Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / ethernet / amd / au1000_eth.c
1 /*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
23 *
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
27 * for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, see <http://www.gnu.org/licenses/>.
31 *
32 * ########################################################################
33 *
34 *
35 */
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/capability.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/string.h>
43 #include <linux/timer.h>
44 #include <linux/errno.h>
45 #include <linux/in.h>
46 #include <linux/ioport.h>
47 #include <linux/bitops.h>
48 #include <linux/slab.h>
49 #include <linux/interrupt.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
58 #include <linux/platform_device.h>
59 #include <linux/cpu.h>
60 #include <linux/io.h>
61
62 #include <asm/mipsregs.h>
63 #include <asm/irq.h>
64 #include <asm/processor.h>
65
66 #include <au1000.h>
67 #include <au1xxx_eth.h>
68 #include <prom.h>
69
70 #include "au1000_eth.h"
71
72 #ifdef AU1000_ETH_DEBUG
73 static int au1000_debug = 5;
74 #else
75 static int au1000_debug = 3;
76 #endif
77
78 #define AU1000_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
79 NETIF_MSG_PROBE | \
80 NETIF_MSG_LINK)
81
82 #define DRV_NAME "au1000_eth"
83 #define DRV_VERSION "1.7"
84 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
85 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
86
87 MODULE_AUTHOR(DRV_AUTHOR);
88 MODULE_DESCRIPTION(DRV_DESC);
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92 /* AU1000 MAC registers and bits */
93 #define MAC_CONTROL 0x0
94 # define MAC_RX_ENABLE (1 << 2)
95 # define MAC_TX_ENABLE (1 << 3)
96 # define MAC_DEF_CHECK (1 << 5)
97 # define MAC_SET_BL(X) (((X) & 0x3) << 6)
98 # define MAC_AUTO_PAD (1 << 8)
99 # define MAC_DISABLE_RETRY (1 << 10)
100 # define MAC_DISABLE_BCAST (1 << 11)
101 # define MAC_LATE_COL (1 << 12)
102 # define MAC_HASH_MODE (1 << 13)
103 # define MAC_HASH_ONLY (1 << 15)
104 # define MAC_PASS_ALL (1 << 16)
105 # define MAC_INVERSE_FILTER (1 << 17)
106 # define MAC_PROMISCUOUS (1 << 18)
107 # define MAC_PASS_ALL_MULTI (1 << 19)
108 # define MAC_FULL_DUPLEX (1 << 20)
109 # define MAC_NORMAL_MODE 0
110 # define MAC_INT_LOOPBACK (1 << 21)
111 # define MAC_EXT_LOOPBACK (1 << 22)
112 # define MAC_DISABLE_RX_OWN (1 << 23)
113 # define MAC_BIG_ENDIAN (1 << 30)
114 # define MAC_RX_ALL (1 << 31)
115 #define MAC_ADDRESS_HIGH 0x4
116 #define MAC_ADDRESS_LOW 0x8
117 #define MAC_MCAST_HIGH 0xC
118 #define MAC_MCAST_LOW 0x10
119 #define MAC_MII_CNTRL 0x14
120 # define MAC_MII_BUSY (1 << 0)
121 # define MAC_MII_READ 0
122 # define MAC_MII_WRITE (1 << 1)
123 # define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
124 # define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
125 #define MAC_MII_DATA 0x18
126 #define MAC_FLOW_CNTRL 0x1C
127 # define MAC_FLOW_CNTRL_BUSY (1 << 0)
128 # define MAC_FLOW_CNTRL_ENABLE (1 << 1)
129 # define MAC_PASS_CONTROL (1 << 2)
130 # define MAC_SET_PAUSE(X) (((X) & 0xffff) << 16)
131 #define MAC_VLAN1_TAG 0x20
132 #define MAC_VLAN2_TAG 0x24
133
134 /* Ethernet Controller Enable */
135 # define MAC_EN_CLOCK_ENABLE (1 << 0)
136 # define MAC_EN_RESET0 (1 << 1)
137 # define MAC_EN_TOSS (0 << 2)
138 # define MAC_EN_CACHEABLE (1 << 3)
139 # define MAC_EN_RESET1 (1 << 4)
140 # define MAC_EN_RESET2 (1 << 5)
141 # define MAC_DMA_RESET (1 << 6)
142
143 /* Ethernet Controller DMA Channels */
144 /* offsets from MAC_TX_RING_ADDR address */
145 #define MAC_TX_BUFF0_STATUS 0x0
146 # define TX_FRAME_ABORTED (1 << 0)
147 # define TX_JAB_TIMEOUT (1 << 1)
148 # define TX_NO_CARRIER (1 << 2)
149 # define TX_LOSS_CARRIER (1 << 3)
150 # define TX_EXC_DEF (1 << 4)
151 # define TX_LATE_COLL_ABORT (1 << 5)
152 # define TX_EXC_COLL (1 << 6)
153 # define TX_UNDERRUN (1 << 7)
154 # define TX_DEFERRED (1 << 8)
155 # define TX_LATE_COLL (1 << 9)
156 # define TX_COLL_CNT_MASK (0xF << 10)
157 # define TX_PKT_RETRY (1 << 31)
158 #define MAC_TX_BUFF0_ADDR 0x4
159 # define TX_DMA_ENABLE (1 << 0)
160 # define TX_T_DONE (1 << 1)
161 # define TX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
162 #define MAC_TX_BUFF0_LEN 0x8
163 #define MAC_TX_BUFF1_STATUS 0x10
164 #define MAC_TX_BUFF1_ADDR 0x14
165 #define MAC_TX_BUFF1_LEN 0x18
166 #define MAC_TX_BUFF2_STATUS 0x20
167 #define MAC_TX_BUFF2_ADDR 0x24
168 #define MAC_TX_BUFF2_LEN 0x28
169 #define MAC_TX_BUFF3_STATUS 0x30
170 #define MAC_TX_BUFF3_ADDR 0x34
171 #define MAC_TX_BUFF3_LEN 0x38
172
173 /* offsets from MAC_RX_RING_ADDR */
174 #define MAC_RX_BUFF0_STATUS 0x0
175 # define RX_FRAME_LEN_MASK 0x3fff
176 # define RX_WDOG_TIMER (1 << 14)
177 # define RX_RUNT (1 << 15)
178 # define RX_OVERLEN (1 << 16)
179 # define RX_COLL (1 << 17)
180 # define RX_ETHER (1 << 18)
181 # define RX_MII_ERROR (1 << 19)
182 # define RX_DRIBBLING (1 << 20)
183 # define RX_CRC_ERROR (1 << 21)
184 # define RX_VLAN1 (1 << 22)
185 # define RX_VLAN2 (1 << 23)
