
1090
1091 out_tx:
1092 release_firmware(fw_tx);
1093 out_rx:
1094 release_firmware(fw_rx);
1095 out_init:
1096 if (retval)
1097 netdev_close(dev);
1098 return retval;
1099 }
1100
1101
1102 static void check_duplex(struct net_device *dev)
1103 {
1104 struct netdev_private *np = netdev_priv(dev);
1105 u16 reg0;
1106 int silly_count = 1000;
1107
1108 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1109 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1110 udelay(500);
1111 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1112 /* do nothing */;
1113 if (!silly_count) {
1114 printk("%s: MII reset failed!\n", dev->name);
1115 return;
1116 }
1117
1118 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1119
1120 if (!np->mii_if.force_media) {
1121 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1122 } else {
1123 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1124 if (np->speed100)
1125 reg0 |= BMCR_SPEED100;
1126 if (np->mii_if.full_duplex)
1127 reg0 |= BMCR_FULLDPLX;
1128 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1129 dev->name,
1130 np->speed100 ? "100" : "10",
1131 np->mii_if.full_duplex ? "full" : "half");
1132 }
1133 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1134 }
1135
1136
1137 static void tx_timeout(struct net_device *dev)
1138 {
1139 struct netdev_private *np = netdev_priv(dev);
1140 void __iomem *ioaddr = np->base;
1141 int old_debug;
1142
1143 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1144 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1145
1146 /* Perhaps we should reinitialize the hardware here. */
1147
1148 /*
1149 * Stop and restart the interface.
1150 * Cheat and increase the debug level temporarily.
1151 */
1152 old_debug = debug;
1153 debug = 2;
1154 netdev_close(dev);
1155 netdev_open(dev);
1156 debug = old_debug;
1157
1158 /* Trigger an immediate transmit demand. */
1159
1160 dev->trans_start = jiffies; /* prevent tx timeout */
1161 dev->stats.tx_errors++;
1162 netif_wake_queue(dev);
1163 }
1164
1165
1166 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1167 static void init_ring(struct net_device *dev)
1168 {
1169 struct netdev_private *np = netdev_priv(dev);
1170 int i;
1171
1172 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1173 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1174
1175 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1176
1177 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1178 for (i = 0; i < RX_RING_SIZE; i++) {
1179 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
1180 np->rx_info[i].skb = skb;
1181 if (skb == NULL)
1182 break;
1183 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1184 skb->dev = dev; /* Mark as being used by this device. */
1185 /* Grrr, we cannot offset to correctly align the IP header. */
1186 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1187 }
1188 writew(i - 1, np->base + RxDescQIdx);
1189 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1190
1191 /* Clear the remainder of the Rx buffer ring. */
1192 for ( ; i < RX_RING_SIZE; i++) {
1193 np->rx_ring[i].rxaddr = 0;
1194 np->rx_info[i].skb = NULL;
1195 np->rx_info[i].mapping = 0;
1196 }
1197 /* Mark the last entry as wrapping the ring. */
1198 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1199
1200 /* Clear the completion rings. */
1201 for (i = 0; i < DONE_Q_SIZE; i++) {
1202 np->rx_done_q[i].status = 0;
1203 np->tx_done_q[i].status = 0;
1204 }
1205
1206 for (i = 0; i < TX_RING_SIZE; i++)
1207 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1208 }
1209
1210
1211 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1212 {
1213 struct netdev_private *np = netdev_priv(dev);
1214 unsigned int entry;
1215 u32 status;
1216 int i;
1217
1218 /*
1219 * be cautious here, wrapping the queue has weird semantics
1220 * and we may not have enough slots even when it seems we do.
