drivers/net: Remove alloc_etherdev error messages
[deliverable/linux.git] / drivers / net / ethernet / apple / bmac.c
1 /*
2 * Network device driver for the BMAC ethernet controller on
3 * Apple Powermacs. Assumes it's under a DBDMA controller.
4 *
5 * Copyright (C) 1998 Randy Gobbel.
6 *
7 * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to
8 * dynamic procfs inode.
9 */
10 #include <linux/interrupt.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/proc_fs.h>
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/crc32.h>
22 #include <linux/bitrev.h>
23 #include <linux/ethtool.h>
24 #include <linux/slab.h>
25 #include <asm/prom.h>
26 #include <asm/dbdma.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/machdep.h>
31 #include <asm/pmac_feature.h>
32 #include <asm/macio.h>
33 #include <asm/irq.h>
34
35 #include "bmac.h"
36
37 #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1))))
38 #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1)))
39
40 /*
41 * CRC polynomial - used in working out multicast filter bits.
42 */
43 #define ENET_CRCPOLY 0x04c11db7
44
45 /* switch to use multicast code lifted from sunhme driver */
46 #define SUNHME_MULTICAST
47
48 #define N_RX_RING 64
49 #define N_TX_RING 32
50 #define MAX_TX_ACTIVE 1
51 #define ETHERCRC 4
52 #define ETHERMINPACKET 64
53 #define ETHERMTU 1500
54 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2)
55 #define TX_TIMEOUT HZ /* 1 second */
56
57 /* Bits in transmit DMA status */
58 #define TX_DMA_ERR 0x80
59
60 #define XXDEBUG(args)
61
62 struct bmac_data {
63 /* volatile struct bmac *bmac; */
64 struct sk_buff_head *queue;
65 volatile struct dbdma_regs __iomem *tx_dma;
66 int tx_dma_intr;
67 volatile struct dbdma_regs __iomem *rx_dma;
68 int rx_dma_intr;
69 volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
70 volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
71 struct macio_dev *mdev;
72 int is_bmac_plus;
73 struct sk_buff *rx_bufs[N_RX_RING];
74 int rx_fill;
75 int rx_empty;
76 struct sk_buff *tx_bufs[N_TX_RING];
77 int tx_fill;
78 int tx_empty;
79 unsigned char tx_fullup;
80 struct timer_list tx_timeout;
81 int timeout_active;
82 int sleeping;
83 int opened;
84 unsigned short hash_use_count[64];
85 unsigned short hash_table_mask[4];
86 spinlock_t lock;
87 };
88
89 #if 0 /* Move that to ethtool */
90
91 typedef struct bmac_reg_entry {
92 char *name;
93 unsigned short reg_offset;
94 } bmac_reg_entry_t;
95
96 #define N_REG_ENTRIES 31
97
98 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = {
99 {"MEMADD", MEMADD},
100 {"MEMDATAHI", MEMDATAHI},
101 {"MEMDATALO", MEMDATALO},
102 {"TXPNTR", TXPNTR},
103 {"RXPNTR", RXPNTR},
104 {"IPG1", IPG1},
105 {"IPG2", IPG2},
106 {"ALIMIT", ALIMIT},
107 {"SLOT", SLOT},
108 {"PALEN", PALEN},
109 {"PAPAT", PAPAT},
110 {"TXSFD", TXSFD},
111 {"JAM", JAM},
112 {"TXCFG", TXCFG},
113 {"TXMAX", TXMAX},
114 {"TXMIN", TXMIN},
115 {"PAREG", PAREG},
116 {"DCNT", DCNT},
117 {"NCCNT", NCCNT},
118 {"NTCNT", NTCNT},
119 {"EXCNT", EXCNT},
120 {"LTCNT", LTCNT},
121 {"TXSM", TXSM},
122 {"RXCFG", RXCFG},
123 {"RXMAX", RXMAX},
124 {"RXMIN", RXMIN},
125 {"FRCNT", FRCNT},
126 {"AECNT", AECNT},
127 {"FECNT", FECNT},
128 {"RXSM", RXSM},
129 {"RXCV", RXCV}
130 };
131
132 #endif
133
134 static unsigned char *bmac_emergency_rxbuf;
135
136 /*
137 * Number of bytes of private data per BMAC: allow enough for
138 * the rx and tx dma commands plus a branch dma command each,
139 * and another 16 bytes to allow us to align the dma command
140 * buffers on a 16 byte boundary.
141 */
142 #define PRIV_BYTES (sizeof(struct bmac_data) \
143 + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \
144 + sizeof(struct sk_buff_head))
145
146 static int bmac_open(struct net_device *dev);
147 static int bmac_close(struct net_device *dev);
148 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev);
149 static void bmac_set_multicast(struct net_device *dev);
150 static void bmac_reset_and_enable(struct net_device *dev);
151 static void bmac_start_chip(struct net_device *dev);
152 static void bmac_init_chip(struct net_device *dev);
153 static void bmac_init_registers(struct net_device *dev);
154 static void bmac_enable_and_reset_chip(struct net_device *dev);
155 static int bmac_set_address(struct net_device *dev, void *addr);
156 static irqreturn_t bmac_misc_intr(int irq, void *dev_id);
157 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id);
158 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id);
159 static void bmac_set_timeout(struct net_device *dev);
160 static void bmac_tx_timeout(unsigned long data);
161 static int bmac_output(struct sk_buff *skb, struct net_device *dev);
162 static void bmac_start(struct net_device *dev);
163
164 #define DBDMA_SET(x) ( ((x) | (x) << 16) )
165 #define DBDMA_CLEAR(x) ( (x) << 16)
166
167 static inline void
168 dbdma_st32(volatile __u32 __iomem *a, unsigned long x)
169 {
170 __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory");
171 }
172
173 static inline unsigned long
174 dbdma_ld32(volatile __u32 __iomem *a)
175 {
176 __u32 swap;
177 __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a));
178 return swap;
179 }
180
181 static void
182 dbdma_continue(volatile struct dbdma_regs __iomem *dmap)
183 {
184 dbdma_st32(&dmap->control,
185 DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD));
186 eieio();
187 }
188
189 static void
190 dbdma_reset(volatile struct dbdma_regs __iomem *dmap)
191 {
192 dbdma_st32(&dmap->control,
193 DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN));
194 eieio();
195 while (dbdma_ld32(&dmap->status) & RUN)
196 eieio();
197 }
198
199 static void
200 dbdma_setcmd(volatile struct dbdma_cmd *cp,
201 unsigned short cmd, unsigned count, unsigned long addr,
202 unsigned long cmd_dep)
203 {
204 out_le16(&cp->command, cmd);
205 out_le16(&cp->req_count, count);
206 out_le32(&cp->phy_addr, addr);
207 out_le32(&cp->cmd_dep, cmd_dep);
208 out_le16(&cp->xfer_status, 0);
209 out_le16(&cp->res_count, 0);
210 }
211
212 static inline
213 void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data )
214 {
215 out_le16((void __iomem *)dev->base_addr + reg_offset, data);
