net: rename vlan_tx_* helpers since "tx" is misleading there
[deliverable/linux.git] / drivers / net / ethernet / atheros / atlx / atl1.c
1 /*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47 #include <linux/atomic.h>
48 #include <asm/byteorder.h>
49
50 #include <linux/compiler.h>
51 #include <linux/crc32.h>
52 #include <linux/delay.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/etherdevice.h>
55 #include <linux/hardirq.h>
56 #include <linux/if_ether.h>
57 #include <linux/if_vlan.h>
58 #include <linux/in.h>
59 #include <linux/interrupt.h>
60 #include <linux/ip.h>
61 #include <linux/irqflags.h>
62 #include <linux/irqreturn.h>
63 #include <linux/jiffies.h>
64 #include <linux/mii.h>
65 #include <linux/module.h>
66 #include <linux/moduleparam.h>
67 #include <linux/net.h>
68 #include <linux/netdevice.h>
69 #include <linux/pci.h>
70 #include <linux/pci_ids.h>
71 #include <linux/pm.h>
72 #include <linux/skbuff.h>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/string.h>
76 #include <linux/tcp.h>
77 #include <linux/timer.h>
78 #include <linux/types.h>
79 #include <linux/workqueue.h>
80
81 #include <net/checksum.h>
82
83 #include "atl1.h"
84
85 #define ATLX_DRIVER_VERSION "2.1.3"
86 MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87 "Chris Snook <csnook@redhat.com>, "
88 "Jay Cliburn <jcliburn@gmail.com>");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(ATLX_DRIVER_VERSION);
91
92 /* Temporary hack for merging atl1 and atl2 */
93 #include "atlx.c"
94
95 static const struct ethtool_ops atl1_ethtool_ops;
96
97 /*
98 * This is the only thing that needs to be changed to adjust the
99 * maximum number of ports that the driver can manage.
100 */
101 #define ATL1_MAX_NIC 4
102
103 #define OPTION_UNSET -1
104 #define OPTION_DISABLED 0
105 #define OPTION_ENABLED 1
106
107 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108
109 /*
110 * Interrupt Moderate Timer in units of 2 us
111 *
112 * Valid Range: 10-65535
113 *
114 * Default Value: 100 (200us)
115 */
116 static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117 static unsigned int num_int_mod_timer;
118 module_param_array_named(int_mod_timer, int_mod_timer, int,
119 &num_int_mod_timer, 0);
120 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121
122 #define DEFAULT_INT_MOD_CNT 100 /* 200us */
123 #define MAX_INT_MOD_CNT 65000
124 #define MIN_INT_MOD_CNT 50
125
126 struct atl1_option {
127 enum { enable_option, range_option, list_option } type;
128 char *name;
129 char *err;
130 int def;
131 union {
132 struct { /* range_option info */
133 int min;
134 int max;
135 } r;
136 struct { /* list_option info */
137 int nr;
138 struct atl1_opt_list {
139 int i;
140 char *str;
141 } *p;
142 } l;
143 } arg;
144 };
145
146 static int atl1_validate_option(int *value, struct atl1_option *opt,
147 struct pci_dev *pdev)
148 {
149 if (*value == OPTION_UNSET) {
150 *value = opt->def;
151 return 0;
152 }
153
154 switch (opt->type) {
155 case enable_option:
156 switch (*value) {
157 case OPTION_ENABLED:
158 dev_info(&pdev->dev, "%s enabled\n", opt->name);
159 return 0;
160 case OPTION_DISABLED:
161 dev_info(&pdev->dev, "%s disabled\n", opt->name);
162 return 0;
163 }
164 break;
165 case range_option:
166 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167 dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168 *value);
169 return 0;
170 }
171 break;
172 case list_option:{
173 int i;
174 struct atl1_opt_list *ent;
175
176 for (i = 0; i < opt->arg.l.nr; i++) {
177 ent = &opt->arg.l.p[i];
178 if (*value == ent->i) {
179 if (ent->str[0] != '\0')
180 dev_info(&pdev->dev, "%s\n",
181 ent->str);
182 return 0;
183 }
184 }
185 }
186 break;
187
188 default:
189 break;
190 }
191
192 dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193 opt->name, *value, opt->err);
194 *value = opt->def;
195 return -1;
196 }
197
198 /**
199 * atl1_check_options - Range Checking for Command Line Parameters
200 * @adapter: board private structure
201 *
202 * This routine checks all command line parameters for valid user
203 * input. If an invalid value is given, or if no user specified
204 * value exists, a default value is used. The final value is stored
205 * in a variable in the adapter structure.
206 */
207 static void atl1_check_options(struct atl1_adapter *adapter)
208 {
209 struct pci_dev *pdev = adapter->pdev;
210 int bd = adapter->bd_number;
211 if (bd >= ATL1_MAX_NIC) {
212 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213 dev_notice(&pdev->dev, "using defaults for all values\n");
214 }
215 { /* Interrupt Moderate Timer */
216 struct atl1_option opt = {
217 .type = range_option,
218 .name = "Interrupt Moderator Timer",
219 .err = "using default of "
220 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
221 .def = DEFAULT_INT_MOD_CNT,
222 .arg = {.r = {.min = MIN_INT_MOD_CNT,
223 .max = MAX_INT_MOD_CNT} }
224 };
225 int val;
226 if (num_int_mod_timer > bd) {
227 val = int_mod_timer[bd];
228 atl1_validate_option(&val, &opt, pdev);
229 adapter->imt = (u16) val;
230 } else
231 adapter->imt = (u16) (opt.def);
232 }
233 }
234
235 /*
236 * atl1_pci_tbl - PCI Device ID Table
237 */
238 static const struct pci_device_id atl1_pci_tbl[] = {
239 {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240 /* required last entry */
241 {0,}
242 };
243 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244
245 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246 NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247
248 static int debug = -1;
249 module_param(debug, int, 0);
250 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251
252 /*
253 * Reset the transmit and receive units; mask and clear all interrupts.
254 * hw - Struct containing variables accessed by shared code
255 * return : 0 or idle status (if error)
256 */
257 static s32 atl1_reset_hw(struct atl1_hw *hw)
258 {
259 struct pci_dev *pdev = hw->back->pdev;
260 struct atl1_adapter *adapter = hw->back;
261 u32 icr;
262 int i;
263
264 /*
265 * Clear Interrupt mask to stop board from generating
266 * interrupts & Clear any pending interrupt events
267 */
268 /*
269 * atlx_irq_disable(adapter);
270 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271 */
272
273 /*
274 * Issue Soft Reset to the MAC. This will reset the chip's
275 * transmit, receive, DMA. It will not effect
276 * the current PCI configuration. The global reset bit is self-
277 * clearing, and should clear within a microsecond.
278 */
279 iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280 ioread32(hw->hw_addr + REG_MASTER_CTRL);
281
282 iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283 ioread16(hw->hw_addr + REG_PHY_ENABLE);
284
285 /* delay about 1ms */
286 msleep(1);
287
288 /* Wait at least 10ms for All module to be Idle */
289 for (i = 0; i < 10; i++) {
290 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291 if (!icr)
292 break;
293 /* delay 1 ms */
294 msleep(1);
295 /* FIXME: still the right way to do this? */
296 cpu_relax();
297 }
298
299 if (icr) {
300 if (netif_msg_hw(adapter))
301 dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302 return icr;
303 }
304
305 return 0;
306 }
307
308 /* function about EEPROM
309 *
310 * check_eeprom_exist
311 * return 0 if eeprom exist
312 */
313 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314 {
315 u32 value;
316 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317 if (value & SPI_FLASH_CTRL_EN_VPD) {
318 value &= ~SPI_FLASH_CTRL_EN_VPD;
319 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320 }
321
322 value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324 }
325
326 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327 {
328 int i;
329 u32 control;
330
331 if (offset & 3)
332 /* address do not align */
333 return false;
334
335 iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337 iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338 ioread32(hw->hw_addr + REG_VPD_CAP);
339
340 for (i = 0; i < 10; i++) {
341 msleep(2);
342 control = ioread32(hw->hw_addr + REG_VPD_CAP);
343 if (control & VPD_CAP_VPD_FLAG)
344 break;
345 }
346 if (control & VPD_CAP_VPD_FLAG) {
347 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348 return true;
349 }
350 /* timeout */
351 return false;
352 }
353
354 /*
355 * Reads the value from a PHY register
356 * hw - Struct containing variables accessed by shared code
357 * reg_addr - address of the PHY register to read
358 */
359 static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360 {
361 u32 val;
362 int i;
363
364 val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366 MDIO_CLK_SEL_SHIFT;
367 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368 ioread32(hw->hw_addr + REG_MDIO_CTRL);
369
370 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371 udelay(2);
372 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373 if (!(val & (MDIO_START | MDIO_BUSY)))
374 break;
375 }
376 if (!(val & (MDIO_START | MDIO_BUSY))) {
377 *phy_data = (u16) val;
378 return 0;
379 }
380 return ATLX_ERR_PHY;
381 }
382
383 #define CUSTOM_SPI_CS_SETUP 2
384 #define CUSTOM_SPI_CLK_HI 2
385 #define CUSTOM_SPI_CLK_LO 2
386 #define CUSTOM_SPI_CS_HOLD 2
387 #define CUSTOM_SPI_CS_HI 3
388
389 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390 {
391 int i;
392 u32 value;
393
394 iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395 iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396
397 value = SPI_FLASH_CTRL_WAIT_READY |
398 (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399 SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400 SPI_FLASH_CTRL_CLK_HI_MASK) <<
401 SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402 SPI_FLASH_CTRL_CLK_LO_MASK) <<
403 SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404 SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405 SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406 SPI_FLASH_CTRL_CS_HI_MASK) <<
407 SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408 SPI_FLASH_CTRL_INS_SHIFT;
409
410 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412 value |= SPI_FLASH_CTRL_START;
413 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414 ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415
416 for (i = 0; i < 10; i++) {
417 msleep(1);
418 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419 if (!(value & SPI_FLASH_CTRL_START))
420 break;
421 }
422
423 if (value & SPI_FLASH_CTRL_START)
424 return false;
425
426 *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427
428 return true;
429 }
430
431 /*
432 * get_permanent_address
433 * return 0 if get valid mac address,
434 */
435 static int atl1_get_permanent_address(struct atl1_hw *hw)
436 {
437 u32 addr[2];
438 u32 i, control;
439 u16 reg;
440 u8 eth_addr[ETH_ALEN];
441 bool key_valid;
442
443 if (is_valid_ether_addr(hw->perm_mac_addr))
444 return 0;
445
446 /* init */
447 addr[0] = addr[1] = 0;
448
449 if (!atl1_check_eeprom_exist(hw)) {
450 reg = 0;
451 key_valid = false;
452 /* Read out all EEPROM content */
453 i = 0;
454 while (1) {
455 if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456 if (key_valid) {
457 if (reg == REG_MAC_STA_ADDR)
458 addr[0] = control;
459 else if (reg == (REG_MAC_STA_ADDR + 4))
460 addr[1] = control;
461 key_valid = false;
462 } else if ((control & 0xff) == 0x5A) {
463 key_valid = true;
464 reg = (u16) (control >> 16);
465 } else
466 break;
467 } else
468 /* read error */
469 break;
470 i += 4;
471 }
472
473 *(u32 *) &eth_addr[2] = swab32(addr[0]);
474 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475 if (is_valid_ether_addr(eth_addr)) {
476 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477 return 0;
478 }
479 }
480
481 /* see if SPI FLAGS exist ? */
482 addr[0] = addr[1] = 0;
483 reg = 0;
484 key_valid = false;
485 i = 0;
486 while (1) {
487 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488 if (key_valid) {
489 if (reg == REG_MAC_STA_ADDR)
490 addr[0] = control;
491 else if (reg == (REG_MAC_STA_ADDR + 4))
492 addr[1] = control;
493 key_valid = false;
494 } else if ((control & 0xff) == 0x5A) {
495 key_valid = true;
496 reg = (u16) (control >> 16);
497 } else
498 /* data end */
499 break;
500 } else
501 /* read error */
502 break;
503 i += 4;
504 }
505
506 *(u32 *) &eth_addr[2] = swab32(addr[0]);
507 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508 if (is_valid_ether_addr(eth_addr)) {
509 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510 return 0;
511 }
512
513 /*
514 * On some motherboards, the MAC address is written by the
515 * BIOS directly to the MAC register during POST, and is
516 * not stored in eeprom. If all else thus far has failed
517 * to fetch the permanent MAC address, try reading it directly.
518 */
519 addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520 addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521 *(u32 *) &eth_addr[2] = swab32(addr[0]);
522 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523 if (is_valid_ether_addr(eth_addr)) {
524 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525 return 0;
526 }
527
528 return 1;
529 }
530
531 /*
532 * Reads the adapter's MAC address from the EEPROM
533 * hw - Struct containing variables accessed by shared code
534 */
535 static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536 {
537 s32 ret = 0;
538 u16 i;
539
540 if (atl1_get_permanent_address(hw)) {
541 eth_random_addr(hw->perm_mac_addr);
542 ret = 1;
543 }
544
545 for (i = 0; i < ETH_ALEN; i++)
546 hw->mac_addr[i] = hw->perm_mac_addr[i];
547 return ret;
548 }
549
550 /*
551 * Hashes an address to determine its location in the multicast table
552 * hw - Struct containing variables accessed by shared code
553 * mc_addr - the multicast address to hash
554 *
555 * atl1_hash_mc_addr
556 * purpose
557 * set hash value for a multicast address
558 * hash calcu processing :
559 * 1. calcu 32bit CRC for multicast address
560 * 2. reverse crc with MSB to LSB
561 */
562 static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
563 {
564 u32 crc32, value = 0;
565 int i;
566
567 crc32 = ether_crc_le(6, mc_addr);
568 for (i = 0; i < 32; i++)
569 value |= (((crc32 >> i) & 1) << (31 - i));
570
571 return value;
572 }
573
574 /*
575 * Sets the bit in the multicast table corresponding to the hash value.