1221 */
1222 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1223 netif_stop_queue(dev);
1224 return NETDEV_TX_BUSY;
1225 }
1226
1227 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1228 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1229 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1230 return NETDEV_TX_OK;
1231 }
1232 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1233
1234 entry = np->cur_tx % TX_RING_SIZE;
1235 for (i = 0; i < skb_num_frags(skb); i++) {
1236 int wrap_ring = 0;
1237 status = TxDescID;
1238
1239 if (i == 0) {
1240 np->tx_info[entry].skb = skb;
1241 status |= TxCRCEn;
1242 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1243 status |= TxRingWrap;
1244 wrap_ring = 1;
1245 }
1246 if (np->reap_tx) {
1247 status |= TxDescIntr;
1248 np->reap_tx = 0;
1249 }
1250 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1251 status |= TxCalTCP;
1252 dev->stats.tx_compressed++;
1253 }
1254 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1255
1256 np->tx_info[entry].mapping =
1257 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1258 } else {
1259 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1260 status |= skb_frag_size(this_frag);
1261 np->tx_info[entry].mapping =
1262 pci_map_single(np->pci_dev,
1263 skb_frag_address(this_frag),
1264 skb_frag_size(this_frag),
1265 PCI_DMA_TODEVICE);
1266 }
1267
1268 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1269 np->tx_ring[entry].status = cpu_to_le32(status);
1270 if (debug > 3)
1271 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1272 dev->name, np->cur_tx, np->dirty_tx,
1273 entry, status);
1274 if (wrap_ring) {
1275 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1276 np->cur_tx += np->tx_info[entry].used_slots;
1277 entry = 0;
1278 } else {
1279 np->tx_info[entry].used_slots = 1;
1280 np->cur_tx += np->tx_info[entry].used_slots;
1281 entry++;
1282 }
1283 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1284 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1285 np->reap_tx = 1;
1286 }
1287
1288 /* Non-x86: explicitly flush descriptor cache lines here. */
1289 /* Ensure all descriptors are written back before the transmit is
1290 initiated. - Jes */
1291 wmb();
1292
1293 /* Update the producer index. */
1294 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1295
1296 /* 4 is arbitrary, but should be ok */
1297 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1298 netif_stop_queue(dev);
1299
1300 return NETDEV_TX_OK;
1301 }
1302
1303
1304 /* The interrupt handler does all of the Rx thread work and cleans up
1305 after the Tx thread. */
1306 static irqreturn_t intr_handler(int irq, void *dev_instance)
1307 {
1308 struct net_device *dev = dev_instance;
1309 struct netdev_private *np = netdev_priv(dev);
1310 void __iomem *ioaddr = np->base;
1311 int boguscnt = max_interrupt_work;
1312 int consumer;
1313 int tx_status;
1314 int handled = 0;
1315
1316 do {
1317 u32 intr_status = readl(ioaddr + IntrClear);
1318
1319 if (debug > 4)
1320 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1321 dev->name, intr_status);
1322
1323 if (intr_status == 0 || intr_status == (u32) -1)
1324 break;
1325
1326 handled = 1;
1327
1328 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1329 u32 enable;
1330
1331 if (likely(napi_schedule_prep(&np->napi))) {
1332 __napi_schedule(&np->napi);
1333 enable = readl(ioaddr + IntrEnable);
1334 enable &= ~(IntrRxDone | IntrRxEmpty);
1335 writel(enable, ioaddr + IntrEnable);
1336 /* flush PCI posting buffers */
1337 readl(ioaddr + IntrEnable);
1338 } else {
1339 /* Paranoia check */
1340 enable = readl(ioaddr + IntrEnable);
1341 if (enable & (IntrRxDone | IntrRxEmpty)) {
1342 printk(KERN_INFO
1343 "%s: interrupt while in poll!\n",
1344 dev->name);
1345 enable &= ~(IntrRxDone | IntrRxEmpty);
1346 writel(enable, ioaddr + IntrEnable);
1347 }
1348 }
1349 }
1350
1351 /* Scavenge the skbuff list based on the Tx-done queue.
