phy: add phydev_name() wrapper
[deliverable/linux.git] / drivers / net / ethernet / agere / et131x.c
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
52 */
53
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81
82 #include "et131x.h"
83
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
92
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
100
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110 #define INT_MASK_DISABLE 0xffffffff
111
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
115 */
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
118
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
122
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
125
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
132
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
136
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
139
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER 0x00200000
142
143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
145
146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
147
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS 0xA4
150 #define ET1310_PCI_EEPROM_STATUS 0xB2
151 #define ET1310_PCI_ACK_NACK 0xC0
152 #define ET1310_PCI_REPLAY 0xC2
153 #define ET1310_PCI_L0L1LATENCY 0xCF
154
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
158
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO 1000
161
162 #define PARM_RX_NUM_BUFS_DEF 4
163 #define PARM_RX_TIME_INT_DEF 10
164 #define PARM_RX_MEM_END_DEF 0x2bc
165 #define PARM_TX_TIME_INT_DEF 40
166 #define PARM_TX_NUM_BUFS_DEF 4
167 #define PARM_DMA_CACHE_DEF 0
168
169 /* RX defines */
170 #define FBR_CHUNKS 32
171 #define MAX_DESC_PER_RING_RX 1024
172
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK 40
175 #define NIC_DEFAULT_NUM_RFD 1024
176 #define NUM_FBRS 2
177
178 #define MAX_PACKETS_HANDLED 256
179
180 #define ALCATEL_MULTICAST_PKT 0x01000000
181 #define ALCATEL_BROADCAST_PKT 0x02000000
182
183 /* typedefs for Free Buffer Descriptors */
184 struct fbr_desc {
185 u32 addr_lo;
186 u32 addr_hi;
187 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
188 };
189
190 /* Packet Status Ring Descriptors
191 *
192 * Word 0:
193 *
194 * top 16 bits are from the Alcatel Status Word as enumerated in
195 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
196 *
197 * 0: hp hash pass
198 * 1: ipa IP checksum assist
199 * 2: ipp IP checksum pass
200 * 3: tcpa TCP checksum assist
201 * 4: tcpp TCP checksum pass
202 * 5: wol WOL Event
203 * 6: rxmac_error RXMAC Error Indicator
204 * 7: drop Drop packet
205 * 8: ft Frame Truncated
206 * 9: jp Jumbo Packet
207 * 10: vp VLAN Packet
208 * 11-15: unused
209 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
210 * 17: asw_RX_DV_event short receive event detected
211 * 18: asw_false_carrier_event bad carrier since last good packet
212 * 19: asw_code_err one or more nibbles signalled as errors
213 * 20: asw_CRC_err CRC error
214 * 21: asw_len_chk_err frame length field incorrect
215 * 22: asw_too_long frame length > 1518 bytes
216 * 23: asw_OK valid CRC + no code error
217 * 24: asw_multicast has a multicast address
218 * 25: asw_broadcast has a broadcast address
219 * 26: asw_dribble_nibble spurious bits after EOP
220 * 27: asw_control_frame is a control frame
221 * 28: asw_pause_frame is a pause frame
222 * 29: asw_unsupported_op unsupported OP code
223 * 30: asw_VLAN_tag VLAN tag detected
224 * 31: asw_long_evt Rx long event
225 *
226 * Word 1:
227 * 0-15: length length in bytes
228 * 16-25: bi Buffer Index
229 * 26-27: ri Ring Index
230 * 28-31: reserved
231 */
232 struct pkt_stat_desc {
233 u32 word0;
234 u32 word1;
235 };
236
237 /* Typedefs for the RX DMA status word */
238
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
241 * which contains the Free Buffer ring 0 and 1 available offset.
242 *
243 * bit 0-9 FBR1 offset
244 * bit 10 Wrap flag for FBR1
245 * bit 16-25 FBR0 offset
246 * bit 26 Wrap flag for FBR0
247 */
248
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
251 * which contains the Packet Status Ring available offset.
252 *
253 * bit 0-15 reserved
254 * bit 16-27 PSRoffset
255 * bit 28 PSRwrap
256 * bit 29-31 unused
257 */
258
259 /* struct rx_status_block is a structure representing the status of the Rx
260 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
261 */
262 struct rx_status_block {
263 u32 word0;
264 u32 word1;
265 };
266
267 /* Structure for look-up table holding free buffer ring pointers, addresses
268 * and state.
269 */
270 struct fbr_lookup {
271 void *virt[MAX_DESC_PER_RING_RX];
272 u32 bus_high[MAX_DESC_PER_RING_RX];
273 u32 bus_low[MAX_DESC_PER_RING_RX];
274 void *ring_virtaddr;
275 dma_addr_t ring_physaddr;
276 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
277 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
278 u32 local_full;
279 u32 num_entries;
280 dma_addr_t buffsize;
281 };
282
283 /* struct rx_ring is the structure representing the adaptor's local
284 * reference(s) to the rings
285 */
286 struct rx_ring {
287 struct fbr_lookup *fbr[NUM_FBRS];
288 void *ps_ring_virtaddr;
289 dma_addr_t ps_ring_physaddr;
290 u32 local_psr_full;
291 u32 psr_entries;
292
293 struct rx_status_block *rx_status_block;
294 dma_addr_t rx_status_bus;
295
296 struct list_head recv_list;
297 u32 num_ready_recv;
298
299 u32 num_rfd;
300
301 bool unfinished_receives;
302 };
303
304 /* TX defines */
305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
306 *
307 * 0-15: length of packet
308 * 16-27: VLAN tag
309 * 28: VLAN CFI
310 * 29-31: VLAN priority
311 *
312 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
313 *
314 * 0: last packet in the sequence
315 * 1: first packet in the sequence
316 * 2: interrupt the processor when this pkt sent
317 * 3: Control word - no packet data
318 * 4: Issue half-duplex backpressure : XON/XOFF
319 * 5: send pause frame
320 * 6: Tx frame has error
321 * 7: append CRC
322 * 8: MAC override
323 * 9: pad packet
324 * 10: Packet is a Huge packet
325 * 11: append VLAN tag
326 * 12: IP checksum assist
327 * 13: TCP checksum assist
328 * 14: UDP checksum assist
329 */
330 #define TXDESC_FLAG_LASTPKT 0x0001
331 #define TXDESC_FLAG_FIRSTPKT 0x0002
332 #define TXDESC_FLAG_INTPROC 0x0004
333
334 /* struct tx_desc represents each descriptor on the ring */
335 struct tx_desc {
336 u32 addr_hi;
337 u32 addr_lo;
338 u32 len_vlan; /* control words how to xmit the */
339 u32 flags; /* data (detailed above) */
340 };
341
342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
343 * by 0x101c / 0x1020. This is a DMA10 type
344 */
345
346 /* TCB (Transmit Control Block: Host Side) */
347 struct tcb {
348 struct tcb *next; /* Next entry in ring */
349 u32 count; /* Used to spot stuck/lost packets */
350 u32 stale; /* Used to spot stuck/lost packets */
351 struct sk_buff *skb; /* Network skb we are tied to */
352 u32 index; /* Ring indexes */
353 u32 index_start;
354 };
355
356 /* Structure representing our local reference(s) to the ring */
357 struct tx_ring {
358 /* TCB (Transmit Control Block) memory and lists */
359 struct tcb *tcb_ring;
360
361 /* List of TCBs that are ready to be used */
362 struct tcb *tcb_qhead;
363 struct tcb *tcb_qtail;
364
365 /* list of TCBs that are currently being sent. */
366 struct tcb *send_head;
367 struct tcb *send_tail;
368 int used;
369
370 /* The actual descriptor ring */
371 struct tx_desc *tx_desc_ring;
372 dma_addr_t tx_desc_ring_pa;
373
374 /* send_idx indicates where we last wrote to in the descriptor ring. */
375 u32 send_idx;
376
377 /* The location of the write-back status block */
378 u32 *tx_status;
379 dma_addr_t tx_status_pa;
380
381 /* Packets since the last IRQ: used for interrupt coalescing */
382 int since_irq;
383 };
384
385 /* Do not change these values: if changed, then change also in respective
386 * TXdma and Rxdma engines
387 */
388 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
389 #define NUM_TCB 64
390
391 /* These values are all superseded by registry entries to facilitate tuning.
392 * Once the desired performance has been achieved, the optimal registry values
393 * should be re-populated to these #defines:
394 */
395 #define TX_ERROR_PERIOD 1000
396
397 #define LO_MARK_PERCENT_FOR_PSR 15
398 #define LO_MARK_PERCENT_FOR_RX 15
399
400 /* RFD (Receive Frame Descriptor) */
401 struct rfd {
402 struct list_head list_node;
403 struct sk_buff *skb;
404 u32 len; /* total size of receive frame */
405 u16 bufferindex;
406 u8 ringindex;
407 };
408
409 /* Flow Control */
410 #define FLOW_BOTH 0
411 #define FLOW_TXONLY 1
412 #define FLOW_RXONLY 2
413 #define FLOW_NONE 3
414
415 /* Struct to define some device statistics */
416 struct ce_stats {
417 u32 multicast_pkts_rcvd;
418 u32 rcvd_pkts_dropped;
419
420 u32 tx_underflows;
421 u32 tx_collisions;
422 u32 tx_excessive_collisions;
423 u32 tx_first_collisions;
424 u32 tx_late_collisions;
425 u32 tx_max_pkt_errs;
426 u32 tx_deferred;
427
428 u32 rx_overflows;
429 u32 rx_length_errs;
430 u32 rx_align_errs;
431 u32 rx_crc_errs;
432 u32 rx_code_violations;
433 u32 rx_other_errs;
434
435 u32 interrupt_status;
436 };
437
438 /* The private adapter structure */
439 struct et131x_adapter {
440 struct net_device *netdev;
441 struct pci_dev *pdev;
442 struct mii_bus *mii_bus;
443 struct phy_device *phydev;
444 struct napi_struct napi;
445
446 /* Flags that indicate current state of the adapter */
447 u32 flags;
448
449 /* local link state, to determine if a state change has occurred */
450 int link;
451
452 /* Configuration */
453 u8 rom_addr[ETH_ALEN];
454 u8 addr[ETH_ALEN];
455 bool has_eeprom;
456 u8 eeprom_data[2];
457
458 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
459 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
460 spinlock_t rcv_lock; /* protects the rx_ring receive list */
461
462 /* Packet Filter and look ahead size */
463 u32 packet_filter;
464
465 /* multicast list */
466 u32 multicast_addr_count;
467 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
468
469 /* Pointer to the device's PCI register space */
470 struct address_map __iomem *regs;
471
472 /* Registry parameters */
473 u8 wanted_flow; /* Flow we want for 802.3x flow control */
474 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
475
476 /* Derived from the registry: */
477 u8 flow; /* flow control validated by the far-end */
478
479 /* Minimize init-time */
480 struct timer_list error_timer;
481
482 /* variable putting the phy into coma mode when boot up with no cable
483 * plugged in after 5 seconds
484 */
485 u8 boot_coma;
486
487 /* Tx Memory Variables */
488 struct tx_ring tx_ring;
489
490 /* Rx Memory Variables */
491 struct rx_ring rx_ring;
492
493 struct ce_stats stats;
494 };
495
496 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
497 {
498 u32 reg;
499 int i;
500
501 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
502 * bits 7,1:0 both equal to 1, at least once after reset.
503 * Subsequent operations need only to check that bits 1:0 are equal
504 * to 1 prior to starting a single byte read/write
505 */
506 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
507 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
508 return -EIO;
509
510 /* I2C idle and Phy Queue Avail both true */
511 if ((reg & 0x3000) == 0x3000) {
512 if (status)
513 *status = reg;
514 return reg & 0xFF;
515 }
516 }
517 return -ETIMEDOUT;
518 }
519
520 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
521 {
522 struct pci_dev *pdev = adapter->pdev;
523 int index = 0;
524 int retries;
525 int err = 0;
526 int writeok = 0;
527 u32 status;
528 u32 val = 0;
529
530 /* For an EEPROM, an I2C single byte write is defined as a START
531 * condition followed by the device address, EEPROM address, one byte
532 * of data and a STOP condition. The STOP condition will trigger the
533 * EEPROM's internally timed write cycle to the nonvolatile memory.
534 * All inputs are disabled during this write cycle and the EEPROM will
535 * not respond to any access until the internal write is complete.
536 */
537 err = eeprom_wait_ready(pdev, NULL);
538 if (err < 0)
539 return err;
540
541 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
542 * and bits 1:0 both =0. Bit 5 should be set according to the
543 * type of EEPROM being accessed (1=two byte addressing, 0=one
544 * byte addressing).
545 */
546 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
547 LBCIF_CONTROL_LBCIF_ENABLE |
548 LBCIF_CONTROL_I2C_WRITE))
549 return -EIO;
550
551 /* Prepare EEPROM address for Step 3 */
552 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
553 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
554 break;
555 /* Write the data to the LBCIF Data Register (the I2C write
556 * will begin).
557 */
558 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
559 break;
560 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
561 * 1:0 are both equal to 1, the I2C write has completed and the
562 * internal write cycle of the EEPROM is about to start.
563 * (bits 1:0 = 01 is a legal state while waiting from both
564 * equal to 1, but bits 1:0 = 10 is invalid and implies that
565 * something is broken).
566 */
567 err = eeprom_wait_ready(pdev, &status);
568 if (err < 0)
569 return 0;
570
571 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
572 * an error has occurred.Don't break here if we are revision
573 * 1, this is so we do a blind write for load bug.
574 */
575 if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
576 adapter->pdev->revision == 0)
577 break;
578
579 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
580 * ACK error has occurred on the address phase of the write.
581 * This could be due to an actual hardware failure or the
582 * EEPROM may still be in its internal write cycle from a
583 * previous write. This write operation was ignored and must be
584 *repeated later.
585 */
586 if (status & LBCIF_STATUS_ACK_ERROR) {
587 /* This could be due to an actual hardware failure
588 * or the EEPROM may still be in its internal write
589 * cycle from a previous write. This write operation
590 * was ignored and must be repeated later.
591 */
592 udelay(10);
593 continue;
594 }
595
596 writeok = 1;
597 break;
598 }
599
600 udelay(10);
601
602 while (1) {
603 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
604 LBCIF_CONTROL_LBCIF_ENABLE))
605 writeok = 0;
606
607 /* Do read until internal ACK_ERROR goes away meaning write
608 * completed
609 */
610 do {
611 pci_write_config_dword(pdev,
612 LBCIF_ADDRESS_REGISTER,
613 addr);
614 do {
615 pci_read_config_dword(pdev,
616 LBCIF_DATA_REGISTER,
617 &val);
618 } while ((val & 0x00010000) == 0);
619 } while (val & 0x00040000);
620
621 if ((val & 0xFF00) != 0xC000 || index == 10000)
622 break;
623 index++;
624 }
625 return writeok ? 0 : -EIO;
626 }
627
628 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
629 {
630 struct pci_dev *pdev = adapter->pdev;
631 int err;
632 u32 status;
633
634 /* A single byte read is similar to the single byte write, with the
635 * exception of the data flow:
636 */
637 err = eeprom_wait_ready(pdev, NULL);
638 if (err < 0)
639 return err;
640 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
641 * and bits 1:0 both =0. Bit 5 should be set according to the type
642 * of EEPROM being accessed (1=two byte addressing, 0=one byte
643 * addressing).
644 */
645 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
646 LBCIF_CONTROL_LBCIF_ENABLE))
647 return -EIO;
648 /* Write the address to the LBCIF Address Register (I2C read will
649 * begin).