576 * hw - Struct containing variables accessed by shared code
577 * hash_value - Multicast address hash value
578 */
579 static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
580 {
581 u32 hash_bit, hash_reg;
582 u32 mta;
583
584 /*
585 * The HASH Table is a register array of 2 32-bit registers.
586 * It is treated like an array of 64 bits. We want to set
587 * bit BitArray[hash_value]. So we figure out what register
588 * the bit is in, read it, OR in the new bit, then write
589 * back the new value. The register is determined by the
590 * upper 7 bits of the hash value and the bit within that
591 * register are determined by the lower 5 bits of the value.
592 */
593 hash_reg = (hash_value >> 31) & 0x1;
594 hash_bit = (hash_value >> 26) & 0x1F;
595 mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596 mta |= (1 << hash_bit);
597 iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
598 }
599
600 /*
601 * Writes a value to a PHY register
602 * hw - Struct containing variables accessed by shared code
603 * reg_addr - address of the PHY register to write
604 * data - data to write to the PHY
605 */
606 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
607 {
608 int i;
609 u32 val;
610
611 val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612 (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613 MDIO_SUP_PREAMBLE |
614 MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615 iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616 ioread32(hw->hw_addr + REG_MDIO_CTRL);
617
618 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619 udelay(2);
620 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621 if (!(val & (MDIO_START | MDIO_BUSY)))
622 break;
623 }
624
625 if (!(val & (MDIO_START | MDIO_BUSY)))
626 return 0;
627
628 return ATLX_ERR_PHY;
629 }
630
631 /*
632 * Make L001's PHY out of Power Saving State (bug)
633 * hw - Struct containing variables accessed by shared code
634 * when power on, L001's PHY always on Power saving State
635 * (Gigabit Link forbidden)
636 */
637 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
638 {
639 s32 ret;
640 ret = atl1_write_phy_reg(hw, 29, 0x0029);
641 if (ret)
642 return ret;
643 return atl1_write_phy_reg(hw, 30, 0);
644 }
645
646 /*
647 * Resets the PHY and make all config validate
648 * hw - Struct containing variables accessed by shared code
649 *
650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
651 */
652 static s32 atl1_phy_reset(struct atl1_hw *hw)
653 {
654 struct pci_dev *pdev = hw->back->pdev;
655 struct atl1_adapter *adapter = hw->back;
656 s32 ret_val;
657 u16 phy_data;
658
659 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660 hw->media_type == MEDIA_TYPE_1000M_FULL)
661 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662 else {
663 switch (hw->media_type) {
664 case MEDIA_TYPE_100M_FULL:
665 phy_data =
666 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667 MII_CR_RESET;
668 break;
669 case MEDIA_TYPE_100M_HALF:
670 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671 break;
672 case MEDIA_TYPE_10M_FULL:
673 phy_data =
674 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675 break;
676 default:
677 /* MEDIA_TYPE_10M_HALF: */
678 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679 break;
680 }
681 }
682
683 ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684 if (ret_val) {
685 u32 val;
686 int i;
687 /* pcie serdes link may be down! */
688 if (netif_msg_hw(adapter))
689 dev_dbg(&pdev->dev, "pcie phy link down\n");
690
691 for (i = 0; i < 25; i++) {
692 msleep(1);
693 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694 if (!(val & (MDIO_START | MDIO_BUSY)))
695 break;
696 }
697
698 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699 if (netif_msg_hw(adapter))
700 dev_warn(&pdev->dev,
701 "pcie link down at least 25ms\n");
702 return ret_val;
703 }
704 }
705 return 0;
706 }
707
708 /*
709 * Configures PHY autoneg and flow control advertisement settings
710 * hw - Struct containing variables accessed by shared code
711 */
712 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
713 {
714 s32 ret_val;
715 s16 mii_autoneg_adv_reg;
716 s16 mii_1000t_ctrl_reg;
717
718 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
719 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
720
721 /* Read the MII 1000Base-T Control Register (Address 9). */
722 mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
723
724 /*
725 * First we clear all the 10/100 mb speed bits in the Auto-Neg
726 * Advertisement Register (Address 4) and the 1000 mb speed bits in
727 * the 1000Base-T Control Register (Address 9).
728 */
729 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730 mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
731
732 /*
733 * Need to parse media_type and set up
734 * the appropriate PHY registers.
735 */
736 switch (hw->media_type) {
737 case MEDIA_TYPE_AUTO_SENSOR:
738 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739 MII_AR_10T_FD_CAPS |
740 MII_AR_100TX_HD_CAPS |
741 MII_AR_100TX_FD_CAPS);
742 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743 break;
744
745 case MEDIA_TYPE_1000M_FULL:
746 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747 break;
748
749 case MEDIA_TYPE_100M_FULL:
750 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751 break;
752
753 case MEDIA_TYPE_100M_HALF:
754 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755 break;
756
757 case MEDIA_TYPE_10M_FULL:
758 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759 break;
760
761 default:
762 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763 break;
764 }
765
766 /* flow control fixed to enable all */
767 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
768
769 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
771
772 ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773 if (ret_val)
774 return ret_val;
775
776 ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777 if (ret_val)
778 return ret_val;
779
780 return 0;
781 }
782
783 /*
784 * Configures link settings.
785 * hw - Struct containing variables accessed by shared code
786 * Assumes the hardware has previously been reset and the
787 * transmitter and receiver are not enabled.
788 */
789 static s32 atl1_setup_link(struct atl1_hw *hw)
790 {
791 struct pci_dev *pdev = hw->back->pdev;
792 struct atl1_adapter *adapter = hw->back;
793 s32 ret_val;
794
795 /*
796 * Options:
797 * PHY will advertise value(s) parsed from
798 * autoneg_advertised and fc
799 * no matter what autoneg is , We will not wait link result.
800 */
801 ret_val = atl1_phy_setup_autoneg_adv(hw);
802 if (ret_val) {
803 if (netif_msg_link(adapter))
804 dev_dbg(&pdev->dev,
805 "error setting up autonegotiation\n");
806 return ret_val;
807 }
808 /* SW.Reset , En-Auto-Neg if needed */
809 ret_val = atl1_phy_reset(hw);
810 if (ret_val) {
811 if (netif_msg_link(adapter))
812 dev_dbg(&pdev->dev, "error resetting phy\n");
813 return ret_val;
814 }
815 hw->phy_configured = true;
816 return ret_val;
817 }
818
819 static void atl1_init_flash_opcode(struct atl1_hw *hw)
820 {
821 if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822 /* Atmel */
823 hw->flash_vendor = 0;
824
825 /* Init OP table */
826 iowrite8(flash_table[hw->flash_vendor].cmd_program,
827 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828 iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830 iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832 iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834 iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836 iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838 iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840 iowrite8(flash_table[hw->flash_vendor].cmd_read,
841 hw->hw_addr + REG_SPI_FLASH_OP_READ);
842 }
843
844 /*
845 * Performs basic configuration of the adapter.
846 * hw - Struct containing variables accessed by shared code
847 * Assumes that the controller has previously been reset and is in a
848 * post-reset uninitialized state. Initializes multicast table,
849 * and Calls routines to setup link
850 * Leaves the transmit and receive units disabled and uninitialized.
851 */
852 static s32 atl1_init_hw(struct atl1_hw *hw)
853 {
854 u32 ret_val = 0;
855
856 /* Zero out the Multicast HASH table */
857 iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858 /* clear the old settings from the multicast hash table */
859 iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
860
861 atl1_init_flash_opcode(hw);
862
863 if (!hw->phy_configured) {
864 /* enable GPHY LinkChange Interrupt */
865 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866 if (ret_val)
867 return ret_val;
868 /* make PHY out of power-saving state */
869 ret_val = atl1_phy_leave_power_saving(hw);
870 if (ret_val)
871 return ret_val;
872 /* Call a subroutine to configure the link */
873 ret_val = atl1_setup_link(hw);
874 }
875 return ret_val;
876 }
877
878 /*
879 * Detects the current speed and duplex settings of the hardware.
880 * hw - Struct containing variables accessed by shared code
881 * speed - Speed of the connection
882 * duplex - Duplex setting of the connection
883 */
884 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
885 {
886 struct pci_dev *pdev = hw->back->pdev;
887 struct atl1_adapter *adapter = hw->back;
888 s32 ret_val;
889 u16 phy_data;
890
891 /* ; --- Read PHY Specific Status Register (17) */
892 ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893 if (ret_val)
894 return ret_val;
895
896 if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897 return ATLX_ERR_PHY_RES;
898
899 switch (phy_data & MII_ATLX_PSSR_SPEED) {
900 case MII_ATLX_PSSR_1000MBS:
901 *speed = SPEED_1000;
902 break;
903 case MII_ATLX_PSSR_100MBS:
904 *speed = SPEED_100;
905 break;
906 case MII_ATLX_PSSR_10MBS:
907 *speed = SPEED_10;
908 break;
909 default:
910 if (netif_msg_hw(adapter))
911 dev_dbg(&pdev->dev, "error getting speed\n");
912 return ATLX_ERR_PHY_SPEED;
913 }
914 if (phy_data & MII_ATLX_PSSR_DPLX)
915 *duplex = FULL_DUPLEX;
916 else
917 *duplex = HALF_DUPLEX;
918
919 return 0;
920 }
921
922 static void atl1_set_mac_addr(struct atl1_hw *hw)
923 {
924 u32 value;
925 /*
926 * 00-0B-6A-F6-00-DC
927 * 0: 6AF600DC 1: 000B
928 * low dword
929 */
930 value = (((u32) hw->mac_addr[2]) << 24) |
931 (((u32) hw->mac_addr[3]) << 16) |
932 (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
933 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
934 /* high dword */
935 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
936 iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
937 }
938
939 /**
940 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
941 * @adapter: board private structure to initialize
942 *
943 * atl1_sw_init initializes the Adapter private data structure.
944 * Fields are initialized based on PCI device information and
945 * OS network device settings (MTU size).
946 */
947 static int atl1_sw_init(struct atl1_adapter *adapter)
948 {
949 struct atl1_hw *hw = &adapter->hw;
950 struct net_device *netdev = adapter->netdev;
951
952 hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
953 hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
954
955 adapter->wol = 0;
956 device_set_wakeup_enable(&adapter->pdev->dev, false);
957 adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
958 adapter->ict = 50000; /* 100ms */
959 adapter->link_speed = SPEED_0; /* hardware init */
960 adapter->link_duplex = FULL_DUPLEX;
961
962 hw->phy_configured = false;
963 hw->preamble_len = 7;
964 hw->ipgt = 0x60;
965 hw->min_ifg = 0x50;
966 hw->ipgr1 = 0x40;
967 hw->ipgr2 = 0x60;
968 hw->max_retry = 0xf;
969 hw->lcol = 0x37;
970 hw->jam_ipg = 7;
971 hw->rfd_burst = 8;
972 hw->rrd_burst = 8;
973 hw->rfd_fetch_gap = 1;
974 hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
975 hw->rx_jumbo_lkah = 1;
976 hw->rrd_ret_timer = 16;
977 hw->tpd_burst = 4;
978 hw->tpd_fetch_th = 16;
979 hw->txf_burst = 0x100;
980 hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
981 hw->tpd_fetch_gap = 1;
982 hw->rcb_value = atl1_rcb_64;
983 hw->dma_ord = atl1_dma_ord_enh;
984 hw->dmar_block = atl1_dma_req_256;
985 hw->dmaw_block = atl1_dma_req_256;
986 hw->cmb_rrd = 4;
987 hw->cmb_tpd = 4;
988 hw->cmb_rx_timer = 1; /* about 2us */
989 hw->cmb_tx_timer = 1; /* about 2us */
990 hw->smb_timer = 100000; /* about 200ms */
991
992 spin_lock_init(&adapter->lock);
993 spin_lock_init(&adapter->mb_lock);
994
995 return 0;
996 }
997
998 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
999 {
1000 struct atl1_adapter *adapter = netdev_priv(netdev);
1001 u16 result;
1002
1003 atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1004
1005 return result;
1006 }
1007
1008 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1009 int val)
1010 {
1011 struct atl1_adapter *adapter = netdev_priv(netdev);
1012
1013 atl1_write_phy_reg(&adapter->hw, reg_num, val);
1014 }
1015
1016 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017 {
1018 struct atl1_adapter *adapter = netdev_priv(netdev);
1019 unsigned long flags;
1020 int retval;
1021
1022 if (!netif_running(netdev))
1023 return -EINVAL;
1024
1025 spin_lock_irqsave(&adapter->lock, flags);
1026 retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027 spin_unlock_irqrestore(&adapter->lock, flags);
1028
1029 return retval;
1030 }
1031
1032 /**
1033 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034 * @adapter: board private structure
1035 *
1036 * Return 0 on success, negative on failure
1037 */
1038 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039 {
1040 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043 struct atl1_ring_header *ring_header = &adapter->ring_header;
1044 struct pci_dev *pdev = adapter->pdev;
1045 int size;
1046 u8 offset = 0;
1047
1048 size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049 tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050 if (unlikely(!tpd_ring->buffer_info)) {
1051 if (netif_msg_drv(adapter))
1052 dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053 size);
1054 goto err_nomem;
1055 }
1056 rfd_ring->buffer_info =
1057 (tpd_ring->buffer_info + tpd_ring->count);
1058
1059 /*
1060 * real ring DMA buffer
1061 * each ring/block may need up to 8 bytes for alignment, hence the
1062 * additional 40 bytes tacked onto the end.