1352 There are redundant checks here that may be cleaned up
1353 after the driver has proven to be reliable. */
1354 consumer = readl(ioaddr + TxConsumerIdx);
1355 if (debug > 3)
1356 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1357 dev->name, consumer);
1358
1359 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1360 if (debug > 3)
1361 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1362 dev->name, np->dirty_tx, np->tx_done, tx_status);
1363 if ((tx_status & 0xe0000000) == 0xa0000000) {
1364 dev->stats.tx_packets++;
1365 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1366 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1367 struct sk_buff *skb = np->tx_info[entry].skb;
1368 np->tx_info[entry].skb = NULL;
1369 pci_unmap_single(np->pci_dev,
1370 np->tx_info[entry].mapping,
1371 skb_first_frag_len(skb),
1372 PCI_DMA_TODEVICE);
1373 np->tx_info[entry].mapping = 0;
1374 np->dirty_tx += np->tx_info[entry].used_slots;
1375 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1376 {
1377 int i;
1378 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1379 pci_unmap_single(np->pci_dev,
1380 np->tx_info[entry].mapping,
1381 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1382 PCI_DMA_TODEVICE);
1383 np->dirty_tx++;
1384 entry++;
1385 }
1386 }
1387
1388 dev_kfree_skb_irq(skb);
1389 }
1390 np->tx_done_q[np->tx_done].status = 0;
1391 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1392 }
1393 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1394
1395 if (netif_queue_stopped(dev) &&
1396 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1397 /* The ring is no longer full, wake the queue. */
1398 netif_wake_queue(dev);
1399 }
1400
1401 /* Stats overflow */
1402 if (intr_status & IntrStatsMax)
1403 get_stats(dev);
1404
1405 /* Media change interrupt. */
1406 if (intr_status & IntrLinkChange)
1407 netdev_media_change(dev);
1408
1409 /* Abnormal error summary/uncommon events handlers. */
1410 if (intr_status & IntrAbnormalSummary)
1411 netdev_error(dev, intr_status);
1412
1413 if (--boguscnt < 0) {
1414 if (debug > 1)
1415 printk(KERN_WARNING "%s: Too much work at interrupt, "
1416 "status=%#8.8x.\n",
1417 dev->name, intr_status);
1418 break;
1419 }
1420 } while (1);
1421
1422 if (debug > 4)
1423 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1424 dev->name, (int) readl(ioaddr + IntrStatus));
1425 return IRQ_RETVAL(handled);
1426 }
1427
1428
1429 /*
1430 * This routine is logically part of the interrupt/poll handler, but separated
1431 * for clarity and better register allocation.
1432 */
1433 static int __netdev_rx(struct net_device *dev, int *quota)
1434 {
1435 struct netdev_private *np = netdev_priv(dev);
1436 u32 desc_status;
1437 int retcode = 0;
1438
1439 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1440 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1441 struct sk_buff *skb;
1442 u16 pkt_len;
1443 int entry;
1444 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1445
1446 if (debug > 4)
1447 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1448 if (!(desc_status & RxOK)) {
1449 /* There was an error. */
1450 if (debug > 2)
1451 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1452 dev->stats.rx_errors++;
1453 if (desc_status & RxFIFOErr)
1454 dev->stats.rx_fifo_errors++;
1455 goto next_rx;
1456 }
1457
1458 if (*quota <= 0) { /* out of rx quota */
1459 retcode = 1;
1460 goto out;
1461 }
1462 (*quota)--;
1463
1464 pkt_len = desc_status; /* Implicitly Truncate */
1465 entry = (desc_status >> 16) & 0x7ff;
1466
1467 if (debug > 4)
1468 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1469 /* Check if the packet is long enough to accept without copying
1470 to a minimally-sized skbuff. */
1471 if (pkt_len < rx_copybreak &&
1472 (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1473 skb_reserve(skb, 2); /* 16 byte align the IP header */
1474 pci_dma_sync_single_for_cpu(np->pci_dev,
1475 np->rx_info[entry].mapping,
1476 pkt_len, PCI_DMA_FROMDEVICE);
1477 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1478 pci_dma_sync_single_for_device(np->pci_dev,
1479 np->rx_info[entry].mapping,
1480 pkt_len, PCI_DMA_FROMDEVICE);
1481 skb_put(skb, pkt_len);
1482 } else {
1483 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1484 skb = np->rx_info[entry].skb;
1485 skb_put(skb, pkt_len);
1486 np->rx_info[entry].skb = NULL;
1487 np->rx_info[entry].mapping = 0;
1488 }
1489 #ifndef final_version /* Remove after testing. */
1490 /* You will want this info for the initial debug. */
1491 if (debug > 5) {
1492 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1493 skb->data, skb->data + 6,
1494 skb->data[12], skb->data[13]);
1495 }
1496 #endif
1497
1498 skb->protocol = eth_type_trans(skb, dev);
1499 #ifdef VLAN_SUPPORT
1500 if (debug > 4)
1501 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1502 #endif
1503 if (le16_to_cpu(desc->status2) & 0x0100) {
1504 skb->ip_summed = CHECKSUM_UNNECESSARY;
1505 dev->stats.rx_compressed++;
1506 }
1507 /*
1508 * This feature doesn't seem to be working, at least
1509 * with the two firmware versions I have. If the GFP sees
1510 * an IP fragment, it either ignores it completely, or reports
1511 * "bad checksum" on it.