650 */
651 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
652 return -EIO;
653 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
654 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
655 * has occurred).
656 */
657 err = eeprom_wait_ready(pdev, &status);
658 if (err < 0)
659 return err;
660 /* Regardless of error status, read data byte from LBCIF Data
661 * Register.
662 */
663 *pdata = err;
664
665 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
666 }
667
668 static int et131x_init_eeprom(struct et131x_adapter *adapter)
669 {
670 struct pci_dev *pdev = adapter->pdev;
671 u8 eestatus;
672
673 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
674
675 /* THIS IS A WORKAROUND:
676 * I need to call this function twice to get my card in a
677 * LG M1 Express Dual running. I tried also a msleep before this
678 * function, because I thought there could be some time conditions
679 * but it didn't work. Call the whole function twice also work.
680 */
681 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
682 dev_err(&pdev->dev,
683 "Could not read PCI config space for EEPROM Status\n");
684 return -EIO;
685 }
686
687 /* Determine if the error(s) we care about are present. If they are
688 * present we need to fail.
689 */
690 if (eestatus & 0x4C) {
691 int write_failed = 0;
692
693 if (pdev->revision == 0x01) {
694 int i;
695 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
696
697 /* Re-write the first 4 bytes if we have an eeprom
698 * present and the revision id is 1, this fixes the
699 * corruption seen with 1310 B Silicon
700 */
701 for (i = 0; i < 3; i++)
702 if (eeprom_write(adapter, i, eedata[i]) < 0)
703 write_failed = 1;
704 }
705 if (pdev->revision != 0x01 || write_failed) {
706 dev_err(&pdev->dev,
707 "Fatal EEPROM Status Error - 0x%04x\n",
708 eestatus);
709
710 /* This error could mean that there was an error
711 * reading the eeprom or that the eeprom doesn't exist.
712 * We will treat each case the same and not try to
713 * gather additional information that normally would
714 * come from the eeprom, like MAC Address
715 */
716 adapter->has_eeprom = 0;
717 return -EIO;
718 }
719 }
720 adapter->has_eeprom = 1;
721
722 /* Read the EEPROM for information regarding LED behavior. Refer to
723 * et131x_xcvr_init() for its use.
724 */
725 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
726 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
727
728 if (adapter->eeprom_data[0] != 0xcd)
729 /* Disable all optional features */
730 adapter->eeprom_data[1] = 0x00;
731
732 return 0;
733 }
734
735 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
736 {
737 /* Setup the receive dma configuration register for normal operation */
738 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
739 struct rx_ring *rx_ring = &adapter->rx_ring;
740
741 if (rx_ring->fbr[1]->buffsize == 4096)
742 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
743 else if (rx_ring->fbr[1]->buffsize == 8192)
744 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
745 else if (rx_ring->fbr[1]->buffsize == 16384)
746 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
747
748 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
749 if (rx_ring->fbr[0]->buffsize == 256)
750 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
751 else if (rx_ring->fbr[0]->buffsize == 512)
752 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
753 else if (rx_ring->fbr[0]->buffsize == 1024)
754 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
755 writel(csr, &adapter->regs->rxdma.csr);
756
757 csr = readl(&adapter->regs->rxdma.csr);
758 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
759 udelay(5);
760 csr = readl(&adapter->regs->rxdma.csr);
761 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
762 dev_err(&adapter->pdev->dev,
763 "RX Dma failed to exit halt state. CSR 0x%08x\n",
764 csr);
765 }
766 }
767 }
768
769 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
770 {
771 u32 csr;
772 /* Setup the receive dma configuration register */
773 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
774 &adapter->regs->rxdma.csr);
775 csr = readl(&adapter->regs->rxdma.csr);
776 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
777 udelay(5);
778 csr = readl(&adapter->regs->rxdma.csr);
779 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
780 dev_err(&adapter->pdev->dev,
781 "RX Dma failed to enter halt state. CSR 0x%08x\n",
782 csr);
783 }
784 }
785
786 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
787 {
788 /* Setup the transmit dma configuration register for normal
789 * operation
790 */
791 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
792 &adapter->regs->txdma.csr);
793 }
794
795 static inline void add_10bit(u32 *v, int n)
796 {
797 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
798 }
799
800 static inline void add_12bit(u32 *v, int n)
801 {
802 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
803 }
804
805 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
806 {
807 struct mac_regs __iomem *macregs = &adapter->regs->mac;
808 u32 station1;
809 u32 station2;
810 u32 ipg;
811
812 /* First we need to reset everything. Write to MAC configuration
813 * register 1 to perform reset.
814 */
815 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
816 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
817 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
818 &macregs->cfg1);
819
820 /* Next lets configure the MAC Inter-packet gap register */
821 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
822 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
823 writel(ipg, &macregs->ipg);
824
825 /* Next lets configure the MAC Half Duplex register */
826 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
827 writel(0x00A1F037, &macregs->hfdp);
828
829 /* Next lets configure the MAC Interface Control register */
830 writel(0, &macregs->if_ctrl);
831
832 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
833
834 /* Next lets configure the MAC Station Address register. These
835 * values are read from the EEPROM during initialization and stored
836 * in the adapter structure. We write what is stored in the adapter
837 * structure to the MAC Station Address registers high and low. This
838 * station address is used for generating and checking pause control
839 * packets.
840 */
841 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
842 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
843 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
844 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
845 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
846 adapter->addr[2];
847 writel(station1, &macregs->station_addr_1);
848 writel(station2, &macregs->station_addr_2);
849
850 /* Max ethernet packet in bytes that will be passed by the mac without
851 * being truncated. Allow the MAC to pass 4 more than our max packet
852 * size. This is 4 for the Ethernet CRC.
853 *
854 * Packets larger than (registry_jumbo_packet) that do not contain a
855 * VLAN ID will be dropped by the Rx function.
856 */
857 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
858
859 /* clear out MAC config reset */
860 writel(0, &macregs->cfg1);
861 }
862
863 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
864 {
865 int32_t delay = 0;
866 struct mac_regs __iomem *mac = &adapter->regs->mac;
867 struct phy_device *phydev = adapter->phydev;
868 u32 cfg1;
869 u32 cfg2;
870 u32 ifctrl;
871 u32 ctl;
872
873 ctl = readl(&adapter->regs->txmac.ctl);
874 cfg1 = readl(&mac->cfg1);
875 cfg2 = readl(&mac->cfg2);
876 ifctrl = readl(&mac->if_ctrl);
877
878 /* Set up the if mode bits */
879 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
880 if (phydev->speed == SPEED_1000) {
881 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
882 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
883 } else {
884 cfg2 |= ET_MAC_CFG2_IFMODE_100;
885 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
886 }
887
888 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
889 ET_MAC_CFG1_TX_FLOW;
890
891 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
892 if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
893 cfg1 |= ET_MAC_CFG1_RX_FLOW;
894 writel(cfg1, &mac->cfg1);
895
896 /* Now we need to initialize the MAC Configuration 2 register */
897 /* preamble 7, check length, huge frame off, pad crc, crc enable
898 * full duplex off
899 */
900 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
901 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
902 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
903 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
904 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
905 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
906
907 if (phydev->duplex == DUPLEX_FULL)
908 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
909
910 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
911 if (phydev->duplex == DUPLEX_HALF)
912 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
913
914 writel(ifctrl, &mac->if_ctrl);
915 writel(cfg2, &mac->cfg2);
916
917 do {
918 udelay(10);
919 delay++;
920 cfg1 = readl(&mac->cfg1);
921 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
922
923 if (delay == 100) {
924 dev_warn(&adapter->pdev->dev,
925 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
926 cfg1);
927 }
928
929 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
930 writel(ctl, &adapter->regs->txmac.ctl);
931
932 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
933 et131x_rx_dma_enable(adapter);
934 et131x_tx_dma_enable(adapter);
935 }
936 }
937
938 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
939 {
940 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
941
942 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
943 }
944
945 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
946 {
947 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
948 u32 hash1 = 0;
949 u32 hash2 = 0;
950 u32 hash3 = 0;
951 u32 hash4 = 0;
952 u32 pm_csr;
953
954 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
955 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
956 * specified) then we should pass NO multi-cast addresses to the
957 * driver.
958 */
959 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
960 int i;
961
962 /* Loop through our multicast array and set up the device */
963 for (i = 0; i < adapter->multicast_addr_count; i++) {
964 u32 result;
965
966 result = ether_crc(6, adapter->multicast_list[i]);
967
968 result = (result & 0x3F800000) >> 23;
969
970 if (result < 32) {
971 hash1 |= (1 << result);
972 } else if ((31 < result) && (result < 64)) {
973 result -= 32;
974 hash2 |= (1 << result);
975 } else if ((63 < result) && (result < 96)) {
976 result -= 64;
977 hash3 |= (1 << result);
978 } else {
979 result -= 96;
980 hash4 |= (1 << result);
981 }
982 }
983 }
984
985 /* Write out the new hash to the device */
986 pm_csr = readl(&adapter->regs->global.pm_csr);
987 if (!et1310_in_phy_coma(adapter)) {
988 writel(hash1, &rxmac->multi_hash1);
989 writel(hash2, &rxmac->multi_hash2);
990 writel(hash3, &rxmac->multi_hash3);
991 writel(hash4, &rxmac->multi_hash4);
992 }
993 }
994
995 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
996 {
997 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
998 u32 uni_pf1;
999 u32 uni_pf2;
1000 u32 uni_pf3;
1001 u32 pm_csr;
1002
1003 /* Set up unicast packet filter reg 3 to be the first two octets of
1004 * the MAC address for both address
1005 *
1006 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1007 * MAC address for second address
1008 *
1009 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1010 * MAC address for first address
1011 */
1012 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1013 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1014 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1015 adapter->addr[1];
1016
1017 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1018 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1019 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1020 adapter->addr[5];
1021
1022 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1023 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1024 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1025 adapter->addr[5];
1026
1027 pm_csr = readl(&adapter->regs->global.pm_csr);
1028 if (!et1310_in_phy_coma(adapter)) {
1029 writel(uni_pf1, &rxmac->uni_pf_addr1);
1030 writel(uni_pf2, &rxmac->uni_pf_addr2);
1031 writel(uni_pf3, &rxmac->uni_pf_addr3);
1032 }
1033 }
1034
1035 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1036 {
1037 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1038 struct phy_device *phydev = adapter->phydev;
1039 u32 sa_lo;
1040 u32 sa_hi = 0;
1041 u32 pf_ctrl = 0;
1042 u32 __iomem *wolw;
1043
1044 /* Disable the MAC while it is being configured (also disable WOL) */
1045 writel(0x8, &rxmac->ctrl);
1046
1047 /* Initialize WOL to disabled. */
1048 writel(0, &rxmac->crc0);
1049 writel(0, &rxmac->crc12);
1050 writel(0, &rxmac->crc34);
1051
1052 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1053 * its default Values of 0x00000000 because there are not WOL masks
1054 * as of this time.
1055 */
1056 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1057 writel(0, wolw);
1058
1059 /* Lets setup the WOL Source Address */
1060 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1061 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1062 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1063 adapter->addr[5];
1064 writel(sa_lo, &rxmac->sa_lo);
1065
1066 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1067 adapter->addr[1];
1068 writel(sa_hi, &rxmac->sa_hi);
1069
1070 /* Disable all Packet Filtering */
1071 writel(0, &rxmac->pf_ctrl);
1072
1073 /* Let's initialize the Unicast Packet filtering address */
1074 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1075 et1310_setup_device_for_unicast(adapter);
1076 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1077 } else {
1078 writel(0, &rxmac->uni_pf_addr1);
1079 writel(0, &rxmac->uni_pf_addr2);
1080 writel(0, &rxmac->uni_pf_addr3);
1081 }
1082
1083 /* Let's initialize the Multicast hash */
1084 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1085 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1086 et1310_setup_device_for_multicast(adapter);
1087 }
1088
1089 /* Runt packet filtering. Didn't work in version A silicon. */
1090 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1091 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1092
1093 if (adapter->registry_jumbo_packet > 8192)
1094 /* In order to transmit jumbo packets greater than 8k, the
1095 * FIFO between RxMAC and RxDMA needs to be reduced in size
1096 * to (16k - Jumbo packet size). In order to implement this,
1097 * we must use "cut through" mode in the RxMAC, which chops
1098 * packets down into segments which are (max_size * 16). In
1099 * this case we selected 256 bytes, since this is the size of
1100 * the PCI-Express TLP's that the 1310 uses.
1101 *
1102 * seg_en on, fc_en off, size 0x10
1103 */
1104 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1105 else
1106 writel(0, &rxmac->mcif_ctrl_max_seg);
1107
1108 writel(0, &rxmac->mcif_water_mark);
1109 writel(0, &rxmac->mif_ctrl);
1110 writel(0, &rxmac->space_avail);
1111
1112 /* Initialize the the mif_ctrl register
1113 * bit 3: Receive code error. One or more nibbles were signaled as
1114 * errors during the reception of the packet. Clear this
1115 * bit in Gigabit, set it in 100Mbit. This was derived
1116 * experimentally at UNH.
1117 * bit 4: Receive CRC error. The packet's CRC did not match the
1118 * internally generated CRC.
1119 * bit 5: Receive length check error. Indicates that frame length
1120 * field value in the packet does not match the actual data
1121 * byte length and is not a type field.
1122 * bit 16: Receive frame truncated.
1123 * bit 17: Drop packet enable
1124 */
1125 if (phydev && phydev->speed == SPEED_100)
1126 writel(0x30038, &rxmac->mif_ctrl);
1127 else
1128 writel(0x30030, &rxmac->mif_ctrl);
1129
1130 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1131 * filter is always enabled since it is where the runt packets are
1132 * supposed to be dropped. For version A silicon, runt packet
1133 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1134 * but we still leave the packet filter on.
1135 */
1136 writel(pf_ctrl, &rxmac->pf_ctrl);
1137 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1138 }
1139
1140 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1141 {
1142 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1143
1144 /* We need to update the Control Frame Parameters
1145 * cfpt - control frame pause timer set to 64 (0x40)
1146 * cfep - control frame extended pause timer set to 0x0
1147 */
1148 if (adapter->flow == FLOW_NONE)
1149 writel(0, &txmac->cf_param);
1150 else
1151 writel(0x40, &txmac->cf_param);
1152 }
1153
1154 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1155 {
1156 struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1157 u32 __iomem *reg;
1158
1159 /* initialize all the macstat registers to zero on the device */
1160 for (reg = &macstat->txrx_0_64_byte_frames;
1161 reg <= &macstat->carry_reg2; reg++)
1162 writel(0, reg);
1163
1164 /* Unmask any counters that we want to track the overflow of.
1165 * Initially this will be all counters. It may become clear later
1166 * that we do not need to track all counters.