1063 */
1064 ring_header->size = size =
1065 sizeof(struct tx_packet_desc) * tpd_ring->count
1066 + sizeof(struct rx_free_desc) * rfd_ring->count
1067 + sizeof(struct rx_return_desc) * rrd_ring->count
1068 + sizeof(struct coals_msg_block)
1069 + sizeof(struct stats_msg_block)
1070 + 40;
1071
1072 ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073 &ring_header->dma);
1074 if (unlikely(!ring_header->desc)) {
1075 if (netif_msg_drv(adapter))
1076 dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077 goto err_nomem;
1078 }
1079
1080 memset(ring_header->desc, 0, ring_header->size);
1081
1082 /* init TPD ring */
1083 tpd_ring->dma = ring_header->dma;
1084 offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085 tpd_ring->dma += offset;
1086 tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087 tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088
1089 /* init RFD ring */
1090 rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091 offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092 rfd_ring->dma += offset;
1093 rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094 rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095
1096
1097 /* init RRD ring */
1098 rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099 offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100 rrd_ring->dma += offset;
1101 rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102 rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103
1104
1105 /* init CMB */
1106 adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107 offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108 adapter->cmb.dma += offset;
1109 adapter->cmb.cmb = (struct coals_msg_block *)
1110 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111
1112 /* init SMB */
1113 adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114 offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115 adapter->smb.dma += offset;
1116 adapter->smb.smb = (struct stats_msg_block *)
1117 ((u8 *) adapter->cmb.cmb +
1118 (sizeof(struct coals_msg_block) + offset));
1119
1120 return 0;
1121
1122 err_nomem:
1123 kfree(tpd_ring->buffer_info);
1124 return -ENOMEM;
1125 }
1126
1127 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128 {
1129 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132
1133 atomic_set(&tpd_ring->next_to_use, 0);
1134 atomic_set(&tpd_ring->next_to_clean, 0);
1135
1136 rfd_ring->next_to_clean = 0;
1137 atomic_set(&rfd_ring->next_to_use, 0);
1138
1139 rrd_ring->next_to_use = 0;
1140 atomic_set(&rrd_ring->next_to_clean, 0);
1141 }
1142
1143 /**
1144 * atl1_clean_rx_ring - Free RFD Buffers
1145 * @adapter: board private structure
1146 */
1147 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148 {
1149 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151 struct atl1_buffer *buffer_info;
1152 struct pci_dev *pdev = adapter->pdev;
1153 unsigned long size;
1154 unsigned int i;
1155
1156 /* Free all the Rx ring sk_buffs */
1157 for (i = 0; i < rfd_ring->count; i++) {
1158 buffer_info = &rfd_ring->buffer_info[i];
1159 if (buffer_info->dma) {
1160 pci_unmap_page(pdev, buffer_info->dma,
1161 buffer_info->length, PCI_DMA_FROMDEVICE);
1162 buffer_info->dma = 0;
1163 }
1164 if (buffer_info->skb) {
1165 dev_kfree_skb(buffer_info->skb);
1166 buffer_info->skb = NULL;
1167 }
1168 }
1169
1170 size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171 memset(rfd_ring->buffer_info, 0, size);
1172
1173 /* Zero out the descriptor ring */
1174 memset(rfd_ring->desc, 0, rfd_ring->size);
1175
1176 rfd_ring->next_to_clean = 0;
1177 atomic_set(&rfd_ring->next_to_use, 0);
1178
1179 rrd_ring->next_to_use = 0;
1180 atomic_set(&rrd_ring->next_to_clean, 0);
1181 }
1182
1183 /**
1184 * atl1_clean_tx_ring - Free Tx Buffers
1185 * @adapter: board private structure
1186 */
1187 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188 {
1189 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190 struct atl1_buffer *buffer_info;
1191 struct pci_dev *pdev = adapter->pdev;
1192 unsigned long size;
1193 unsigned int i;
1194
1195 /* Free all the Tx ring sk_buffs */
1196 for (i = 0; i < tpd_ring->count; i++) {
1197 buffer_info = &tpd_ring->buffer_info[i];
1198 if (buffer_info->dma) {
1199 pci_unmap_page(pdev, buffer_info->dma,
1200 buffer_info->length, PCI_DMA_TODEVICE);
1201 buffer_info->dma = 0;
1202 }
1203 }
1204
1205 for (i = 0; i < tpd_ring->count; i++) {
1206 buffer_info = &tpd_ring->buffer_info[i];
1207 if (buffer_info->skb) {
1208 dev_kfree_skb_any(buffer_info->skb);
1209 buffer_info->skb = NULL;
1210 }
1211 }
1212
1213 size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214 memset(tpd_ring->buffer_info, 0, size);
1215
1216 /* Zero out the descriptor ring */
1217 memset(tpd_ring->desc, 0, tpd_ring->size);
1218
1219 atomic_set(&tpd_ring->next_to_use, 0);
1220 atomic_set(&tpd_ring->next_to_clean, 0);
1221 }
1222
1223 /**
1224 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225 * @adapter: board private structure
1226 *
1227 * Free all transmit software resources
1228 */
1229 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230 {
1231 struct pci_dev *pdev = adapter->pdev;
1232 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235 struct atl1_ring_header *ring_header = &adapter->ring_header;
1236
1237 atl1_clean_tx_ring(adapter);
1238 atl1_clean_rx_ring(adapter);
1239
1240 kfree(tpd_ring->buffer_info);
1241 pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242 ring_header->dma);
1243
1244 tpd_ring->buffer_info = NULL;
1245 tpd_ring->desc = NULL;
1246 tpd_ring->dma = 0;
1247
1248 rfd_ring->buffer_info = NULL;
1249 rfd_ring->desc = NULL;
1250 rfd_ring->dma = 0;
1251
1252 rrd_ring->desc = NULL;
1253 rrd_ring->dma = 0;
1254
1255 adapter->cmb.dma = 0;
1256 adapter->cmb.cmb = NULL;
1257
1258 adapter->smb.dma = 0;
1259 adapter->smb.smb = NULL;
1260 }
1261
1262 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1263 {
1264 u32 value;
1265 struct atl1_hw *hw = &adapter->hw;
1266 struct net_device *netdev = adapter->netdev;
1267 /* Config MAC CTRL Register */
1268 value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1269 /* duplex */
1270 if (FULL_DUPLEX == adapter->link_duplex)
1271 value |= MAC_CTRL_DUPLX;
1272 /* speed */
1273 value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1274 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1275 MAC_CTRL_SPEED_SHIFT);
1276 /* flow control */
1277 value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1278 /* PAD & CRC */
1279 value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1280 /* preamble length */
1281 value |= (((u32) adapter->hw.preamble_len
1282 & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1283 /* vlan */
1284 __atlx_vlan_mode(netdev->features, &value);
1285 /* rx checksum
1286 if (adapter->rx_csum)
1287 value |= MAC_CTRL_RX_CHKSUM_EN;
1288 */
1289 /* filter mode */
1290 value |= MAC_CTRL_BC_EN;
1291 if (netdev->flags & IFF_PROMISC)
1292 value |= MAC_CTRL_PROMIS_EN;
1293 else if (netdev->flags & IFF_ALLMULTI)
1294 value |= MAC_CTRL_MC_ALL_EN;
1295 /* value |= MAC_CTRL_LOOPBACK; */
1296 iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1297 }
1298
1299 static u32 atl1_check_link(struct atl1_adapter *adapter)
1300 {
1301 struct atl1_hw *hw = &adapter->hw;
1302 struct net_device *netdev = adapter->netdev;
1303 u32 ret_val;
1304 u16 speed, duplex, phy_data;
1305 int reconfig = 0;
1306
1307 /* MII_BMSR must read twice */
1308 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309 atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310 if (!(phy_data & BMSR_LSTATUS)) {
1311 /* link down */
1312 if (netif_carrier_ok(netdev)) {
1313 /* old link state: Up */
1314 if (netif_msg_link(adapter))
1315 dev_info(&adapter->pdev->dev, "link is down\n");
1316 adapter->link_speed = SPEED_0;
1317 netif_carrier_off(netdev);
1318 }
1319 return 0;
1320 }
1321
1322 /* Link Up */
1323 ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1324 if (ret_val)
1325 return ret_val;
1326
1327 switch (hw->media_type) {
1328 case MEDIA_TYPE_1000M_FULL:
1329 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1330 reconfig = 1;
1331 break;
1332 case MEDIA_TYPE_100M_FULL:
1333 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1334 reconfig = 1;
1335 break;
1336 case MEDIA_TYPE_100M_HALF:
1337 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1338 reconfig = 1;
1339 break;
1340 case MEDIA_TYPE_10M_FULL:
1341 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1342 reconfig = 1;
1343 break;
1344 case MEDIA_TYPE_10M_HALF:
1345 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1346 reconfig = 1;
1347 break;
1348 }
1349
1350 /* link result is our setting */
1351 if (!reconfig) {
1352 if (adapter->link_speed != speed ||
1353 adapter->link_duplex != duplex) {
1354 adapter->link_speed = speed;
1355 adapter->link_duplex = duplex;
1356 atl1_setup_mac_ctrl(adapter);
1357 if (netif_msg_link(adapter))
1358 dev_info(&adapter->pdev->dev,
1359 "%s link is up %d Mbps %s\n",
1360 netdev->name, adapter->link_speed,
1361 adapter->link_duplex == FULL_DUPLEX ?
1362 "full duplex" : "half duplex");
1363 }
1364 if (!netif_carrier_ok(netdev)) {
1365 /* Link down -> Up */
1366 netif_carrier_on(netdev);
1367 }
1368 return 0;
1369 }
1370
1371 /* change original link status */
1372 if (netif_carrier_ok(netdev)) {
1373 adapter->link_speed = SPEED_0;
1374 netif_carrier_off(netdev);
1375 netif_stop_queue(netdev);
1376 }
1377
1378 if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1379 hw->media_type != MEDIA_TYPE_1000M_FULL) {
1380 switch (hw->media_type) {
1381 case MEDIA_TYPE_100M_FULL:
1382 phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1383 MII_CR_RESET;
1384 break;
1385 case MEDIA_TYPE_100M_HALF:
1386 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1387 break;
1388 case MEDIA_TYPE_10M_FULL:
1389 phy_data =
1390 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1391 break;
1392 default:
1393 /* MEDIA_TYPE_10M_HALF: */
1394 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1395 break;
1396 }
1397 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1398 return 0;
1399 }
1400
1401 /* auto-neg, insert timer to re-config phy */
1402 if (!adapter->phy_timer_pending) {
1403 adapter->phy_timer_pending = true;
1404 mod_timer(&adapter->phy_config_timer,
1405 round_jiffies(jiffies + 3 * HZ));
1406 }
1407
1408 return 0;
1409 }
1410
1411 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1412 {
1413 u32 hi, lo, value;
1414
1415 /* RFD Flow Control */
1416 value = adapter->rfd_ring.count;
1417 hi = value / 16;
1418 if (hi < 2)
1419 hi = 2;
1420 lo = value * 7 / 8;
1421
1422 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1423 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1424 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1425
1426 /* RRD Flow Control */
1427 value = adapter->rrd_ring.count;
1428 lo = value / 16;
1429 hi = value * 7 / 8;
1430 if (lo < 2)
1431 lo = 2;
1432 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1433 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1434 iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1435 }
1436
1437 static void set_flow_ctrl_new(struct atl1_hw *hw)
1438 {
1439 u32 hi, lo, value;
1440
1441 /* RXF Flow Control */
1442 value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1443 lo = value / 16;
1444 if (lo < 192)
1445 lo = 192;
1446 hi = value * 7 / 8;
1447 if (hi < lo)
1448 hi = lo + 16;
1449 value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1450 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1451 iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1452
1453 /* RRD Flow Control */
1454 value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1455 lo = value / 8;
1456 hi = value * 7 / 8;
1457 if (lo < 2)
1458 lo = 2;
1459 if (hi < lo)
1460 hi = lo + 3;
1461 value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1462 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1463 iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1464 }
1465
1466 /**
1467 * atl1_configure - Configure Transmit&Receive Unit after Reset
1468 * @adapter: board private structure
1469 *
1470 * Configure the Tx /Rx unit of the MAC after a reset.
