Merge remote-tracking branch 'asoc/topic/qcom' into asoc-next
[deliverable/linux.git] / drivers / net / ethernet / atheros / atl1c / atl1c_hw.c
1 /*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/mii.h>
24 #include <linux/crc32.h>
25
26 #include "atl1c.h"
27
28 /*
29 * check_eeprom_exist
30 * return 1 if eeprom exist
31 */
32 int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
33 {
34 u32 data;
35
36 AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
37 if (data & TWSI_DEBUG_DEV_EXIST)
38 return 1;
39
40 AT_READ_REG(hw, REG_MASTER_CTRL, &data);
41 if (data & MASTER_CTRL_OTP_SEL)
42 return 1;
43 return 0;
44 }
45
46 void atl1c_hw_set_mac_addr(struct atl1c_hw *hw, u8 *mac_addr)
47 {
48 u32 value;
49 /*
50 * 00-0B-6A-F6-00-DC
51 * 0: 6AF600DC 1: 000B
52 * low dword
53 */
54 value = mac_addr[2] << 24 |
55 mac_addr[3] << 16 |
56 mac_addr[4] << 8 |
57 mac_addr[5];
58 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
59 /* hight dword */
60 value = mac_addr[0] << 8 |
61 mac_addr[1];
62 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
63 }
64
65 /* read mac address from hardware register */
66 static bool atl1c_read_current_addr(struct atl1c_hw *hw, u8 *eth_addr)
67 {
68 u32 addr[2];
69
70 AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
71 AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
72
73 *(u32 *) &eth_addr[2] = htonl(addr[0]);
74 *(u16 *) &eth_addr[0] = htons((u16)addr[1]);
75
76 return is_valid_ether_addr(eth_addr);
77 }
78
79 /*
80 * atl1c_get_permanent_address
81 * return 0 if get valid mac address,
82 */
83 static int atl1c_get_permanent_address(struct atl1c_hw *hw)
84 {
85 u32 i;
86 u32 otp_ctrl_data;
87 u32 twsi_ctrl_data;
88 u16 phy_data;
89 bool raise_vol = false;
90
91 /* MAC-address from BIOS is the 1st priority */
92 if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
93 return 0;
94
95 /* init */
96 AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
97 if (atl1c_check_eeprom_exist(hw)) {
98 if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) {
99 /* Enable OTP CLK */
100 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
101 otp_ctrl_data |= OTP_CTRL_CLK_EN;
102 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
103 AT_WRITE_FLUSH(hw);
104 msleep(1);
105 }
106 }
107 /* raise voltage temporally for l2cb */
108 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
109 atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
110 phy_data &= ~ANACTRL_HB_EN;
111 atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
112 atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
113 phy_data |= VOLT_CTRL_SWLOWEST;
114 atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
115 udelay(20);
116 raise_vol = true;
117 }
118
119 AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
120 twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
121 AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
122 for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
123 msleep(10);
124 AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
125 if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
126 break;
127 }
128 if (i >= AT_TWSI_EEPROM_TIMEOUT)
129 return -1;
130 }
131 /* Disable OTP_CLK */
132 if ((hw->nic_type == athr_l1c || hw->nic_type == athr_l2c)) {
133 otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
134 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
135 msleep(1);
136 }
137 if (raise_vol) {
138 atl1c_read_phy_dbg(hw, MIIDBG_ANACTRL, &phy_data);
139 phy_data |= ANACTRL_HB_EN;
140 atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, phy_data);
141 atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
142 phy_data &= ~VOLT_CTRL_SWLOWEST;
143 atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
144 udelay(20);
145 }
146
147 if (atl1c_read_current_addr(hw, hw->perm_mac_addr))
148 return 0;
149
150 return -1;
151 }
152
153 bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
154 {
155 int i;
156 bool ret = false;
157 u32 otp_ctrl_data;
158 u32 control;
159 u32 data;
160
161 if (offset & 3)
162 return ret; /* address do not align */
163