186 # define RX_LEN_ERROR (1 << 24)
187 # define RX_CNTRL_FRAME (1 << 25)
188 # define RX_U_CNTRL_FRAME (1 << 26)
189 # define RX_MCAST_FRAME (1 << 27)
190 # define RX_BCAST_FRAME (1 << 28)
191 # define RX_FILTER_FAIL (1 << 29)
192 # define RX_PACKET_FILTER (1 << 30)
193 # define RX_MISSED_FRAME (1 << 31)
194
195 # define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN | \
196 RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
197 RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
198 #define MAC_RX_BUFF0_ADDR 0x4
199 # define RX_DMA_ENABLE (1 << 0)
200 # define RX_T_DONE (1 << 1)
201 # define RX_GET_DMA_BUFFER(X) (((X) >> 2) & 0x3)
202 # define RX_SET_BUFF_ADDR(X) ((X) & 0xffffffc0)
203 #define MAC_RX_BUFF1_STATUS 0x10
204 #define MAC_RX_BUFF1_ADDR 0x14
205 #define MAC_RX_BUFF2_STATUS 0x20
206 #define MAC_RX_BUFF2_ADDR 0x24
207 #define MAC_RX_BUFF3_STATUS 0x30
208 #define MAC_RX_BUFF3_ADDR 0x34
209
210 /*
211 * Theory of operation
212 *
213 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
214 * There are four receive and four transmit descriptors. These
215 * descriptors are not in memory; rather, they are just a set of
216 * hardware registers.
217 *
218 * Since the Au1000 has a coherent data cache, the receive and
219 * transmit buffers are allocated from the KSEG0 segment. The
220 * hardware registers, however, are still mapped at KSEG1 to
221 * make sure there's no out-of-order writes, and that all writes
222 * complete immediately.
223 */
224
225 /*
226 * board-specific configurations
227 *
228 * PHY detection algorithm
229 *
230 * If phy_static_config is undefined, the PHY setup is
231 * autodetected:
232 *
233 * mii_probe() first searches the current MAC's MII bus for a PHY,
234 * selecting the first (or last, if phy_search_highest_addr is
235 * defined) PHY address not already claimed by another netdev.
236 *
237 * If nothing was found that way when searching for the 2nd ethernet
238 * controller's PHY and phy1_search_mac0 is defined, then
239 * the first MII bus is searched as well for an unclaimed PHY; this is
240 * needed in case of a dual-PHY accessible only through the MAC0's MII
241 * bus.
242 *
243 * Finally, if no PHY is found, then the corresponding ethernet
244 * controller is not registered to the network subsystem.
245 */
246
247 /* autodetection defaults: phy1_search_mac0 */
248
249 /* static PHY setup
250 *
251 * most boards PHY setup should be detectable properly with the
252 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
253 * you have a switch attached, or want to use the PHY's interrupt
254 * notification capabilities) you can provide a static PHY
255 * configuration here
256 *
257 * IRQs may only be set, if a PHY address was configured
258 * If a PHY address is given, also a bus id is required to be set
259 *
260 * ps: make sure the used irqs are configured properly in the board
261 * specific irq-map
262 */
263
264 static void au1000_enable_mac(struct net_device *dev, int force_reset)
265 {
266 unsigned long flags;
267 struct au1000_private *aup = netdev_priv(dev);
268
269 spin_lock_irqsave(&aup->lock, flags);
270
271 if (force_reset || (!aup->mac_enabled)) {
272 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
273 wmb(); /* drain writebuffer */
274 mdelay(2);
275 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
276 | MAC_EN_CLOCK_ENABLE), aup->enable);
277 wmb(); /* drain writebuffer */
278 mdelay(2);
279
280 aup->mac_enabled = 1;
281 }
282
283 spin_unlock_irqrestore(&aup->lock, flags);
284 }
285
286 /*
287 * MII operations
288 */
289 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
290 {
291 struct au1000_private *aup = netdev_priv(dev);
292 u32 *const mii_control_reg = &aup->mac->mii_control;
293 u32 *const mii_data_reg = &aup->mac->mii_data;
294 u32 timedout = 20;
295 u32 mii_control;
296
297 while (readl(mii_control_reg) & MAC_MII_BUSY) {
298 mdelay(1);
299 if (--timedout == 0) {
300 netdev_err(dev, "read_MII busy timeout!!\n");
301 return -1;
302 }
303 }
304
305 mii_control = MAC_SET_MII_SELECT_REG(reg) |
306 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
307
308 writel(mii_control, mii_control_reg);
309
310 timedout = 20;
311 while (readl(mii_control_reg) & MAC_MII_BUSY) {
312 mdelay(1);
313 if (--timedout == 0) {
314 netdev_err(dev, "mdio_read busy timeout!!\n");
315 return -1;
316 }
317 }
318 return readl(mii_data_reg);
319 }
320
321 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
322 int reg, u16 value)
323 {
324 struct au1000_private *aup = netdev_priv(dev);
325 u32 *const mii_control_reg = &aup->mac->mii_control;
326 u32 *const mii_data_reg = &aup->mac->mii_data;
327 u32 timedout = 20;
328 u32 mii_control;
329
330 while (readl(mii_control_reg) & MAC_MII_BUSY) {
331 mdelay(1);
332 if (--timedout == 0) {
333 netdev_err(dev, "mdio_write busy timeout!!\n");
334 return;
335 }
336 }
337
338 mii_control = MAC_SET_MII_SELECT_REG(reg) |
339 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
340
341 writel(value, mii_data_reg);