1167 */
1168 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1169 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1170 }
1171
1172 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1173 u8 reg, u16 *value)
1174 {
1175 struct mac_regs __iomem *mac = &adapter->regs->mac;
1176 int status = 0;
1177 u32 delay = 0;
1178 u32 mii_addr;
1179 u32 mii_cmd;
1180 u32 mii_indicator;
1181
1182 /* Save a local copy of the registers we are dealing with so we can
1183 * set them back
1184 */
1185 mii_addr = readl(&mac->mii_mgmt_addr);
1186 mii_cmd = readl(&mac->mii_mgmt_cmd);
1187
1188 /* Stop the current operation */
1189 writel(0, &mac->mii_mgmt_cmd);
1190
1191 /* Set up the register we need to read from on the correct PHY */
1192 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1193
1194 writel(0x1, &mac->mii_mgmt_cmd);
1195
1196 do {
1197 udelay(50);
1198 delay++;
1199 mii_indicator = readl(&mac->mii_mgmt_indicator);
1200 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1201
1202 /* If we hit the max delay, we could not read the register */
1203 if (delay == 50) {
1204 dev_warn(&adapter->pdev->dev,
1205 "reg 0x%08x could not be read\n", reg);
1206 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1207 mii_indicator);
1208
1209 status = -EIO;
1210 goto out;
1211 }
1212
1213 /* If we hit here we were able to read the register and we need to
1214 * return the value to the caller
1215 */
1216 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1217
1218 out:
1219 /* Stop the read operation */
1220 writel(0, &mac->mii_mgmt_cmd);
1221
1222 /* set the registers we touched back to the state at which we entered
1223 * this function
1224 */
1225 writel(mii_addr, &mac->mii_mgmt_addr);
1226 writel(mii_cmd, &mac->mii_mgmt_cmd);
1227
1228 return status;
1229 }
1230
1231 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1232 {
1233 struct phy_device *phydev = adapter->phydev;
1234
1235 if (!phydev)
1236 return -EIO;
1237
1238 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1239 }
1240
1241 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1242 u16 value)
1243 {
1244 struct mac_regs __iomem *mac = &adapter->regs->mac;
1245 int status = 0;
1246 u32 delay = 0;
1247 u32 mii_addr;
1248 u32 mii_cmd;
1249 u32 mii_indicator;
1250
1251 /* Save a local copy of the registers we are dealing with so we can
1252 * set them back
1253 */
1254 mii_addr = readl(&mac->mii_mgmt_addr);
1255 mii_cmd = readl(&mac->mii_mgmt_cmd);
1256
1257 /* Stop the current operation */
1258 writel(0, &mac->mii_mgmt_cmd);
1259
1260 /* Set up the register we need to write to on the correct PHY */
1261 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1262
1263 /* Add the value to write to the registers to the mac */
1264 writel(value, &mac->mii_mgmt_ctrl);
1265
1266 do {
1267 udelay(50);
1268 delay++;
1269 mii_indicator = readl(&mac->mii_mgmt_indicator);
1270 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1271
1272 /* If we hit the max delay, we could not write the register */
1273 if (delay == 100) {
1274 u16 tmp;
1275
1276 dev_warn(&adapter->pdev->dev,
1277 "reg 0x%08x could not be written", reg);
1278 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1279 mii_indicator);
1280 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1281 readl(&mac->mii_mgmt_cmd));
1282
1283 et131x_mii_read(adapter, reg, &tmp);
1284
1285 status = -EIO;
1286 }
1287 /* Stop the write operation */
1288 writel(0, &mac->mii_mgmt_cmd);
1289
1290 /* set the registers we touched back to the state at which we entered
1291 * this function
1292 */
1293 writel(mii_addr, &mac->mii_mgmt_addr);
1294 writel(mii_cmd, &mac->mii_mgmt_cmd);
1295
1296 return status;
1297 }
1298
1299 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1300 u16 regnum,
1301 u16 bitnum,
1302 u8 *value)
1303 {
1304 u16 reg;
1305 u16 mask = 1 << bitnum;
1306
1307 et131x_mii_read(adapter, regnum, &reg);
1308
1309 *value = (reg & mask) >> bitnum;
1310 }
1311
1312 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1313 {
1314 struct phy_device *phydev = adapter->phydev;
1315
1316 if (phydev->duplex == DUPLEX_HALF) {
1317 adapter->flow = FLOW_NONE;
1318 } else {
1319 char remote_pause, remote_async_pause;
1320
1321 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1322 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1323
1324 if (remote_pause && remote_async_pause) {
1325 adapter->flow = adapter->wanted_flow;
1326 } else if (remote_pause && !remote_async_pause) {
1327 if (adapter->wanted_flow == FLOW_BOTH)
1328 adapter->flow = FLOW_BOTH;
1329 else
1330 adapter->flow = FLOW_NONE;
1331 } else if (!remote_pause && !remote_async_pause) {
1332 adapter->flow = FLOW_NONE;
1333 } else {
1334 if (adapter->wanted_flow == FLOW_BOTH)
1335 adapter->flow = FLOW_RXONLY;
1336 else
1337 adapter->flow = FLOW_NONE;
1338 }
1339 }
1340 }
1341
1342 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1343 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1344 {
1345 struct ce_stats *stats = &adapter->stats;
1346 struct macstat_regs __iomem *macstat =
1347 &adapter->regs->macstat;
1348
1349 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1350 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1351 stats->tx_deferred += readl(&macstat->tx_deferred);
1352 stats->tx_excessive_collisions +=
1353 readl(&macstat->tx_multiple_collisions);
1354 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1355 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1356 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1357
1358 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1359 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1360 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1361 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1362 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1363 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1364 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1365 }
1366
1367 /* et1310_handle_macstat_interrupt
1368 *
1369 * One of the MACSTAT counters has wrapped. Update the local copy of
1370 * the statistics held in the adapter structure, checking the "wrap"
1371 * bit for each counter.
1372 */
1373 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1374 {
1375 u32 carry_reg1;
1376 u32 carry_reg2;
1377
1378 /* Read the interrupt bits from the register(s). These are Clear On
1379 * Write.
1380 */
1381 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1382 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1383
1384 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1385 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1386
1387 /* We need to do update the host copy of all the MAC_STAT counters.
1388 * For each counter, check it's overflow bit. If the overflow bit is
1389 * set, then increment the host version of the count by one complete
1390 * revolution of the counter. This routine is called when the counter
1391 * block indicates that one of the counters has wrapped.
1392 */
1393 if (carry_reg1 & (1 << 14))
1394 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1395 if (carry_reg1 & (1 << 8))
1396 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1397 if (carry_reg1 & (1 << 7))
1398 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1399 if (carry_reg1 & (1 << 2))
1400 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1401 if (carry_reg1 & (1 << 6))
1402 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1403 if (carry_reg1 & (1 << 3))
1404 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1405 if (carry_reg1 & (1 << 0))
1406 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1407 if (carry_reg2 & (1 << 16))
1408 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1409 if (carry_reg2 & (1 << 15))
1410 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1411 if (carry_reg2 & (1 << 6))
1412 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1413 if (carry_reg2 & (1 << 8))
1414 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1415 if (carry_reg2 & (1 << 5))
1416 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1417 if (carry_reg2 & (1 << 4))
1418 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1419 if (carry_reg2 & (1 << 2))
1420 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1421 }
1422
1423 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1424 {
1425 struct net_device *netdev = bus->priv;
1426 struct et131x_adapter *adapter = netdev_priv(netdev);
1427 u16 value;
1428 int ret;
1429
1430 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1431
1432 if (ret < 0)
1433 return ret;
1434
1435 return value;
1436 }
1437
1438 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1439 int reg, u16 value)
1440 {
1441 struct net_device *netdev = bus->priv;
1442 struct et131x_adapter *adapter = netdev_priv(netdev);
1443
1444 return et131x_mii_write(adapter, phy_addr, reg, value);
1445 }
1446
1447 /* et1310_phy_power_switch - PHY power control
1448 * @adapter: device to control
1449 * @down: true for off/false for back on
1450 *
1451 * one hundred, ten, one thousand megs
1452 * How would you like to have your LAN accessed
1453 * Can't you see that this code processed
1454 * Phy power, phy power..
1455 */
1456 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1457 {
1458 u16 data;
1459 struct phy_device *phydev = adapter->phydev;
1460
1461 et131x_mii_read(adapter, MII_BMCR, &data);
1462 data &= ~BMCR_PDOWN;
1463 if (down)
1464 data |= BMCR_PDOWN;
1465 et131x_mii_write(adapter, phydev->addr, MII_BMCR, data);
1466 }
1467
1468 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1469 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1470 {
1471 u16 lcr2;
1472 struct phy_device *phydev = adapter->phydev;
1473
1474 /* Set the LED behavior such that LED 1 indicates speed (off =
1475 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1476 * link and activity (on for link, blink off for activity).
1477 *
1478 * NOTE: Some customizations have been added here for specific
1479 * vendors; The LED behavior is now determined by vendor data in the
1480 * EEPROM. However, the above description is the default.
1481 */
1482 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1483 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1484
1485 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1486 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1487
1488 if ((adapter->eeprom_data[1] & 0x8) == 0)
1489 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1490 else
1491 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1492
1493 et131x_mii_write(adapter, phydev->addr, PHY_LED_2, lcr2);
1494 }
1495 }
1496
1497 /* et131x_configure_global_regs - configure JAGCore global regs */
1498 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1499 {
1500 struct global_regs __iomem *regs = &adapter->regs->global;
1501
1502 writel(0, &regs->rxq_start_addr);
1503 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1504
1505 if (adapter->registry_jumbo_packet < 2048) {
1506 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1507 * block of RAM that the driver can split between Tx
1508 * and Rx as it desires. Our default is to split it
1509 * 50/50:
1510 */
1511 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1512 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1513 } else if (adapter->registry_jumbo_packet < 8192) {
1514 /* For jumbo packets > 2k but < 8k, split 50-50. */
1515 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1516 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1517 } else {
1518 /* 9216 is the only packet size greater than 8k that
1519 * is available. The Tx buffer has to be big enough
1520 * for one whole packet on the Tx side. We'll make
1521 * the Tx 9408, and give the rest to Rx
1522 */
1523 writel(0x01b3, &regs->rxq_end_addr);
1524 writel(0x01b4, &regs->txq_start_addr);
1525 }
1526
1527 /* Initialize the loopback register. Disable all loopbacks. */
1528 writel(0, &regs->loopback);
1529
1530 writel(0, &regs->msi_config);
1531
1532 /* By default, disable the watchdog timer. It will be enabled when
1533 * a packet is queued.
1534 */
1535 writel(0, &regs->watchdog_timer);
1536 }
1537
1538 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1539 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1540 {
1541 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1542 struct rx_ring *rx_local = &adapter->rx_ring;
1543 struct fbr_desc *fbr_entry;
1544 u32 entry;
1545 u32 psr_num_des;
1546 unsigned long flags;
1547 u8 id;
1548
1549 et131x_rx_dma_disable(adapter);
1550
1551 /* Load the completion writeback physical address */
1552 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1553 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1554
1555 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1556
1557 /* Set the address and parameters of the packet status ring */
1558 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1559 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1560 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1561 writel(0, &rx_dma->psr_full_offset);
1562
1563 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1564 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1565 &rx_dma->psr_min_des);
1566
1567 spin_lock_irqsave(&adapter->rcv_lock, flags);
1568
1569 /* These local variables track the PSR in the adapter structure */
1570 rx_local->local_psr_full = 0;
1571
1572 for (id = 0; id < NUM_FBRS; id++) {
1573 u32 __iomem *num_des;
1574 u32 __iomem *full_offset;
1575 u32 __iomem *min_des;
1576 u32 __iomem *base_hi;
1577 u32 __iomem *base_lo;
1578 struct fbr_lookup *fbr = rx_local->fbr[id];
1579
1580 if (id == 0) {
1581 num_des = &rx_dma->fbr0_num_des;
1582 full_offset = &rx_dma->fbr0_full_offset;
1583 min_des = &rx_dma->fbr0_min_des;
1584 base_hi = &rx_dma->fbr0_base_hi;
1585 base_lo = &rx_dma->fbr0_base_lo;
1586 } else {
1587 num_des = &rx_dma->fbr1_num_des;
1588 full_offset = &rx_dma->fbr1_full_offset;
1589 min_des = &rx_dma->fbr1_min_des;
1590 base_hi = &rx_dma->fbr1_base_hi;
1591 base_lo = &rx_dma->fbr1_base_lo;
1592 }
1593
1594 /* Now's the best time to initialize FBR contents */
1595 fbr_entry = fbr->ring_virtaddr;
1596 for (entry = 0; entry < fbr->num_entries; entry++) {
1597 fbr_entry->addr_hi = fbr->bus_high[entry];
1598 fbr_entry->addr_lo = fbr->bus_low[entry];
1599 fbr_entry->word2 = entry;
1600 fbr_entry++;
1601 }
1602
1603 /* Set the address and parameters of Free buffer ring 1 and 0 */
1604 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1605 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1606 writel(fbr->num_entries - 1, num_des);
1607 writel(ET_DMA10_WRAP, full_offset);
1608
1609 /* This variable tracks the free buffer ring 1 full position,
1610 * so it has to match the above.
1611 */
1612 fbr->local_full = ET_DMA10_WRAP;
1613 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1614 min_des);
1615 }
1616
1617 /* Program the number of packets we will receive before generating an
1618 * interrupt.
1619 * For version B silicon, this value gets updated once autoneg is
1620 *complete.
1621 */
1622 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1623
1624 /* The "time_done" is not working correctly to coalesce interrupts
1625 * after a given time period, but rather is giving us an interrupt
1626 * regardless of whether we have received packets.
1627 * This value gets updated once autoneg is complete.
1628 */
1629 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1630
1631 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1632 }
1633
1634 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1635 *
1636 * Configure the transmit engine with the ring buffers we have created
1637 * and prepare it for use.
1638 */
1639 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1640 {
1641 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1642 struct tx_ring *tx_ring = &adapter->tx_ring;
1643
1644 /* Load the hardware with the start of the transmit descriptor ring. */
1645 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1646 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1647
1648 /* Initialise the transmit DMA engine */
1649 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1650
1651 /* Load the completion writeback physical address */
1652 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1653 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1654
1655 *tx_ring->tx_status = 0;
1656
1657 writel(0, &txdma->service_request);
1658 tx_ring->send_idx = 0;
1659 }
1660
1661 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1662 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1663 {
1664 et131x_configure_global_regs(adapter);
1665 et1310_config_mac_regs1(adapter);
1666
1667 /* Configure the MMC registers */
1668 /* All we need to do is initialize the Memory Control Register */
1669 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1670
1671 et1310_config_rxmac_regs(adapter);
1672 et1310_config_txmac_regs(adapter);
1673
1674 et131x_config_rx_dma_regs(adapter);
1675 et131x_config_tx_dma_regs(adapter);
1676
1677 et1310_config_macstat_regs(adapter);
1678
1679 et1310_phy_power_switch(adapter, 0);
1680 et131x_xcvr_init(adapter);
1681 }
1682
1683 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1684 static void et131x_soft_reset(struct et131x_adapter *adapter)
1685 {
1686 u32 reg;
1687
1688 /* Disable MAC Core */
1689 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1690 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1691 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1692 writel(reg, &adapter->regs->mac.cfg1);
1693
1694 reg = ET_RESET_ALL;
1695 writel(reg, &adapter->regs->global.sw_reset);
1696
1697 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1698 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1699 writel(reg, &adapter->regs->mac.cfg1);
1700 writel(0, &adapter->regs->mac.cfg1);
1701 }
1702
1703 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1704 {
1705 u32 mask;
1706
1707 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1708 mask = INT_MASK_ENABLE;
1709 else
1710 mask = INT_MASK_ENABLE_NO_FLOW;
1711
1712 writel(mask, &adapter->regs->global.int_mask);
1713 }
1714
1715 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1716 {
1717 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1718 }
1719
1720 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1721 {
1722 /* Setup the transmit dma configuration register */
1723 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1724 &adapter->regs->txdma.csr);
1725 }
1726
1727 static void et131x_enable_txrx(struct net_device *netdev)
1728 {
1729 struct et131x_adapter *adapter = netdev_priv(netdev);
1730
1731 et131x_rx_dma_enable(adapter);
1732 et131x_tx_dma_enable(adapter);
1733
1734 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1735 et131x_enable_interrupts(adapter);
1736
1737 netif_start_queue(netdev);
1738 }
1739
1740 static void et131x_disable_txrx(struct net_device *netdev)
1741 {
1742 struct et131x_adapter *adapter = netdev_priv(netdev);
1743
1744 netif_stop_queue(netdev);
1745
1746 et131x_rx_dma_disable(adapter);
1747 et131x_tx_dma_disable(adapter);
1748
1749 et131x_disable_interrupts(adapter);
1750 }
1751
1752 static void et131x_init_send(struct et131x_adapter *adapter)
1753 {
1754 int i;
1755 struct tx_ring *tx_ring = &adapter->tx_ring;
1756 struct tcb *tcb = tx_ring->tcb_ring;
1757
1758 tx_ring->tcb_qhead = tcb;
1759
1760 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1761
1762 for (i = 0; i < NUM_TCB; i++) {
1763 tcb->next = tcb + 1;
1764 tcb++;
1765 }
1766
1767 tcb--;
1768 tx_ring->tcb_qtail = tcb;
1769 tcb->next = NULL;
1770 /* Curr send queue should now be empty */
1771 tx_ring->send_head = NULL;
1772 tx_ring->send_tail = NULL;
1773 }
1774
1775 /* et1310_enable_phy_coma
1776 *
1777 * driver receive an phy status change interrupt while in D0 and check that
1778 * phy_status is down.