1471 */
1472 static u32 atl1_configure(struct atl1_adapter *adapter)
1473 {
1474 struct atl1_hw *hw = &adapter->hw;
1475 u32 value;
1476
1477 /* clear interrupt status */
1478 iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1479
1480 /* set MAC Address */
1481 value = (((u32) hw->mac_addr[2]) << 24) |
1482 (((u32) hw->mac_addr[3]) << 16) |
1483 (((u32) hw->mac_addr[4]) << 8) |
1484 (((u32) hw->mac_addr[5]));
1485 iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1486 value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1487 iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1488
1489 /* tx / rx ring */
1490
1491 /* HI base address */
1492 iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1493 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1494 /* LO base address */
1495 iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1496 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1497 iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1498 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1499 iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1500 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1501 iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1502 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1503 iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1504 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1505
1506 /* element count */
1507 value = adapter->rrd_ring.count;
1508 value <<= 16;
1509 value += adapter->rfd_ring.count;
1510 iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1511 iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1512 REG_DESC_TPD_RING_SIZE);
1513
1514 /* Load Ptr */
1515 iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1516
1517 /* config Mailbox */
1518 value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1519 & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1520 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1521 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1522 ((atomic_read(&adapter->rfd_ring.next_to_use)
1523 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1524 iowrite32(value, hw->hw_addr + REG_MAILBOX);
1525
1526 /* config IPG/IFG */
1527 value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1528 << MAC_IPG_IFG_IPGT_SHIFT) |
1529 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1530 << MAC_IPG_IFG_MIFG_SHIFT) |
1531 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1532 << MAC_IPG_IFG_IPGR1_SHIFT) |
1533 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1534 << MAC_IPG_IFG_IPGR2_SHIFT);
1535 iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1536
1537 /* config Half-Duplex Control */
1538 value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1539 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1540 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1541 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1542 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1543 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1544 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1545 iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1546
1547 /* set Interrupt Moderator Timer */
1548 iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1549 iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1550
1551 /* set Interrupt Clear Timer */
1552 iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1553
1554 /* set max frame size hw will accept */
1555 iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1556
1557 /* jumbo size & rrd retirement timer */
1558 value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1559 << RXQ_JMBOSZ_TH_SHIFT) |
1560 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1561 << RXQ_JMBO_LKAH_SHIFT) |
1562 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1563 << RXQ_RRD_TIMER_SHIFT);
1564 iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1565
1566 /* Flow Control */
1567 switch (hw->dev_rev) {
1568 case 0x8001:
1569 case 0x9001:
1570 case 0x9002:
1571 case 0x9003:
1572 set_flow_ctrl_old(adapter);
1573 break;
1574 default:
1575 set_flow_ctrl_new(hw);
1576 break;
1577 }
1578
1579 /* config TXQ */
1580 value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1581 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1582 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1583 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1584 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1585 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1586 TXQ_CTRL_EN;
1587 iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1588
1589 /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1590 value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1591 << TX_JUMBO_TASK_TH_SHIFT) |
1592 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1593 << TX_TPD_MIN_IPG_SHIFT);
1594 iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1595
1596 /* config RXQ */
1597 value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1598 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1599 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1600 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1601 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1602 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1603 RXQ_CTRL_EN;
1604 iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1605
1606 /* config DMA Engine */
1607 value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1608 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1609 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1610 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1611 DMA_CTRL_DMAW_EN;
1612 value |= (u32) hw->dma_ord;
1613 if (atl1_rcb_128 == hw->rcb_value)
1614 value |= DMA_CTRL_RCB_VALUE;
1615 iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1616
1617 /* config CMB / SMB */
1618 value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1619 hw->cmb_tpd : adapter->tpd_ring.count;
1620 value <<= 16;
1621 value |= hw->cmb_rrd;
1622 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1623 value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1624 iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1625 iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1626
1627 /* --- enable CMB / SMB */
1628 value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1629 iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1630
1631 value = ioread32(adapter->hw.hw_addr + REG_ISR);
1632 if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1633 value = 1; /* config failed */
1634 else
1635 value = 0;
1636
1637 /* clear all interrupt status */
1638 iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1639 iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1640 return value;
1641 }
1642
1643 /*
1644 * atl1_pcie_patch - Patch for PCIE module
1645 */
1646 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1647 {
1648 u32 value;
1649
1650 /* much vendor magic here */
1651 value = 0x6500;
1652 iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1653 /* pcie flow control mode change */
1654 value = ioread32(adapter->hw.hw_addr + 0x1008);
1655 value |= 0x8000;
1656 iowrite32(value, adapter->hw.hw_addr + 0x1008);
1657 }
1658
1659 /*
1660 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1661 * on PCI Command register is disable.
1662 * The function enable this bit.
1663 * Brackett, 2006/03/15
1664 */
1665 static void atl1_via_workaround(struct atl1_adapter *adapter)
1666 {
1667 unsigned long value;
1668
1669 value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1670 if (value & PCI_COMMAND_INTX_DISABLE)
1671 value &= ~PCI_COMMAND_INTX_DISABLE;
1672 iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1673 }
1674
1675 static void atl1_inc_smb(struct atl1_adapter *adapter)
1676 {
1677 struct net_device *netdev = adapter->netdev;
1678 struct stats_msg_block *smb = adapter->smb.smb;
1679
1680 u64 new_rx_errors = smb->rx_frag +
1681 smb->rx_fcs_err +
1682 smb->rx_len_err +
1683 smb->rx_sz_ov +
1684 smb->rx_rxf_ov +
1685 smb->rx_rrd_ov +
1686 smb->rx_align_err;
1687 u64 new_tx_errors = smb->tx_late_col +
1688 smb->tx_abort_col +
1689 smb->tx_underrun +
1690 smb->tx_trunc;
1691
1692 /* Fill out the OS statistics structure */
1693 adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1694 adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1695 adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1696 adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1697 adapter->soft_stats.multicast += smb->rx_mcast;
1698 adapter->soft_stats.collisions += smb->tx_1_col +
1699 smb->tx_2_col +
1700 smb->tx_late_col +
1701 smb->tx_abort_col;
1702
1703 /* Rx Errors */
1704 adapter->soft_stats.rx_errors += new_rx_errors;
1705 adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1706 adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1707 adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1708 adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1709
1710 adapter->soft_stats.rx_pause += smb->rx_pause;
1711 adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1712 adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1713
1714 /* Tx Errors */
1715 adapter->soft_stats.tx_errors += new_tx_errors;
1716 adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1717 adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1718 adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1719
1720 adapter->soft_stats.excecol += smb->tx_abort_col;
1721 adapter->soft_stats.deffer += smb->tx_defer;
1722 adapter->soft_stats.scc += smb->tx_1_col;
1723 adapter->soft_stats.mcc += smb->tx_2_col;
1724 adapter->soft_stats.latecol += smb->tx_late_col;
1725 adapter->soft_stats.tx_underun += smb->tx_underrun;
1726 adapter->soft_stats.tx_trunc += smb->tx_trunc;
1727 adapter->soft_stats.tx_pause += smb->tx_pause;
1728
1729 netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1730 netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1731 netdev->stats.multicast = adapter->soft_stats.multicast;
1732 netdev->stats.collisions = adapter->soft_stats.collisions;
1733 netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1734 netdev->stats.rx_length_errors =
1735 adapter->soft_stats.rx_length_errors;
1736 netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1737 netdev->stats.rx_frame_errors =
1738 adapter->soft_stats.rx_frame_errors;
1739 netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1740 netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1741 netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742 netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743 netdev->stats.tx_aborted_errors =
1744 adapter->soft_stats.tx_aborted_errors;
1745 netdev->stats.tx_window_errors =
1746 adapter->soft_stats.tx_window_errors;
1747 netdev->stats.tx_carrier_errors =
1748 adapter->soft_stats.tx_carrier_errors;
1749
1750 netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1751 netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1752 }
1753
1754 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1755 {
1756 unsigned long flags;
1757 u32 tpd_next_to_use;
1758 u32 rfd_next_to_use;
1759 u32 rrd_next_to_clean;
1760 u32 value;
1761
1762 spin_lock_irqsave(&adapter->mb_lock, flags);
1763
1764 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1765 rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1766 rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1767
1768 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1769 MB_RFD_PROD_INDX_SHIFT) |
1770 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1771 MB_RRD_CONS_INDX_SHIFT) |
1772 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1773 MB_TPD_PROD_INDX_SHIFT);
1774 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1775
1776 spin_unlock_irqrestore(&adapter->mb_lock, flags);
1777 }
1778
1779 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1780 struct rx_return_desc *rrd, u16 offset)
1781 {
1782 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1783
1784 while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1785 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1786 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1787 rfd_ring->next_to_clean = 0;
1788 }
1789 }
1790 }
1791
1792 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1793 struct rx_return_desc *rrd)
1794 {
1795 u16 num_buf;
1796
1797 num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1798 adapter->rx_buffer_len;
1799 if (rrd->num_buf == num_buf)
1800 /* clean alloc flag for bad rrd */
1801 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1802 }
1803
1804 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1805 struct rx_return_desc *rrd, struct sk_buff *skb)
1806 {
1807 struct pci_dev *pdev = adapter->pdev;
1808
1809 /*
1810 * The L1 hardware contains a bug that erroneously sets the
1811 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1812 * fragmented IP packet is received, even though the packet
1813 * is perfectly valid and its checksum is correct. There's
1814 * no way to distinguish between one of these good packets
1815 * and a packet that actually contains a TCP/UDP checksum
1816 * error, so all we can do is allow it to be handed up to
1817 * the higher layers and let it be sorted out there.
1818 */
1819
1820 skb_checksum_none_assert(skb);
1821
1822 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1823 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1824 ERR_FLAG_CODE | ERR_FLAG_OV)) {
1825 adapter->hw_csum_err++;
1826 if (netif_msg_rx_err(adapter))
1827 dev_printk(KERN_DEBUG, &pdev->dev,
1828 "rx checksum error\n");
1829 return;
1830 }
1831 }
1832
1833 /* not IPv4 */
1834 if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1835 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1836 return;
1837
1838 /* IPv4 packet */
1839 if (likely(!(rrd->err_flg &
1840 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1841 skb->ip_summed = CHECKSUM_UNNECESSARY;
1842 adapter->hw_csum_good++;
1843 return;
1844 }
1845 }
1846
1847 /**
1848 * atl1_alloc_rx_buffers - Replace used receive buffers
1849 * @adapter: address of board private structure
1850 */
1851 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1852 {
1853 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1854 struct pci_dev *pdev = adapter->pdev;
1855 struct page *page;
1856 unsigned long offset;
1857 struct atl1_buffer *buffer_info, *next_info;
1858 struct sk_buff *skb;
1859 u16 num_alloc = 0;
1860 u16 rfd_next_to_use, next_next;
1861 struct rx_free_desc *rfd_desc;
1862
1863 next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1864 if (++next_next == rfd_ring->count)
1865 next_next = 0;
1866 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1867 next_info = &rfd_ring->buffer_info[next_next];
1868
1869 while (!buffer_info->alloced && !next_info->alloced) {
1870 if (buffer_info->skb) {
1871 buffer_info->alloced = 1;
1872 goto next;
1873 }
1874
1875 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1876
1877 skb = netdev_alloc_skb_ip_align(adapter->netdev,
1878 adapter->rx_buffer_len);
1879 if (unlikely(!skb)) {
1880 /* Better luck next round */
1881 adapter->soft_stats.rx_dropped++;
1882 break;
1883 }
1884
1885 buffer_info->alloced = 1;
1886 buffer_info->skb = skb;
1887 buffer_info->length = (u16) adapter->rx_buffer_len;
1888 page = virt_to_page(skb->data);
1889 offset = (unsigned long)skb->data & ~PAGE_MASK;
1890 buffer_info->dma = pci_map_page(pdev, page, offset,
1891 adapter->rx_buffer_len,
1892 PCI_DMA_FROMDEVICE);
1893 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1894 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1895 rfd_desc->coalese = 0;
1896
1897 next:
1898 rfd_next_to_use = next_next;
1899 if (unlikely(++next_next == rfd_ring->count))
1900 next_next = 0;
1901
1902 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1903 next_info = &rfd_ring->buffer_info[next_next];
1904 num_alloc++;
1905 }
1906
1907 if (num_alloc) {
1908 /*
1909 * Force memory writes to complete before letting h/w
1910 * know there are new descriptors to fetch. (Only
1911 * applicable for weak-ordered memory model archs,
1912 * such as IA-64).