1512 *
1513 * Maybe I missed something -- corrections are welcome.
1514 * Until then, the printk stays. :-) -Ion
1515 */
1516 else if (le16_to_cpu(desc->status2) & 0x0040) {
1517 skb->ip_summed = CHECKSUM_COMPLETE;
1518 skb->csum = le16_to_cpu(desc->csum);
1519 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1520 }
1521 #ifdef VLAN_SUPPORT
1522 if (le16_to_cpu(desc->status2) & 0x0200) {
1523 u16 vlid = le16_to_cpu(desc->vlanid);
1524
1525 if (debug > 4) {
1526 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1527 vlid);
1528 }
1529 __vlan_hwaccel_put_tag(skb, vlid);
1530 }
1531 #endif /* VLAN_SUPPORT */
1532 netif_receive_skb(skb);
1533 dev->stats.rx_packets++;
1534
1535 next_rx:
1536 np->cur_rx++;
1537 desc->status = 0;
1538 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1539 }
1540
1541 if (*quota == 0) { /* out of rx quota */
1542 retcode = 1;
1543 goto out;
1544 }
1545 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1546
1547 out:
1548 refill_rx_ring(dev);
1549 if (debug > 5)
1550 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1551 retcode, np->rx_done, desc_status);
1552 return retcode;
1553 }
1554
1555 static int netdev_poll(struct napi_struct *napi, int budget)
1556 {
1557 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1558 struct net_device *dev = np->dev;
1559 u32 intr_status;
1560 void __iomem *ioaddr = np->base;
1561 int quota = budget;
1562
1563 do {
1564 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1565
1566 if (__netdev_rx(dev, &quota))
1567 goto out;
1568
1569 intr_status = readl(ioaddr + IntrStatus);
1570 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1571
1572 napi_complete(napi);
1573 intr_status = readl(ioaddr + IntrEnable);
1574 intr_status |= IntrRxDone | IntrRxEmpty;
1575 writel(intr_status, ioaddr + IntrEnable);
1576
1577 out:
1578 if (debug > 5)
1579 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1580 budget - quota);
1581
1582 /* Restart Rx engine if stopped. */
1583 return budget - quota;
1584 }
1585
1586 static void refill_rx_ring(struct net_device *dev)
1587 {
1588 struct netdev_private *np = netdev_priv(dev);
1589 struct sk_buff *skb;
1590 int entry = -1;
1591
1592 /* Refill the Rx ring buffers. */
1593 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1594 entry = np->dirty_rx % RX_RING_SIZE;
1595 if (np->rx_info[entry].skb == NULL) {
1596 skb = dev_alloc_skb(np->rx_buf_sz);
1597 np->rx_info[entry].skb = skb;
1598 if (skb == NULL)
1599 break; /* Better luck next round. */
1600 np->rx_info[entry].mapping =
1601 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1602 skb->dev = dev; /* Mark as being used by this device. */
1603 np->rx_ring[entry].rxaddr =
1604 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1605 }
1606 if (entry == RX_RING_SIZE - 1)
1607 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1608 }
1609 if (entry >= 0)
1610 writew(entry, np->base + RxDescQIdx);
1611 }
1612
1613
1614 static void netdev_media_change(struct net_device *dev)
1615 {
1616 struct netdev_private *np = netdev_priv(dev);
1617 void __iomem *ioaddr = np->base;
1618 u16 reg0, reg1, reg4, reg5;
1619 u32 new_tx_mode;
1620 u32 new_intr_timer_ctrl;
1621
1622 /* reset status first */
1623 mdio_read(dev, np->phys[0], MII_BMCR);
1624 mdio_read(dev, np->phys[0], MII_BMSR);
1625
1626 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1627 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1628
1629 if (reg1 & BMSR_LSTATUS) {
1630 /* link is up */
1631 if (reg0 & BMCR_ANENABLE) {
1632 /* autonegotiation is enabled */
1633 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1634 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1635 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1636 np->speed100 = 1;
1637 np->mii_if.full_duplex = 1;
1638 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1639 np->speed100 = 1;
1640 np->mii_if.full_duplex = 0;
1641 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1642 np->speed100 = 0;
1643 np->mii_if.full_duplex = 1;
1644 } else {
1645 np->speed100 = 0;
1646 np->mii_if.full_duplex = 0;
1647 }
1648 } else {
1649 /* autonegotiation is disabled */
1650 if (reg0 & BMCR_SPEED100)
1651 np->speed100 = 1;
1652 else
1653 np->speed100 = 0;
1654 if (reg0 & BMCR_FULLDPLX)
1655 np->mii_if.full_duplex = 1;
1656 else