1779 *
1780 * -- gate off JAGCore;
1781 * -- set gigE PHY in Coma mode
1782 * -- wake on phy_interrupt; Perform software reset JAGCore,
1783 * re-initialize jagcore and gigE PHY
1784 */
1785 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1786 {
1787 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1788
1789 /* Stop sending packets. */
1790 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1791
1792 /* Wait for outstanding Receive packets */
1793 et131x_disable_txrx(adapter->netdev);
1794
1795 /* Gate off JAGCore 3 clock domains */
1796 pmcsr &= ~ET_PMCSR_INIT;
1797 writel(pmcsr, &adapter->regs->global.pm_csr);
1798
1799 /* Program gigE PHY in to Coma mode */
1800 pmcsr |= ET_PM_PHY_SW_COMA;
1801 writel(pmcsr, &adapter->regs->global.pm_csr);
1802 }
1803
1804 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1805 {
1806 u32 pmcsr;
1807
1808 pmcsr = readl(&adapter->regs->global.pm_csr);
1809
1810 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
1811 pmcsr |= ET_PMCSR_INIT;
1812 pmcsr &= ~ET_PM_PHY_SW_COMA;
1813 writel(pmcsr, &adapter->regs->global.pm_csr);
1814
1815 /* Restore the GbE PHY speed and duplex modes;
1816 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1817 */
1818
1819 /* Re-initialize the send structures */
1820 et131x_init_send(adapter);
1821
1822 /* Bring the device back to the state it was during init prior to
1823 * autonegotiation being complete. This way, when we get the auto-neg
1824 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1825 */
1826 et131x_soft_reset(adapter);
1827
1828 et131x_adapter_setup(adapter);
1829
1830 /* Allow Tx to restart */
1831 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1832
1833 et131x_enable_txrx(adapter->netdev);
1834 }
1835
1836 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1837 {
1838 u32 tmp_free_buff_ring = *free_buff_ring;
1839
1840 tmp_free_buff_ring++;
1841 /* This works for all cases where limit < 1024. The 1023 case
1842 * works because 1023++ is 1024 which means the if condition is not
1843 * taken but the carry of the bit into the wrap bit toggles the wrap
1844 * value correctly
1845 */
1846 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1847 tmp_free_buff_ring &= ~ET_DMA10_MASK;
1848 tmp_free_buff_ring ^= ET_DMA10_WRAP;
1849 }
1850 /* For the 1023 case */
1851 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1852 *free_buff_ring = tmp_free_buff_ring;
1853 return tmp_free_buff_ring;
1854 }
1855
1856 /* et131x_rx_dma_memory_alloc
1857 *
1858 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1859 * and the Packet Status Ring.
1860 */
1861 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1862 {
1863 u8 id;
1864 u32 i, j;
1865 u32 bufsize;
1866 u32 psr_size;
1867 u32 fbr_chunksize;
1868 struct rx_ring *rx_ring = &adapter->rx_ring;
1869 struct fbr_lookup *fbr;
1870
1871 /* Alloc memory for the lookup table */
1872 rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873 if (rx_ring->fbr[0] == NULL)
1874 return -ENOMEM;
1875 rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1876 if (rx_ring->fbr[1] == NULL)
1877 return -ENOMEM;
1878
1879 /* The first thing we will do is configure the sizes of the buffer
1880 * rings. These will change based on jumbo packet support. Larger
1881 * jumbo packets increases the size of each entry in FBR0, and the
1882 * number of entries in FBR0, while at the same time decreasing the
1883 * number of entries in FBR1.
1884 *
1885 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
1886 * entries are huge in order to accommodate a "jumbo" frame, then it
1887 * will have less entries. Conversely, FBR1 will now be relied upon
1888 * to carry more "normal" frames, thus it's entry size also increases
1889 * and the number of entries goes up too (since it now carries
1890 * "small" + "regular" packets.
1891 *
1892 * In this scheme, we try to maintain 512 entries between the two
1893 * rings. Also, FBR1 remains a constant size - when it's size doubles
1894 * the number of entries halves. FBR0 increases in size, however.
1895 */
1896 if (adapter->registry_jumbo_packet < 2048) {
1897 rx_ring->fbr[0]->buffsize = 256;
1898 rx_ring->fbr[0]->num_entries = 512;
1899 rx_ring->fbr[1]->buffsize = 2048;
1900 rx_ring->fbr[1]->num_entries = 512;
1901 } else if (adapter->registry_jumbo_packet < 4096) {
1902 rx_ring->fbr[0]->buffsize = 512;
1903 rx_ring->fbr[0]->num_entries = 1024;
1904 rx_ring->fbr[1]->buffsize = 4096;
1905 rx_ring->fbr[1]->num_entries = 512;
1906 } else {
1907 rx_ring->fbr[0]->buffsize = 1024;
1908 rx_ring->fbr[0]->num_entries = 768;
1909 rx_ring->fbr[1]->buffsize = 16384;
1910 rx_ring->fbr[1]->num_entries = 128;
1911 }
1912
1913 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1914 rx_ring->fbr[1]->num_entries;
1915
1916 for (id = 0; id < NUM_FBRS; id++) {
1917 fbr = rx_ring->fbr[id];
1918 /* Allocate an area of memory for Free Buffer Ring */
1919 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1920 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1921 bufsize,
1922 &fbr->ring_physaddr,
1923 GFP_KERNEL);
1924 if (!fbr->ring_virtaddr) {
1925 dev_err(&adapter->pdev->dev,
1926 "Cannot alloc memory for Free Buffer Ring %d\n",
1927 id);
1928 return -ENOMEM;
1929 }
1930 }
1931
1932 for (id = 0; id < NUM_FBRS; id++) {
1933 fbr = rx_ring->fbr[id];
1934 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1935
1936 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1937 dma_addr_t fbr_physaddr;
1938
1939 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1940 &adapter->pdev->dev, fbr_chunksize,
1941 &fbr->mem_physaddrs[i],
1942 GFP_KERNEL);
1943
1944 if (!fbr->mem_virtaddrs[i]) {
1945 dev_err(&adapter->pdev->dev,
1946 "Could not alloc memory\n");
1947 return -ENOMEM;
1948 }
1949
1950 /* See NOTE in "Save Physical Address" comment above */
1951 fbr_physaddr = fbr->mem_physaddrs[i];
1952
1953 for (j = 0; j < FBR_CHUNKS; j++) {
1954 u32 k = (i * FBR_CHUNKS) + j;
1955
1956 /* Save the Virtual address of this index for
1957 * quick access later
1958 */
1959 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1960 (j * fbr->buffsize);
1961
1962 /* now store the physical address in the
1963 * descriptor so the device can access it
1964 */
1965 fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1966 fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1967 fbr_physaddr += fbr->buffsize;
1968 }
1969 }
1970 }
1971
1972 /* Allocate an area of memory for FIFO of Packet Status ring entries */
1973 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1974
1975 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1976 psr_size,
1977 &rx_ring->ps_ring_physaddr,
1978 GFP_KERNEL);
1979
1980 if (!rx_ring->ps_ring_virtaddr) {
1981 dev_err(&adapter->pdev->dev,
1982 "Cannot alloc memory for Packet Status Ring\n");
1983 return -ENOMEM;
1984 }
1985
1986 /* Allocate an area of memory for writeback of status information */
1987 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1988 sizeof(struct rx_status_block),
1989 &rx_ring->rx_status_bus,
1990 GFP_KERNEL);
1991 if (!rx_ring->rx_status_block) {
1992 dev_err(&adapter->pdev->dev,
1993 "Cannot alloc memory for Status Block\n");
1994 return -ENOMEM;
1995 }
1996 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1997
1998 /* The RFDs are going to be put on lists later on, so initialize the
1999 * lists now.
2000 */
2001 INIT_LIST_HEAD(&rx_ring->recv_list);
2002 return 0;
2003 }
2004
2005 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2006 {
2007 u8 id;
2008 u32 ii;
2009 u32 bufsize;
2010 u32 psr_size;
2011 struct rfd *rfd;
2012 struct rx_ring *rx_ring = &adapter->rx_ring;
2013 struct fbr_lookup *fbr;
2014
2015 /* Free RFDs and associated packet descriptors */
2016 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2017
2018 while (!list_empty(&rx_ring->recv_list)) {
2019 rfd = list_entry(rx_ring->recv_list.next,
2020 struct rfd, list_node);
2021
2022 list_del(&rfd->list_node);
2023 rfd->skb = NULL;
2024 kfree(rfd);
2025 }
2026
2027 /* Free Free Buffer Rings */
2028 for (id = 0; id < NUM_FBRS; id++) {
2029 fbr = rx_ring->fbr[id];
2030
2031 if (!fbr || !fbr->ring_virtaddr)
2032 continue;
2033
2034 /* First the packet memory */
2035 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2036 if (fbr->mem_virtaddrs[ii]) {
2037 bufsize = fbr->buffsize * FBR_CHUNKS;
2038
2039 dma_free_coherent(&adapter->pdev->dev,
2040 bufsize,
2041 fbr->mem_virtaddrs[ii],
2042 fbr->mem_physaddrs[ii]);
2043
2044 fbr->mem_virtaddrs[ii] = NULL;
2045 }
2046 }
2047
2048 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2049
2050 dma_free_coherent(&adapter->pdev->dev,
2051 bufsize,
2052 fbr->ring_virtaddr,
2053 fbr->ring_physaddr);
2054
2055 fbr->ring_virtaddr = NULL;
2056 }
2057
2058 /* Free Packet Status Ring */
2059 if (rx_ring->ps_ring_virtaddr) {
2060 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2061
2062 dma_free_coherent(&adapter->pdev->dev, psr_size,
2063 rx_ring->ps_ring_virtaddr,
2064 rx_ring->ps_ring_physaddr);
2065
2066 rx_ring->ps_ring_virtaddr = NULL;
2067 }
2068
2069 /* Free area of memory for the writeback of status information */
2070 if (rx_ring->rx_status_block) {
2071 dma_free_coherent(&adapter->pdev->dev,
2072 sizeof(struct rx_status_block),
2073 rx_ring->rx_status_block,
2074 rx_ring->rx_status_bus);
2075 rx_ring->rx_status_block = NULL;
2076 }
2077
2078 /* Free the FBR Lookup Table */
2079 kfree(rx_ring->fbr[0]);
2080 kfree(rx_ring->fbr[1]);
2081
2082 /* Reset Counters */
2083 rx_ring->num_ready_recv = 0;
2084 }
2085
2086 /* et131x_init_recv - Initialize receive data structures */
2087 static int et131x_init_recv(struct et131x_adapter *adapter)
2088 {
2089 struct rfd *rfd;
2090 u32 rfdct;
2091 struct rx_ring *rx_ring = &adapter->rx_ring;
2092
2093 /* Setup each RFD */
2094 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2095 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2096 if (!rfd)
2097 return -ENOMEM;
2098
2099 rfd->skb = NULL;
2100
2101 /* Add this RFD to the recv_list */
2102 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2103
2104 /* Increment the available RFD's */
2105 rx_ring->num_ready_recv++;
2106 }
2107
2108 return 0;
2109 }
2110
2111 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2112 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2113 {
2114 struct phy_device *phydev = adapter->phydev;
2115
2116 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2117 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2118 */
2119 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2120 writel(0, &adapter->regs->rxdma.max_pkt_time);
2121 writel(1, &adapter->regs->rxdma.num_pkt_done);
2122 }
2123 }
2124
2125 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2126 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2127 {
2128 struct rx_ring *rx_local = &adapter->rx_ring;
2129 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2130 u16 buff_index = rfd->bufferindex;
2131 u8 ring_index = rfd->ringindex;
2132 unsigned long flags;
2133 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2134
2135 /* We don't use any of the OOB data besides status. Otherwise, we
2136 * need to clean up OOB data
2137 */
2138 if (buff_index < fbr->num_entries) {
2139 u32 free_buff_ring;
2140 u32 __iomem *offset;
2141 struct fbr_desc *next;
2142
2143 if (ring_index == 0)
2144 offset = &rx_dma->fbr0_full_offset;
2145 else
2146 offset = &rx_dma->fbr1_full_offset;
2147
2148 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2149 INDEX10(fbr->local_full);
2150
2151 /* Handle the Free Buffer Ring advancement here. Write
2152 * the PA / Buffer Index for the returned buffer into
2153 * the oldest (next to be freed)FBR entry
2154 */
2155 next->addr_hi = fbr->bus_high[buff_index];
2156 next->addr_lo = fbr->bus_low[buff_index];
2157 next->word2 = buff_index;
2158
2159 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2160 fbr->num_entries - 1);
2161 writel(free_buff_ring, offset);
2162 } else {
2163 dev_err(&adapter->pdev->dev,
2164 "%s illegal Buffer Index returned\n", __func__);
2165 }
2166
2167 /* The processing on this RFD is done, so put it back on the tail of
2168 * our list
2169 */
2170 spin_lock_irqsave(&adapter->rcv_lock, flags);
2171 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2172 rx_local->num_ready_recv++;
2173 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2174
2175 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2176 }
2177
2178 /* nic_rx_pkts - Checks the hardware for available packets
2179 *
2180 * Checks the hardware for available packets, using completion ring
2181 * If packets are available, it gets an RFD from the recv_list, attaches
2182 * the packet to it, puts the RFD in the RecvPendList, and also returns
2183 * the pointer to the RFD.
2184 */
2185 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2186 {
2187 struct rx_ring *rx_local = &adapter->rx_ring;
2188 struct rx_status_block *status;
2189 struct pkt_stat_desc *psr;
2190 struct rfd *rfd;
2191 unsigned long flags;
2192 struct list_head *element;
2193 u8 ring_index;
2194 u16 buff_index;
2195 u32 len;
2196 u32 word0;
2197 u32 word1;
2198 struct sk_buff *skb;
2199 struct fbr_lookup *fbr;
2200
2201 /* RX Status block is written by the DMA engine prior to every
2202 * interrupt. It contains the next to be used entry in the Packet
2203 * Status Ring, and also the two Free Buffer rings.