342 writel(mii_control, mii_control_reg);
343 }
344
345 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
346 {
347 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
348 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
349 */
350 struct net_device *const dev = bus->priv;
351
352 /* make sure the MAC associated with this
353 * mii_bus is enabled
354 */
355 au1000_enable_mac(dev, 0);
356
357 return au1000_mdio_read(dev, phy_addr, regnum);
358 }
359
360 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
361 u16 value)
362 {
363 struct net_device *const dev = bus->priv;
364
365 /* make sure the MAC associated with this
366 * mii_bus is enabled
367 */
368 au1000_enable_mac(dev, 0);
369
370 au1000_mdio_write(dev, phy_addr, regnum, value);
371 return 0;
372 }
373
374 static int au1000_mdiobus_reset(struct mii_bus *bus)
375 {
376 struct net_device *const dev = bus->priv;
377
378 /* make sure the MAC associated with this
379 * mii_bus is enabled
380 */
381 au1000_enable_mac(dev, 0);
382
383 return 0;
384 }
385
386 static void au1000_hard_stop(struct net_device *dev)
387 {
388 struct au1000_private *aup = netdev_priv(dev);
389 u32 reg;
390
391 netif_dbg(aup, drv, dev, "hard stop\n");
392
393 reg = readl(&aup->mac->control);
394 reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
395 writel(reg, &aup->mac->control);
396 wmb(); /* drain writebuffer */
397 mdelay(10);
398 }
399
400 static void au1000_enable_rx_tx(struct net_device *dev)
401 {
402 struct au1000_private *aup = netdev_priv(dev);
403 u32 reg;
404
405 netif_dbg(aup, hw, dev, "enable_rx_tx\n");
406
407 reg = readl(&aup->mac->control);
408 reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
409 writel(reg, &aup->mac->control);
410 wmb(); /* drain writebuffer */
411 mdelay(10);
412 }
413
414 static void
415 au1000_adjust_link(struct net_device *dev)
416 {
417 struct au1000_private *aup = netdev_priv(dev);
418 struct phy_device *phydev = aup->phy_dev;
419 unsigned long flags;
420 u32 reg;
421
422 int status_change = 0;
423
424 BUG_ON(!aup->phy_dev);
425
426 spin_lock_irqsave(&aup->lock, flags);
427
428 if (phydev->link && (aup->old_speed != phydev->speed)) {
429 /* speed changed */
430
431 switch (phydev->speed) {
432 case SPEED_10:
433 case SPEED_100:
434 break;
435 default:
436 netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
437 phydev->speed);
438 break;
439 }
440
441 aup->old_speed = phydev->speed;
442
443 status_change = 1;
444 }
445
446 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
447 /* duplex mode changed */
448
449 /* switching duplex mode requires to disable rx and tx! */
450 au1000_hard_stop(dev);
451
452 reg = readl(&aup->mac->control);
453 if (DUPLEX_FULL == phydev->duplex) {
454 reg |= MAC_FULL_DUPLEX;
455 reg &= ~MAC_DISABLE_RX_OWN;
456 } else {
457 reg &= ~MAC_FULL_DUPLEX;
458 reg |= MAC_DISABLE_RX_OWN;
459 }
460 writel(reg, &aup->mac->control);
461 wmb(); /* drain writebuffer */
462 mdelay(1);
463
464 au1000_enable_rx_tx(dev);
465 aup->old_duplex = phydev->duplex;
466
467 status_change = 1;
468 }
469
470 if (phydev->link != aup->old_link) {
471 /* link state changed */
472
473 if (!phydev->link) {
474 /* link went down */
475 aup->old_speed = 0;
476 aup->old_duplex = -1;
477 }
478
479 aup->old_link = phydev->link;
480 status_change = 1;
481 }
482
483 spin_unlock_irqrestore(&aup->lock, flags);
484
485 if (status_change) {
486 if (phydev->link)
487 netdev_info(dev, "link up (%d/%s)\n",
488 phydev->speed,
489 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
490 else
491 netdev_info(dev, "link down\n");
492 }
493 }
494
495 static int au1000_mii_probe(struct net_device *dev)
496 {
497 struct au1000_private *const aup = netdev_priv(dev);
498 struct phy_device *phydev = NULL;
499 int phy_addr;
500
501 if (aup->phy_static_config) {
502 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
503
504 if (aup->phy_addr)
505 phydev = aup->mii_bus->phy_map[aup->phy_addr];
506 else
507 netdev_info(dev, "using PHY-less setup\n");
508 return 0;
509 }
510
511 /* find the first (lowest address) PHY
512 * on the current MAC's MII bus
513 */
514 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
515 if (aup->mii_bus->phy_map[phy_addr]) {
516 phydev = aup->mii_bus->phy_map[phy_addr];
517 if (!aup->phy_search_highest_addr)
518 /* break out with first one found */
519 break;
520 }
521
522 if (aup->phy1_search_mac0) {
523 /* try harder to find a PHY */
524 if (!phydev && (aup->mac_id == 1)) {
525 /* no PHY found, maybe we have a dual PHY? */
526 dev_info(&dev->dev, ": no PHY found on MAC1, "
527 "let's see if it's attached to MAC0...\n");
528
529 /* find the first (lowest address) non-attached
530 * PHY on the MAC0 MII bus
531 */
532 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
533 struct phy_device *const tmp_phydev =
534 aup->mii_bus->phy_map[phy_addr];
535
536 if (aup->mac_id == 1)
537 break;
538
539 /* no PHY here... */
540 if (!tmp_phydev)
541 continue;
542
543 /* already claimed by MAC0 */
