alx: add missing stats_lock spinlock init
[deliverable/linux.git] / drivers / net / ethernet / atheros / alx / main.c
1 /*
2 * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
3 *
4 * This file is free software: you may copy, redistribute and/or modify it
5 * under the terms of the GNU General Public License as published by the
6 * Free Software Foundation, either version 2 of the License, or (at your
7 * option) any later version.
8 *
9 * This file is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 *
17 * This file incorporates work covered by the following copyright and
18 * permission notice:
19 *
20 * Copyright (c) 2012 Qualcomm Atheros, Inc.
21 *
22 * Permission to use, copy, modify, and/or distribute this software for any
23 * purpose with or without fee is hereby granted, provided that the above
24 * copyright notice and this permission notice appear in all copies.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
27 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
29 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
30 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
31 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
32 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
33 */
34
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/interrupt.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/if_vlan.h>
41 #include <linux/mdio.h>
42 #include <linux/aer.h>
43 #include <linux/bitops.h>
44 #include <linux/netdevice.h>
45 #include <linux/etherdevice.h>
46 #include <net/ip6_checksum.h>
47 #include <linux/crc32.h>
48 #include "alx.h"
49 #include "hw.h"
50 #include "reg.h"
51
52 const char alx_drv_name[] = "alx";
53
54
55 static void alx_free_txbuf(struct alx_priv *alx, int entry)
56 {
57 struct alx_buffer *txb = &alx->txq.bufs[entry];
58
59 if (dma_unmap_len(txb, size)) {
60 dma_unmap_single(&alx->hw.pdev->dev,
61 dma_unmap_addr(txb, dma),
62 dma_unmap_len(txb, size),
63 DMA_TO_DEVICE);
64 dma_unmap_len_set(txb, size, 0);
65 }
66
67 if (txb->skb) {
68 dev_kfree_skb_any(txb->skb);
69 txb->skb = NULL;
70 }
71 }
72
73 static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
74 {
75 struct alx_rx_queue *rxq = &alx->rxq;
76 struct sk_buff *skb;
77 struct alx_buffer *cur_buf;
78 dma_addr_t dma;
79 u16 cur, next, count = 0;
80
81 next = cur = rxq->write_idx;
82 if (++next == alx->rx_ringsz)
83 next = 0;
84 cur_buf = &rxq->bufs[cur];
85
86 while (!cur_buf->skb && next != rxq->read_idx) {
87 struct alx_rfd *rfd = &rxq->rfd[cur];
88
89 skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
90 if (!skb)
91 break;
92 dma = dma_map_single(&alx->hw.pdev->dev,
93 skb->data, alx->rxbuf_size,
94 DMA_FROM_DEVICE);
95 if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
96 dev_kfree_skb(skb);
97 break;
98 }
99
100 /* Unfortunately, RX descriptor buffers must be 4-byte
101 * aligned, so we can't use IP alignment.
102 */
103 if (WARN_ON(dma & 3)) {
104 dev_kfree_skb(skb);
105 break;
106 }
107
108 cur_buf->skb = skb;
109 dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
110 dma_unmap_addr_set(cur_buf, dma, dma);
111 rfd->addr = cpu_to_le64(dma);
112
113 cur = next;
114 if (++next == alx->rx_ringsz)
115 next = 0;
116 cur_buf = &rxq->bufs[cur];
117 count++;
118 }
119
120 if (count) {
121 /* flush all updates before updating hardware */
122 wmb();
123 rxq->write_idx = cur;
124 alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
125 }
126
127 return count;
128 }
129
130 static inline int alx_tpd_avail(struct alx_priv *alx)
131 {
132 struct alx_tx_queue *txq = &alx->txq;
133
134 if (txq->write_idx >= txq->read_idx)
135 return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
136 return txq->read_idx - txq->write_idx - 1;
137 }
138
139 static bool alx_clean_tx_irq(struct alx_priv *alx)
140 {
141 struct alx_tx_queue *txq = &alx->txq;
142 u16 hw_read_idx, sw_read_idx;
143 unsigned int total_bytes = 0, total_packets = 0;
144 int budget = ALX_DEFAULT_TX_WORK;
145
146 sw_read_idx = txq->read_idx;
147 hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
148
149 if (sw_read_idx != hw_read_idx) {
150 while (sw_read_idx != hw_read_idx && budget > 0) {
151 struct sk_buff *skb;
152
153 skb = txq->bufs[sw_read_idx].skb;
154 if (skb) {
155 total_bytes += skb->len;
156 total_packets++;
157 budget--;
158 }
159
160 alx_free_txbuf(alx, sw_read_idx);
161
162 if (++sw_read_idx == alx->tx_ringsz)
163 sw_read_idx = 0;
164 }
165 txq->read_idx = sw_read_idx;
166
167 netdev_completed_queue(alx->dev, total_packets, total_bytes);
168 }
169
170 if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
171 alx_tpd_avail(alx) > alx->tx_ringsz/4)
172 netif_wake_queue(alx->dev);
173
174 return sw_read_idx == hw_read_idx;
175 }
176
177 static void alx_schedule_link_check(struct alx_priv *alx)
178 {
179 schedule_work(&alx->link_check_wk);
180 }
181
182 static void alx_schedule_reset(struct alx_priv *alx)
183 {
184 schedule_work(&alx->reset_wk);
185 }
186
187 static bool alx_clean_rx_irq(struct alx_priv *alx, int budget)
188 {
189 struct alx_rx_queue *rxq = &alx->rxq;
190 struct alx_rrd *rrd;
191 struct alx_buffer *rxb;
192 struct sk_buff *skb;
193 u16 length, rfd_cleaned = 0;
194
195 while (budget > 0) {
196 rrd = &rxq->rrd[rxq->rrd_read_idx];