164 AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
165 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
166 AT_WRITE_REG(hw, REG_OTP_CTRL,
167 (otp_ctrl_data | OTP_CTRL_CLK_EN));
168
169 AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
170 control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
171 AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
172
173 for (i = 0; i < 10; i++) {
174 udelay(100);
175 AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
176 if (control & EEPROM_CTRL_RW)
177 break;
178 }
179 if (control & EEPROM_CTRL_RW) {
180 AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
181 AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
182 data = data & 0xFFFF;
183 *p_value = swab32((data << 16) | (*p_value >> 16));
184 ret = true;
185 }
186 if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
187 AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
188
189 return ret;
190 }
191 /*
192 * Reads the adapter's MAC address from the EEPROM
193 *
194 * hw - Struct containing variables accessed by shared code
195 */
196 int atl1c_read_mac_addr(struct atl1c_hw *hw)
197 {
198 int err = 0;
199
200 err = atl1c_get_permanent_address(hw);
201 if (err)
202 eth_random_addr(hw->perm_mac_addr);
203
204 memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
205 return err;
206 }
207
208 /*
209 * atl1c_hash_mc_addr
210 * purpose
211 * set hash value for a multicast address
212 * hash calcu processing :
213 * 1. calcu 32bit CRC for multicast address
214 * 2. reverse crc with MSB to LSB
215 */
216 u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
217 {
218 u32 crc32;
219 u32 value = 0;
220 int i;
221
222 crc32 = ether_crc_le(6, mc_addr);
223 for (i = 0; i < 32; i++)
224 value |= (((crc32 >> i) & 1) << (31 - i));
225
226 return value;
227 }
228
229 /*
230 * Sets the bit in the multicast table corresponding to the hash value.
231 * hw - Struct containing variables accessed by shared code
232 * hash_value - Multicast address hash value
233 */
234 void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
235 {
236 u32 hash_bit, hash_reg;
237 u32 mta;
238
239 /*
240 * The HASH Table is a register array of 2 32-bit registers.
241 * It is treated like an array of 64 bits. We want to set
242 * bit BitArray[hash_value]. So we figure out what register
243 * the bit is in, read it, OR in the new bit, then write
244 * back the new value. The register is determined by the
245 * upper bit of the hash value and the bit within that
246 * register are determined by the lower 5 bits of the value.
247 */
248 hash_reg = (hash_value >> 31) & 0x1;
249 hash_bit = (hash_value >> 26) & 0x1F;
250
251 mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
252
253 mta |= (1 << hash_bit);
254
255 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
256 }
257
258 /*
259 * wait mdio module be idle
260 * return true: idle
261 * false: still busy
262 */
263 bool atl1c_wait_mdio_idle(struct atl1c_hw *hw)
264 {
265 u32 val;
266 int i;
267
268 for (i = 0; i < MDIO_MAX_AC_TO; i++) {
269 AT_READ_REG(hw, REG_MDIO_CTRL, &val);
270 if (!(val & (MDIO_CTRL_BUSY | MDIO_CTRL_START)))
271 break;
272 udelay(10);
273 }
274
275 return i != MDIO_MAX_AC_TO;
276 }
277
278 void atl1c_stop_phy_polling(struct atl1c_hw *hw)
279 {
280 if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
281 return;
282
283 AT_WRITE_REG(hw, REG_MDIO_CTRL, 0);
284 atl1c_wait_mdio_idle(hw);
285 }
286
287 void atl1c_start_phy_polling(struct atl1c_hw *hw, u16 clk_sel)
288 {
289 u32 val;
290
291 if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
292 return;
293
294 val = MDIO_CTRL_SPRES_PRMBL |
295 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
296 FIELDX(MDIO_CTRL_REG, 1) |
297 MDIO_CTRL_START |
298 MDIO_CTRL_OP_READ;
299 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
300 atl1c_wait_mdio_idle(hw);
301 val |= MDIO_CTRL_AP_EN;
302 val &= ~MDIO_CTRL_START;
303 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
304 udelay(30);
305 }
306
307
308 /*
309 * atl1c_read_phy_core
310 * core function to read register in PHY via MDIO control regsiter.