216 }
217
218
219 static inline
220 unsigned short bmread(struct net_device *dev, unsigned long reg_offset )
221 {
222 return in_le16((void __iomem *)dev->base_addr + reg_offset);
223 }
224
225 static void
226 bmac_enable_and_reset_chip(struct net_device *dev)
227 {
228 struct bmac_data *bp = netdev_priv(dev);
229 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
230 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
231
232 if (rd)
233 dbdma_reset(rd);
234 if (td)
235 dbdma_reset(td);
236
237 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1);
238 }
239
240 #define MIFDELAY udelay(10)
241
242 static unsigned int
243 bmac_mif_readbits(struct net_device *dev, int nb)
244 {
245 unsigned int val = 0;
246
247 while (--nb >= 0) {
248 bmwrite(dev, MIFCSR, 0);
249 MIFDELAY;
250 if (bmread(dev, MIFCSR) & 8)
251 val |= 1 << nb;
252 bmwrite(dev, MIFCSR, 1);
253 MIFDELAY;
254 }
255 bmwrite(dev, MIFCSR, 0);
256 MIFDELAY;
257 bmwrite(dev, MIFCSR, 1);
258 MIFDELAY;
259 return val;
260 }
261
262 static void
263 bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb)
264 {
265 int b;
266
267 while (--nb >= 0) {
268 b = (val & (1 << nb))? 6: 4;
269 bmwrite(dev, MIFCSR, b);
270 MIFDELAY;
271 bmwrite(dev, MIFCSR, b|1);
272 MIFDELAY;
273 }
274 }
275
276 static unsigned int
277 bmac_mif_read(struct net_device *dev, unsigned int addr)
278 {
279 unsigned int val;
280
281 bmwrite(dev, MIFCSR, 4);
282 MIFDELAY;
283 bmac_mif_writebits(dev, ~0U, 32);
284 bmac_mif_writebits(dev, 6, 4);
285 bmac_mif_writebits(dev, addr, 10);
286 bmwrite(dev, MIFCSR, 2);
287 MIFDELAY;
288 bmwrite(dev, MIFCSR, 1);
289 MIFDELAY;
290 val = bmac_mif_readbits(dev, 17);
291 bmwrite(dev, MIFCSR, 4);
292 MIFDELAY;
293 return val;
294 }
295
296 static void
297 bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val)
298 {
299 bmwrite(dev, MIFCSR, 4);
300 MIFDELAY;
301 bmac_mif_writebits(dev, ~0U, 32);
302 bmac_mif_writebits(dev, 5, 4);
303 bmac_mif_writebits(dev, addr, 10);
304 bmac_mif_writebits(dev, 2, 2);
305 bmac_mif_writebits(dev, val, 16);
306 bmac_mif_writebits(dev, 3, 2);
307 }
308
309 static void
310 bmac_init_registers(struct net_device *dev)
311 {
312 struct bmac_data *bp = netdev_priv(dev);
313 volatile unsigned short regValue;
314 unsigned short *pWord16;
315 int i;
316
317 /* XXDEBUG(("bmac: enter init_registers\n")); */
318
319 bmwrite(dev, RXRST, RxResetValue);
320 bmwrite(dev, TXRST, TxResetBit);
321
322 i = 100;
323 do {
324 --i;
325 udelay(10000);
326 regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */
327 } while ((regValue & TxResetBit) && i > 0);
328
329 if (!bp->is_bmac_plus) {
330 regValue = bmread(dev, XCVRIF);
331 regValue |= ClkBit | SerialMode | COLActiveLow;
332 bmwrite(dev, XCVRIF, regValue);
333 udelay(10000);
334 }
335
336 bmwrite(dev, RSEED, (unsigned short)0x1968);
337
338 regValue = bmread(dev, XIFC);
339 regValue |= TxOutputEnable;
340 bmwrite(dev, XIFC, regValue);
341
342 bmread(dev, PAREG);
343
344 /* set collision counters to 0 */
345 bmwrite(dev, NCCNT, 0);
346 bmwrite(dev, NTCNT, 0);
347 bmwrite(dev, EXCNT, 0);
348 bmwrite(dev, LTCNT, 0);
349
350 /* set rx counters to 0 */
351 bmwrite(dev, FRCNT, 0);
352 bmwrite(dev, LECNT, 0);
353 bmwrite(dev, AECNT, 0);
354 bmwrite(dev, FECNT, 0);
355 bmwrite(dev, RXCV, 0);
356
357 /* set tx fifo information */
358 bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */
359
360 bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */
361 bmwrite(dev, TXFIFOCSR, TxFIFOEnable );
362
363 /* set rx fifo information */
364 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
365 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
366
367 //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */
368 bmread(dev, STATUS); /* read it just to clear it */
369
370 /* zero out the chip Hash Filter registers */
371 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
372 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
373 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
374 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
375 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
376
377 pWord16 = (unsigned short *)dev->dev_addr;
378 bmwrite(dev, MADD0, *pWord16++);
379 bmwrite(dev, MADD1, *pWord16++);
380 bmwrite(dev, MADD2, *pWord16);
381
382 bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets);
383
384 bmwrite(dev, INTDISABLE, EnableNormal);
385 }
386
387 #if 0
388 static void
389 bmac_disable_interrupts(struct net_device *dev)
390 {
391 bmwrite(dev, INTDISABLE, DisableAll);
392 }
393
394 static void
395 bmac_enable_interrupts(struct net_device *dev)
396 {
397 bmwrite(dev, INTDISABLE, EnableNormal);
398 }
399 #endif
400
401
402 static void
403 bmac_start_chip(struct net_device *dev)
404 {
405 struct bmac_data *bp = netdev_priv(dev);
406 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
407 unsigned short oldConfig;
408
409 /* enable rx dma channel */
410 dbdma_continue(rd);
411
412 oldConfig = bmread(dev, TXCFG);
413 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
414
415 /* turn on rx plus any other bits already on (promiscuous possibly) */
416 oldConfig = bmread(dev, RXCFG);
417 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
418 udelay(20000);
419 }
420
421 static void
422 bmac_init_phy(struct net_device *dev)
423 {
424 unsigned int addr;
425 struct bmac_data *bp = netdev_priv(dev);
426
427 printk(KERN_DEBUG "phy registers:");
428 for (addr = 0; addr < 32; ++addr) {
429 if ((addr & 7) == 0)
430 printk(KERN_DEBUG);
431 printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr));
432 }
433 printk(KERN_CONT "\n");
434
435 if (bp->is_bmac_plus) {
436 unsigned int capable, ctrl;
437
438 ctrl = bmac_mif_read(dev, 0);
439 capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1;
440 if (bmac_mif_read(dev, 4) != capable ||
441 (ctrl & 0x1000) == 0) {
442 bmac_mif_write(dev, 4, capable);
443 bmac_mif_write(dev, 0, 0x1200);
444 } else
445 bmac_mif_write(dev, 0, 0x1000);
446 }
447 }
448
449 static void bmac_init_chip(struct net_device *dev)
450 {
451 bmac_init_phy(dev);
452 bmac_init_registers(dev);
453 }
454
455 #ifdef CONFIG_PM