197 if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
198 break;
199 rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
200
201 if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
202 RRD_SI) != rxq->read_idx ||
203 ALX_GET_FIELD(le32_to_cpu(rrd->word0),
204 RRD_NOR) != 1) {
205 alx_schedule_reset(alx);
206 return 0;
207 }
208
209 rxb = &rxq->bufs[rxq->read_idx];
210 dma_unmap_single(&alx->hw.pdev->dev,
211 dma_unmap_addr(rxb, dma),
212 dma_unmap_len(rxb, size),
213 DMA_FROM_DEVICE);
214 dma_unmap_len_set(rxb, size, 0);
215 skb = rxb->skb;
216 rxb->skb = NULL;
217
218 if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
219 rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
220 rrd->word3 = 0;
221 dev_kfree_skb_any(skb);
222 goto next_pkt;
223 }
224
225 length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
226 RRD_PKTLEN) - ETH_FCS_LEN;
227 skb_put(skb, length);
228 skb->protocol = eth_type_trans(skb, alx->dev);
229
230 skb_checksum_none_assert(skb);
231 if (alx->dev->features & NETIF_F_RXCSUM &&
232 !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
233 cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
234 switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
235 RRD_PID)) {
236 case RRD_PID_IPV6UDP:
237 case RRD_PID_IPV4UDP:
238 case RRD_PID_IPV4TCP:
239 case RRD_PID_IPV6TCP:
240 skb->ip_summed = CHECKSUM_UNNECESSARY;
241 break;
242 }
243 }
244
245 napi_gro_receive(&alx->napi, skb);
246 budget--;
247
248 next_pkt:
249 if (++rxq->read_idx == alx->rx_ringsz)
250 rxq->read_idx = 0;
251 if (++rxq->rrd_read_idx == alx->rx_ringsz)
252 rxq->rrd_read_idx = 0;
253
254 if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
255 rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
256 }
257
258 if (rfd_cleaned)
259 alx_refill_rx_ring(alx, GFP_ATOMIC);
260
261 return budget > 0;
262 }
263
264 static int alx_poll(struct napi_struct *napi, int budget)
265 {
266 struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
267 struct alx_hw *hw = &alx->hw;
268 bool complete = true;
269 unsigned long flags;
270
271 complete = alx_clean_tx_irq(alx) &&
272 alx_clean_rx_irq(alx, budget);
273
274 if (!complete)
275 return 1;
276
277 napi_complete(&alx->napi);
278
279 /* enable interrupt */
280 spin_lock_irqsave(&alx->irq_lock, flags);
281 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
282 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
283 spin_unlock_irqrestore(&alx->irq_lock, flags);
284
285 alx_post_write(hw);
286
287 return 0;
288 }
289
290 static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
291 {
292 struct alx_hw *hw = &alx->hw;
293 bool write_int_mask = false;
294
295 spin_lock(&alx->irq_lock);
296
297 /* ACK interrupt */
298 alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
299 intr &= alx->int_mask;
300
301 if (intr & ALX_ISR_FATAL) {
302 netif_warn(alx, hw, alx->dev,
303 "fatal interrupt 0x%x, resetting\n", intr);
304 alx_schedule_reset(alx);
305 goto out;
306 }
307
308 if (intr & ALX_ISR_ALERT)
309 netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
310
311 if (intr & ALX_ISR_PHY) {
312 /* suppress PHY interrupt, because the source
313 * is from PHY internal. only the internal status
314 * is cleared, the interrupt status could be cleared.
315 */
316 alx->int_mask &= ~ALX_ISR_PHY;
317 write_int_mask = true;
318 alx_schedule_link_check(alx);
319 }
320
321 if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
322 napi_schedule(&alx->napi);
323 /* mask rx/tx interrupt, enable them when napi complete */
324 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
325 write_int_mask = true;
326 }
327
328 if (write_int_mask)
329 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
330
331 alx_write_mem32(hw, ALX_ISR, 0);
332
333 out:
334 spin_unlock(&alx->irq_lock);
335 return IRQ_HANDLED;
336 }
337
338 static irqreturn_t alx_intr_msi(int irq, void *data)
339 {
340 struct alx_priv *alx = data;
341
342 return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
343 }
344
345 static irqreturn_t alx_intr_legacy(int irq, void *data)
346 {
347 struct alx_priv *alx = data;
348 struct alx_hw *hw = &alx->hw;
349 u32 intr;
350
351 intr = alx_read_mem32(hw, ALX_ISR);
352
353 if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
354 return IRQ_NONE;
355
356 return alx_intr_handle(alx, intr);
357 }
358
359 static void alx_init_ring_ptrs(struct alx_priv *alx)
360 {
361 struct alx_hw *hw = &alx->hw;
362 u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
363
364 alx->rxq.read_idx = 0;
365 alx->rxq.write_idx = 0;
366 alx->rxq.rrd_read_idx = 0;
367 alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
368 alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
369 alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
370 alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
371 alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
372 alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
373
374 alx->txq.read_idx = 0;
375 alx->txq.write_idx = 0;
376 alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
377 alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
378 alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
379
380 /* load these pointers into the chip */