1913 */
1914 wmb();
1915 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1916 }
1917 return num_alloc;
1918 }
1919
1920 static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1921 {
1922 int i, count;
1923 u16 length;
1924 u16 rrd_next_to_clean;
1925 u32 value;
1926 struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1927 struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1928 struct atl1_buffer *buffer_info;
1929 struct rx_return_desc *rrd;
1930 struct sk_buff *skb;
1931
1932 count = 0;
1933
1934 rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1935
1936 while (count < budget) {
1937 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1938 i = 1;
1939 if (likely(rrd->xsz.valid)) { /* packet valid */
1940 chk_rrd:
1941 /* check rrd status */
1942 if (likely(rrd->num_buf == 1))
1943 goto rrd_ok;
1944 else if (netif_msg_rx_err(adapter)) {
1945 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946 "unexpected RRD buffer count\n");
1947 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948 "rx_buf_len = %d\n",
1949 adapter->rx_buffer_len);
1950 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951 "RRD num_buf = %d\n",
1952 rrd->num_buf);
1953 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954 "RRD pkt_len = %d\n",
1955 rrd->xsz.xsum_sz.pkt_size);
1956 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957 "RRD pkt_flg = 0x%08X\n",
1958 rrd->pkt_flg);
1959 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960 "RRD err_flg = 0x%08X\n",
1961 rrd->err_flg);
1962 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963 "RRD vlan_tag = 0x%08X\n",
1964 rrd->vlan_tag);
1965 }
1966
1967 /* rrd seems to be bad */
1968 if (unlikely(i-- > 0)) {
1969 /* rrd may not be DMAed completely */
1970 udelay(1);
1971 goto chk_rrd;
1972 }
1973 /* bad rrd */
1974 if (netif_msg_rx_err(adapter))
1975 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1976 "bad RRD\n");
1977 /* see if update RFD index */
1978 if (rrd->num_buf > 1)
1979 atl1_update_rfd_index(adapter, rrd);
1980
1981 /* update rrd */
1982 rrd->xsz.valid = 0;
1983 if (++rrd_next_to_clean == rrd_ring->count)
1984 rrd_next_to_clean = 0;
1985 count++;
1986 continue;
1987 } else { /* current rrd still not be updated */
1988
1989 break;
1990 }
1991 rrd_ok:
1992 /* clean alloc flag for bad rrd */
1993 atl1_clean_alloc_flag(adapter, rrd, 0);
1994
1995 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1996 if (++rfd_ring->next_to_clean == rfd_ring->count)
1997 rfd_ring->next_to_clean = 0;
1998
1999 /* update rrd next to clean */
2000 if (++rrd_next_to_clean == rrd_ring->count)
2001 rrd_next_to_clean = 0;
2002 count++;
2003
2004 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2005 if (!(rrd->err_flg &
2006 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2007 | ERR_FLAG_LEN))) {
2008 /* packet error, don't need upstream */
2009 buffer_info->alloced = 0;
2010 rrd->xsz.valid = 0;
2011 continue;
2012 }
2013 }
2014
2015 /* Good Receive */
2016 pci_unmap_page(adapter->pdev, buffer_info->dma,
2017 buffer_info->length, PCI_DMA_FROMDEVICE);
2018 buffer_info->dma = 0;
2019 skb = buffer_info->skb;
2020 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2021
2022 skb_put(skb, length - ETH_FCS_LEN);
2023
2024 /* Receive Checksum Offload */
2025 atl1_rx_checksum(adapter, rrd, skb);
2026 skb->protocol = eth_type_trans(skb, adapter->netdev);
2027
2028 if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2029 u16 vlan_tag = (rrd->vlan_tag >> 4) |
2030 ((rrd->vlan_tag & 7) << 13) |
2031 ((rrd->vlan_tag & 8) << 9);
2032
2033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2034 }
2035 netif_receive_skb(skb);
2036
2037 /* let protocol layer free skb */
2038 buffer_info->skb = NULL;
2039 buffer_info->alloced = 0;
2040 rrd->xsz.valid = 0;
2041 }
2042
2043 atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2044
2045 atl1_alloc_rx_buffers(adapter);
2046
2047 /* update mailbox ? */
2048 if (count) {
2049 u32 tpd_next_to_use;
2050 u32 rfd_next_to_use;
2051
2052 spin_lock(&adapter->mb_lock);
2053
2054 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2055 rfd_next_to_use =
2056 atomic_read(&adapter->rfd_ring.next_to_use);
2057 rrd_next_to_clean =
2058 atomic_read(&adapter->rrd_ring.next_to_clean);
2059 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2060 MB_RFD_PROD_INDX_SHIFT) |
2061 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2062 MB_RRD_CONS_INDX_SHIFT) |
2063 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2064 MB_TPD_PROD_INDX_SHIFT);
2065 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2066 spin_unlock(&adapter->mb_lock);
2067 }
2068
2069 return count;
2070 }
2071
2072 static int atl1_intr_tx(struct atl1_adapter *adapter)
2073 {
2074 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2075 struct atl1_buffer *buffer_info;
2076 u16 sw_tpd_next_to_clean;
2077 u16 cmb_tpd_next_to_clean;
2078 int count = 0;
2079
2080 sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2081 cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2082
2083 while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2084 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2085 if (buffer_info->dma) {
2086 pci_unmap_page(adapter->pdev, buffer_info->dma,
2087 buffer_info->length, PCI_DMA_TODEVICE);
2088 buffer_info->dma = 0;
2089 }
2090
2091 if (buffer_info->skb) {
2092 dev_kfree_skb_irq(buffer_info->skb);
2093 buffer_info->skb = NULL;
2094 }
2095
2096 if (++sw_tpd_next_to_clean == tpd_ring->count)
2097 sw_tpd_next_to_clean = 0;
2098
2099 count++;
2100 }
2101 atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2102
2103 if (netif_queue_stopped(adapter->netdev) &&
2104 netif_carrier_ok(adapter->netdev))
2105 netif_wake_queue(adapter->netdev);
2106
2107 return count;
2108 }
2109
2110 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2111 {
2112 u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2113 u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2114 return (next_to_clean > next_to_use) ?
2115 next_to_clean - next_to_use - 1 :
2116 tpd_ring->count + next_to_clean - next_to_use - 1;
2117 }
2118
2119 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2120 struct tx_packet_desc *ptpd)
2121 {
2122 u8 hdr_len, ip_off;
2123 u32 real_len;
2124
2125 if (skb_shinfo(skb)->gso_size) {
2126 int err;
2127
2128 err = skb_cow_head(skb, 0);
2129 if (err < 0)
2130 return err;
2131
2132 if (skb->protocol == htons(ETH_P_IP)) {
2133 struct iphdr *iph = ip_hdr(skb);
2134
2135 real_len = (((unsigned char *)iph - skb->data) +
2136 ntohs(iph->tot_len));
2137 if (real_len < skb->len)
2138 pskb_trim(skb, real_len);
2139 hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2140 if (skb->len == hdr_len) {
2141 iph->check = 0;
2142 tcp_hdr(skb)->check =
2143 ~csum_tcpudp_magic(iph->saddr,
2144 iph->daddr, tcp_hdrlen(skb),
2145 IPPROTO_TCP, 0);
2146 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2147 TPD_IPHL_SHIFT;
2148 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2149 TPD_TCPHDRLEN_MASK) <<
2150 TPD_TCPHDRLEN_SHIFT;
2151 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2152 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2153 return 1;
2154 }
2155
2156 iph->check = 0;
2157 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2158 iph->daddr, 0, IPPROTO_TCP, 0);
2159 ip_off = (unsigned char *)iph -
2160 (unsigned char *) skb_network_header(skb);
2161 if (ip_off == 8) /* 802.3-SNAP frame */
2162 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2163 else if (ip_off != 0)
2164 return -2;
2165
2166 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2167 TPD_IPHL_SHIFT;
2168 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2169 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2170 ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2171 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2172 ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2173 return 3;
2174 }
2175 }
2176 return 0;
2177 }
2178
2179 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2180 struct tx_packet_desc *ptpd)
2181 {
2182 u8 css, cso;
2183
2184 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2185 css = skb_checksum_start_offset(skb);
2186 cso = css + (u8) skb->csum_offset;
2187 if (unlikely(css & 0x1)) {
2188 /* L1 hardware requires an even number here */
2189 if (netif_msg_tx_err(adapter))
2190 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2191 "payload offset not an even number\n");
2192 return -1;
2193 }
2194 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2195 TPD_PLOADOFFSET_SHIFT;
2196 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2197 TPD_CCSUMOFFSET_SHIFT;
2198 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2199 return true;
2200 }
2201 return 0;
2202 }
2203
2204 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2205 struct tx_packet_desc *ptpd)
2206 {
2207 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2208 struct atl1_buffer *buffer_info;
2209 u16 buf_len = skb->len;
2210 struct page *page;
2211 unsigned long offset;
2212 unsigned int nr_frags;
2213 unsigned int f;
2214 int retval;
2215 u16 next_to_use;
2216 u16 data_len;
2217 u8 hdr_len;
2218
2219 buf_len -= skb->data_len;
2220 nr_frags = skb_shinfo(skb)->nr_frags;
2221 next_to_use = atomic_read(&tpd_ring->next_to_use);
2222 buffer_info = &tpd_ring->buffer_info[next_to_use];
2223 BUG_ON(buffer_info->skb);
2224 /* put skb in last TPD */
2225 buffer_info->skb = NULL;
2226
2227 retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2228 if (retval) {
2229 /* TSO */
2230 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2231 buffer_info->length = hdr_len;
2232 page = virt_to_page(skb->data);
2233 offset = (unsigned long)skb->data & ~PAGE_MASK;
2234 buffer_info->dma = pci_map_page(adapter->pdev, page,
2235 offset, hdr_len,
2236 PCI_DMA_TODEVICE);
2237
2238 if (++next_to_use == tpd_ring->count)
2239 next_to_use = 0;
2240
2241 if (buf_len > hdr_len) {
2242 int i, nseg;
2243
2244 data_len = buf_len - hdr_len;
2245 nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2246 ATL1_MAX_TX_BUF_LEN;
2247 for (i = 0; i < nseg; i++) {
2248 buffer_info =
2249 &tpd_ring->buffer_info[next_to_use];
2250 buffer_info->skb = NULL;
2251 buffer_info->length =
2252 (ATL1_MAX_TX_BUF_LEN >=
2253 data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2254 data_len -= buffer_info->length;
2255 page = virt_to_page(skb->data +
2256 (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2257 offset = (unsigned long)(skb->data +
2258 (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2259 ~PAGE_MASK;
2260 buffer_info->dma = pci_map_page(adapter->pdev,
2261 page, offset, buffer_info->length,
2262 PCI_DMA_TODEVICE);
2263 if (++next_to_use == tpd_ring->count)
2264 next_to_use = 0;
2265 }
2266 }
2267 } else {
2268 /* not TSO */
2269 buffer_info->length = buf_len;
2270 page = virt_to_page(skb->data);
2271 offset = (unsigned long)skb->data & ~PAGE_MASK;
2272 buffer_info->dma = pci_map_page(adapter->pdev, page,
2273 offset, buf_len, PCI_DMA_TODEVICE);
2274 if (++next_to_use == tpd_ring->count)
2275 next_to_use = 0;
2276 }
2277
2278 for (f = 0; f < nr_frags; f++) {
2279 const struct skb_frag_struct *frag;
2280 u16 i, nseg;
2281
2282 frag = &skb_shinfo(skb)->frags[f];
2283 buf_len = skb_frag_size(frag);
2284
2285 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2286 ATL1_MAX_TX_BUF_LEN;
2287 for (i = 0; i < nseg; i++) {
2288 buffer_info = &tpd_ring->buffer_info[next_to_use];
2289 BUG_ON(buffer_info->skb);
2290
2291 buffer_info->skb = NULL;
2292 buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2293 ATL1_MAX_TX_BUF_LEN : buf_len;
2294 buf_len -= buffer_info->length;
2295 buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2296 frag, i * ATL1_MAX_TX_BUF_LEN,
2297 buffer_info->length, DMA_TO_DEVICE);
2298
2299 if (++next_to_use == tpd_ring->count)
2300 next_to_use = 0;
2301 }
2302 }
2303
2304 /* last tpd's buffer-info */
2305 buffer_info->skb = skb;
2306 }
2307
2308 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2309 struct tx_packet_desc *ptpd)
2310 {
2311 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2312 struct atl1_buffer *buffer_info;
2313 struct tx_packet_desc *tpd;
2314 u16 j;
2315 u32 val;
2316 u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2317
2318 for (j = 0; j < count; j++) {
2319 buffer_info = &tpd_ring->buffer_info[next_to_use];
2320 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2321 if (tpd != ptpd)
2322 memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2323 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2324 tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2325 tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2326 TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2327
2328 /*
2329 * if this is the first packet in a TSO chain, set
2330 * TPD_HDRFLAG, otherwise, clear it.
2331 */
2332 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2333 TPD_SEGMENT_EN_MASK;
2334 if (val) {
2335 if (!j)
2336 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2337 else
2338 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2339 }
2340
2341 if (j == (count - 1))
2342 tpd->word3 |= 1 << TPD_EOP_SHIFT;
2343
2344 if (++next_to_use == tpd_ring->count)
2345 next_to_use = 0;
2346 }
2347 /*
2348 * Force memory writes to complete before letting h/w
2349 * know there are new descriptors to fetch. (Only
2350 * applicable for weak-ordered memory model archs,
2351 * such as IA-64).
2352 */
2353 wmb();
2354
2355 atomic_set(&tpd_ring->next_to_use, next_to_use);
2356 }
2357
2358 static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2359 struct net_device *netdev)
2360 {
2361 struct atl1_adapter *adapter = netdev_priv(netdev);
2362 struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2363 int len;
2364 int tso;
2365 int count = 1;
2366 int ret_val;
2367 struct tx_packet_desc *ptpd;
2368 u16 vlan_tag;
2369 unsigned int nr_frags = 0;
2370 unsigned int mss = 0;
2371 unsigned int f;
2372 unsigned int proto_hdr_len;
2373
2374 len = skb_headlen(skb);
2375
2376 if (unlikely(skb->len <= 0)) {
2377 dev_kfree_skb_any(skb);
2378 return NETDEV_TX_OK;
2379 }
2380
2381 nr_frags = skb_shinfo(skb)->nr_frags;
2382 for (f = 0; f < nr_frags; f++) {
2383 unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2384 count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2385 ATL1_MAX_TX_BUF_LEN;
2386 }
2387
2388 mss = skb_shinfo(skb)->gso_size;
2389 if (mss) {
2390 if (skb->protocol == htons(ETH_P_IP)) {
2391 proto_hdr_len = (skb_transport_offset(skb) +
2392 tcp_hdrlen(skb));
2393 if (unlikely(proto_hdr_len > len)) {
2394 dev_kfree_skb_any(skb);
2395 return NETDEV_TX_OK;
2396 }
2397 /* need additional TPD ? */
2398 if (proto_hdr_len != len)
2399 count += (len - proto_hdr_len +
2400 ATL1_MAX_TX_BUF_LEN - 1) /
2401 ATL1_MAX_TX_BUF_LEN;
2402 }
2403 }
2404
2405 if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2406 /* not enough descriptors */
2407 netif_stop_queue(netdev);
2408 if (netif_msg_tx_queued(adapter))
2409 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2410 "tx busy\n");
2411 return NETDEV_TX_BUSY;
2412 }
2413
2414 ptpd = ATL1_TPD_DESC(tpd_ring,
2415 (u16) atomic_read(&tpd_ring->next_to_use));
2416 memset(ptpd, 0, sizeof(struct tx_packet_desc));
2417
2418 if (skb_vlan_tag_present(skb)) {
2419 vlan_tag = skb_vlan_tag_get(skb);
2420 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2421 ((vlan_tag >> 9) & 0x8);
2422 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2423 ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2424 TPD_VLANTAG_SHIFT;
2425 }
2426
2427 tso = atl1_tso(adapter, skb, ptpd);
2428 if (tso < 0) {
2429 dev_kfree_skb_any(skb);
2430 return NETDEV_TX_OK;
2431 }
2432
2433 if (!tso) {
2434 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2435 if (ret_val < 0) {
2436 dev_kfree_skb_any(skb);
2437 return NETDEV_TX_OK;
2438 }
2439 }
2440
2441 atl1_tx_map(adapter, skb, ptpd);
2442 atl1_tx_queue(adapter, count, ptpd);
2443 atl1_update_mailbox(adapter);
2444 mmiowb();
2445 return NETDEV_TX_OK;
2446 }
2447
2448 static int atl1_rings_clean(struct napi_struct *napi, int budget)
2449 {
2450 struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2451 int work_done = atl1_intr_rx(adapter, budget);
2452
2453 if (atl1_intr_tx(adapter))
2454 work_done = budget;
2455
2456 /* Let's come again to process some more packets */
2457 if (work_done >= budget)
2458 return work_done;
2459
2460 napi_complete(napi);
2461 /* re-enable Interrupt */
2462 if (likely(adapter->int_enabled))
2463 atlx_imr_set(adapter, IMR_NORMAL_MASK);
2464 return work_done;
2465 }
2466
2467 static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2468 {
2469 if (!napi_schedule_prep(&adapter->napi))
2470 /* It is possible in case even the RX/TX ints are disabled via IMR
2471 * register the ISR bits are set anyway (but do not produce IRQ).