311 * ext: extension register (see IEEE 802.3)
312 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
313 * reg: reg to read
314 */
315 int atl1c_read_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
316 u16 reg, u16 *phy_data)
317 {
318 u32 val;
319 u16 clk_sel = MDIO_CTRL_CLK_25_4;
320
321 atl1c_stop_phy_polling(hw);
322
323 *phy_data = 0;
324
325 /* only l2c_b2 & l1d_2 could use slow clock */
326 if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
327 hw->hibernate)
328 clk_sel = MDIO_CTRL_CLK_25_128;
329 if (ext) {
330 val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
331 AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
332 val = MDIO_CTRL_SPRES_PRMBL |
333 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
334 MDIO_CTRL_START |
335 MDIO_CTRL_MODE_EXT |
336 MDIO_CTRL_OP_READ;
337 } else {
338 val = MDIO_CTRL_SPRES_PRMBL |
339 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
340 FIELDX(MDIO_CTRL_REG, reg) |
341 MDIO_CTRL_START |
342 MDIO_CTRL_OP_READ;
343 }
344 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
345
346 if (!atl1c_wait_mdio_idle(hw))
347 return -1;
348
349 AT_READ_REG(hw, REG_MDIO_CTRL, &val);
350 *phy_data = (u16)FIELD_GETX(val, MDIO_CTRL_DATA);
351
352 atl1c_start_phy_polling(hw, clk_sel);
353
354 return 0;
355 }
356
357 /*
358 * atl1c_write_phy_core
359 * core function to write to register in PHY via MDIO control register.
360 * ext: extension register (see IEEE 802.3)
361 * dev: device address (see IEEE 802.3 DEVAD, PRTAD is fixed to 0)
362 * reg: reg to write
363 */
364 int atl1c_write_phy_core(struct atl1c_hw *hw, bool ext, u8 dev,
365 u16 reg, u16 phy_data)
366 {
367 u32 val;
368 u16 clk_sel = MDIO_CTRL_CLK_25_4;
369
370 atl1c_stop_phy_polling(hw);
371
372
373 /* only l2c_b2 & l1d_2 could use slow clock */
374 if ((hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) &&
375 hw->hibernate)
376 clk_sel = MDIO_CTRL_CLK_25_128;
377
378 if (ext) {
379 val = FIELDX(MDIO_EXTN_DEVAD, dev) | FIELDX(MDIO_EXTN_REG, reg);
380 AT_WRITE_REG(hw, REG_MDIO_EXTN, val);
381 val = MDIO_CTRL_SPRES_PRMBL |
382 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
383 FIELDX(MDIO_CTRL_DATA, phy_data) |
384 MDIO_CTRL_START |
385 MDIO_CTRL_MODE_EXT;
386 } else {
387 val = MDIO_CTRL_SPRES_PRMBL |
388 FIELDX(MDIO_CTRL_CLK_SEL, clk_sel) |
389 FIELDX(MDIO_CTRL_DATA, phy_data) |
390 FIELDX(MDIO_CTRL_REG, reg) |
391 MDIO_CTRL_START;
392 }
393 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
394
395 if (!atl1c_wait_mdio_idle(hw))
396 return -1;
397
398 atl1c_start_phy_polling(hw, clk_sel);
399
400 return 0;
401 }
402
403 /*
404 * Reads the value from a PHY register
405 * hw - Struct containing variables accessed by shared code
406 * reg_addr - address of the PHY register to read
407 */
408 int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
409 {
410 return atl1c_read_phy_core(hw, false, 0, reg_addr, phy_data);
411 }
412
413 /*
414 * Writes a value to a PHY register
415 * hw - Struct containing variables accessed by shared code
416 * reg_addr - address of the PHY register to write
417 * data - data to write to the PHY
418 */
419 int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
420 {
421 return atl1c_write_phy_core(hw, false, 0, reg_addr, phy_data);
422 }
423
424 /* read from PHY extension register */
425 int atl1c_read_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
426 u16 reg_addr, u16 *phy_data)
427 {
428 return atl1c_read_phy_core(hw, true, dev_addr, reg_addr, phy_data);
429 }
430
431 /* write to PHY extension register */
432 int atl1c_write_phy_ext(struct atl1c_hw *hw, u8 dev_addr,
433 u16 reg_addr, u16 phy_data)
434 {
435 return atl1c_write_phy_core(hw, true, dev_addr, reg_addr, phy_data);
436 }
437
438 int atl1c_read_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
439 {
440 int err;
441
442 err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
443 if (unlikely(err))