381 alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
382 }
383
384 static void alx_free_txring_buf(struct alx_priv *alx)
385 {
386 struct alx_tx_queue *txq = &alx->txq;
387 int i;
388
389 if (!txq->bufs)
390 return;
391
392 for (i = 0; i < alx->tx_ringsz; i++)
393 alx_free_txbuf(alx, i);
394
395 memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
396 memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
397 txq->write_idx = 0;
398 txq->read_idx = 0;
399
400 netdev_reset_queue(alx->dev);
401 }
402
403 static void alx_free_rxring_buf(struct alx_priv *alx)
404 {
405 struct alx_rx_queue *rxq = &alx->rxq;
406 struct alx_buffer *cur_buf;
407 u16 i;
408
409 if (rxq == NULL)
410 return;
411
412 for (i = 0; i < alx->rx_ringsz; i++) {
413 cur_buf = rxq->bufs + i;
414 if (cur_buf->skb) {
415 dma_unmap_single(&alx->hw.pdev->dev,
416 dma_unmap_addr(cur_buf, dma),
417 dma_unmap_len(cur_buf, size),
418 DMA_FROM_DEVICE);
419 dev_kfree_skb(cur_buf->skb);
420 cur_buf->skb = NULL;
421 dma_unmap_len_set(cur_buf, size, 0);
422 dma_unmap_addr_set(cur_buf, dma, 0);
423 }
424 }
425
426 rxq->write_idx = 0;
427 rxq->read_idx = 0;
428 rxq->rrd_read_idx = 0;
429 }
430
431 static void alx_free_buffers(struct alx_priv *alx)
432 {
433 alx_free_txring_buf(alx);
434 alx_free_rxring_buf(alx);
435 }
436
437 static int alx_reinit_rings(struct alx_priv *alx)
438 {
439 alx_free_buffers(alx);
440
441 alx_init_ring_ptrs(alx);
442
443 if (!alx_refill_rx_ring(alx, GFP_KERNEL))
444 return -ENOMEM;
445
446 return 0;
447 }
448
449 static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
450 {
451 u32 crc32, bit, reg;
452
453 crc32 = ether_crc(ETH_ALEN, addr);
454 reg = (crc32 >> 31) & 0x1;
455 bit = (crc32 >> 26) & 0x1F;
456
457 mc_hash[reg] |= BIT(bit);
458 }
459
460 static void __alx_set_rx_mode(struct net_device *netdev)
461 {
462 struct alx_priv *alx = netdev_priv(netdev);
463 struct alx_hw *hw = &alx->hw;
464 struct netdev_hw_addr *ha;
465 u32 mc_hash[2] = {};
466
467 if (!(netdev->flags & IFF_ALLMULTI)) {
468 netdev_for_each_mc_addr(ha, netdev)
469 alx_add_mc_addr(hw, ha->addr, mc_hash);
470
471 alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
472 alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
473 }
474
475 hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
476 if (netdev->flags & IFF_PROMISC)
477 hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
478 if (netdev->flags & IFF_ALLMULTI)
479 hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
480
481 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
482 }
483
484 static void alx_set_rx_mode(struct net_device *netdev)
485 {
486 __alx_set_rx_mode(netdev);
487 }
488
489 static int alx_set_mac_address(struct net_device *netdev, void *data)
490 {
491 struct alx_priv *alx = netdev_priv(netdev);
492 struct alx_hw *hw = &alx->hw;
493 struct sockaddr *addr = data;
494
495 if (!is_valid_ether_addr(addr->sa_data))
496 return -EADDRNOTAVAIL;
497
498 if (netdev->addr_assign_type & NET_ADDR_RANDOM)
499 netdev->addr_assign_type ^= NET_ADDR_RANDOM;
500
501 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
502 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
503 alx_set_macaddr(hw, hw->mac_addr);
504
505 return 0;
506 }
507
508 static int alx_alloc_descriptors(struct alx_priv *alx)
509 {
510 alx->txq.bufs = kcalloc(alx->tx_ringsz,
511 sizeof(struct alx_buffer),
512 GFP_KERNEL);
513 if (!alx->txq.bufs)
514 return -ENOMEM;
515
516 alx->rxq.bufs = kcalloc(alx->rx_ringsz,
517 sizeof(struct alx_buffer),
518 GFP_KERNEL);
519 if (!alx->rxq.bufs)
520 goto out_free;
521
522 /* physical tx/rx ring descriptors
523 *
524 * Allocate them as a single chunk because they must not cross a
525 * 4G boundary (hardware has a single register for high 32 bits
526 * of addresses only)
527 */
528 alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
529 sizeof(struct alx_rrd) * alx->rx_ringsz +
530 sizeof(struct alx_rfd) * alx->rx_ringsz;
531 alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
532 alx->descmem.size,
533 &alx->descmem.dma,
534 GFP_KERNEL);
535 if (!alx->descmem.virt)
536 goto out_free;
537
538 alx->txq.tpd = (void *)alx->descmem.virt;
539 alx->txq.tpd_dma = alx->descmem.dma;
540
541 /* alignment requirement for next block */
542 BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
543
544 alx->rxq.rrd =
545 (void *)((u8 *)alx->descmem.virt +
546 sizeof(struct alx_txd) * alx->tx_ringsz);
547 alx->rxq.rrd_dma = alx->descmem.dma +
548 sizeof(struct alx_txd) * alx->tx_ringsz;
549
550 /* alignment requirement for next block */
551 BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
552
553 alx->rxq.rfd =
554 (void *)((u8 *)alx->descmem.virt +
555 sizeof(struct alx_txd) * alx->tx_ringsz +
556 sizeof(struct alx_rrd) * alx->rx_ringsz);
557 alx->rxq.rfd_dma = alx->descmem.dma +
558 sizeof(struct alx_txd) * alx->tx_ringsz +
559 sizeof(struct alx_rrd) * alx->rx_ringsz;
560
561 return 0;
562 out_free:
563 kfree(alx->txq.bufs);
564 kfree(alx->rxq.bufs);
565 return -ENOMEM;
566 }
567
568 static int alx_alloc_rings(struct alx_priv *alx)
569 {
570 int err;
571
572 err = alx_alloc_descriptors(alx);
573 if (err)
574 return err;
575
576 alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