456 static int bmac_suspend(struct macio_dev *mdev, pm_message_t state)
457 {
458 struct net_device* dev = macio_get_drvdata(mdev);
459 struct bmac_data *bp = netdev_priv(dev);
460 unsigned long flags;
461 unsigned short config;
462 int i;
463
464 netif_device_detach(dev);
465 /* prolly should wait for dma to finish & turn off the chip */
466 spin_lock_irqsave(&bp->lock, flags);
467 if (bp->timeout_active) {
468 del_timer(&bp->tx_timeout);
469 bp->timeout_active = 0;
470 }
471 disable_irq(dev->irq);
472 disable_irq(bp->tx_dma_intr);
473 disable_irq(bp->rx_dma_intr);
474 bp->sleeping = 1;
475 spin_unlock_irqrestore(&bp->lock, flags);
476 if (bp->opened) {
477 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
478 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
479
480 config = bmread(dev, RXCFG);
481 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
482 config = bmread(dev, TXCFG);
483 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
484 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
485 /* disable rx and tx dma */
486 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
487 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
488 /* free some skb's */
489 for (i=0; i<N_RX_RING; i++) {
490 if (bp->rx_bufs[i] != NULL) {
491 dev_kfree_skb(bp->rx_bufs[i]);
492 bp->rx_bufs[i] = NULL;
493 }
494 }
495 for (i = 0; i<N_TX_RING; i++) {
496 if (bp->tx_bufs[i] != NULL) {
497 dev_kfree_skb(bp->tx_bufs[i]);
498 bp->tx_bufs[i] = NULL;
499 }
500 }
501 }
502 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
503 return 0;
504 }
505
506 static int bmac_resume(struct macio_dev *mdev)
507 {
508 struct net_device* dev = macio_get_drvdata(mdev);
509 struct bmac_data *bp = netdev_priv(dev);
510
511 /* see if this is enough */
512 if (bp->opened)
513 bmac_reset_and_enable(dev);
514
515 enable_irq(dev->irq);
516 enable_irq(bp->tx_dma_intr);
517 enable_irq(bp->rx_dma_intr);
518 netif_device_attach(dev);
519
520 return 0;
521 }
522 #endif /* CONFIG_PM */
523
524 static int bmac_set_address(struct net_device *dev, void *addr)
525 {
526 struct bmac_data *bp = netdev_priv(dev);
527 unsigned char *p = addr;
528 unsigned short *pWord16;
529 unsigned long flags;
530 int i;
531
532 XXDEBUG(("bmac: enter set_address\n"));
533 spin_lock_irqsave(&bp->lock, flags);
534
535 for (i = 0; i < 6; ++i) {
536 dev->dev_addr[i] = p[i];
537 }
538 /* load up the hardware address */
539 pWord16 = (unsigned short *)dev->dev_addr;
540 bmwrite(dev, MADD0, *pWord16++);
541 bmwrite(dev, MADD1, *pWord16++);
542 bmwrite(dev, MADD2, *pWord16);
543
544 spin_unlock_irqrestore(&bp->lock, flags);
545 XXDEBUG(("bmac: exit set_address\n"));
546 return 0;
547 }
548
549 static inline void bmac_set_timeout(struct net_device *dev)
550 {
551 struct bmac_data *bp = netdev_priv(dev);
552 unsigned long flags;
553
554 spin_lock_irqsave(&bp->lock, flags);
555 if (bp->timeout_active)
556 del_timer(&bp->tx_timeout);
557 bp->tx_timeout.expires = jiffies + TX_TIMEOUT;
558 bp->tx_timeout.function = bmac_tx_timeout;
559 bp->tx_timeout.data = (unsigned long) dev;
560 add_timer(&bp->tx_timeout);
561 bp->timeout_active = 1;
562 spin_unlock_irqrestore(&bp->lock, flags);
563 }
564
565 static void
566 bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
567 {
568 void *vaddr;
569 unsigned long baddr;
570 unsigned long len;
571
572 len = skb->len;
573 vaddr = skb->data;
574 baddr = virt_to_bus(vaddr);
575
576 dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0);
577 }
578
579 static void
580 bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp)
581 {
582 unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf;
583
584 dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN,
585 virt_to_bus(addr), 0);
586 }
587
588 static void
589 bmac_init_tx_ring(struct bmac_data *bp)
590 {
591 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
592
593 memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd));
594
595 bp->tx_empty = 0;
596 bp->tx_fill = 0;
597 bp->tx_fullup = 0;
598
599 /* put a branch at the end of the tx command list */
600 dbdma_setcmd(&bp->tx_cmds[N_TX_RING],
601 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds));
602
603 /* reset tx dma */
604 dbdma_reset(td);
605 out_le32(&td->wait_sel, 0x00200020);
606 out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds));
607 }
608
609 static int
610 bmac_init_rx_ring(struct bmac_data *bp)
611 {
612 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
613 int i;
614 struct sk_buff *skb;
615
616 /* initialize list of sk_buffs for receiving and set up recv dma */
617 memset((char *)bp->rx_cmds, 0,
618 (N_RX_RING + 1) * sizeof(struct dbdma_cmd));
619 for (i = 0; i < N_RX_RING; i++) {
620 if ((skb = bp->rx_bufs[i]) == NULL) {
621 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
622 if (skb != NULL)
623 skb_reserve(skb, 2);
624 }
625 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
626 }
627
628 bp->rx_empty = 0;
629 bp->rx_fill = i;
630
631 /* Put a branch back to the beginning of the receive command list */
632 dbdma_setcmd(&bp->rx_cmds[N_RX_RING],
633 (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds));
634
635 /* start rx dma */
636 dbdma_reset(rd);
637 out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds));
638
639 return 1;
640 }
641
642
643 static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev)
644 {
645 struct bmac_data *bp = netdev_priv(dev);
646 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
647 int i;
648
649 /* see if there's a free slot in the tx ring */
650 /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */
651 /* bp->tx_empty, bp->tx_fill)); */
652 i = bp->tx_fill + 1;
653 if (i >= N_TX_RING)
654 i = 0;
655 if (i == bp->tx_empty) {
656 netif_stop_queue(dev);
657 bp->tx_fullup = 1;
658 XXDEBUG(("bmac_transmit_packet: tx ring full\n"));
659 return -1; /* can't take it at the moment */
660 }
661
662 dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0);
663
664 bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]);
665
666 bp->tx_bufs[bp->tx_fill] = skb;
667 bp->tx_fill = i;
668
669 dev->stats.tx_bytes += skb->len;
670
671 dbdma_continue(td);
672
673 return 0;
674 }