444 return err;
445 else
446 err = atl1c_read_phy_reg(hw, MII_DBG_DATA, phy_data);
447
448 return err;
449 }
450
451 int atl1c_write_phy_dbg(struct atl1c_hw *hw, u16 reg_addr, u16 phy_data)
452 {
453 int err;
454
455 err = atl1c_write_phy_reg(hw, MII_DBG_ADDR, reg_addr);
456 if (unlikely(err))
457 return err;
458 else
459 err = atl1c_write_phy_reg(hw, MII_DBG_DATA, phy_data);
460
461 return err;
462 }
463
464 /*
465 * Configures PHY autoneg and flow control advertisement settings
466 *
467 * hw - Struct containing variables accessed by shared code
468 */
469 static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
470 {
471 u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_ALL;
472 u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
473 ~GIGA_CR_1000T_SPEED_MASK;
474
475 if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
476 mii_adv_data |= ADVERTISE_10HALF;
477 if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
478 mii_adv_data |= ADVERTISE_10FULL;
479 if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
480 mii_adv_data |= ADVERTISE_100HALF;
481 if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
482 mii_adv_data |= ADVERTISE_100FULL;
483
484 if (hw->autoneg_advertised & ADVERTISED_Autoneg)
485 mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
486 ADVERTISE_100HALF | ADVERTISE_100FULL;
487
488 if (hw->link_cap_flags & ATL1C_LINK_CAP_1000M) {
489 if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
490 mii_giga_ctrl_data |= ADVERTISE_1000HALF;
491 if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
492 mii_giga_ctrl_data |= ADVERTISE_1000FULL;
493 if (hw->autoneg_advertised & ADVERTISED_Autoneg)
494 mii_giga_ctrl_data |= ADVERTISE_1000HALF |
495 ADVERTISE_1000FULL;
496 }
497
498 if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
499 atl1c_write_phy_reg(hw, MII_CTRL1000, mii_giga_ctrl_data) != 0)
500 return -1;
501 return 0;
502 }
503
504 void atl1c_phy_disable(struct atl1c_hw *hw)
505 {
506 atl1c_power_saving(hw, 0);
507 }
508
509
510 int atl1c_phy_reset(struct atl1c_hw *hw)
511 {
512 struct atl1c_adapter *adapter = hw->adapter;
513 struct pci_dev *pdev = adapter->pdev;
514 u16 phy_data;
515 u32 phy_ctrl_data, lpi_ctrl;
516 int err;
517
518 /* reset PHY core */
519 AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl_data);
520 phy_ctrl_data &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_PHY_IDDQ |
521 GPHY_CTRL_GATE_25M_EN | GPHY_CTRL_PWDOWN_HW | GPHY_CTRL_CLS);
522 phy_ctrl_data |= GPHY_CTRL_SEL_ANA_RST;
523 if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE))
524 phy_ctrl_data |= (GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
525 else
526 phy_ctrl_data &= ~(GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE);
527 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
528 AT_WRITE_FLUSH(hw);
529 udelay(10);
530 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data | GPHY_CTRL_EXT_RESET);
531 AT_WRITE_FLUSH(hw);
532 udelay(10 * GPHY_CTRL_EXT_RST_TO); /* delay 800us */
533
534 /* switch clock */
535 if (hw->nic_type == athr_l2c_b) {
536 atl1c_read_phy_dbg(hw, MIIDBG_CFGLPSPD, &phy_data);
537 atl1c_write_phy_dbg(hw, MIIDBG_CFGLPSPD,
538 phy_data & ~CFGLPSPD_RSTCNT_CLK125SW);
539 }
540
541 /* tx-half amplitude issue fix */
542 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
543 atl1c_read_phy_dbg(hw, MIIDBG_CABLE1TH_DET, &phy_data);
544 phy_data |= CABLE1TH_DET_EN;
545 atl1c_write_phy_dbg(hw, MIIDBG_CABLE1TH_DET, phy_data);
546 }
547
548 /* clear bit3 of dbgport 3B to lower voltage */
549 if (!(hw->ctrl_flags & ATL1C_HIB_DISABLE)) {
550 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2) {
551 atl1c_read_phy_dbg(hw, MIIDBG_VOLT_CTRL, &phy_data);
552 phy_data &= ~VOLT_CTRL_SWLOWEST;
553 atl1c_write_phy_dbg(hw, MIIDBG_VOLT_CTRL, phy_data);
554 }
555 /* power saving config */
556 phy_data =
557 hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ?