577 alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
578 alx->tx_ringsz = alx->tx_ringsz;
579
580 netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
581
582 alx_reinit_rings(alx);
583 return 0;
584 }
585
586 static void alx_free_rings(struct alx_priv *alx)
587 {
588 netif_napi_del(&alx->napi);
589 alx_free_buffers(alx);
590
591 kfree(alx->txq.bufs);
592 kfree(alx->rxq.bufs);
593
594 dma_free_coherent(&alx->hw.pdev->dev,
595 alx->descmem.size,
596 alx->descmem.virt,
597 alx->descmem.dma);
598 }
599
600 static void alx_config_vector_mapping(struct alx_priv *alx)
601 {
602 struct alx_hw *hw = &alx->hw;
603
604 alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
605 alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
606 alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
607 }
608
609 static void alx_irq_enable(struct alx_priv *alx)
610 {
611 struct alx_hw *hw = &alx->hw;
612
613 /* level-1 interrupt switch */
614 alx_write_mem32(hw, ALX_ISR, 0);
615 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
616 alx_post_write(hw);
617 }
618
619 static void alx_irq_disable(struct alx_priv *alx)
620 {
621 struct alx_hw *hw = &alx->hw;
622
623 alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
624 alx_write_mem32(hw, ALX_IMR, 0);
625 alx_post_write(hw);
626
627 synchronize_irq(alx->hw.pdev->irq);
628 }
629
630 static int alx_request_irq(struct alx_priv *alx)
631 {
632 struct pci_dev *pdev = alx->hw.pdev;
633 struct alx_hw *hw = &alx->hw;
634 int err;
635 u32 msi_ctrl;
636
637 msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
638
639 if (!pci_enable_msi(alx->hw.pdev)) {
640 alx->msi = true;
641
642 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
643 msi_ctrl | ALX_MSI_MASK_SEL_LINE);
644 err = request_irq(pdev->irq, alx_intr_msi, 0,
645 alx->dev->name, alx);
646 if (!err)
647 goto out;
648 /* fall back to legacy interrupt */
649 pci_disable_msi(alx->hw.pdev);
650 }
651
652 alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
653 err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
654 alx->dev->name, alx);
655 out:
656 if (!err)
657 alx_config_vector_mapping(alx);
658 return err;
659 }
660
661 static void alx_free_irq(struct alx_priv *alx)
662 {
663 struct pci_dev *pdev = alx->hw.pdev;
664
665 free_irq(pdev->irq, alx);
666
667 if (alx->msi) {
668 pci_disable_msi(alx->hw.pdev);
669 alx->msi = false;
670 }
671 }
672
673 static int alx_identify_hw(struct alx_priv *alx)
674 {
675 struct alx_hw *hw = &alx->hw;
676 int rev = alx_hw_revision(hw);
677
678 if (rev > ALX_REV_C0)
679 return -EINVAL;
680
681 hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
682
683 return 0;
684 }
685
686 static int alx_init_sw(struct alx_priv *alx)
687 {
688 struct pci_dev *pdev = alx->hw.pdev;
689 struct alx_hw *hw = &alx->hw;
690 int err;
691
692 err = alx_identify_hw(alx);
693 if (err) {
694 dev_err(&pdev->dev, "unrecognized chip, aborting\n");
695 return err;
696 }
697
698 alx->hw.lnk_patch =
699 pdev->device == ALX_DEV_ID_AR8161 &&
700 pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
701 pdev->subsystem_device == 0x0091 &&
702 pdev->revision == 0;
703
704 hw->smb_timer = 400;
705 hw->mtu = alx->dev->mtu;
706 alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
707 alx->tx_ringsz = 256;
708 alx->rx_ringsz = 512;
709 hw->imt = 200;
710 alx->int_mask = ALX_ISR_MISC;
711 hw->dma_chnl = hw->max_dma_chnl;
712 hw->ith_tpd = alx->tx_ringsz / 3;
713 hw->link_speed = SPEED_UNKNOWN;
714 hw->duplex = DUPLEX_UNKNOWN;
715 hw->adv_cfg = ADVERTISED_Autoneg |
716 ADVERTISED_10baseT_Half |
717 ADVERTISED_10baseT_Full |
718 ADVERTISED_100baseT_Full |
719 ADVERTISED_100baseT_Half |
720 ADVERTISED_1000baseT_Full;
721 hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
722
723 hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
724 ALX_MAC_CTRL_MHASH_ALG_HI5B |
725 ALX_MAC_CTRL_BRD_EN |
726 ALX_MAC_CTRL_PCRCE |
727 ALX_MAC_CTRL_CRCE |
728 ALX_MAC_CTRL_RXFC_EN |
729 ALX_MAC_CTRL_TXFC_EN |
730 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
731
732 return err;
733 }
734
735
736 static netdev_features_t alx_fix_features(struct net_device *netdev,
737 netdev_features_t features)
738 {
739 if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
740 features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
741
742 return features;
743 }
744
745 static void alx_netif_stop(struct alx_priv *alx)
746 {
747 alx->dev->trans_start = jiffies;
748 if (netif_carrier_ok(alx->dev)) {
749 netif_carrier_off(alx->dev);
750 netif_tx_disable(alx->dev);
751 napi_disable(&alx->napi);
752 }
753 }
754
755 static void alx_halt(struct alx_priv *alx)
756 {
757 struct alx_hw *hw = &alx->hw;
758
759 alx_netif_stop(alx);
760 hw->link_speed = SPEED_UNKNOWN;
761 hw->duplex = DUPLEX_UNKNOWN;
762
763 alx_reset_mac(hw);
764
765 /* disable l0s/l1 */
766 alx_enable_aspm(hw, false, false);
767 alx_irq_disable(alx);
768 alx_free_buffers(alx);
769 }
770
771 static void alx_configure(struct alx_priv *alx)
772 {
773 struct alx_hw *hw = &alx->hw;
774
775 alx_configure_basic(hw);
776 alx_disable_rss(hw);
777 __alx_set_rx_mode(alx->dev);
778
779 alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
780 }
781
782 static void alx_activate(struct alx_priv *alx)
783 {