675
676 static int rxintcount;
677
678 static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id)
679 {
680 struct net_device *dev = (struct net_device *) dev_id;
681 struct bmac_data *bp = netdev_priv(dev);
682 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
683 volatile struct dbdma_cmd *cp;
684 int i, nb, stat;
685 struct sk_buff *skb;
686 unsigned int residual;
687 int last;
688 unsigned long flags;
689
690 spin_lock_irqsave(&bp->lock, flags);
691
692 if (++rxintcount < 10) {
693 XXDEBUG(("bmac_rxdma_intr\n"));
694 }
695
696 last = -1;
697 i = bp->rx_empty;
698
699 while (1) {
700 cp = &bp->rx_cmds[i];
701 stat = ld_le16(&cp->xfer_status);
702 residual = ld_le16(&cp->res_count);
703 if ((stat & ACTIVE) == 0)
704 break;
705 nb = RX_BUFLEN - residual - 2;
706 if (nb < (ETHERMINPACKET - ETHERCRC)) {
707 skb = NULL;
708 dev->stats.rx_length_errors++;
709 dev->stats.rx_errors++;
710 } else {
711 skb = bp->rx_bufs[i];
712 bp->rx_bufs[i] = NULL;
713 }
714 if (skb != NULL) {
715 nb -= ETHERCRC;
716 skb_put(skb, nb);
717 skb->protocol = eth_type_trans(skb, dev);
718 netif_rx(skb);
719 ++dev->stats.rx_packets;
720 dev->stats.rx_bytes += nb;
721 } else {
722 ++dev->stats.rx_dropped;
723 }
724 if ((skb = bp->rx_bufs[i]) == NULL) {
725 bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2);
726 if (skb != NULL)
727 skb_reserve(bp->rx_bufs[i], 2);
728 }
729 bmac_construct_rxbuff(skb, &bp->rx_cmds[i]);
730 st_le16(&cp->res_count, 0);
731 st_le16(&cp->xfer_status, 0);
732 last = i;
733 if (++i >= N_RX_RING) i = 0;
734 }
735
736 if (last != -1) {
737 bp->rx_fill = last;
738 bp->rx_empty = i;
739 }
740
741 dbdma_continue(rd);
742 spin_unlock_irqrestore(&bp->lock, flags);
743
744 if (rxintcount < 10) {
745 XXDEBUG(("bmac_rxdma_intr done\n"));
746 }
747 return IRQ_HANDLED;
748 }
749
750 static int txintcount;
751
752 static irqreturn_t bmac_txdma_intr(int irq, void *dev_id)
753 {
754 struct net_device *dev = (struct net_device *) dev_id;
755 struct bmac_data *bp = netdev_priv(dev);
756 volatile struct dbdma_cmd *cp;
757 int stat;
758 unsigned long flags;
759
760 spin_lock_irqsave(&bp->lock, flags);
761
762 if (txintcount++ < 10) {
763 XXDEBUG(("bmac_txdma_intr\n"));
764 }
765
766 /* del_timer(&bp->tx_timeout); */
767 /* bp->timeout_active = 0; */
768
769 while (1) {
770 cp = &bp->tx_cmds[bp->tx_empty];
771 stat = ld_le16(&cp->xfer_status);
772 if (txintcount < 10) {
773 XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat));
774 }
775 if (!(stat & ACTIVE)) {
776 /*
777 * status field might not have been filled by DBDMA
778 */
779 if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr)))
780 break;
781 }
782
783 if (bp->tx_bufs[bp->tx_empty]) {
784 ++dev->stats.tx_packets;
785 dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]);
786 }
787 bp->tx_bufs[bp->tx_empty] = NULL;
788 bp->tx_fullup = 0;
789 netif_wake_queue(dev);
790 if (++bp->tx_empty >= N_TX_RING)
791 bp->tx_empty = 0;
792 if (bp->tx_empty == bp->tx_fill)
793 break;
794 }
795
796 spin_unlock_irqrestore(&bp->lock, flags);
797
798 if (txintcount < 10) {
799 XXDEBUG(("bmac_txdma_intr done->bmac_start\n"));
800 }
801
802 bmac_start(dev);
803 return IRQ_HANDLED;
804 }
805
806 #ifndef SUNHME_MULTICAST
807 /* Real fast bit-reversal algorithm, 6-bit values */
808 static int reverse6[64] = {
809 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38,
810 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c,
811 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a,
812 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e,
813 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39,
814 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d,
815 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b,
816 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f
817 };
818
819 static unsigned int
820 crc416(unsigned int curval, unsigned short nxtval)
821 {
822 register unsigned int counter, cur = curval, next = nxtval;
823 register int high_crc_set, low_data_set;
824
825 /* Swap bytes */
826 next = ((next & 0x00FF) << 8) | (next >> 8);
827
828 /* Compute bit-by-bit */
829 for (counter = 0; counter < 16; ++counter) {
830 /* is high CRC bit set? */
831 if ((cur & 0x80000000) == 0) high_crc_set = 0;
832 else high_crc_set = 1;
833
834 cur = cur << 1;
835
836 if ((next & 0x0001) == 0) low_data_set = 0;
837 else low_data_set = 1;
838
839 next = next >> 1;
840
841 /* do the XOR */
842 if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY;
843 }
844 return cur;
845 }
846
847 static unsigned int
848 bmac_crc(unsigned short *address)
849 {
850 unsigned int newcrc;
851
852 XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2]));
853 newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */
854 newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */
855 newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */
856
857 return(newcrc);
858 }
859
860 /*
861 * Add requested mcast addr to BMac's hash table filter.
862 *
863 */
864
865 static void
866 bmac_addhash(struct bmac_data *bp, unsigned char *addr)
867 {
868 unsigned int crc;
869 unsigned short mask;
870
871 if (!(*addr)) return;
872 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
873 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
874 if (bp->hash_use_count[crc]++) return; /* This bit is already set */
875 mask = crc % 16;
876 mask = (unsigned char)1 << mask;
877 bp->hash_use_count[crc/16] |= mask;
878 }
879
880 static void
881 bmac_removehash(struct bmac_data *bp, unsigned char *addr)
882 {
883 unsigned int crc;
884 unsigned char mask;
885
886 /* Now, delete the address from the filter copy, as indicated */
887 crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */
888 crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */
889 if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */
890 if (--bp->hash_use_count[crc]) return; /* That bit is still in use */
891 mask = crc % 16;
892 mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */
893 bp->hash_table_mask[crc/16] &= mask;
894 }
895
896 /*
897 * Sync the adapter with the software copy of the multicast mask
898 * (logical address filter).