558 L1D_LEGCYPS_DEF : L1C_LEGCYPS_DEF;
559 atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS, phy_data);
560 /* hib */
561 atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
562 SYSMODCTRL_IECHOADJ_DEF);
563 } else {
564 /* disable pws */
565 atl1c_read_phy_dbg(hw, MIIDBG_LEGCYPS, &phy_data);
566 atl1c_write_phy_dbg(hw, MIIDBG_LEGCYPS,
567 phy_data & ~LEGCYPS_EN);
568 /* disable hibernate */
569 atl1c_read_phy_dbg(hw, MIIDBG_HIBNEG, &phy_data);
570 atl1c_write_phy_dbg(hw, MIIDBG_HIBNEG,
571 phy_data & HIBNEG_PSHIB_EN);
572 }
573 /* disable AZ(EEE) by default */
574 if (hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2 ||
575 hw->nic_type == athr_l2c_b2) {
576 AT_READ_REG(hw, REG_LPI_CTRL, &lpi_ctrl);
577 AT_WRITE_REG(hw, REG_LPI_CTRL, lpi_ctrl & ~LPI_CTRL_EN);
578 atl1c_write_phy_ext(hw, MIIEXT_ANEG, MIIEXT_LOCAL_EEEADV, 0);
579 atl1c_write_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL3,
580 L2CB_CLDCTRL3);
581 }
582
583 /* other debug port to set */
584 atl1c_write_phy_dbg(hw, MIIDBG_ANACTRL, ANACTRL_DEF);
585 atl1c_write_phy_dbg(hw, MIIDBG_SRDSYSMOD, SRDSYSMOD_DEF);
586 atl1c_write_phy_dbg(hw, MIIDBG_TST10BTCFG, TST10BTCFG_DEF);
587 /* UNH-IOL test issue, set bit7 */
588 atl1c_write_phy_dbg(hw, MIIDBG_TST100BTCFG,
589 TST100BTCFG_DEF | TST100BTCFG_LITCH_EN);
590
591 /* set phy interrupt mask */
592 phy_data = IER_LINK_UP | IER_LINK_DOWN;
593 err = atl1c_write_phy_reg(hw, MII_IER, phy_data);
594 if (err) {
595 if (netif_msg_hw(adapter))
596 dev_err(&pdev->dev,
597 "Error enable PHY linkChange Interrupt\n");
598 return err;
599 }
600 return 0;
601 }
602
603 int atl1c_phy_init(struct atl1c_hw *hw)
604 {
605 struct atl1c_adapter *adapter = hw->adapter;
606 struct pci_dev *pdev = adapter->pdev;
607 int ret_val;
608 u16 mii_bmcr_data = BMCR_RESET;
609
610 if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &hw->phy_id1) != 0) ||
611 (atl1c_read_phy_reg(hw, MII_PHYSID2, &hw->phy_id2) != 0)) {
612 dev_err(&pdev->dev, "Error get phy ID\n");
613 return -1;
614 }
615 switch (hw->media_type) {
616 case MEDIA_TYPE_AUTO_SENSOR:
617 ret_val = atl1c_phy_setup_adv(hw);
618 if (ret_val) {
619 if (netif_msg_link(adapter))
620 dev_err(&pdev->dev,
621 "Error Setting up Auto-Negotiation\n");
622 return ret_val;
623 }
624 mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
625 break;
626 case MEDIA_TYPE_100M_FULL:
627 mii_bmcr_data |= BMCR_SPEED100 | BMCR_FULLDPLX;
628 break;
629 case MEDIA_TYPE_100M_HALF:
630 mii_bmcr_data |= BMCR_SPEED100;
631 break;
632 case MEDIA_TYPE_10M_FULL:
633 mii_bmcr_data |= BMCR_FULLDPLX;
634 break;
635 case MEDIA_TYPE_10M_HALF:
636 break;
637 default:
638 if (netif_msg_link(adapter))
639 dev_err(&pdev->dev, "Wrong Media type %d\n",
640 hw->media_type);
641 return -1;
642 }
643
644 ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
645 if (ret_val)
646 return ret_val;
647 hw->phy_configured = true;
648
649 return 0;
650 }
651
652 /*
653 * Detects the current speed and duplex settings of the hardware.