784 /* hardware setting lost, restore it */
785 alx_reinit_rings(alx);
786 alx_configure(alx);
787
788 /* clear old interrupts */
789 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
790
791 alx_irq_enable(alx);
792
793 alx_schedule_link_check(alx);
794 }
795
796 static void alx_reinit(struct alx_priv *alx)
797 {
798 ASSERT_RTNL();
799
800 alx_halt(alx);
801 alx_activate(alx);
802 }
803
804 static int alx_change_mtu(struct net_device *netdev, int mtu)
805 {
806 struct alx_priv *alx = netdev_priv(netdev);
807 int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
808
809 if ((max_frame < ALX_MIN_FRAME_SIZE) ||
810 (max_frame > ALX_MAX_FRAME_SIZE))
811 return -EINVAL;
812
813 if (netdev->mtu == mtu)
814 return 0;
815
816 netdev->mtu = mtu;
817 alx->hw.mtu = mtu;
818 alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
819 ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
820 netdev_update_features(netdev);
821 if (netif_running(netdev))
822 alx_reinit(alx);
823 return 0;
824 }
825
826 static void alx_netif_start(struct alx_priv *alx)
827 {
828 netif_tx_wake_all_queues(alx->dev);
829 napi_enable(&alx->napi);
830 netif_carrier_on(alx->dev);
831 }
832
833 static int __alx_open(struct alx_priv *alx, bool resume)
834 {
835 int err;
836
837 if (!resume)
838 netif_carrier_off(alx->dev);
839
840 err = alx_alloc_rings(alx);
841 if (err)
842 return err;
843
844 alx_configure(alx);
845
846 err = alx_request_irq(alx);
847 if (err)
848 goto out_free_rings;
849
850 /* clear old interrupts */
851 alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
852
853 alx_irq_enable(alx);
854
855 if (!resume)
856 netif_tx_start_all_queues(alx->dev);
857
858 alx_schedule_link_check(alx);
859 return 0;
860
861 out_free_rings:
862 alx_free_rings(alx);
863 return err;
864 }
865
866 static void __alx_stop(struct alx_priv *alx)
867 {
868 alx_halt(alx);
869 alx_free_irq(alx);
870 alx_free_rings(alx);
871 }
872
873 static const char *alx_speed_desc(struct alx_hw *hw)
874 {
875 switch (alx_speed_to_ethadv(hw->link_speed, hw->duplex)) {
876 case ADVERTISED_1000baseT_Full:
877 return "1 Gbps Full";
878 case ADVERTISED_100baseT_Full:
879 return "100 Mbps Full";
880 case ADVERTISED_100baseT_Half:
881 return "100 Mbps Half";
882 case ADVERTISED_10baseT_Full:
883 return "10 Mbps Full";
884 case ADVERTISED_10baseT_Half:
885 return "10 Mbps Half";
886 default:
887 return "Unknown speed";
888 }
889 }
890
891 static void alx_check_link(struct alx_priv *alx)
892 {
893 struct alx_hw *hw = &alx->hw;
894 unsigned long flags;
895 int old_speed;
896 u8 old_duplex;
897 int err;
898
899 /* clear PHY internal interrupt status, otherwise the main
900 * interrupt status will be asserted forever
901 */
902 alx_clear_phy_intr(hw);
903
904 old_speed = hw->link_speed;
905 old_duplex = hw->duplex;
906 err = alx_read_phy_link(hw);
907 if (err < 0)
908 goto reset;
909
910 spin_lock_irqsave(&alx->irq_lock, flags);
911 alx->int_mask |= ALX_ISR_PHY;
912 alx_write_mem32(hw, ALX_IMR, alx->int_mask);
913 spin_unlock_irqrestore(&alx->irq_lock, flags);
914
915 if (old_speed == hw->link_speed)
916 return;
917
918 if (hw->link_speed != SPEED_UNKNOWN) {
919 netif_info(alx, link, alx->dev,
920 "NIC Up: %s\n", alx_speed_desc(hw));
921 alx_post_phy_link(hw);
922 alx_enable_aspm(hw, true, true);
923 alx_start_mac(hw);
924
925 if (old_speed == SPEED_UNKNOWN)
926 alx_netif_start(alx);
927 } else {
928 /* link is now down */
929 alx_netif_stop(alx);
930 netif_info(alx, link, alx->dev, "Link Down\n");
931 err = alx_reset_mac(hw);
932 if (err)
933 goto reset;
934 alx_irq_disable(alx);
935
936 /* MAC reset causes all HW settings to be lost, restore all */
937 err = alx_reinit_rings(alx);
938 if (err)
939 goto reset;
940 alx_configure(alx);
941 alx_enable_aspm(hw, false, true);
942 alx_post_phy_link(hw);
943 alx_irq_enable(alx);
944 }
945
946 return;
947
948 reset:
949 alx_schedule_reset(alx);
950 }
951
952 static int alx_open(struct net_device *netdev)
953 {
954 return __alx_open(netdev_priv(netdev), false);
955 }
956
957 static int alx_stop(struct net_device *netdev)
958 {
959 __alx_stop(netdev_priv(netdev));
960 return 0;
961 }
962
963 static void alx_link_check(struct work_struct *work)
964 {
965 struct alx_priv *alx;
966
967 alx = container_of(work, struct alx_priv, link_check_wk);
968
969 rtnl_lock();
970 alx_check_link(alx);
971 rtnl_unlock();
972 }
973
974 static void alx_reset(struct work_struct *work)
975 {
976 struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
977
978 rtnl_lock();
979 alx_reinit(alx);
980 rtnl_unlock();
981 }
982
983 static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
984 {
985 u8 cso, css;
986
987 if (skb->ip_summed != CHECKSUM_PARTIAL)
988 return 0;
989
990 cso = skb_checksum_start_offset(skb);
991 if (cso & 1)
992 return -EINVAL;
993
994 css = cso + skb->csum_offset;
995 first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
996 first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
997 first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
998
999 return 0;
1000 }
1001
1002 static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
1003 {
1004 struct alx_tx_queue *txq = &alx->txq;
1005 struct alx_txd *tpd, *first_tpd;
1006 dma_addr_t dma;
1007 int maplen, f, first_idx = txq->write_idx;