899 */
900
901 static void
902 bmac_rx_off(struct net_device *dev)
903 {
904 unsigned short rx_cfg;
905
906 rx_cfg = bmread(dev, RXCFG);
907 rx_cfg &= ~RxMACEnable;
908 bmwrite(dev, RXCFG, rx_cfg);
909 do {
910 rx_cfg = bmread(dev, RXCFG);
911 } while (rx_cfg & RxMACEnable);
912 }
913
914 unsigned short
915 bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable)
916 {
917 unsigned short rx_cfg;
918
919 rx_cfg = bmread(dev, RXCFG);
920 rx_cfg |= RxMACEnable;
921 if (hash_enable) rx_cfg |= RxHashFilterEnable;
922 else rx_cfg &= ~RxHashFilterEnable;
923 if (promisc_enable) rx_cfg |= RxPromiscEnable;
924 else rx_cfg &= ~RxPromiscEnable;
925 bmwrite(dev, RXRST, RxResetValue);
926 bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */
927 bmwrite(dev, RXFIFOCSR, RxFIFOEnable );
928 bmwrite(dev, RXCFG, rx_cfg );
929 return rx_cfg;
930 }
931
932 static void
933 bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp)
934 {
935 bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */
936 bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */
937 bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */
938 bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */
939 }
940
941 #if 0
942 static void
943 bmac_add_multi(struct net_device *dev,
944 struct bmac_data *bp, unsigned char *addr)
945 {
946 /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */
947 bmac_addhash(bp, addr);
948 bmac_rx_off(dev);
949 bmac_update_hash_table_mask(dev, bp);
950 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
951 /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */
952 }
953
954 static void
955 bmac_remove_multi(struct net_device *dev,
956 struct bmac_data *bp, unsigned char *addr)
957 {
958 bmac_removehash(bp, addr);
959 bmac_rx_off(dev);
960 bmac_update_hash_table_mask(dev, bp);
961 bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0);
962 }
963 #endif
964
965 /* Set or clear the multicast filter for this adaptor.
966 num_addrs == -1 Promiscuous mode, receive all packets
967 num_addrs == 0 Normal mode, clear multicast list
968 num_addrs > 0 Multicast mode, receive normal and MC packets, and do
969 best-effort filtering.
970 */
971 static void bmac_set_multicast(struct net_device *dev)
972 {
973 struct netdev_hw_addr *ha;
974 struct bmac_data *bp = netdev_priv(dev);
975 int num_addrs = netdev_mc_count(dev);
976 unsigned short rx_cfg;
977 int i;
978
979 if (bp->sleeping)
980 return;
981
982 XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs));
983
984 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
985 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff;
986 bmac_update_hash_table_mask(dev, bp);
987 rx_cfg = bmac_rx_on(dev, 1, 0);
988 XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n"));
989 } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) {
990 rx_cfg = bmread(dev, RXCFG);
991 rx_cfg |= RxPromiscEnable;
992 bmwrite(dev, RXCFG, rx_cfg);
993 rx_cfg = bmac_rx_on(dev, 0, 1);
994 XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg));
995 } else {
996 for (i=0; i<4; i++) bp->hash_table_mask[i] = 0;
997 for (i=0; i<64; i++) bp->hash_use_count[i] = 0;
998 if (num_addrs == 0) {
999 rx_cfg = bmac_rx_on(dev, 0, 0);
1000 XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg));
1001 } else {
1002 netdev_for_each_mc_addr(ha, dev)
1003 bmac_addhash(bp, ha->addr);
1004 bmac_update_hash_table_mask(dev, bp);
1005 rx_cfg = bmac_rx_on(dev, 1, 0);
1006 XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg));
1007 }
1008 }
1009 /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */
1010 }
1011 #else /* ifdef SUNHME_MULTICAST */
1012
1013 /* The version of set_multicast below was lifted from sunhme.c */
1014
1015 static void bmac_set_multicast(struct net_device *dev)
1016 {
1017 struct netdev_hw_addr *ha;
1018 int i;
1019 unsigned short rx_cfg;
1020 u32 crc;
1021
1022 if((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
1023 bmwrite(dev, BHASH0, 0xffff);
1024 bmwrite(dev, BHASH1, 0xffff);
1025 bmwrite(dev, BHASH2, 0xffff);
1026 bmwrite(dev, BHASH3, 0xffff);
1027 } else if(dev->flags & IFF_PROMISC) {
1028 rx_cfg = bmread(dev, RXCFG);
1029 rx_cfg |= RxPromiscEnable;
1030 bmwrite(dev, RXCFG, rx_cfg);
1031 } else {
1032 u16 hash_table[4];
1033
1034 rx_cfg = bmread(dev, RXCFG);
1035 rx_cfg &= ~RxPromiscEnable;
1036 bmwrite(dev, RXCFG, rx_cfg);
1037
1038 for(i = 0; i < 4; i++) hash_table[i] = 0;
1039
1040 netdev_for_each_mc_addr(ha, dev) {
1041 crc = ether_crc_le(6, ha->addr);
1042 crc >>= 26;
1043 hash_table[crc >> 4] |= 1 << (crc & 0xf);
1044 }
1045 bmwrite(dev, BHASH0, hash_table[0]);
1046 bmwrite(dev, BHASH1, hash_table[1]);
1047 bmwrite(dev, BHASH2, hash_table[2]);
1048 bmwrite(dev, BHASH3, hash_table[3]);
1049 }
1050 }
1051 #endif /* SUNHME_MULTICAST */
1052
1053 static int miscintcount;
1054
1055 static irqreturn_t bmac_misc_intr(int irq, void *dev_id)
1056 {
1057 struct net_device *dev = (struct net_device *) dev_id;
1058 unsigned int status = bmread(dev, STATUS);
1059 if (miscintcount++ < 10) {
1060 XXDEBUG(("bmac_misc_intr\n"));
1061 }
1062 /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */
1063 /* bmac_txdma_intr_inner(irq, dev_id); */
1064 /* if (status & FrameReceived) dev->stats.rx_dropped++; */
1065 if (status & RxErrorMask) dev->stats.rx_errors++;
1066 if (status & RxCRCCntExp) dev->stats.rx_crc_errors++;
1067 if (status & RxLenCntExp) dev->stats.rx_length_errors++;
1068 if (status & RxOverFlow) dev->stats.rx_over_errors++;
1069 if (status & RxAlignCntExp) dev->stats.rx_frame_errors++;
1070
1071 /* if (status & FrameSent) dev->stats.tx_dropped++; */