544 if (tmp_phydev->attached_dev)
545 continue;
546
547 phydev = tmp_phydev;
548 break; /* found it */
549 }
550 }
551 }
552
553 if (!phydev) {
554 netdev_err(dev, "no PHY found\n");
555 return -1;
556 }
557
558 /* now we are supposed to have a proper phydev, to attach to... */
559 BUG_ON(phydev->attached_dev);
560
561 phydev = phy_connect(dev, dev_name(&phydev->dev),
562 &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
563
564 if (IS_ERR(phydev)) {
565 netdev_err(dev, "Could not attach to PHY\n");
566 return PTR_ERR(phydev);
567 }
568
569 /* mask with MAC supported features */
570 phydev->supported &= (SUPPORTED_10baseT_Half
571 | SUPPORTED_10baseT_Full
572 | SUPPORTED_100baseT_Half
573 | SUPPORTED_100baseT_Full
574 | SUPPORTED_Autoneg
575 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
576 | SUPPORTED_MII
577 | SUPPORTED_TP);
578
579 phydev->advertising = phydev->supported;
580
581 aup->old_link = 0;
582 aup->old_speed = 0;
583 aup->old_duplex = -1;
584 aup->phy_dev = phydev;
585
586 netdev_info(dev, "attached PHY driver [%s] "
587 "(mii_bus:phy_addr=%s, irq=%d)\n",
588 phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
589
590 return 0;
591 }
592
593
594 /*
595 * Buffer allocation/deallocation routines. The buffer descriptor returned
596 * has the virtual and dma address of a buffer suitable for
597 * both, receive and transmit operations.
598 */
599 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
600 {
601 struct db_dest *pDB;
602 pDB = aup->pDBfree;
603
604 if (pDB)
605 aup->pDBfree = pDB->pnext;
606
607 return pDB;
608 }
609
610 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
611 {
612 struct db_dest *pDBfree = aup->pDBfree;
613 if (pDBfree)
614 pDBfree->pnext = pDB;
615 aup->pDBfree = pDB;
616 }
617
618 static void au1000_reset_mac_unlocked(struct net_device *dev)
619 {
620 struct au1000_private *const aup = netdev_priv(dev);
621 int i;
622
623 au1000_hard_stop(dev);
624
625 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
626 wmb(); /* drain writebuffer */
627 mdelay(2);
628 writel(0, aup->enable);
629 wmb(); /* drain writebuffer */
630 mdelay(2);
631
632 aup->tx_full = 0;
633 for (i = 0; i < NUM_RX_DMA; i++) {
634 /* reset control bits */
635 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
636 }
637 for (i = 0; i < NUM_TX_DMA; i++) {
638 /* reset control bits */
639 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
640 }
641
642 aup->mac_enabled = 0;
643
644 }
645
646 static void au1000_reset_mac(struct net_device *dev)
647 {
648 struct au1000_private *const aup = netdev_priv(dev);
649 unsigned long flags;
650
651 netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
652 (unsigned)aup);
653
654 spin_lock_irqsave(&aup->lock, flags);
655
656 au1000_reset_mac_unlocked(dev);
657
658 spin_unlock_irqrestore(&aup->lock, flags);
659 }
660
661 /*
662 * Setup the receive and transmit "rings". These pointers are the addresses
663 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
664 * these are not descriptors sitting in memory.
665 */
666 static void
667 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
668 {
669 int i;
670
671 for (i = 0; i < NUM_RX_DMA; i++) {
672 aup->rx_dma_ring[i] = (struct rx_dma *)
673 (tx_base + 0x100 + sizeof(struct rx_dma) * i);
674 }
675 for (i = 0; i < NUM_TX_DMA; i++) {
676 aup->tx_dma_ring[i] = (struct tx_dma *)
677 (tx_base + sizeof(struct tx_dma) * i);
678 }
679 }
680
681 /*
682 * ethtool operations
683 */
684
685 static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
686 {
687 struct au1000_private *aup = netdev_priv(dev);
688
689 if (aup->phy_dev)
690 return phy_ethtool_gset(aup->phy_dev, cmd);
691
692 return -EINVAL;
693 }
694
695 static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
696 {
697 struct au1000_private *aup = netdev_priv(dev);
698
699 if (!capable(CAP_NET_ADMIN))
700 return -EPERM;
701
702 if (aup->phy_dev)
703 return phy_ethtool_sset(aup->phy_dev, cmd);
704
705 return -EINVAL;
706 }
707
708 static void
709 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
710 {
711 struct au1000_private *aup = netdev_priv(dev);
712
713 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
714 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
715 snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
716 aup->mac_id);
717 }
718
719 static void au1000_set_msglevel(struct net_device *dev, u32 value)
720 {
721 struct au1000_private *aup = netdev_priv(dev);
722 aup->msg_enable = value;
723 }
724
725 static u32 au1000_get_msglevel(struct net_device *dev)
726 {
727 struct au1000_private *aup = netdev_priv(dev);
728 return aup->msg_enable;
729 }
730
731 static const struct ethtool_ops au1000_ethtool_ops = {
732 .get_settings = au1000_get_settings,
733 .set_settings = au1000_set_settings,
734 .get_drvinfo = au1000_get_drvinfo,
735 .get_link = ethtool_op_get_link,
736 .get_msglevel = au1000_get_msglevel,
737 .set_msglevel = au1000_set_msglevel,
738 };
739
740
741 /*
742 * Initialize the interface.