654 *
655 * hw - Struct containing variables accessed by shared code
656 * speed - Speed of the connection
657 * duplex - Duplex setting of the connection
658 */
659 int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
660 {
661 int err;
662 u16 phy_data;
663
664 /* Read PHY Specific Status Register (17) */
665 err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
666 if (err)
667 return err;
668
669 if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
670 return -1;
671
672 switch (phy_data & GIGA_PSSR_SPEED) {
673 case GIGA_PSSR_1000MBS:
674 *speed = SPEED_1000;
675 break;
676 case GIGA_PSSR_100MBS:
677 *speed = SPEED_100;
678 break;
679 case GIGA_PSSR_10MBS:
680 *speed = SPEED_10;
681 break;
682 default:
683 return -1;
684 }
685
686 if (phy_data & GIGA_PSSR_DPLX)
687 *duplex = FULL_DUPLEX;
688 else
689 *duplex = HALF_DUPLEX;
690
691 return 0;
692 }
693
694 /* select one link mode to get lower power consumption */
695 int atl1c_phy_to_ps_link(struct atl1c_hw *hw)
696 {
697 struct atl1c_adapter *adapter = hw->adapter;
698 struct pci_dev *pdev = adapter->pdev;
699 int ret = 0;
700 u16 autoneg_advertised = ADVERTISED_10baseT_Half;
701 u16 save_autoneg_advertised;
702 u16 phy_data;
703 u16 mii_lpa_data;
704 u16 speed = SPEED_0;
705 u16 duplex = FULL_DUPLEX;
706 int i;
707
708 atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
709 atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
710 if (phy_data & BMSR_LSTATUS) {
711 atl1c_read_phy_reg(hw, MII_LPA, &mii_lpa_data);
712 if (mii_lpa_data & LPA_10FULL)
713 autoneg_advertised = ADVERTISED_10baseT_Full;
714 else if (mii_lpa_data & LPA_10HALF)
715 autoneg_advertised = ADVERTISED_10baseT_Half;
716 else if (mii_lpa_data & LPA_100HALF)
717 autoneg_advertised = ADVERTISED_100baseT_Half;
718 else if (mii_lpa_data & LPA_100FULL)
719 autoneg_advertised = ADVERTISED_100baseT_Full;
720
721 save_autoneg_advertised = hw->autoneg_advertised;
722 hw->phy_configured = false;
723 hw->autoneg_advertised = autoneg_advertised;
724 if (atl1c_restart_autoneg(hw) != 0) {
725 dev_dbg(&pdev->dev, "phy autoneg failed\n");
726 ret = -1;
727 }
728 hw->autoneg_advertised = save_autoneg_advertised;
729
730 if (mii_lpa_data) {
731 for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
732 mdelay(100);
733 atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
734 atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
735 if (phy_data & BMSR_LSTATUS) {
736 if (atl1c_get_speed_and_duplex(hw, &speed,
737 &duplex) != 0)
738 dev_dbg(&pdev->dev,
739 "get speed and duplex failed\n");
740 break;
741 }
742 }
743 }
744 } else {
745 speed = SPEED_10;
746 duplex = HALF_DUPLEX;
747 }
748 adapter->link_speed = speed;
749 adapter->link_duplex = duplex;
750
751 return ret;
752 }
753
754 int atl1c_restart_autoneg(struct atl1c_hw *hw)
755 {
756 int err = 0;
757 u16 mii_bmcr_data = BMCR_RESET;
758
759 err = atl1c_phy_setup_adv(hw);
760 if (err)
761 return err;
762 mii_bmcr_data |= BMCR_ANENABLE | BMCR_ANRESTART;
763
764 return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
765 }
766
767 int atl1c_power_saving(struct atl1c_hw *hw, u32 wufc)
768 {
769 struct atl1c_adapter *adapter = hw->adapter;
770 struct pci_dev *pdev = adapter->pdev;
771 u32 master_ctrl, mac_ctrl, phy_ctrl;
772 u32 wol_ctrl, speed;
773 u16 phy_data;
774
775 wol_ctrl = 0;
776 speed = adapter->link_speed == SPEED_1000 ?