1657 np->mii_if.full_duplex = 0;
1658 }
1659 netif_carrier_on(dev);
1660 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1661 dev->name,
1662 np->speed100 ? "100" : "10",
1663 np->mii_if.full_duplex ? "full" : "half");
1664
1665 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1666 if (np->mii_if.full_duplex)
1667 new_tx_mode |= FullDuplex;
1668 if (np->tx_mode != new_tx_mode) {
1669 np->tx_mode = new_tx_mode;
1670 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1671 udelay(1000);
1672 writel(np->tx_mode, ioaddr + TxMode);
1673 }
1674
1675 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1676 if (np->speed100)
1677 new_intr_timer_ctrl |= Timer10X;
1678 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1679 np->intr_timer_ctrl = new_intr_timer_ctrl;
1680 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1681 }
1682 } else {
1683 netif_carrier_off(dev);
1684 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1685 }
1686 }
1687
1688
1689 static void netdev_error(struct net_device *dev, int intr_status)
1690 {
1691 struct netdev_private *np = netdev_priv(dev);
1692
1693 /* Came close to underrunning the Tx FIFO, increase threshold. */
1694 if (intr_status & IntrTxDataLow) {
1695 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1696 writel(++np->tx_threshold, np->base + TxThreshold);
1697 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1698 dev->name, np->tx_threshold * 16);
1699 } else
1700 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1701 }
1702 if (intr_status & IntrRxGFPDead) {
1703 dev->stats.rx_fifo_errors++;
1704 dev->stats.rx_errors++;
1705 }
1706 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1707 dev->stats.tx_fifo_errors++;
1708 dev->stats.tx_errors++;
1709 }
1710 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1711 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1712 dev->name, intr_status);
1713 }
1714
1715
1716 static struct net_device_stats *get_stats(struct net_device *dev)
1717 {
1718 struct netdev_private *np = netdev_priv(dev);
1719 void __iomem *ioaddr = np->base;
1720
1721 /* This adapter architecture needs no SMP locks. */
1722 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1723 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1724 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1725 dev->stats.tx_aborted_errors =
1726 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1727 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1728 dev->stats.collisions =
1729 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1730
1731 /* The chip only need report frame silently dropped. */
1732 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1733 writew(0, ioaddr + RxDMAStatus);
1734 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1735 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1736 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1737 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1738
1739 return &dev->stats;
1740 }
1741
1742 #ifdef VLAN_SUPPORT
1743 static u32 set_vlan_mode(struct netdev_private *np)
1744 {
1745 u32 ret = VlanMode;
1746 u16 vid;
1747 void __iomem *filter_addr = np->base + HashTable + 8;
1748 int vlan_count = 0;
1749
1750 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1751 if (vlan_count == 32)
1752 break;
1753 writew(vid, filter_addr);
1754 filter_addr += 16;
1755 vlan_count++;
1756 }
1757 if (vlan_count == 32) {
1758 ret |= PerfectFilterVlan;
1759 while (vlan_count < 32) {
1760 writew(0, filter_addr);
1761 filter_addr += 16;
1762 vlan_count++;
1763 }
1764 }
1765 return ret;
1766 }
1767 #endif /* VLAN_SUPPORT */
1768
1769 static void set_rx_mode(struct net_device *dev)
1770 {
1771 struct netdev_private *np = netdev_priv(dev);
1772 void __iomem *ioaddr = np->base;
1773 u32 rx_mode = MinVLANPrio;
1774 struct netdev_hw_addr *ha;
1775 int i;
1776
1777 #ifdef VLAN_SUPPORT
1778 rx_mode |= set_vlan_mode(np);
1779 #endif /* VLAN_SUPPORT */
1780
1781 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1782 rx_mode |= AcceptAll;
1783 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1784 (dev->flags & IFF_ALLMULTI)) {
1785 /* Too many to match, or accept all multicasts. */
1786 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1787 } else if (netdev_mc_count(dev) <= 14) {
1788 /* Use the 16 element perfect filter, skip first two entries. */