743 *
744 * When the device powers up, the clocks are disabled and the
745 * mac is in reset state. When the interface is closed, we
746 * do the same -- reset the device and disable the clocks to
747 * conserve power. Thus, whenever au1000_init() is called,
748 * the device should already be in reset state.
749 */
750 static int au1000_init(struct net_device *dev)
751 {
752 struct au1000_private *aup = netdev_priv(dev);
753 unsigned long flags;
754 int i;
755 u32 control;
756
757 netif_dbg(aup, hw, dev, "au1000_init\n");
758
759 /* bring the device out of reset */
760 au1000_enable_mac(dev, 1);
761
762 spin_lock_irqsave(&aup->lock, flags);
763
764 writel(0, &aup->mac->control);
765 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
766 aup->tx_tail = aup->tx_head;
767 aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
768
769 writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
770 &aup->mac->mac_addr_high);
771 writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
772 dev->dev_addr[1]<<8 | dev->dev_addr[0],
773 &aup->mac->mac_addr_low);
774
775
776 for (i = 0; i < NUM_RX_DMA; i++)
777 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
778
779 wmb(); /* drain writebuffer */
780
781 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
782 #ifndef CONFIG_CPU_LITTLE_ENDIAN
783 control |= MAC_BIG_ENDIAN;
784 #endif
785 if (aup->phy_dev) {
786 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
787 control |= MAC_FULL_DUPLEX;
788 else
789 control |= MAC_DISABLE_RX_OWN;
790 } else { /* PHY-less op, assume full-duplex */
791 control |= MAC_FULL_DUPLEX;
792 }
793
794 writel(control, &aup->mac->control);
795 writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
796 wmb(); /* drain writebuffer */
797
798 spin_unlock_irqrestore(&aup->lock, flags);
799 return 0;
800 }
801
802 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
803 {
804 struct net_device_stats *ps = &dev->stats;
805
806 ps->rx_packets++;
807 if (status & RX_MCAST_FRAME)
808 ps->multicast++;
809
810 if (status & RX_ERROR) {
811 ps->rx_errors++;
812 if (status & RX_MISSED_FRAME)
813 ps->rx_missed_errors++;
814 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
815 ps->rx_length_errors++;
816 if (status & RX_CRC_ERROR)
817 ps->rx_crc_errors++;
818 if (status & RX_COLL)
819 ps->collisions++;
820 } else
821 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
822
823 }
824
825 /*
826 * Au1000 receive routine.
827 */
828 static int au1000_rx(struct net_device *dev)
829 {
830 struct au1000_private *aup = netdev_priv(dev);
831 struct sk_buff *skb;
832 struct rx_dma *prxd;
833 u32 buff_stat, status;
834 struct db_dest *pDB;
835 u32 frmlen;
836
837 netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
838
839 prxd = aup->rx_dma_ring[aup->rx_head];
840 buff_stat = prxd->buff_stat;
841 while (buff_stat & RX_T_DONE) {
842 status = prxd->status;
843 pDB = aup->rx_db_inuse[aup->rx_head];
844 au1000_update_rx_stats(dev, status);
845 if (!(status & RX_ERROR)) {
846
847 /* good frame */
848 frmlen = (status & RX_FRAME_LEN_MASK);
849 frmlen -= 4; /* Remove FCS */
850 skb = netdev_alloc_skb(dev, frmlen + 2);
851 if (skb == NULL) {
852 dev->stats.rx_dropped++;
853 continue;
854 }
855 skb_reserve(skb, 2); /* 16 byte IP header align */
856 skb_copy_to_linear_data(skb,
857 (unsigned char *)pDB->vaddr, frmlen);
858 skb_put(skb, frmlen);
859 skb->protocol = eth_type_trans(skb, dev);
860 netif_rx(skb); /* pass the packet to upper layers */
861 } else {
862 if (au1000_debug > 4) {
863 pr_err("rx_error(s):");
864 if (status & RX_MISSED_FRAME)
865 pr_cont(" miss");
866 if (status & RX_WDOG_TIMER)
867 pr_cont(" wdog");
868 if (status & RX_RUNT)
869 pr_cont(" runt");
870 if (status & RX_OVERLEN)
871 pr_cont(" overlen");
872 if (status & RX_COLL)
873 pr_cont(" coll");
874 if (status & RX_MII_ERROR)
875 pr_cont(" mii error");
876 if (status & RX_CRC_ERROR)
877 pr_cont(" crc error");
878 if (status & RX_LEN_ERROR)
879 pr_cont(" len error");
880 if (status & RX_U_CNTRL_FRAME)
881 pr_cont(" u control frame");
882 pr_cont("\n");
883 }
884 }
885 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
886 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
887 wmb(); /* drain writebuffer */
888
889 /* next descriptor */
890 prxd = aup->rx_dma_ring[aup->rx_head];
891 buff_stat = prxd->buff_stat;
892 }
893 return 0;
894 }
895
896 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
897 {
898 struct au1000_private *aup = netdev_priv(dev);
899 struct net_device_stats *ps = &dev->stats;
900
901 if (status & TX_FRAME_ABORTED) {
902 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
903 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
904 /* any other tx errors are only valid
905 * in half duplex mode
906 */
907 ps->tx_errors++;
908 ps->tx_aborted_errors++;
909 }
910 } else {
911 ps->tx_errors++;
912 ps->tx_aborted_errors++;
913 if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
914 ps->tx_carrier_errors++;
915 }
916 }
917 }
918
919 /*
920 * Called from the interrupt service routine to acknowledge
921 * the TX DONE bits. This is a must if the irq is setup as
922 * edge triggered.