2472 * To handle such situation the napi functions used to check is
2473 * something scheduled or not.
2474 */
2475 return 0;
2476
2477 __napi_schedule(&adapter->napi);
2478
2479 /*
2480 * Disable RX/TX ints via IMR register if it is
2481 * allowed. NAPI handler must reenable them in same
2482 * way.
2483 */
2484 if (!adapter->int_enabled)
2485 return 1;
2486
2487 atlx_imr_set(adapter, IMR_NORXTX_MASK);
2488 return 1;
2489 }
2490
2491 /**
2492 * atl1_intr - Interrupt Handler
2493 * @irq: interrupt number
2494 * @data: pointer to a network interface device structure
2495 */
2496 static irqreturn_t atl1_intr(int irq, void *data)
2497 {
2498 struct atl1_adapter *adapter = netdev_priv(data);
2499 u32 status;
2500
2501 status = adapter->cmb.cmb->int_stats;
2502 if (!status)
2503 return IRQ_NONE;
2504
2505 /* clear CMB interrupt status at once,
2506 * but leave rx/tx interrupt status in case it should be dropped
2507 * only if rx/tx processing queued. In other case interrupt
2508 * can be lost.
2509 */
2510 adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2511
2512 if (status & ISR_GPHY) /* clear phy status */
2513 atlx_clear_phy_int(adapter);
2514
2515 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2516 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2517
2518 /* check if SMB intr */
2519 if (status & ISR_SMB)
2520 atl1_inc_smb(adapter);
2521
2522 /* check if PCIE PHY Link down */
2523 if (status & ISR_PHY_LINKDOWN) {
2524 if (netif_msg_intr(adapter))
2525 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2526 "pcie phy link down %x\n", status);
2527 if (netif_running(adapter->netdev)) { /* reset MAC */
2528 atlx_irq_disable(adapter);
2529 schedule_work(&adapter->reset_dev_task);
2530 return IRQ_HANDLED;
2531 }
2532 }
2533
2534 /* check if DMA read/write error ? */
2535 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2536 if (netif_msg_intr(adapter))
2537 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2538 "pcie DMA r/w error (status = 0x%x)\n",
2539 status);
2540 atlx_irq_disable(adapter);
2541 schedule_work(&adapter->reset_dev_task);
2542 return IRQ_HANDLED;
2543 }
2544
2545 /* link event */
2546 if (status & ISR_GPHY) {
2547 adapter->soft_stats.tx_carrier_errors++;
2548 atl1_check_for_link(adapter);
2549 }
2550
2551 /* transmit or receive event */
2552 if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2553 atl1_sched_rings_clean(adapter))
2554 adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2555 ~(ISR_CMB_TX | ISR_CMB_RX);
2556
2557 /* rx exception */
2558 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2559 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2560 ISR_HOST_RRD_OV))) {
2561 if (netif_msg_intr(adapter))
2562 dev_printk(KERN_DEBUG,
2563 &adapter->pdev->dev,
2564 "rx exception, ISR = 0x%x\n",
2565 status);
2566 atl1_sched_rings_clean(adapter);
2567 }
2568
2569 /* re-enable Interrupt */
2570 iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2571 return IRQ_HANDLED;
2572 }
2573
2574
2575 /**
2576 * atl1_phy_config - Timer Call-back
2577 * @data: pointer to netdev cast into an unsigned long
2578 */
2579 static void atl1_phy_config(unsigned long data)
2580 {
2581 struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2582 struct atl1_hw *hw = &adapter->hw;
2583 unsigned long flags;
2584
2585 spin_lock_irqsave(&adapter->lock, flags);
2586 adapter->phy_timer_pending = false;
2587 atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2588 atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2589 atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2590 spin_unlock_irqrestore(&adapter->lock, flags);
2591 }
2592
2593 /*
2594 * Orphaned vendor comment left intact here:
2595 * <vendor comment>
2596 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2597 * will assert. We do soft reset <0x1400=1> according
2598 * with the SPEC. BUT, it seemes that PCIE or DMA
2599 * state-machine will not be reset. DMAR_TO_INT will
2600 * assert again and again.
2601 * </vendor comment>
2602 */
2603
2604 static int atl1_reset(struct atl1_adapter *adapter)
2605 {
2606 int ret;
2607 ret = atl1_reset_hw(&adapter->hw);
2608 if (ret)
2609 return ret;
2610 return atl1_init_hw(&adapter->hw);
2611 }
2612
2613 static s32 atl1_up(struct atl1_adapter *adapter)
2614 {
2615 struct net_device *netdev = adapter->netdev;
2616 int err;
2617 int irq_flags = 0;
2618
2619 /* hardware has been reset, we need to reload some things */
2620 atlx_set_multi(netdev);
2621 atl1_init_ring_ptrs(adapter);
2622 atlx_restore_vlan(adapter);
2623 err = atl1_alloc_rx_buffers(adapter);
2624 if (unlikely(!err))
2625 /* no RX BUFFER allocated */
2626 return -ENOMEM;
2627
2628 if (unlikely(atl1_configure(adapter))) {
2629 err = -EIO;
2630 goto err_up;
2631 }
2632
2633 err = pci_enable_msi(adapter->pdev);
2634 if (err) {
2635 if (netif_msg_ifup(adapter))
2636 dev_info(&adapter->pdev->dev,
2637 "Unable to enable MSI: %d\n", err);
2638 irq_flags |= IRQF_SHARED;
2639 }
2640
2641 err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2642 netdev->name, netdev);
2643 if (unlikely(err))
2644 goto err_up;
2645
2646 napi_enable(&adapter->napi);
2647 atlx_irq_enable(adapter);
2648 atl1_check_link(adapter);
2649 netif_start_queue(netdev);
2650 return 0;
2651
2652 err_up:
2653 pci_disable_msi(adapter->pdev);
2654 /* free rx_buffers */
2655 atl1_clean_rx_ring(adapter);
2656 return err;
2657 }
2658
2659 static void atl1_down(struct atl1_adapter *adapter)
2660 {
2661 struct net_device *netdev = adapter->netdev;
2662
2663 napi_disable(&adapter->napi);
2664 netif_stop_queue(netdev);
2665 del_timer_sync(&adapter->phy_config_timer);
2666 adapter->phy_timer_pending = false;
2667
2668 atlx_irq_disable(adapter);
2669 free_irq(adapter->pdev->irq, netdev);
2670 pci_disable_msi(adapter->pdev);
2671 atl1_reset_hw(&adapter->hw);
2672 adapter->cmb.cmb->int_stats = 0;
2673
2674 adapter->link_speed = SPEED_0;
2675 adapter->link_duplex = -1;
2676 netif_carrier_off(netdev);
2677
2678 atl1_clean_tx_ring(adapter);
2679 atl1_clean_rx_ring(adapter);
2680 }
2681
2682 static void atl1_reset_dev_task(struct work_struct *work)
2683 {
2684 struct atl1_adapter *adapter =
2685 container_of(work, struct atl1_adapter, reset_dev_task);
2686 struct net_device *netdev = adapter->netdev;
2687
2688 netif_device_detach(netdev);
2689 atl1_down(adapter);
2690 atl1_up(adapter);
2691 netif_device_attach(netdev);
2692 }
2693
2694 /**
2695 * atl1_change_mtu - Change the Maximum Transfer Unit
2696 * @netdev: network interface device structure
2697 * @new_mtu: new value for maximum frame size
2698 *
2699 * Returns 0 on success, negative on failure
2700 */
2701 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2702 {
2703 struct atl1_adapter *adapter = netdev_priv(netdev);
2704 int old_mtu = netdev->mtu;
2705 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2706
2707 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2708 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2709 if (netif_msg_link(adapter))
2710 dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2711 return -EINVAL;
2712 }
2713
2714 adapter->hw.max_frame_size = max_frame;
2715 adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2716 adapter->rx_buffer_len = (max_frame + 7) & ~7;
2717 adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2718
2719 netdev->mtu = new_mtu;
2720 if ((old_mtu != new_mtu) && netif_running(netdev)) {
2721 atl1_down(adapter);
2722 atl1_up(adapter);
2723 }
2724
2725 return 0;
2726 }
2727
2728 /**
2729 * atl1_open - Called when a network interface is made active
2730 * @netdev: network interface device structure
2731 *
2732 * Returns 0 on success, negative value on failure
2733 *
2734 * The open entry point is called when a network interface is made
2735 * active by the system (IFF_UP). At this point all resources needed
2736 * for transmit and receive operations are allocated, the interrupt
2737 * handler is registered with the OS, the watchdog timer is started,
2738 * and the stack is notified that the interface is ready.
2739 */
2740 static int atl1_open(struct net_device *netdev)
2741 {
2742 struct atl1_adapter *adapter = netdev_priv(netdev);
2743 int err;
2744
2745 netif_carrier_off(netdev);
2746
2747 /* allocate transmit descriptors */
2748 err = atl1_setup_ring_resources(adapter);
2749 if (err)
2750 return err;
2751
2752 err = atl1_up(adapter);
2753 if (err)
2754 goto err_up;
2755
2756 return 0;
2757
2758 err_up:
2759 atl1_reset(adapter);
2760 return err;
2761 }
2762
2763 /**
2764 * atl1_close - Disables a network interface
2765 * @netdev: network interface device structure
2766 *
2767 * Returns 0, this is not allowed to fail
2768 *
2769 * The close entry point is called when an interface is de-activated
2770 * by the OS. The hardware is still under the drivers control, but
2771 * needs to be disabled. A global MAC reset is issued to stop the
2772 * hardware, and all transmit and receive resources are freed.
2773 */
2774 static int atl1_close(struct net_device *netdev)
2775 {
2776 struct atl1_adapter *adapter = netdev_priv(netdev);
2777 atl1_down(adapter);
2778 atl1_free_ring_resources(adapter);
2779 return 0;
2780 }
2781
2782 #ifdef CONFIG_PM_SLEEP
2783 static int atl1_suspend(struct device *dev)
2784 {
2785 struct pci_dev *pdev = to_pci_dev(dev);
2786 struct net_device *netdev = pci_get_drvdata(pdev);
2787 struct atl1_adapter *adapter = netdev_priv(netdev);
2788 struct atl1_hw *hw = &adapter->hw;
2789 u32 ctrl = 0;
2790 u32 wufc = adapter->wol;
2791 u32 val;
2792 u16 speed;
2793 u16 duplex;
2794
2795 netif_device_detach(netdev);
2796 if (netif_running(netdev))
2797 atl1_down(adapter);
2798
2799 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2800 atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2801 val = ctrl & BMSR_LSTATUS;
2802 if (val)
2803 wufc &= ~ATLX_WUFC_LNKC;
2804 if (!wufc)
2805 goto disable_wol;
2806
2807 if (val) {
2808 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2809 if (val) {
2810 if (netif_msg_ifdown(adapter))
2811 dev_printk(KERN_DEBUG, &pdev->dev,
2812 "error getting speed/duplex\n");
2813 goto disable_wol;
2814 }
2815
2816 ctrl = 0;
2817
2818 /* enable magic packet WOL */
2819 if (wufc & ATLX_WUFC_MAG)
2820 ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2821 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2822 ioread32(hw->hw_addr + REG_WOL_CTRL);
2823
2824 /* configure the mac */
2825 ctrl = MAC_CTRL_RX_EN;
2826 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2827 MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2828 if (duplex == FULL_DUPLEX)
2829 ctrl |= MAC_CTRL_DUPLX;
2830 ctrl |= (((u32)adapter->hw.preamble_len &
2831 MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2832 __atlx_vlan_mode(netdev->features, &ctrl);
2833 if (wufc & ATLX_WUFC_MAG)
2834 ctrl |= MAC_CTRL_BC_EN;
2835 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2836 ioread32(hw->hw_addr + REG_MAC_CTRL);
2837
2838 /* poke the PHY */
2839 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2840 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2841 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2842 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2843 } else {
2844 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2845 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2846 ioread32(hw->hw_addr + REG_WOL_CTRL);
2847 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2848 ioread32(hw->hw_addr + REG_MAC_CTRL);
2849 hw->phy_configured = false;
2850 }
2851
2852 return 0;
2853
2854 disable_wol:
2855 iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2856 ioread32(hw->hw_addr + REG_WOL_CTRL);
2857 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2858 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2859 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2860 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2861 hw->phy_configured = false;
2862
2863 return 0;
2864 }
2865
2866 static int atl1_resume(struct device *dev)
2867 {
2868 struct pci_dev *pdev = to_pci_dev(dev);
2869 struct net_device *netdev = pci_get_drvdata(pdev);
2870 struct atl1_adapter *adapter = netdev_priv(netdev);
2871
2872 iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2873
2874 atl1_reset_hw(&adapter->hw);
2875
2876 if (netif_running(netdev)) {
2877 adapter->cmb.cmb->int_stats = 0;
2878 atl1_up(adapter);
2879 }
2880 netif_device_attach(netdev);
2881
2882 return 0;
2883 }
2884 #endif
2885
2886 static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2887
2888 static void atl1_shutdown(struct pci_dev *pdev)
2889 {
2890 struct net_device *netdev = pci_get_drvdata(pdev);
2891 struct atl1_adapter *adapter = netdev_priv(netdev);
2892
2893 #ifdef CONFIG_PM_SLEEP
2894 atl1_suspend(&pdev->dev);
2895 #endif
2896 pci_wake_from_d3(pdev, adapter->wol);
2897 pci_set_power_state(pdev, PCI_D3hot);
2898 }
2899
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2901 static void atl1_poll_controller(struct net_device *netdev)
2902 {
2903 disable_irq(netdev->irq);
2904 atl1_intr(netdev->irq, netdev);
2905 enable_irq(netdev->irq);
2906 }
2907 #endif
2908
2909 static const struct net_device_ops atl1_netdev_ops = {
2910 .ndo_open = atl1_open,
2911 .ndo_stop = atl1_close,
2912 .ndo_start_xmit = atl1_xmit_frame,
2913 .ndo_set_rx_mode = atlx_set_multi,
2914 .ndo_validate_addr = eth_validate_addr,
2915 .ndo_set_mac_address = atl1_set_mac,
2916 .ndo_change_mtu = atl1_change_mtu,
2917 .ndo_fix_features = atlx_fix_features,
2918 .ndo_set_features = atlx_set_features,
2919 .ndo_do_ioctl = atlx_ioctl,
2920 .ndo_tx_timeout = atlx_tx_timeout,
2921 #ifdef CONFIG_NET_POLL_CONTROLLER
2922 .ndo_poll_controller = atl1_poll_controller,
2923 #endif
2924 };
2925
2926 /**
2927 * atl1_probe - Device Initialization Routine
2928 * @pdev: PCI device information struct
2929 * @ent: entry in atl1_pci_tbl
2930 *
2931 * Returns 0 on success, negative on failure
2932 *
2933 * atl1_probe initializes an adapter identified by a pci_dev structure.