1789 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1790 __be16 *eaddrs;
1791 netdev_for_each_mc_addr(ha, dev) {
1792 eaddrs = (__be16 *) ha->addr;
1793 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1794 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1796 }
1797 eaddrs = (__be16 *)dev->dev_addr;
1798 i = netdev_mc_count(dev) + 2;
1799 while (i++ < 16) {
1800 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1801 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1802 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1803 }
1804 rx_mode |= AcceptBroadcast|PerfectFilter;
1805 } else {
1806 /* Must use a multicast hash table. */
1807 void __iomem *filter_addr;
1808 __be16 *eaddrs;
1809 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1810
1811 memset(mc_filter, 0, sizeof(mc_filter));
1812 netdev_for_each_mc_addr(ha, dev) {
1813 /* The chip uses the upper 9 CRC bits
1814 as index into the hash table */
1815 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1816 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1817
1818 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1819 }
1820 /* Clear the perfect filter list, skip first two entries. */
1821 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1822 eaddrs = (__be16 *)dev->dev_addr;
1823 for (i = 2; i < 16; i++) {
1824 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1825 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1826 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1827 }
1828 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1829 writew(mc_filter[i], filter_addr);
1830 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1831 }
1832 writel(rx_mode, ioaddr + RxFilterMode);
1833 }
1834
1835 static int check_if_running(struct net_device *dev)
1836 {
1837 if (!netif_running(dev))
1838 return -EINVAL;
1839 return 0;
1840 }
1841
1842 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1843 {
1844 struct netdev_private *np = netdev_priv(dev);
1845 strcpy(info->driver, DRV_NAME);
1846 strcpy(info->version, DRV_VERSION);
1847 strcpy(info->bus_info, pci_name(np->pci_dev));
1848 }
1849
1850 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1851 {
1852 struct netdev_private *np = netdev_priv(dev);
1853 spin_lock_irq(&np->lock);
1854 mii_ethtool_gset(&np->mii_if, ecmd);
1855 spin_unlock_irq(&np->lock);
1856 return 0;
1857 }
1858
1859 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1860 {
1861 struct netdev_private *np = netdev_priv(dev);
1862 int res;
1863 spin_lock_irq(&np->lock);
1864 res = mii_ethtool_sset(&np->mii_if, ecmd);
1865 spin_unlock_irq(&np->lock);
1866 check_duplex(dev);
1867 return res;
1868 }
1869
1870 static int nway_reset(struct net_device *dev)
1871 {
1872 struct netdev_private *np = netdev_priv(dev);
1873 return mii_nway_restart(&np->mii_if);
1874 }
1875
1876 static u32 get_link(struct net_device *dev)
1877 {
1878 struct netdev_private *np = netdev_priv(dev);
1879 return mii_link_ok(&np->mii_if);
1880 }
1881
1882 static u32 get_msglevel(struct net_device *dev)
1883 {
1884 return debug;
1885 }
1886
1887 static void set_msglevel(struct net_device *dev, u32 val)
1888 {
1889 debug = val;
1890 }
1891
1892 static const struct ethtool_ops ethtool_ops = {
1893 .begin = check_if_running,
1894 .get_drvinfo = get_drvinfo,
1895 .get_settings = get_settings,
1896 .set_settings = set_settings,
1897 .nway_reset = nway_reset,
1898 .get_link = get_link,
1899 .get_msglevel = get_msglevel,
1900 .set_msglevel = set_msglevel,
1901 };
1902
1903 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1904 {
1905 struct netdev_private *np = netdev_priv(dev);
1906 struct mii_ioctl_data *data = if_mii(rq);
1907 int rc;
1908
1909 if (!netif_running(dev))
1910 return -EINVAL;
1911
1912 spin_lock_irq(&np->lock);
1913 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1914 spin_unlock_irq(&np->lock);
1915
1916 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1917 check_duplex(dev);
1918
1919 return rc;
1920 }
1921
1922 static int netdev_close(struct net_device *dev)
1923 {
1924 struct netdev_private *np = netdev_priv(dev);
1925 void __iomem *ioaddr = np->base;
1926 int i;
1927
1928 netif_stop_queue(dev);
1929
1930 napi_disable(&np->napi);
1931
1932 if (debug > 1) {