2204 */
2205 status = rx_local->rx_status_block;
2206 word1 = status->word1 >> 16;
2207
2208 /* Check the PSR and wrap bits do not match */
2209 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2210 return NULL; /* Looks like this ring is not updated yet */
2211
2212 /* The packet status ring indicates that data is available. */
2213 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2214 (rx_local->local_psr_full & 0xFFF);
2215
2216 /* Grab any information that is required once the PSR is advanced,
2217 * since we can no longer rely on the memory being accurate
2218 */
2219 len = psr->word1 & 0xFFFF;
2220 ring_index = (psr->word1 >> 26) & 0x03;
2221 fbr = rx_local->fbr[ring_index];
2222 buff_index = (psr->word1 >> 16) & 0x3FF;
2223 word0 = psr->word0;
2224
2225 /* Indicate that we have used this PSR entry. */
2226 /* FIXME wrap 12 */
2227 add_12bit(&rx_local->local_psr_full, 1);
2228 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2229 /* Clear psr full and toggle the wrap bit */
2230 rx_local->local_psr_full &= ~0xFFF;
2231 rx_local->local_psr_full ^= 0x1000;
2232 }
2233
2234 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2235
2236 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2237 /* Illegal buffer or ring index cannot be used by S/W*/
2238 dev_err(&adapter->pdev->dev,
2239 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2240 rx_local->local_psr_full & 0xFFF, len, buff_index);
2241 return NULL;
2242 }
2243
2244 /* Get and fill the RFD. */
2245 spin_lock_irqsave(&adapter->rcv_lock, flags);
2246
2247 element = rx_local->recv_list.next;
2248 rfd = list_entry(element, struct rfd, list_node);
2249
2250 if (!rfd) {
2251 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2252 return NULL;
2253 }
2254
2255 list_del(&rfd->list_node);
2256 rx_local->num_ready_recv--;
2257
2258 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2259
2260 rfd->bufferindex = buff_index;
2261 rfd->ringindex = ring_index;
2262
2263 /* In V1 silicon, there is a bug which screws up filtering of runt
2264 * packets. Therefore runt packet filtering is disabled in the MAC and
2265 * the packets are dropped here. They are also counted here.
2266 */
2267 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2268 adapter->stats.rx_other_errs++;
2269 rfd->len = 0;
2270 goto out;
2271 }
2272
2273 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2274 adapter->stats.multicast_pkts_rcvd++;
2275
2276 rfd->len = len;
2277
2278 skb = dev_alloc_skb(rfd->len + 2);
2279 if (!skb)
2280 return NULL;
2281
2282 adapter->netdev->stats.rx_bytes += rfd->len;
2283
2284 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2285
2286 skb->protocol = eth_type_trans(skb, adapter->netdev);
2287 skb->ip_summed = CHECKSUM_NONE;
2288 netif_receive_skb(skb);
2289
2290 out:
2291 nic_return_rfd(adapter, rfd);
2292 return rfd;
2293 }
2294
2295 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2296 {
2297 struct rfd *rfd = NULL;
2298 int count = 0;
2299 int limit = budget;
2300 bool done = true;
2301 struct rx_ring *rx_ring = &adapter->rx_ring;
2302
2303 if (budget > MAX_PACKETS_HANDLED)
2304 limit = MAX_PACKETS_HANDLED;
2305
2306 /* Process up to available RFD's */
2307 while (count < limit) {
2308 if (list_empty(&rx_ring->recv_list)) {
2309 WARN_ON(rx_ring->num_ready_recv != 0);
2310 done = false;
2311 break;
2312 }
2313
2314 rfd = nic_rx_pkts(adapter);
2315
2316 if (rfd == NULL)
2317 break;
2318
2319 /* Do not receive any packets until a filter has been set.
2320 * Do not receive any packets until we have link.
2321 * If length is zero, return the RFD in order to advance the
2322 * Free buffer ring.
2323 */
2324 if (!adapter->packet_filter ||
2325 !netif_carrier_ok(adapter->netdev) ||
2326 rfd->len == 0)
2327 continue;
2328
2329 adapter->netdev->stats.rx_packets++;
2330
2331 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2332 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2333
2334 count++;
2335 }
2336
2337 if (count == limit || !done) {
2338 rx_ring->unfinished_receives = true;
2339 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2340 &adapter->regs->global.watchdog_timer);
2341 } else {
2342 /* Watchdog timer will disable itself if appropriate. */
2343 rx_ring->unfinished_receives = false;
2344 }
2345
2346 return count;
2347 }
2348
2349 /* et131x_tx_dma_memory_alloc
2350 *
2351 * Allocates memory that will be visible both to the device and to the CPU.
2352 * The OS will pass us packets, pointers to which we will insert in the Tx
2353 * Descriptor queue. The device will read this queue to find the packets in
2354 * memory. The device will update the "status" in memory each time it xmits a
2355 * packet.
2356 */
2357 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2358 {
2359 int desc_size = 0;
2360 struct tx_ring *tx_ring = &adapter->tx_ring;
2361
2362 /* Allocate memory for the TCB's (Transmit Control Block) */
2363 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2364 GFP_ATOMIC | GFP_DMA);
2365 if (!tx_ring->tcb_ring)
2366 return -ENOMEM;
2367
2368 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2369 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2370 desc_size,
2371 &tx_ring->tx_desc_ring_pa,
2372 GFP_KERNEL);
2373 if (!tx_ring->tx_desc_ring) {
2374 dev_err(&adapter->pdev->dev,
2375 "Cannot alloc memory for Tx Ring\n");
2376 return -ENOMEM;
2377 }
2378
2379 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2380 sizeof(u32),
2381 &tx_ring->tx_status_pa,
2382 GFP_KERNEL);
2383 if (!tx_ring->tx_status_pa) {
2384 dev_err(&adapter->pdev->dev,
2385 "Cannot alloc memory for Tx status block\n");
2386 return -ENOMEM;
2387 }
2388 return 0;
2389 }
2390
2391 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2392 {
2393 int desc_size = 0;
2394 struct tx_ring *tx_ring = &adapter->tx_ring;
2395
2396 if (tx_ring->tx_desc_ring) {
2397 /* Free memory relating to Tx rings here */
2398 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2399 dma_free_coherent(&adapter->pdev->dev,
2400 desc_size,
2401 tx_ring->tx_desc_ring,
2402 tx_ring->tx_desc_ring_pa);
2403 tx_ring->tx_desc_ring = NULL;
2404 }
2405
2406 /* Free memory for the Tx status block */
2407 if (tx_ring->tx_status) {
2408 dma_free_coherent(&adapter->pdev->dev,
2409 sizeof(u32),
2410 tx_ring->tx_status,
2411 tx_ring->tx_status_pa);
2412
2413 tx_ring->tx_status = NULL;
2414 }
2415 /* Free the memory for the tcb structures */
2416 kfree(tx_ring->tcb_ring);
2417 }
2418
2419 /* nic_send_packet - NIC specific send handler for version B silicon. */
2420 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2421 {
2422 u32 i;
2423 struct tx_desc desc[24];
2424 u32 frag = 0;
2425 u32 thiscopy, remainder;
2426 struct sk_buff *skb = tcb->skb;
2427 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2428 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2429 struct phy_device *phydev = adapter->phydev;
2430 dma_addr_t dma_addr;
2431 struct tx_ring *tx_ring = &adapter->tx_ring;
2432
2433 /* Part of the optimizations of this send routine restrict us to
2434 * sending 24 fragments at a pass. In practice we should never see
2435 * more than 5 fragments.
2436 */
2437
2438 /* nr_frags should be no more than 18. */
2439 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2440
2441 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2442
2443 for (i = 0; i < nr_frags; i++) {
2444 /* If there is something in this element, lets get a
2445 * descriptor from the ring and get the necessary data
2446 */
2447 if (i == 0) {
2448 /* If the fragments are smaller than a standard MTU,
2449 * then map them to a single descriptor in the Tx
2450 * Desc ring. However, if they're larger, as is
2451 * possible with support for jumbo packets, then
2452 * split them each across 2 descriptors.
2453 *
2454 * This will work until we determine why the hardware
2455 * doesn't seem to like large fragments.
2456 */
2457 if (skb_headlen(skb) <= 1514) {
2458 /* Low 16bits are length, high is vlan and
2459 * unused currently so zero
2460 */
2461 desc[frag].len_vlan = skb_headlen(skb);
2462 dma_addr = dma_map_single(&adapter->pdev->dev,
2463 skb->data,
2464 skb_headlen(skb),
2465 DMA_TO_DEVICE);
2466 desc[frag].addr_lo = lower_32_bits(dma_addr);
2467 desc[frag].addr_hi = upper_32_bits(dma_addr);
2468 frag++;
2469 } else {
2470 desc[frag].len_vlan = skb_headlen(skb) / 2;
2471 dma_addr = dma_map_single(&adapter->pdev->dev,
2472 skb->data,
2473 skb_headlen(skb) / 2,
2474 DMA_TO_DEVICE);
2475 desc[frag].addr_lo = lower_32_bits(dma_addr);
2476 desc[frag].addr_hi = upper_32_bits(dma_addr);
2477 frag++;
2478
2479 desc[frag].len_vlan = skb_headlen(skb) / 2;
2480 dma_addr = dma_map_single(&adapter->pdev->dev,
2481 skb->data +
2482 skb_headlen(skb) / 2,
2483 skb_headlen(skb) / 2,
2484 DMA_TO_DEVICE);
2485 desc[frag].addr_lo = lower_32_bits(dma_addr);
2486 desc[frag].addr_hi = upper_32_bits(dma_addr);
2487 frag++;
2488 }
2489 } else {
2490 desc[frag].len_vlan = frags[i - 1].size;
2491 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2492 &frags[i - 1],
2493 0,
2494 frags[i - 1].size,
2495 DMA_TO_DEVICE);
2496 desc[frag].addr_lo = lower_32_bits(dma_addr);
2497 desc[frag].addr_hi = upper_32_bits(dma_addr);
2498 frag++;
2499 }
2500 }
2501
2502 if (phydev && phydev->speed == SPEED_1000) {
2503 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2504 /* Last element & Interrupt flag */
2505 desc[frag - 1].flags =
2506 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2507 tx_ring->since_irq = 0;
2508 } else { /* Last element */
2509 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2510 }
2511 } else {
2512 desc[frag - 1].flags =
2513 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2514 }
2515
2516 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2517
2518 tcb->index_start = tx_ring->send_idx;
2519 tcb->stale = 0;
2520
2521 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2522
2523 if (thiscopy >= frag) {
2524 remainder = 0;
2525 thiscopy = frag;
2526 } else {
2527 remainder = frag - thiscopy;
2528 }
2529
2530 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2531 desc,
2532 sizeof(struct tx_desc) * thiscopy);
2533
2534 add_10bit(&tx_ring->send_idx, thiscopy);
2535
2536 if (INDEX10(tx_ring->send_idx) == 0 ||
2537 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2538 tx_ring->send_idx &= ~ET_DMA10_MASK;
2539 tx_ring->send_idx ^= ET_DMA10_WRAP;
2540 }
2541
2542 if (remainder) {
2543 memcpy(tx_ring->tx_desc_ring,
2544 desc + thiscopy,
2545 sizeof(struct tx_desc) * remainder);
2546
2547 add_10bit(&tx_ring->send_idx, remainder);
2548 }
2549
2550 if (INDEX10(tx_ring->send_idx) == 0) {
2551 if (tx_ring->send_idx)
2552 tcb->index = NUM_DESC_PER_RING_TX - 1;
2553 else
2554 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2555 } else {
2556 tcb->index = tx_ring->send_idx - 1;
2557 }
2558
2559 spin_lock(&adapter->tcb_send_qlock);
2560
2561 if (tx_ring->send_tail)
2562 tx_ring->send_tail->next = tcb;
2563 else
2564 tx_ring->send_head = tcb;
2565
2566 tx_ring->send_tail = tcb;
2567
2568 WARN_ON(tcb->next != NULL);
2569
2570 tx_ring->used++;
2571
2572 spin_unlock(&adapter->tcb_send_qlock);
2573
2574 /* Write the new write pointer back to the device. */
2575 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2576
2577 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2578 * timer to wake us up if this packet isn't followed by N more.
2579 */
2580 if (phydev && phydev->speed == SPEED_1000) {
2581 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2582 &adapter->regs->global.watchdog_timer);
2583 }
2584 return 0;
2585 }
2586
2587 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2588 {
2589 int status;
2590 struct tcb *tcb;
2591 unsigned long flags;
2592 struct tx_ring *tx_ring = &adapter->tx_ring;
2593
2594 /* All packets must have at least a MAC address and a protocol type */
2595 if (skb->len < ETH_HLEN)
2596 return -EIO;
2597
2598 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2599
2600 tcb = tx_ring->tcb_qhead;
2601
2602 if (tcb == NULL) {
2603 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2604 return -ENOMEM;
2605 }
2606
2607 tx_ring->tcb_qhead = tcb->next;
2608
2609 if (tx_ring->tcb_qhead == NULL)
2610 tx_ring->tcb_qtail = NULL;
2611
2612 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2613
2614 tcb->skb = skb;
2615 tcb->next = NULL;
2616
2617 status = nic_send_packet(adapter, tcb);
2618
2619 if (status != 0) {
2620 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2621
2622 if (tx_ring->tcb_qtail)
2623 tx_ring->tcb_qtail->next = tcb;
2624 else
2625 /* Apparently ready Q is empty. */
2626 tx_ring->tcb_qhead = tcb;
2627
2628 tx_ring->tcb_qtail = tcb;
2629 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2630 return status;
2631 }
2632 WARN_ON(tx_ring->used > NUM_TCB);
2633 return 0;
2634 }
2635
2636 /* free_send_packet - Recycle a struct tcb */
2637 static inline void free_send_packet(struct et131x_adapter *adapter,
2638 struct tcb *tcb)
2639 {
2640 unsigned long flags;
2641 struct tx_desc *desc = NULL;
2642 struct net_device_stats *stats = &adapter->netdev->stats;
2643 struct tx_ring *tx_ring = &adapter->tx_ring;
2644 u64 dma_addr;
2645
2646 if (tcb->skb) {
2647 stats->tx_bytes += tcb->skb->len;
2648
2649 /* Iterate through the TX descriptors on the ring
2650 * corresponding to this packet and umap the fragments
2651 * they point to
2652 */
2653 do {
2654 desc = tx_ring->tx_desc_ring +
2655 INDEX10(tcb->index_start);
2656
2657 dma_addr = desc->addr_lo;
2658 dma_addr |= (u64)desc->addr_hi << 32;
2659
2660 dma_unmap_single(&adapter->pdev->dev,
2661 dma_addr,
2662 desc->len_vlan, DMA_TO_DEVICE);
2663
2664 add_10bit(&tcb->index_start, 1);
2665 if (INDEX10(tcb->index_start) >=
2666 NUM_DESC_PER_RING_TX) {
2667 tcb->index_start &= ~ET_DMA10_MASK;
2668 tcb->index_start ^= ET_DMA10_WRAP;
2669 }
2670 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2671
2672 dev_kfree_skb_any(tcb->skb);
2673 }
2674
2675 memset(tcb, 0, sizeof(struct tcb));
2676
2677 /* Add the TCB to the Ready Q */
2678 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2679
2680 stats->tx_packets++;
2681
2682 if (tx_ring->tcb_qtail)
2683 tx_ring->tcb_qtail->next = tcb;
2684 else /* Apparently ready Q is empty. */
2685 tx_ring->tcb_qhead = tcb;
2686
2687 tx_ring->tcb_qtail = tcb;
2688
2689 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2690 WARN_ON(tx_ring->used < 0);
2691 }
2692
2693 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2694 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2695 {
2696 struct tcb *tcb;
2697 unsigned long flags;
2698 u32 freed = 0;
2699 struct tx_ring *tx_ring = &adapter->tx_ring;
2700
2701 /* Any packets being sent? Check the first TCB on the send list */
2702 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2703
2704 tcb = tx_ring->send_head;
2705
2706 while (tcb != NULL && freed < NUM_TCB) {
2707 struct tcb *next = tcb->next;
2708
2709 tx_ring->send_head = next;
2710
2711 if (next == NULL)
2712 tx_ring->send_tail = NULL;
2713
2714 tx_ring->used--;
2715
2716 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2717
2718 freed++;
2719 free_send_packet(adapter, tcb);
2720
2721 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2722
2723 tcb = tx_ring->send_head;
2724 }
2725
2726 WARN_ON(freed == NUM_TCB);
2727
2728 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2729
2730 tx_ring->used = 0;
2731 }
2732
2733 /* et131x_handle_send_pkts
2734 *
2735 * Re-claim the send resources, complete sends and get more to send from
2736 * the send wait queue.