2934 * The OS initialization, configuring of the adapter private structure,
2935 * and a hardware reset occur.
2936 */
2937 static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2938 {
2939 struct net_device *netdev;
2940 struct atl1_adapter *adapter;
2941 static int cards_found = 0;
2942 int err;
2943
2944 err = pci_enable_device(pdev);
2945 if (err)
2946 return err;
2947
2948 /*
2949 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2950 * shared register for the high 32 bits, so only a single, aligned,
2951 * 4 GB physical address range can be used at a time.
2952 *
2953 * Supporting 64-bit DMA on this hardware is more trouble than it's
2954 * worth. It is far easier to limit to 32-bit DMA than update
2955 * various kernel subsystems to support the mechanics required by a
2956 * fixed-high-32-bit system.
2957 */
2958 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2959 if (err) {
2960 dev_err(&pdev->dev, "no usable DMA configuration\n");
2961 goto err_dma;
2962 }
2963 /*
2964 * Mark all PCI regions associated with PCI device
2965 * pdev as being reserved by owner atl1_driver_name
2966 */
2967 err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2968 if (err)
2969 goto err_request_regions;
2970
2971 /*
2972 * Enables bus-mastering on the device and calls
2973 * pcibios_set_master to do the needed arch specific settings
2974 */
2975 pci_set_master(pdev);
2976
2977 netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2978 if (!netdev) {
2979 err = -ENOMEM;
2980 goto err_alloc_etherdev;
2981 }
2982 SET_NETDEV_DEV(netdev, &pdev->dev);
2983
2984 pci_set_drvdata(pdev, netdev);
2985 adapter = netdev_priv(netdev);
2986 adapter->netdev = netdev;
2987 adapter->pdev = pdev;
2988 adapter->hw.back = adapter;
2989 adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2990
2991 adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2992 if (!adapter->hw.hw_addr) {
2993 err = -EIO;
2994 goto err_pci_iomap;
2995 }
2996 /* get device revision number */
2997 adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2998 (REG_MASTER_CTRL + 2));
2999 if (netif_msg_probe(adapter))
3000 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
3001
3002 /* set default ring resource counts */
3003 adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
3004 adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
3005
3006 adapter->mii.dev = netdev;
3007 adapter->mii.mdio_read = mdio_read;
3008 adapter->mii.mdio_write = mdio_write;
3009 adapter->mii.phy_id_mask = 0x1f;
3010 adapter->mii.reg_num_mask = 0x1f;
3011
3012 netdev->netdev_ops = &atl1_netdev_ops;
3013 netdev->watchdog_timeo = 5 * HZ;
3014 netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3015
3016 netdev->ethtool_ops = &atl1_ethtool_ops;
3017 adapter->bd_number = cards_found;
3018
3019 /* setup the private structure */
3020 err = atl1_sw_init(adapter);
3021 if (err)
3022 goto err_common;
3023
3024 netdev->features = NETIF_F_HW_CSUM;
3025 netdev->features |= NETIF_F_SG;
3026 netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3027
3028 netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3029 NETIF_F_HW_VLAN_CTAG_RX;
3030
3031 /* is this valid? see atl1_setup_mac_ctrl() */
3032 netdev->features |= NETIF_F_RXCSUM;
3033
3034 /*
3035 * patch for some L1 of old version,
3036 * the final version of L1 may not need these
3037 * patches
3038 */
3039 /* atl1_pcie_patch(adapter); */
3040
3041 /* really reset GPHY core */
3042 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3043
3044 /*
3045 * reset the controller to
3046 * put the device in a known good starting state
3047 */
3048 if (atl1_reset_hw(&adapter->hw)) {
3049 err = -EIO;
3050 goto err_common;
3051 }
3052
3053 /* copy the MAC address out of the EEPROM */
3054 if (atl1_read_mac_addr(&adapter->hw)) {
3055 /* mark random mac */
3056 netdev->addr_assign_type = NET_ADDR_RANDOM;
3057 }
3058 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3059
3060 if (!is_valid_ether_addr(netdev->dev_addr)) {
3061 err = -EIO;
3062 goto err_common;
3063 }
3064
3065 atl1_check_options(adapter);
3066
3067 /* pre-init the MAC, and setup link */
3068 err = atl1_init_hw(&adapter->hw);
3069 if (err) {
3070 err = -EIO;
3071 goto err_common;
3072 }
3073
3074 atl1_pcie_patch(adapter);
3075 /* assume we have no link for now */
3076 netif_carrier_off(netdev);
3077
3078 setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3079 (unsigned long)adapter);
3080 adapter->phy_timer_pending = false;
3081
3082 INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3083
3084 INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3085
3086 err = register_netdev(netdev);
3087 if (err)
3088 goto err_common;
3089
3090 cards_found++;
3091 atl1_via_workaround(adapter);
3092 return 0;
3093
3094 err_common:
3095 pci_iounmap(pdev, adapter->hw.hw_addr);
3096 err_pci_iomap:
3097 free_netdev(netdev);
3098 err_alloc_etherdev:
3099 pci_release_regions(pdev);
3100 err_dma:
3101 err_request_regions:
3102 pci_disable_device(pdev);
3103 return err;
3104 }
3105
3106 /**
3107 * atl1_remove - Device Removal Routine
3108 * @pdev: PCI device information struct
3109 *
3110 * atl1_remove is called by the PCI subsystem to alert the driver
3111 * that it should release a PCI device. The could be caused by a
3112 * Hot-Plug event, or because the driver is going to be removed from
3113 * memory.
3114 */
3115 static void atl1_remove(struct pci_dev *pdev)
3116 {
3117 struct net_device *netdev = pci_get_drvdata(pdev);
3118 struct atl1_adapter *adapter;
3119 /* Device not available. Return. */
3120 if (!netdev)
3121 return;
3122
3123 adapter = netdev_priv(netdev);
3124
3125 /*
3126 * Some atl1 boards lack persistent storage for their MAC, and get it
3127 * from the BIOS during POST. If we've been messing with the MAC
3128 * address, we need to save the permanent one.
3129 */
3130 if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3131 adapter->hw.perm_mac_addr)) {
3132 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3133 ETH_ALEN);
3134 atl1_set_mac_addr(&adapter->hw);
3135 }
3136
3137 iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3138 unregister_netdev(netdev);
3139 pci_iounmap(pdev, adapter->hw.hw_addr);
3140 pci_release_regions(pdev);
3141 free_netdev(netdev);
3142 pci_disable_device(pdev);
3143 }
3144
3145 static struct pci_driver atl1_driver = {
3146 .name = ATLX_DRIVER_NAME,
3147 .id_table = atl1_pci_tbl,
3148 .probe = atl1_probe,
3149 .remove = atl1_remove,
3150 .shutdown = atl1_shutdown,
3151 .driver.pm = &atl1_pm_ops,
3152 };
3153
3154 struct atl1_stats {
3155 char stat_string[ETH_GSTRING_LEN];
3156 int sizeof_stat;
3157 int stat_offset;
3158 };
3159
3160 #define ATL1_STAT(m) \
3161 sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3162
3163 static struct atl1_stats atl1_gstrings_stats[] = {
3164 {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3165 {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3166 {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3167 {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3168 {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3169 {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3170 {"multicast", ATL1_STAT(soft_stats.multicast)},
3171 {"collisions", ATL1_STAT(soft_stats.collisions)},
3172 {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3173 {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3174 {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3175 {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3176 {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3177 {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3178 {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3179 {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3180 {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3181 {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3182 {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3183 {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3184 {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3185 {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3186 {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3187 {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3188 {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3189 {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3190 {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3191 {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3192 {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3193 };
3194
3195 static void atl1_get_ethtool_stats(struct net_device *netdev,
3196 struct ethtool_stats *stats, u64 *data)
3197 {
3198 struct atl1_adapter *adapter = netdev_priv(netdev);
3199 int i;
3200 char *p;
3201
3202 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3203 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3204 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3205 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3206 }
3207
3208 }
3209
3210 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3211 {
3212 switch (sset) {
3213 case ETH_SS_STATS:
3214 return ARRAY_SIZE(atl1_gstrings_stats);
3215 default:
3216 return -EOPNOTSUPP;
3217 }
3218 }
3219
3220 static int atl1_get_settings(struct net_device *netdev,
3221 struct ethtool_cmd *ecmd)
3222 {
3223 struct atl1_adapter *adapter = netdev_priv(netdev);
3224 struct atl1_hw *hw = &adapter->hw;
3225
3226 ecmd->supported = (SUPPORTED_10baseT_Half |
3227 SUPPORTED_10baseT_Full |
3228 SUPPORTED_100baseT_Half |
3229 SUPPORTED_100baseT_Full |
3230 SUPPORTED_1000baseT_Full |
3231 SUPPORTED_Autoneg | SUPPORTED_TP);
3232 ecmd->advertising = ADVERTISED_TP;
3233 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3234 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3235 ecmd->advertising |= ADVERTISED_Autoneg;
3236 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3237 ecmd->advertising |= ADVERTISED_Autoneg;
3238 ecmd->advertising |=
3239 (ADVERTISED_10baseT_Half |
3240 ADVERTISED_10baseT_Full |
3241 ADVERTISED_100baseT_Half |
3242 ADVERTISED_100baseT_Full |
3243 ADVERTISED_1000baseT_Full);
3244 } else
3245 ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3246 }
3247 ecmd->port = PORT_TP;
3248 ecmd->phy_address = 0;
3249 ecmd->transceiver = XCVR_INTERNAL;
3250
3251 if (netif_carrier_ok(adapter->netdev)) {
3252 u16 link_speed, link_duplex;
3253 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3254 ethtool_cmd_speed_set(ecmd, link_speed);
3255 if (link_duplex == FULL_DUPLEX)
3256 ecmd->duplex = DUPLEX_FULL;
3257 else
3258 ecmd->duplex = DUPLEX_HALF;
3259 } else {
3260 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
3261 ecmd->duplex = DUPLEX_UNKNOWN;
3262 }
3263 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3264 hw->media_type == MEDIA_TYPE_1000M_FULL)
3265 ecmd->autoneg = AUTONEG_ENABLE;
3266 else
3267 ecmd->autoneg = AUTONEG_DISABLE;
3268
3269 return 0;
3270 }
3271
3272 static int atl1_set_settings(struct net_device *netdev,
3273 struct ethtool_cmd *ecmd)
3274 {
3275 struct atl1_adapter *adapter = netdev_priv(netdev);
3276 struct atl1_hw *hw = &adapter->hw;
3277 u16 phy_data;
3278 int ret_val = 0;
3279 u16 old_media_type = hw->media_type;
3280
3281 if (netif_running(adapter->netdev)) {
3282 if (netif_msg_link(adapter))
3283 dev_dbg(&adapter->pdev->dev,
3284 "ethtool shutting down adapter\n");
3285 atl1_down(adapter);
3286 }
3287
3288 if (ecmd->autoneg == AUTONEG_ENABLE)
3289 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3290 else {
3291 u32 speed = ethtool_cmd_speed(ecmd);
3292 if (speed == SPEED_1000) {