923 */
924 static void au1000_tx_ack(struct net_device *dev)
925 {
926 struct au1000_private *aup = netdev_priv(dev);
927 struct tx_dma *ptxd;
928
929 ptxd = aup->tx_dma_ring[aup->tx_tail];
930
931 while (ptxd->buff_stat & TX_T_DONE) {
932 au1000_update_tx_stats(dev, ptxd->status);
933 ptxd->buff_stat &= ~TX_T_DONE;
934 ptxd->len = 0;
935 wmb(); /* drain writebuffer */
936
937 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
938 ptxd = aup->tx_dma_ring[aup->tx_tail];
939
940 if (aup->tx_full) {
941 aup->tx_full = 0;
942 netif_wake_queue(dev);
943 }
944 }
945 }
946
947 /*
948 * Au1000 interrupt service routine.
949 */
950 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
951 {
952 struct net_device *dev = dev_id;
953
954 /* Handle RX interrupts first to minimize chance of overrun */
955
956 au1000_rx(dev);
957 au1000_tx_ack(dev);
958 return IRQ_RETVAL(1);
959 }
960
961 static int au1000_open(struct net_device *dev)
962 {
963 int retval;
964 struct au1000_private *aup = netdev_priv(dev);
965
966 netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
967
968 retval = request_irq(dev->irq, au1000_interrupt, 0,
969 dev->name, dev);
970 if (retval) {
971 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
972 return retval;
973 }
974
975 retval = au1000_init(dev);
976 if (retval) {
977 netdev_err(dev, "error in au1000_init\n");
978 free_irq(dev->irq, dev);
979 return retval;
980 }
981
982 if (aup->phy_dev) {
983 /* cause the PHY state machine to schedule a link state check */
984 aup->phy_dev->state = PHY_CHANGELINK;
985 phy_start(aup->phy_dev);
986 }
987
988 netif_start_queue(dev);
989
990 netif_dbg(aup, drv, dev, "open: Initialization done.\n");
991
992 return 0;
993 }
994
995 static int au1000_close(struct net_device *dev)
996 {
997 unsigned long flags;
998 struct au1000_private *const aup = netdev_priv(dev);
999
1000 netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
1001
1002 if (aup->phy_dev)
1003 phy_stop(aup->phy_dev);
1004
1005 spin_lock_irqsave(&aup->lock, flags);
1006
1007 au1000_reset_mac_unlocked(dev);
1008
1009 /* stop the device */
1010 netif_stop_queue(dev);
1011
1012 /* disable the interrupt */
1013 free_irq(dev->irq, dev);
1014 spin_unlock_irqrestore(&aup->lock, flags);
1015
1016 return 0;
1017 }
1018
1019 /*
1020 * Au1000 transmit routine.
1021 */
1022 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
1023 {
1024 struct au1000_private *aup = netdev_priv(dev);
1025 struct net_device_stats *ps = &dev->stats;
1026 struct tx_dma *ptxd;
1027 u32 buff_stat;
1028 struct db_dest *pDB;
1029 int i;
1030
1031 netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
1032 (unsigned)aup, skb->len,
1033 skb->data, aup->tx_head);
1034
1035 ptxd = aup->tx_dma_ring[aup->tx_head];
1036 buff_stat = ptxd->buff_stat;
1037 if (buff_stat & TX_DMA_ENABLE) {
1038 /* We've wrapped around and the transmitter is still busy */
1039 netif_stop_queue(dev);
1040 aup->tx_full = 1;
1041 return NETDEV_TX_BUSY;
1042 } else if (buff_stat & TX_T_DONE) {
1043 au1000_update_tx_stats(dev, ptxd->status);
1044 ptxd->len = 0;
1045 }
1046
1047 if (aup->tx_full) {
1048 aup->tx_full = 0;
1049 netif_wake_queue(dev);
1050 }
1051
1052 pDB = aup->tx_db_inuse[aup->tx_head];
1053 skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
1054 if (skb->len < ETH_ZLEN) {
1055 for (i = skb->len; i < ETH_ZLEN; i++)
1056 ((char *)pDB->vaddr)[i] = 0;
1057
1058 ptxd->len = ETH_ZLEN;
1059 } else
1060 ptxd->len = skb->len;
1061
1062 ps->tx_packets++;
1063 ps->tx_bytes += ptxd->len;
1064
1065 ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1066 wmb(); /* drain writebuffer */
1067 dev_kfree_skb(skb);
1068 aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1069 return NETDEV_TX_OK;
1070 }
1071
1072 /*
1073 * The Tx ring has been full longer than the watchdog timeout
1074 * value. The transmitter must be hung?