2737 */
2738 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2739 {
2740 unsigned long flags;
2741 u32 serviced;
2742 struct tcb *tcb;
2743 u32 index;
2744 struct tx_ring *tx_ring = &adapter->tx_ring;
2745
2746 serviced = readl(&adapter->regs->txdma.new_service_complete);
2747 index = INDEX10(serviced);
2748
2749 /* Has the ring wrapped? Process any descriptors that do not have
2750 * the same "wrap" indicator as the current completion indicator
2751 */
2752 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2753
2754 tcb = tx_ring->send_head;
2755
2756 while (tcb &&
2757 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2758 index < INDEX10(tcb->index)) {
2759 tx_ring->used--;
2760 tx_ring->send_head = tcb->next;
2761 if (tcb->next == NULL)
2762 tx_ring->send_tail = NULL;
2763
2764 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2765 free_send_packet(adapter, tcb);
2766 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2767
2768 /* Goto the next packet */
2769 tcb = tx_ring->send_head;
2770 }
2771 while (tcb &&
2772 !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2773 index > (tcb->index & ET_DMA10_MASK)) {
2774 tx_ring->used--;
2775 tx_ring->send_head = tcb->next;
2776 if (tcb->next == NULL)
2777 tx_ring->send_tail = NULL;
2778
2779 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2780 free_send_packet(adapter, tcb);
2781 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2782
2783 /* Goto the next packet */
2784 tcb = tx_ring->send_head;
2785 }
2786
2787 /* Wake up the queue when we hit a low-water mark */
2788 if (tx_ring->used <= NUM_TCB / 3)
2789 netif_wake_queue(adapter->netdev);
2790
2791 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2792 }
2793
2794 static int et131x_get_settings(struct net_device *netdev,
2795 struct ethtool_cmd *cmd)
2796 {
2797 struct et131x_adapter *adapter = netdev_priv(netdev);
2798
2799 return phy_ethtool_gset(adapter->phydev, cmd);
2800 }
2801
2802 static int et131x_set_settings(struct net_device *netdev,
2803 struct ethtool_cmd *cmd)
2804 {
2805 struct et131x_adapter *adapter = netdev_priv(netdev);
2806
2807 return phy_ethtool_sset(adapter->phydev, cmd);
2808 }
2809
2810 static int et131x_get_regs_len(struct net_device *netdev)
2811 {
2812 #define ET131X_REGS_LEN 256
2813 return ET131X_REGS_LEN * sizeof(u32);
2814 }
2815
2816 static void et131x_get_regs(struct net_device *netdev,
2817 struct ethtool_regs *regs, void *regs_data)
2818 {
2819 struct et131x_adapter *adapter = netdev_priv(netdev);
2820 struct address_map __iomem *aregs = adapter->regs;
2821 u32 *regs_buff = regs_data;
2822 u32 num = 0;
2823 u16 tmp;
2824
2825 memset(regs_data, 0, et131x_get_regs_len(netdev));
2826
2827 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2828 adapter->pdev->device;
2829
2830 /* PHY regs */
2831 et131x_mii_read(adapter, MII_BMCR, &tmp);
2832 regs_buff[num++] = tmp;
2833 et131x_mii_read(adapter, MII_BMSR, &tmp);
2834 regs_buff[num++] = tmp;
2835 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2836 regs_buff[num++] = tmp;
2837 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2838 regs_buff[num++] = tmp;
2839 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2840 regs_buff[num++] = tmp;
2841 et131x_mii_read(adapter, MII_LPA, &tmp);
2842 regs_buff[num++] = tmp;
2843 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2844 regs_buff[num++] = tmp;
2845 /* Autoneg next page transmit reg */
2846 et131x_mii_read(adapter, 0x07, &tmp);
2847 regs_buff[num++] = tmp;
2848 /* Link partner next page reg */
2849 et131x_mii_read(adapter, 0x08, &tmp);
2850 regs_buff[num++] = tmp;
2851 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2852 regs_buff[num++] = tmp;
2853 et131x_mii_read(adapter, MII_STAT1000, &tmp);
2854 regs_buff[num++] = tmp;
2855 et131x_mii_read(adapter, 0x0b, &tmp);
2856 regs_buff[num++] = tmp;
2857 et131x_mii_read(adapter, 0x0c, &tmp);
2858 regs_buff[num++] = tmp;
2859 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2860 regs_buff[num++] = tmp;
2861 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2862 regs_buff[num++] = tmp;
2863 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2864 regs_buff[num++] = tmp;
2865
2866 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2867 regs_buff[num++] = tmp;
2868 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2869 regs_buff[num++] = tmp;
2870 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2871 regs_buff[num++] = tmp;
2872 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2873 regs_buff[num++] = tmp;
2874 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2875 regs_buff[num++] = tmp;
2876
2877 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2878 regs_buff[num++] = tmp;
2879 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2880 regs_buff[num++] = tmp;
2881 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2882 regs_buff[num++] = tmp;
2883 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2884 regs_buff[num++] = tmp;
2885 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2886 regs_buff[num++] = tmp;
2887 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2888 regs_buff[num++] = tmp;
2889 et131x_mii_read(adapter, PHY_LED_1, &tmp);
2890 regs_buff[num++] = tmp;
2891 et131x_mii_read(adapter, PHY_LED_2, &tmp);
2892 regs_buff[num++] = tmp;
2893
2894 /* Global regs */
2895 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2896 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2897 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2898 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2899 regs_buff[num++] = readl(&aregs->global.pm_csr);
2900 regs_buff[num++] = adapter->stats.interrupt_status;
2901 regs_buff[num++] = readl(&aregs->global.int_mask);
2902 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2903 regs_buff[num++] = readl(&aregs->global.int_status_alias);
2904 regs_buff[num++] = readl(&aregs->global.sw_reset);
2905 regs_buff[num++] = readl(&aregs->global.slv_timer);
2906 regs_buff[num++] = readl(&aregs->global.msi_config);
2907 regs_buff[num++] = readl(&aregs->global.loopback);
2908 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2909
2910 /* TXDMA regs */
2911 regs_buff[num++] = readl(&aregs->txdma.csr);
2912 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2913 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2914 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2915 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2916 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2917 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2918 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2919 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2920 regs_buff[num++] = readl(&aregs->txdma.service_request);
2921 regs_buff[num++] = readl(&aregs->txdma.service_complete);
2922 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2923 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2924 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2925 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2926 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2927 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2928 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2929 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2930 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2931 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2932 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2933 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2934 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2935 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2936 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2937
2938 /* RXDMA regs */
2939 regs_buff[num++] = readl(&aregs->rxdma.csr);
2940 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2941 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2942 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2943 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2944 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2945 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2946 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2947 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2948 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2949 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2950 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2951 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2952 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2953 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2954 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2955 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2956 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2957 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2958 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2959 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2960 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2961 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2962 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2963 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2964 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2965 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2966 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2967 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2968 }
2969
2970 static void et131x_get_drvinfo(struct net_device *netdev,
2971 struct ethtool_drvinfo *info)
2972 {
2973 struct et131x_adapter *adapter = netdev_priv(netdev);
2974
2975 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2976 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2977 strlcpy(info->bus_info, pci_name(adapter->pdev),
2978 sizeof(info->bus_info));
2979 }
2980
2981 static struct ethtool_ops et131x_ethtool_ops = {
2982 .get_settings = et131x_get_settings,
2983 .set_settings = et131x_set_settings,
2984 .get_drvinfo = et131x_get_drvinfo,
2985 .get_regs_len = et131x_get_regs_len,
2986 .get_regs = et131x_get_regs,
2987 .get_link = ethtool_op_get_link,
2988 };
2989
2990 /* et131x_hwaddr_init - set up the MAC Address */
2991 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2992 {
2993 /* If have our default mac from init and no mac address from
2994 * EEPROM then we need to generate the last octet and set it on the
2995 * device
2996 */
2997 if (is_zero_ether_addr(adapter->rom_addr)) {
2998 /* We need to randomly generate the last octet so we
2999 * decrease our chances of setting the mac address to
3000 * same as another one of our cards in the system
3001 */
3002 get_random_bytes(&adapter->addr[5], 1);
3003 /* We have the default value in the register we are
3004 * working with so we need to copy the current
3005 * address into the permanent address
3006 */
3007 ether_addr_copy(adapter->rom_addr, adapter->addr);
3008 } else {
3009 /* We do not have an override address, so set the
3010 * current address to the permanent address and add
3011 * it to the device
3012 */
3013 ether_addr_copy(adapter->addr, adapter->rom_addr);
3014 }
3015 }
3016
3017 static int et131x_pci_init(struct et131x_adapter *adapter,
3018 struct pci_dev *pdev)
3019 {
3020 u16 max_payload;
3021 int i, rc;
3022
3023 rc = et131x_init_eeprom(adapter);
3024 if (rc < 0)
3025 goto out;
3026
3027 if (!pci_is_pcie(pdev)) {
3028 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3029 goto err_out;
3030 }
3031
3032 /* Program the Ack/Nak latency and replay timers */
3033 max_payload = pdev->pcie_mpss;
3034
3035 if (max_payload < 2) {
3036 static const u16 acknak[2] = { 0x76, 0xD0 };
3037 static const u16 replay[2] = { 0x1E0, 0x2ED };
3038
3039 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3040 acknak[max_payload])) {
3041 dev_err(&pdev->dev,
3042 "Could not write PCI config space for ACK/NAK\n");
3043 goto err_out;
3044 }
3045 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3046 replay[max_payload])) {
3047 dev_err(&pdev->dev,
3048 "Could not write PCI config space for Replay Timer\n");
3049 goto err_out;
3050 }
3051 }
3052
3053 /* l0s and l1 latency timers. We are using default values.
3054 * Representing 001 for L0s and 010 for L1
3055 */
3056 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3057 dev_err(&pdev->dev,
3058 "Could not write PCI config space for Latency Timers\n");
3059 goto err_out;
3060 }
3061
3062 /* Change the max read size to 2k */
3063 if (pcie_set_readrq(pdev, 2048)) {
3064 dev_err(&pdev->dev,
3065 "Couldn't change PCI config space for Max read size\n");
3066 goto err_out;
3067 }
3068
3069 /* Get MAC address from config space if an eeprom exists, otherwise
3070 * the MAC address there will not be valid
3071 */
3072 if (!adapter->has_eeprom) {
3073 et131x_hwaddr_init(adapter);
3074 return 0;
3075 }
3076
3077 for (i = 0; i < ETH_ALEN; i++) {
3078 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3079 adapter->rom_addr + i)) {
3080 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3081 goto err_out;
3082 }
3083 }
3084 ether_addr_copy(adapter->addr, adapter->rom_addr);
3085 out:
3086 return rc;
3087 err_out:
3088 rc = -EIO;
3089 goto out;
3090 }
3091
3092 /* et131x_error_timer_handler
3093 * @data: timer-specific variable; here a pointer to our adapter structure
3094 *
3095 * The routine called when the error timer expires, to track the number of
3096 * recurring errors.
3097 */
3098 static void et131x_error_timer_handler(unsigned long data)
3099 {
3100 struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3101 struct phy_device *phydev = adapter->phydev;
3102
3103 if (et1310_in_phy_coma(adapter)) {
3104 /* Bring the device immediately out of coma, to
3105 * prevent it from sleeping indefinitely, this
3106 * mechanism could be improved!
3107 */
3108 et1310_disable_phy_coma(adapter);
3109 adapter->boot_coma = 20;
3110 } else {
3111 et1310_update_macstat_host_counters(adapter);
3112 }
3113
3114 if (!phydev->link && adapter->boot_coma < 11)
3115 adapter->boot_coma++;
3116
3117 if (adapter->boot_coma == 10) {
3118 if (!phydev->link) {
3119 if (!et1310_in_phy_coma(adapter)) {
3120 /* NOTE - This was originally a 'sync with
3121 * interrupt'. How to do that under Linux?
3122 */
3123 et131x_enable_interrupts(adapter);
3124 et1310_enable_phy_coma(adapter);
3125 }
3126 }
3127 }
3128
3129 /* This is a periodic timer, so reschedule */
3130 mod_timer(&adapter->error_timer, jiffies +
3131 msecs_to_jiffies(TX_ERROR_PERIOD));
3132 }
3133
3134 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3135 {
3136 et131x_tx_dma_memory_free(adapter);
3137 et131x_rx_dma_memory_free(adapter);
3138 }
3139
3140 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3141 {
3142 int status;
3143
3144 status = et131x_tx_dma_memory_alloc(adapter);
3145 if (status) {
3146 dev_err(&adapter->pdev->dev,
3147 "et131x_tx_dma_memory_alloc FAILED\n");
3148 et131x_tx_dma_memory_free(adapter);
3149 return status;
3150 }
3151
3152 status = et131x_rx_dma_memory_alloc(adapter);
3153 if (status) {
3154 dev_err(&adapter->pdev->dev,
3155 "et131x_rx_dma_memory_alloc FAILED\n");
3156 et131x_adapter_memory_free(adapter);
3157 return status;
3158 }
3159
3160 status = et131x_init_recv(adapter);
3161 if (status) {
3162 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3163 et131x_adapter_memory_free(adapter);
3164 }
3165 return status;
3166 }
3167
3168 static void et131x_adjust_link(struct net_device *netdev)
3169 {
3170 struct et131x_adapter *adapter = netdev_priv(netdev);
3171 struct phy_device *phydev = adapter->phydev;
3172
3173 if (!phydev)
3174 return;
3175 if (phydev->link == adapter->link)
3176 return;
3177
3178 /* Check to see if we are in coma mode and if
3179 * so, disable it because we will not be able
3180 * to read PHY values until we are out.