1008
1009 first_tpd = &txq->tpd[txq->write_idx];
1010 tpd = first_tpd;
1011
1012 maplen = skb_headlen(skb);
1013 dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
1014 DMA_TO_DEVICE);
1015 if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1016 goto err_dma;
1017
1018 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1019 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1020
1021 tpd->adrl.addr = cpu_to_le64(dma);
1022 tpd->len = cpu_to_le16(maplen);
1023
1024 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1025 struct skb_frag_struct *frag;
1026
1027 frag = &skb_shinfo(skb)->frags[f];
1028
1029 if (++txq->write_idx == alx->tx_ringsz)
1030 txq->write_idx = 0;
1031 tpd = &txq->tpd[txq->write_idx];
1032
1033 tpd->word1 = first_tpd->word1;
1034
1035 maplen = skb_frag_size(frag);
1036 dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
1037 maplen, DMA_TO_DEVICE);
1038 if (dma_mapping_error(&alx->hw.pdev->dev, dma))
1039 goto err_dma;
1040 dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
1041 dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
1042
1043 tpd->adrl.addr = cpu_to_le64(dma);
1044 tpd->len = cpu_to_le16(maplen);
1045 }
1046
1047 /* last TPD, set EOP flag and store skb */
1048 tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
1049 txq->bufs[txq->write_idx].skb = skb;
1050
1051 if (++txq->write_idx == alx->tx_ringsz)
1052 txq->write_idx = 0;
1053
1054 return 0;
1055
1056 err_dma:
1057 f = first_idx;
1058 while (f != txq->write_idx) {
1059 alx_free_txbuf(alx, f);
1060 if (++f == alx->tx_ringsz)
1061 f = 0;
1062 }
1063 return -ENOMEM;
1064 }
1065
1066 static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
1067 struct net_device *netdev)
1068 {
1069 struct alx_priv *alx = netdev_priv(netdev);
1070 struct alx_tx_queue *txq = &alx->txq;
1071 struct alx_txd *first;
1072 int tpdreq = skb_shinfo(skb)->nr_frags + 1;
1073
1074 if (alx_tpd_avail(alx) < tpdreq) {
1075 netif_stop_queue(alx->dev);
1076 goto drop;
1077 }
1078
1079 first = &txq->tpd[txq->write_idx];
1080 memset(first, 0, sizeof(*first));
1081
1082 if (alx_tx_csum(skb, first))
1083 goto drop;
1084
1085 if (alx_map_tx_skb(alx, skb) < 0)
1086 goto drop;
1087
1088 netdev_sent_queue(alx->dev, skb->len);
1089
1090 /* flush updates before updating hardware */
1091 wmb();
1092 alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
1093
1094 if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
1095 netif_stop_queue(alx->dev);
1096
1097 return NETDEV_TX_OK;
1098
1099 drop:
1100 dev_kfree_skb(skb);
1101 return NETDEV_TX_OK;
1102 }
1103
1104 static void alx_tx_timeout(struct net_device *dev)
1105 {
1106 struct alx_priv *alx = netdev_priv(dev);
1107
1108 alx_schedule_reset(alx);
1109 }
1110
1111 static int alx_mdio_read(struct net_device *netdev,
1112 int prtad, int devad, u16 addr)
1113 {
1114 struct alx_priv *alx = netdev_priv(netdev);
1115 struct alx_hw *hw = &alx->hw;
1116 u16 val;
1117 int err;
1118
1119 if (prtad != hw->mdio.prtad)
1120 return -EINVAL;
1121
1122 if (devad == MDIO_DEVAD_NONE)
1123 err = alx_read_phy_reg(hw, addr, &val);
1124 else
1125 err = alx_read_phy_ext(hw, devad, addr, &val);
1126
1127 if (err)
1128 return err;
1129 return val;
1130 }
1131
1132 static int alx_mdio_write(struct net_device *netdev,
1133 int prtad, int devad, u16 addr, u16 val)
1134 {
1135 struct alx_priv *alx = netdev_priv(netdev);
1136 struct alx_hw *hw = &alx->hw;
1137
1138 if (prtad != hw->mdio.prtad)
1139 return -EINVAL;
1140
1141 if (devad == MDIO_DEVAD_NONE)
1142 return alx_write_phy_reg(hw, addr, val);
1143
1144 return alx_write_phy_ext(hw, devad, addr, val);
1145 }
1146
1147 static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1148 {
1149 struct alx_priv *alx = netdev_priv(netdev);
1150
1151 if (!netif_running(netdev))
1152 return -EAGAIN;
1153
1154 return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
1155 }
1156
1157 #ifdef CONFIG_NET_POLL_CONTROLLER
1158 static void alx_poll_controller(struct net_device *netdev)
1159 {
1160 struct alx_priv *alx = netdev_priv(netdev);
1161
1162 if (alx->msi)
1163 alx_intr_msi(0, alx);
1164 else
1165 alx_intr_legacy(0, alx);
1166 }
1167 #endif
1168
1169 static struct rtnl_link_stats64 *alx_get_stats64(struct net_device *dev,
1170 struct rtnl_link_stats64 *net_stats)
1171 {
1172 struct alx_priv *alx = netdev_priv(dev);
1173 struct alx_hw_stats *hw_stats = &alx->hw.stats;
1174
1175 spin_lock(&alx->stats_lock);
1176
1177 alx_update_hw_stats(&alx->hw);
1178
1179 net_stats->tx_bytes = hw_stats->tx_byte_cnt;
1180 net_stats->rx_bytes = hw_stats->rx_byte_cnt;
1181 net_stats->multicast = hw_stats->rx_mcast;
1182 net_stats->collisions = hw_stats->tx_single_col +
1183 hw_stats->tx_multi_col +
1184 hw_stats->tx_late_col +
1185 hw_stats->tx_abort_col;
1186
1187 net_stats->rx_errors = hw_stats->rx_frag +
1188 hw_stats->rx_fcs_err +
1189 hw_stats->rx_len_err +
1190 hw_stats->rx_ov_sz +
1191 hw_stats->rx_ov_rrd +
1192 hw_stats->rx_align_err +
1193 hw_stats->rx_ov_rxf;
1194
1195 net_stats->rx_fifo_errors = hw_stats->rx_ov_rxf;
1196 net_stats->rx_length_errors = hw_stats->rx_len_err;
1197 net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
1198 net_stats->rx_frame_errors = hw_stats->rx_align_err;