1075 */
1076 static void au1000_tx_timeout(struct net_device *dev)
1077 {
1078 netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1079 au1000_reset_mac(dev);
1080 au1000_init(dev);
1081 dev->trans_start = jiffies; /* prevent tx timeout */
1082 netif_wake_queue(dev);
1083 }
1084
1085 static void au1000_multicast_list(struct net_device *dev)
1086 {
1087 struct au1000_private *aup = netdev_priv(dev);
1088 u32 reg;
1089
1090 netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1091 reg = readl(&aup->mac->control);
1092 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1093 reg |= MAC_PROMISCUOUS;
1094 } else if ((dev->flags & IFF_ALLMULTI) ||
1095 netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1096 reg |= MAC_PASS_ALL_MULTI;
1097 reg &= ~MAC_PROMISCUOUS;
1098 netdev_info(dev, "Pass all multicast\n");
1099 } else {
1100 struct netdev_hw_addr *ha;
1101 u32 mc_filter[2]; /* Multicast hash filter */
1102
1103 mc_filter[1] = mc_filter[0] = 0;
1104 netdev_for_each_mc_addr(ha, dev)
1105 set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1106 (long *)mc_filter);
1107 writel(mc_filter[1], &aup->mac->multi_hash_high);
1108 writel(mc_filter[0], &aup->mac->multi_hash_low);
1109 reg &= ~MAC_PROMISCUOUS;
1110 reg |= MAC_HASH_MODE;
1111 }
1112 writel(reg, &aup->mac->control);
1113 }
1114
1115 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1116 {
1117 struct au1000_private *aup = netdev_priv(dev);
1118
1119 if (!netif_running(dev))
1120 return -EINVAL;
1121
1122 if (!aup->phy_dev)
1123 return -EINVAL; /* PHY not controllable */
1124
1125 return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1126 }
1127
1128 static const struct net_device_ops au1000_netdev_ops = {
1129 .ndo_open = au1000_open,
1130 .ndo_stop = au1000_close,
1131 .ndo_start_xmit = au1000_tx,
1132 .ndo_set_rx_mode = au1000_multicast_list,
1133 .ndo_do_ioctl = au1000_ioctl,
1134 .ndo_tx_timeout = au1000_tx_timeout,
1135 .ndo_set_mac_address = eth_mac_addr,
1136 .ndo_validate_addr = eth_validate_addr,
1137 .ndo_change_mtu = eth_change_mtu,
1138 };
1139
1140 static int au1000_probe(struct platform_device *pdev)
1141 {
1142 struct au1000_private *aup = NULL;
1143 struct au1000_eth_platform_data *pd;
1144 struct net_device *dev = NULL;
1145 struct db_dest *pDB, *pDBfree;
1146 int irq, i, err = 0;
1147 struct resource *base, *macen, *macdma;
1148
1149 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1150 if (!base) {
1151 dev_err(&pdev->dev, "failed to retrieve base register\n");
1152 err = -ENODEV;
1153 goto out;
1154 }
1155
1156 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1157 if (!macen) {
1158 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1159 err = -ENODEV;
1160 goto out;
1161 }
1162
1163 irq = platform_get_irq(pdev, 0);
1164 if (irq < 0) {
1165 dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1166 err = -ENODEV;
1167 goto out;
1168 }
1169
1170 macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1171 if (!macdma) {
1172 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1173 err = -ENODEV;
1174 goto out;
1175 }
1176
1177 if (!request_mem_region(base->start, resource_size(base),
1178 pdev->name)) {
1179 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1180 err = -ENXIO;
1181 goto out;
1182 }
1183
1184 if (!request_mem_region(macen->start, resource_size(macen),
1185 pdev->name)) {
1186 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1187 err = -ENXIO;
1188 goto err_request;
1189 }
1190
1191 if (!request_mem_region(macdma->start, resource_size(macdma),
1192 pdev->name)) {
1193 dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1194 err = -ENXIO;
1195 goto err_macdma;
1196 }
1197
1198 dev = alloc_etherdev(sizeof(struct au1000_private));
1199 if (!dev) {
1200 err = -ENOMEM;
1201 goto err_alloc;
1202 }
1203
1204 SET_NETDEV_DEV(dev, &pdev->dev);
1205 platform_set_drvdata(pdev, dev);
1206 aup = netdev_priv(dev);
1207
1208 spin_lock_init(&aup->lock);
1209 aup->msg_enable = (au1000_debug < 4 ?
1210 AU1000_DEF_MSG_ENABLE : au1000_debug);
1211
1212 /* Allocate the data buffers
1213 * Snooping works fine with eth on all au1xxx
1214 */
1215 aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1216 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1217 &aup->dma_addr, 0);
1218 if (!aup->vaddr) {
1219 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1220 err = -ENOMEM;
1221 goto err_vaddr;
1222 }
1223
1224 /* aup->mac is the base address of the MAC's registers */
1225 aup->mac = (struct mac_reg *)
1226 ioremap_nocache(base->start, resource_size(base));
1227 if (!aup->mac) {
1228 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1229 err = -ENXIO;
1230 goto err_remap1;
1231 }
1232
1233 /* Setup some variables for quick register address access */
1234 aup->enable = (u32 *)ioremap_nocache(macen->start,
1235 resource_size(macen));
1236 if (!aup->enable) {
1237 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1238 err = -ENXIO;
1239 goto err_remap2;
1240 }
1241 aup->mac_id = pdev->id;
1242
1243 aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1244 if (!aup->macdma) {
1245 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1246 err = -ENXIO;
1247 goto err_remap3;
1248 }
1249
1250 au1000_setup_hw_rings(aup, aup->macdma);
1251
1252 writel(0, aup->enable);
1253 aup->mac_enabled = 0;
1254
1255 pd = dev_get_platdata(&pdev->dev);
1256 if (!pd) {
1257 dev_info(&pdev->dev, "no platform_data passed,"
1258 " PHY search on MAC0\n");
1259 aup->phy1_search_mac0 = 1;
1260 } else {
1261 if (is_valid_ether_addr(pd->mac)) {
1262 memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1263 } else {
1264 /* Set a random MAC since no valid provided by platform_data. */
1265 eth_hw_addr_random(dev);
1266 }
1267
1268 aup->phy_static_config = pd->phy_static_config;