3181 */
3182 if (et1310_in_phy_coma(adapter))
3183 et1310_disable_phy_coma(adapter);
3184
3185 adapter->link = phydev->link;
3186 phy_print_status(phydev);
3187
3188 if (phydev->link) {
3189 adapter->boot_coma = 20;
3190 if (phydev->speed == SPEED_10) {
3191 u16 register18;
3192
3193 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3194 &register18);
3195 et131x_mii_write(adapter, phydev->addr,
3196 PHY_MPHY_CONTROL_REG,
3197 register18 | 0x4);
3198 et131x_mii_write(adapter, phydev->addr, PHY_INDEX_REG,
3199 register18 | 0x8402);
3200 et131x_mii_write(adapter, phydev->addr, PHY_DATA_REG,
3201 register18 | 511);
3202 et131x_mii_write(adapter, phydev->addr,
3203 PHY_MPHY_CONTROL_REG, register18);
3204 }
3205
3206 et1310_config_flow_control(adapter);
3207
3208 if (phydev->speed == SPEED_1000 &&
3209 adapter->registry_jumbo_packet > 2048) {
3210 u16 reg;
3211
3212 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3213 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3214 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3215 et131x_mii_write(adapter, phydev->addr, PHY_CONFIG,
3216 reg);
3217 }
3218
3219 et131x_set_rx_dma_timer(adapter);
3220 et1310_config_mac_regs2(adapter);
3221 } else {
3222 adapter->boot_coma = 0;
3223
3224 if (phydev->speed == SPEED_10) {
3225 u16 register18;
3226
3227 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3228 &register18);
3229 et131x_mii_write(adapter, phydev->addr,
3230 PHY_MPHY_CONTROL_REG,
3231 register18 | 0x4);
3232 et131x_mii_write(adapter, phydev->addr,
3233 PHY_INDEX_REG, register18 | 0x8402);
3234 et131x_mii_write(adapter, phydev->addr,
3235 PHY_DATA_REG, register18 | 511);
3236 et131x_mii_write(adapter, phydev->addr,
3237 PHY_MPHY_CONTROL_REG, register18);
3238 }
3239
3240 et131x_free_busy_send_packets(adapter);
3241 et131x_init_send(adapter);
3242
3243 /* Bring the device back to the state it was during
3244 * init prior to autonegotiation being complete. This
3245 * way, when we get the auto-neg complete interrupt,
3246 * we can complete init by calling config_mac_regs2.
3247 */
3248 et131x_soft_reset(adapter);
3249
3250 et131x_adapter_setup(adapter);
3251
3252 et131x_disable_txrx(netdev);
3253 et131x_enable_txrx(netdev);
3254 }
3255 }
3256
3257 static int et131x_mii_probe(struct net_device *netdev)
3258 {
3259 struct et131x_adapter *adapter = netdev_priv(netdev);
3260 struct phy_device *phydev = NULL;
3261
3262 phydev = phy_find_first(adapter->mii_bus);
3263 if (!phydev) {
3264 dev_err(&adapter->pdev->dev, "no PHY found\n");
3265 return -ENODEV;
3266 }
3267
3268 phydev = phy_connect(netdev, phydev_name(phydev),
3269 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3270
3271 if (IS_ERR(phydev)) {
3272 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3273 return PTR_ERR(phydev);
3274 }
3275
3276 phydev->supported &= (SUPPORTED_10baseT_Half |
3277 SUPPORTED_10baseT_Full |
3278 SUPPORTED_100baseT_Half |
3279 SUPPORTED_100baseT_Full |
3280 SUPPORTED_Autoneg |
3281 SUPPORTED_MII |
3282 SUPPORTED_TP);
3283
3284 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3285 phydev->supported |= SUPPORTED_1000baseT_Half |
3286 SUPPORTED_1000baseT_Full;
3287
3288 phydev->advertising = phydev->supported;
3289 phydev->autoneg = AUTONEG_ENABLE;
3290 adapter->phydev = phydev;
3291
3292 dev_info(&adapter->pdev->dev,
3293 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3294 phydev->drv->name, phydev_name(phydev));
3295
3296 return 0;
3297 }
3298
3299 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3300 struct pci_dev *pdev)
3301 {
3302 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3303
3304 struct et131x_adapter *adapter;
3305
3306 adapter = netdev_priv(netdev);
3307 adapter->pdev = pci_dev_get(pdev);
3308 adapter->netdev = netdev;
3309
3310 spin_lock_init(&adapter->tcb_send_qlock);
3311 spin_lock_init(&adapter->tcb_ready_qlock);
3312 spin_lock_init(&adapter->rcv_lock);
3313
3314 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3315
3316 ether_addr_copy(adapter->addr, default_mac);
3317
3318 return adapter;
3319 }
3320
3321 static void et131x_pci_remove(struct pci_dev *pdev)
3322 {
3323 struct net_device *netdev = pci_get_drvdata(pdev);
3324 struct et131x_adapter *adapter = netdev_priv(netdev);
3325
3326 unregister_netdev(netdev);
3327 netif_napi_del(&adapter->napi);
3328 phy_disconnect(adapter->phydev);
3329 mdiobus_unregister(adapter->mii_bus);
3330 kfree(adapter->mii_bus->irq);
3331 mdiobus_free(adapter->mii_bus);
3332
3333 et131x_adapter_memory_free(adapter);
3334 iounmap(adapter->regs);
3335 pci_dev_put(pdev);
3336
3337 free_netdev(netdev);
3338 pci_release_regions(pdev);
3339 pci_disable_device(pdev);
3340 }
3341
3342 static void et131x_up(struct net_device *netdev)
3343 {
3344 struct et131x_adapter *adapter = netdev_priv(netdev);
3345
3346 et131x_enable_txrx(netdev);
3347 phy_start(adapter->phydev);
3348 }
3349
3350 static void et131x_down(struct net_device *netdev)
3351 {
3352 struct et131x_adapter *adapter = netdev_priv(netdev);
3353
3354 /* Save the timestamp for the TX watchdog, prevent a timeout */
3355 netdev->trans_start = jiffies;
3356
3357 phy_stop(adapter->phydev);
3358 et131x_disable_txrx(netdev);
3359 }
3360
3361 #ifdef CONFIG_PM_SLEEP
3362 static int et131x_suspend(struct device *dev)
3363 {
3364 struct pci_dev *pdev = to_pci_dev(dev);
3365 struct net_device *netdev = pci_get_drvdata(pdev);
3366
3367 if (netif_running(netdev)) {
3368 netif_device_detach(netdev);
3369 et131x_down(netdev);
3370 pci_save_state(pdev);
3371 }
3372
3373 return 0;
3374 }
3375
3376 static int et131x_resume(struct device *dev)
3377 {
3378 struct pci_dev *pdev = to_pci_dev(dev);
3379 struct net_device *netdev = pci_get_drvdata(pdev);
3380
3381 if (netif_running(netdev)) {
3382 pci_restore_state(pdev);
3383 et131x_up(netdev);
3384 netif_device_attach(netdev);
3385 }
3386
3387 return 0;
3388 }
3389 #endif
3390
3391 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3392
3393 static irqreturn_t et131x_isr(int irq, void *dev_id)
3394 {
3395 bool handled = true;
3396 bool enable_interrupts = true;
3397 struct net_device *netdev = dev_id;
3398 struct et131x_adapter *adapter = netdev_priv(netdev);
3399 struct address_map __iomem *iomem = adapter->regs;
3400 struct rx_ring *rx_ring = &adapter->rx_ring;
3401 struct tx_ring *tx_ring = &adapter->tx_ring;
3402 u32 status;
3403
3404 if (!netif_device_present(netdev)) {
3405 handled = false;
3406 enable_interrupts = false;
3407 goto out;
3408 }
3409
3410 et131x_disable_interrupts(adapter);
3411
3412 status = readl(&adapter->regs->global.int_status);
3413
3414 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3415 status &= ~INT_MASK_ENABLE;
3416 else
3417 status &= ~INT_MASK_ENABLE_NO_FLOW;
3418
3419 /* Make sure this is our interrupt */
3420 if (!status) {
3421 handled = false;
3422 et131x_enable_interrupts(adapter);
3423 goto out;
3424 }
3425
3426 /* This is our interrupt, so process accordingly */
3427 if (status & ET_INTR_WATCHDOG) {
3428 struct tcb *tcb = tx_ring->send_head;
3429
3430 if (tcb)
3431 if (++tcb->stale > 1)
3432 status |= ET_INTR_TXDMA_ISR;
3433
3434 if (rx_ring->unfinished_receives)
3435 status |= ET_INTR_RXDMA_XFR_DONE;
3436 else if (tcb == NULL)
3437 writel(0, &adapter->regs->global.watchdog_timer);
3438
3439 status &= ~ET_INTR_WATCHDOG;
3440 }
3441
3442 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3443 enable_interrupts = false;
3444 napi_schedule(&adapter->napi);
3445 }
3446
3447 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3448
3449 if (!status)
3450 goto out;
3451
3452 if (status & ET_INTR_TXDMA_ERR) {
3453 /* Following read also clears the register (COR) */
3454 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3455
3456 dev_warn(&adapter->pdev->dev,
3457 "TXDMA_ERR interrupt, error = %d\n",
3458 txdma_err);
3459 }
3460
3461 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3462 /* This indicates the number of unused buffers in RXDMA free
3463 * buffer ring 0 is <= the limit you programmed. Free buffer
3464 * resources need to be returned. Free buffers are consumed as
3465 * packets are passed from the network to the host. The host
3466 * becomes aware of the packets from the contents of the packet
3467 * status ring. This ring is queried when the packet done
3468 * interrupt occurs. Packets are then passed to the OS. When
3469 * the OS is done with the packets the resources can be
3470 * returned to the ET1310 for re-use. This interrupt is one
3471 * method of returning resources.
3472 */
3473
3474 /* If the user has flow control on, then we will
3475 * send a pause packet, otherwise just exit
3476 */
3477 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3478 u32 pm_csr;
3479
3480 /* Tell the device to send a pause packet via the back
3481 * pressure register (bp req and bp xon/xoff)
3482 */
3483 pm_csr = readl(&iomem->global.pm_csr);
3484 if (!et1310_in_phy_coma(adapter))
3485 writel(3, &iomem->txmac.bp_ctrl);
3486 }
3487 }
3488
3489 /* Handle Packet Status Ring Low Interrupt */
3490 if (status & ET_INTR_RXDMA_STAT_LOW) {
3491 /* Same idea as with the two Free Buffer Rings. Packets going
3492 * from the network to the host each consume a free buffer
3493 * resource and a packet status resource. These resources are
3494 * passed to the OS. When the OS is done with the resources,
3495 * they need to be returned to the ET1310. This is one method
3496 * of returning the resources.
3497 */
3498 }
3499
3500 if (status & ET_INTR_RXDMA_ERR) {
3501 /* The rxdma_error interrupt is sent when a time-out on a
3502 * request issued by the JAGCore has occurred or a completion is
3503 * returned with an un-successful status. In both cases the
3504 * request is considered complete. The JAGCore will
3505 * automatically re-try the request in question. Normally
3506 * information on events like these are sent to the host using
3507 * the "Advanced Error Reporting" capability. This interrupt is
3508 * another way of getting similar information. The only thing
3509 * required is to clear the interrupt by reading the ISR in the
3510 * global resources. The JAGCore will do a re-try on the
3511 * request. Normally you should never see this interrupt. If
3512 * you start to see this interrupt occurring frequently then
3513 * something bad has occurred. A reset might be the thing to do.
3514 */
3515 /* TRAP();*/
3516
3517 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3518 readl(&iomem->txmac.tx_test));
3519 }
3520
3521 /* Handle the Wake on LAN Event */
3522 if (status & ET_INTR_WOL) {
3523 /* This is a secondary interrupt for wake on LAN. The driver
3524 * should never see this, if it does, something serious is
3525 * wrong.
3526 */
3527 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3528 }
3529
3530 if (status & ET_INTR_TXMAC) {
3531 u32 err = readl(&iomem->txmac.err);
3532
3533 /* When any of the errors occur and TXMAC generates an
3534 * interrupt to report these errors, it usually means that
3535 * TXMAC has detected an error in the data stream retrieved
3536 * from the on-chip Tx Q. All of these errors are catastrophic
3537 * and TXMAC won't be able to recover data when these errors
3538 * occur. In a nutshell, the whole Tx path will have to be reset
3539 * and re-configured afterwards.
3540 */
3541 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3542 err);
3543
3544 /* If we are debugging, we want to see this error, otherwise we
3545 * just want the device to be reset and continue
3546 */
3547 }
3548
3549 if (status & ET_INTR_RXMAC) {
3550 /* These interrupts are catastrophic to the device, what we need
3551 * to do is disable the interrupts and set the flag to cause us
3552 * to reset so we can solve this issue.
3553 */
3554 dev_warn(&adapter->pdev->dev,
3555 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
3556 readl(&iomem->rxmac.err_reg));
3557
3558 dev_warn(&adapter->pdev->dev,
3559 "Enable 0x%08x, Diag 0x%08x\n",
3560 readl(&iomem->rxmac.ctrl),
3561 readl(&iomem->rxmac.rxq_diag));
3562
3563 /* If we are debugging, we want to see this error, otherwise we
3564 * just want the device to be reset and continue
3565 */
3566 }
3567
3568 if (status & ET_INTR_MAC_STAT) {
3569 /* This means at least one of the un-masked counters in the
3570 * MAC_STAT block has rolled over. Use this to maintain the top,
3571 * software managed bits of the counter(s).
3572 */
3573 et1310_handle_macstat_interrupt(adapter);
3574 }
3575
3576 if (status & ET_INTR_SLV_TIMEOUT) {
3577 /* This means a timeout has occurred on a read or write request
3578 * to one of the JAGCore registers. The Global Resources block
3579 * has terminated the request and on a read request, returned a
3580 * "fake" value. The most likely reasons are: Bad Address or the
3581 * addressed module is in a power-down state and can't respond.