777 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100;
778
779 AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl);
780 AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl);
781 AT_READ_REG(hw, REG_GPHY_CTRL, &phy_ctrl);
782
783 master_ctrl &= ~MASTER_CTRL_CLK_SEL_DIS;
784 mac_ctrl = FIELD_SETX(mac_ctrl, MAC_CTRL_SPEED, speed);
785 mac_ctrl &= ~(MAC_CTRL_DUPLX | MAC_CTRL_RX_EN | MAC_CTRL_TX_EN);
786 if (adapter->link_duplex == FULL_DUPLEX)
787 mac_ctrl |= MAC_CTRL_DUPLX;
788 phy_ctrl &= ~(GPHY_CTRL_EXT_RESET | GPHY_CTRL_CLS);
789 phy_ctrl |= GPHY_CTRL_SEL_ANA_RST | GPHY_CTRL_HIB_PULSE |
790 GPHY_CTRL_HIB_EN;
791 if (!wufc) { /* without WoL */
792 master_ctrl |= MASTER_CTRL_CLK_SEL_DIS;
793 phy_ctrl |= GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PWDOWN_HW;
794 AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
795 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
796 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
797 AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
798 hw->phy_configured = false; /* re-init PHY when resume */
799 return 0;
800 }
801 phy_ctrl |= GPHY_CTRL_EXT_RESET;
802 if (wufc & AT_WUFC_MAG) {
803 mac_ctrl |= MAC_CTRL_RX_EN | MAC_CTRL_BC_EN;
804 wol_ctrl |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
805 if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V11)
806 wol_ctrl |= WOL_PATTERN_EN | WOL_PATTERN_PME_EN;
807 }
808 if (wufc & AT_WUFC_LNKC) {
809 wol_ctrl |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
810 if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
811 dev_dbg(&pdev->dev, "%s: write phy MII_IER failed.\n",
812 atl1c_driver_name);
813 }
814 }
815 /* clear PHY interrupt */
816 atl1c_read_phy_reg(hw, MII_ISR, &phy_data);
817
818 dev_dbg(&pdev->dev, "%s: suspend MAC=%x,MASTER=%x,PHY=0x%x,WOL=%x\n",
819 atl1c_driver_name, mac_ctrl, master_ctrl, phy_ctrl, wol_ctrl);
820 AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl);
821 AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl);
822 AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl);
823 AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl);
824
825 return 0;
826 }
827
828
829 /* configure phy after Link change Event */
830 void atl1c_post_phy_linkchg(struct atl1c_hw *hw, u16 link_speed)
831 {
832 u16 phy_val;
833 bool adj_thresh = false;
834
835 if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ||
836 hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2)
837 adj_thresh = true;
838
839 if (link_speed != SPEED_0) { /* link up */
840 /* az with brcm, half-amp */
841 if (hw->nic_type == athr_l1d_2) {
842 atl1c_read_phy_ext(hw, MIIEXT_PCS, MIIEXT_CLDCTRL6,
843 &phy_val);
844 phy_val = FIELD_GETX(phy_val, CLDCTRL6_CAB_LEN);
845 phy_val = phy_val > CLDCTRL6_CAB_LEN_SHORT ?
846 AZ_ANADECT_LONG : AZ_ANADECT_DEF;
847 atl1c_write_phy_dbg(hw, MIIDBG_AZ_ANADECT, phy_val);
848 }
849 /* threshold adjust */
850 if (adj_thresh && link_speed == SPEED_100 && hw->msi_lnkpatch) {
851 atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB, L1D_MSE16DB_UP);
852 atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
853 L1D_SYSMODCTRL_IECHOADJ_DEF);
854 }
855 } else { /* link down */
856 if (adj_thresh && hw->msi_lnkpatch) {
857 atl1c_write_phy_dbg(hw, MIIDBG_SYSMODCTRL,
858 SYSMODCTRL_IECHOADJ_DEF);
859 atl1c_write_phy_dbg(hw, MIIDBG_MSE16DB,
860 L1D_MSE16DB_DOWN);
861 }
862 }
863 }
This page took 0.071736 seconds and 5 git commands to generate.