1269 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1270 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1271 aup->phy_addr = pd->phy_addr;
1272 aup->phy_busid = pd->phy_busid;
1273 aup->phy_irq = pd->phy_irq;
1274 }
1275
1276 if (aup->phy_busid && aup->phy_busid > 0) {
1277 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1278 err = -ENODEV;
1279 goto err_mdiobus_alloc;
1280 }
1281
1282 aup->mii_bus = mdiobus_alloc();
1283 if (aup->mii_bus == NULL) {
1284 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1285 err = -ENOMEM;
1286 goto err_mdiobus_alloc;
1287 }
1288
1289 aup->mii_bus->priv = dev;
1290 aup->mii_bus->read = au1000_mdiobus_read;
1291 aup->mii_bus->write = au1000_mdiobus_write;
1292 aup->mii_bus->reset = au1000_mdiobus_reset;
1293 aup->mii_bus->name = "au1000_eth_mii";
1294 snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1295 pdev->name, aup->mac_id);
1296 aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1297 if (aup->mii_bus->irq == NULL) {
1298 err = -ENOMEM;
1299 goto err_out;
1300 }
1301
1302 for (i = 0; i < PHY_MAX_ADDR; ++i)
1303 aup->mii_bus->irq[i] = PHY_POLL;
1304 /* if known, set corresponding PHY IRQs */
1305 if (aup->phy_static_config)
1306 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1307 aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1308
1309 err = mdiobus_register(aup->mii_bus);
1310 if (err) {
1311 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1312 goto err_mdiobus_reg;
1313 }
1314
1315 err = au1000_mii_probe(dev);
1316 if (err != 0)
1317 goto err_out;
1318
1319 pDBfree = NULL;
1320 /* setup the data buffer descriptors and attach a buffer to each one */
1321 pDB = aup->db;
1322 for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1323 pDB->pnext = pDBfree;
1324 pDBfree = pDB;
1325 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1326 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1327 pDB++;
1328 }
1329 aup->pDBfree = pDBfree;
1330
1331 err = -ENODEV;
1332 for (i = 0; i < NUM_RX_DMA; i++) {
1333 pDB = au1000_GetFreeDB(aup);
1334 if (!pDB)
1335 goto err_out;
1336
1337 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1338 aup->rx_db_inuse[i] = pDB;
1339 }
1340
1341 err = -ENODEV;
1342 for (i = 0; i < NUM_TX_DMA; i++) {
1343 pDB = au1000_GetFreeDB(aup);
1344 if (!pDB)
1345 goto err_out;
1346
1347 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1348 aup->tx_dma_ring[i]->len = 0;
1349 aup->tx_db_inuse[i] = pDB;
1350 }
1351
1352 dev->base_addr = base->start;
1353 dev->irq = irq;
1354 dev->netdev_ops = &au1000_netdev_ops;
1355 dev->ethtool_ops = &au1000_ethtool_ops;
1356 dev->watchdog_timeo = ETH_TX_TIMEOUT;
1357
1358 /*
1359 * The boot code uses the ethernet controller, so reset it to start
1360 * fresh. au1000_init() expects that the device is in reset state.
1361 */
1362 au1000_reset_mac(dev);
1363
1364 err = register_netdev(dev);
1365 if (err) {
1366 netdev_err(dev, "Cannot register net device, aborting.\n");
1367 goto err_out;
1368 }
1369
1370 netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1371 (unsigned long)base->start, irq);
1372
1373 pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1374
1375 return 0;
1376
1377 err_out:
1378 if (aup->mii_bus != NULL)
1379 mdiobus_unregister(aup->mii_bus);
1380
1381 /* here we should have a valid dev plus aup-> register addresses
1382 * so we can reset the mac properly.
1383 */
1384 au1000_reset_mac(dev);
1385
1386 for (i = 0; i < NUM_RX_DMA; i++) {
1387 if (aup->rx_db_inuse[i])
1388 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1389 }
1390 for (i = 0; i < NUM_TX_DMA; i++) {
1391 if (aup->tx_db_inuse[i])
1392 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1393 }
1394 err_mdiobus_reg:
1395 mdiobus_free(aup->mii_bus);
1396 err_mdiobus_alloc:
1397 iounmap(aup->macdma);
1398 err_remap3:
1399 iounmap(aup->enable);
1400 err_remap2:
1401 iounmap(aup->mac);
1402 err_remap1:
1403 dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1404 (void *)aup->vaddr, aup->dma_addr);
1405 err_vaddr:
1406 free_netdev(dev);
1407 err_alloc:
1408 release_mem_region(macdma->start, resource_size(macdma));
1409 err_macdma:
1410 release_mem_region(macen->start, resource_size(macen));
1411 err_request:
1412 release_mem_region(base->start, resource_size(base));
1413 out:
1414 return err;
1415 }
1416
1417 static int au1000_remove(struct platform_device *pdev)
1418 {
1419 struct net_device *dev = platform_get_drvdata(pdev);
1420 struct au1000_private *aup = netdev_priv(dev);
1421 int i;
1422 struct resource *base, *macen;
1423
1424 unregister_netdev(dev);
1425 mdiobus_unregister(aup->mii_bus);
1426 mdiobus_free(aup->mii_bus);
1427
1428 for (i = 0; i < NUM_RX_DMA; i++)
1429 if (aup->rx_db_inuse[i])
1430 au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1431
1432 for (i = 0; i < NUM_TX_DMA; i++)
1433 if (aup->tx_db_inuse[i])
1434 au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1435
1436 dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1437 (NUM_TX_BUFFS + NUM_RX_BUFFS),
1438 (void *)aup->vaddr, aup->dma_addr);
1439
1440 iounmap(aup->macdma);
1441 iounmap(aup->mac);
1442 iounmap(aup->enable);
1443
1444 base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1445 release_mem_region(base->start, resource_size(base));
1446
1447 base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1448 release_mem_region(base->start, resource_size(base));
1449
1450 macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1451 release_mem_region(macen->start, resource_size(macen));
1452
1453 free_netdev(dev);
1454
1455 return 0;
1456 }
1457
1458 static struct platform_driver au1000_eth_driver = {
1459 .probe = au1000_probe,
1460 .remove = au1000_remove,
1461 .driver = {
1462 .name = "au1000-eth",
1463 },
1464 };
1465
1466 module_platform_driver(au1000_eth_driver);
1467
1468 MODULE_ALIAS("platform:au1000-eth");
This page took 0.059193 seconds and 6 git commands to generate.