1072 if (status & TxErrorMask) dev->stats.tx_errors++;
1073 if (status & TxUnderrun) dev->stats.tx_fifo_errors++;
1074 if (status & TxNormalCollExp) dev->stats.collisions++;
1075 return IRQ_HANDLED;
1076 }
1077
1078 /*
1079 * Procedure for reading EEPROM
1080 */
1081 #define SROMAddressLength 5
1082 #define DataInOn 0x0008
1083 #define DataInOff 0x0000
1084 #define Clk 0x0002
1085 #define ChipSelect 0x0001
1086 #define SDIShiftCount 3
1087 #define SD0ShiftCount 2
1088 #define DelayValue 1000 /* number of microseconds */
1089 #define SROMStartOffset 10 /* this is in words */
1090 #define SROMReadCount 3 /* number of words to read from SROM */
1091 #define SROMAddressBits 6
1092 #define EnetAddressOffset 20
1093
1094 static unsigned char
1095 bmac_clock_out_bit(struct net_device *dev)
1096 {
1097 unsigned short data;
1098 unsigned short val;
1099
1100 bmwrite(dev, SROMCSR, ChipSelect | Clk);
1101 udelay(DelayValue);
1102
1103 data = bmread(dev, SROMCSR);
1104 udelay(DelayValue);
1105 val = (data >> SD0ShiftCount) & 1;
1106
1107 bmwrite(dev, SROMCSR, ChipSelect);
1108 udelay(DelayValue);
1109
1110 return val;
1111 }
1112
1113 static void
1114 bmac_clock_in_bit(struct net_device *dev, unsigned int val)
1115 {
1116 unsigned short data;
1117
1118 if (val != 0 && val != 1) return;
1119
1120 data = (val << SDIShiftCount);
1121 bmwrite(dev, SROMCSR, data | ChipSelect );
1122 udelay(DelayValue);
1123
1124 bmwrite(dev, SROMCSR, data | ChipSelect | Clk );
1125 udelay(DelayValue);
1126
1127 bmwrite(dev, SROMCSR, data | ChipSelect);
1128 udelay(DelayValue);
1129 }
1130
1131 static void
1132 reset_and_select_srom(struct net_device *dev)
1133 {
1134 /* first reset */
1135 bmwrite(dev, SROMCSR, 0);
1136 udelay(DelayValue);
1137
1138 /* send it the read command (110) */
1139 bmac_clock_in_bit(dev, 1);
1140 bmac_clock_in_bit(dev, 1);
1141 bmac_clock_in_bit(dev, 0);
1142 }
1143
1144 static unsigned short
1145 read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len)
1146 {
1147 unsigned short data, val;
1148 int i;
1149
1150 /* send out the address we want to read from */
1151 for (i = 0; i < addr_len; i++) {
1152 val = addr >> (addr_len-i-1);
1153 bmac_clock_in_bit(dev, val & 1);
1154 }
1155
1156 /* Now read in the 16-bit data */
1157 data = 0;
1158 for (i = 0; i < 16; i++) {
1159 val = bmac_clock_out_bit(dev);
1160 data <<= 1;
1161 data |= val;
1162 }
1163 bmwrite(dev, SROMCSR, 0);
1164
1165 return data;
1166 }
1167
1168 /*
1169 * It looks like Cogent and SMC use different methods for calculating
1170 * checksums. What a pain..
1171 */
1172
1173 static int
1174 bmac_verify_checksum(struct net_device *dev)
1175 {
1176 unsigned short data, storedCS;
1177
1178 reset_and_select_srom(dev);
1179 data = read_srom(dev, 3, SROMAddressBits);
1180 storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00);
1181
1182 return 0;
1183 }
1184
1185
1186 static void
1187 bmac_get_station_address(struct net_device *dev, unsigned char *ea)
1188 {
1189 int i;
1190 unsigned short data;
1191
1192 for (i = 0; i < 6; i++)
1193 {
1194 reset_and_select_srom(dev);
1195 data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits);
1196 ea[2*i] = bitrev8(data & 0x0ff);
1197 ea[2*i+1] = bitrev8((data >> 8) & 0x0ff);
1198 }
1199 }
1200
1201 static void bmac_reset_and_enable(struct net_device *dev)
1202 {
1203 struct bmac_data *bp = netdev_priv(dev);
1204 unsigned long flags;
1205 struct sk_buff *skb;
1206 unsigned char *data;
1207
1208 spin_lock_irqsave(&bp->lock, flags);
1209 bmac_enable_and_reset_chip(dev);
1210 bmac_init_tx_ring(bp);
1211 bmac_init_rx_ring(bp);
1212 bmac_init_chip(dev);
1213 bmac_start_chip(dev);
1214 bmwrite(dev, INTDISABLE, EnableNormal);
1215 bp->sleeping = 0;
1216
1217 /*
1218 * It seems that the bmac can't receive until it's transmitted
1219 * a packet. So we give it a dummy packet to transmit.
1220 */
1221 skb = dev_alloc_skb(ETHERMINPACKET);
1222 if (skb != NULL) {
1223 data = skb_put(skb, ETHERMINPACKET);
1224 memset(data, 0, ETHERMINPACKET);
1225 memcpy(data, dev->dev_addr, 6);
1226 memcpy(data+6, dev->dev_addr, 6);
1227 bmac_transmit_packet(skb, dev);
1228 }
1229 spin_unlock_irqrestore(&bp->lock, flags);
1230 }
1231
1232 static const struct ethtool_ops bmac_ethtool_ops = {
1233 .get_link = ethtool_op_get_link,
1234 };
1235
1236 static const struct net_device_ops bmac_netdev_ops = {
1237 .ndo_open = bmac_open,
1238 .ndo_stop = bmac_close,
1239 .ndo_start_xmit = bmac_output,
1240 .ndo_set_rx_mode = bmac_set_multicast,
1241 .ndo_set_mac_address = bmac_set_address,
1242 .ndo_change_mtu = eth_change_mtu,
1243 .ndo_validate_addr = eth_validate_addr,
1244 };
1245
1246 static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match)
1247 {
1248 int j, rev, ret;
1249 struct bmac_data *bp;
1250 const unsigned char *prop_addr;
1251 unsigned char addr[6];
1252 struct net_device *dev;
1253 int is_bmac_plus = ((int)match->data) != 0;
1254
1255 if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
1256 printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n");
1257 return -ENODEV;
1258 }
1259 prop_addr = of_get_property(macio_get_of_node(mdev),
1260 "mac-address", NULL);
1261 if (prop_addr == NULL) {
1262 prop_addr = of_get_property(macio_get_of_node(mdev),
1263 "local-mac-address", NULL);
1264 if (prop_addr == NULL) {
1265 printk(KERN_ERR "BMAC: Can't get mac-address\n");
1266 return -ENODEV;
1267 }
1268 }
1269 memcpy(addr, prop_addr, sizeof(addr));
1270
1271 dev = alloc_etherdev(PRIV_BYTES);
1272 if (!dev)
1273 return -ENOMEM;
1274
1275 bp = netdev_priv(dev);