1933 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1934 dev->name, (int) readl(ioaddr + IntrStatus));
1935 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1936 dev->name, np->cur_tx, np->dirty_tx,
1937 np->cur_rx, np->dirty_rx);
1938 }
1939
1940 /* Disable interrupts by clearing the interrupt mask. */
1941 writel(0, ioaddr + IntrEnable);
1942
1943 /* Stop the chip's Tx and Rx processes. */
1944 writel(0, ioaddr + GenCtrl);
1945 readl(ioaddr + GenCtrl);
1946
1947 if (debug > 5) {
1948 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1949 (long long) np->tx_ring_dma);
1950 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1951 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1952 i, le32_to_cpu(np->tx_ring[i].status),
1953 (long long) dma_to_cpu(np->tx_ring[i].addr),
1954 le32_to_cpu(np->tx_done_q[i].status));
1955 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1956 (long long) np->rx_ring_dma, np->rx_done_q);
1957 if (np->rx_done_q)
1958 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1959 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1960 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1961 }
1962 }
1963
1964 free_irq(dev->irq, dev);
1965
1966 /* Free all the skbuffs in the Rx queue. */
1967 for (i = 0; i < RX_RING_SIZE; i++) {
1968 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1969 if (np->rx_info[i].skb != NULL) {
1970 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1971 dev_kfree_skb(np->rx_info[i].skb);
1972 }
1973 np->rx_info[i].skb = NULL;
1974 np->rx_info[i].mapping = 0;
1975 }
1976 for (i = 0; i < TX_RING_SIZE; i++) {
1977 struct sk_buff *skb = np->tx_info[i].skb;
1978 if (skb == NULL)
1979 continue;
1980 pci_unmap_single(np->pci_dev,
1981 np->tx_info[i].mapping,
1982 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1983 np->tx_info[i].mapping = 0;
1984 dev_kfree_skb(skb);
1985 np->tx_info[i].skb = NULL;
1986 }
1987
1988 return 0;
1989 }
1990
1991 #ifdef CONFIG_PM
1992 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1993 {
1994 struct net_device *dev = pci_get_drvdata(pdev);
1995
1996 if (netif_running(dev)) {
1997 netif_device_detach(dev);
1998 netdev_close(dev);
1999 }
2000
2001 pci_save_state(pdev);
2002 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2003
2004 return 0;
2005 }
2006
2007 static int starfire_resume(struct pci_dev *pdev)
2008 {
2009 struct net_device *dev = pci_get_drvdata(pdev);
2010
2011 pci_set_power_state(pdev, PCI_D0);
2012 pci_restore_state(pdev);
2013
2014 if (netif_running(dev)) {
2015 netdev_open(dev);
2016 netif_device_attach(dev);
2017 }
2018
2019 return 0;
2020 }
2021 #endif /* CONFIG_PM */
2022
2023
2024 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2025 {
2026 struct net_device *dev = pci_get_drvdata(pdev);
2027 struct netdev_private *np = netdev_priv(dev);
2028
2029 BUG_ON(!dev);
2030
2031 unregister_netdev(dev);
2032
2033 if (np->queue_mem)
2034 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2035
2036
2037 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2038 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2039 pci_disable_device(pdev);
2040
2041 iounmap(np->base);
2042 pci_release_regions(pdev);
2043
2044 pci_set_drvdata(pdev, NULL);
2045 free_netdev(dev); /* Will also free np!! */
2046 }
2047
2048
2049 static struct pci_driver starfire_driver = {
2050 .name = DRV_NAME,
2051 .probe = starfire_init_one,
2052 .remove = __devexit_p(starfire_remove_one),
2053 #ifdef CONFIG_PM
2054 .suspend = starfire_suspend,
2055 .resume = starfire_resume,
2056 #endif /* CONFIG_PM */
2057 .id_table = starfire_pci_tbl,
2058 };
2059
2060
2061 static int __init starfire_init (void)
2062 {
2063 /* when a module, this is printed whether or not devices are found in probe */
2064 #ifdef MODULE
2065 printk(version);
2066
2067 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2068 #endif
2069
2070 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2071
2072 return pci_register_driver(&starfire_driver);
2073 }
2074
2075
2076 static void __exit starfire_cleanup (void)
2077 {
2078 pci_unregister_driver (&starfire_driver);
2079 }
2080
2081
2082 module_init(starfire_init);
2083 module_exit(starfire_cleanup);
2084
2085
2086 /*
2087 * Local variables:
2088 * c-basic-offset: 8
2089 * tab-width: 8
2090 * End:
2091 */
This page took 0.122506 seconds and 5 git commands to generate.