3582 */
3583 }
3584
3585 out:
3586 if (enable_interrupts)
3587 et131x_enable_interrupts(adapter);
3588
3589 return IRQ_RETVAL(handled);
3590 }
3591
3592 static int et131x_poll(struct napi_struct *napi, int budget)
3593 {
3594 struct et131x_adapter *adapter =
3595 container_of(napi, struct et131x_adapter, napi);
3596 int work_done = et131x_handle_recv_pkts(adapter, budget);
3597
3598 et131x_handle_send_pkts(adapter);
3599
3600 if (work_done < budget) {
3601 napi_complete(&adapter->napi);
3602 et131x_enable_interrupts(adapter);
3603 }
3604
3605 return work_done;
3606 }
3607
3608 /* et131x_stats - Return the current device statistics */
3609 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3610 {
3611 struct et131x_adapter *adapter = netdev_priv(netdev);
3612 struct net_device_stats *stats = &adapter->netdev->stats;
3613 struct ce_stats *devstat = &adapter->stats;
3614
3615 stats->rx_errors = devstat->rx_length_errs +
3616 devstat->rx_align_errs +
3617 devstat->rx_crc_errs +
3618 devstat->rx_code_violations +
3619 devstat->rx_other_errs;
3620 stats->tx_errors = devstat->tx_max_pkt_errs;
3621 stats->multicast = devstat->multicast_pkts_rcvd;
3622 stats->collisions = devstat->tx_collisions;
3623
3624 stats->rx_length_errors = devstat->rx_length_errs;
3625 stats->rx_over_errors = devstat->rx_overflows;
3626 stats->rx_crc_errors = devstat->rx_crc_errs;
3627 stats->rx_dropped = devstat->rcvd_pkts_dropped;
3628
3629 /* NOTE: Not used, can't find analogous statistics */
3630 /* stats->rx_frame_errors = devstat->; */
3631 /* stats->rx_fifo_errors = devstat->; */
3632 /* stats->rx_missed_errors = devstat->; */
3633
3634 /* stats->tx_aborted_errors = devstat->; */
3635 /* stats->tx_carrier_errors = devstat->; */
3636 /* stats->tx_fifo_errors = devstat->; */
3637 /* stats->tx_heartbeat_errors = devstat->; */
3638 /* stats->tx_window_errors = devstat->; */
3639 return stats;
3640 }
3641
3642 static int et131x_open(struct net_device *netdev)
3643 {
3644 struct et131x_adapter *adapter = netdev_priv(netdev);
3645 struct pci_dev *pdev = adapter->pdev;
3646 unsigned int irq = pdev->irq;
3647 int result;
3648
3649 /* Start the timer to track NIC errors */
3650 init_timer(&adapter->error_timer);
3651 adapter->error_timer.expires = jiffies +
3652 msecs_to_jiffies(TX_ERROR_PERIOD);
3653 adapter->error_timer.function = et131x_error_timer_handler;
3654 adapter->error_timer.data = (unsigned long)adapter;
3655 add_timer(&adapter->error_timer);
3656
3657 result = request_irq(irq, et131x_isr,
3658 IRQF_SHARED, netdev->name, netdev);
3659 if (result) {
3660 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3661 return result;
3662 }
3663
3664 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3665
3666 napi_enable(&adapter->napi);
3667
3668 et131x_up(netdev);
3669
3670 return result;
3671 }
3672
3673 static int et131x_close(struct net_device *netdev)
3674 {
3675 struct et131x_adapter *adapter = netdev_priv(netdev);
3676
3677 et131x_down(netdev);
3678 napi_disable(&adapter->napi);
3679
3680 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3681 free_irq(adapter->pdev->irq, netdev);
3682
3683 /* Stop the error timer */
3684 return del_timer_sync(&adapter->error_timer);
3685 }
3686
3687 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3688 int cmd)
3689 {
3690 struct et131x_adapter *adapter = netdev_priv(netdev);
3691
3692 if (!adapter->phydev)
3693 return -EINVAL;
3694
3695 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
3696 }
3697
3698 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3699 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3700 {
3701 int filter = adapter->packet_filter;
3702 u32 ctrl;
3703 u32 pf_ctrl;
3704
3705 ctrl = readl(&adapter->regs->rxmac.ctrl);
3706 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3707
3708 /* Default to disabled packet filtering */
3709 ctrl |= 0x04;
3710
3711 /* Set us to be in promiscuous mode so we receive everything, this
3712 * is also true when we get a packet filter of 0
3713 */
3714 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3715 pf_ctrl &= ~7; /* Clear filter bits */
3716 else {
3717 /* Set us up with Multicast packet filtering. Three cases are
3718 * possible - (1) we have a multi-cast list, (2) we receive ALL
3719 * multicast entries or (3) we receive none.
3720 */
3721 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3722 pf_ctrl &= ~2; /* Multicast filter bit */
3723 else {
3724 et1310_setup_device_for_multicast(adapter);
3725 pf_ctrl |= 2;
3726 ctrl &= ~0x04;
3727 }
3728
3729 /* Set us up with Unicast packet filtering */
3730 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3731 et1310_setup_device_for_unicast(adapter);
3732 pf_ctrl |= 4;
3733 ctrl &= ~0x04;
3734 }
3735
3736 /* Set us up with Broadcast packet filtering */
3737 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3738 pf_ctrl |= 1; /* Broadcast filter bit */
3739 ctrl &= ~0x04;
3740 } else {
3741 pf_ctrl &= ~1;
3742 }
3743
3744 /* Setup the receive mac configuration registers - Packet
3745 * Filter control + the enable / disable for packet filter
3746 * in the control reg.
3747 */
3748 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3749 writel(ctrl, &adapter->regs->rxmac.ctrl);
3750 }
3751 return 0;
3752 }
3753
3754 static void et131x_multicast(struct net_device *netdev)
3755 {
3756 struct et131x_adapter *adapter = netdev_priv(netdev);
3757 int packet_filter;
3758 struct netdev_hw_addr *ha;
3759 int i;
3760
3761 /* Before we modify the platform-independent filter flags, store them
3762 * locally. This allows us to determine if anything's changed and if
3763 * we even need to bother the hardware
3764 */
3765 packet_filter = adapter->packet_filter;
3766
3767 /* Clear the 'multicast' flag locally; because we only have a single
3768 * flag to check multicast, and multiple multicast addresses can be
3769 * set, this is the easiest way to determine if more than one
3770 * multicast address is being set.
3771 */
3772 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3773
3774 /* Check the net_device flags and set the device independent flags
3775 * accordingly
3776 */
3777 if (netdev->flags & IFF_PROMISC)
3778 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3779 else
3780 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3781
3782 if ((netdev->flags & IFF_ALLMULTI) ||
3783 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3784 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3785
3786 if (netdev_mc_count(netdev) < 1) {
3787 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3788 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3789 } else {
3790 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3791 }
3792
3793 /* Set values in the private adapter struct */
3794 i = 0;
3795 netdev_for_each_mc_addr(ha, netdev) {
3796 if (i == NIC_MAX_MCAST_LIST)
3797 break;
3798 ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3799 }
3800 adapter->multicast_addr_count = i;
3801
3802 /* Are the new flags different from the previous ones? If not, then no
3803 * action is required
3804 *
3805 * NOTE - This block will always update the multicast_list with the
3806 * hardware, even if the addresses aren't the same.
3807 */
3808 if (packet_filter != adapter->packet_filter)
3809 et131x_set_packet_filter(adapter);
3810 }
3811
3812 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3813 {
3814 struct et131x_adapter *adapter = netdev_priv(netdev);
3815 struct tx_ring *tx_ring = &adapter->tx_ring;
3816
3817 /* stop the queue if it's getting full */
3818 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3819 netif_stop_queue(netdev);
3820
3821 /* Save the timestamp for the TX timeout watchdog */
3822 netdev->trans_start = jiffies;
3823
3824 /* TCB is not available */
3825 if (tx_ring->used >= NUM_TCB)
3826 goto drop_err;
3827
3828 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3829 !netif_carrier_ok(netdev))
3830 goto drop_err;
3831
3832 if (send_packet(skb, adapter))
3833 goto drop_err;
3834
3835 return NETDEV_TX_OK;
3836
3837 drop_err:
3838 dev_kfree_skb_any(skb);
3839 adapter->netdev->stats.tx_dropped++;
3840 return NETDEV_TX_OK;
3841 }
3842
3843 /* et131x_tx_timeout - Timeout handler
3844 *
3845 * The handler called when a Tx request times out. The timeout period is
3846 * specified by the 'tx_timeo" element in the net_device structure (see
3847 * et131x_alloc_device() to see how this value is set).
3848 */
3849 static void et131x_tx_timeout(struct net_device *netdev)
3850 {
3851 struct et131x_adapter *adapter = netdev_priv(netdev);
3852 struct tx_ring *tx_ring = &adapter->tx_ring;
3853 struct tcb *tcb;
3854 unsigned long flags;
3855
3856 /* If the device is closed, ignore the timeout */
3857 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3858 return;
3859
3860 /* Any nonrecoverable hardware error?
3861 * Checks adapter->flags for any failure in phy reading
3862 */
3863 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3864 return;
3865
3866 /* Hardware failure? */
3867 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3868 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3869 return;
3870 }
3871
3872 /* Is send stuck? */
3873 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3874 tcb = tx_ring->send_head;
3875 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3876
3877 if (tcb) {
3878 tcb->count++;
3879
3880 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3881 dev_warn(&adapter->pdev->dev,
3882 "Send stuck - reset. tcb->WrIndex %x\n",
3883 tcb->index);
3884
3885 adapter->netdev->stats.tx_errors++;
3886
3887 /* perform reset of tx/rx */
3888 et131x_disable_txrx(netdev);
3889 et131x_enable_txrx(netdev);
3890 }
3891 }
3892 }
3893
3894 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3895 {
3896 int result = 0;
3897 struct et131x_adapter *adapter = netdev_priv(netdev);
3898
3899 if (new_mtu < 64 || new_mtu > 9216)
3900 return -EINVAL;
3901
3902 et131x_disable_txrx(netdev);
3903
3904 netdev->mtu = new_mtu;
3905
3906 et131x_adapter_memory_free(adapter);
3907
3908 /* Set the config parameter for Jumbo Packet support */
3909 adapter->registry_jumbo_packet = new_mtu + 14;
3910 et131x_soft_reset(adapter);
3911
3912 result = et131x_adapter_memory_alloc(adapter);
3913 if (result != 0) {
3914 dev_warn(&adapter->pdev->dev,
3915 "Change MTU failed; couldn't re-alloc DMA memory\n");
3916 return result;
3917 }
3918
3919 et131x_init_send(adapter);
3920 et131x_hwaddr_init(adapter);
3921 ether_addr_copy(netdev->dev_addr, adapter->addr);
3922
3923 /* Init the device with the new settings */
3924 et131x_adapter_setup(adapter);
3925 et131x_enable_txrx(netdev);
3926
3927 return result;
3928 }
3929
3930 static const struct net_device_ops et131x_netdev_ops = {
3931 .ndo_open = et131x_open,
3932 .ndo_stop = et131x_close,
3933 .ndo_start_xmit = et131x_tx,
3934 .ndo_set_rx_mode = et131x_multicast,
3935 .ndo_tx_timeout = et131x_tx_timeout,
3936 .ndo_change_mtu = et131x_change_mtu,
3937 .ndo_set_mac_address = eth_mac_addr,
3938 .ndo_validate_addr = eth_validate_addr,
3939 .ndo_get_stats = et131x_stats,
3940 .ndo_do_ioctl = et131x_ioctl,
3941 };
3942
3943 static int et131x_pci_setup(struct pci_dev *pdev,
3944 const struct pci_device_id *ent)
3945 {
3946 struct net_device *netdev;
3947 struct et131x_adapter *adapter;
3948 int rc;
3949 int ii;
3950
3951 rc = pci_enable_device(pdev);
3952 if (rc < 0) {
3953 dev_err(&pdev->dev, "pci_enable_device() failed\n");
3954 goto out;
3955 }
3956
3957 /* Perform some basic PCI checks */
3958 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3959 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3960 rc = -ENODEV;
3961 goto err_disable;
3962 }
3963
3964 rc = pci_request_regions(pdev, DRIVER_NAME);
3965 if (rc < 0) {
3966 dev_err(&pdev->dev, "Can't get PCI resources\n");
3967 goto err_disable;
3968 }
3969
3970 pci_set_master(pdev);
3971
3972 /* Check the DMA addressing support of this device */
3973 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3974 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3975 dev_err(&pdev->dev, "No usable DMA addressing method\n");
3976 rc = -EIO;
3977 goto err_release_res;
3978 }
3979
3980 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3981 if (!netdev) {
3982 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3983 rc = -ENOMEM;
3984 goto err_release_res;
3985 }
3986
3987 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3988 netdev->netdev_ops = &et131x_netdev_ops;
3989
3990 SET_NETDEV_DEV(netdev, &pdev->dev);
3991 netdev->ethtool_ops = &et131x_ethtool_ops;
3992
3993 adapter = et131x_adapter_init(netdev, pdev);
3994
3995 rc = et131x_pci_init(adapter, pdev);
3996 if (rc < 0)
3997 goto err_free_dev;
3998
3999 /* Map the bus-relative registers to system virtual memory */
4000 adapter->regs = pci_ioremap_bar(pdev, 0);
4001 if (!adapter->regs) {
4002 dev_err(&pdev->dev, "Cannot map device registers\n");
4003 rc = -ENOMEM;
4004 goto err_free_dev;
4005 }
4006
4007 /* If Phy COMA mode was enabled when we went down, disable it here. */
4008 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4009
4010 et131x_soft_reset(adapter);
4011 et131x_disable_interrupts(adapter);
4012
4013 rc = et131x_adapter_memory_alloc(adapter);
4014 if (rc < 0) {
4015 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
4016 goto err_iounmap;
4017 }
4018
4019 et131x_init_send(adapter);
4020
4021 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
4022
4023 ether_addr_copy(netdev->dev_addr, adapter->addr);
4024
4025 rc = -ENOMEM;
4026
4027 adapter->mii_bus = mdiobus_alloc();
4028 if (!adapter->mii_bus) {
4029 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4030 goto err_mem_free;
4031 }
4032
4033 adapter->mii_bus->name = "et131x_eth_mii";
4034 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4035 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4036 adapter->mii_bus->priv = netdev;
4037 adapter->mii_bus->read = et131x_mdio_read;
4038 adapter->mii_bus->write = et131x_mdio_write;
4039 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4040 GFP_KERNEL);
4041 if (!adapter->mii_bus->irq)
4042 goto err_mdio_free;
4043
4044 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4045 adapter->mii_bus->irq[ii] = PHY_POLL;
4046
4047 rc = mdiobus_register(adapter->mii_bus);
4048 if (rc < 0) {
4049 dev_err(&pdev->dev, "failed to register MII bus\n");
4050 goto err_mdio_free_irq;
4051 }
4052
4053 rc = et131x_mii_probe(netdev);
4054 if (rc < 0) {
4055 dev_err(&pdev->dev, "failed to probe MII bus\n");
4056 goto err_mdio_unregister;
4057 }
4058
4059 et131x_adapter_setup(adapter);
4060
4061 /* Init variable for counting how long we do not have link status */
4062 adapter->boot_coma = 0;
4063 et1310_disable_phy_coma(adapter);
4064
4065 /* We can enable interrupts now
4066 *
4067 * NOTE - Because registration of interrupt handler is done in the
4068 * device's open(), defer enabling device interrupts to that
4069 * point
4070 */
4071
4072 rc = register_netdev(netdev);
4073 if (rc < 0) {
4074 dev_err(&pdev->dev, "register_netdev() failed\n");
4075 goto err_phy_disconnect;
4076 }
4077
4078 /* Register the net_device struct with the PCI subsystem. Save a copy
4079 * of the PCI config space for this device now that the device has
4080 * been initialized, just in case it needs to be quickly restored.
4081 */
4082 pci_set_drvdata(pdev, netdev);
4083 out:
4084 return rc;
4085
4086 err_phy_disconnect:
4087 phy_disconnect(adapter->phydev);
4088 err_mdio_unregister:
4089 mdiobus_unregister(adapter->mii_bus);
4090 err_mdio_free_irq:
4091 kfree(adapter->mii_bus->irq);
4092 err_mdio_free:
4093 mdiobus_free(adapter->mii_bus);
4094 err_mem_free:
4095 et131x_adapter_memory_free(adapter);
4096 err_iounmap:
4097 iounmap(adapter->regs);
4098 err_free_dev:
4099 pci_dev_put(pdev);
4100 free_netdev(netdev);
4101 err_release_res:
4102 pci_release_regions(pdev);
4103 err_disable:
4104 pci_disable_device(pdev);
4105 goto out;
4106 }
4107
4108 static const struct pci_device_id et131x_pci_table[] = {
4109 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4110 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4111 { 0,}
4112 };
4113 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4114
4115 static struct pci_driver et131x_driver = {
4116 .name = DRIVER_NAME,
4117 .id_table = et131x_pci_table,
4118 .probe = et131x_pci_setup,
4119 .remove = et131x_pci_remove,
4120 .driver.pm = &et131x_pm_ops,
4121 };
4122
4123 module_pci_driver(et131x_driver);
This page took 0.334976 seconds and 5 git commands to generate.