1276 SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
1277 macio_set_drvdata(mdev, dev);
1278
1279 bp->mdev = mdev;
1280 spin_lock_init(&bp->lock);
1281
1282 if (macio_request_resources(mdev, "bmac")) {
1283 printk(KERN_ERR "BMAC: can't request IO resource !\n");
1284 goto out_free;
1285 }
1286
1287 dev->base_addr = (unsigned long)
1288 ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0));
1289 if (dev->base_addr == 0)
1290 goto out_release;
1291
1292 dev->irq = macio_irq(mdev, 0);
1293
1294 bmac_enable_and_reset_chip(dev);
1295 bmwrite(dev, INTDISABLE, DisableAll);
1296
1297 rev = addr[0] == 0 && addr[1] == 0xA0;
1298 for (j = 0; j < 6; ++j)
1299 dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
1300
1301 /* Enable chip without interrupts for now */
1302 bmac_enable_and_reset_chip(dev);
1303 bmwrite(dev, INTDISABLE, DisableAll);
1304
1305 dev->netdev_ops = &bmac_netdev_ops;
1306 dev->ethtool_ops = &bmac_ethtool_ops;
1307
1308 bmac_get_station_address(dev, addr);
1309 if (bmac_verify_checksum(dev) != 0)
1310 goto err_out_iounmap;
1311
1312 bp->is_bmac_plus = is_bmac_plus;
1313 bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1));
1314 if (!bp->tx_dma)
1315 goto err_out_iounmap;
1316 bp->tx_dma_intr = macio_irq(mdev, 1);
1317 bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2));
1318 if (!bp->rx_dma)
1319 goto err_out_iounmap_tx;
1320 bp->rx_dma_intr = macio_irq(mdev, 2);
1321
1322 bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1);
1323 bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1;
1324
1325 bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1);
1326 skb_queue_head_init(bp->queue);
1327
1328 init_timer(&bp->tx_timeout);
1329
1330 ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev);
1331 if (ret) {
1332 printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq);
1333 goto err_out_iounmap_rx;
1334 }
1335 ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev);
1336 if (ret) {
1337 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr);
1338 goto err_out_irq0;
1339 }
1340 ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev);
1341 if (ret) {
1342 printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr);
1343 goto err_out_irq1;
1344 }
1345
1346 /* Mask chip interrupts and disable chip, will be
1347 * re-enabled on open()
1348 */
1349 disable_irq(dev->irq);
1350 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1351
1352 if (register_netdev(dev) != 0) {
1353 printk(KERN_ERR "BMAC: Ethernet registration failed\n");
1354 goto err_out_irq2;
1355 }
1356
1357 printk(KERN_INFO "%s: BMAC%s at %pM",
1358 dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr);
1359 XXDEBUG((", base_addr=%#0lx", dev->base_addr));
1360 printk("\n");
1361
1362 return 0;
1363
1364 err_out_irq2:
1365 free_irq(bp->rx_dma_intr, dev);
1366 err_out_irq1:
1367 free_irq(bp->tx_dma_intr, dev);
1368 err_out_irq0:
1369 free_irq(dev->irq, dev);
1370 err_out_iounmap_rx:
1371 iounmap(bp->rx_dma);
1372 err_out_iounmap_tx:
1373 iounmap(bp->tx_dma);
1374 err_out_iounmap:
1375 iounmap((void __iomem *)dev->base_addr);
1376 out_release:
1377 macio_release_resources(mdev);
1378 out_free:
1379 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1380 free_netdev(dev);
1381
1382 return -ENODEV;
1383 }
1384
1385 static int bmac_open(struct net_device *dev)
1386 {
1387 struct bmac_data *bp = netdev_priv(dev);
1388 /* XXDEBUG(("bmac: enter open\n")); */
1389 /* reset the chip */
1390 bp->opened = 1;
1391 bmac_reset_and_enable(dev);
1392 enable_irq(dev->irq);
1393 return 0;
1394 }
1395
1396 static int bmac_close(struct net_device *dev)
1397 {
1398 struct bmac_data *bp = netdev_priv(dev);
1399 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1400 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1401 unsigned short config;
1402 int i;
1403
1404 bp->sleeping = 1;
1405
1406 /* disable rx and tx */
1407 config = bmread(dev, RXCFG);
1408 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1409
1410 config = bmread(dev, TXCFG);
1411 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1412
1413 bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */
1414
1415 /* disable rx and tx dma */
1416 st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1417 st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */
1418
1419 /* free some skb's */
1420 XXDEBUG(("bmac: free rx bufs\n"));
1421 for (i=0; i<N_RX_RING; i++) {
1422 if (bp->rx_bufs[i] != NULL) {
1423 dev_kfree_skb(bp->rx_bufs[i]);
1424 bp->rx_bufs[i] = NULL;
1425 }
1426 }
1427 XXDEBUG(("bmac: free tx bufs\n"));
1428 for (i = 0; i<N_TX_RING; i++) {
1429 if (bp->tx_bufs[i] != NULL) {
1430 dev_kfree_skb(bp->tx_bufs[i]);
1431 bp->tx_bufs[i] = NULL;
1432 }
1433 }
1434 XXDEBUG(("bmac: all bufs freed\n"));
1435
1436 bp->opened = 0;
1437 disable_irq(dev->irq);
1438 pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0);
1439
1440 return 0;
1441 }
1442
1443 static void
1444 bmac_start(struct net_device *dev)
1445 {
1446 struct bmac_data *bp = netdev_priv(dev);
1447 int i;
1448 struct sk_buff *skb;
1449 unsigned long flags;
1450
1451 if (bp->sleeping)
1452 return;
1453
1454 spin_lock_irqsave(&bp->lock, flags);
1455 while (1) {
1456 i = bp->tx_fill + 1;
1457 if (i >= N_TX_RING)
1458 i = 0;
1459 if (i == bp->tx_empty)
1460 break;
1461 skb = skb_dequeue(bp->queue);
1462 if (skb == NULL)
1463 break;
1464 bmac_transmit_packet(skb, dev);
1465 }
1466 spin_unlock_irqrestore(&bp->lock, flags);
1467 }
1468
1469 static int
1470 bmac_output(struct sk_buff *skb, struct net_device *dev)
1471 {
1472 struct bmac_data *bp = netdev_priv(dev);