1199 net_stats->rx_dropped = hw_stats->rx_ov_rrd;
1200
1201 net_stats->tx_errors = hw_stats->tx_late_col +
1202 hw_stats->tx_abort_col +
1203 hw_stats->tx_underrun +
1204 hw_stats->tx_trunc;
1205
1206 net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1207 net_stats->tx_fifo_errors = hw_stats->tx_underrun;
1208 net_stats->tx_window_errors = hw_stats->tx_late_col;
1209
1210 net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1211 net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1212
1213 spin_unlock(&alx->stats_lock);
1214
1215 return net_stats;
1216 }
1217
1218 static const struct net_device_ops alx_netdev_ops = {
1219 .ndo_open = alx_open,
1220 .ndo_stop = alx_stop,
1221 .ndo_start_xmit = alx_start_xmit,
1222 .ndo_get_stats64 = alx_get_stats64,
1223 .ndo_set_rx_mode = alx_set_rx_mode,
1224 .ndo_validate_addr = eth_validate_addr,
1225 .ndo_set_mac_address = alx_set_mac_address,
1226 .ndo_change_mtu = alx_change_mtu,
1227 .ndo_do_ioctl = alx_ioctl,
1228 .ndo_tx_timeout = alx_tx_timeout,
1229 .ndo_fix_features = alx_fix_features,
1230 #ifdef CONFIG_NET_POLL_CONTROLLER
1231 .ndo_poll_controller = alx_poll_controller,
1232 #endif
1233 };
1234
1235 static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1236 {
1237 struct net_device *netdev;
1238 struct alx_priv *alx;
1239 struct alx_hw *hw;
1240 bool phy_configured;
1241 int bars, err;
1242
1243 err = pci_enable_device_mem(pdev);
1244 if (err)
1245 return err;
1246
1247 /* The alx chip can DMA to 64-bit addresses, but it uses a single
1248 * shared register for the high 32 bits, so only a single, aligned,
1249 * 4 GB physical address range can be used for descriptors.
1250 */
1251 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
1252 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1253 dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
1254 } else {
1255 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1256 if (err) {
1257 err = dma_set_coherent_mask(&pdev->dev,
1258 DMA_BIT_MASK(32));
1259 if (err) {
1260 dev_err(&pdev->dev,
1261 "No usable DMA config, aborting\n");
1262 goto out_pci_disable;
1263 }
1264 }
1265 }
1266
1267 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1268 err = pci_request_selected_regions(pdev, bars, alx_drv_name);
1269 if (err) {
1270 dev_err(&pdev->dev,
1271 "pci_request_selected_regions failed(bars:%d)\n", bars);
1272 goto out_pci_disable;
1273 }
1274
1275 pci_enable_pcie_error_reporting(pdev);
1276 pci_set_master(pdev);
1277
1278 if (!pdev->pm_cap) {
1279 dev_err(&pdev->dev,
1280 "Can't find power management capability, aborting\n");
1281 err = -EIO;
1282 goto out_pci_release;
1283 }
1284
1285 netdev = alloc_etherdev(sizeof(*alx));
1286 if (!netdev) {
1287 err = -ENOMEM;
1288 goto out_pci_release;
1289 }
1290
1291 SET_NETDEV_DEV(netdev, &pdev->dev);
1292 alx = netdev_priv(netdev);
1293 spin_lock_init(&alx->hw.mdio_lock);
1294 spin_lock_init(&alx->irq_lock);
1295 spin_lock_init(&alx->stats_lock);
1296 alx->dev = netdev;
1297 alx->hw.pdev = pdev;
1298 alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
1299 NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
1300 hw = &alx->hw;
1301 pci_set_drvdata(pdev, alx);
1302
1303 hw->hw_addr = pci_ioremap_bar(pdev, 0);
1304 if (!hw->hw_addr) {
1305 dev_err(&pdev->dev, "cannot map device registers\n");
1306 err = -EIO;
1307 goto out_free_netdev;
1308 }
1309
1310 netdev->netdev_ops = &alx_netdev_ops;
1311 SET_ETHTOOL_OPS(netdev, &alx_ethtool_ops);
1312 netdev->irq = pdev->irq;
1313 netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
1314
1315 if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
1316 pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
1317
1318 err = alx_init_sw(alx);
1319 if (err) {
1320 dev_err(&pdev->dev, "net device private data init failed\n");
1321 goto out_unmap;
1322 }
1323
1324 alx_reset_pcie(hw);
1325
1326 phy_configured = alx_phy_configured(hw);
1327
1328 if (!phy_configured)
1329 alx_reset_phy(hw);
1330
1331 err = alx_reset_mac(hw);
1332 if (err) {
1333 dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
1334 goto out_unmap;
1335 }
1336
1337 /* setup link to put it in a known good starting state */
1338 if (!phy_configured) {
1339 err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
1340 if (err) {
1341 dev_err(&pdev->dev,
1342 "failed to configure PHY speed/duplex (err=%d)\n",
1343 err);
1344 goto out_unmap;
1345 }
1346 }
1347
1348 netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
1349
1350 if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
1351 dev_warn(&pdev->dev,
1352 "Invalid permanent address programmed, using random one\n");
1353 eth_hw_addr_random(netdev);
1354 memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
1355 }
1356
1357 memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
1358 memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
1359 memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
1360
1361 hw->mdio.prtad = 0;
1362 hw->mdio.mmds = 0;
1363 hw->mdio.dev = netdev;
1364 hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
1365 MDIO_SUPPORTS_C22 |
1366 MDIO_EMULATE_C22;
1367 hw->mdio.mdio_read = alx_mdio_read;
1368 hw->mdio.mdio_write = alx_mdio_write;
1369
1370 if (!alx_get_phy_info(hw)) {