3293 if (ecmd->duplex != DUPLEX_FULL) {
3294 if (netif_msg_link(adapter))
3295 dev_warn(&adapter->pdev->dev,
3296 "1000M half is invalid\n");
3297 ret_val = -EINVAL;
3298 goto exit_sset;
3299 }
3300 hw->media_type = MEDIA_TYPE_1000M_FULL;
3301 } else if (speed == SPEED_100) {
3302 if (ecmd->duplex == DUPLEX_FULL)
3303 hw->media_type = MEDIA_TYPE_100M_FULL;
3304 else
3305 hw->media_type = MEDIA_TYPE_100M_HALF;
3306 } else {
3307 if (ecmd->duplex == DUPLEX_FULL)
3308 hw->media_type = MEDIA_TYPE_10M_FULL;
3309 else
3310 hw->media_type = MEDIA_TYPE_10M_HALF;
3311 }
3312 }
3313 switch (hw->media_type) {
3314 case MEDIA_TYPE_AUTO_SENSOR:
3315 ecmd->advertising =
3316 ADVERTISED_10baseT_Half |
3317 ADVERTISED_10baseT_Full |
3318 ADVERTISED_100baseT_Half |
3319 ADVERTISED_100baseT_Full |
3320 ADVERTISED_1000baseT_Full |
3321 ADVERTISED_Autoneg | ADVERTISED_TP;
3322 break;
3323 case MEDIA_TYPE_1000M_FULL:
3324 ecmd->advertising =
3325 ADVERTISED_1000baseT_Full |
3326 ADVERTISED_Autoneg | ADVERTISED_TP;
3327 break;
3328 default:
3329 ecmd->advertising = 0;
3330 break;
3331 }
3332 if (atl1_phy_setup_autoneg_adv(hw)) {
3333 ret_val = -EINVAL;
3334 if (netif_msg_link(adapter))
3335 dev_warn(&adapter->pdev->dev,
3336 "invalid ethtool speed/duplex setting\n");
3337 goto exit_sset;
3338 }
3339 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3340 hw->media_type == MEDIA_TYPE_1000M_FULL)
3341 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3342 else {
3343 switch (hw->media_type) {
3344 case MEDIA_TYPE_100M_FULL:
3345 phy_data =
3346 MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3347 MII_CR_RESET;
3348 break;
3349 case MEDIA_TYPE_100M_HALF:
3350 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3351 break;
3352 case MEDIA_TYPE_10M_FULL:
3353 phy_data =
3354 MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3355 break;
3356 default:
3357 /* MEDIA_TYPE_10M_HALF: */
3358 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3359 break;
3360 }
3361 }
3362 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3363 exit_sset:
3364 if (ret_val)
3365 hw->media_type = old_media_type;
3366
3367 if (netif_running(adapter->netdev)) {
3368 if (netif_msg_link(adapter))
3369 dev_dbg(&adapter->pdev->dev,
3370 "ethtool starting adapter\n");
3371 atl1_up(adapter);
3372 } else if (!ret_val) {
3373 if (netif_msg_link(adapter))
3374 dev_dbg(&adapter->pdev->dev,
3375 "ethtool resetting adapter\n");
3376 atl1_reset(adapter);
3377 }
3378 return ret_val;
3379 }
3380
3381 static void atl1_get_drvinfo(struct net_device *netdev,
3382 struct ethtool_drvinfo *drvinfo)
3383 {
3384 struct atl1_adapter *adapter = netdev_priv(netdev);
3385
3386 strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3387 strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3388 sizeof(drvinfo->version));
3389 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3390 sizeof(drvinfo->bus_info));
3391 drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3392 }
3393
3394 static void atl1_get_wol(struct net_device *netdev,
3395 struct ethtool_wolinfo *wol)
3396 {
3397 struct atl1_adapter *adapter = netdev_priv(netdev);
3398
3399 wol->supported = WAKE_MAGIC;
3400 wol->wolopts = 0;
3401 if (adapter->wol & ATLX_WUFC_MAG)
3402 wol->wolopts |= WAKE_MAGIC;
3403 }
3404
3405 static int atl1_set_wol(struct net_device *netdev,
3406 struct ethtool_wolinfo *wol)
3407 {
3408 struct atl1_adapter *adapter = netdev_priv(netdev);
3409
3410 if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3411 WAKE_ARP | WAKE_MAGICSECURE))
3412 return -EOPNOTSUPP;
3413 adapter->wol = 0;
3414 if (wol->wolopts & WAKE_MAGIC)
3415 adapter->wol |= ATLX_WUFC_MAG;
3416
3417 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3418
3419 return 0;
3420 }
3421
3422 static u32 atl1_get_msglevel(struct net_device *netdev)
3423 {
3424 struct atl1_adapter *adapter = netdev_priv(netdev);
3425 return adapter->msg_enable;
3426 }
3427
3428 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3429 {
3430 struct atl1_adapter *adapter = netdev_priv(netdev);
3431 adapter->msg_enable = value;
3432 }
3433
3434 static int atl1_get_regs_len(struct net_device *netdev)
3435 {
3436 return ATL1_REG_COUNT * sizeof(u32);
3437 }
3438
3439 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3440 void *p)
3441 {
3442 struct atl1_adapter *adapter = netdev_priv(netdev);
3443 struct atl1_hw *hw = &adapter->hw;
3444 unsigned int i;
3445 u32 *regbuf = p;
3446
3447 for (i = 0; i < ATL1_REG_COUNT; i++) {
3448 /*
3449 * This switch statement avoids reserved regions
3450 * of register space.
3451 */
3452 switch (i) {
3453 case 6 ... 9:
3454 case 14:
3455 case 29 ... 31:
3456 case 34 ... 63:
3457 case 75 ... 127:
3458 case 136 ... 1023:
3459 case 1027 ... 1087:
3460 case 1091 ... 1151:
3461 case 1194 ... 1195:
3462 case 1200 ... 1201:
3463 case 1206 ... 1213:
3464 case 1216 ... 1279:
3465 case 1290 ... 1311:
3466 case 1323 ... 1343:
3467 case 1358 ... 1359:
3468 case 1368 ... 1375:
3469 case 1378 ... 1383:
3470 case 1388 ... 1391:
3471 case 1393 ... 1395:
3472 case 1402 ... 1403:
3473 case 1410 ... 1471:
3474 case 1522 ... 1535:
3475 /* reserved region; don't read it */
3476 regbuf[i] = 0;
3477 break;
3478 default:
3479 /* unreserved region */
3480 regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3481 }
3482 }
3483 }
3484
3485 static void atl1_get_ringparam(struct net_device *netdev,
3486 struct ethtool_ringparam *ring)
3487 {
3488 struct atl1_adapter *adapter = netdev_priv(netdev);
3489 struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3490 struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3491
3492 ring->rx_max_pending = ATL1_MAX_RFD;
3493 ring->tx_max_pending = ATL1_MAX_TPD;
3494 ring->rx_pending = rxdr->count;
3495 ring->tx_pending = txdr->count;
3496 }
3497
3498 static int atl1_set_ringparam(struct net_device *netdev,
3499 struct ethtool_ringparam *ring)
3500 {
3501 struct atl1_adapter *adapter = netdev_priv(netdev);
3502 struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3503 struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3504 struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3505
3506 struct atl1_tpd_ring tpd_old, tpd_new;
3507 struct atl1_rfd_ring rfd_old, rfd_new;
3508 struct atl1_rrd_ring rrd_old, rrd_new;
3509 struct atl1_ring_header rhdr_old, rhdr_new;
3510 struct atl1_smb smb;
3511 struct atl1_cmb cmb;
3512 int err;
3513
3514 tpd_old = adapter->tpd_ring;
3515 rfd_old = adapter->rfd_ring;
3516 rrd_old = adapter->rrd_ring;
3517 rhdr_old = adapter->ring_header;
3518
3519 if (netif_running(adapter->netdev))
3520 atl1_down(adapter);
3521
3522 rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3523 rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3524 rfdr->count;
3525 rfdr->count = (rfdr->count + 3) & ~3;
3526 rrdr->count = rfdr->count;
3527
3528 tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3529 tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3530 tpdr->count;
3531 tpdr->count = (tpdr->count + 3) & ~3;
3532
3533 if (netif_running(adapter->netdev)) {
3534 /* try to get new resources before deleting old */
3535 err = atl1_setup_ring_resources(adapter);
3536 if (err)
3537 goto err_setup_ring;
3538
3539 /*
3540 * save the new, restore the old in order to free it,
3541 * then restore the new back again
3542 */
3543
3544 rfd_new = adapter->rfd_ring;
3545 rrd_new = adapter->rrd_ring;
3546 tpd_new = adapter->tpd_ring;
3547 rhdr_new = adapter->ring_header;
3548 adapter->rfd_ring = rfd_old;
3549 adapter->rrd_ring = rrd_old;
3550 adapter->tpd_ring = tpd_old;
3551 adapter->ring_header = rhdr_old;
3552 /*
3553 * Save SMB and CMB, since atl1_free_ring_resources
3554 * will clear them.
3555 */
3556 smb = adapter->smb;
3557 cmb = adapter->cmb;
3558 atl1_free_ring_resources(adapter);
3559 adapter->rfd_ring = rfd_new;
3560 adapter->rrd_ring = rrd_new;
3561 adapter->tpd_ring = tpd_new;
3562 adapter->ring_header = rhdr_new;
3563 adapter->smb = smb;
3564 adapter->cmb = cmb;
3565
3566 err = atl1_up(adapter);
3567 if (err)
3568 return err;
3569 }
3570 return 0;
3571
3572 err_setup_ring:
3573 adapter->rfd_ring = rfd_old;
3574 adapter->rrd_ring = rrd_old;
3575 adapter->tpd_ring = tpd_old;
3576 adapter->ring_header = rhdr_old;
3577 atl1_up(adapter);
3578 return err;
3579 }
3580
3581 static void atl1_get_pauseparam(struct net_device *netdev,
3582 struct ethtool_pauseparam *epause)
3583 {
3584 struct atl1_adapter *adapter = netdev_priv(netdev);
3585 struct atl1_hw *hw = &adapter->hw;
3586
3587 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3588 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3589 epause->autoneg = AUTONEG_ENABLE;
3590 } else {
3591 epause->autoneg = AUTONEG_DISABLE;
3592 }
3593 epause->rx_pause = 1;
3594 epause->tx_pause = 1;
3595 }
3596
3597 static int atl1_set_pauseparam(struct net_device *netdev,
3598 struct ethtool_pauseparam *epause)
3599 {
3600 struct atl1_adapter *adapter = netdev_priv(netdev);
3601 struct atl1_hw *hw = &adapter->hw;
3602
3603 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3604 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3605 epause->autoneg = AUTONEG_ENABLE;
3606 } else {
3607 epause->autoneg = AUTONEG_DISABLE;
3608 }
3609
3610 epause->rx_pause = 1;
3611 epause->tx_pause = 1;
3612
3613 return 0;
3614 }
3615
3616 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3617 u8 *data)
3618 {
3619 u8 *p = data;
3620 int i;
3621
3622 switch (stringset) {
3623 case ETH_SS_STATS:
3624 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3625 memcpy(p, atl1_gstrings_stats[i].stat_string,
3626 ETH_GSTRING_LEN);
3627 p += ETH_GSTRING_LEN;
3628 }
3629 break;
3630 }
3631 }
3632
3633 static int atl1_nway_reset(struct net_device *netdev)
3634 {
3635 struct atl1_adapter *adapter = netdev_priv(netdev);
3636 struct atl1_hw *hw = &adapter->hw;
3637
3638 if (netif_running(netdev)) {
3639 u16 phy_data;
3640 atl1_down(adapter);
3641
3642 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3643 hw->media_type == MEDIA_TYPE_1000M_FULL) {
3644 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3645 } else {
3646 switch (hw->media_type) {
3647 case MEDIA_TYPE_100M_FULL:
3648 phy_data = MII_CR_FULL_DUPLEX |
3649 MII_CR_SPEED_100 | MII_CR_RESET;
3650 break;
3651 case MEDIA_TYPE_100M_HALF:
3652 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3653 break;
3654 case MEDIA_TYPE_10M_FULL:
3655 phy_data = MII_CR_FULL_DUPLEX |
3656 MII_CR_SPEED_10 | MII_CR_RESET;
3657 break;
3658 default:
3659 /* MEDIA_TYPE_10M_HALF */
3660 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3661 }
3662 }
3663 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3664 atl1_up(adapter);
3665 }
3666 return 0;
3667 }
3668
3669 static const struct ethtool_ops atl1_ethtool_ops = {
3670 .get_settings = atl1_get_settings,
3671 .set_settings = atl1_set_settings,
3672 .get_drvinfo = atl1_get_drvinfo,
3673 .get_wol = atl1_get_wol,
3674 .set_wol = atl1_set_wol,
3675 .get_msglevel = atl1_get_msglevel,
3676 .set_msglevel = atl1_set_msglevel,
3677 .get_regs_len = atl1_get_regs_len,
3678 .get_regs = atl1_get_regs,
3679 .get_ringparam = atl1_get_ringparam,
3680 .set_ringparam = atl1_set_ringparam,
3681 .get_pauseparam = atl1_get_pauseparam,
3682 .set_pauseparam = atl1_set_pauseparam,
3683 .get_link = ethtool_op_get_link,
3684 .get_strings = atl1_get_strings,
3685 .nway_reset = atl1_nway_reset,
3686 .get_ethtool_stats = atl1_get_ethtool_stats,
3687 .get_sset_count = atl1_get_sset_count,
3688 };
3689
3690 module_pci_driver(atl1_driver);
This page took 0.118407 seconds and 5 git commands to generate.