1473 skb_queue_tail(bp->queue, skb);
1474 bmac_start(dev);
1475 return NETDEV_TX_OK;
1476 }
1477
1478 static void bmac_tx_timeout(unsigned long data)
1479 {
1480 struct net_device *dev = (struct net_device *) data;
1481 struct bmac_data *bp = netdev_priv(dev);
1482 volatile struct dbdma_regs __iomem *td = bp->tx_dma;
1483 volatile struct dbdma_regs __iomem *rd = bp->rx_dma;
1484 volatile struct dbdma_cmd *cp;
1485 unsigned long flags;
1486 unsigned short config, oldConfig;
1487 int i;
1488
1489 XXDEBUG(("bmac: tx_timeout called\n"));
1490 spin_lock_irqsave(&bp->lock, flags);
1491 bp->timeout_active = 0;
1492
1493 /* update various counters */
1494 /* bmac_handle_misc_intrs(bp, 0); */
1495
1496 cp = &bp->tx_cmds[bp->tx_empty];
1497 /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */
1498 /* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */
1499 /* mb->pr, mb->xmtfs, mb->fifofc)); */
1500
1501 /* turn off both tx and rx and reset the chip */
1502 config = bmread(dev, RXCFG);
1503 bmwrite(dev, RXCFG, (config & ~RxMACEnable));
1504 config = bmread(dev, TXCFG);
1505 bmwrite(dev, TXCFG, (config & ~TxMACEnable));
1506 out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1507 printk(KERN_ERR "bmac: transmit timeout - resetting\n");
1508 bmac_enable_and_reset_chip(dev);
1509
1510 /* restart rx dma */
1511 cp = bus_to_virt(ld_le32(&rd->cmdptr));
1512 out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD));
1513 out_le16(&cp->xfer_status, 0);
1514 out_le32(&rd->cmdptr, virt_to_bus(cp));
1515 out_le32(&rd->control, DBDMA_SET(RUN|WAKE));
1516
1517 /* fix up the transmit side */
1518 XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n",
1519 bp->tx_empty, bp->tx_fill, bp->tx_fullup));
1520 i = bp->tx_empty;
1521 ++dev->stats.tx_errors;
1522 if (i != bp->tx_fill) {
1523 dev_kfree_skb(bp->tx_bufs[i]);
1524 bp->tx_bufs[i] = NULL;
1525 if (++i >= N_TX_RING) i = 0;
1526 bp->tx_empty = i;
1527 }
1528 bp->tx_fullup = 0;
1529 netif_wake_queue(dev);
1530 if (i != bp->tx_fill) {
1531 cp = &bp->tx_cmds[i];
1532 out_le16(&cp->xfer_status, 0);
1533 out_le16(&cp->command, OUTPUT_LAST);
1534 out_le32(&td->cmdptr, virt_to_bus(cp));
1535 out_le32(&td->control, DBDMA_SET(RUN));
1536 /* bmac_set_timeout(dev); */
1537 XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i));
1538 }
1539
1540 /* turn it back on */
1541 oldConfig = bmread(dev, RXCFG);
1542 bmwrite(dev, RXCFG, oldConfig | RxMACEnable );
1543 oldConfig = bmread(dev, TXCFG);
1544 bmwrite(dev, TXCFG, oldConfig | TxMACEnable );
1545
1546 spin_unlock_irqrestore(&bp->lock, flags);
1547 }
1548
1549 #if 0
1550 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count)
1551 {
1552 int i,*ip;
1553
1554 for (i=0;i< count;i++) {
1555 ip = (int*)(cp+i);
1556
1557 printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n",
1558 ld_le32(ip+0),
1559 ld_le32(ip+1),
1560 ld_le32(ip+2),
1561 ld_le32(ip+3));
1562 }
1563
1564 }
1565 #endif
1566
1567 #if 0
1568 static int
1569 bmac_proc_info(char *buffer, char **start, off_t offset, int length)
1570 {
1571 int len = 0;
1572 off_t pos = 0;
1573 off_t begin = 0;
1574 int i;
1575
1576 if (bmac_devs == NULL)
1577 return -ENOSYS;
1578
1579 len += sprintf(buffer, "BMAC counters & registers\n");
1580
1581 for (i = 0; i<N_REG_ENTRIES; i++) {
1582 len += sprintf(buffer + len, "%s: %#08x\n",
1583 reg_entries[i].name,
1584 bmread(bmac_devs, reg_entries[i].reg_offset));
1585 pos = begin + len;
1586
1587 if (pos < offset) {
1588 len = 0;
1589 begin = pos;
1590 }
1591
1592 if (pos > offset+length) break;
1593 }
1594
1595 *start = buffer + (offset - begin);
1596 len -= (offset - begin);
1597
1598 if (len > length) len = length;
1599
1600 return len;
1601 }
1602 #endif
1603
1604 static int __devexit bmac_remove(struct macio_dev *mdev)
1605 {
1606 struct net_device *dev = macio_get_drvdata(mdev);
1607 struct bmac_data *bp = netdev_priv(dev);
1608
1609 unregister_netdev(dev);
1610
1611 free_irq(dev->irq, dev);
1612 free_irq(bp->tx_dma_intr, dev);
1613 free_irq(bp->rx_dma_intr, dev);
1614
1615 iounmap((void __iomem *)dev->base_addr);
1616 iounmap(bp->tx_dma);
1617 iounmap(bp->rx_dma);
1618
1619 macio_release_resources(mdev);
1620
1621 free_netdev(dev);
1622
1623 return 0;
1624 }
1625
1626 static struct of_device_id bmac_match[] =
1627 {
1628 {
1629 .name = "bmac",
1630 .data = (void *)0,
1631 },
1632 {
1633 .type = "network",
1634 .compatible = "bmac+",
1635 .data = (void *)1,
1636 },
1637 {},
1638 };
1639 MODULE_DEVICE_TABLE (of, bmac_match);
1640
1641 static struct macio_driver bmac_driver =
1642 {
1643 .driver = {
1644 .name = "bmac",
1645 .owner = THIS_MODULE,
1646 .of_match_table = bmac_match,
1647 },
1648 .probe = bmac_probe,
1649 .remove = bmac_remove,
1650 #ifdef CONFIG_PM
1651 .suspend = bmac_suspend,
1652 .resume = bmac_resume,
1653 #endif
1654 };
1655
1656
1657 static int __init bmac_init(void)
1658 {
1659 if (bmac_emergency_rxbuf == NULL) {
1660 bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL);
1661 if (bmac_emergency_rxbuf == NULL)
1662 return -ENOMEM;
1663 }
1664
1665 return macio_register_driver(&bmac_driver);
1666 }
1667
1668 static void __exit bmac_exit(void)
1669 {
1670 macio_unregister_driver(&bmac_driver);
1671
1672 kfree(bmac_emergency_rxbuf);
1673 bmac_emergency_rxbuf = NULL;
1674 }
1675
1676 MODULE_AUTHOR("Randy Gobbel/Paul Mackerras");
1677 MODULE_DESCRIPTION("PowerMac BMAC ethernet driver.");
1678 MODULE_LICENSE("GPL");
1679
1680 module_init(bmac_init);
1681 module_exit(bmac_exit);
This page took 0.10534 seconds and 5 git commands to generate.