1371 dev_err(&pdev->dev, "failed to identify PHY\n");
1372 err = -EIO;
1373 goto out_unmap;
1374 }
1375
1376 INIT_WORK(&alx->link_check_wk, alx_link_check);
1377 INIT_WORK(&alx->reset_wk, alx_reset);
1378 netif_carrier_off(netdev);
1379
1380 err = register_netdev(netdev);
1381 if (err) {
1382 dev_err(&pdev->dev, "register netdevice failed\n");
1383 goto out_unmap;
1384 }
1385
1386 netdev_info(netdev,
1387 "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
1388 netdev->dev_addr);
1389
1390 return 0;
1391
1392 out_unmap:
1393 iounmap(hw->hw_addr);
1394 out_free_netdev:
1395 free_netdev(netdev);
1396 out_pci_release:
1397 pci_release_selected_regions(pdev, bars);
1398 out_pci_disable:
1399 pci_disable_device(pdev);
1400 return err;
1401 }
1402
1403 static void alx_remove(struct pci_dev *pdev)
1404 {
1405 struct alx_priv *alx = pci_get_drvdata(pdev);
1406 struct alx_hw *hw = &alx->hw;
1407
1408 cancel_work_sync(&alx->link_check_wk);
1409 cancel_work_sync(&alx->reset_wk);
1410
1411 /* restore permanent mac address */
1412 alx_set_macaddr(hw, hw->perm_addr);
1413
1414 unregister_netdev(alx->dev);
1415 iounmap(hw->hw_addr);
1416 pci_release_selected_regions(pdev,
1417 pci_select_bars(pdev, IORESOURCE_MEM));
1418
1419 pci_disable_pcie_error_reporting(pdev);
1420 pci_disable_device(pdev);
1421
1422 free_netdev(alx->dev);
1423 }
1424
1425 #ifdef CONFIG_PM_SLEEP
1426 static int alx_suspend(struct device *dev)
1427 {
1428 struct pci_dev *pdev = to_pci_dev(dev);
1429 struct alx_priv *alx = pci_get_drvdata(pdev);
1430
1431 if (!netif_running(alx->dev))
1432 return 0;
1433 netif_device_detach(alx->dev);
1434 __alx_stop(alx);
1435 return 0;
1436 }
1437
1438 static int alx_resume(struct device *dev)
1439 {
1440 struct pci_dev *pdev = to_pci_dev(dev);
1441 struct alx_priv *alx = pci_get_drvdata(pdev);
1442 struct alx_hw *hw = &alx->hw;
1443
1444 alx_reset_phy(hw);
1445
1446 if (!netif_running(alx->dev))
1447 return 0;
1448 netif_device_attach(alx->dev);
1449 return __alx_open(alx, true);
1450 }
1451
1452 static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
1453 #define ALX_PM_OPS (&alx_pm_ops)
1454 #else
1455 #define ALX_PM_OPS NULL
1456 #endif
1457
1458
1459 static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
1460 pci_channel_state_t state)
1461 {
1462 struct alx_priv *alx = pci_get_drvdata(pdev);
1463 struct net_device *netdev = alx->dev;
1464 pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
1465
1466 dev_info(&pdev->dev, "pci error detected\n");
1467
1468 rtnl_lock();
1469
1470 if (netif_running(netdev)) {
1471 netif_device_detach(netdev);
1472 alx_halt(alx);
1473 }
1474
1475 if (state == pci_channel_io_perm_failure)
1476 rc = PCI_ERS_RESULT_DISCONNECT;
1477 else
1478 pci_disable_device(pdev);
1479
1480 rtnl_unlock();
1481
1482 return rc;
1483 }
1484
1485 static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
1486 {
1487 struct alx_priv *alx = pci_get_drvdata(pdev);
1488 struct alx_hw *hw = &alx->hw;
1489 pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
1490
1491 dev_info(&pdev->dev, "pci error slot reset\n");
1492
1493 rtnl_lock();
1494
1495 if (pci_enable_device(pdev)) {
1496 dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
1497 goto out;
1498 }
1499
1500 pci_set_master(pdev);
1501
1502 alx_reset_pcie(hw);
1503 if (!alx_reset_mac(hw))
1504 rc = PCI_ERS_RESULT_RECOVERED;
1505 out:
1506 pci_cleanup_aer_uncorrect_error_status(pdev);
1507
1508 rtnl_unlock();
1509
1510 return rc;
1511 }
1512
1513 static void alx_pci_error_resume(struct pci_dev *pdev)
1514 {
1515 struct alx_priv *alx = pci_get_drvdata(pdev);
1516 struct net_device *netdev = alx->dev;
1517
1518 dev_info(&pdev->dev, "pci error resume\n");
1519
1520 rtnl_lock();
1521
1522 if (netif_running(netdev)) {
1523 alx_activate(alx);
1524 netif_device_attach(netdev);
1525 }
1526
1527 rtnl_unlock();
1528 }
1529
1530 static const struct pci_error_handlers alx_err_handlers = {
1531 .error_detected = alx_pci_error_detected,
1532 .slot_reset = alx_pci_error_slot_reset,
1533 .resume = alx_pci_error_resume,
1534 };
1535
1536 static DEFINE_PCI_DEVICE_TABLE(alx_pci_tbl) = {
1537 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
1538 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1539 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
1540 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1541 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
1542 .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
1543 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
1544 { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
1545 {}
1546 };
1547
1548 static struct pci_driver alx_driver = {
1549 .name = alx_drv_name,
1550 .id_table = alx_pci_tbl,
1551 .probe = alx_probe,
1552 .remove = alx_remove,
1553 .err_handler = &alx_err_handlers,
1554 .driver.pm = ALX_PM_OPS,
1555 };
1556
1557 module_pci_driver(alx_driver);
1558 MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
1559 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
1560 MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
1561 MODULE_DESCRIPTION(
1562 "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
1563 MODULE_LICENSE("GPL");
This page took 0.095382 seconds and 5 git commands to generate.